A CONJECTURAL EXTENSION OF HECKE’S CONVERSE THEOREM

SANDRO BETTIN, JONATHAN W. BOBER, ANDREW R. BOOKER, BRIAN CONREY, MIN LEE,
GIUSEPPE MOLTENI, THOMAS OLIVER, DAVID J. PLATT, AND RAPHAEL S. STEINER

ABSTRACT. We formulate a precise conjecture that, if true, extends the converse theorem
of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product.
The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums.
We provide evidence for the conjecture, including proofs of some special cases and under
various additional hypotheses.
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1. INTRODUCTION

Let f € Mi(To(N),&) be a classical holomorphic modular form of weight &, level N and
nebentypus character £, and define

(1) 9(z) = (\/Nz)’“f<—$) |

Let f,, and g, denote the Fourier coefficients of f and g, respectively, and define

1

(1.2)  Ap(s)=Te(s+ 54 fun7

-1

00 ke
and Ay(s) =T¢(s+ 51) Zgnn 2
n=1

for R(s) > L, where I'c(s) := 2(2m)™I'(s). Then As(s) and Ay(s) continue to entire

functions of finite order, apart from at most simple poles at s = %, and satisfy the functional
equation
(1.3) Ap(s) = "N A,(1 — s).

Conversely, when N < 4, Hecke [I3], [14] (see also [I]) showed that the modular forms of
level N are characterized by these properties. Precisely, given sequences {f,}°°;, {g.}°2,
of at most polynomial growth, if the functions As(s) and A,(s) defined by continue to
entire functions of finite order and satisfy then f, and g, are the Fourier coefficients of
modular forms of level N and weight k, related by .

When N > 5, Hecke’s proof no longer goes through, and in fact the vector space of sequen-
ces {fn}22 1, {gn}2 satisfying the above conditions is infinite dimensional. Weil [22] showed
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that one can recover the converse statement by assuming additional functional equations for
twisted L-functions

(1.4) Ap(s,x) =Te(s + 55 Y fax(nn ™7

n=1
for primitive characters y of conductor coprime to N. On the other hand, it has been
conjectured (see [8, Conjecture 1.2]) that if A;(s) and Ay(s) have Euler product expansions|
of the shape satisfied by primitive Hecke eigenforms then the single functional equation ({1.3))
should suffice to imply modularity, without the need for character twists. Some partial
progress on this problem was made by Conrey and Farmer [3] (see also [4]), who proved the
conjecture for some values of N exceeding 4.

One drawback of assuming an Euler product is that it imposes a nonlinear constraint on
the Fourier coefficients f,,, g,, so the solutions to no longer form a vector space. In turn,
it is unclear how to make use of this constraint to extend Hecke’s proof to higher level. In
this paper we propose a replacement for the Euler product that, we conjecture, characterizes
the modular forms of any level N, yet retains the linearity of :

Conjecture 1.1. Let & be a Dirichlet character modulo N, k a positive integer satisfying

E(=1) = (=1*, and {f,}°,, {9,122, sequences of complex numbers satisfying fu,gn =
O(n?) for some o > 0. For q € N, let

an

o 5 of2)
a (mod q)
(a,9)=1

be the associated Ramanujan sum, where e(z) := e*™®  and define

- nCq\T _ > nCq (M
Af<s,cq>:rc(s+%)2f q;) and Ag(s,cq):rc(ﬁ%);i;gz_)

s+
n=1 n 2

for R(s) > o+ 1— % For every q coprime to N, suppose that As(s,c,) and Ay(s, c,)

continue to entire functions of finite order and satisfy the functional equation
. 1

(1.5) As(s,cq) = i*€(q)(Ng?)2 Ay(1—s,¢q).

Then f(z) := >~ fae(nz) is an element of My(T'o(N),§).

To understand the motivation behind this conjecture, we first consider a more general
family of twists. Let x (mod ¢) be a Dirichlet character, not necessarily primitive, and
define

(1.6) a = X vl ™).

- fncy(n - InCx(n
(L7)  Ap(s,c) =Te(s + 54 n+><k(21> and  Ay(s, ) = Te(s + 551) n+><k(21)
n=1 1

n—

'We regard the factors of T'¢(s + E-1) in (L.2) as Euler factors for the archimedean place.
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Note that when x is the trivial character mod ¢, ¢, reduces to the Ramanujan sum, ¢,. In
Lemma we show that if we start from a pair of modular forms f, ¢ satisfying ([1.1]), then
Af(s,¢y) and Ay(s, cg) satisfy the functional equation

(1.8) Ag(s,0) = FE(QX(—N) (N2> Ay(1 — 5, c).

When x is primitive, we have ¢, (n) = 7(x)x(n), where 7(x) = >_7_, x(a)e(a/q) denotes the
Gauss sum, and reduces to the familiar functional equation for the multiplicative twist
Ag(s,X). More generally, when A(s) possesses an Euler product, we show in Lemma m
that is implied by the functional equation for Af(s,%,), where x, is the primitive
character inducing x. In particular, in the presence of an Euler product, implies .

Given any Q € N and ¢ | @, we can view ¢, for x (mod ¢) as a function on Z/QZ. One
can show that as x ranges over all characters of modulus dividing @, the functions ¢, form
an orthogonal basis for the space of functions on Z/QZ. Thus, any twist of f with periodic
coefficients and period coprime to N is a linear combination of the twists by c¢,. In this
sense, is the most general functional equation (from twists with period coprime to the
level) that one can expect.

Conjecture arises from the speculation that any constraints on the solutions to (|1.3))
imposed by the assumption of an Euler product are already implied by the extra functional
equations that one obtains from taking y equal to the trivial character mod ¢. In
Section [2] we prove five theorems that lend some support to the conjecture:

(1) Theorem establishes Conjecture for some values of N exceeding 4, following
the methods of Conrey and Farmer [3].

(2) Theorem [2.2proves Conjecture[1.1]under the additional assumption that f is modular
for some subgroup of finite index in SLy(7Z) (not necessarily a congruence subgroup).

(3) Theorem [2.3| proves Conjecture [1.1{ under the additional assumption that |f| is mo-
dular for some congruence subgroup.

(4) Theorem [2.4 proves Conjecture [1.1|under the additional assumptions that N is prime
and f is modular for the commutator subgroup of I'y(/V). This establishes a version
of Theorem [2.2] for some cases of infinite index.

(5) Theorem shows that for almost all primes ¢, the hypotheses of Conjecture ,
together with the expected analytic properties and functional equations of the multi-
plicative character twists for the primitive characters x (mod ¢), suffice to imply
modularity. Particular examples of suitable g are given for some levels outside the
scope of Theorem [2.1]

To set these results in context, we note that one reason why Hecke’s argument fails for N > 5
is that there are counterexamples arising from more general kinds of modular forms. If one
believes that a twistless converse theorem is possible assuming an Fuler product, then it is
reasonable to ask how these counterexamples are eliminated by the Euler product. Points
(2) and (3) above address two such generalizations of modular forms, namely forms for non-
congruence groups and forms for more general weight-k multiplier systems (not necessarily
of finite order).

Concerning point (5), Diaconu, Perelli and Zaharescu [6] showed that if Af(s) is given by an
Euler product, then there exists a prime ¢ (depending on N) such that the analytic properties
and functional equations of the character twists for all primitive y of conductor dividing

q suffice to imply modularity. On the other hand, again under the assumption of an Euler
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product, it follows from a theorem of Piatetski-Shapiro [I9] that it suffices to assume the
expected properties of for all primitive y (mod p’) for any fixed prime p and all j > 0.
Point (5) can be seen as a complement to both of these results. We conjecture that the proof
of Theorem can be extended to all sufficiently large primes ¢, and we study this problem
in detail in Section [3

Acknowledgements. This paper grew out of a focused research workshop on the Sarnak
rigidity conjecture at the Heilbronn Institute for Mathematical Research. We thank the
Institute for their support, which made this work possible.

2. MAIN RESULTS

Let H = {z € C: &(z) > 0} denote the upper half-plane. For any function h : H — C
and any matrix v = (¢4) € GLj (R) = {M € GLy(R) : det M > 0}, define

+b
hly = (det)¥2(cz + d) *h( =
[y = (det )" (ez +d)"h{ —— ),

where k € N is the integer appearing in Conjecture . (We assume that k is fixed from now
on and suppress it from the notation.) Note that this defines a right action, i.e. h|(y172) =
(h|y1)|ye for any 41,72 € GL3 (R). We extend the action linearly to the group algebra
CIGL3 (R)], i.e. for v = >, ¢;7: € C[GL3 (R)] we define h|y =3, cih|v;.

Let f be as in Conjecture , and define g(z) = > 7, gne(nz). Then, by Hecke’s argument
[17, Theorem 4.3.5], the fact that A¢(s, 1) and Ay(s,cq) continue to entire functions of finite
order and satisfy for ¢ = 1 is equivalent to the identity f| (, ~') = g. WritingT = ('1)
and W= (y, )T (y )" = (L), since f and g are given by Fourier series, we have
fIT = fIW = §.

Given a matrix v = (29) € T[o(N), we define (y) = £(d). Since {(—1) = (—1)F, we
have f|(—I) = &£(—1I)f, and thus f|y = &(v)f for every v € (—I,T,W). To prove that
f € Mp(To(N),§), it suffices to verify this equality for every v € I'y(V), since the holomorphy
of f at cusps follows from modularity and the growth estimate f,, = O(n?).

Note that if v,y € To(N) have the same top row then v'y~! is a power of W, so that
flv" = flv. Thus, f|y depends only on the top row of 7. With this in mind, we will write
Yq.a t0 denote any element of I'y(N) with top row (¢ —a).

Theorem 2.1. Conjecture is true for N <9 and N € {11,15,17,23}.

Proof. The following table shows, for each N in the statement of the theorem, minimal
generating sets for I'y(N), verified with Sage [5]:

N generators N generators
1 {T7 W} 8 {—],T, W, ’)/371}
2 {T7 W} 9 {—],T, W, ’7271}
3 {T: —W} 11 {—]7 W21, 73,1}
4 {—], T, W} 15 {—]7 T, W, va1, Va1, ’711,4}
5 {T7 VV)V?,l} 17 {T7 W7 72,17’73,1776,1}
6 {_[7 W, 75,2} 23 {—L T, W, Y21, V4,15 76,15 ’710,73}
7 {T7 W, —’72,1}
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In particular, for N < 4, I'y(N) is generated by —I, T and W, so there is nothing to
prove. For all other levels we apply the methods of Conrey and Farmer [3], in the form of

Lemmas [4.1] [4.3] and [£.4] L
For odd values of N, Lemma with ¢ = 2 implies that f|y,; = £(2)f. In view of the
table, this establishes the claim for N € {5,7,9}.

For N € {8,11,15,17,23} we obtain values of ¢ € {3,4,6} for which f|y,, = &(q)f from
Lemma {4.3| For N € {8,11, 17} these are sufficient to establish the claim.

It remains only to prove the claim for N = 6, 15, 23, for which we need to show modularity
with respect to the generators s 2, 11,4, 710,—3, respectively. For N = 6 we have the equalities

5 —1 o 1 5 1 _ -1
(6 _1) =-TW and (—6 _1) =-T"W,
so Lemma with ¢ = 5 takes the form
1 2/5 1 —-2/5
f‘[v—é(—l)]( /)+f‘ —1)]( 1/)=o,
where v = (3, 5?). Applying Lemma with @ = 4/5 and ( = —1, we obtain f|y =

§(=1)f.
For N = 15 we have the equalities

(s 2) (e ()= (5 F)
(5 28)== (6 )7 ( 1) (6 3) == (5 )7 ()

so Lemma with ¢ = 8 takes the form

1 3/8 1 -3/8
7)f’[v—€(11>]( ) vea f‘ ( Vo) o
where v = (_13}0 ]{1). Applying Lemma with @« = 3/4 and ¢ = —1, we obtain f|y =

§(11)f.
For N = 23 we have the equalities

(3 ) --(% (%) G
(s s) = (5 5 (s 3).

so Lemma [4.1| with ¢ = 3 takes the form

and

£<11>f‘h—£<7>} <1 _11/3) +£(10) f’ £(10)] (1 1{3) —0,
where v = (193). Applying Lemma {4 with « = —2/3 and ¢ = —£(8), we obtain f|y =
€1 -

Theorem 2.2. Assume the hypotheses of Conjecture [I.1l Suppose that there is a subgroup
H < T1(N) of finite index such that f|y = f for ally € H. Then f € My(T'o(N),§).
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Proof. We may assume without loss of generality that H contains 7" and W. By Lemma [4.1]
for any prime ¢ { N,

21) Zf‘ ua =) (5 1) -

Put h = [['o(N) : H|, and let g1,...,gn € I'o(N) be coset representatives for H\Ig(N).
Replacing g; by Wg; if necessary, we may assume without loss of generality that g; is not
upper triangular. For each v,, € I'o(IN), there exists i € {1,...,h} such that v,, € Hg;, so

that f|v,a = flgi- Rearranging (2.1]), we get

m 1 G
q —
Z 1

where U?ZI{CLM A=1,..., Iii} is a disjoint partition of {1,... ¢ — 1}.
For each i € {1,...,h}, since [[y(N) : g; ' Hg;] = [[o(N) : H] < oo, there exists m; € N
such that
g 'HgiT™ = g;'Hg;.
Setting m = lem(my, ..., my), we have ¢;T7™ € Hg; for all i. Then f|g;T™ = f|g;, and thus
fllg: — &(gi)] has a Fourier expansion:

(2.2) fllgi — => Xi(n)

nez
Therefore,

h g 1 @i h Kq

f‘ [9: = €(9:)] (0 ‘ ) = Ain) ( (n—m)> ¢(nz) =0,

= =1 nez i=1 =1
ie. forn € Z,
(2.3) Z)\ (Z (n qm)) — 0.

=1

Fix n € Z \ {0}. By Dirichlet’s theorem, we can choose distinct primes ¢, ..., q, t mnN
and integers ay,...,a, such that v, . € (I)g; € Hg; for each i. Thus, from (2.3) for

q€{q,...,q}, we obtain a system of linear equations of the shape
h Ri,j )
- a'? .
(2.4) > (Ze(nq—m>> Xi(n) =0 for je{l,...,h},
i=1 \ (=1

with x;; > 0 for every i € {1,...,h}. By Lemma ,

o )
det [Z e (nqj“Z )] # 0,

=1 1<i,j<h

so (2.4) has only the trivial solution A\(n) = ... = )\h( ) =0.
Since n € Z \ {0} was arbitrary, it follows from ) that f|[g; — (gz)] is a constant, say

C;. Since g; ' Hg; N H has finite index in SLy(Z), there exists v = (%) € g;'Hg; N H with
6




c# 0. Then C; = Cj|y = (cz +d)~*C;. Since k > 0, we must have C; = 0, i.e. f|g; = &(g:)f.
This concludes the proof. 0

Theorem 2.3. Assume the hypotheses of Conjecture [1.1], and suppose that there is a con-
gruence subgroup H < To(N) such that |(f|7)(z)| = |f(z)| for all v € H. Then f €

Proof. If f = 0 then the conclusion is trivially true, so from now on assume f # 0. Let M
denote the level of H, so that H D I'(M). Since f|T' = f|W = f and I'1(NV) is generated by
{T,W}UT'(M), we may assume without loss of generality that H O I';(N). By Theorem [3.2]
there exists a prime ¢ = 1 (mod N) such that I'y(N) is generated by {T, W, v, : 1 < a < g}.
By Lemma [4.6] there exists m € N such that ¢ | m and {fmn,gm} # {0}. Since (')
normalizes I'1(N), we may swap the roles of f and g if necessary, so as to assume that
fm # 0.

For any v € I';(N), the function (f|y)(z)/f(z) is meromorphic on H and has modulus
1; by the maximum modulus principle, it must be a constant, say €(y). By Lemma , we

have "y )f‘hq’a_ ) (1 a{Q) = D [(na) —ﬂf‘(l a{q) .

a (mod ¢ a (mod q)
(a,9)=1 (a,9)=1

Considering the Fourier expansion, this implies that

3 [e(rga) — 1] fne(%) —0 forall n.

a (mod q)
(avq)zl

In particular, taking n = m, we have

Z [€<'Vq,a) - 1} =0,

a (mod q)
(a,9)=1

and since |€(7,4)| = 1 for every a, it follows that €(y,.,) = 1. Therefore, f|y = f for all
v € I''(N). Applying Theorem[2.2with H = I';(N), we conclude that f € My(To(N),&). O

Theorem 2.4. Assume the hypotheses of Conjecture[I.1. Suppose that N is prime and that
flmye = flven for every pair v1,72 € To(N). Then f € My(To(N),§).

Proof. Let H be the smallest subgroup of I'o(N) containing 7', W and all commutators
Y1y27; Py b for 41,72 € To(N). Then H is a normal subgroup with abelian quotient
H\I'o(N), and fly = f for all vy € H. If N € {2,3} then (H,—I) = I'o(/N) and there
is nothing to prove, so we assume henceforth that N > 5.

Let R={r € Z:2 <|r| < $N}, and for each r € R, fix a matrix 7,,; with top row (r -1).
Then, by Lemma for any prime ¢t N and a coprime to ¢, we have

l
Yg,a = + H Ti,
=1

where each 7; is an element of {T, T~ W,W~' 4| : r € R}. Since H\I'((N) is abelian,
we are free to permute the 7; without changing the coset H [[7;. Hence, since H contains
7



(T, W), we may write
Hryyo = H(=I) H '77~_,1er7
reR
for some € € {0, 1} and non-negative integers e, (depending on ¢ and a), satisfying >
log, q.

Now, fix s € R, n € Z\ {0} and X € N, and let Q = Q(s,n,X) denote the set of
primes ¢ satisfying gs = 1 (mod N), ¢ { n and ¢ < X. As in the proof of Theorem [2.2]
we consider for all primes ¢ € ). Let ¢g1,...,9, be a minimal set of representatives
for the cosets H~,, of all matrices occurring there. By the above, we may take each g;
of the form (—I)*[[,cgpyi" with e € {0,1}, e, > 0 and ) e, < log, X. In particular,
H 75_11 = Hry, _; for every ¢ € ), so we may take g; = 75_11 By Dirichlet’s theorem, we have
#Q > X/log X, and thus h < 2(1 + log, X)N=3 < #Q for all sufficiently large X.

For each i € {1,...,h}, we have f|¢;T = f|Tg9; = flgi, so fllg:i — &(g:)] has a Fourier
expansion as in (2.2)), with m = 1. In turn, this leads to the system of linear equations
(2-4), where we take {g;} to be any subset of @ of cardinality h. Applying Lemma by
appropriate permutation of the rows and columns we can select a square subsystem for which
the diagonal entries are non-zero. Since the coset H g, occurs in every row, the column ¢ = 1
is necessarily one of the variables in the subsystem.

Hence, by Lemma [1.5, we have A(n) = 0. Since n € Z \ {0} was arbitrary, we thus have
that f|[v;1 — &(s)] is a constant, say C. Clearly Cly = C for all v € v, Hv,{ N H = H.
Taking v = W, it follows that C' = 0, whence f|v, 1 =¢(s)f. Finally, Lemma implies that
Lo(N) is generated by —I, T, W and 75, for s € R, so f|y =&(v)f forall y € [h(N). O

reR Er S

Theorem 2.5. Assume the hypotheses of Conjecture[1.1. There is a set Q of prime numbers
such that

(i) @ has density 1 in the set of all primes, and

(ii) if there exists ¢ € Q such that the multiplicative twists As(s,x) and Ay(s,X), for
all primitive characters x (mod q), continue to entire functions of finite order and
satisfy the functional equation

(2.5) As(s,x) = (@)X (N)g () (Ng?)2*Ay(1 — 5, %),
then f € Mip(T'o(N), ).

In particular, for each N in the following table, the set Q) contains every prime q 1 N in the
indicated interval.

N q| N q
10 (11,109) [ 18 (53,107)
12 (35,109 | 19 (37,10%)
13 (5,10%) | 20 (79,10%)
14 (43,10%) | 21 (83,10%)
16 (47,10°) | 22 (43,10°)
Proof. Let @ be the set of primes ¢ 1 N such that H, D I';(/N), in the notation of Section [3|

By Theorem , () has density 1 in the set of all primes, so (i) holds, and the fact that @
contains the numbers indicated in the table is the content of Theorem [3.3]
Let ¢ € Q. Then by [17, Lemmas 4.3.9 and 4.3.13], the assumed analytic properties of
Ag(s,x) and Ay(s,x) described in (ii), together with the functional equation for all
8



primitive x (mod ¢), imply the equality

Pne=€@) (5 1) = 1| [wr-@] (5 1)

for any integers a, b coprime to q. By Lemma , it follows that fl|v,, = @ f for every a
coprime to ¢. By the definition of (), we thus have f|y = £(v)f for every v € H, D I';(N).
Applying Theorem with H =T'1(N), we conclude that f € M (T'o(V), ). O

3. GENERATING I';(N)

In this section, we consider the question of when the elements of T'o(N) with a fixed
upper-left entry generate a subgroup containing I';(N). By the proof of Theorem any
such upper-left entry gives sufficient conditions to imply modularity using twists of a single
modulus.

For any ¢ € N coprime to N, let H, denote the subgroup of I'((N) generated by the

matrices
A B
{(C D) EFO(N):A:q}.

Conjecture 3.1. There exists qo = qo(N) such that Hy O I't(N) for every q > qo coprime
to N.

Theorem 3.2. H, D I'y(N) holds for almost all ¢ € N coprime to N and for almost all
primes g1 N, i.e.

(3.1) #{geN:(¢,N) =1, H; DT1(N), ¢ <z} = (22 +0(1))2
and

(3.2) #{q prime: ¢t N, H, D T1(N), ¢ <z} = (14 o(1))n(z)
as x — 0.

Proof. For q € N coprime to N, set

I, = {(é g) €o(N): A=q" (mod N) for somenGN}.

Then I', is a group satisfying I'y (N) U H, C T'; C I'y(N), and we have
H,OT't(N) = H,=T,.

Consider a fixed ¢o € N coprime to N, and let gy be a multiplicative inverse of gy (mod N).
Then, for any ¢ = ¢y (mod N),

-1
T _ q 1 q 1
qN+q@)—1 @+N)\qio—1 @)

Wo— q 1\ q qg+1
o —1 @ q@o—1 (¢+1)g—1)"

so that H, and I'y =T, contain (T, W).

and

9



Let
{T’W}U{%:(Nci Di>.1§z§h}

be a fixed generating set for Iy, with v, = (qo A qlo ) For i > 2, replacing ; by ~1%v; for a

suitable n;, we may assume that A; = ¢o (mod N). Also, we may assume that A; # 0, since
otherwise N = 1 and +; is contained in (T, W).

Next, we modify 71, ...,7v, by multiplying by powers of T" and W. First, multiplying by
W™ on the left leaves A; unchanged and replaces C; by C; + m;A;. Hence, by Dirichlet’s
theorem, we may take Ci,...,C} to be distinct primes not dividing N. Second, by the
Chinese remainder theorem, we can choose ¢; € N satisfying ¢ = ¢o (mod N) and ¢; =
A; (mod C;) for every 4. Multiplying on the left by T(@=4)/(NCi) yeplaces each A; by qi.

Now, let ¢ € N with ¢ = ¢y (mod N). Suppose that the divisors of ¢ — ¢; represent all
invertible residue classes modulo Ng, i.e.

(3.3) {d+ NqZ:deN, d|(¢—aq)} 2 (Z/NqZ)*.
Fori=1,...,h, let d; be a divisor of ¢ — ¢; satisfying d; = C; (mod N¢). Then (d;, N) =1,

so Nd; | (¢ — ¢q1). Hence,
R el LU W
T (NCZ-) = (Ndi> ’

so that v; is contained in H,. Therefore H, = I'y, = I,.

Erdés [7] showed that almost all ¢ € N satisfy (3.3). Therefore, the set of ¢ € N such that
¢ = ¢o (mod N) and H, = I'; has density 1/N. Letting gy run through a set of representatives
for the invertible residue classes mod N yields . For the prime case, we similarly apply
Lemma [4.9) with (po,q) = (¢1, N¢q1) to see that almost all ¢ { N satisfy (3.3), and this leads

to . OJ

Theorem 3.3. For each N in the following table, H, D I'1(N) holds for ¢ € N with (¢, N) =
1 and for primes q1 N in the indicated intervals.

N (¢ N)=1 primegqtN|N (¢,N)=1 primeqgt N
5 (44,107 (0,109 [ 14 (55,10) (43,10)
6 (1,107) (0,10 | 15 (91,10%) (31,10%)
7 (20,10%) (0,10 | 16 (63,10%) (47,10%)
8 (15,109 (7,10°) | 17 (390,10°) (101,107
9 (136,109 (2,10%) | 18 (55,10%) (53,109)
10 (39,109 (11,10%) [ 19 (360, 10%) (37,109)
11 (84,109 (2,10%) | 20 (119,10%) (79,109)
12 (35,109 (23,10%) | 21 (230,10°) (83,109)
13 (168,10%) (5,10%) | 22 (175,10%) (43,109)

Proof. We applied two strategies to verify the statement computationally. First, we used
Lemma and Corollary to compute a list L of all elements of (T, W) of height
up to some bound chosen by trial and error (e.g. for N = 13 we chose the bound 5500,
which yielded 290841 words in 7', W). We then used Sage [5] to compute a generating set
{g1,...,gn} for T'1(N), and for each generator we computed every word of the form w;, g;tlwg,
for wy, wy € L. Combining this with Lemma and a simple sieve, we obtained sufficient

conditions to establish the claim for the vast majority of ¢.
10



For the relatively small number of values of ¢ remaining, we computed the expansions of
every element 7,, for 1 < a < ¢ in terms of the generators S = (;, ™!) and T'= (1) of
SLy(Z), and presented SLy(Z) = (S,T : S* = S?(ST)3 = 1) as an abstract group to GAP
[9]. We then used GAP’s implementation of the Todd—Coxeter algorithm [21] to attempt
to compute the index [SLo(Z) : H,|]. When this terminated with a number equal to the
expected index [SLy(Z) : T'y], we obtained the claim for g.

The first strategy tends to work better at finding prime values of ¢, which explains the
discrepancy in the sizes of the intervals for larger values of N, where there are eventually
too many exceptions to test by the second method in a reasonable amount of time.

For some ¢ (those for which the Todd—Coxeter algorithm appeared not to terminate), our
results were inconclusive, though we expect that H, 2 I';(/N) in those cases. In a very small
number of cases, H, has finite index in SLy(Z) but is not the full group I',. O

4. LEMMAS

Lemma 4.1. Let ¢ € N with (¢, N) = 1. The assumptions of Conjecture imply the
relation

1 @
(4.) e @] (5 §) =0
(mon)
(a,q)=1

where v, s any element of I'o(N) with top row (q —a).

Proof. From Hecke [17, Theorem 4.3.5] we know that the functional equation in Conjec-
ture is equivalent to the equation

(42) ancq e = (<1)"€(q)(Ng) 5270 guey(n)e™™ 57
n=1

In particular we find for ¢ = 1, that f] ( 0 -N"% ) = g, where g(z) = Y 0 | g.€*™*. Now
0
we shall note that ( . may be rewritten as

(G §)-s0 = (35 70)

¢ (mod q)
(C7q):1

a (mod q

Combining this with the matrix identity

0 —N2\[(=Nz¢c N2g\ (¢ 0\ [ ¢ =a\/1 %
N3 0 —N3gq 0 “\=Nc ¢')  \=Nc s 0 1)’

where a = a(c) is chosen so that Nca = —1 (mod ¢) and s = (Nac + 1)/q, we derive

> G i) 2 A0k )6 1)

¢ (mod q
(a,q)=1 (e;a)=
Here the summation over ¢ may be replaced by the summation over a (mod q), (a,q) = 1,

by choosing appropriate representatives, thereby proving the lemma. 0]
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Lemma 4.2. Suppose that h : H — C is a holomorphic function, M € SLy(R) is elliptic of
infinite order, and ¢ € C* is a root of unity such that h|M = (h. Then h = 0.

Proof. This is an extension of Weil’s Lemma [2, Lemma 1.5.1], which is the special case
¢ = 1. It can be proven by the same method or, alternatively, derived as a consequence, as
follows. Suppose that ¢ has order n, and let M = (¢9%). Then we have

e+ EE0) = (@0 E)” = ke

Applying Weil’s Lemma to h™ (and the weight-kn slash operator), we conclude that A" = 0,
whence h = 0. [

az+b
cz+d

Lemma 4.3. Assume the hypotheses of Conjecture([I.1], and suppose that N = qs — 1, where
q,s € {3,4,6}. Then flv,1=£&(q)f.

Proof. Note that ¢(q) = ¢(s) = 2, and we have v,41 = 7,34 = (
Lemma [£.1] to both ¢ and s, we obtain

b = €@) = Al - @0 (1Y) = €| -t (139
= —ee| b - &) (1Y)t (YY)
~tlbaa @bt (1 ) (9.

Writing M =1 (1 7%/%) v (* 72/4) = ( ! 2/ >, we thus have

g F1

N s ) Hence, applying

1 2q—2/s —3+4/(gs)

a1 = €@]I — M] =0.
Note that |[tr M| < 2 and tr M ¢ Z, so M is elliptic of infinite order. Applying Lemma
to h = fl[vg1 — €(q)], we obtain flyg, = &(q)f- O

Lemma 4.4. Assume the hypotheses of Conjecture and suppose there existy = (4 B) €
['o(N), o € Q and a root of unity ¢ € C* such that Ca ¢ Z, |A+ D + Cal| < 2, and

fllv =) = <f’h —¢(D)] (1 ‘f) .
Then fly = £(D)f.
Proof. We have
~e)csi o =~ e (U 1) = ofp o ().

Note that tr (7_1 (t )) = A+ D+ Ca. By hypothesis this is non-integral and has modulus
less than 2, so v~ (1 7*) is elliptic of infinite order. Applying Lemma [4.2] we obtain f|y =
§(D)f. O

Lemma 4.5. Let h,n,m € N, and let q,...,qn be distinct primes with q; { mn for all
j. For every j, let s;; C {1,...,q; — 1}, with s;,; N s;,; = O for all iy # iy (we do not
12



na
acs;,j e(mqj

assume that s;; # 0). Let S;; =3
det ([S; j]1<ij<n) # 0.

Proof. Replacing (m,n) by (m/ged(m,n),n/ ged(m,n)) if necessary, we may assume without
loss of generality that (m,n) = 1. We prove the claim by induction on h.

Suppose first that h = 1. Each e(g—;) is the ath power of e(mql) =: (g, Which is a
primitive mq;th root of unity. By hypothesis s, ; is not empty, so Sy is the value at (4, of
a nonconstant polynomial P € Q[z]. Note that P(x) = xQ(z) for some nonzero @ € Q|x]
(since s11 C {1,...,¢q1 — 1}), and that the degree of @) is at most ¢; — 2. The degree of the
extension QGg,)/Q is p(mar) = p(m)p(ar) > ¢lar) = a1 — 1. Hence Syy = PGug,) =
Cmgi @(Gmgy ) # 0. This concludes the proof for h = 1.

Suppose h > 2 and expand det[S; ;] with respect to the first line. We get an expression
of the form P((,,) for some polynomial P € Q(Cungys - - - 5 Gmg,, ) [2]. We claim that P is not
constant. To see this, let a € s11 (such a exists because s;1 # 0). Then a ¢ s;; for any
i # 1, since s;, 1 N 85,1 = 0 for iy # iy. Thus, the coefficient of 2* in P(z) is the determinant
of the cofactor matrix for S; ;. This determinant satisfies all hypotheses of the lemma for
h — 1 and primes ¢, ..., qx; hence it is nonzero by the inductive hypothesis.

Note that P(z) = zQ(x) for some nonzero ) € Q(Cngys - - - s Gmgy ) [#] (since each s;; C
{1,...,¢1 — 1}), and that the degree of @ is < ¢; — 2. By coprimality assumptions, the de-
gree of the extension Q(Cmqu ce 7<mqh)/Q<Cmq27 s 7Cmqh) 18 Qp(mQ1QZ U Qh)/90<mq2 U Qh) =
¢(q1) = qu — 1. Hence Q(Gmg,) # 0. Thus det[S; ;] = P(Gng,) = Cmay @(Cmg,) # 0. O

Lemma 4.6. Assume the hypotheses of Conjecture[I.1], and suppose that f is not identically
0. Then for any prime qt N, there exists n € N such that q | n and {f,, 9.} # {0}.

). Suppose that s;; # O for every i. Then

Proof. Suppose that the conclusion is false for some prime ¢ 1 N, so that f, = g, = 0 for
every n divisible by ¢. Then we have f,c,(n) = —f,, and g,,¢,(n) = —g, for every n, so that

= Ay(s, ¢q) _ Ag(1 - Sacq)‘
Ap(s,c1)  Ay(1—s,0¢9)

On the other hand, ([1.5) applied to ¢; and ¢, shows that

Af<sch> _ ( ) 1—23Ag(1 —S,Cq>
Ay(s, c1) Ag(1=s,e1)

s0 £(q)¢' ™% = 1. Since ¢ > 1, this is a contradiction. O

Lemma 4.7. Let N be a prime, and for each r € Z with 2 < |r| < %N, let v,1 € To(N) be
a matriz with top row (r —1). Then any matmx (Cf}v B) € T'o(N) may be written in the form
7o with 7, € {T, T, W, W~ 1,%’1 <|r| < %N} for each i =1,...,1, in such a
way that

#{i:m € {%1}} < log,(|A]).

Proof. If C' = 0 then (4§ B) = £T* for some choice of sign and o € Z. In the general
case we may multiply on the left by a power of T' to replace A by any integer A’ such that
A" = A (mod CN). Choosing A’ such that |A’| < %|CN|, we also have |A’| < |A|. Similarly
we may multiply on the left by W and replace C' by any integer ¢’ = C' (mod A’) with
O] < 514

13



Repeating this process will either lead to C' = 0 or will eventually stagnate. Thus we may
assume now that [A] < 3|CN|and 0 < |C| < 3|A|. In particular, this implies that N' > 4, so
N is an odd prime. Let r be the nearest integer to the fraction CN/A (note that A # 0 since
(A,N) = 1), rounded toward 0 in the case of a tie. We have 2 < |[OCN/A| < N, and thus
2 < |r| < IN. Multiplying on the left by 7,1, the new top-left corner is rA—CN = A(r—<&),
which does not exceed %|A\ in absolute value. Thus, by repeating this process we eventually
end up in the case C' = 0, having used at most log, (| A|) matrices ¥, 1. O

Lemma 4.8. Let A be an n X n matrix over a ring, with non-zero rows. Then there exists
m € {1,...,n} and n X n permutation matrices P and Q such that PAQ takes the block

form < é g >, where A is of size m X m and has non-zero diagonal entries.

Proof. Denote the entries of A by a;;. For any S C {1,...,n}, define
mg = #{Jj : a;; # 0 for some i € S}.

Note that for S = {1,...,n} we have mg < #5. Hence, there is a minimal non-empty set
R C{1,...,n} satisfying mr < #R. Since A has non-zero rows, we have mg > 0 whenever
S # (). From this and the minimality of R it follows that mr = #R. Moreover, for any
S C R we have mg > #5S.

By Hall’'s marriage theorem [I1], it follows that there is a subset C' C {1,...,n} and a
bijection i : €' — R such that a;;); # 0 for every j € C. Writing m = #C = #R and
replacing A by PAQ) for appropriate permutation matrices P and (), we may assume that
C=R={1,...,m} and i(j) = j. The block form of A then follows from the definition of
meg. ]

Lemma 4.9. Given py,a,q € Z with py # 0 and (a,q) = 1, define
P(po; a,q) = {p prime : 3d € N such that d = a (mod q) and p = p, (mod d)}

and
P(po;q) = () Plposa,q).
1<a<q
(a,g)=1
Then

#{p € P(py;q) :p<z}=(1+o0(1)m(zx) asz— co.

Proof. This is proven for py = 1 in [I2], uniformly for ¢ < 2(1=9)lgloez  One can generalize
the proof to all py # 0, and if one is not concerned with the uniformity in ¢ a simpler proof
suffices. For completeness we give the argument here.

For a character y modulo ¢ and a € Z with (a,q) =1 let

dn) =Y "x(d),  dma)= Y 1

dln dln
d=a (mod q)
so that we have
1 _
(43) dnsa) = —— 3 Xla)dy(n).
pla) S



Then, it suffices to prove that for almost all primes p, d(p — po; a) > 0 for all a (mod ¢) with
(a,q) = 1.

As in [12] we start by observing that if p’, n are coprime with p’ prime, then by multipli-
cativity and the Cauchy—Schwarz inequality one has

(d(np’;a) — M)Q <16 Y (d(n;b) - d"o—m)>2,

(q) b(aand 0 (q)
(bg)=1

where xq is the trivial character modulo ¢g. Denoting by w(n) the number of distinct prime
factors of n, Halberstam [10] proved that w(p — py) has normal order loglogp. Thus, w(p —
po) < 2loglogp for almost all p < z and so, in particular, p — py almost always has a

prime factor p’ greater than r(z) := ¢ TeEeEE ag x — oo. Also for almost all such p we have
(P, (p—po)/p") = 1 since only o(7(z)) integers < z have such a large repeated prime factor.
Denoting by >’ the restriction of the sum to primes with such properties, we then have

ZI (d(p — po; a) — dXO(p—pO> <16 Z Z (d(n; b) — dxo (n)>2

p—po<z QO(Q) b (mod q) p—po=np <z, SO(Q)

(b q)= p,p’ primes,
p'>r(zx), (n,p')=1

dyo (1) 2
< max E <d n;b) — X2 ) E 1,
b (mod ¢q) < ( ) Sp(q) —t
(b,9)=1 "=y p—po=np' <z,
p,p’ primes

where all the implicit constants here and below are allowed to depend on ¢,py. By [20),
Ch. IT Satz 4.2] (cf. Satz 4.6 for the case py = 1), with (ay, by, as, b)) = (1, 0 n po) the inner

sum is O(m) = O(%) since n < z/r(x). Thus, using also (4.3]) the above is

(14) <« “ogloge)” v ut%n0 g dM(n)dm(n)'

log” (mod )
oo x b (mod ¢ p
& (b,g)=1 X07#X1,Xx2 (mod q) n<iis

An easy exercise shows that for R(s) > 1,
d d
> b (Wds(n) _ L(1+ s,x0)L(1 + s, x1)L(L + 8, x2) L(1 + 8, x1x2) R(s)

= el

where R(s) is an Euler product Which is convergent and uniformly bounded on R(s) > —
It follows that the inner sum in is O(log? x). Thus we find

/ d — 2

Z (d(p — po; @) — X (p( )p0)> < z(loglog z)?
pP—po<zT i

and so we deduce that for € > 0 we must have

d - !
ity = i) — 2B (og )i

=

for almost all p < z. Finally, for almost all primes p < z we have w(p—pg) > (1 —¢)loglog z
and so

dyo (p—po) > gw(p—po)—w(q) >, (log w)log 2—¢
15



Since log2 > 1/2 we deduce that for almost all primes p < z we have

d(p — po; a) > (log x)'*** =,
as desired. 0
Lemma 4.10. Let f € Mi(I'o(N),§), and define g by (1.1). Let f, and g, denote the

Fourier coefficients of f and g, respectively, and for any character x of modulus q coprime
to N, define Ag(s,cy) and Ny(s,cx) as in (L7). Then As(s,c) and Ay(s,cx) continue to

entire functions, apart from at most simple poles at s = £ and satisfy the functional

2
equation (|1.8)).
Proof. Define

(45 nea= X ] (1) = ancx
a (mod q)
(a,9)=1

and similarly for g5. Then

(4.6) fx (qu _1> :u<mzwq)X(u)le %) <Nq2 _1)'
(u,q)=1

Since

L O NG [ [ M EN=

provided that uv N = —1 (mod ¢q), we have

<Nq2 _1) = &(q) (Z X(u)g‘ (1 %)

u (mod q)
uwvN=-1 (mod q)

— NN Y m\ (1) = TN

u (mod q)
uvN=-1 (mod q)

(4.8) fy

The conclusion now follows by Hecke’s argument [I7, Theorem 4.3.5].

Lemma 4.11. Let x (mod q) be a Dirichlet character induced by the primitive character

X+ (mod q.). Define go = [,y ppq. P and g2 = 74=. Then ¢ (n) =0 if g2 ¥ n, and

(4.9) e (ng2) = gax(g0)cx. (M) g (1) = goxs (90) T (X )1e(q0) X (n) u(ged (g0, n) ) p(ged(go, 1)),

Proof. By [18, §9.2, Theorem 12], if ¢, | = d(q > then

e = (gt P (et (o) S0(2) e,

ged(g,n)

and ¢, (n) = 0 otherwise. Since X*(W) = X*( iz > = 0 unless ¢ | n, we get

ged(g;n)
ey (n) 201fq*+m or gs 1 n.
16



For an integer n, we get

N e (i M S BT e

* ged(qo,n)

= e (a0)r )2

2(q-q0) 1(ged(qo, n))e(ged(qo, n)),

since qq is squarefree and ged(qo, ¢«) = 1. Finally, since ¢ has the same prime factors as g.qo,

wle)
we have i) = q*qo = @s. O

Lemma 4.12. Let £ (mod N) and x (mod q) be Dirichlet characters, with (¢, N) = 1. Let
{fn}2, be a sequence of complex numbers of at most polynomial growth, and define A (s)
and A¢(s, cy) asin and . Suppose that fi = 1 and the f, satisfy the Hecke relations
at primes not dividing N, so that

(4.10) As(s) = ) A Hl— o0+ )

n|N°

where A\, = fnn_%. Let x. (mod g.) be the primitive character inducing x, and define
Dy (s) = As(s,¢y)/Af(S,¢y.). Then Dy, (s) is a Dirichlet polynomial given by the following
formula:

(4.11)  Dyy(s) = [ [ Aporapasan p™rt@/a)0=2)

plg«

X H plerdr(@=1(1=s) {/\pordm)pl_s+)\pordp<q>—2§(p)p_s — Ajordp(a)-1 (X*(p) +f(p)X*—(@p1_28) ;

plg,ptq«

where we define Ay = 0 for any negative integer (.
Suppose further that {g,}>2, is a sequence of at most polynomial growth such that g; # 0,
gn = 1&(n) fr for all n coprime to N, and

Ag(s) = gile(s + 551 Y~ An~ Hl— 2+ EPPT)

n|No°

where A, = g7 gan~ "2 . Then Dy (s) and Dyx(s) := Ag(s, cx)/Ng(s, cx,) satisfy the functi-
onal equation

(4.12) Dy (s) = (¢/a.)" "*°€(q/q:) Dgx(1 — s).

In particular, if Af(s,X,) and Ay(s, x«) satisfy (2.5) with (X,,q.) in place of (x,q), then

Ag(s,cy) and Ny(s,cx) satisfy (1.8)).
17



Proof. Let qo = Hp|q7p,[q* pand ¢ = qoq . By ([4.9), we have

Ar(siey) i AngyCx (nG2)

PC (S + %) N n=1 (an)S
— Ango X (1) p1(ged (o, ) p(ged (g0, n))
= G2+ (q0) T (X)) 11(q0) =
2 -
_ nX* pﬂ X* >‘p°rd1’(‘12)
= q2X« (qO)T(X*)lM<qO) Z H Z H pordp(qg)s
n|Noo plgN j=0 plged(g2,q+)
)\ ord. (q)—IX*<p0rdp(q)_1) - >\ X (p])
ordp(q)—1 PP _ 2P AT
< T )[ PO (@15 OB P }
p|q0 jZOrdP(Q)
Thus,
Ag(s,cx)
D : (s) — I\ X
Fx As(s,cy.)
| Aoy (@ -1 X (@) A x=(p9)
. H ordp(q/q*) H X ordp(q p(ordp(Q) 1)s + Sp(p) Z;iordp(q) _p]p'js
i P (1= Aol +&- T2 o) !

For each prime p | qg, we have

o0

A Ordp(q)*1X*(p0rdp(q)_l) A 7 X x p]

(ordp(a)—1)s js
P j=ordp(q) p
)\ ord (q)71X*(p0rdp(q)_l> Ordp(q)_l )\ ]X*(p]) AT
=L pp(ordp(q),l)s —¢(p) s te)- ApX- ()P +EX ()~ )
§=0
Since A\, A, = A+t + £(p)Api-1, we have
ord -2 — T ord () —2 ¢ — —s or _
2 )‘ij*(pj) )\pordp@)*?X*(pordp(q)_2)€ : X*z(p)p )‘pOYdP(‘I)*lX*(p dp(a) 1)
Z R - (ord, (q)—1)s - (ord,(q)—1)s +1
i=0 b g
X (1= XX + & X ()p ™) 7
so that
B )\pordp(q)_lX*(pordp(q)—l) ‘o) f: ApiXx(P7) B /\pordp<q>—1X*(pordp(q)—l)
p(ordp(q)fl)s PP pjs - P p(ordP(Q)*l)S
j=ordp(q)
A2 X PPITDE 2D At s X (7D T)
- 90<p) p(ordp(q) ) o p(ordp(‘I)_l)s

x (1= XNxa(p)p ™ + & 2 (p)p )%
18



Therefore, for each prime p | go, we have

)‘pordp(q)—l Xo* (pordp(q)—l)

o XX (D7)
- p(ordp(q) 1)s +(p(p) Zj—ordp(q) p]pjs
(1= Xx(P)p* + & X2 (p)p )

X <p0rdp(q)) 1-s —s — 1-2s
et W )\pordp(q)p - )\pordp(q)fl X* (p) + )\pordp(q)72€(p)p - )\pordp(q)flf . X* (p)p .

Writing go = [[,,. porde(a/a-) L pordr(@=1 this yields

Dya(5) = TT Ao p™0/210-9
plgs
X H p OI‘dp S) |:)\pordp(q)p1_s_)\pordp(q)1X* (p)+)\pordp(q)2€(p>p_s_)\pordp(q)ls‘z(p)pl_zs] .
pla.plg«

Since 5\p = @)\p for p | qo, we also have

(¢/a:)" " %¢(a/q.)Dyr(1 — s)

- A ordp(a/ax)
ordp ( * ordy(q/gx)(1— 25);
= o [ [ elportrtaraypret pra(a/a) ()

Plgs
x H p_(ordp(Q)—l)Sg(pordp(q))X*(p) [)\pordp<q)—x* (p)pl—s _ Apordp@)flpl”
pla,plax
+ /\pordpm—zx*(p)S (P)p™° = Aporpa1€ - X (p)}
Ordp q/qx) OI‘d s
=] Lo o (043 Il » D (0) [ Ajorana X (D)

plg« pla,pta«

- ;\pordp(Q)—lg(p)X* (p)Qpl_Qs + /N\pordp(Q)—2X* (p)ﬁ(p)p_s — xpordp(q)—1:|

Finally, (1.8) follows from (4.12)) and (2.5) (with y replaced by ,) on noting the equalities
. = TN x, = T(X)xs and 7(X,)/7(xx) = ¢ 7(X) X (—1). [

Lemma 4.13. Let {g1,...,9n} be a generating set for I'y(N). Fori = 1,... h, let v; €

(T, W)gi(T, W) be a matriz with top row (r; b ), and choose m; € Z with m; | “=*. Then, for

any q € N satisfying (¢, Nm;) =1 and ¢ = Nm;b; (mod ;) for every i, we have Hy O I'1(N).

Proof. Fix a choice of ¢ satisfying the given conditions, and set d; = (1 — r;)/(Nm;). Then
qd; = Nm;b;d; = (1 — r;)b; = b; (mod r;).

By hypothesis we have (¢, Nm;) = 1, so we can choose a matrix h; € I'y(N) with left column

qd;—b;
(i, )- The upper-left entry of %T E h is ¢(r; + Nmyd;) = ¢, and thus v7~ = € H,.
As shown in the proof of Theorem [3.2] H, also contains 7" and W, and thus g; € H,. O
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Lemma 4.14. Fory = (2.5) € I‘O( ), define ht(v) = max{|al, ||, |c|, |d|}. Letm,..., 7 €
{T, 7', W,W='}, with 7i41 # 7; " for every i =1,...,0 — 1. Then, provided that N > 4,

ht(7y -+ 7) > max{ht(ry - - - 7—1), ht(ma - - - 1) }.

Proof. Since ht(y) = ht(y™1) for every v, it suffices to prove that ht(ry - - - 74) > ht(71 -+ - 77_1).
Suppose that this is false, and let 7y,...,7, be a counterexample of minimal length. Since
ht(T#') = ht(W*') = ht(I), we must have £ > 1.

Note that (T, W) has some outer automorphisms that preserve the height function. Spe-
cifically, conjugating an element v = 7 ---7, by (! _;) leaves ht(v) unchanged and swaps
every occurrence of 7' with 771 and W with W', Similarly, conjugating by (, ~') swaps
T with W=t and W with T-!. Thus, applying an appropriate outer automorphism, we may
assume without loss of generality that 7, =T

Write 71 -+ 7—1 = (&, 8). Then by assumption we have h := ht(( & %)) > ht(( &.5)7T),
so that h = max{]al, |b|, |c| |d|} > max{|al|,|a + b|,|c|,|Nc+ d|}. Hence, h = max{]|b|, |d|}.
If h = |b] then |a| < |b] and |a + b] < |b], so ab < 0. If h = |d| then |Nc—|—d| < |d|, so ed <0
and |Nc¢| < 2d|.

Next we consider 7,_;, which must be one of T, W, W ™!, since 7, # T[_ll. By minimality, we
have ht(( & %) 7)) = ht(r - 7p_2) < h. If 7,1 = T then we have max{|b—al, |d—Ne¢|) < h,
contradicting the fact that ab < 0 when h = [b| and ed < 0 when h = |d|. If 7,_y = W then
we have max{|a — Nb|, |c — d|} < h, which is again a contradiction.

Hence we may assume that 7,1 = W™, and we have max{|a + Nb|, ||, |c + d|, |d|} < h.
If h = |b| then |b] > |a + Nb| > (N — 1)|b|, which is a contradiction, since N > 1. Hence we
must have h = |d.

Next, let j € {1,...,¢ — 1} be the largest number such that 7,_; = W= fori =1,...
Since |N¢| < 2|d| and N > 1, we must have j < ¢ — 1. Consider 7y_;_;, which must be one
of T, T~!. We have

ht((ch)W Tf ] 1) ht(Tln'Te—j—2) < h.

Since 7y_j_1 = T*! and jN > 4, this implies that
jd| > ht(( 8, 5) WITTY) > |(jN F 1)d+ Ne| > (jN 71 —2)|d| > |d],
which is a contradiction. O

For N > 4, I';(N) is torsionfree [I5, Lemma 12.3], and hence free, by the Kurosh subgroup
theorem [16]. Lemma m permits a simple, direct proof of the following consequence:

Corollary 4.15. T and W generate a free group if and only if N > 4.

Proof. For N < 3, we verify directly that (W~1T)'2 = I. For N > 4, suppose that 7, -+ - 7, =
I is a nontrivial relation of minimal length satisfied by 7" and W. Clearly ¢ > 1, and by
applying an appropriate outer automorphism, we may assume that 7 = 7. Considering
each possible 75 € {T,W, W~} we see that ht(r;75) > 1 = ht(I), in contradiction to
Lemma [4.14 U
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