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Abstract

We prove generalizations of Jensen’s integral inequality for proper
convex functions defined on a finite- or infinite-dimensional convex set
in a locally convex topological vector space.
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1 Introduction

The well-known Jensen’s (finite) inequality asserts that if C is a convex
set (in a real vector space), f :C → (−∞,∞] a convex function, x1, . . . , xn
points of C, and λ1, . . . , λn positive numbers whose sum equals 1, then the
point

∑n
i=1 λixi belongs to C, and

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi) .

This inequality can be reformulated in any of the following two forms:
as

f

(∫
C
x dµ(x)

)
≤
∫
C
f dµ (1)
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where µ is the probability measure µ :=
∑n
i=1 λiδxi on C (here δy denotes

the Dirac measure at y);

or as

f

(∫
Ω
Gdµ

)
≤
∫

Ω
(f ◦G) dµ (2)

where Ω = {1, . . . , n}, the mapping G: Ω→ C is given by G(i) = xi (1 ≤ i ≤
n), and µ is the probability measure on Ω, given by µ({i}) = λi (1 ≤ i ≤ n).

By Jensen’s integral inequality one usually means an inequality of type (2)
where C is an interval of reals and µ is a probability measure on some set
Ω. It can be formulated as follows.

Jensen’s integral inequality. Let f be a real-valued convex function on
an interval I ⊂ R, (Ω,A, µ) a probability space, and G: Ω→ I a µ-integrable
function. Then

∫
ΩGdµ belongs to I, the Lebesgue integral

∫
I(f ◦G) dµ exists

(finite or infinite), and (2) holds.

See e.g. [3, Theorem 2, p. 181], [6, Theorem 1.8.1], [10, Theorem 3.3], or [11,
Exercise 22, p. 192] for similar or slightly less general statements.

The aim of the present paper is to provide general versions of the inequal-
ities (1) and (2) in which C is a convex set in a locally convex topological
vector space. In literature, we have found only one known result in this
direction: a multivalued version of Jensen’s integral inequality proved in [4]
implies, roughly speaking, validity of (2) when C is an open convex subset
of a Banach space, and f is a continuous convex function (with appropriate
assumptions on the mapping G).

Any of the two versions (1), (2) of Jensen’s integral inequality can be
easily deduced from the other one. We prefer to prove first the form (1)
which is simpler and more convenient from the geometric point of view,
and then derive the second form of the theorem. Our proofs use standard
techniques of infinite-dimensional Convex Analysis.

2 Preliminaries

Throughout the paper, all topological vector spaces (t.v.s., for short) are
real and, if not otherwise specified, X = (X, τ) is a Hausdorff locally convex
t.v.s., and (C,Σ, µ) is a convex probability space in X, that is, a positive
measure space such that µ(C) = 1 and C is a nonempty convex subset of
X. As usual, C, aff(C), and span(C) denote the closure, the affine hull, and
the linear span of C, respectively. The topological dual of X is denoted by
X∗.
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By eco(C) we denote the evenly convex hull of C, that is, the intersection
of all open halfspaces containing C; and we say that the set C is evenly
convex if eco(C) = C (cf. [2]). The Hahn-Banach separation theorem easily
implies that eco(C) ⊂ C, and if C is either closed or open then C is evenly
convex.

By ri(C) we denote the relative interior of C, that is, the interior of C
in its affine hull. The dimension of C is the dimension of aff(C). It is a
well-known fact that every nonempty finite-dimensional convex set C has
nonempty relative interior (see, e.g., [1, Theorem 2.4.6]). This fact and an
easy application of the Hahn-Banach separation theorem give that

(∗) if C is finite-dimensional and x ∈ aff(C) \ ri(C), then there exists
x∗ ∈ X∗ such that supx∗(C) ≤ x∗(x) and x∗ is nonconstant on C.

By B(C) we mean the σ-algebra of all relatively τ -Borel subsets of C.

Given a function f :E → R := [−∞,∞] and some α ∈ R, we shall use an
intuitively clear simplified notation, illustrated by the following particular
case:

[f < α] := {x ∈ E : f(x) < α}.

Pettis integral. Let (Ω,Σ, µ) be any probability space. A mapping G: Ω→
X is said to be Pettis integrable (or τ -Pettis integrable) if for every x∗ ∈ X∗
the composition x∗ ◦G is Legesgue µ-integrable and there exists z ∈ X such
that ∫

Ω
(x∗ ◦G) dµ = x∗(z), x∗ ∈ X∗.

Then one defines the Pettis integral
∫

ΩGdµ := z. Since the elements of X∗

separate points of X, the Pettis integral is unique if it exists.

Push-forward (or image) of a measure. Let (Ω,A, µ) be a probability
space, (M,Σ) a measurable space, and G: Ω → M an A-to-Σ measurable
mapping. Then we can define a measure ν on Σ by

ν(A) := µ(G−1(A)), A ∈ Σ.

This measure is called the push-forward (or image) of µ by G, and it is often
denoted by G#µ. Given a Σ-measurable function f :M → R, the Lebesgue
integral

∫
Γ f dν exists (finite or infinite) if and only if the Lebesgue integral∫

Ω(f ◦G) dµ exists; moreover, the two integrals coincide in this case.
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3 Barycenter of a probability measure

Let (C,Ω, µ) be a convex probability space in X such that B(C) ⊂ Σ. The
barycenter xµ of µ is defined as the Pettis integral of the identity mapping
I:C → X, I(y) = y,

xµ :=

∫
C
y dµ(y) =

∫
C
I dµ.

In other words, the barycenter xµ, if it exists, is the point of X such that

x∗(xµ) =

∫
C
x∗ dµ, x∗ ∈ X∗.

Observation 1 If the barycenter xµ exists, and x∗ ∈ X∗ \ {0} is such that
x∗(xµ) ≥ s := supx∗(C), then x∗(xµ) = s, and µ is concentrated on the set
[x∗ = s] ∩ C.
(Indeed, since

∫
C{x∗(xµ)−x∗} dµ = x∗(xµ)−

∫
C x
∗ dµ = 0 and the integrand

in braces is nonnegative, the latter has to be µ-almost everywhere null.)

Corollary 1 If the barycenter xµ exists, then xµ ∈ eco(C) (⊂ C).

Proof. If xµ /∈ eco(C), there exist x∗ ∈ X∗ \ {0} and α ∈ R such that
C ⊂ [x∗ < α] and x∗(xµ) ≥ α. But this contradicts Observation 1. 2

We shall need the following formally stronger version of a result due to
Rubin and Wesler [9], for which the same proof works.

Theorem 1 If C is a finite-dimensional convex set and the barycenter xµ
exists, then µ is concentrated on a convex set D ⊂ C for which xµ ∈ ri(D).

Proof. Clearly, we can (and do) suppose that C ⊂ Rd. Let m ≥ 0 be the
smallest dimension of an affine set L ⊂ Rd such that µ is concentrated on
C∩L. Fix such a set L, and denote D := C∩L. Proceeding by contradiction,
assume that xµ /∈ ri(D). Then necessarily m ≥ 1, and xµ ⊂ D ⊂ aff(D) by
Corollary 1. By (∗), there exists ξ ∈ (Rd)∗ such that ξ|D is nonconstant,
and ξ(xµ) ≥ s := sup ξ(D). By Observation 1, µ is concentrated on D∩ [ξ =
s] = C ∩ (L∩ [ξ = s]). Since the set in parentheses is an affine proper subset
of L, this contradicts the choice of L. 2
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4 Jensen’s integral inequality

A convex function f :C → (−∞,∞] is called proper if the set [f < ∞] is
nonempty. The epighraph of f is the set

epi(f) = {(x, t) ∈ C ×R : f(x) ≤ t}.

It is well-known that f is lower semicontinuous if and only if epi(f) is rel-
atively closed in C × R. Recall that a finite convex function on a finite-
dimensional convex set C is continuous at any point of ri(C) (see, e.g., [1,
Theorem 2.1.12]).

We say that a closed hyperplane H ⊂ X strictly separates two points
x, y ∈ X if the set {x, y} is not contained in any of the two closed halfspaces
determined by H.

It is an easy exercise to show the following fact. Let H be a closed
hyperplane in X ×R that separates two “vertically situated points”, that is,
two points of X ×R of the form (x, t) and (x, s). Then H coincides with
the graph of a continuous affine function a:X → R. (The simple argument
can be found, e.g., in the proof of [7, Proposition 3.15].)

We shall need the following simple separation-type lemma.

Lemma 1 Let C be a nonempty convex set in a Hausdorff locally convex
t.v.s. X. Let f :C → (−∞,∞] be a convex function. Let z ∈ C and t ∈ R be
such that t < f(z) < ∞. Assume that either f is lower semicontinuous, or
the restriction f |aff([f<∞]) is continuous at z. Then there exists a continuous
affine function a:X → R such that a|C ≤ f , and t < a(z).

Proof. Assume first that f is lower semicontinuous. Since the point (z, t)
does not belong to epi(f), which is closed in C × R, there exist an open
convex neighborhood V of z, and a real number t′ ∈ (t, f(z)) such that the
convex sets V × (−∞, t′) and epi(f) are disjoint. So, the two latter sets can
be separated by a closed hyperplane H ⊂ X×R. Since H strictly separates
the points (z, t) and (z, f(z)), it coincides with the graph of a continuous
affine function a:X → R such that a ≤ f on C, and t < a(z).

Now, define D := [f < ∞], and assume that f |aff(D) is continuous at z.
We can (and do) suppose that z = 0. Then Y := aff(D) is a subspace of X.
Clearly, the point (0, f(0) + 1) belongs to the interior of epi(f |D) in Y ×R.
Fix an arbitrary real number t′ ∈ (t, f(0)), and separate the point (0, t′)
from epi(f |D) by a closed hyperplane H ⊂ Y ×R, which strictly separates
the points (0, t) and (0, f(0) + 1). As above, this hyperplane coincides with
the graph of a continuous affine function ã:Y → R such that ã ≤ f |D and
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t < ã(z). Now, any continuous convex affine extension a:X → R of ã does
the job. 2

Now we are ready for the main results of the present paper.

Theorem 2 (Jensen’s integral inequality, first form) Let X be a Haus-
dorff locally convex t.v.s., and (C,Σ, µ) a convex probability space in X,
such that Σ ⊃ B(C) and the barycenter xµ of µ exists (in X). Let f :C →
(−∞,∞] be a proper convex function. Assume that at least one of the fol-
lowing two conditions holds.

(I) C is finite-dimensional and f is Σ-measurable.

(II) C is evenly convex and f is lower semicontinuous.

Then:

(a) xµ ∈ C;

(b) the Lebesgue integral
∫
C f dµ exists (finite or infinite);

(c) the Jensen’s integral inequality f(xµ) ≤
∫
C f dµ holds.

Proof. (a) follows immediately from Theorem 1 and Corollary 1.
To show (b), it suffices to show that f is minorized, on C, by a continuous

affine function a:X → R, which clearly belongs to L1(µ). This is immediate
by Lemma 1 if (II) holds. In the case (I), take any point z belonging to the
relative interior of [f < ∞], and notice that f |aff([f<∞]) is continuous at z.
Hence Lemma 1 applies again.

(c) If γ :=
∫
C f dµ = ∞, we are done. So let γ ∈ R. Proceeding by

contradiction, assume that γ < f(xµ). If (II) holds, apply directly Lemma 1
to get a continuous affine function a on X such that a ≤ f on C, and
γ < a(xµ) < f(xµ); and define D := C. Now assume (I). Since γ is finite,
µ is concentrated on the convex set [f <∞]. By Theorem 1, there exists a
convex set D ⊂ [f < ∞] such that µ is concentrated on D and xµ ∈ ri(D).
As in the proof of (b), f |aff(D) is continuous at xµ, and hence Lemma 1
(applied to f |D) provides a continuous affine function a on X such that
a ≤ f on D, and γ < a(xµ) < f(xµ). The rest of the proof is common to
both cases. By definition of xµ, we have

γ < a(xµ) =

∫
C
a dµ =

∫
D
a dµ ≤

∫
D
f dµ = γ,

which is a contradiction that completes the proof. 2
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Theorem 3 (Jensen’s integral inequality, second form) Let (Ω,A, µ)
be a probability space, X a Hausdorff locally convex t.v.s., and (C,Σ) a con-
vex measurable space such that Σ ⊃ B(C). Let f :C → (−∞,∞] be a proper
convex function. Assume that at least one of the conditions (I),(II) from
Theorem 2 is satisfied. Let G: Ω → C be an A-to-Σ measurable mapping
such that the Pettis integral u :=

∫
ΩGdµ exists in X. Then:

(a) u ∈ C;

(b) the Lebesgue integral
∫

Ω(f ◦G) dµ exists (finite or infinite);

(c) the Jensen’s integral inequality f(u) ≤
∫

Ω(f ◦G) dµ holds.

Proof. Consider the push-forward measure ν := G#µ, which is a prob-
ability measure defined on Σ. Then the corresponding barycenter xν =∫
C x dν(x) = u exists, and

∫
C f dν =

∫
Ω(f ◦G) dµ. Apply Theorem 2. 2

5 Appendix on existence

Let us finish the paper with collecting some conditions that assure existence
of barycenters or Pettis integrals.

Observation 2 Let (C,Σ, µ) be a convex probability space in the Euclidean
space Rd, such that Σ ⊃ B(C). Let e∗1, . . . , e

∗
d ∈ (Rd)∗ denote the coefficient

functionals. Then the following assertions are equivalent:

(i) the barycenter xµ exists (and belongs to C);

(ii) ‖ · ‖ ∈ L1(µ) for some (every) norm ‖ · ‖ on Rd;

(iii) ξ ∈ L1(µ) for each ξ ∈ (Rd)∗;

(iv) e∗i ∈ L1(µ) for each 1 ≤ i ≤ d.

Proof. The implications (ii) ⇒ (iii) ⇒ (vi) and (i) ⇒ (iv) are obvious.
Now assume (iv). Then clearly the point (

∫
C e
∗
1 dµ, . . . ,

∫
C e
∗
d dµ) ∈ Rd is the

barycenter of µ. Moreover, the `1-norm ‖ · ‖1 := |e∗1| + . . . + |e∗d| is clearly
µ-integrable and equivalent to ‖ · ‖, which implies (ii). 2

If Rd is replaced by a general Hausdorff locally convex t.v.s. X then,
of course, existence of xµ implies that every x∗ ∈ X∗ is µ-integrable. The
converse is not true in general. Indeed, by [5, Example 3.5] there exists
a function f : (0, 1] → c0 which is not Pettis integrable with respect the
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Lebesgue measure λ on (0, 1], while x∗ ◦ f ∈ L1(λ) for each x∗ ∈ (c0)∗; then
the push-forward measure µ := f#λ is a probability measure on c0 which
has no barycenter, and every element of (c0)∗ is µ-integrable.

The following theorem collects several conditions under which the con-
verse holds true. If Y is a Banach space, then w∗ denotes the corresponding
weak∗ topology σ(Y ∗, Y ) on Y ∗.

Theorem 4 Let (C,Σ, µ) be a convex probability space in a Hausdorff lo-
cally convex t.v.s. (X, τ), such that Σ ⊃ B(C). Assume that

x∗ ∈ L1(µ) for every x∗ ∈ X∗,

and at least one of the following conditions is satisfied.

(a) C is finite-dimensional.

(b) C is relatively τ -compact.

(c) (X, τ) = (Y ∗, w∗) for some Banach space Y .

(d) X is a reflexive Banach space.

(e) C is separable, and X is a Banach space not containing c0.

Then µ admits a τ -barycenter.

Proof. (a) We can assume that X = span(C), which is ismorphic to some
Rd. Apply Observation 2.

(b) follows directly from [8, Proposition 1.1].
(c) This is due to I.M. Gelfand (see [5, Proposition 3.3] for the reference).

The linear operator T :Y → L1(µ), Ty := y|C , has closed graph, and hence
it is bounded. Then the functional φ(y) :=

∫
C y dµ is an element of Y ∗ = X,

and it is the barycenter of µ.
(d) By (c), µ admits a barycenter in the weak topology of X, and hence

also in the norm topology.
(e) We can assume that X = span(C). In this case X is separable and

does not contain c0. Apply [5, Theorem 3.6]. 2

Now, the push-forward argument from the proof of Theorem 3 gives im-
mediately the following sufficient conditions for existence of Pettis integrals.

Corollary 2 Let (C,Σ) be a convex measurable space in a Hausdorff locally
convex t.v.s. (X, τ), such that Σ ⊃ B(C). Let (Ω,A, µ) be a probability space,
and G: Ω→ C an A-to-Σ measurable mapping such that x∗ ◦G ∈ L1(µ) for
every x∗ ∈ X∗. If at least one of the conditions (a)-(e) from Theorem 4 is
satisfied, then the τ -Pettis integral

∫
ΩGdµ exists (in X).
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[10] W. Rudin. Real and Complex Analysis. Second Edition. McGraw-Hill
Series in Higher Mathematics, McGraw-Hill Book Co., New York-
Düsseldorf-Johannesburg, 1974.

[11] R.L. Wheeden, A. Zygmund. Measure and Integral. An Introduction
to Real Analysis. Pure and Applied Mathematics, Vol. 43, Marcel
Dekker, Inc., New York-Basel, 1977.


