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Abstract
Quantum states of systems made of many identical particles, e.g. those
described by Fermi–Hubbard and Bose–Hubbard models, are conveniently
depicted in the Fock space. However, in order to evaluate some specific
observables or to study system dynamics, it is often more effective to employ
the Hilbert space description. Moving effectively from one description to the
other is thus a desirable feature, especially when a numerical approach is
needed. Here we recall the construction of the Fock space for systems of
indistinguishable particles, and then present a set of recipes and advice for
students and researchers with the need to commute back and forth from one
description to the other. The two-particle case is discussed in some detail, and
a few guidelines for numerical implementations are given.
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1. Introduction

The wave function describing the quantum state of a collection of identical bosons is sym-
metric under the exchange of any two particles, and is thus naturally described in the Hilbert
space of symmetric functions, which is a subspace of the tensor product of single-particle
states. On the contrary, the wave function for a collection of identical fermions is antisym-
metric, which means that it must change sign when we exchange any two particles. These
wave functions are elements of a Hilbert space of antisymmetric functions, which is another
subspace of the tensor product of single-particle states. Indistinguishability thus introduces
correlations in the wave function, and this is true even for non-interacting particles; this
prompted attempts to do quantum information processing by exploiting only the statistical
properties of quantum systems [1, 2].

The above facts are usually summarized by saying that for quantum particles with
definite statistics not all available states are permitted; this is also seen in situations where one
addresses free particles. In graduate physics courses, second quantization and the Fock space
[3–7] are presented as the natural framework where this constraint may be naturally taken into
account. Indeed, the Fock space is a crucial tool in the description of systems made of a
variable, or unknown, number of identical particles. In particular, the Fock space allows one
to build the space of states starting from the single-particle Hilbert space. As a side effect, the
usual introduction of the Fock space may somehow give the impression that the Hilbert space
description may be left behind. On the other hand, the representation of operators in the Fock
space is not straightforward since the indexing of the basis set states, as well as the inter-
pretation of the number states in terms of particle states, are usually not trivial. A known
example is that of fermionic operators on a lattice system [8]: anticommutation rules have to
be taken into account, and additional phases appear in the components of hopping operators
from one site to another through periodic boundary conditions. Additionally, one often
encounters operators that are symmetrized or antisymmetrized versions of a distinguishable
particle operator, e.g. the kinetic term in Hubbard models [8–10]. In this case one may assume
that those operators contain both bosonic and fermionic features, which should be then
discriminated (separated) using a suitable transformation [11].

For all the above reasons, it is often more transparent to employ the Hilbert space
description and to study there the dynamics of a physical system7, as done in some recent
works concerning the study of quantum walks of identical particles [12–15]. However, Fock
number states appear quite naturally in the description of systems of identical particles, and
thus a question arises on how and whether we may go from Fock space to Hilbert space and
vice versa with minimum effort.

The main goal of this paper is to provide a gentle introduction to details of the trans-
formation rules between the different description of states and operators in the two spaces. We
start smoothly, by recalling the construction of the Fock space for systems of indis-
tinguishable particles, and then offer a set of recipes, guidelines, and advice for those people
interested in going back and forth from one description to the other. We devote some attention
to the two-particle case, which already contains most of the interesting features related to
indistinguishability, and briefly discuss how to take care of the two different representations
in numerical implementations. The material presented in this paper is intended to be a concise
reference about the different representations employed in many-body physics, and it aims at
being useful to students and researchers working with systems of identical particles, ranging

7 It may be useful to restate here an aphorism by Asher Peres: ‘Quantum phenomena do not occur in a Hilbert space.
They occur in a laboratory’.
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from photons in a black-body cavity to interacting electrons in a lattice, and from neutrons in
a neutron star to helium atoms in a superfluid.

The paper is structured as follows. In section 2.1 we recall a few basic notions about
indistinguishable particles and the construction of the Fock space. In section 3 we illustrate in
detail how to change description from Hilbert space to Fock space and vice versa in the
operator representation and the system evolution. Section 4 presents some specific applica-
tions, whereas section 5 contains guidelines to numerical implementations. Finally, section 6
closes the paper with some concluding remarks.

2. Identical particles and the Fock space

2.1. From distinguishable to indistinguishable particles

Let us start by considering a collection of N identical but distinguishable particles, each of
which can be put in one of the K modes of a quantum system, e.g. the K eigenstates of its
Hamiltonian. The collective state describing the system is given by

Y = Ä Ä Ä = ¼∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )k k k k k k... , , , , 1N N1 2 1 2

or by any linear combination of states of this kind, which all belong to the KN-dimensional N-
particles Hilbert space H H= Ä

N
N

1 given by the tensor product of N single-particle spaces
H1, each one with dimension K and basis {∣ ⟩}ki i.

Let us now introduce the notion of indistinguishability [16]. We start by the definition of
the permutation operator P̂ij, whose effect is to exchange the states of the particles i and j
inside any state ∣{ } ⟩ki i :

¼ ¼ ¼ = ¼ ¼ ¼ˆ ∣ ⟩ ∣ ⟩ ( )P k k k k k k k k k k, , , , , , , , , , , , , , . 2ij i j N j i N1 2 1 2

If the particles are indistinguishable, the overall state of the system Y∣ ⟩id will be given by the
linear combination of states (of distinguishable particles), which is invariant under action of
P̂ij, e.g. states like ∣{ } ⟩ki i . This means that Yˆ ∣ ⟩Pij id is a state physically indistinguishable from
the previous one, i.e. they can differ only for a phase:

Y = Yfˆ ∣ ⟩ ∣ ⟩ ( )P e . 3ij id id
i

Of course, two identical permutations must reproduce the initial state, i.e.

Y = Y = Yfˆ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )P e , 4ij id id id
2 2i

and thus the eigenvalues for P̂ij are given by eif=±1.
According to the spin-statistics theorem, we have two categories of identical particles:

fermions, which are characterized by half-integer spins and antisymmetric wave functions,
and bosons, which are characterized by integer spins and symmetric wave functions. High-
precision experiments have confirmed the spin-statistics and established strict probability
bounds for a violation to occur [17–20]. Alternative para-statistics have been suggested earlier
in the history of quantum mechanics [21]; however, here we are not discussing the properties
of those kind of particles, e.g. anyons [22].

A state is symmetric or antisymmetric under the action of P̂ij if, respectively, it maintains
or it changes its sign, i.e.

Y = - Yˆ ∣ ⟩ ∣ ⟩ ( )P , 5ij F F
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Y = + Yˆ ∣ ⟩ ∣ ⟩ ( )P . 6ij B B

A symmetric or antisymmetric state can be built with the proper symmetrization operator, Ŝ or
Â, acting on the distinguishable particle state Y∣ ⟩:

Y = Yˆ∣ ⟩ ∣ ⟩ ( )S , 7B

Y = Yˆ ∣ ⟩ ∣ ⟩ ( )A . 8F

In general, the symmetrization operators can be built as

åY =
Y
Y

=  Ys
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ˆ
ˆ

∣ ⟩
∣ ⟩
∣ ⟩

! ! !
!

( ) ˆ∣ ⟩ ( )
ˆ

( )S

A

n n n

N
P

...
1 , 9K

P

PB

F

1 2

where we are applying on Y∣ ⟩ all the possible distinct permutations P̂ of the N single-particle
states ∣ ⟩ki included in Y∣ ⟩, each one multiplied by the sign of the permutation (−1)σ(P), where
σ(P) is the number of particle exchanges occurred in the permutation P̂ when we are dealing
with fermions. Notice that any N-particle permutation P̂ can be built by composing a proper
sequence of two-particle permutations P̂ij, and the same is true for the operators Â and Ŝ . The
states should then be properly normalized with the prefactor under square root, where nk
indicates the number of particles occupying the state k, i.e. the number of times that k occurs
in Y∣ ⟩.

From the antisymmetrization procedure for fermions, we derive the Pauli exclusion
principle, which forbids two fermions to occupy the same state; indeed, if this was the case,
e.g. for particles i and j, we would have contemporarily

Y = - Yˆ ∣ ⟩ ∣ ⟩ ( )P , 10ij F F

Y = Yˆ ∣ ⟩ ∣ ⟩ ( )P , 11ij F F

where the first equality comes from equation (5), while the second one comes from the fact
that the two particles occupy the same state. The only possible conclusion is that our state is
the null vector.

In order to properly describe states and operators taking into account the indistinguish-
ability of particles we should move to the formalism of second quantization [23], where states
belong to the bosonic or fermionic Fock space F, which is a space containing states with a
number of particles that in principle is not fixed. The number states (basis states) of the Fock
space can be represented as

¼∣ ⟩ ( )( )n n n, , , , 12K1 2 B F

with the fundamental constraint niä{0, 1} holding only for fermions because of Pauli’s
principle. If we deal with a fixed number N of particles, there is the additional constraint
å == n Ni

K
i1 . In this last case, we are operating in the subspace of F called FN . Indeed, the

Fock space is given by

F F=
=

¥
⨁ ( ). 13
N

N
0

These number states coincide with the states of equation (1) except for the relabeling (and the
symmetrization). Indeed, while in the first quantization formalism we specify for each particle
i (i=1, K, N) the state/mode ki that it occupies, in the second quantization formalism we
treat particles as excitation of the modes of a field; therefore, for each mode i (i=1, K, K )
we specify how many excitation/particles ni it contains, since we cannot distinguish among
them (see figure 1).
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The total number of particles N can be changed through the application of creation and
annihilation (or destruction) operators, denoted as ˆ †ai and âi, respectively. These operators
create or destroy a particle in the mode/state i, and thus they connect the Fock subspaces with
a different number of particles:

F F +ˆ ( )†a : , 14i N N 1

F F -ˆ ( )a : . 15i N N 1

In more detail, these operators are defined by the following commutation rules:

= = [ ˆ ˆ ] [ ˆ ˆ ] ( )† †a a a a, , 0, 16i j i j

d=[ ˆ ˆ ] ( )†a a, , 17i j i j,

where the upper sign, denoting the commutator, holds for bosons, while the lower sign,
denoting the anticommutator, holds for fermions. It is quite important to stress that fermionic
creation (annihilation) operators do anticommute; therefore, when we exchange their order,
we have to add a minus sign for each permutation we perform.

Upon denoting by ∣ ⟩0 the vacuum state, corresponding to a state with no particle, i.e.
¼∣ ⟩0, 0, , 0 (not to be confused with the null vector), we can build any number state as

¼ =
=

∣ ⟩
!

( ˆ ) ∣ ⟩ ( )( )
†n n n

n
a, , ,

1
0 . 18K

i

K

i
i

n
1 2 B F

1

i

From the commutation rules, we also deduce the action of the creation and annihilation
operators on the number states:

¼ ¼ =
+ ¼ + ¼

- - ¼ - ¼s

⎧⎨⎩ˆ ∣ ⟩ ∣ ⟩
( )( ) ∣ ⟩

( )†
( )a n n n n

n n n n n

n n n n n
, , , , ,

1 , , , 1, ,

1 1 , , , 1 , , ,
19i i K

i i K

i i K
1 2 B F

1 2 B

1 2 Fi

¼ ¼ =
¼ - ¼

- ¼ - ¼s

⎧⎨⎩ˆ ∣ ⟩
∣ ⟩

( ) ∣ ⟩
( )( )a n n n n

n n n n n

n n n n n
, , , , ,

, , , 1, ,

1 , , , 1 , , ,
20i i K

i i K

i i K
1 2 B F

1 2 B

1 2 Fi

Figure 1. First and second quantization compared for N=4 particles and K=6 modes
available to each particle.
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where the σi exponent is due to the anticommuting rules and is given by

ås =
=

-

( )n . 21i
k

i

k
1

1

From equations (19)–(20) we straightforwardly deduce that

¼ ¼ = =ˆ ∣ ⟩ ( )a n n n n n, , , , , 0 if 0, 22i i K i1 2

¼ ¼ = ¼ ¼ˆ ˆ ∣ ⟩ ∣ ⟩ ( )†a a n n n n n n n n n, , , , , , , , , , . 23i i i K i i K1 2 1 2

The last equation gives the definition of the number operator

=ˆ ˆ ˆ ( )†n a a , 24i i i

which counts the number of particles in the mode i.
Let us now consider a single-particle operator Ôj acting on the particle j. It is apparent

that we must have

=ˆ ˆ ˆ ˆ ( )P O P O . 25ij j ij i

Then, for a many-particle operator Ô, we will say that this operator is invariant under particle
exchange (permutation symmetry) if, for any couple of particles i and j, the following relation
holds:

=ˆ ˆ ˆ ˆ ( )P OP O. 26ij ij

However, the previous property does not mean that the operator Ô must be invariant also
under the action of Â and Ŝ , but it implies that these symmetry operators must commute with
Ô. It means, therefore, that for =ˆ ˆO H the evolution preserves the symmetry of bosonic and
fermionic states, i.e. their subspaces

F H= ˆ ( )S 27N N
B

and

F H= ˆ ( )A 28N N
F

are not mixed, since the Hamiltonian Ĥ and ˆ ( ˆ )S A have a common set of orthogonal
eigenstates. Therefore, these kinds of operators can be used in the second quantization
formalism with identical particle states in the same way they were used in first quantization,
because they preserve the permutation symmetry. We reiterate here that second quantization
representation is strictly connected with the choice of the basis {∣ ⟩}ai i in which the operators
ˆ ( ˆ )†a ai i are creating (destroying) particles: indeed, if ˆ ( ˆ )†a ai i creates (destroys) a particle in the
i-th eigenstate of the Hamiltonian, we can define a change of basis and build a new set of
operators ˆ ( ˆ )†

b bi i that create (destroy) particles in the i-th eigenstate of any other operator Ô
(e.g. in the i-th site of a lattice for the position operator):

å å= = =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ⟩ [ ˆ ]∣ ⟩ ⟨ ∣ ⟩∣ ⟩ ⟨ ∣ ⟩ ˆ ∣ ⟩ ( )† †b b a b a a b a0 0 . 29i i

j
j i j

j
j i j

2.2. Two-particle case

Here and in the rest of the article we apply the tools introduced in the previous section to the
specific case of N=2 identical particles. Despite the small number of particles, this example
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shows most of the peculiarities related to indistinguishability, and illustrates how to deal with
both Fock and Hilbert descriptions to conveniently describe the physics of the system.

In the Hilbert spaceH2 (for distinguishable particles), the basis set is given by {∣ ⟩}i j, i j, .
According to the symmetrization procedures described above for a two-boson state we have

=
+ <

=

⎧
⎨⎪
⎩⎪

∣ ⟩
(∣ ⟩ ∣ ⟩)

∣ ⟩
( )i j

i j j i i j

i i i j
,

1

2
, , for

, for ,
30s

while for a two-fermion state the allowed basis set is given by

= - <∣ ⟩ (∣ ⟩ ∣ ⟩) ( )i j i j j i i j,
1

2
, , for , 31a

where the constraint j>i avoids overcounting in the basis set since

=∣ ⟩ ∣ ⟩ ( )j i i j, , , 32s s

= -∣ ⟩ ∣ ⟩ ( )j i i j, , . 33a a

It is easy to check that these two new basis sets are orthogonal and related to the previous one
by

È={∣ ⟩} {∣ ⟩ } {∣ ⟩ } ( )i j i j i j, , , . 34i j i j i j, s , a ,

Indeed, the dimension dB of the basis set for bosonic particles is given by

= +
-

=
+( ) ( ) ( )d K

K K K K1

2

1

2
, 35B

while the dimension dF of the fermionic basis set is given by

=
-( ) ( )d

K K 1

2
, 36F

and

H+ = = ( ) ( )d d K dim . 37B F
2

2

Overall, the Hilbert space H2 is decomposed into two subspaces8: one contains only
symmetric states, while the other one contains only antisymmetric states (see figure 2). These
subspaces are, in turn, the two-particle restrictions of the Fock spaces for bosons and
fermions, namely F2

B and F2
F:

H F F= Å ( ). 382 2
B

2
F

Each subspace is obtained, in general, by applying the proper symmetry operators over
H2:

F H= ˆ ( )S , 392
B

2

F H= ˆ ( )A , 402
F

2

which are given by the following projectors:

å å= + + +
>

ˆ ∣ ⟩⟨ ∣ (∣ ⟩ ∣ ⟩)(⟨ ∣ ⟨ ∣) ( )S i i i i i j j i i j j i, ,
1

2
, , , , , 41

i i j i,

8 This decomposition holds only for N=2, since for higher dimensions there is an additional subspace N
containing states that do not possess any symmetry but are required to produce a complete basis set for HN .
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å= - -
>

ˆ (∣ ⟩ ∣ ⟩)(⟨ ∣ ⟨ ∣) ( )A i j j i i j j i
1

2
, , , , . 42

i j i,

However, the action of Ŝ and Â is not enough to write operators (or states) in the Fock space.
Indeed, if we consider the bosonic operator =ˆ ˆ ˆ ˆO SOSB , in order to properly represent it in the
Fock space we still have to perform a change of basis. Therefore, sometimes it could be useful
to perform both operations in a single step, by writing the symmetry operators in a mixed-
basis representation (where the bras are states of H2, while kets are states of F2):

å å= + +
>

ˆ ∣ ⟩ ⟨ ∣ ∣ ⟩ (⟨ ∣ ⟨ ∣) ( )S i i i i i j i j j i, , ,
1

2
, , , 43

i i j i
s

,
s

å= -
>

ˆ ∣ ⟩ (⟨ ∣ ⟨ ∣) ( )A i j i j j i,
1

2
, , . 44

i j i,
a

We can write the operator ÔB in F2 directly as ˆ ˆ ˆ†
SOS (a similar discussion also holds for

fermionic operators).
Even if in general this is not true, we observe that for the case N=2 we have

+ =ˆ ˆ ˆ ( )S A I , 45

which is in agreement with equation (34). In conclusion, a distinguishable particle operator Ô
in H2 is invariant under particle exchange symmetry if and only if the following
decomposition holds:

= + = +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )O SOS AOA O O , 46s a

i.e. the operator is the sum of its projections over the bosonic and fermionic subspaces ofH2.
This means that Ô does not mix states belonging to subspaces with different symmetries

Figure 2. Hilbert space decomposition into symmetry-defined Fock subspaces for
N=2 particles.
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(i.e. fermionic and bosonic), and it commutes with Â and Ŝ . If this property holds also for the
Hamiltonian Ĥ , it is possible to perform a symmetrization only over the state vectors without
modifying the operators. Indeed, Ŝ and Â are projectors, =ˆ ˆ†

S S and =ˆ ˆS S
n

, and are
orthogonal, i.e. = =ˆ ˆ ˆ ˆSA AS 0. The dynamics thus conserve symmetries, and this is sufficient
to get the right expectation values:

= = =ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )H SHS HS HS, 47s
2

Y = Y = Yˆ ∣ ⟩ ˆ ˆ ∣ ⟩ ˆ ∣ ⟩ ( )H HS H , 48s s
2

s

= Y Y = Y Y = Y Y = Y Y⟨ ∣ ˆ ∣ ⟩ ⟨ ∣ ˆ ˆ ˆ ∣ ⟩ ⟨ ∣ ˆ ˆ ˆ∣ ⟩ ⟨ ∣ ˆ∣ ⟩ ( )O O S OS SOS O . 49s s s s
2 2

s s

Clearly for the two-particle case, the evaluation of expectation values and dynamics of the system
can be conveniently obtained in the Hilbert space, starting with a properly (anti)symmetrized
state9 Y∣ ⟩( )a s. Then, with a proper reshaping operation, observables may be recast in the Fock
space (see figure 3). This procedure presents advantages compared to a direct calculation in the
Fock space where each particle loses its identity. For instance, the operation of partial trace over
the degrees of freedom of one particle is straightforward in the Hilbert space, while it is more
delicate in the Fock space, where the natural basis set is the occupation number. Moreover, the
indexing of the basis in the Fock space is not trivial to handle [24], and a convenient way to rank
the basis vectors should be considered in the numerical implementation (see section 5). Therefore,
it is often the case that the dynamics and all the required observables are evaluated in the Hilbert
space after a proper symmetrization of the initial state.

3. From Hilbert space to Fock space and vice versa

3.1. Operator representation: from Fock to Hilbert

Given the basis sets for the symmetric and antisymmetric subspaces, {∣ ⟩ }i j, i j is , and
>{∣ ⟩ }i j, i j ia , , their union *  È= >{∣ ⟩ } {∣ ⟩ }i j i j, ,i j i i j is , a , is a basis set for the whole Hilbert

space H2. As discussed in the previous section, we typically use the distinguishable particle
basis set, hereafter labeled  = {∣ ⟩}i j, i j, .

The bosonic operator ÔB may be represented with a dB×dB matrix defined on F2
B, but

also with a K2×K2 matrix acting onH2. Adding dF rows and dF columns full of zeros, we

may extend the Fock matrix
F

ÔB : the first dB rows and columns involve only bosonic states,
while the additional lines only the fermionic states (none, since it is a bosonic operator):

H
F

* =
⎛
⎝⎜

⎞
⎠⎟

ˆ ∣ ˆ ( )O O 0
0 0

. 50BB

When the basis set is given by * , whose symmetric part coincides with the basis ofF2
B,

the representation
H

*
ˆ ∣OB is valid in H2. In order to represent operators in the basis  of

distinguishable particles, we need to reverse this transformation, that is,
H H

* =ˆ ∣ ˆ ˆ ∣ ˆ ( )†
O S O S. 51B B

9 Considering that =[ ˆ ˆ]H S, 0, we can obtain the same results with an alternative approach: we begin with a non-
symmetrized state Y∣ ⟩, evolve it with the distinguishable particle Hamiltonian Ĥ , and then perform the
symmetrization at the end of the evolution, since Y = Y = Y = Yˆ ∣ ⟩ ˆ ∣ ⟩ ˆ ˆ∣ ⟩ ˆ ˆ ∣ ⟩H H HS SHs s s .
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The relation between the elements of a bosonic operator in the Fock (basis * = {∣ ⟩ }i j,s i j is , )
and in the Hilbert space (basis  = {∣ ⟩}i j, i j, ) is the following:

H H F   d d= = + +( ) ⟨ ∣ ˆ ∣ ∣ ⟩ ( ) ( )( ) ( )O i j O k l O, ,
1

2
1 1 , 52i j k l i j k l i j k lB , ; , B B , ; , , ,

where  = -2 1.

Figure 3. Pictorial representation of symmetrization and reshaping processes, which
transform states and operators, respectively, from Hilbert to Fock space and vice versa.
Notice that in the Hilbert space all particles have a clear identity (A or B in the
example) and may even possess well-defined states (the colors in the example) if they
are distinguishable. Conversely, in the Fock space no particle has a clear identity or a
well-defined state. Switching from Hilbert to Fock space requires to properly (anti)
symmetrize states and to remove states with the wrong symmetry (reshaping), while
going back to Hilbert space requires reshaping of both operators and states, but the
number of allowed states remains the same.
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Analogous arguments apply to the fermionic case, and thus

H H
* =ˆ ∣ ˆ ˆ ∣ ˆ ( )†

O A O A , 53F F

where

H
F* =

⎛
⎝⎜

⎞
⎠⎟

ˆ ∣ ˆ ( )O
O

0 0

0
. 54F

F

Again, the transformation of a fermionic operator in the Fock space (basis
* = >{∣ ⟩ }i j, i j ia a , ) to the Hilbert space (basis  = {∣ ⟩}i j, i j, ) is given by

H F d d V V= - -( ) ( ) ( )( ) ( )O O
1

2
1 1 , 55i j k l i j k l i j k l i j k lF , ; , F , ; , , , , ,

where ςi, j=sgn( j−i).
In the case of a two-particle bosonic (fermionic) operator, the transformation laws from

Fock to Hilbert space of distinguishable particles are thus given by equations (52) and (55),
respectively. However, one should remember that the Fock space elements exist only for i�j
(i<j for fermions), and therefore indices in F( )O i j k lF , ; , must be exchanged if i>j and/or
k>l. Moreover, if i=j or k=l, the corresponding elements are zero.

Notice that if the dynamics are evaluated in the Hilbert space, the reshaping operation needed
to recast observables in the Fock space is given by the inverse equations of (52) and (55).

3.2. Symmetrized and antisymmetrized operators of distinguishable particles

Let us consider a native Hilbert operator
HT̂ , i.e. an operator that arises naturally in the

distinguishable particles Hilbert spaceH2 where the basis set is given by . Such an operator
conserves parity, being invariant under particle exchange, and thus it does not mix states with
different symmetries; therefore, it is equivalent to the sum of its projections with defined
symmetries: H H H= +ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †

T ST S AT A , see figure 4. Overall, Hs
2 and Ha

2 are invariant sub-

spaces for
HT̂ .

Figure 4. Representation of a parity-conserving operator: symmetry-defined subspaces
are invariant.
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Since the operator acts on states of distinguishable particles, it contains both bosonic and
fermionic components, which can be isolated with a suitable transformation. An interesting
example is the kinetic term T̂ in the Hubbard model, which can be derived from the
discretization of the Laplacian terms in the Schrödinger equation, and describes the hopping
of the two particles along a chain with K sites. In the distinguishable particles framework
we have

H å å= - + + + Ä + Ä - + + +
= =

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ˆ (∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣) (∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)

( )

T J i i i i I I J i i i i1 1 1 1 ,

56
i

K

i

K

1
1 1

1

where = å = ∣ ⟩⟨ ∣I i ii
K

1 1 is the single-particle identity operator, and J is a scale factor that
represents the tunneling amplitude between adjacent sites and depends on physical parameters
of the system, such as the particle mass and the distance between discrete sites. The form of T̂
for identical particles in the Fock space is

F å= - +
=

+ +
ˆ ( ˆ ˆ ˆ ˆ ) ( )† †T J c c c c , 57

i

K

i i i i
1

1 1

where ĉi is an annihilation operator (for bosons or fermions), and ˆ†ci is the corresponding
creation operator for the mode i. Given the results of the previous section, we conclude that
the representation of the bosonic/fermionic operator in the Fock space can be obtained from
HT̂ by a simple change of basis, followed by a projection over the subspace with the required

symmetry. Considering T̂ as a bosonic operator, we have
F H=ˆ ˆ ˆ ˆ ( )†

T ST S . 58B

Let us check the previous results in some significant cases:
F

+ = - + = -+⟨ ∣ ˆ ∣ ⟩ ⟨ ∣ ˆ ˆ ∣ ⟩ ( )†k k T k k J k k c c k k J, 1 , , 1 , 2 , 59k ks B s s 1 s

H H+ = + + + = -⟨ ∣ ˆ ˆ ˆ ∣ ⟩ (⟨ ∣ ⟨ ∣) ˆ ∣ ⟩ ( )†
k k ST S k k k k k k T k k J, 1 ,

1

2
, 1 1, , 2 , 60s s

F
+ = - + = -+

¹ -

⟨ ∣ ˆ ∣ ⟩ ⟨ ∣ ˆ ˆ ∣ ⟩ ( )†k l T k l J k l c c k l J, 1 , , 1 , , 61l ls B s s 1 s
l k k, 1

H H+ = + + + +

= -
¹ -

( )

⟨ ∣ ˆ ˆ ˆ ∣ ⟩ (⟨ ∣ ⟨ ∣) ˆ (∣ ⟩ ∣ ⟩)†

62

k l ST S k l k l l k T k l l k

J

, 1 ,
1

2
, 1 1,

1

2
, ,

.

s s
l k k, 1

Analogous results may be obtained for fermions, where additional attention to the
anticommutation relation is required to handle periodic boundary conditions (PBC). If a
state like ∣ ⟩k K, a is connected to a state like ∣ ⟩k1, a, e.g. K jumps over the border, we should
account for an additional minus sign due to the reordering of the anticommuting fermionic
operators. Indeed (we denote the state with no particle with ∣ ⟩0 ),

=∣ ⟩ ˆ ˆ ∣ ⟩ ( )† †k c c1, 0 , 63ka 1

= =

= - = - = -

+ˆ ˆ ∣ ⟩ ˆ ˆ ∣ ⟩ ˆ ˆ ˆ ˆ ∣ ⟩

ˆ ˆ ˆ ˆ ∣ ⟩ ˆ ˆ ∣ ⟩ ∣ ⟩ ( )

† † † † †

† † † † †

c c k K c c k K c c c c

c c c c c c k

, , 0

0 0 1, . 64

K K K K k K

k K K k

1 a 1 a 1

1 1 a

PBC

Eur. J. Phys. 39 (2018) 065401 A Beggi et al

12



The same results may be obtained without any change of basis, that is, by simply applying the
operator

HT̂ only over the proper (anti)symmetrized states (this is equivalent to applying the
transformation described by Ŝ or Â). However, the spectrum of the operator Hˆ ˆ ˆ†

ST S is
substantially the spectrum of the bosonic operator, while the spectrum of

HT̂ contains also the
fermionic eigenvalues of Hˆ ˆ ˆ†

AT A .
Furthermore, we observe that the representation of

F
T̂B in the basis  of H2 is quite

interesting. Indeed, it contains terms like- +∣ ⟩ ⟨ ∣J i j i j1, ,s s , which can be rewritten as follows:

- +

= - + + + + + + +

∣ ⟩ ⟨ ∣

(∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣)

( )

J i j i j
J

i j i j j i j i j i i j i j j i

1, ,

2
1, , , 1 , , 1 , 1, , .

65

s s

This suggests that the Fock operator not only produces transitions where one particle hops
from a site to a nearest-neighbor one, but can also allow the two particles to exchange their
position. The third term in brackets in the rhs of the previous equation sees the second particle
in position i jumping on the site i+1, and then exchanging its position with the first particle,
previously located on site j. These exchange terms are a consequence of the fact that when we
rewrite the operator in the Hilbert space of distinguishable particles, it must bear signs of the
exchange symmetry due to the fact that it is actually acting on identical particles (in this case,
bosons). The original operator

HT̂ does not contain these terms, but they appear when we
apply the transformation Hˆ ˆ ˆ†

ST S .

3.3. Evolution of the system and symmetrization

Let us now consider our quantum system of N=2 identical particles, whose evolution is
ruled by the Hamiltonian

FĤ . Their dynamics can be directly calculated in the Hilbert space
of distinguishable particlesH2: we can properly (anti)symmetrize the initial state and get the
final state of the evolution with the required symmetry, exactly as we had carried over the
evolution in the Fock space. This can be done either using the Fock Hamiltonian

FĤ
rewritten in the Hilbert space (see equations (52) and (55)), or directly using the equivalent
Hamiltonian

HĤ for distinguishable particles, provided that it conserves parity (i.e. it is
invariant under particle exchange). Indeed, projecting HĤ over the subspaces with the proper
symmetry (i.e. using Ŝ or Â)—and/or applying it only over properly symmetrized states—is
equivalent to using

FĤ , as we have just seen in the previous section.

4. Expectation values and projections

4.1. Density operator

In order to simplify the notation, let us define a factor g to distinguish between bosons
(g=+1) and fermions (g=−1). If needed, we will use the subscript ∣ ⟩... g to denote
symmetrized or antisymmetrized states.

The density operator is the fundamental quantity for evaluating the expectation values of
all the observables characterizing the system. The density operator can be calculated in the
Hilbert space as usual:

Hr = Y Y( ) ∣ ( )⟩⟨ ( )∣ ( )t t t , 66
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and then recast in the Fock space using equation (52) for bosons ( j�i, l�k),

F H

 
r

d d
r=

+ +( )( )
( )2

1 1
, 67i j k l

i j k l
i j k l, ; ,

, ,
, ; ,

and equation (55) for fermions ( j>i, l>k),
F Hr r= ( )2 , 68i j k l i j k l, ; , , ; ,

where, within the index constraint, we have ςi,j=ςk,l=1. Notice that if Y =∣ ( )⟩t
bå ( )∣ ⟩t i j,i j i j, , , we should remember that for exchange symmetry

b b=( ) · ( ) ( )t g t , 69i j j i, ,

and then we have

H *åår b b=( ) ( ) ( )∣ ⟩⟨ ∣ ( )t t t i j k l, , . 70
i j k l

i j k l
, ,

, ,

If in the Fock space we have

F *
 
å år a a=( ) ( ) ( )∣ ⟩ ⟨ ∣ ( )t t t i j k l, , , 71
i j i k l k

i j k l
, ,

, , g g

it is easy to show that the proper (anti)symmetrization of the Hilbert matrix elements

a

b b
b

b
=

+
= " <

+
" =

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( ) · ( )
( )

( ) ( )
( )t

t g t
t i j

t
g

i j

2
2

1

2

72i j

i j j i
i j

i i

,

, ,
,

,

gives exactly the expected results in the Fock space (see equations (67) and (68)).

4.2. Occupation numbers

The expectation value of the number operator n̂k , corresponding to the average number of
particles in the mode k, can be calculated as follows:

F F

F F

F F F

F F F

å å

å å

å å

r r

r r

r r r

r r r

= =

= +

= + +

= + +

>

< >

< >

⟨ ⟩ [ ( ) ˆ ] [ ( ) ˆ ˆ ]
⟨ ∣ ( ) ˆ ˆ ∣ ⟩ ⟨ ∣ ( ) ˆ ˆ ∣ ⟩

( ) ⟨ ∣ ( ) ˆ ˆ ∣ ⟩ ⟨ ∣ ( ) ˆ ˆ ∣ ⟩

( ) ( ) ( ) ( )

†

† †

† †

n t n t c c

i i t c c i i i j t c c i j

t i k t c c i k k j t c c k j

t t t

Tr Tr

, , , ,

2 2 , , , ,

2 . 73

k k k k

i
k k

i j i
k k

k k k k
i k

k k
j k

k k g

k k k k
i k

i k i k
j k

k j k j

g g
,

g g

, ; , g g g

, ; , , ; , , ; ,

Upon recalling that in the Hilbert space the symmetry exchange requires
H H Hr r r= =( ) · ( ) · ( ) ( )t g t g t , 74i j k l j i k l i j l k, ; , , ; , , ; ,

we may rewrite ⟨ ⟩nk in the Hilbert space, also using equation (68), as
H H H

H H H

å å

å å

r r r

r r r

= + +

= + =

< >

¹

⎛
⎝⎜

⎞
⎠⎟

⟨ ⟩ ( ) ( ) ( )

( ) ( ) ( ) ( )

n t t t

t t t

2 2 2

2 2 , 75

k k k k k
i k

i k i k
j k

k j k j

k k k k
i k

i k i k
i

i k i k

, ; , , ; , , ; ,

, ; , , ; , , ; ,

since H H Hr r r= =gk j k j j k j k j k j k, ; ,
2

, ; , , ; , .
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4.3. Entropies

Given a quantum system, it is natural to ask how to measure the amount of quantum cor-
relations in it. Besides representing an intriguing trait of quantum mechanics, quantum
entanglement has turned into a fundamental resource for quantum information theory and
quantum computing, since it can be used to implement protocols and tasks that could not be
accomplished within the classical framework [25]. The term entanglement refers to an
intrinsic relation between subsystems of a composite quantum system: in an entangled state,
each subsystem cannot be described independently of the state of the other one, or, in other
words, what we know (ignore) about A, is what we know (ignore) about B, and vice versa.

For a system composed of two subsystems A and B (bipartite) described by the density
matrix ρAB, the entanglement among A and B can be quantified in different ways [26]
depending on the reduced state of the subsystem ρA(B) and the size dA(B) of the subsystem
A(B). In the case of pure states, the entanglement can always be measured with the von
Neumann entropy  r r= -( )A A log2ρA, with  r r=( ) ( )A B [27].

Here we consider a compound system described by the total density matrix ρSE, where a
quantum system S is coupled to an external bath E, acting as a noise source. In this case the
entanglement between system and environment gives a measure of the decoherence, which
quantifies the loss of coherence in the quantum correlations of the system [28]. In this picture,
decoherence can be evaluated via the von Neumann entropy of the quantum system  r( )S ,
with r r= TrS E . Whenever the quantum system S contains indistinguishable particles, this
quantity should be evaluated in the Fock space, which is the natural space for the system since
it accounts for the exchange symmetry. Indeed, we have

F F F H H H r r r r r r= - > - =( )
( )

[ ]
( )

[ ] ( ) ( )
d K

1

ln
Tr ln

1

ln
Tr ln , 76

g
S S S 2 S S S

since HrS and FrS have the same eigenvalues; they only differ for a unitary transformation, and
the additional eigenvalues of HrS are zeros that do not contribute to the entropy. We therefore
conclude that H H F Fr r r r=[ ] [ ]Tr ln Tr lnS S S S , and the only difference between F r( )S and

H r( )S is given by different normalization = <+( )( )d Kg
K K g

2
2 . Therefore, we conclude that

H r( )S underestimates the loss of quantum correlations with respect to F r( )S . The reason is
intuitively obvious: since the system always possesses a residual amount of correlations due
to exchange symmetry, these correlations are seen as quantum correlations by the entropy of
the Hilbert space, which is devised for distinguishable particles. On the other hand, they are
correctly not counted by the von Neumann entropy evaluated in the Fock space. Indeed, they
are not genuine quantum correlations—like entanglement or quantum discord [29]—that may
be exploited to perform quantum information tasks.

5. Guidelines for numerical implementation

5.1. Base ordering and indexing

One of the main problems in numerically implementing the calculations of operators is the
different indexing in Hilbert and Fock spaces. This situation is made more involved by the
differences between allowed states for fermions and bosons. Let us see this with an example.
Let us consider a system with N=2 identical particles, which can occupy K=4 sites, or
modes. The allowed states in the Hilbert and Fock spaces are given in table 1.
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Since any vector or matrix must be indexed with a progressive index m, we have to
define a global index m that depends on the single-particle states i and j and follows the
correct ordering when basis set states ∣ ⟩m are ∣ ⟩i j, , ∣ ⟩i j, s, or ∣ ⟩i j, a. It turns out that we have

H = - +( ) ( )m K i j: 1 , 772

F = - + -( ) ( ) ( )m K i j s g i: 1 , , 782
B F

where s(g, i) is a correction term that takes into account the fact that states with indices
exchanged must not be counted again in Fock space, and also that states with identical indices
are forbidden for fermions (g=−1). From an intuitive point of view, we can think that i and
j in ∣ ⟩i j, are two numbers living on a ring  = ¼{ }K1, 2, ,K : i plays the role of the tens,
while j plays the role of units, and, overall, we have m=K(i−1)+j. By a simple
combinatorial reasoning we find

=
-( ) ( ) ( )s g i

i i g
,

2
. 79

Indeed, for a fixed value of i, denoted as *i , the number of forbidden states that must be
subtracted from m is

*
* *

 å å < = - =
= =

-

{∣ ⟩∣ } ( ) ( )B i j i i j i i i: card , 1 , 80
i

i

i

i

1 0

1

*
* *

  å å = =
= =

{∣ ⟩∣ } ( )F i j i i j i i i: card , . 81
i

i

i

i

1 0

In both cases, we calculate the result with the Gauss formula å = += ( )i n n 1i
n

0
1

2
. One can

easily verify that are exactly the states not appearing in table 1 since
they are forbidden.

Therefore, according to equations (78) and (79), the state ∣ ⟩3, 4 , for example, is the basis
state =∣ ⟩ ∣ ⟩m 12 inH2, the basis state =∣ ⟩ ∣ ⟩m 9 in F2

B, and the basis state =∣ ⟩ ∣ ⟩m 6 in F2
F.

This allows us to scan all the elements of vector states and operators in terms of the

Table 1. Basis sets for Hilbert and Fock spaces of N=2 identical particles, which can
occupy K=4 sites.

Space Basis set Dimension

H ( )distinguishable2 ∣ ⟩1, 1 ∣ ⟩1, 2 ∣ ⟩1, 3 ∣ ⟩1, 4 16
∣ ⟩2, 1 ∣ ⟩2, 2 ∣ ⟩2, 3 ∣ ⟩2, 4
∣ ⟩3, 1 ∣ ⟩3, 2 ∣ ⟩3, 3 ∣ ⟩3, 4
∣ ⟩4, 1 ∣ ⟩4, 2 ∣ ⟩4, 3 ∣ ⟩4, 4

F ( )bosons2
B ∣ ⟩1, 1 s ∣ ⟩1, 2 s ∣ ⟩1, 3 s ∣ ⟩1, 4 s 10

∣ ⟩2, 2 s ∣ ⟩2, 3 s ∣ ⟩2, 4 s

∣ ⟩3, 3 s ∣ ⟩3, 4 s

∣ ⟩4, 4 s

F ( )fermions2
F ∣ ⟩1, 2 a ∣ ⟩1, 3 a ∣ ⟩1, 4 a 6

∣ ⟩2, 3 a ∣ ⟩2, 4 a

∣ ⟩3, 4 a
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single-particle states i and j, and it also lets us switch easily from their Hilbert representation
to the Fock one and vice versa.

5.2. Reshaping cycle

Now, it is worth noting that, in order to properly fill-in the elements of an operator O in the
space FB

2
F, starting from the corresponding operator in the Hilbert space (the so-called

reshaping operation), we must use cycles like

fori=1,N
forj=i+Δ,N
fork=1,N
forl=k+Δ,N
 F H=( ) ( ) ·O i j k l O i j k l, ; , , ; , ...
end
end
end
end

where the correction

D =
- ( )g1

2
82

is 0 for bosons (i.e. states where i= j are allowed) and 1 for fermions (i.e. states where i= j
are forbidden).

5.3. Computational and storage considerations

Working in the Hilbert space offers an obvious advantage from the physical point of view,
since one has a clear identification of the degrees of freedom associated with each particle,
and a better indexing of states. On the other hand, a couple of issues arise from the point of
view of numerical implementation. The first is linked to the larger dimension of the space and
may be properly addressed by opportunely inverting equations (78) and using reshaping
cycles as those presented in section 5.2 so that the number of operations is not significantly
larger in the Hilbert space10. Let us define the function





å- - Î

- =

= - - + - Î

= -D- +

-D
+

⎧
⎨⎪
⎩⎪

( ) ≔

( ) ( )

f r
m n r

m r

m
r

K g r r

1 for

1 for 0

1
2

2 for , 83

n K r

K

K
g

1

where Δ is defined in equation (82), is for bosons (fermions), and K is the number of
modes of the quantum system. The expression in equation (83), which is in principle the
result of Î +r , returns m−1 for r=0, and thus it already summarizes the two distinct
cases. Let r̄K

g be the greater value of rä{0, 1, K, K−1} such that ( )f r 0K
g , i.e.

= Î ¼ - ¯ { ∣ { } ( ) } ( )r r r K f rmax 0, 1, , 1 0 . 84K
g

K
g

10 The issue concerning the larger number of operations cannot be avoided when using built-in subroutines, such as
matrix multiplication and diagonalization.
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Hence, the inverse formulae of equations (78) are given by

= +
= D + +

⎧⎨⎩
( ) ¯
( ) ( ) ( ¯ )

( )
i m r

j m i m f r

1

.
85g

K
g

K
g

K
g

K
g

K K
g

The other and major issue is instead related to the storage of the matrix elements of states and
operators, since in both cases using the Hilbert space description amounts to storing several
empty cells, i.e. those corresponding to states with the wrong symmetry. This problem may be
addressed by exploiting the above mapping, and also noticing that the involved matrices are
often sparse, e.g. when systems with only nearest-neighbor interactions are considered [30] so
that sparse matrix declarations and algorithms may be exploited to reduce the storage space.

6. Concluding remarks

In graduate physics courses, second quantization and the Fock space are presented as the
natural framework to deal with quantum systems made of many indistinguishable particles,
leaving the impression that the Hilbert space description may be left behind. While this is
certainly true for the description of quantum states of those systems, the evaluation of some
specific observable or the study of system dynamics may be often more conveniently pursued
using the Hilbert space description.

A research-oriented teaching of these topics should therefore reflect the importance of
both descriptions, and provide tools to connect them in the most straightforward way. To this
aim, we have provided here a gentle and self-contained introduction to details of the trans-
formation rules between the different description of states and operators in the two spaces. In
particular, we have devoted some attention to the two-particle case, since this already contains
most of the interesting features related to indistinguishability. The paper aims at being a
concise reference about the different representations for students and researchers working
with systems made of many identical particles, especially those interested in numerical
approaches to system dynamics.
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