Letter to the Editor

Felicia Stefania Falvella*, Elena Angeli, Laura Cordier, Emilio Clementi and Mauro Panteghini

An unexpectedly prolonged severe hyperbilirubinemia in a patient with pre-existing hepatitis A: a role of genetic predisposition?

https://doi.org/10.1515/cclm-2018-0962
Received August 31, 2018; accepted October 17, 2018

Keywords: bilirubin; genetic; glucuronidation.

To the Editor,

Acute hepatitis A virus (AHAV) infection is a self-limited condition that usually spontaneously recovers in 2–8 weeks. While in children under 6 years of age AHAV is often asymptomatic, >70% of adults manifest symptoms together with typical laboratory findings [1]. AHAV is serologically diagnosed by the detection of anti-HAV IgM, which persists 2–6 months after infection. Laboratory results during AHAV show a marked increase (usually 10 to 40 times the upper reference limit [URL]) in serum alanine aminotransferase (ALT) activity, together with high total bilirubin (TB) (average peak of 171.0 μmol/L, mainly consisting of the conjugated form) and moderately (<3 URL) increased alkaline phosphatase (ALP) and γ-glutamyltransferase (GGT) [2]. With resolution of AHAV, conjugated bilirubin (CB) is rapidly cleared and its serum concentrations return to normal quickly. However, 10%–20% of patients develop prolonged cholestasis lasting for >6 months [1].

Bilirubin, which is a major end-product of heme breakdown, is physiologically glucuronidated in the liver and then excreted into the bile. The mechanisms of bilirubin excretion, and of hyperbilirubinemia causes, are largely understood. Unconjugated bilirubin (UB) enters the hepatocyte by passive transmembrane diffusion combined with active mediated transport. In the hepatocyte, UB is bound to ligandin and transported to the endoplasmic reticulum, where it is conjugated into bilirubin glucuronide by UDP glucuronosyltransferase (UGT) 1A1, and excreted into the bile by ATP-binding cassette (ABC) transporters ABCC2 and, to a lesser extent, by ABCG2. Under pathophysiological conditions, such as acute hepatitis or cholestasis, the CB back into blood by the basolateral ABCC3 transporter and then the solute carrier organic anion (SLCO) transporters 1B1 and 1B3 mediate its hepatic reuptake [3]. Several inherited disorders characterized by impaired bilirubin conjugation or transport result in various degrees of unconjugated or conjugated hyperbilirubinemia, respectively [4].

Here, we report a case of prolonged severe hyperbilirubinemia in a patient with pre-existing AHAV, in which we were however, unable to show an evident persistence of cholestasis. A 33-year-old man was admitted at the Emergency Department of our hospital on April 7, 2017, 6 weeks after an AHAV diagnosis performed in another hospital. The patient, strongly jaundiced, presented asthenia, nausea, diarrhea, pruritus and hyperchromic urine. Blood tests revealed a moderate increase of serum ALT activity (202 U/L; URL: 59 U/L), in line with the expected AHAV resolution, but an unexpectedly markedly elevated serum TB (625.9 μmol/L, with CB of 480.5 μmol/L; TB URL: 20.5 μmol/L, CB URL: 5.1 μmol/L). The presence of anti-HAV IgM (slightly positive) and anti-HAV IgG confirmed the previous AHAV diagnosis. Other concomitant conditions (such as hepatitis B and C infection, syphilis, autoimmune disease and drug toxicity) were excluded. Steroid therapy was immediately started, but without any clinical improvement or significant decrease in serum TB/CB concentrations (Figure 1). A magnetic resonance cholangiopancreatography (MRCP) was therefore carried out, revealing no signs of intra- or extra-hepatic cholestasis, besides those already suggested by the steadily normal values of GGT and the only slight (≤2 times the URL)
elevation of ALP in the serum (Figure 1). In the following weeks, bilirubin in the serum started to slowly decrease, reaching 157.3 μmol/L for TB and 114.6 μmol/L for CB, respectively, the day of hospital discharge (May 29, 2017). Seven days later (15 weeks after the AHAV onset), a further laboratory evaluation showed a TB concentration of 95.8 μmol/L and a CB concentration of 66.7 μmol/L, indicating their normalization trend (Figure 1).

To explore the possible contribution of genetics on the anomalous persistence of marked hyperbilirubinemia, we conducted a genetic analysis. The patient signed a written informed consent before genotyping. We investigated the major functional variants that map into the genes involved in the glucuronidation and in the cycle of bilirubin efflux and bilirubin re-uptake. Genomic DNA was isolated from the peripheral blood cells using an automatic DNA extraction system (Maxwell 16 System, Promega), according to the manufacturer’s instructions. All genotypes were determined by real-time PCR, using a panel of LightSNiP from TIB-MolBiol on LightCycler 480 (Roche Diagnostics). First, we investigated the presence of the UGT1A1*28 (rs8175347) allele, which contains an extra-TA repeat in the TATA box promoter region: 7 (TA) in *28 allele, compared to six (TA) repeats in the common *1 allele. This extra-TA repeat decreases the rate of transcription of the UGT1A1 gene and thus decreases the enzyme activity and the glucuronidation of bilirubin [5]. Regarding the efflux transporters, we checked the presence of the functional single nucleotide polymorphisms (SNP) in the ABCC2 (−24C>T/rs717620) and ABCG2 (c.421C>A/rs2231142) genes, which have been found to influence transport activity in several studies [6, 7]. Finally, as SLCO1B1 is predominantly expressed at the basolateral membrane of hepatocytes, we investigated the presence of the 521T>C variant, located in exon 5 of the gene (rs4149056), resulting in decreased uptake transport activity [8]. The genetic test of the patient revealed the presence of UGT1A1*28 in the homozygous state and ABCC2 –24C>T, ABCG2 c.421C>A and SLCO1B1 521T>C in the heterozygous state (Figure 2A). The simultaneous presence of all the defective alleles may explain the occurrence of the extremely high levels of bilirubin and of their unexpectedly prolonged persistence observed in our patient. We hypothesize that the impaired apical membrane efflux may cause an activation of compensatory pathway for CB efflux into sinusoidal blood across the basolateral membrane, but, due to the presence of SNP in the SLCO1B1, the hepatic reuptake may be reduced (Figure 2B). Moreover, functional SNP mapping into the SLCO1B1 gene may also contribute to the reduction of the active transport of UB in the hepatocyte and therefore influence serum bilirubin concentrations in association with the well-known effect of the UGT1A1*28 allele (Figure 2B).

Krawczyk et al. previously described a possible association between two polymorphisms in the hepatocanalicular bile salt transporter ABCB11 and phospholipids transporter ABCB4 and severe liver cholestasis following AHAV [9]. In our patient, due to the absence of cholestasis as suggested by unchanged or slightly modified serum concentrations of enzymatic markers of cholestasis (ALP and GGT) and confirmed by MRCP, we speculated for the first time that the severe and prolonged mixed hyperbilirubinemia may derive from a genetic predisposition causing a metabolic deficit. A dual hereditary jaundice, due to a compound defect of bilirubin conjugation (Gilbert syndrome/UGT1A1) and transport (Dubin-Johnson syndrome/ABCC2) was previously described [10]; however, our case presented two
In conclusion, in our opinion the concomitant detection of defective variants of genes involved in the bilirubin pathway was able to explain the hampered resolution of the hyperbilirubinemia in our patient with pre-existing AHAV. Although other genetic variants or other genes involved in the hepatic cycle of bilirubin can add to our findings, our observation highlights the importance of the molecular mechanisms underlying a hyperbilirubinemia condition. Further investigations are needed to define the proportion of patients with this specific genetic profile, who may show prolonged severe hyperbilirubinemia after AHAV infection.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References