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ABSTRACT 

The maintenance of a proper balance between excitatory and inhibitory 

neurotransmission (E/I ratio) is crucial for correct brain development, function and 

plasticity. Through its inhibitory action, GABA (gamma-aminobutyric acid) 

neurotransmitter is the principal regulator of E/I ratio, exerting a precise modulation of 

excitatory transmission. Conversely, at the early stages of neuronal maturation, GABA 

operates as an excitatory neurotransmitter directly evoking action potentials. Then, during 

development, it acquires its typical role of brake for neuronal activity through the 

fundamental process called “excitatory-to-inhibitory switch of GABA”, the postnatal 

transition of GABA transmission from excitatory to inhibitory, directly related to the 

action of the potassium-chloride co-transporter KCC2. Defects in GABA switch have 

been largely described in neurodevelopmental disorders such as epilepsy, autism and 

schizophrenia. In this context, we have recently unveiled a new role of ATM (Ataxia 

Telangiectasia Mutated), a protein kinase involved in DNA double strand breaks (DSB) 

repair, in orchestrating the maturation of GABAergic inhibition. Here we demonstrate 

that the exposure of wild-type neurons in a “critical window” during development to an 

inhibitor of ATM kinase activity (KU), a drug already exploited as therapeutic tool in 

oncology, accelerates the excitatory-to-inhibitory switch of GABA. We show that the 

molecular mechanism underlying KU effect involves the transcription factor Egr4 and 

the epigenetic regulator MeCP2, which independently and in parallel boost KCC2 

expression both in vitro and in vivo. The resultant neuronal network exhibits a potentiated 

inhibitory synaptic transmission and appears resistant to a hyper-excitability paradigm. 

Surprisingly, we found an increased expression of ATM associated to low levels of KCC2 

in Mecp2y/- mice, the genetic model of Rett syndrome (RTT), a neurodevelopmental 

disorder associated to mental retardation. Coherently, KU treatment in Mecp2y/- neurons, 

potentiating Egr4 activity on Kcc2b promoter and restoring proper KCC2 expression, 

rescues the delayed GABA switch and counteracts the pharmacologically-induced hyper-

excitability, suggesting that increased ATM levels contribute to the generation of the 

altered neuronal phenotype in RTT. The results collected in this thesis provide new 

evidence and molecular mechanisms of ATM crucial role in the physiological 

development of central neurons and highlight ATM inhibition as a prospective 

therapeutic tool in neurodevelopmental disorders.  
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RIASSUNTO 
Il mantenimento di un corretto equilibrio tra la trasmissione neuronale eccitatoria e 

inibitoria risulta cruciale per il corretto sviluppo, funzione e plasticità del cervello. 

Attraverso la sua azione inibitoria, il neurotrasmettitore GABA è il principale regolatore 

dell’equilibrio tra eccitazione e inibizione, esercitando una precisa modulazione della 

trasmissione eccitatoria. Al contrario, nelle prime fasi dello sviluppo neuronale, il GABA 

agisce come neurotrasmettitore eccitatorio, in grado di evocare potenziali d'azione. 

Durante lo sviluppo, acquisisce il suo tipico ruolo di freno per l'attività neuronale 

attraverso il fondamentale processo chiamato "GABA switch", la transizione postnatale 

della trasmissione GABAergica da eccitatoria a inibitoria, direttamente correlata 

all'azione del co-trasportatore di potassio e cloro, KCC2. Difetti nella maturazione 

dell’inibizione GABAergica sono stati ampiamente descritti nei disordini dello sviluppo, 

tra cui epilessia, autismo e schizofrenia. In questo contesto, abbiamo recentemente 

scoperto un nuovo ruolo di ATM (Ataxia Telangiectasia Mutated), una proteina chinasi 

coinvolta nella riparazione del danno al DNA, nella regolazione dello switch del GABA. 

In questa tesi dimostriamo che il trattamento farmacologico di neuroni wild-type con un 

inibitore dell'attività chinasica di ATM (KU), un farmaco già utilizzato nella ricerca pre-

clinica oncologica, accelera lo sviluppo dell’inibizione GABAergica (i.e. GABA switch). 

Inoltre, mostriamo che il meccanismo molecolare alla base dell'effetto di KU coinvolge 

il fattore di trascrizione Egr4 e il regolatore epigenetico MeCP2, che indipendentemente 

e in parallelo promuovono l'espressione di KCC2 sia in vitro che in vivo. La rete neuronale 

risultante mostra un’aumentata trasmissione sinaptica inibitoria e appare resistente a un 

paradigma di ipereccitabilità indotta farmacologicamente. Sorprendentemente, 

dimostriamo inoltre che nel topo Mecp2y/-, modello animale della sindrome di Rett (RTT), 

un disordine dello sviluppo neurologico associato a ritardo mentale, vi è una maggiore 

espressione della proteina ATM associata a una riduzione dei livelli di KCC2. 

Coerentemente, il trattamento con l’inibitore di ATM (KU) in neuroni ottenuti da 

embrioni Mecp2y/- normalizza il ritardato sviluppo GABAergico e contrasta 

l’ipereccitabilità indotta farmacologicamente, aumentando l’attività di Egr4 sul 

promotore del Kcc2 e ripristinando quindi la corretta espressione di tale proteina. Questi 

dati suggeriscono che l’aumento di espressione di ATM contribuisce alla generazione 

delle disfunzioni neuronali tipiche della RTT. I risultati raccolti in questa tesi forniscono 
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nuove evidenze e chiariscono i meccanismi molecolari riguardanti il ruolo fondamentale 

di ATM nello sviluppo del sistema nervoso centrale (SNC) e mettono in luce l'inibizione 

dell’attività chinasica di ATM come un nuovo potenziale strumento terapeutico nei 

disordini dello sviluppo neurologico. 
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INTRODUCTION 
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Chapter 1 

 

The excitatory/inhibitory balance: implication for 

neurodevelopmental disorders 

 

The correct brain building during early development requires the appropriate 

interplay between intrinsic gene expression, molecular pathways and neuronal activity 

[1-4], with a good amount of external and environmental factors [5]. It is well accepted 

that the development of the proper brain functions depends on the maintenance of a series 

of physiological balances including i) cell growth/cell differentiation, ii) neurotrophins 

production, iii) oxidant/anti-oxidant equilibrium, iv) neurotransmitters release and v) 

pro/anti-inflammatory molecules [6-9]. Among these, the production and release of 

neurotransmitters responsible for the precise excitatory/inhibitory transmission (E/I 

balance), is crucial for a proper circuitry formation, cortical layer organization, activity-

dependent tuning of neuronal network and mechanisms at the basis of neuronal plasticity 

[10-12]. In fact, dysregulation of the E/I balance is proposed to underlie cognitive and 

social deficits typical of neurodevelopmental disorders (NDDs) [13, 14]. Coherently, 

most of NDDs such as Autism Spectrum Disorder (ASD), Intellectual Disabilities (ID), 

schizophrenia, Down syndrome, Fragile X and Rett syndrome have been associated to 

altered neurotransmitters release, aberrant circuitry formation, impaired generation of 

inhibition and GABAergic pathway alterations at different developmental stages [15-17]. 

 

 

Maturation of GABAergic inhibition and its key role in brain development 

 

In the brain, neuronal circuits consist of two classes of neurons: excitatory projection 

neurons, mainly using glutamate as neurotransmitter, and inhibitory interneurons using 

gamma-amino butyric acid (GABA) as neurotransmitter [18]. Traditionally, GABAergic 

interneurons have been considered as simple regulator of neuronal excitability, which by 

their inhibitory action operate as a brake for excitatory neurotransmission [19]. However, 
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in the last few years, the GABAergic system is getting increasing attention since among 

the crucial role in modulating E/I balance, inhibitory neurons play a vital role in the 

regulation of all the key developmental steps in brain maturation, from neuronal 

proliferation, migration and differentiation to experience-dependent organization and 

plasticity of local circuits [20-25]. Not surprisingly, alterations in GABAergic 

development have been related to many neurodevelopmental and neuropsychiatric 

disorders including schizophrenia, autism, Tourette’s syndrome, epilepsy, Down 

syndrome, Fragile X and Rett syndrome [26-29].  

The comprehension of GABAergic interneurons function and maturation is 

challenged by their heterogeneity. In fact, there are different subtypes of interneurons that 

exhibit distinct morphology, connectivity pattern and physiological properties [30]. The 

canonical classification divides interneurons into three largely independent sub-

populations based on the expression of calcium-binding proteins: parvalbumin (PV), 

somatostatin/calbindin (SST/CB) and calretinin/vasoactive intestinal peptide (CR/VIP) 

expressing neurons. In addition, diverse subtypes of interneurons innervate distinct 

domains of the post-synaptic glutamatergic cells: PV interneurons specifically innervate 

the soma and proximal dendrites, whereas SST/CB interneurons selectively innervate 

distal dendrites of target neurons. This precise spatial organization of inhibitory synapses 

along principal neurons, highlights specific functional roles carried out by diverse 

interneuron sub-populations [31].  

The formation of the GABAergic system can be divided into distinct developmental 

steps that include the generation of specific GABAergic subtypes, the migration of these 

precursors in the appropriate 

brain region, the formation of 

synaptic contacts towards 

specific post-synaptic targets 

and the activity-dependent 

adjustment of GABAergic 

synapse number and strength 

[18] (Figure 1). While the 

first stages are strongly 

regulated by genetic 

Figure 1. Time course of GABAergic circuit development in rodents. 

In the immature brain, GABA-releasing synapses are formed before 

glutamatergic contacts and represent the first form of communication 

between neurons. Modified from Di Cristo, 2007.  
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programs, synapse maturation is deeply orchestrated by experience [32]. Indeed, the rich 

pattern of innervation typical of GABAergic neurons is not completed until late 

adolescence, both in rodent and primates. During this temporal window experience-

dependent cellular and molecular mechanisms finely sculpt GABAergic network 

architecture and control maturation and plasticity of inhibitory synapses [33, 34]. The 

first molecule shown to be involved in this process is the Brain-derived neurotrophic 

factor (BDNF), which promotes the formation of GABAergic synapses and adjust their 

strength and number in both cortex and hippocampus [35]. 

More recently, it has been strongly demonstrated that GABA signaling itself can 

promote GABAergic maturation and innervation [36, 37]. This trophic action of GABA 

on cell proliferation, migration 

and differentiation lasts from the 

embryonic period up to perinatal 

period, or even adolescence, and 

is principally due to its 

depolarizing action [38].  In fact, 

at early stages of neuronal 

development, GABA acts as an 

excitatory neurotransmitter, able 

to evoke action potentials, trigger 

calcium influx and signaling [39-

41]. Then, during brain 

maturation, we assist to a change 

of GABA response polarity from 

excitatory to inhibitory in a fundamental process called “excitatory-to-inhibitory switch 

of GABA”. This change of the electrophysiological and biochemical properties of 

GABAergic transmission has been shown first in the hippocampus and then also in 

neocortex and hypothalamus [42, 43]. The switch of GABA polarity is primarily 

determined by the electrochemical gradient of Cl-, which is tightly controlled by the 

action of Na+-K+-2Cl- (NKCC1) and K+-Cl- (KCC2) co-transporters [44] (Figure 2). In 

the immature brain, NKCC1 is highly expressed and determines high Cl- intracellular 

concentration, so when GABA binds GABAA receptor, Cl- flows out promoting 

Figure 2. Schematic diagram of the developmental switch of 

GABAergic transmission from excitatory to inhibitory. In 

immature neurons NKCC1 expression is high while KCC2 is low, 

resulting in high [Cl−]i and a depolarizing effect of GABA 

transmission. In mature neurons, the situation is reversed: the 

expression of NKCC1 is low and that of KCC2 is high, resulting 

in low [Cl−]i and inhibitory action of GABA. Modified from Ben-

Ari, 2015. 
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depolarization. Conversely, in the adult brain, NKCC1 expression is reduced and KCC2 

levels increase. The chloride extrusion operated by KCC2 establishes low intracellular 

Cl-, with a consequent inhibitory action of GABAergic currents. This developmental 

chloride gradient inversion has been demonstrated to occur in all neurons of the central 

nervous system, although its timing can significantly change in different brain regions. In 

general, evolutionarily older brain structures, such as spinal cord, medulla and thalamus, 

display a precocious neuronal generation and maturation compared to neocortex and 

hippocampus [45]. The maturation of Cl- homeostasis follows the same sequence. In the 

rat embryo for example, a strong KCC2 mRNA expression is already present at E18 in 

amygdala, thalamus and hypothalamus. On the contrary, cortex and hippocampus show 

the earliest KCC2 mRNA expression only postnatally, at post-natal day 15 (P15). In mice 

the scenario is similar: two days in advance compared to rat embryos [46]. Notably, it has 

been shown by Tyzio and colleagues that in rodent embryos, shortly before delivery, there 

is a transient excitatory-to-inhibitory switch of GABA action triggered by the oxytocin 

released by the mother. They demonstrated that this process is crucial for the proper brain 

development of offspring since maternal oxytocin inhibits fetal neurons and increases 

their resistance to insults during delivery [47].  

The developmental increase of KCC2 mRNA is tightly regulated by neurotrophic 

factors among which BDNF, that exerts a positive effect on KCC2 expression [48]. 

Conversely, mice with mutation in BDNF receptor, the tyrosine receptor kinase B (TrkB) 

receptor, show reduced levels of KCC2 in the hippocampus [49]. BDNF regulation of 

KCC2 expression is mediated by the phosphorylation of the extracellular signal-regulated 

kinase 1/2 (ERK1/2), which determines the activation of the early growth response 4 

(Egr4) transcription factor, that in turn causes the activation of the Kcc2b promoter [50]. 

Another transcription factor involved in the regulation of KCC2 expression is the 

upstream stimulating factor 1 (USF1). The interaction between USF1 and the major E-

box binding complex contributes the activation of the Kcc2b gene expression in cultured 

cortical neurons [51]. Coherently, mice deficient in USF1 display spontaneous epileptic 

seizures, suggesting the crucial role of USF1 in normal brain function [52]. It is clear that 

alterations in every step that regulates this crucial excitatory-to-inhibitory switch of 

GABA result deleterious for brain development. GABA switch dysregulation, indeed, 
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determines a failure of inhibition with a complete disruption of the E/I balance and then 

strong defects in synapse maturation, function and plasticity.  

 

 

KCC2 dysregulation in neurodevelopmental disorders: the case of the Rett 

syndrome  

 

As discussed before, alterations in the pathways that regulate GABAergic maturation 

strongly affect neuronal function leading to E/I imbalance. In this contest, KCC2 

dysregulation is one of the most impacting. For example, it has been shown that KCC2 

downregulation increases neuronal activity and contributes to seizures generation [53]. 

Coherently, loss-of-function of KCC2 has been found in both epileptic patients and in 

various animal models for epilepsy: KCC2 missense variant KCC2-R952H was identified 

in an Australian family with childhood onset febrile seizures [54], other mutations such 

as R1049C, a functional variants coding for human KCC2, might be associated with 

idiopathic generalized epilepsy [55] and in the lithium-pilocarpine induced status 

epilepticus mouse model, KCC2 mRNA and protein were found significantly 

downregulated [56]. In addition, it is largely accepted that an altered KCC2 expression is 

a common feature of diverse neurodevelopmental and neuropsychiatric disorders such as 

Fragile X syndrome, Down syndrome, autism, schizophrenia and seems to be a key 

element in the aetiopathogenesis of these diseases [27, 57, 58]. Among all these, Rett 

syndrome is the clear example of a neurodevelopmental disorder in which a dysregulation 

of the E/I balance and KCC2 lower expression lead to the most impacting neurological 

features of the pathology [59, 60]. Rett syndrome (RTT) is a devastating chromosome X-

linked neurodevelopmental disorder. In 90-95% of patients diagnosed, the pathology is 

caused by loss-of-function mutations in the Methyl-CpG-binding protein 2 (MECP2) 

gene. RTT patients display an apparently normal early development until the age of 6-18 

month, but then they undergo to a subsequent regression [61, 62]. The main symptoms 

usually become clear around 12-18 months and include loss of speech, breathing 

abnormalities, defects in motor coordination, motor disabilities and cognitive impairment 

[63]. In addition, epilepsy is present in 80% of RTT patients [64]. MeCP2 is a nuclear 

protein able to bind methylated DNA (Figure 3). It is a multifunctional modulator of gene 
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expression and its activating or repressing actions depend on the molecular context. 

Recent evidence however unveils additional roles of MeCP2 as a post-transcriptional 

regulator of gene expression through microRNA mediated mechanisms. Furthermore, the 

study of the neuronal defects 

typical of RTT has offered new 

insights on the plethora of MeCP2 

roles at different developmental 

stages, MeCP2–DNA interactions 

and the vital importance of MeCP2 

in the regulation of the E/I balance, 

circuits formation and neuronal 

plasticity [65].  

A large amount of evidence 

clearly points to alterations in the GABAergic system as key pathological features in 

RTT. Coherently, Mecp2-mutant mice, the mouse model of RTT, display a general 

impairment in GABAergic system [59, 66, 67]. The pivotal role of GABAergic 

transmission in RTT was directly provided by Chao and colleagues who demonstrated 

that the selective removal of MeCP2 from GABAergic interneurons, recapitulates most 

of the pathological phenotype of Rett syndrome [68] and then by Ure et al who rescued 

RTT disease features only by restoring MeCP2 in inhibitory neurons [69]. Accordingly, 

MeCP2 is highly expressed in GABAergic neurons and its loss-of-function determines a 

decrease of GAD65 mRNA and abnormal inter-neuron related genes expression [70]. 

Importantly, it is largely accepted that the E/I imbalance, typical of RTT, is strongly 

correlated to a failure in the maturation of the GABAergic inhibition [71]. Indeed, a recent 

study found low levels of KCC2 in the cerebrospinal fluid (CSF) of Rett syndrome 

patients [72] and Mecp2 null mice display a more depolarized reversal potential of GABA 

and reduced KCC2 levels, indicating a delay in excitatory-to-inhibitory GABA switch. 

Accordingly, Insulin-like growth-factor 1 (IGF1) treatment, by enhancing KCC2 

expression, rescues behavioural and synaptic deficits in mutant mouse models of RTT 

[73] and KCC2 overexpression in human neurons derived from RTT patients reverts 

GABAergic functional defects [60]. The clear link between KCC2 levels and MeCP2 was 

Figure 3. MeCP2 binds to chromosomes at sites of DNA 

methylation, present in gene bodies and intergenic regions of 

the genome. Missense mutations that cause Rett syndrome are 

concentrated in the MBD and NID of MeCP2. Modified from 

Cholewa-Waclaw et al, 2016. 
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further demonstrated by different recent 

studies which pointed out the direct 

regulation of KCC2 expression via MeCP2 

[60, 74]. In particular, Tang and colleagues 

showed that MeCP2 prevents the inhibition 

of KCC2 expression induced by REST. In 

fact, KCC2 gene has two repressor element-

1 sites (RE-1) near its transcription start site 

and REST, binding to these RE-1 sites, 

inhibits the expression of KCC2. In wild-

type neurons, MeCP2 occupies RE-1 sites in 

the KCC2 gene, thus preventing REST 

binding and inhibition of KCC2 expression. Whereas, in Rett neurons, that lack MeCP2, 

REST binds to the RE-1 sites and suppresses KCC2 expression (Figure 4). Because of 

KCC2 deficiency, Rett neurons show a depolarizing response to GABA.  

All together these studies highlight the importance of the GABAergic system, and 

especially the crucial role of KCC2 in the aetiopathlogy of Rett syndrome.  

 

 

Targeting GABAergic system as therapeutic tool in neurodevelopmental 

disorders  

 

The theoretical model of excitatory/inhibitory imbalance and GABAergic altered 

development as neurodevelopmental disorders origin, lays the basis for a 

pharmacological approach based on compounds acting on the GABAergic system at 

different levels: i) neurotransmitter release, ii) receptor activation and iii) maturation of 

inhibition [26]. In this scenario, many molecules are already available in clinic such as 

benzodiazepines and anticonvulsants.  

Considering the co-morbidity of neurodevelopmental disorders with epilepsy, 

anticonvulsants are widely used for the treatments of these pathologies. There are 

increasing reports showing that anticonvulsant can be useful in ameliorating some 

autistic-like behaviours [75-77]. Some of these drugs also display an anti-anxiety effect 

Figure 4. A working model of the molecular 

mechanisms underlying KCC2 deficiency in Rett 

neurons. Modified from Tang et al, 2016. 
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probably due to the increase of GABAA neurotransmission by promoting GABA synthesis 

or inhibiting its re-uptake or catabolism. This is the case of vigabatrin, a GABA 

transaminase inhibitor, that besides its anticonvulsant action is also able to improve the 

autistic behaviour of children affected by tuberous sclerosis [78].  

Less is published about the efficacy of benzodiazepines in the treatment of ASDs. 

However, it is widely accepted that gamma-aminobutyric acid agonists are effective in 

normalizing the E/I imbalance in animal models of ASDs by directly enhancing inhibition 

or indirectly reducing excitation. As an example, in the animal model of idiopathic 

autism, i.e. the BTBR mice and in the Scn1a+/- genetic model, both characterized by a 

failure of GABAA inhibition, the treatment with low doses of benzodiazepines, improve 

social and cognitive defects only by enhancing GABAergic signaling [79, 80]. Very 

interestingly, in both animal models is the selective up-regulation of α2 and/or α3 

containing GABAA receptors subunits that improves behavioural defects [79]. 

Accordingly, new studies are aimed at identifying novel agonists that can selectively 

target distinct GABAA receptors subunits to reduce side effects of GABAergic 

pharmacological treatments.  

Although by these pharmacological approaches many phenotypes have been 

ameliorated in the corresponding animal model, most of studies report only partial rescue 

of selective impairments with some defects remaining. Given that these disorders are the 

result of an aberrant development of brain networks, the timing of pharmaceutical 

treatment could be crucial in the efficiency of correcting impairments. In fact, the focus 

is now turning to early intervention in NDDs mouse models, in particular on drugs acting 

on GABAergic development and maturation [29]. In addition, it has been shown that in 

some children affected by ASDs, benzodiazepines have paradoxical effects, increasing 

anxiety and aggression [81]. The hypothesis is that GABAergic neurotransmission is still 

excitatory: enhancing GABAA mediated transmission does not always means increasing 

inhibition and could further deteriorate clinical features. Thus, the discovery that, by 

acting on NKCC1/KCC2 it is possible to indirectly modulate inhibition, opens the way 

for new therapeutic interventions aimed to correct the defect early during development. 

That is the case of bumetanide, a FDA-approved loop diuretic NKCC1 inhibitor. In a 

recent study, Tyzio and colleagues smartly demonstrated that bumetanide application one 

day pre-delivery to pregnant Fragile X mice or to VPA rats, suppresses excitatory action 
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of GABA and rescues behavioral features in the offspring in both animal models [47]. 

Bumetanide has also been tested in human ASD. Following a pivotal study [82], Ben-

Ari’s group conducted two randomized controlled trials of bumetanide in 60 and 90 

children with ASD or Asperger syndrome (3-11 years old). After three months of 

treatment, children showed significant ameliorations according to the Childhood 

Autism Rating Scale (CARS), the Clinical Global Impressions and the Autism 

Diagnostic Observation Schedule [83, 84]. Considering that bumetanide does not 

pass well the blood-brain barrier (BBB), more lipophilic bumetanide drugs have been 

developed and tested in animals [85] with promising results also in avoiding the 

diuretic side-effects due to bumetanide action on NKCC2. On the other side, 

therapeutic targeting on other components involved in chloride regulation, such as 

KCC2, is getting increased interest. Recent studies showed IGF-1 as a novel agent 

able to upregulate KCC2 expression probably via BDNF pathway [86]. Moreover, 

another recent paper described a new compound, CLP257, as a new tool to counteract 

hyperexcitability in the central nervous system (CNS). This small molecule can 

restore chloride concentrations presumably by enhancing KCC2 expression [87]. 

Thus, the study of mechanism by which chloride concentration is regulated in the 

brain is getting more attention since the great potential in rescuing pathological 

phenotypes in neurodevelopmental disorders.   
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Chapter 2 

 

DNA double-strand breaks (DSBs) and DNA damage 

response (DDR) in neuronal function and maturation 

 

DNA double-strand breaks (DSBs) are common and unavoidable genetic lesions 

essential for the survival and evolution of vertebrates. They are generated when both 

DNA strands are broken at the same position or very close to each other to allow physical 

dissociation of the double helix into two separate molecules. Despite environmental 

factors such as ionizing radiation (IR) can induce DSBs, intrinsic factors remain the major 

source of DNA damage throughout the entire genome [88]. Reactive oxygen species 

(ROS), continuously formed as by-products of cell respiration, can cause DSBs during 

all phases of the cell cycle, whereas DSBs are formed only during each S phase in 

proliferating cells by blocked DNA replication forks or DNA replication through single-

strand breaks. Importantly, DSBs induction by tissue-specific nucleases is essential for 

genetic variability in germ cells during meiosis and it is as much fundamental in the 

assembly and diversification of antigen receptor genes in developing lymphocytes. 

Coherently, defects in DSBs repair pathway lead to genomic instability, genetic and 

epigenetic changes, apoptosis and cell transformation. Thus, cells need to sense and 

respond to DSBs to survive, maintain cell diversity and function, avoid malignant 

transformation and guarantee a working immune system [89].  

The DNA damage response (DDR) is principally orchestrated by two DNA damage-

sensing kinases, ATM (Ataxia Telangiectasia Mutated protein) and ATR (Ataxia 

Telangiectasia and Rad3-related protein), which are activated by DNA damage and 

subsequently can phosphorylate hundreds of proteins including the p53 tumor suppressor 

and other tumor-suppressing and cell cycle-regulating proteins such as CHK2, BRCA1, 

NBS1 and H2AX [90-93]. ATM itself is a tumor suppressor and is required for vertebrate 

development; ATR is mainly involved in DNA replication and cell proliferation [94, 95]. 

The most studied and long-recognized outcomes of DDR signaling are the transient cell 

cycle arrest coupled with DNA repair, apoptosis, senescence or cancer [96]. Nevertheless, 

recent studies suggested other potential outcomes especially for developing and mature 
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neuronal cells. In these cells the DDR appears to yield an unexpected role in controlling 

cell differentiation programs and even in regulating neuronal activity [97]. This is a 

diverse function of DDR, completely distinct from the known DSBs response aimed in 

maintaining genome integrity, suggesting that DDR signaling, and related proteins could 

exert broader functions in neurons than previously recognized.  

 

 

Regulation of neuronal differentiation by the DNA damage response  

 

A large amount of evidence clearly suggests a link between neuronal precursor or 

stem cell (NSC) differentiation and the activation of p53-mediated DDR pathway from 

DSBs, induced by extrinsic or intrinsic events. In literature is know that IR-induced DSBs 

determines p53 acetylation in the CNS [98] and the acetylation of Lys320 supports neurite 

outgrowth in vitro and axon regeneration in vivo by 

enhancing Coronin1 and Rab13 signaling [99]. In 

addition, p53 expression regulation in NSCs located 

in the subventricular zone (SVZ) is fundamental: loss 

of p53 results in NCS proliferation, impaired 

neuronal differentiation and as consequence genesis 

of glial tumors [100]. Coherently, p53-deficient SVZ 

NSCs display increased proliferation, defects in 

maturation and altered expression of neuronal or 

glial lineage differentiation markers [101]. 

Importantly, also p21, one of the main targets of p53 

signaling, inhibits NSC self-renewal probably by 

blocking cell cycle progression (Figure 5). Thus, 

p53 deficiency could lessen p21-dependent cell 

cycle checkpoints causing increasing NSC self-

renewal and impaired cell differentiation [102].  

All together these data highlight a crucial role of p53-dependent DDR in suppressing 

NSC and multipotent precursor cell self-renewal in favour of differentiation.  

 

Figure 5. Schematic representation of 

p53/p21 signaling downstream of DSBs in 

neuronal differentiation. Modified from 

Sherman et al, 2011.  
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DNA breaks and DDR importance in neuronal physiology and disease  

 

Behaviour is strongly influenced by our experience. Neurons are able to sense and 

process changes fundamental for the survival and for the organism interplay with the 

external world. This process requires an intricate “dialogue between genes and synapses” 

in which the exposure to a new stimulus profoundly alters the morphology and 

connectivity of neural circuits by activating signaling cascades, inducing new protein 

synthesis and new gene transcription programs [103]. These changes are supposed to 

underlie the formation of long-lasting memories and adaptive responses since they are 

crucial for synaptic plasticity. These experience-dependent modifications are governed 

by the neuronal activity-regulated genes which are classified into diverse subclasses 

based on the timing of their activation following the activity-dependent stimulus. Genes 

induced first in this program, the so-called “early response genes”, are enriched for 

transcription factors among which Fos, Npas4, Nr4a1, and Egr1. These last, in turn, lead 

the expression of the so-called “late response genes”, such as Bdnf, Homer1, Nrn1 and 

Cpg15, which are induced with a longer latency [104]. Together these immediate early 

gene products regulate experience-driven changes to synapses including synaptogenesis, 

neurite outgrowth, synaptic strength and maturation and the crucial E/I balance [105]. 

However, the precise mechanism that coerces early response genes in the absence of a 

stimulus, and those that trigger their rapid induction, are poorly understood.  

Importantly, recent studies pointed out that diverse paradigms of neuronal 

stimulations, such as the exposure of  

mice to physiological learning 

behaviours, determine the formation 

of DSBs [106, 107]. Madabhushi and 

colleagues, discovered that these 

activity-induced DSBs are restricted 

to few loci through the entire genome 

enriched for the early response genes 

Fos, Npas4, Egr1, and Nr4a1 (Figure 

6). The mechanism underlying this 

paradigm seems to depend on a Type 

Figure 6. Neuronal activity triggers the formation of Topo 

IIβ-mediated DNA breaks in the promoters of a subset of 

early-response genes that are crucial for experience-driven 

synaptic changes. Modified from Madabhushi et al, 2015. 
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II topoisomerase, Topo IIβ, which is essential for the imminent induction of the early 

response genes. In fact, Top2b null mice display lower activity-induced DSBs and then a 

decrease induction of early response gene. Thus, engineering targeted DSBs in the 

promoters of these genes promote their induction even if Top2b is knocked down [107]. 

Together, these results highlight the importance of DSBs formation in the induction of 

early response genes following neuronal activity and reveal new role of DSBs and related 

signaling in shaping synaptic plasticity and in controlling neuronal function and 

behaviour. In addition, it has been shown that Topo IIβ-mediated DSBs induce gene 

expression also in other cell types and in response to diverse stimulations such as 

androgens, estrogen and insulin [108, 109]. Thus, this paradigm might be an important 

and conserved program to rapidly induce gene expression. While early response genes 

changing in expression are governed by DSBs formation and related repair mechanisms, 

a recent study showed that Bdnf and other late response genes dynamics, are regulated by 

active demethylation through the base-excision repair pathway [110]. Considering the 

crucial role of activity-dependent genes expression in neurons, defects in DNA repair 

have important pathophysiological implications. In facts, loss-of-function mutations in 

different proteins implicated in DDR generate devasting neurological disorders [111] 

(Figure 7). That is the case of ATR-Seckel syndrome, a complex pathology generated by 

mutation in ATR gene and characterized by microcephaly and progressive aging; LIG4 

syndrome, a microcephaly due to defects in p53 dependent pathway and Ataxia 

Telangiectasia (A-T), caused by mutations of ATM, that I will extensively describe in the 

next chapter.  

Figure 7. Modified from Madabhushi et al, 2014 
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Furthermore, the new role of DSBs in governing the activity-induce gene dynamics 

suggests that alterations in any step of DSBs, from the formation to the repair, might have 

a strong impact on cognitive performance. About that, a recent study discovered 

homozygous mutations in TDP2 gene in patients with a neurological phenotype 

characterized by seizures, intellectual disabilities and ataxia [112]. TDP2, the tyrosyl-

DNA phosphodiesterase 2, is an enzyme specialized in repairing the ‘abortive’ TOP2-

induced DSBs. Also, DNA repair defects and changes in the expression of protein 

involved in DDR pathway have been largely descried in neurodegenerative disorders such 

as Alzheimer disease (AD), Parkinson disease (PD) and Huntington’s disease (HD). The 

hallmark symptom of Alzheimer’s disease is cognitive decline; in 1987, Robinson and 

colleagues demonstrated that alkylation damage is inefficiently repaired in cells obtained 

from patients with AD [113]. They suggested that this could be the cause of late-onset 

familial Alzheimer’s disease and the associated damage to the CNS. Starting from this 

pioneering publication, many other studies have shown an increased DNA damage and 

decreased DNA repair in both patients and mouse models of AD [114]. Recently, 

Suberbielle and co-workers corroborated this hypothesis showing that transgenic mice for 

human amyloid precursor protein (hAPP), a well described mouse model of AD, 

displayed increased neuronal DSBs at baseline and more severe and prolonged activity-

induced DSBs after exploration [106]. They demonstrated that i) the suppression of 

aberrant network activity in hAPP mice normalized their levels of DSBs and ii) Aβ 

oligomers caused DSBs to form in primary neuronal cultures [106], indicating that 

transient increases in neuronal DSBs are an integral component of physiological brain 

activity and that Aβ exacerbates DNA damage by eliciting aberrant synaptic activity. The 

damage induced by this high amount of DSBs in AD is exacerbated by a defective DDR. 

In fact, it has been demonstrated a failure of ATM function and consequently a reduced 

DDR efficiency in both AD mouse model and human AD tissues [115], suggesting that 

ATM deficiency and altered DDR could be important contributors to the 

neurodegeneration in AD. Oxidative stress and DNA damage are also implicated in PD, 

in which the hypersensitivity to DNA-damaging agents seems to be one of the major 

mechanisms involved in neuronal death [116]. Moreover, HD, a neurodegenerative 

syndrome caused by mutations of the IT15 gene encoding for the huntingtin protein, 

displays a strong impairment in DDR pathway. In fact, HD human skin fibroblast showed 
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an abnormally low rate of recognized DSBs and irradiated HD cells present a moderate 

yield of unrepaired DSBs due to a delayed nucleo-shuttling of phosphorylated forms of 

the ATM kinase probably caused by the binding of ATM to mutated huntingtin in the 

cytoplasm [117]. Coherently, Lu and colleagues demonstrated an increased ATM 

signaling in cells derived from HD mice and in brain tissue from HD mice and patients 

[118]. Also, they showed that the genetic reduction of Atm gene dosage by one copy 

ameliorated multiple behavioural deficits and partially improved neuropathology of HD 

mice [118], suggesting ATM may be a useful therapeutic target for HD. 

All together these findings highlight the enormous importance of studying whether 

neurological defects arise from defective DSBs and alteration in proteins involved in 

DNA repair pathways and open the way to new possible pharmacological targets in 

neurological diseases.   
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Chapter 3 

 

Ataxia-Telangiectasia 

 

Ataxia-Telangiectasia (A-T) was initially described by Syllaba and Henner in 1926, 

which documented the first case of A-T in literature. Fifteen years later, the syndrome 

was again defined by Louis-Bar who described a nine-old boy with progressive cerebellar 

ataxia and cutaneous telangiectasia [119]. Consequentially, the disease was called Louis-

Bar syndrome for a period. The complete description of the pathology was finally 

provided by Boder and Sedgwick in 1957, which named the syndrome Ataxia-

Telangiectasia (A-T), because of the two most visible features of the disease [120]. Only 

in 1988, using genetic linkage analysis of 31 A-T families, Gatti and colleagues first 

localized a gene(s) for A-T in chromosomal region 11q22-23 [121]. This finding allows 

many laboratories to perform extensive positional cloning studies. Thus, the search for 

A-T gene(s) was reduced to less than 500 kilobases [122]. But not before 1995, one single 

gene was identified as the cause of the disease [123]. The defective gene in A-T was 

subsequently named ATM (A-T mutated). This gene occupies 160 kb of the entire 

genomic DNA and encodes a 12 kb transcript of 66 exons [124]. 

 

 

General features of Ataxia-Telangiectasia (A-T) 

 

A-T is a hereditary progressive neurodegenerative rare disorder, with an estimated 

frequency between 1/40,000 and 1/100,000 live births [125]. It is known that many A-T 

cases, especially those who die at a young age, are never diagnosed. Therefore, this 

pathology may be much more prevalent. It is estimated that ~1% of the general population 

in the United States carries defective A-T genes (according to the A-T Project 

Foundation). The classical A-T phenotype is caused by homozygosity or compound 

heterozygosity for ATM alleles, which truncate or completely inactivate the protein via 

missense mutations [126]. Despite the functional uniformity of the mutations, there is a 

consistent variability in the age of onset and in progression of symptoms. Milder forms 
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of A-T, which are characterized by later onset and slower progression, are associated with 

leaky splicing mutations or promoter defects that leave residual amounts of functional 

ATM protein [127].  

A-T generally appears early in childhood: around the age of three patients begin to 

have trouble in walking independently [128] and by the end of the adolescence become 

wheelchair bound. Besides the classical A-T signs which are ataxia (lack of muscle 

control) and telangiectasia (abnormal dilation of capillary vessels), A-T includes a wide 

range of symptoms, among which: progressive dysarthria (dysphasic disorder of language 

characterized by difficulty in articulating words), choreoathetosis (abnormal movements 

of the body), oculomotor apraxia (incapability to follow moving objects), growth 

retardation, genomic instability that caused an increased cancer susceptibility, 

hypersensitivity to ionizing radiation and sterility [129-131]. 

A progressive and massive cortical cerebellar degeneration related mostly to the 

Purkinje and the granule cells has been described in patients [132] and it is associated to 

an inexorable loss of cerebellar function. In addition, autopsies and magnetic resonance 

imaging (MRI) studies have shown significant thinning of the cerebellum and cerebellar 

atrophy [133]. Finally, degenerative changes in other CNS regions appear during patients’ 

life among which dentate and olivary nuclei, basal ganglia, brain stem and spinal cord. 

Despite the neurodegeneration, A-T also affects the immune system. In patients an 

absence or a reduction of various immunoglobulins including IgA and IgE isotypes, IgG2, 

IgG4 has been described [134]. These alterations are associated with thymic hypoplasia, 

loss of follicles in the lymph nodes, absence of delayed hypersensitivity reaction and slow 

formation of circulating antibodies. This state of immune deficiency explains the obvious 

susceptibility of A-T patients to recurrent lung infections and bronchiectasis [135].  

A-T is fatal, affected individuals usually die by their twenties with few surviving into 

thirties. The cause of death is usually pneumonia or chronic lung disease, which may 

result from defects in chewing and swallowing caused by the progressive neurological 

impairment [136]. Neoplasms are frequent, and they are the second leading cause of death 

[137]. In clinic, diagnosis of A-T is commonly based on the recognition of the classical 

hallmarks of the pathology: progressive ataxia and telangiectasia. A more precise 

diagnosis is provided by the analysis of the cellular phenotype of A-T. In fact, cell lines 

derived from patients show characteristic abnormalities, including defective growth, 
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increased serum growth factor requirements, premature senescence, major sensitivity to 

IR and failure to establish effective cell-cycle arrest after genotoxic insult [138]. This 

method is more accurate, but it requires time and effort for the generation of the cell-line.  

No curative strategy for A-T exists and treatments are focused on slowing the 

progression of the neurodegeneration as well as other approaches are involved in fighting 

tumors. However, since it seems that oxidative stress may be one of the most important 

causes of degeneration in A-T, potential therapies based on antioxidant could be 

promising [139].  

 

 

Cognitive defects in A-T patients 

 

As previously described, the main neurological defects associated to A-T patients 

consist in the progressive cerebellar ataxia and in symptoms involving the extrapyramidal 

pathways such as ocular apraxia and a progressive axonal somatosensory polyneuropathy 

with an onset peaking around eight years. However, a cognitive phenotype was also 

described in A-T.   

It is widely accepted that cerebellum participates in the organization of higher order 

functions and cerebellar cognitive affected syndrome (CCAS) is characterized by deficits 

in executive function, linguistic processing, working memory and spatial cognition, 

resulting in overall intellectual impairment [140]. The intellectual impairment reported in 

cerebellar and cerebrocerebellar diseases differs in term of behavioural and cognitive 

phenotype depending on the pathology [141]. Moreover, the timing and the onset of the 

condition influence the functional outcome with most important impact in the early stage 

of development. That is the case of A-T, in which the mutation affects the CNS since the 

early embryonic stage. Coherently, even pediatric patients display executive function 

defects, acquire expressive and receptive language impairments, visuospatial disabilities 

and verbal working memory defects [142]. Despite these defects could be entirely 

ascribed to cerebellar syndrome, patients also display defects in attention, late learning 

and memory that cannot be completely attributed to cerebellum. Accordingly, Nora D. 

Volkow and colleagues [143] have conducted a study to measure brain glucose 

metabolism by positron emission tomography and 18-fludeoxyglucose in homozygous 
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and heterozygous patients comparing to healthy controls. By these analyses, they showed 

that not only homozygotes but also heterozygotes have a reduced glucose metabolism in 

some brain regions including the hippocampus, the brain structure fundamental for 

memory and learning functions. This suggests that in homozygous and even in 

heterozygous asymptomatic patients, mutations of ATM gene impact not only cerebellar 

functions but also properties of different brain regions such as hippocampus. 

In this scenario, Mostofsky and colleagues [144] demonstrated a significantly lower 

verbal IQ and considerable problems with judgment of duration in 17 A-T patients. These 

neurological defects flank speech abnormalities, difficulty in coordination and timing. 

Therefore, another team has recently studied a group of eight affected children to 

understand whether they possess global learning disabilities and/or cognitive impairment 

or language specific defects and if they were subjected to a progressive course [145]. The 

results of all of these studies showed that almost all patients have progressive cognitive 

deficit and that the IQ of younger affected, tested with a non-verbal test, seems to fall into 

the average (IQ=100) while that of older fits in values between 57 and 83. The analysis 

of the neuropsychological profile of all the patients, however, showed significant defects 

of attention, verbal memory, non-verbal memory, late learning and fluency of speech. 

 

 

Atmy/y, a mouse model of A-T 

 

Several model systems have been generated for an appropriate investigation of A-T, 

but none recapitulate all the features of the pathological phenotype. Most of these lines 

have been developed in mice. Although Atm-deficient mouse models manifest much of 

the phenotype described in A-T patients, the wide consensus is that they do not exhibit 

the most debilitating hallmark of A-T, neurodegeneration [146]. Independently developed 

Atm-deficient mouse models may vary in their phenotypic manifestations due to different 

mutagenesis strategies and/or genetic backgrounds, however they all display 

immunodeficiency and immune system defects including T-cell maturation, growth 

retardation, germ cell dysfunction and infertility, cancer predisposition and increased 

sensitivity to ionizing radiation (IR) [134, 147, 148].  
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Among all the genetic mouse model generated for A-T, that generated by Borghesani 

and colleagues, the Atmy/y, is the closest to A-T pathological phenotype [149]. Atmy 

mutation was generated by replacing the exons 50-52 of human ATM gene (the Rad-3 

homology domain), with a neor (neomycin-resistance) gene in murine ES cells (Figure 

1). This mutation was transmitted into mice. Atmy/y allows to produce two alternative 

transcripts. In Atmy transcript I, the splicing of exon 49 to the exogenous exon results in 

a frameshift and a stop codon. In Atmy transcript II, exon 49 is directly spliced to 53, and 

the resulting protein presents a working phosphatidylinositol 3-kinase domain. Although 

these aberrant transcripts can be proved by RT-PCR in Atmy/y tissues, neither full-length 

nor partial ATM-immunoreactive protein bands has been detected [149]. Likewise, in A-

T patients with missense or in-frame deletions in which altered ATM protein products 

may be found [150]. Atmy/y mice display pathological phenotypes still present in other 

Atm-deficient mouse models including immunodeficiency, infertility, growth-retardation 

and they are prone to develop thymic lymphomas. In contrast to others, Atmy/y mice also 

exhibit some aspects of cerebellar pathology reported in A-T patients such as histological 

changes in the cerebellum as reduced molecular layer thickness, abnormalities in Purkinje 

cells dendritic arborization and localization. Nevertheless, no evidence for cerebellar 

degeneration has been detected in this mouse model with age [149]. Accordingly, Atmy/y 

mice exhibit a range of neurological abnormalities and a reduced performance in motor-

learning tests. For example, the use of rota-rod testing to measure motor function have 

shown that wild-type mice have significantly longer latencies to falling-off than mutant 

animals. They also fail to improve with repeated trials on accelerating, rotating rod. 

Moreover, spontaneous locomotor activities, measured using the standard open field test, 

is also significantly reduced in Atmy/y mice [146].  

All these data demonstrated that Atmy/y mouse model is the most suitable for the study 

of A-T in mice because it recapitulates most and more severe of A-T pathological 

phenotype.    
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Chapter 4 

 

ATM (Ataxia Telangiectasia Mutated) 

 

The structure of ATM  

 

ATM is a large Ser/Thr-protein kinases of approximately 350 kDa. It belongs to the 

superfamily of phosphatidylinositol 3-kinase-related kinases (PIKKs). The PIKK family 

also includes six other protein kinases among which ATR and DNA-dependent Protein 

Kinase (DNA-PK), that show sequence homology to phosphatidylinositol 3-kinases 

(PI3Ks) [135, 151]. ATM contains diverse characteristic domains: an amino-terminal 

substrate-binding domain (HEAT repeat domain) that binds to some known substrates 

such as Nijmegen Breakage Syndrome-1 (NBS1), p53 and Breast Cancer Susceptibility 

Protein-1 (BRCA1), the deletion of this crucial binding domain inactivates the protein 

[23]; a FAT domain, so named because it is a common motif in other related proteins 

such as FRAPP/ATM/TRRAP, which interacts with ATM's kinase domain to stabilize 

the C-terminus region of ATM itself; the kinase domain (KD); the PIKK-regulatory 

domain (PRD) and an extreme C-terminal FATC domain that represents an ordinary 

carboxy-terminal amino-acid sequence usually located near the termini of the protein 

[152, 153]. These last two domains regulate the KD (Figure 8A). Although no structure 

for ATM has been solved, it seems that the overall shape of ATM is very similar to DNA-

PKcs and composed by a head and a long arm able to wrap the double-stranded DNA 

after a conformational change [154] (Figure 8B). 

Figure 8. A) Graphical representation of the domain organization and the total number of residues for 

each PIKK family member. B) EM (electron microscopy) structure of ATM. Modified from Rivera-Calzada 

et al, 2015.  
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ATM governs genomic integrity and controls cell-cycle check points  

 

Until now, the best-known function of ATM is the DNA repair induced by DSBs. It 

is at the peak of a signaling cascade that responds to DNA double-stranded breaks (DSBs) 

and it is required to coordinate the resulting cellular response [155]. ATM is also 

necessary for processing the physiological DNA strand breaks that happen during 

meiosis, immune system maturation and for telomere maintenance. In fact, 

hypersensitivity to ionizing radiation (X-rays and γ-rays), known to break DNA, was 

reported in A-T patients after radiotherapy for cancer [156] and in A-T cell cultures [157].  

ATM exhibits increased kinase activity in response to IR or to the radiomimetic 

compound neocarzinostatin but not to UV irradiation [91]. UV irradiation induces 

relatively less significant DNA damage, whereas IR usually produces severe Double-

Strand Breaks (DSBs) inside the genome.   

ATM undergoes auto-phosphorylation after DNA damage (Figure 9). Upon detection 

of DSBs, the MRE11-RAD50-NBS1 (MRN) complex is assembled at the DNA damage 

site and then ATM protein is recruited to 

the lesion site by association with the 

MRN complex [158, 159]. This 

association is necessary for proper DNA 

Damage Repair (DDR) and disruption of 

the complex may cause profound 

physiological deficit. The importance of 

the relationship between ATM and the 

MRN complex is unveiled by the 

similarity of two other disorders related to 

AT: Nijmegen Breakage Syndrome by 

NBS-1 mutants and A-T Like disorder 

(ATLD) by MRE11 mutants [160, 161]. 

These two pathologies are distinct from A-

T although they share many close clinical 

symptoms and cellular hallmarks. 

Subsequently, MRN complex acts as an 

Figure 9. ATM signalling pathway in response to 

DNA double-strand breaks. Modified from 

McKinnon, 2004. 
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adaptor for ATM’s auto-phosphorylation at Serine 1981 in human (S1987 in mouse). This 

phosphorylation is fundamental to obtain the dissociation of non-functioning ATM dimer 

into two active monomers [158, 159]. Once activated, ATM can phosphorylate 

downstream DDR targets among which the histone variant H2AX, present within 

chromatin, that is converted into γH2AX by ATM dependent phosphorylation. This 

seems to be the initial signal for subsequent accumulation of DNA-damage-response 

proteins including BRAC1 (breast cancer susceptibility protein-1), MDC1 (Mediator of 

DNA-damage Checkpoint protein) and 53BP1 (p53-Binding protein), which together 

with the multiprotein complex previously formed, facilitate the cellular response to DSBs 

[162]. Importantly, MDC1 binds to γH2AX via its BRCA1 C-terminal (BRCT) domain 

and represents a sort of “master regulator” and initiates the subsequent repair of DSBs 

[163]. 

Besides this fundamental role in DNA 

repair, ATM is also essential in regulating cell-

cycle checkpoints (Figure 10) [164]. When the 

DNA double-stranded breaks (DSBs) occur, the 

inhibition of the cell cycle through the 

activation of cell-cycle checkpoints is needed 

for survival [165]. Cell-cycle checkpoints are 

members of a surveillance system essential to 

maintain genomic integrity after DNA damage 

and to avoid the accumulation of mutations due 

to DNA breaks: if there are any abnormalities, 

they result in programmed cell death 

(apoptosis) to eliminate the damaged cell, or 

they directly arrest the cell cycle to prevent replication of potentially damaged DNA. The 

cell cycle can stop at different stages: i) before or during S phase, to prevent the DNA 

replication; ii) before mitosis (in G2 checkpoint) to forestall aberrant segregation of 

damaged chromosomes. Accordingly, failure of these mechanisms results in genomic 

instability and cancer predisposition [166]. Because several ATM substrates are key 

effectors of the cell cycle, cells from A-T patients display defective cell-cycle checkpoints 

[167-169]. ATM protein is directly involved in cell cycle arrest at both G1 and S phases. 

Figure 10. Scheme of ATM and the cell-cycle 

checkpoint response to double-stranded breaks. 

Modified from van Gent et al, 2001.  
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The tumor suppressor protein p53 is required for the G1 arrest and its phosphorylation is 

mediated by ATM on serine 15 after detection of DNA damage. Phosphorylated p53 acts 

as a transcription-factor that activates the production of p21 (also known as CIP1 or 

WAF1), which in turn inhibits cyclin E and its partner CDK2 that together form a 

complex required for progression of the cell cycle from G1 to S phase [170]. Also, Chk2, 

another target of ATM, is phosphorylated in this process. Once activated, it 

phosphorylates p53 on serine 20 [171]. ATM also plays a key role in the cell-cycle arrest 

at S-phase, in which starts DNA replication. In fact, one of the first finding and most 

important abnormality that characterizes ATM-deficient cells is a failure to arrest DNA 

synthesis after ionizing radiation. This phenomenon was named Radio-resistant DNA 

Synthesis (RDS). The S-phase checkpoint arrest depends on a new substrate p95/NBS1. 

It is a distinct process from G1 checkpoint and does not require p53 [172]. Upon DSBs, 

activated ATM phosphorylates NBS1 on serine 343. As a result of this NBS1 

phosphorylation, the new DNA synthesis site (Replicon) will be inhibited and the cell 

will be stopped at S-phase [173]. To summarize, upon detection of DSBs, nuclear ATM 

is activated by auto-phosphorylation and then starts a series of complex programs of cell 

cycle arrest and/or DNA repair that are necessary to maintain the integrity of the genome.   
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Chapter 5 

 

Multiple role of ATM protein kinase: beyond the DNA 

damage response 

 

ATM’s involvement in DDR clearly explains many pathological hallmarks of A-T 

disease including cancer predisposition, hypersensitivity to ionizing radiation, 

immunodeficiency and infertility [135]. However, neurological symptoms such as ataxia, 

speech defects and abnormal body movements are still difficult to explain. Indeed, when 

we regard the CNS phenotype of the ATM-mutant brain, we must conclude that the 

related pathological mechanism is certainly more complex than a deficit associated only 

to the DNA repair mechanism [126]. Furthermore, without ATM, cells can still repair the 

DNA but through processes more time consuming [174]. Anyway, this delay and the 

enhanced stress related, do not seem enough to explain the neurodegeneration in ATM-

deficient humans and in A-T animal models. In accordance, ATM mutations in mice 

impact on DNA damage response, inducing only mild neurological symptoms [175]. One 

possible explanation is that ATM may play additional roles in cells of developing and 

mature CNS in different districts. In line with this hypothesis, many studies revealed the 

presence of ATM in the cytoplasm, and not only in the nucleus as previously described, 

playing different, but still important role, then DDR. Thus, while the main 

presence/function of ATM in the molecular pathways following DNA damage has been 

explored in depth, many recent studies have demonstrated ATM’s involvement in a wider 

spectrum of cellular activities especially in neurons [176]. 

 

 

ATM as an oxidative-stress sensor 

 

Oxidative stress is defined as a disturbance in the balance between the production of 

reactive oxygen species (free radicals) and antioxidant defences [177]. Most of the 

cellular DNA-damages are due to normal metabolic by-product and not to IR or 
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exogenous radiomimetic chemicals. Indeed, oxidative stress produced by endogenous 

metabolism causes, at least in part, the constitutive low-level DNA damage response often 

detected in cultured cell [178]. Because of their intense metabolic activity, neurons are 

subjected to a considerable oxidative stress, and the deregulation of these processes has 

been associated with various neurodegenerative conditions [179].  

There is consistent evidence that oxidative stress contributes to the A-T phenotype. 

Accordingly, oxidative stress has been recorded in patients with A-T, in A-T cell cultures 

and in brain and tissues of Atm deficient mice [180, 181]. Moreover, ATM-deficient cells 

are hypersensitive to oxidative damage and radical scavengers can alleviate this 

sensitivity [182]. Thus, not surprisingly, neuronal oxidative stress has been suggested as 

key player in the neurodegeneration process occurring in A-T [183, 184]. All these 

findings suggest the involvement of ATM in oxidative stress regulation, which goes 

beyond the “classical role” in DDR. In this scenario, Guo and colleagues smartly revealed 

that oxidation can directly induce ATM activation in the absence of DSBs [185]. In fact, 

whereas after DNA breaks, S1981 phosphorylation of ATM leads to ATM activation and 

dimer dissociation, under oxidation, disulphide bonds are formed resulting in covalent 

linkages between the subunits of the dimer. In this configuration, kinase activity is found 

to be activated. Surprisingly this newly discovered activity is independent of S1981 state 

of phosphorylation and H2O2-activated ATM can phosphorylate p53 and CHK2, two 

traditional ATM targets [185]. Thus, ATM acts as an oxidative sensor and controls redox 

homeostasis through two main pathways: i) via MAPK pathway and ii) via rerouting of 

carbon metabolism. Once activated, ATM triggers JNK-cjun pathway [186], which is 

known to be involved in intracellular redox homeostasis, and regulates central carbon 

metabolism by promoting the phosphorylation of Hsp27 which in turn activates the 

Pentose Phosphate pathway and stimulates NADH production [187, 188]. NADH helps 

in protecting cells against ROS (reactive oxygen species) toxicity because it is a cofactor 

of many antioxidants enzymes.  

This emerging role of cytoplasmic ATM is believed to be crucial in neurons, in which 

oxidative stress is higher than in another cells types [189]. Thus, cytoplasmic ATM seems 

to play a neuroprotective activity and the deregulation of this pathway may be one of the 

main causes of neurodegeneration occurring in A-T patients. 
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ATM mediates epigenetic regulation  

 

Recent studies have shown another function of ATM probably involved in the 

determination of the A-T phenotype. By its interaction with HDAC4, a member of Class 

IIa histone deacetylases (HDACs), ATM seems to act as an epigenetic regulator. It’s 

widely known that class I and class IIa HDACs play important roles in brain development 

and neuronal survival [190, 191]. HDAC4 is abundant in neurons, especially in Purkinje 

cells, where it is predominantly cytoplasmic. HDAC4-deficient mice show a significant 

cerebellar atrophy and Purkinje cells display structural and density abnormalities 

compared to wild-type. HDAC4 localization depends on its phosphorylation state: the 

dephosphorylated form accumulates in the nucleus whereas it must be phosphorylated to 

stay in the cytoplasm [192]. Li J. and colleagues [193], discovered that in samples from 

A-T patients and Atm-null mice, HDAC4 localizes predominantly in the nucleus and this 

nuclear accumulation is ATM-dependent. In fact, PP2A (Protein Phosphatase 2), the 

HDAC4 phosphatase, is down-regulated by ATM mediated phosphorylation. Thus, in 

ATM deficiency, there is an increased activity of PP2A on HDAC4 that cause HDAC4 

cytoplasmic deprivation and nuclear accumulation. Consequently, in ATM-deficient 

neurons global histone acetylation is decreased meaning a closed chromatin configuration 

and a reduced general transcription. Importantly, HDAC4 directly silences the 

transcriptional activity of two pro-survival transcription factors: MEF-2 (myocyte 

enhancer factor 2) and CREB (cAMP response element-binding protein) [194, 195]. The 

authors also observed a decreased transcription of other crucial neuronal genes such as 

Bdnf, NR2a and Nrxn. Thus, the dysregulation of this pathway determines genome-wide 

alterations in neurons that maybe contribute to neurodegeneration [193].  

The same group has recently reported that also histone H3K27 tri-methylation 

(H3K27me3) mediated by polycomb repressive complex 2 (PRC2), also plays a 

fundamental role in the development of A-T pathological phenotype [196]. Indeed, EZH2 

(enhancer of zeste homolog 2), that is a core catalytic component of PRC2, it has been 

found to be a new ATM kinase target. ATM-mediated S734 phosphorylation reduces 

EZH2 stability. Thus, in ATM deficiency, PRC2 formation is elevated along with 

H3K27me3. This change of H3K27me3 chromatin-binding pattern is strictly related to 

cell-cycle re-entry and cell death of Atm-deficient neurons [196]. Furthermore, 
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knockdown of EZH2 rescues Purkinje cell degeneration and behavioural alterations in 

ATM deficient mice, pointing that EZH2 hyperactivity as another key factor in A-T 

neurodegeneration. 

 

 

Role of ATM in insulin signaling pathways 

 

Another interesting role of ATM is its involvement in insulin signaling pathways. For 

the first time, Yang and Kastan demonstrated that ATM kinase activity increases 3-fold 

in response to insulin in rat 3T3-L1 cells that have been differentiated into adipocytes 

[197]. Moreover, the phosphorylation of 4E-Binding Protein 1 (an insulin-responsive 

cytoplasmic protein member of a family of translation repressor proteins) at Ser111 is 

mediated by ATM and promotes mRNA translation [197]. Thus, cells lacking ATM 

display a decreased insulin-induced dissociation of 4E-BP1 from eIF-4E with a 

consequent dysregulation in the insulin-pathway that controls translation initiation.  

More recently, it has been demonstrated that ATM is the main activator of PKB/Akt 

in response to insulin or Ɣ-radiations. This effect is mediated by ATM 

phosphatidylinositol 3-kinase domain that directly phosphorylate Akt at Ser473 (Figure 

5), causing the full activation of this transcription factor. Coherently, cell lines derived 

from A-T patients display altered Akt pathways and Atm-null mice show a drastic 

decrease of Akt phosphorylation in Ser 473 [198, 199]. Moreover, A-T patients are insulin 

resistant and this could be partially explained by the lack of full Akt activity [200]. 

Through the response to insulin and other growth factors, Akt plays a key role in many 

physiological processes such as protein translation, cell proliferation and survival, 

glucose uptake [201]. Considering its pro-survival function, the dysregulation of Akt 

pathways plays a pivotal role in cancer development [202] and in this scenario ATM 

activity on Akt acquires a potential therapeutic effect. It has been demonstrated that 

blocking ATM activity in cancer cells with overactivated Akt suppresses cell proliferation 

and induces apoptosis.  
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ATM implication in synaptic vesicles behaviour in neurons   

 

A very interesting observation about the role of ATM besides DDR regards its 

association with cytoplasmic vesicles, particularly with synaptic vesicles in neurons. In 

1996, Lakin and colleagues found that ATM co-fractionate and co-localize with 

cytoplasmic vesicles in A-T cell lines [203, 204]. Two years later, another group 

demonstrated that the cytoplasmic fraction of ATM associates with peroxisomes and 

endosomes [205] and it is required for the functioning of these organelles. Moreover, the 

cytoplasmic fraction of ATM does not change in amount or in localization in response to 

IR [204, 206], meaning that the ATM cytoplasmic pool is distinct from the nuclear one 

and it is crucial for cellular and sub-cellular activities far from the function in genome 

surveillance. Importantly, in a pivotal study, Lim and colleagues demonstrated that 

cytoplasmic ATM binds β-adaptin, a member of the AP-2 adaptor complex, which is 

involved in clathrin-mediated endocytosis of receptors, membrane trafficking and cell 

signalling [207]. This interaction was demonstrated in vitro but also in vivo, by co-

immunoprecipitation and co-localization studies. The consequence of the interaction 

between ATM and β-adaptin is still unclear but indicates that cytoplasmic ATM may play 

an important role in intracellular vesicle and/or protein transport mechanisms. In fact, 

several ATM-related lipid kinases such as Vps34 and PI-3K are crucial in stimulating 

vesicles and protein transport [208]. This also allows to speculate that cytoplasmic ATM 

may act in vesicle transport and ATM deficiency could deeply impact on protein cellular 

homeostasis.  

In this contest, surprizing discoveries come from studies of cytoplasmic ATM in 

neurons. In literature, it is known that ATM is predominantly localized in the nucleus of 

dividing cells, while in post-mitotic cells like Purkinje and granular neurons in 

cerebellum, it has a significant distribution in the cytoplasm [203, 209]. This hypothesis 

has been confirmed by Karl Herrup’s group [210], which identified cytoplasmic ATM in 

neuronal cells from cortical structures but not in other peripheral tissue. They also 

discovered two novel binding partners of cytoplasmic ATM in cortical neurons: VAMP2 

and Synapsin-I, known synaptic vesicle proteins that localize in presynaptic nerve 

terminals. Synapsin-I is a linker protein that keeps synaptic vesicles (SV) related to the 

cytoskeleton, especially to actin, in presynaptic terminals [211]. Its function is crucial in 
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maintaining and stabilizing the reserve pool of SVs in the cytoplasm, near the plasma 

membrane, but also is essential to make SVs ready to be released. It prevents the diffusion 

and the random fusion of SVs upon repetitive synaptic activity and controls the 

availability of SVs for the release through its phosphorylation-dependent dissociation 

from SVs and actin. Thus, its main function is the homeostatic regulation of synaptic 

transmission [212]. Consistently, synapsin knockout studies have shown that synapsins 

are not required for neurite outgrowth, synaptogenesis or the basic mechanics of synaptic 

vesicle release, but they are essential for acceleration of synaptic vesicle trafficking 

during repetitive stimulation [213, 214]: a failure in synapsin function results in the 

defective short-term plasticity of synaptic transmission. Vesicle-Associated Membrane 

Protein2 (VAMP2; also known as Synaptobrevin2) instead, is a central member of the 

SNARE (soluble N ethylmaleimide-sensitive fusion protein-attachment protein receptor) 

complex that mediates synaptic vesicle fusion with the cell membrane allowing the 

neurotransmitter release [215]. The fusion of synaptic vesicles (SVs) with the pre-

synaptic plasma membrane is necessary for synaptic transmission at chemical synapses. 

This fusion event, termed exocytosis, occurs spontaneously at a low and asynchronous 

rate, whereas an increase in presynaptic Ca2+ mediates a larger and synchronous fusion 

of SVs with the plasma membrane [216, 217]. Crucial to SV exocytosis is the formation 

of a protein complex between SNARE proteins present on the plasma membrane and SV 

membrane [218].  In neurons, VAMP2 is a vesicle (or v) SNARE, whereas the plasma 

membrane proteins SNAP25 and Syntaxin1 act as target membrane (or t) SNAREs.  

These three SNARE proteins interact to form a trans SNARE complex which is thought 

to represent the minimal membrane fusion machinery [219]. Thus, VAMP2 is crucial in 

catalysing SVs fusion reactions and maintaining a proper rate of fusion activities during 

both spontaneous and evoked synaptic events. The interaction between ATM and these 

two presynaptic proteins suggests that cytoplasmic ATM might regulate synaptic 

transmission.  
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ATM controls E/I balance  

 

In line with the emerging roles of ATM in regulating neuronal functions, in last study 

published by our group, we unveiled a pivotal role of ATM in controlling the development 

of the inhibitory system and in maintaining a balanced E/I neuronal transmission at 

hippocampal level [220]. We demonstrated that hippocampal neurons obtained from Atm 

heterozygous (Het) mouse embryos display an E/I imbalance towards inhibition indicated 

by: i) a higher frequency of miniature inhibitory post synaptic currents (mIPSCs); ii) an 

increased number of inhibitory synapses. We revealed that this increased inhibitory tone 

is due to a precocious development of the GABAergic system, especially to an accelerated 

“excitatory-to-inhibitory switch of GABA”. As I largely described in Chapter 1, the 

development of GABAergic inhibition is associated to an excitatory to inhibitory shift of 

the action of GABA because of a reduction of [Cl-]i, induced by increased KCC2 

expression during development [43]. This phenomenon is fundamental for the 

development of the GABAergic network since it is widely accepted that it regulates the 

number and the strength of inhibitory synapses. In particular, a precocious GABA switch 

is known to increase GABAergic synapses and the frequency of GABAergic miniature 

postsynaptic currents [221, 222]. Thus, in Atm Het hippocampal cultures we showed by 

calcium imaging experiments, an accelerated switch of GABA related to a higher KCC2 

expression in hippocampal tissues obtained from Atm Het mice. We found that these 

rearrangements seem to depend to the higher activation of P-ERK and lower expression 

of its phosphatase, PP1, in Atm Het hippocampi [220]. We supposed that the increase of 

ERK activation could sustain the higher KCC2 expression since in literature is known the 

link between ERK phosphorylation and KCC2 expression through the Egr4-dependent 

activation of the Kcc2b promoter [50]. These data demonstrate that alterations of ATM 

expression at hippocampal level determine a precocious and sustained GABAergic 

development and function leading to an E/I imbalance in favour of inhibition. As I 

previously described, GABA transmission is strongly related to proper brain development 

and plasticity, thus this study adds a piece for a clearer comprehension of the molecular 

basis of brain development introducing ATM as a new key regulator. Moreover, this 

evidence provides a rationale for the cognitive deficits associated to milder form of A-T, 
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in which a residual amount of functional ATM is still present and introduces KCC2 and 

E/I balance as novel potential targets for emerging therapeutic approaches in AT.  

In accordance, Herrup and colleagues have recently deepened ATM function at the 

neuronal synapse. They discovered that ATM and its partner in DDR, ATR, contribute to 

the E/I balance by regulating synaptic vesicles recycling in cortical neurons [223]. They 

demonstrated that ATM and ATR specifically segregate to different classes of vesicles 

playing complementary roles: ATM with excitatory vesicles and ATR with inhibitory 

ones. They also demonstrated that the two proteins are in balance with each other, so a 

deficiency of ATM or ATR leads to a compensatory increased expression of the other 

kinase. This compensatory effect seems to occur rapidly and quickly influences the E/I 

balance [223].   
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Chapter 6 

 

Therapeutic relevance of ATM inhibition  

 

Since its central role in DNA damage response, ATM has become an attractive target 

for cancer therapy. Pre-clinical studies have encouraged the further clinical development 

of ATM inhibitors, both in combination with chemo- or radiotherapy, to sensitize cancer 

cells to DNA-damage-inducing agents and to promote apoptosis [224]. In addition, 

studies showing ATM involvement in insulin pathway, especially in the activation of Akt, 

have offered new perspectives for using ATM as therapeutic target for cancer treatment. 

In fact, the activation of Akt pathway is pivotal for cancer development and progression 

[202]. 

The emergence of new roles of ATM in controlling neuronal functions [210, 220, 

223] has expanded the prospect of using ATM inhibitors also in neurological disorders. 

Importantly, our recent finding of ATM role in controlling GABAergic development and 

in the maintenance of E/I balance lays the basis for a “drug-repositioning” of ATM 

inhibitors as a new tool in the treatment of neurodevelopmental disorders, a topic that I 

will discuss later in this thesis.  

 

 

ATM inhibitors: from early non-specific compounds to highly selective 

small molecules 

 

In parallel to the emerging role of ATM as a potential drug target especially for cancer 

therapy, in the last 15 years the development of ATM inhibitors has acquired more and 

more interest, passing from early non-specific compounds to highly selective inhibitors 

(Figure 11A-B). Historically, it has been reported that several methylxanthine-derived 

drugs (theophylline, pentoxifyllin and caffeine) can sensitize cells to radiations at low 

millimolar concentrations. The fungal metabolite wortmannin was the first compound 

proposed to target ATM [225]. It irreversibly inhibits several members of the PIKK 

family, including mTOR, DNAPKcs and ATM. However, the adverse side effects and 
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the high dosages (≥10 μM) necessary to obtain radiosensitizating effects, limited its 

utility. Caffeine is another molecule largely studied and used as radiosensitizing agent 

although its exact mechanism of action is still unclear [226]. It seems to act inhibiting the 

phosphotransferase activity of a protein kinase involved in checkpoint signalling of DNA 

damaged. Nevertheless, the required dose to inhibit ATM activity (IC50 of 0,2 mM) is 

close to its LD50 in vivo and too toxic to permit any use in animals. 

Considering that neither caffeine nor wortmannin are specific and potentially useful 

in vivo, new ATM inhibitors have emerged. High specificity and low dosage has been 

obtained through small molecules belonging to the “KU family”. KU analogues are 

pyranone compounds that can permeate through cell membranes and act as ATP-

competitive inhibitors of ATM with an IC50 ranging from 13 nmol/L to 3 nmol/L [227]. 

These small molecules are extremely selective for ATM, with at least a 100-fold 

differential in selectivity in a counter-screening against other members of the PIKK 

family.  

Inhibition of ATM kinase activity by KU results in a suppression of ionizing 

radiation-dependent phosphorylation of several ATM targets, such as p53, ƔH2AX, 

NBS1, and SMC1 [228, 229]. Consistently, cells exposed to KU display a significant 

sensitization to ionizing radiation-induced cytotoxicity and to the DNA double-strand 

break-inducing chemotherapeutic agents including etoposide and doxorubicin [230]. 

Following this discovery, a large number of studies tested KU effectiveness in 

radiosensitize different type of tumors such as gliomas [231], non-small cell lung cancer, 

bladder cancer [232], head and neck cancer [233]. In addition, it has been shown that KU 

suppresses cell proliferation and apoptosis by abolishing Akt activation in cancer with 

Akt dysregulated signaling [234].  

Nevertheless, KU compounds display a small tissue distribution due to a limited 

solubility. This represents a big problem especially for brain delivery since the inability 

to cross the brain-blood barrier [235]. To avoid these hitches several studies have been 

conducted looking for the better solution to increase KU therapeutic index and solubility 

in vivo. At this purpose, Batey and colleagues identified a novel ATM inhibitor belonging 

to “KU family”, KU-59403, which seems to have good tissue distribution, slow toxicity 

and significant chemosensitization in in vivo models of human cancer [236]. More 

recently, Wang group developed and evaluated nanoparticle formulations of KU. They 
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demonstrated that this approach is effective in vivo, using a mouse xenograft model of 

non-small cell lung cancer [237].  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11. A) Chemical structure of ATM inhibitors. B) Table showing principal properties of ATM 

inhibitors. Modified from Ronco, et al 2017.  
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AIM OF THE STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

Alterations in the balance between excitatory and inhibitory neurotransmission (E/I 

balance) have been largely described in neurological disorders such as epilepsy, autism 

and schizophrenia. E/I balance is mainly controlled by GABA, which through its 

inhibitory action operates as a brake for excitatory neurotransmission. A fundamental 

process in the maturation of GABAergic inhibition is the so called “excitatory-to-

inhibitory switch of GABA”, the postnatal transition of GABAergic transmission from 

excitatory to inhibitory. In this context we have recently unveiled a new role of ATM 

(Ataxia Telangiectasia Mutated) in controlling GABAergic development at hippocampal 

level. ATM is a large protein kinase, whose best-known function is associated to DNA 

damage response (DDR). Moreover, recent findings have highlighted its important role 

in neuronal survival and proliferation and in synaptic vesicles recycling. Thus, the 

absence of the protein may result in neuronal dysfunctions. Coherently, the 

neurodegenerative condition associated to genetic mutations in ATM gene, the Ataxia 

Telangiectasia (A-T), exhibits, besides cerebellar ataxia, a variable phenotype with 

cognitive impairment. Consistently, in our previous study, we demonstrated that 

hippocampal neurons with half amount of ATM protein (Atm heterozygous) display a 

precocious GABAergic development (i.e. excitatory to inhibitory GABA switch) and a 

higher inhibitory tone, both in vitro and in vivo, leading to an excitatory to inhibitory 

imbalance in favour of inhibition.  

Thus, starting from these premises, the aim of this thesis was to investigate the 

possibility to mimic, by a pharmacological intervention, the accelerated GABAergic 

development and potentiated inhibitory tone typical of the ATM heterozygous phenotype, 

to propose a new tool for the treatment of neurological disorders associated with 

developmental alterations and neuronal hyperexcitability. To address this issue, we 

exploited a potent and selective ATM inhibitor belonging to the “KU family”. We 

performed functional, biochemical and molecular analyses in order to investigate the 

effects of KU treatment on neuronal maturation and transmission both in vitro and in vivo. 

The data presented in this thesis clarify the central role of ATM in proper brain 

development and highlight ATM inhibition as a new potential pharmacological approach 

in the treatment of neurodevelopmental disorders.  
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EXPERIMENTAL PROCEDURES 
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Animals  

All the experimental procedures followed the guidelines established by the Italian 

Council on Animal Care and were approved by the Italian Government Decree No. 

27/2010 and the Italian Legislation (L.D. no 26/2014). All efforts were made to minimize 

the number of animals used and their sufferings. Wild type mice and transgenic mice for 

Atm and Mecp2 are under standard conditions of light and temperature, no more than 5 

per cage, with food and water ad libitum. 

 

Genotyping 

Genotyping for WT/Atm Het or KO and WT/Mecp2y/- animals was performed on tail 

extracted DNA, using polymerase chain reaction (PCR) technique. After DNA 

purification [238], 3 μl of DNA were added to: 7,5 μl of master mix (GoTaq Promega), 

0,25 µl of each Atm primer 50 μM, or 0,375 μl of each Mecp2 primer 20 μM and Nulcease 

free water to reach 12 µl of final volume. The DNA was amplified using thermocycler 

(Biorad, Hercules, CA, United States).   

Primers Sequences for Atm genotyping: 5’-TAGGGTGTAGTAGTGGAGGA-3’ as 

reverse primer, 5’-ACGTAAACTCGTCTTCAGACCT-3’ as forward primer for Atm 

null allele and 5’-GTAGTAACTATTAGTTTCGTGCA-3’ as forward primer for WT 

allele. Primers Sequences for Mecp2 genotyping: 5′-CCACCCTCCAGTTTGGTTTA-3′ 

as reverse primer, 5′-ACCTAGCCTGCCTGTACTTT-3′ as forward primer for Mecp2 

null allele and 5′-GACTGAAGTTACAGATGGTTGTG-3′ as forward primer for WT 

allele. 

 

Cell Cultures  
 

Characterization of KU impact on neuronal cultures was conducted on hippocampal 

neurons established from E18 rat littermates as previously described [19]. WT and Atm 

Het neuronal cultures were established from E18 mouse embryos; Mecp2y/- genetically-

modified mouse neurons were obtained from Postnatal day 0 (P0) pups to minimize the 

number of females sacrificed. Once obtained, hippocampi were chemically dissociated 

by treatment with 0.5% trypsin (Invitrogen) for 15 min at 37°C, followed by mechanical 

dissociation with a fire-polished Pasteur pipette. Dissociated cells were then plated on 
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poly-L-lysine-treated (1 mg/ml, Sigma-Aldrich) 24 mm glass coverslips in Neurobasal 

(Gibco) containing 2% B27 (Gibco), 1% Pen-Strep (Invitrogen), 0,5 mM glutamine, 12,5 

µM glutamate, as described in Brewer et al. [238], at densities ranging from 10x103 to 

20x103 cells/cm2. Neuronal cultures were kept at constant temperature (37°C) in the 

presence of 5% CO2. At 3 days in vitro (DIV), half of the culture medium was replaced 

with fresh medium without glutamate to avoid excitotoxicity phenomena.  

 

In vitro KU application 
 

The ATM inhibitor KU was dissolved in DMSO at the concentration of 10 mM and 

diluted in the neuronal medium at the final concentration 1 µM. For chronic treatment 

KU was applied for four consecutive days, from 8 to 11 days in vitro (DIV), without 

changing the medium. In the acute protocol neurons were treated at 5-6 DIV for 24 hours 

and functional properties were measured at 13-14 DIV.   

 

Immunocytochemistry  
 

Primary cortical cultures were fixed with 4% paraformaldehyde and 4% sucrose in 0,12 

M phosphate buffer for 20 minutes at 37°C and immunofluorescence staining was carried 

out as previously described [239]. Images were acquired using a Zeiss LSM 510 META 

confocal microscope with 60X objective. Immunofluorescence staining was carried out 

using the following antibodies: guinea pig anti-vGlut1 (1:1000), rabbit anti-vGAT 

(1:1000), both from Synaptic System, and mouse anti-βIII-tubulin (1:400) from Promega. 

Secondary antibodies were conjugated with Alexa-488, Alexa-555 or Alexa-633 

fluorophores (Invitrogen). The number of vGAT and vGlut1 positive puncta have been 

counted after the detection of an appropriate threshold which was set to 2.5-fold the level 

of background fluorescence referring to diffuse fluorescence within dendritic shafts. 

Fluorescence images processing and analyses were performed with ImageJ Software 

(National Institutes of Health). 

 

Calcium Imaging 
 

Hippocampal neurons were loaded with membrane-permeable fluorescent Ca2+ indicator 

Fura2-AM (Sigma-Aldrich) 1 μM for 30 minutes at 37 °C, then washed in [Krebs'-
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Ringer's-HEPES (KRH) in mM: 125 NaCl, 5 KCl, 1.2 MgSO4, 1.2 KH2PO4, 2 CaCl2, 6 

glucose, and 25 HEPES-NaOH (pH 7.4)] and placed into the recording chamber of an 

inverted microscope (Axiovert 100, Zeiss) equipped with a calcium imaging unit in KRH 

and tetrodotoxin (TTX, Tocris) 1 µM. Fura2-AM was excited at 380 nm and at 340 nm 

through a Polychrom V (TILL Photonics GmbH) controlled by the TillVisION software 

4.01. Emitted light was acquired at 505 nm at a rate of 1–4 Hz and data collected with a 

CCD Imago-QE camera (TILL Photonics GmbH). Calcium transients (expressed as 

F340/380 fluorescence ratio) were calculated in discrete regions of interest (ROIs) of 

neuronal cell bodies and analysed along sequential images to follow temporal changes.  

For “GABA switch” experiments, after a period of baseline acquisition, neurons were 

stimulated with GABA 100 µM and increments in F340/380 ratio were considered only 

if higher than 0.05 units. After GABA administration neurons were washed with KRH, 

let recover few minutes and then excited with KCl 50 mM to identify vital neurons and 

to analysed Voltage Operated Calcium Channels (VOCC) expression. Transients smaller 

than 0.1 units were excluded from the analysis. 

 

Chloride Imaging  

6 DIV rat hippocampal neurons were loaded with 5 μM MQAE (Biotium) in KRH. 

MQAE is a 6-methoxyquinolinium derivative and it is used as a fluorescent indicator for 

intracellular chloride. This dye detects chloride via diffusion-limited collisional 

quenching. After 1-hour incubation at 37 °C, neurons were washed in KRH and 

transferred to the recording chamber of an inverted microscope (Olympus) equipped with 

a CellR imaging station. Image analysis was performed using Xcellence software 

(Olympus) measuring the mean fluorescence intensity of ROIs. 

 

In vitro electrophysiology 

Miniature excitatory and inhibitory post-synaptic currents (mEPSCs and mIPSCs) were 

recorded in the presence of TTX 1 µM; a reversible blocker of sodium channels that 

avoids the generation of action potentials. In presence of TTX the mPSCs incur 

spontaneously, induced by the release of a single vesicle. Thus, they correspond to the 

event generated from a quantum of neurotransmitter that interacts with postsynaptic 
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receptors. mEPSCs and mIPSCs were obtained from 13-14 DIV hippocampal neurons in 

whole cell patch clamp configuration using an Axopatch 200A amplifier (Axon 

Instruments, Forest City, CA, USA) in the voltage-clamp mode. Currents were sampled 

at 2 kHz and filtered at 2-5 kHz. External solution [Krebs'-Ringer's-HEPES (KRH)] had 

the following composition (in mM): 125 NaCl, 5 KCl, 1.2 MgSO4, 1.2 KH2PO4, 2 

CaCl2, 6 glucose, and 25 HEPES-NaOH (pH 7.4). Recording pipettes were pulled from 

capillary glass (World Precision Instruments, Sarasota, FL, USA) using a two-stage puller 

(Narishige, London, United Kingdom) with tip resistances of 3-5 MΩ, and filled with 

intracellular solution (in mM): 130 Cs-Gluconate, 10 KCl, 1 EGTA, 10 HEPES, 2 MgCl2, 

4 MgATP and 0.3 Tris-GTP. Voltage-clamp recordings were performed at room 

temperature at holding potentials of -70 mV and +10 mV for mEPSCs and mIPSCs, 

respectively. Data were analysed off-line (pClamp10 software, Axon Instruments); 

mEPSCs had to exceed a threshold of -8 pA whereas mIPSCs of 6 pA. The I/E ratio has 

been calculated by dividing mIPSCs and mEPSCs frequencies measured in the same 

neuron. MultiUnit activity (MU) has been detected in cell-attached configuration 

clamping neurons at -60 mV and hyperexcitability was induced applying KRH without 

Mg++ as external solution during the entire recording session. Recording pipettes were 

filled with intracellular solution (in mM): 130 K-gluconate, 10 KCl, 1 EGTA, 10 HEPES, 

2 MgCl2, 4 MgATP and 0.3 Tris-GTP. 

 

Luciferase assay 

5 DIV hippocampal neurons were co-transfected with pNL1.1 [Nluc] vector (Promega) 

containing the -309/+42 region of the KCC2 mouse gene and pGL4.54 [luc2/TK] vector 

(Promega) using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

protocol. 2 days after transfection, cultures were briefly washed with PBS and lysed in 

Passive Lysis Buffer (Promega). Nluc and luc2 luciferase activities were aquired using 

Nano-Glo Dual-Luciferase Assay System (Promega).  

pNL1.1 [Nluc] vector was modified by introducing in its multiple cloning region the -

309/+42 region of KCC2 mouse gene containing specifically the Egr4 consensus 

sequence as unique binding site for transcription factors [50, 240]. Cloning procedures 

were performed by Bio-Fab Research srl (Rome). 
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Quantitative real time PCR 

6 DIV WT hippocampal neurons were treated with KU 1 µM and lysed prior to RNA 

extraction with TRIzol reagent (Invitrogen). Total RNA was extracted using the Direct-

zol RNA MiniPrep isolation kit (Zymo Research) according to the manufacturer’s 

protocol. The RNA was eluted with 25 μL DNase/RNAse-free water, measured using 

NANOdrop 2000c spectrophotometer (Thermo Fisher Scientific) and optical density 

260/280 nm ratios were calculated. Reverse transcription was performed using 1 μg RNA 

with a High Capacity cDNA RT kit (Applied Biosystems). Real-time polymerase chain 

reaction (qRT-PCR) was conducted using a CFX96 thermal cycler (Bio-rad) in a final 

volume of 10 μL with Sybr Green technique (SensiFAST SYBR Lo-ROX, Bioline). 

Mecp2 mRNA was analysed at least in duplicate and data analysis was performed with 

the ΔΔCt method and expressed as fold change. Mecp2 mRNA levels were normalized to 

Gapdh. 

 

In vivo KU injection   

Post-natal day 4 (P4) C57BL6/J WT pups were anesthetized by cold-ice procedure. After 

5 minutes animals received a single unilateral injection of 3 µL of KU 10 µM or DMSO 

in the lateral ventricle of the right hemisphere. 24 hours later, cortical and hippocampal 

tissues were explanted from both the ipsi- and contra-lateral hemispheres and stored at -

20° C for Western Blotting analysis or fixed of immunofluorescence. 

 

Immunohistochemistry  
 

24 hours after KU injection, pups were euthanized, and brains were explanted and fixed 

in 4% paraformaldehyde for 48 hours. Tissues were then included in 4% Low Melting 

Point agarose (Sigma-Aldrich) in 1X PBS. After agarose polymerization, sections of 50 

µm thickness were obtained using a VT1000S vibratome (Leica Microsystems). 

Immunofluorescence staining was carried out on free-floating dorsal hippocampus 

sections. Staining was performed using primary antibody against Mecp2 (Sigma-Aldrich) 

followed by incubation with a specific secondary antibody, counterstained with DAPI 

and mounted with Fluorsave (Merck). Images were acquired in the stratum radiatum of 

the CA1 subfield of the hippocampus using the x40 oil immersion objective with an 
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additional electronic zoom factor of up to 3 (voxel sizes of 0.10 × 0.10×1 μm) and 

maintaining the parameters of acquisition constant in each group.  

 

Western Blotting  

Proteins were obtained starting from explanted tissues homogenised in sample buffer 

(sodium dodecyl sulphate 1% (SDS), 62.5 mM Tris-HCl (pH 6.8), 290 mM sucrose); or 

from neurons scraped using a lysis buffer containing 3% SDS, 115 mM sucrose, 65mM 

Tris-HCl (pH 6.8), 0,1 % βmercaptoethanol. Protein content was assessed by 

bicinchoninic acid (BCA) assay, using BCA protein assay kit (Thermo Fischer 

Scientific). In this method, BCA molecules chelate cuprous ion Cu+, formed from Cu++ 

reduction by proteins in alkaline environment. This chelation generates a purple-coloured 

reaction product which has a strong absorbance at 562 nm, proportional to protein 

concentration in the sample. Sample absorbance was read through a spectrophotometer 

(Victor2 - 1420 multilabel counter, Wallac) set to 550 nm. Protein content was assessed 

through a bovine serum albumin-based standard curve. Protein were separated by SDS-

PAGE electrophoresis, blotted and incubated with primary antibody followed by HRP-

conjugated secondary antibody (Jackson ImmunoResearch) and developed by Pierce 

ECL Western Blotting Substrate (Thermo Fisher Scientific). The following primary 

antibodies were used: rabbit anti-KCC2 1:1000 (Millipore), rabbit anti-ATM 1:500 

(Millipore), rabbit anti-LC3B1/2 1:1000 (Cell Signaling), HSPA8 1:1000 (Cell 

Signaling), mouse anti-p-ERK 1:1000 (Sigma-Aldrich), rabbit anti-ERK1/2 1:1000 (Cell 

Signaling), rabbit anti-Mecp2 1:1000 (Sigma-Aldrich) antibodies. Rabbit anti-calnexin 

1:1000 (Sigma-Aldrich), mouse anti-actin 1:1000 (Sigma-Aldrich) or mouse anti- βIII 

tubulin (Sigma-Aldrich) were used to normalize. 

 

Statistics 

Pairwise comparisons between treatments were assessed with Student’s t-test. One-way 

ANOVA with repeated measures or 2-way ANOVA as between subject factor were used. 

Post hoc analysis was done using Tukey’s, Bonferroni’s or Holm Sidak’s post hoc tests. 

The differences were considered significant, if p<0.05 (indicated by one asterisk), p<0.01 



52 

 

(double asterisks), p<0.005 (triple asterisks). All statistical analyses were done with 

software Prism, version 6 (GraphPad). 
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Characterization of the ATM kinase inhibitor KU in 

neuronal primary cultures 

 

KU effectiveness and duration of action  

 

In order to investigate how and at which extent the pharmacological blockade of 

ATM kinase activity could impact hippocampal function, we exploited a potent and 

selective ATM inhibitor belonging to the “KU family”. As I largely described before, KU 

molecules are small compounds that can permeate through cell membranes and act as 

ATP-competitive inhibitors of ATM. Until now, these molecules have been largely 

studied in the oncological field, since it has been demonstrated that ATM inhibition 

induces cancer cells apoptosis and sensitizes cells to ionizing radiation (IR), improving 

efficacy of IR therapy in several types of cancer [228-230]. First, we evaluated KU 

effectiveness and duration of action in hippocampal primary cultures established from rat 

embryos. To test whether KU is able to penetrate inside neurons efficiently and then 

inhibits the kinase activity of ATM, 14 DIV (days in vitro) cultured hippocampal neurons 

were treated for an hour with 20 µM of Etoposide (ETO), to elicit the ATM dependent 

DNA damage response [241], or 20 µM of Etoposide plus 10 µM of KU. Then, the 

experimental groups were analysed by Western Blotting experiments to quantify the 

extent of ATM phosphorylation using the specific antibodies against ATM total protein 

and P-ATM S1981. While Etoposide treatment clearly activates ATM kinase activity, as 

showed by the appearance of the phosphorylated form of ATM (P-ATM in red, Figure 

1A) compared to control (first band, Figure 1A), KU 10 µM co-application clearly 

abolishes this activation (third band, Figure 1A). To assess the duration of action of KU 

in hippocampal neuronal cultures, we carried out Western Blotting analysis. We therefore 

treated 14 DIV cells with KU 10 µM and we collected samples at different time points: 4 

hours, 24 hours or 48 hours after KU application. In all the experimental conditions 

Etoposide was applied an hour before cell lysis. Western Blotting analyses revealed that 

KU activity persists up to 24 hours after treatment, then decreases and disappears 48 hours 

later, when P-ATM/ATM ratio is comparable to Etoposide experimental condition 

(Figure 1B).  
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Setting-up KU concentration in neurons  

 

After establishing KU effectiveness and duration of action, we treated neurons with 

different KU concentrations (1 µM, 5 µM and 10 µM) and both in acute (4 hours) and 

chronic (4 days) paradigms, in order to individuate the lower dose able to produce the 

desired effects without affecting neuronal health. Firstly, we performed 

immunofluorescence experiments on 12 DIV hippocampal primary cultures labelling 

neurons with βIII-tubulin to better see the morphology and the branching of neuronal 

processes. As indicated by qualitative immunofluorescence images, the acute treatment 

(4 hours) with KU 5 µM and 10 µM induces neuronal damage determining the appearance 

of varicosities along tubulin-labelled neuronal processes (Figure 2). The formation of that 

kind of varicosities has been already described by Borghesani and colleagues, as a first 

sign of neurodegeneration in ATM-deficient Purkinje cells [149]. Coherently, the chronic 

treatment (4 days) with KU 5 µM produces neuronal varicosities and deeply affects 

neuronal survival as indicated by the strong reduction of dendritic arborisations (Figure 

Figure 1. (A) Representative image and analysed data of Western Blotting experiments carried-out on 14 

DIV rat hippocampal neurons treated with Etoposide (ETO) 20 µM or ETO plus the ATM inhibitor KU 10 

µM. (B) Western Blotting analysis of KU duration of action in 14 DIV hippocampal neurons.  
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2). On the other hand, both the acute and the chronic administration of KU 1 µM keeps 

neuronal processes healthy (Figure 2).  

 

 

 

 

 

 

 

 

To better investigate the impact of KU chronic treatment on neuronal function and 

homeostasis, we performed calcium imaging experiments on primary neuronal culture 

exposed to KU 5 µM or 1 µM for 4 days (from 8 to 12 DIV) and loaded with the 

ratiometric calcium indicator Fura-2AM. Calcium imaging data revealed alterations in 

neuronal calcium homeostasis after KU 5 µM chronic treatment, indicated by a higher 

F340/380 fluorescence ratio, confirming that concentrations higher than 1 µM result in 

neuronal damage and functional impairments (Figure 3A). We also checked for any 

possible unspecific effect linked to the use of KU 1 µM, but we did not find changes in 

both intracellular basal calcium levels (Figure 3A) and in the expression of Voltage 

Operated Calcium Channel (VOCC), as indicated by comparable intracellular calcium 

increases upon KCl stimulation (Figure 3B). Moreover, several studies show that KU 

concentrations even higher than 1 µM display a good selectivity for ATM kinase [242-

244]. Thus, we established 1 µM as the ideal KU concentration able to guarantee both 

safety, selectivity and effectiveness in neuronal primary cultures. 

Figure 2. Representative immunofluorescence images of 12 DIV rat hippocampal neurons labelled with a 

specific antibody against βIII-tubulin display the occurrence of pathological varicosities along neuronal 

processes upon both chronic and acute treatments with KU 5 µM and 10 µM. Only KU 1µM - treated cells 

appear healthy.  
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Figure 3. Calcium imaging experiments conducted on rat hippocampal neurons chronically treated with 

KU 1 µM or 5 µM from 8 to 12 DIV. A) Quantitative analysis of basal calcium levels. Neurons exposed to 

the chronic treatment with KU 5 µM display increased resting calcium levels compared to control (Kruskal-

Wallis Test followed by Dunn’s Multiple Comparison Test, **p<0,01. CTRL n=244; KU 1µM n=221; KU 

5µM n=200). B) Calcium transients evoked by KCl 50mM application in neurons chronically treated with 

KU 1µM vs controls (Mann-Whitney Test, p=0,214. CTRL n=244; KU 1µM n=219). 
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Evaluation of functional changes induced by KU 

treatment in neurons  

 

Neuronal exposure to KU enhances inhibitory neurotransmission and 

KCC2 expression  

 

Our next goal was to investigate the possible occurrence of changes in basal synaptic 

transmission after the pharmacological blockade of ATM kinase activity through KU. At 

this purpose, we daily treated hippocampal neurons from 8 to 11 days in vitro (DIV) with 

KU 1 µM and we performed electrophysiological recordings of excitatory and inhibitory 

miniature post-synaptic currents at 12 DIV (Figure 4A). Miniature excitatory and 

inhibitory post-synaptic currents (mEPSCs and mIPSCs) (Figure 4B), or MINIs, were 

recorded in whole-cell voltage clamp in the presence of 1 µM tetrodotoxin TTX (Tocris). 

TTX is a reversible blocker of sodium channels, that avoids the generation of Action 

Potentials. In fact, the mPSCs are calcium independent-events which incur 

spontaneously, induced by the release of a single synaptic vesicle, thus they correspond 

to the release of “a quantum” of neurotransmitter that interacts with postsynaptic 

receptors [245]. This analysis allows to specifically measure functional synaptic 

properties. In particular, the frequency of mPSCs, measured in Hertz (Hz), indicates the 

number of mPSCs per second and is a parameter strictly related to the pre-synaptic 

compartment since it is influenced by the number of synaptic vesicles contained in each 

pre-synapsis, the probability of vesicle release and the number of pre-synaptic 

compartments that approach the patched neuron. On the other hand, the amplitude of the 

mPSCs is a measurement of post-synaptic properties, since it directly depends on the 

number of functional post-synaptic receptors expressed along the membrane [246, 247]. 

Electrophysiological data showed that the chronic treatment with KU 1 µM potentiates 

inhibitory synaptic transmission in terms of mIPSCs frequency (Figure 4C left) but not 

of amplitude (Figure 4E), indicating a prevalent pre-synaptic effect. Conversely, the 

excitatory counterpart remains unaffected (Figure 4C right – Figure 4F), leading to an 

excitatory/inhibitory imbalance in favour of inhibition (Figure 4D).  
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Figure 4. A) Scheme showing the temporal line of KU chronic treatment in hippocampal cultured neurons. 

B) Representative electrophysiological traces of inhibitory and excitatory miniature post-synaptic currents 

(mIPSCs and mEPSCs) measured in 12 DIV neurons chronically treated with KU. C) Electrophysiological 

analysis of mIPSCs and mEPSCs frequency (mIPSCs: Mann-Whitney Test, **p=0,005; CTRL n=20; KU 

n=26. mEPSCs: Mann-Whitney Test, p=0,247. CTRL n=21; KU=25). D) Quantification of 

excitatory/inhibitory ratio (E/I ratio) evaluated by measuring the frequency of excitatory and inhibitory 

events from each single cell in whole-cell configuration (Mann-Whitney Test, *p=0,027. CTRL n=14; KU 

n=20). E-F) Analysis of mIPSCs and mEPSCs amplitude plotted as cumulative probability (mIPSCs: KS 

test, p=0,073. CTRL n (events)=818; KU n (events)=1809. mEPSCs: KS test, p=0,128. CTRL n 

(events)=1480; KU n (events)=1233).   
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Since in our previous study we demonstrated a potentiated inhibitory tone probably 

linked to an increased KCC2 expression and precocious GABAergic development in Atm 

heterozygous (Het) hippocampal neurons [220], we investigated the hypothesis that the 

enhanced mIPSCs frequency, induced by the pharmacological blockade of ATM activity 

through KU, could be ascribed to increased KCC2 levels. To address this issue, we first 

confirmed the direct link between “ATM kinase activity - KCC2 levels and degree of 

GABAergic inhibition”, taking advantages of the specific KCC2 receptor antagonist, 

VU0240551 (VU) [248, 249]. The exposure of wild type neurons to VU 1 µM determines 

a significant intracellular chloride accumulation, measured with the chloride fluorescent 

indicator MQAE, proving VU effectiveness in blocking KCC2 action (Figure 5A). We 

therefore treated Atm Het neurons, which exhibit higher levels of KCC2, with VU 1 µM 

during development, and we assessed VU rescuing of functional deficits in Het compared 

to controls. At this purpose, we evaluated the excitatory-to-inhibitory switch of GABA 

through calcium imaging experiments, as an index of GABAergic development strictly 

related to KCC2 expression [44], and the E/I balance by electrophysiological recordings 

(Figure 5B). Calcium imaging experiments, performed in 5 DIV neurons loaded with the 

ratiometric calcium indicator Fura-2AM, revealed that VU treatment is effective in 

normalizing the anticipated inhibitory action of GABA typical of Atm Het cells, as 

indicated by a comparable percentage of neurons responding to GABA 100 µM stimuli 

with calcium transients in wild-type (WT) vs Het+VU experimental conditions (Figure 

5C). In addition, we did not find any changes in calcium homeostasis after VU 

administration, as showed by the undistinguishable calcium basal levels measured in Het 

treated cells compared to WT (Figure 5D). Only weak alterations in calcium homeostasis 

have been detected in WT neurons upon VU treatment accordingly to Sivakumaran et al, 

2015 [250] (Figure 5D). Also, electrophysiological recordings of mEPSCs and mIPSCs 

from each single cell performed in 14 DIV neurons showed the effectiveness of VU 

treatment during development in rescuing the increased inhibitory tone, indicated by a 

normalized mIPSCs frequency (Figure 5E), and the imbalanced E/I transmission (Figure 

5F). All together these data provide the unequivocal proof of the direct link between ATM 

activity, KCC2 levels and degree of inhibition.  
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Figure 5. A) Intracellular chloride measurements in 6 DIV primary hippocampal neurons upon 

VU0240551 (VU) treatment. Quantitative analysis of the MQAE mean intensity: a lower MQAE mean 

intensity in VU-treated cultures indicates an increased [Cl-]I (Student’s t-test, ***p<0,001. CTRL n=138; 

VU n=133). B) Scheme of the experimental time line of VU treatment and related functional experiments. 

C) Quantitative analysis of the percentage of 5 DIV Atm Het/WT neurons, treated or not with VU, 

responding to GABA application by depolarization (Kruskal-Wallis Test followed by Dunn’s Multiple 

Comparison Test, **p<0,01. WT n=362; WT+VU=214; Het=342; Het+VU=299). D) Evaluation of 

resting calcium level in Atm Het/WT cells upon VU treatment (Kruskal-Wallis Test followed by Dunn’s 

Multiple Comparison Test, *p<0,05. WT n=362; WT+VU=214; Het=342; Het+VU=299). E) 

Electrophysiological analysis of mIPSCs frequency in 14 DIV Atm Het/WT hippocampal neurons treated 

or not with VU (Kruskal-Wallis Test followed by Dunn’s Multiple Comparison Test, *p<0,05 - **p<0,01. 

WT n=16; WT+VU n=13; Het n=14; Het+VU=15). F) Quantification of E/I ratio in 14 DIV Atm Het/WT 

hippocampal neurons upon VU chronic treatment (One-way Anova followed by Holm-Sidak’s Multiple 

Comparison Test, *p<0,05. WT n=15; WT+VU n=11; Het n=11; Het+VU=11). 
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To investigate if KU effects on GABAergic transmission are due to changes in KCC2 

expression, we performed Western Blotting experiments of chronically treated neurons, 

but we did not observe any statistical significant increase in KCC2 levels (Figure 6A). 

Moreover, we did not find significant changes in KCC2 expression also in 12 DIV 

neurons treated for 1 hour or 24 hours with KU (Figure 6A). So, we hypothesized that we 

were not in the proper time window to see possible alterations in KCC2 levels since it is 

well known that at this developmental stage (12 DIV) KCC2 reaches a saturating 

expression level and GABA switch is almost completed [43, 251]. Thus, we moved earlier 

during development and we treated cells at 7 DIV, since it is well described that in this 

phase of neuronal maturation about 40-50% of neurons still respond to GABA with 

depolarizing calcium transients [181]. We found that at this time point the acute KU 

application (for 30 or 60 minutes) is sufficient to induce a strong increase of KCC2 

expression (Figure 6B) associated with a higher phosphorylation of ERK1/2 (Figure 6C). 

These results suggest that the functional modifications obtained through the chronic 

protocol could be ascribed to a precocious and transient increment of KCC2.  

 

 

Figure 6. Evaluation of KCC2 protein level upon different KU treatment paradigms. A) Western Blotting 

representative image and quantification of KCC2 expression in 12 DIV neurons treated with KU 1 µM for 

4 days, 24 hours or 60 minutes, showing no differences between the experimental groups (Kruskal-Wallis 

Test followed by Dunn’s Multiple Comparison Test, p=0,075. CTRL n=8, 4days n=6; 24h n=5; 60’ n=2). 

B) Representative Western Blotting lanes and analysis of KCC2 levels upon KU acute treatment (30-60 

minutes) in 7 DIV hippocampal cultures (One-way Anova followed by Holm-Sidak’s Multiple Comparison 

Test, **p<0,01. CTRL n=7; 30’ n=7; 60’ n=7). C) Biochemical analysis of the amount of ERK 

phosphorylation in acutely KU-treated 7 DIV neurons compared to control (Kruskal-Wallis Test followed 

by Dunn’s Multiple Comparison Test, *p<0,05 - **p<0,01. CTRL n=7; 30’ n=7; 60’ n=6). 
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KU treatment promotes GABAergic development and reverts the E/I 

balance  

 

Since Western Blotting data revealed that KU effects on KCC2 expression occur 

strictly during the early phases of neuronal development, we decided to modify our 

protocol treating neurons for one day at 5/6 DIV and to evaluate possible changes in the 

“excitatory-to-inhibitory switch of GABA” as a consequence of increased KCC2 levels 

(Figure 7A). Calcium imaging experiments performed in Fura-2AM loaded neurons 

showed that KU application for 24 hours accelerates GABAergic maturation, as indicated 

by a reduced percentage of cells responding to GABA with calcium transients (Figure 

7B), suggesting an anticipated GABA-mediated hyperpolarizing action upon KU 

treatment. Surprisingly, we found that this effect is long-lasting, since even four days after 

KU application the excitatory-to-inhibitory switch of GABA remains accelerated with a 

reduced percentage of neurons responding to GABA stimuli by depolarization compared 

to control (Figure 7C). We also measured calcium transients evoked by KCl 50 mM 

application, in order to exclude the occurrence of possible changes in Voltage Operated 

Calcium Channels (VOCCs) expression and function upon KU delivery, but we did not 

find any changes between the two groups (Figure 7D). The evaluation of VOCCs in these 

kind of experiments is fundamental since their alterations could reflect variations in 

neuronal responses to GABA and, as a result, an altered estimation of the percentage of 

GABA responding neurons. Interestingly, Western Blotting data revealed increased 

KCC2 levels only one day but not 4 days after KU application (Figure 7E), suggesting 

that the acute boosting of KCC2 expression is sufficient to produce a long-lasting effect 

on GABA maturation.  

To further demonstrate that the KU long-lasting effect on GABAergic development 

is exclusively determined by the acute boosting of KCC2 expression, we treated 6 DIV 

neurons with KU 1 µM for 24 hours, we co-applied VU 1 µM at 6 DIV and we continued 

VU application for the following two days (7-8 DIV) (Figure 7F above). VU inhibition 

of KCC2 activity blocks the KU-mediated long-lasting effect on GABA switch as 

indicated in (Figure 7F bottom).  
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Figure 7.  A) Scheme of the experimental design for the evaluation of KU acute treatment induced effects 

on GABA switch. B-C) Quantification of the percentage of 6 DIV hippocampal neurons responding to 

GABA stimuli by depolarization one day (B) and four days (C) after KU 1 µM application with respect to 

controls (one-day treatment: Student’s t-test, **p=0,004. CTRL n=395; KU=374. Four-days treatment: 

Student’s t-test, *p=0,039. CTRL n=216; KU n=236). D) Analysis of calcium transients upon KCl 50 mM 

application in one day (left) and four days (right) treated-cells compared to controls display no changes in 

VOCC expression in all the experimental conditions (one-day treatment: Mann-Whitney Test, p=0.145. 

CTRL n=395; KU=374. Four-days treatment: Mann-Whitney test, p=0.777. CTRL n=216; KU n=236). E) 

Representative Western Blotting lanes and corresponding quantifications of KCC2 expression levels one 

day and four days after KU treatment (one-day treatment: Mann-Whitney Test, **p=0,005. CTRL n=7; 

KU n=11. Four-days treatment: Mann-Whitney test, p=0,918. CTRL n=7; KU n=11). F) Scheme showing 

the temporal line of KU and VU co-application experiment (above). Analysis of the excitatory-to-inhibitory 

switch of GABA reveals that VU administration prevents KU effects on GABAergic maturation (bottom) 

(Kruskal-Wallis Test followed by Dunn’s Multiple Comparison Test, *p<0,05. CTRL n=204; KU n=163; 

KU+VU n=334).  
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Our next goal was to investigate if the accelerated and potentiated GABAergic 

development induced by one-day treatment with KU could induce permanent changes of 

neuronal transmission. We therefore treated cells at 5/6 DIV and we measured excitatory 

and inhibitory synaptic activity in mature neurons (14 DIV) taking advantages of 

electrophysiological experiments (Figure 8A). Electrophysiological recordings revealed 

an increased inhibitory tone upon KU application, as indicated by the higher frequency 

(Figure 8B - 8C left) and amplitude (Figure 8E) of mIPSCs. The excitatory counterpart 

results instead decreased both in term of frequency (Figure 8B - 8C right) and amplitude 

(Figure 8F) of mEPSCs, leading to an E/I imbalance in favour of inhibition (Figure 8D). 

Accordingly, immunofluorescence analysis revealed increased mean size and mean 

intensity of vGAT-positive puncta (Figure 9A-B-C) and a reduction in these parameters 

in vGlut-positive puncta (Figure 9A-D-E).  

These data suggest that KU acute application during development exerts long-lasting 

effects on synaptic transmission completely reverting the E/I balance in mature neurons. 
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Figure 8. A) Experimental time–line to measure changes in synaptic transmission upon KU acute treatment 

during development. B) Representative traces of mIPSCs and mEPSCs recorded in 14 DIV hippocampal 

neurons treated or not with KU 1 µM during development. C) Quantitative analysis of mIPSCs (left) and 

mEPSCs (right) frequency in KU-treated cells compared to control (mIPSCs: Student’s t-test, 

***p=0,0003. CTRL n=17; KU n=19. mEPSCs: Student’s t-test, *p=0,026. CTRL n=21; KU=17). D) 

Electrophysiological quantification of the E/I ratio upon KU acute treatment (Student’s t-test, **p=0,002. 

CTRL n=14; KU n=13). E-F) Analysis of mIPSCs and mEPSCs amplitude plotted as cumulative 

probability (mIPSCs: KS test, p<0,0001. CTRL n (events)=773; KU n (events)=823. mEPSCs: KS test, 

p<0,0001. CTRL n (events)=1378; KU n (events)=1037).   
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Figure 9. A) Representative immunofluorescence images of 14 DIV hippocampal neurons labelled with the 

specific inhibitory and excitatory pre-synaptic markers, respectively vGAT and vGlut1, and with βIII-

tubulin to highlight neuronal processes. B-C) Quantitative analysis of mean size (B) and mean intensity 

(C) of vGAT positive puncta in KU-treated neurons with respect to controls (mean size: Student’s t-test 

**p= 0,004. Mean intensity:  Student’s t-test, *p=0,040. N=3 experiments, n=2 coverslips for each 

experiment). D-E) Quantitative analysis of mean size (D) and mean intensity (E) of vGlut positive puncta 

in KU-treated neurons vs controls (mean size: Student’s t-test *p= 0,026. Mean intensity:  Student’s t-test, 

*p=0,021. N=3 experiments, n=2 coverslips for each experiment). 
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KU counteracts the hyperexcitability induced in neurons  

 

Whereas our ultimate goal in the study of KU effects is to exploit it as a new 

pharmacological tool in the treatment of disorders characterized by increased excitation 

and altered GABA maturation, we evaluated the possibility that the higher inhibition 

induced by KU treatment could counteract hyperexcitability of neuronal networks. To 

address this issue, we focused on hyperactivity processes acutely generated in vitro by 

exposing neurons to a Mg2+ free external medium [252, 253]. The Mg2+ removal indeed 

determines the unblock of NMDA glutamatergic receptors, which are normally silent at 

resting potential, since magnesium ions occupy the binding site deep inside the pore near 

the cytoplasmic side of the channel [254]. We therefore acutely treated cells with KU 

during development and we performed electrophysiological experiments at 14 DIV. We 

measured Multi Unit (MU) activity recording neurons in voltage-clamp mode and in cell 

attached configuration [255]. The analysis of this parameter allows to monitor the spiking 

activity of the recorded neuron as well as of its immediate neighbours and it is known to 

reflect the excitability of neuronal network [255].  As shown in Figure 10A-B, while the 

MU number was significantly increased in neurons exposed to the Mg2+-free protocol 

with respect to controls (KRH), no statistically significant increment in MU frequency 

was observed after Mg2+ removal upon KU treatment. These data suggest that the higher 

GABAergic tone induced by KU is effective in counteracting the pharmacologically-

mediated hyperexcitability and highlight KU as a new tool potentially exploitable in 

reverting pathological features of neurodevelopmental disorders characterized by 

increased excitation and/or reduced inhibition. 
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Figure 10. A) Representative electrophysiological traces of Multi-Unit (MU) activity (i.e. spiking activity) 

recorded in voltage-clamp in cell attached configuration in 14 DIV hippocampal cultured neurons, treated 

or not with KU during development, before and after the Mg2+ removal from the external solution. B) 

Quantitative analysis of MU frequency reveals potentiated activity in control cultures but not in KU treated 

cells during development, after the application of the hyperexcitability paradigm (One-Way Anova followed 

by Holm-Sidak’s Multiple Comparison Test: ***p<0,001 - **p<0,01. CTRL n=34; CTRL w/o Mg2+ n=28; 

KU n=21; KU w/o Mg 2+ n=27).  
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Assessment of the possible molecular mechanisms 

underlying KU effects 

 

KU is effective in enhancing KCC2 levels even in vivo 

 

To further demonstrate the pharmacological applicability of KU in neurological 

disorders, we investigated KU effectiveness in vivo. To this purpose, we performed 

intracerebroventricular injections (ICV) of 3 µl of KU 10 µM in the right ventricle of 

post-natal day 4 (P4) wild-type mice and we quantified KCC2 expression 24 hours later. 

We chose this administration paradigm since KU displays a very limited solubility and it 

is not able to cross the blood-brain barrier [235]. Western Blotting data showed a higher 

expression of KCC2 in brains of KU-treated mice compared to controls (DMSO-injected 

mice), indicating KU effectiveness also in vivo (Figure 11).  

 

 

 

 

 

 

Since in literature it is known that the concentration of KU 2 µM can inhibit 

autophagosome formation in vitro [243], we evaluated the impact of our treatment (KU 

10 µM - ICV) on basal autophagy in vivo. This is an extremely important point 

Figure 11. A-B) Representative Western Blotting lanes and quantitative analysis of KCC2 expression 

levels measured in P5 wild-type mice 24 hours after a single intracerebroventricular injections of KU 

10µM (3 µl) in the right ventricle (Mann-Whitney Test, p=0,0008. Number of animals=12 per group).  
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considering that autophagy processes are crucial during neurodevelopment, especially for 

the formation of correct synaptic contacts, and their dysregulation plays a crucial role in 

neurological disorders [8, 256, 257]. To address this issue, we measured the expression 

levels of a pivotal marker of autophagy, the microtubule-associated protein 1 light chain 

3 BII isoform (LC3-BII) [258, 259], in tissues explanted from KU-injected pups. As 

shown in Figure 11A-B, one day after KU in vivo administration, LC3-BII expression 

remains unaffected. We also evaluated Heat Shock Protein Family A (Hsp70) Member 8 

(HSPA8) levels since it is an ubiquitous molecular chaperone known to play an important 

role in protein folding and degradation, stress response, endosomal micro-autophagy, and 

chaperone-mediated autophagy [260, 261]. However, we did not find any changes after 

KU application Figure 11A-C. Thus, in our experimental conditions, KU does not seem 

to impact autophagy pathways.  

 

 

 

 

 

 

Figure 12. A) Representative Western Blotting lanes of the autophagy marker LC3B-II, the endosomal 

micro-autophagy and chaperone-mediated autophagy marker HSP8A, and the house-keeping protein actin. 

B-C) Quantitative analyses of LC3B-II (B) and HSPA8 (C) expression in KU-injected P5 pups’ brains with 

respect to controls (LC3B-II: Student’s t-test, p=0,237. HSPA8: Student’s t-test, p=0,642. Number of 

animals=12 per group).  
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KU promotes KCC2 expression through Egr4 activation of Kcc2b promoter  

 

We then wanted to define the molecular mechanisms responsible of KU effects. In 

literature is known that KCC2 expression during development is tightly regulated by Egr4 

transcription factor which, once activated by ERK protein, promotes the transcription of 

Kcc2 gene (Figure 13A) [50, 262].  In our previous study we found increased KCC2 levels 

correlated to a higher ERK phosphorylation in Atm Het mice [220], so we hypothesized a 

possible involvement of Egr4 pathway in ATM regulation of KCC2 expression. To better 

investigate this hypothesis, we took advantage of a construct including the -309/+42 

region of the Kcc2b mouse promoter, which contains exclusively the Egr4 consensus 

sequence [262], followed by the NanoLuc luciferase gene reporter. Thus, we transfected 

5 DIV neurons with the construct, we applied KU 24 hours later (6 DIV), and we 

measured the NanoLuc and Luc2 luciferase activity by a Dual-Luciferase Reporter Assay 

System one day after KU application (7 DIV). As shown in Figure 13B, we measured an 

increased NanoLuc/Luc2 signal in KU treated cultures compared to control, indicating 

that ATM involvement in GABAergic development is linked to a transcriptional 

mechanism involving the Egr4-dependent activation of Kcc2b promoter.  

 

 

 

Figure 13. A) Simplified schematic diagram of the signal transduction cascade involved in Egr4-induced 

KCC2 expression. Modified from Ludwig, et al 2001. B) Scheme of the transfected construct to evaluate 

Egr4 activity on Kcc2b promoter through Luciferase assay (above). Quantitative analysis of NanoLuc/Luc2 

luciferase activity in 7 DIV transfected cells upon KU application for one day (Student’s t-test, *p=0,019. 

CTRL n=5; KU n=8) (below).  
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Coherently, a significantly higher Egr4-dependent activity of Kcc2b promoter was 

found in Atm Het neurons (7 DIV) respect to WT (Figure 14A), indicating Egr4 pathway 

implication also in the genetic reduction of ATM. Surprisingly, Atm knockout (KO) 

neurons display a lower Egr4 activity respect to WT even in presence of an increased 

KCC2 expression in hippocampal tissues (Figure 14B). These results indicate the 

presence of an additional mechanism linked to ATM that converge in a potentiated KCC2 

expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. A) Luciferase quantitative analysis of Egr4 activity on Kcc2b promoter in 7 DIV hippocampal 

neurons obtained from Atm WT/Het/KO embryos (One-Way Anova followed by Dunnett’s Multiple 

Comparisons Test, *p<0,05. WT n=6, Het n=7, KO n=7). B) Western Blotting representative image and 

quantification of KCC2 expression levels in Atm KO hippocampi with respect to WT (Student’s t-test, 

*p=0,032. WT n=4; KO n=4).  
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KU enhances Mecp2 transcription  

 

To define the mechanism responsible for the increased KCC2 expression in Atm KO 

mice, we wondered if other transcriptional pathways could operate in parallel and 

independently to Egr4. Several studies point out the direct regulation of KCC2 expression 

via Methyl-CpG-binding protein 2 (MeCP2) activity both in human and in mice [60, 69, 

74]. Notably, it has been demonstrated that Mecp2, occupying the repressor element-1 

(RE-1) sites in the Kcc2 gene, prevents REST binding and so the inhibition of KCC2 

expression [60]. Thus, we evaluated Mecp2 levels in both genetic and pharmacological 

mouse models of ATM depletion. Surprisingly, Western Blotting data revealed higher 

levels of Mecp2 not only in hippocampal tissues extracted from Atm KO mice (Figure 

15A) but also in Atm Het and in KU-injected (3 L of KU 10 M) mice with respect to 

controls (Figure 15B-C).  

 

 

 

 

Figure 15. Representative images and corresponding analyses of Mecp2 expression in brains of both 

genetic and pharmacological mouse models of Atm depletion. A) Mecp2 increased level in Atm KO 

hippocampi compared to WT (Student’s t-test, **p=0,006. WT n=4; KO n=5). B) Mecp2 increment in Atm 

Het hippocampi respect to the WT counterpart (Student’s t-test, *p=0,040. WT n=5; Het n=10). C) P5 KU-

injected pups’ brains display higher Mecp2 expression compared to DMSO controls (Student’s t-test, 

*p=0,011. DMSO n=14; KU n=15).  
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In parallel, immunofluorescence experiments carried out on hippocampal slices 

confirmed increased Mecp2 expression after KU ICV injection, as indicated by confocal 

analysis of Mecp2 integrated density (Figure 16A-B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. A) Representative confocal immunofluorescence images of hippocampal slices obtained from 

KU-injected mice scarified 24h after KU injection, labelled with Mecp2 antibody (green) and DAPI (blue) 

to identify the nuclei. B) Quantification of integrated density of fluorescence for Mecp2 signal in DAPI 

positive nuclei plotted in column graph (above) and as relative frequency percentage (below) (Mann-

Whitney Test, ***p<0,001. KS test: ***p<0,001. Number of animals: DMSO=4 vs KU=4; number of 

slices: DMSO=12 vs KU=12; number of images quantified per slices=6).  
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As shown in Figure 17, qRT-PCR analysis of Mecp2-mRNA levels revealed that 

Mecp2 transcription is transiently potentiated 30 and 60 minutes after KU application, 

suggesting that ATM activity impacts Mecp2 expression at transcriptional level. All 

together these results demonstrate that KCC2 expression is finely modulated by ATM 

kinase activity through Egr4 and Mecp2 pathways which occur independently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Quantification of Mecp2 mRNA levels by real time PCR experiments in hippocampal cultured 

neurons treated with KU or DMSO as control for different duration (Kruskal-Wallis followed by Dunn’s 

Multiple Comparisons Test: ***p<0,001 - *p<0,05. CTRL n=7; KU 30 min n=5; KU 1h n=5; KU 3h n=5).  
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Evaluation of KU applicability to rescue neuronal 

dysfunctions in the mouse model of Rett syndrome 

 

Genetic lack of Mecp2 results in ATM increased expression 

 

To further confirm the link between ATM and Mecp2 we took advantages of Mecp2y/- 

mice, the mouse model of Rett syndrome. We evaluated ATM expression in P6-7 

Mecp2y/- mice compared to sex matched wild-type (WT). Surprisingly, Western blotting 

experiments showed an increased amount of ATM protein (Figure 18A-B) in association 

with reduced KCC2 levels (Figure 18A-C), as already described in literature [60], in 

hippocampal tissues extracted from Mecp2-deficient P6 young mice with respect to 

controls.   

 

 
 

 
 

 

Figure 18. A) Representative Western Blotting lanes showing ATM increased expression related to KCC2 

low levels in Mecp2-deficient mice and the house-keeping protein calnexin. B) Quantification of ATM 

expression (Mann-Whitney Test, *p=0,042. WT n=9; Mecp2y/- n=13). C) Quantitative analysis of KCC2 

levels (Mann-Whitney Test, *p=0,026. WT n=6; Mecp2y/- n=6).  
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KU rescues functional defects in Mecp2y/- neurons  

 

After demonstrating the capability of KU treatment in modulating KCC2 expression 

and E/I balance, our next goal was to test its efficacy in rescuing pathological phenotypes 

of neurodevelopmental disorders. Since in literature is widely accepted that Rett 

syndrome is characterized by a delayed GABAergic maturation, low KCC2 levels and 

E/I imbalance [60, 69, 71], we evaluated the possibility to exploit KU action to ameliorate 

neuronal defects in Mecp2y/- mice. In addition, we unveiled for the first time that Mecp2 

genetic ablation results in increased ATM expression in mice, suggesting a possible ATM 

implication in Rett aethiopathology. We therefore treated Mecp2y/- neuronal primary 

cultures with the ATM inhibitor KU during development (DIV 7/8) and we performed 

calcium imaging experiments and electrophysiological recordings to evaluate 

respectively excitatory-to-inhibitory switch of GABA and neuronal activity (Figure 19A). 

Calcium imaging data showed a significantly higher percentage of neurons responding to 

GABA stimuli with calcium transients in Mecp2y/- preparations compared to wild-type 

(WT), indicating a still depolarizing action of GABA and a delayed GABA switch in 

Mecp2-deficient mice. This developmental retardation is completely normalized through 

KU application one day prior to calcium imaging experiments (Figure 19B). To exclude 

VOCC changes upon KU treatment in Mecp2y/- cells, we evaluated KCl-induced calcium 

responses, but we observed no changing in amplitude of induced-calcium transients in all 

the experimental conditions (Figure 19C). As displayed in Figure 19D, we also found 

reduced calcium peaks induced by GABA application in Mecp2y/- neurons compared to 

WT, indicating a significant alteration in GABA receptor expression, which is restored 

by KU treatment.  

Finally, the hyperexcitability induced by exposing neurons to a Mg2+-free external 

medium was observed only in 14 DIV Mecp2y/- neuronal cultures, as shown in Figure 

19E-F, by the significantly higher spiking activity (MU frequency) with respect to control 

(KRH external solution). No significant differences in terms of firing frequency could 

instead be detected in Mecp2y/- cells treated with KU during development and then 

exposed to the hyperexcitability paradigm at 14 DIV (Figure 19E-F).  
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Figure 19. A) Scheme showing the experimental time-line of KU treatment and functional experiments 

carried-out in Mecp2y/- neurons. B) Calcium imaging quantification of the percentage of 8 DIV neurons 

responding to GABA stimuli by depolarization (Kruskal-Wallis followed by Dunn’s Multiple Comparisons 

Test, **p<0,01 - ***p<0,001. WT n=227; Mecp2y/- n=93; Mecp2y/- + KU n=215). C) Analysis of calcium 

transients evoked by KCl application shows no changes in VOCC expression (Kruskal-Wallis followed by 

Dunn’s Multiple Comparisons Test, p=0,292. WT n=227; Mecp2y/- n=93; Mecp2y/- + KU n=215). D) 

Calcium transients upon GABA 100 µM stimulation indicate a lower amount of GABA receptors expression 

in Mecp2y/- cells which is rescued by KU treatment during development (Kruskal-Wallis followed by Dunn’s 

Multiple Comparisons Test, **p<0,01. WT n=58; Mecp2y/- n=40; Mecp2y/-+KU n=34). E) 

Electrophysiological traces of Multi-Unit (MU) activity (i.e. spiking activity) recorded in voltage-clamp in 

cell attached configuration in 14 DIV Mecp2y/- hippocampal cultured neurons, treated or not with KU 

during development, before and after the Mg2+ removal from the external solution. F) Quantification of 

MU frequency displays that Mecp2y/-+KU neurons are resistant in generating the pharmacological 

hyperexcitability induced by Mg2+ removal (One-Way Anova followed by Sidak’s Multiple Comparisons 

Test, ***p<0,001. Mecp2y/- n=17; Mecp2y/- w/o Mg2+ n=16; Mecp2y/-+KU n=18; Mecp2y/-+KU w/o Mg2+ 

n=14).  
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We then investigated the molecular mechanism underlying KU rescuing effect of 

neurological defects in Mecp2y/- neuronal cultures. We took advantage of Luciferase assay 

and we found a potentiated Egr4 activity on Kcc2b promoter (Figure 20A) in accordance 

to normalized KCC2 expression levels (Figure 20B) in Mecp2y/- cells treated with KU.  

Altogether these data strongly suggest that KU tuning of ATM activity could 

represent a novel tool to treat developmental retardation in the mouse model of Rett 

syndrome.  

 
 
 
 
   
 
 

 

 

 

 

 

 

 

Figure 20. A) Luciferase analysis indicates that KU treatment potentiates Egr4 activity on Kcc2b promoter 

in Mecp2y/- neurons (Ordinary One-way Anova followed by Tukey’s multiple comparison test, *p<0,05 - 

**p<0,01. Number of samples (isolated embryos) WT n=6; Mecp2y/- n=4; Mecp2y/-+KU n=4). B) 

Biochemical analysis shows KU rescuing effect of KCC2 expression in Mecp2y/- treated neurons (One-Way 

Anova, *p=0,048. WT n=8; Mecp2y/- n=8; Mecp2y/-+KU n=9). 
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DISCUSSION 
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In this study we highlight the importance of ATM kinase activity in the physiological 

development of central neurons, especially, its key role in regulating GABAergic 

maturation, inhibitory transmission and in maintaining the proper excitatory/inhibitory 

balance. We reveal ATM dysregulation as a novel aethiopathological factor responsible 

for neuronal dysfunctions in neurodevelopmental disorders, i.e. Rett syndrome. Notably, 

we demonstrate a completely novel application of the ATM inhibitor KU, a compound 

already used in oncological pre-clinical research, as an innovative pharmacological tool 

for the treatment of neurodevelopmental disorders characterized by altered GABAergic 

maturation, poor inhibition and neuronal hyperexcitability.  

 

The maintenance of a proper balance between excitatory and inhibitory 

neurotransmission is crucial for a the correct brain development, function and plasticity 

[9, 13]. Thus, alterations in GABA developmental steps may result in pathological 

conditions such as epilepsy, autism and schizophrenia [26, 263]. A fundamental process 

in GABAergic maturation is the so called “excitatory-to-inhibitory switch of GABA”, the 

postnatal transition of GABA transmission from excitatory to inhibitory [38]. In our 

previous study we demonstrated an anticipated GABA switch and an increased inhibitory 

tone, associated to higher KCC2 expression levels, in hippocampal neurons established 

from ATM heterozygous embryos [220], suggesting ATM role in controlling neuronal 

development and inhibitory transmission. The aim of this thesis was to investigate the 

possibility to mimic, by a pharmacological intervention, the accelerated GABAergic 

development and potentiated inhibitory tone typical of the ATM heterozygous phenotype, 

to propose a new tool for the treatment of neurological disorders associated with 

developmental alterations and neuronal hyperexcitability.  

 

To verify our hypothesis, we tested the effectiveness of KU, a potent inhibitor of 

ATM kinase activity largely studied in oncology because of its ability to inhibit cancer 

proliferation by inducing apoptosis [227, 230]. We first identified 1 µM as the lowest 

concentration of KU able to inhibit ATM but free from inducing toxic effects in neuronal 

cultures. This is in line with several studies which indicate that i) KU 5 µM is the highest 

non-toxic drug concentrations linked to a cell viability above 85% [242]; ii) KU 2 µM 

does not affect cell survival [243]. Moreover, KU exhibits a potent specificity for ATM 
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kinase with at least a 100-fold differential in selectivity in a counter-screening of KU 

against other members of the PIKK family. Moreover, several studies show that KU 

concentrations up to 10,000 times higher than 1 µM display a good selectivity for ATM 

kinase pathways, i.e. KU 10 mM has no significant effects on unspecific pathways such 

as the CREB transcriptional basal activity [244]. In contrast, in an in vitro study Farkas 

and colleagues demonstrated that KU inhibits autophagy at concentration of 2 µM. They 

excluded ATM kinase involvement in autophagy pathway and they identified Vps34 as a 

direct target of KU [243]. Since we used KU 10 µM for in vivo experiments, we verified 

the possible KU-induced inhibition of basal autophagy in KU injected mice. We checked 

the expression levels of the pivotal autophagy marker, the microtubule-associated protein 

1 light chain 3 BII isoform (LC3-BII) [258, 259], and the Heat Shock Protein Family A 

(Hsp70) Member 8 (HSPA8), an ubiquitous molecular chaperone known to play an 

important role in protein folding and degradation, endosomal micro-autophagy and 

chaperone-mediated autophagy [260, 261]. We did not find any changes in the expression 

of these proteins even if the KU concentration that we applied in vivo is higher than the 

one implicated in the autophagy pathway in vitro. We explain these results by the 

evidence that i) once injected in the ventricle, KU gets diluted so the final effective 

concentration is much lower than 10 µM; ii) starting by the same drug concentration, KU 

will differently impact neuronal function in an in vivo protocol, in which the complexity 

of the brain structure is maintained, compared to an in vitro simplified model; iii) KU 

inhibition of autophagosome formation has been demonstrated in an autophagy-activated 

paradigm whereas we evaluate KU effects in steady-state neurons or mice. Thus, our 

results well combine with the literature. 

 

In our previous publication, we demonstrated a precocious development of inhibitory 

system linked to increased KCC2 expression and higher inhibitory tone in Atm 

heterozygous mice [220]. Taking advantages of the ATM kinase inhibitor KU, in the 

current study we highlight the importance of ATM kinase activity in physiological brain 

development and in neurodevelopmental disorders aetiology. Results collected in this 

thesis provide additional and stronger evidence of the direct link between ATM activity 

– KCC2 expression and inhibition levels, corroborating and expanding what we showed 

in Pizzamiglio et al, 2016 [220]. Moreover, these data reveal that the tuning of ATM 
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activity impacts KCC2 expression only in a restricted temporal window during 

development, which can be defined as “critical period for KCC2 production”. At this 

stage of maturation, the system is particularly sensitive to changes, indeed a short-term 

ATM inhibition, by accelerating the excitatory to inhibitory switch of GABA, induces 

long-lasting effects on neuronal transmission. Coherently, it is widely accepted that a 

perturbation of neuronal development, even if of short duration, can deeply and 

permanently modify neuronal function [264-266].  

 

Importantly, our results disclose the molecular mechanisms underlying ATM 

essential role in the maturation of GABAergic system. Exploiting both the 

pharmacological and the genetic models of ATM deficiency, we demonstrated that ATM 

regulates Kcc2 transcription through two different and independent pathways involving 

the transcription factor Egr4, and the epigenetic regulator Mecp2. Egr4 directly promotes 

KCC2 expression by binding Kcc2b promoter [50, 262], whereas Mecp2, occupying the 

repressor element-1 (RE-1) sites in the Kcc2 gene, prevents REST binding and inhibition 

of KCC2 expression [60]. In presence of reduced but still present ATM activity, i.e. KU-

treated cells/mice and in Atm-Het neurons/mice, both these two mechanisms occur 

leading to higher KCC2 levels, as indicated by the increased Egr4 activity on Kcc2b 

promoter and the higher Mecp2 expression. In Atm-KO, where ATM is completely 

absent, the Egr4 activity is reduced and the higher KCC2 signal is exclusively linked to 

the increased Mecp2 levels. Vice versa, in Mecp2-null brains, in which we found higher 

ATM and reduced KCC2 levels, KU administration normalizes KCC2 expression 

potentiating Egr4 activity. Thus, variations in ATM levels reflect opposed KCC2 

expression and behaviour in terms of GABAergic development based on Egr4 and Mecp2 

dependent-mechanisms. 

 

The results collected in this work acquire relevance since ATM emerges as a new 

potential target to restore the proper excitatory/inhibitory transmission in conditions 

associated to hyperexcitability and delayed GABAergic maturation. In fact, we 

demonstrated that inhibition of ATM activity in Mecp2y/- neurons, the mouse model of 

Rett syndrome, rescues abnormal GABAergic development and normalizes E/I balance 

and neuronal hyperexcitability. As in the case of Rett syndrome, a large number of 
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psychiatric and neurodevelopmental disorders are mainly characterized by E/I imbalance 

and failure of inhibition, as indicated in: i) Oxt-/- mouse model of autism spectrum disorder 

[80, 267]; ii) Scn1a+/- model of a severe epilepsy of infancy, the Dravet syndrome [77]; 

iii) FMRP mice, the mouse model of the Fragile-X syndrome associated to mental 

retardation [268]; iv) heterozygous reeler mice, one of the mouse models of 

schizophrenia [269]; v) Lgdel+/− mouse model of 22q11.2 deletion syndrome (22q11.2 

DS) associated to autism, schizophrenia and cognitive impairments [270]; and so on. 

Thus, ATM tuning could be tested as an innovative treatment in a plethora of neurological 

disorders.  

 

Also, our work perfectly fit with recent studies which highlight the role of proteins 

involved in DNA double-strand breaks (DSBs) machinery as fundamental regulators of 

neuronal function [104, 106]. In particular, it has been demonstrated that diverse 

paradigms of neuronal stimulation, such as mice exposure to physiological learning 

behaviours, determine the formation of DSBs. These activity-dependent DSBs are 

restricted to few loci through the entire genome enriched for the early response genes Fos, 

Npas4, Egr1, and Nr4a, whose induction regulates experience-driven changes to synapses 

including synaptogenesis, neurite outgrowth, synaptic strength and maturation [107]. 

This process seems to be crucial since alterations of this pathway result in cognitive 

disabilities [112]. In this scenario, our present results, provide further proofs that defects 

in DSBs related proteins may generate neurological disfunctions and point out that a 

better understanding of the mechanisms underlying these alterations will be of enormous 

significance.  

 

Finally, this study demonstrates for the first time that among the pathological 

modifications occurred in the mouse model of Rett Syndrome, higher ATM levels 

contribute to the generation of the altered neuronal phenotype. ATM signalling has been 

found consistently elevated also in cells and brains derived from the mouse model of 

Huntington disease (HD) and in HD patients’ brain tissues [118]. Notably, the genetic 

reduction of Atm, reaching by crossing the murine Atm heterozygous null allele onto mice 

expressing full-length human mutant Huntingtin, ameliorates multiple behavioural 

deficits and partially improved HD neuropathology [118]. Also, in two mouse models of 
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HD, it has been found a reduced KCC2 expression and then a still excitatory action of 

GABA in mature neurons [271], that perfectly fit with the high amount of ATM protein. 

This alteration in inhibitory maturation seems to underlie cognitive defects of HD mouse 

model since restoring proper GABAergic function rescues memory deficits [271]. On the 

other hand, loss-of function mutations in ATM gene, resulting in ATM deficiency, have 

been associated to cognitive impairments among which defects of attention, verbal 

memory, non-verbal memory, late learning and fluency of speech [142]. Coherently, Nora 

D. Volkow and colleagues demonstrated by positron emission tomography a reduced 

glucose metabolism in some brain regions, including the hippocampus, in homozygous 

and heterozygous patients compared to healthy controls [143]. This evidence suggests 

that both increase and decrease of ATM levels correlate with brain changes. Thus, the 

maintenance of a balanced ATM kinase activity is necessary for the correct brain 

maturation and function. Further experiments are needed to better investigate the 

involvement of ATM in the aetiopathogenesis of other neurological diseases such as 

autism spectrum disorders and epilepsy, in which low KCC2 levels and hyperexcitability 

are common pathological features. Mostly, the inhibition of ATM activity in neurological 

diseases through KU offers, as an example of “drug repositioning”, the big benefit to 

shorten time of drug characterization and to exploit an old drug in a new field. 

The results collected in this thesis strongly support our idea to collocate ATM as a 

new key protein responsible for the physiological development of central neurons and 

highlight ATM inhibition as a prospective therapeutic tool in neurodevelopmental 

disorders. 
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