
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-018-0834-4

ORIGINAL RESEARCH PAPER

Enhanced multicore–manycore interaction in high‑performance video
encoding

Giuliano Grossi1 · Pietro Paglierani2 · Federico Pedersini1 · Alessandro Petrini1

Received: 16 March 2018 / Accepted: 19 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
This paper presents an efficient cooperative interaction between multicore (CPU) and manycore (GPU) resources in the
design of a high-performance video encoder. The proposed technique, applied to the well-established and highly optimized
VP8 encoding format, can achieve a significant speed-up with respect to the mostly optimized software encoder (up to ×6),
with minimum degradation of the visual quality and low processing latency. This result has been obtained through a highly
optimized CPU–GPU interaction, the exploitation of specific GPU features, and a modified search algorithm specifically
adapted to the GPU execution model. Several experimental results are reported and discussed, confirming the effectiveness
of the proposed technique. The presented approach, though implemented for the VP8 standard, is of general interest, as it
could be applied to any other video encoding scheme.

Keywords Video coding · VP8 · CPU–GPU interaction · Hybrid/heterogeneous architectures · Parallel processing ·
NVIDIA CUDA

1 Introduction

Today, video data transmission covers about 75% of the
global Internet traffic, and this percentage is expected to
grow in the near future [16]. Video processing-based func-
tions, and in particular higher-resolution video encoders,
have thus become key functions for network operators, in
their continuous attempt to offer innovative services and
attract customers.

To respond to the increased interest in cloud-based video
services, video encoders have been recently implemented as
virtual network functions (VNFs), which are software appli-
ances running on commodity servers in the cloud. Video-
processing VNFs have also attracted the attention of network

operators in the multi-access edge computing context, since
their aim is to offer innovative video services to the users
by running software appliances at the network edge [11].

High-resolution video encoders, however, are not only
highly compute-intensive workloads; often, they are also
subject to strict time constraints, to minimize transmission
latency and guarantee an adequate quality of service to
the users. Conversely, the video decoding process is usu-
ally much less demanding in terms of compute resources;
hence, researchers have mainly focused their attention on
video encoding schemes [23].

To cope with the huge need of high-performance com-
puting resources brought about by video applications, HW
implementations of some encoding algorithms are now
available [2, 22]. Nonetheless, owing to the high variety of
available video encoding schemes and the operators’ urge for
flexibility in service management, software video encoders
running on commodity servers in the cloud are often pre-
ferred to proprietary solutions based on bespoke hardware
[17].

The open source community has further contributed to
the success of software video encoders. In particular, the
open source X264 [8] and WebM [2] projects, implement-
ing the widely used H.264 and VP8/VP9 schemes, respec-
tively, can obtain an impressive compute performance. For

This work was undertaken under the EU FP7-ICT (7th Framework
Programme—Information and Communication Technologies)
T-NOVA Project, partially funded by the European Commission
under the Grant Agreement No. FP7-ICT-619520.

 * Giuliano Grossi
 giuliano.grossi@unimi.it

1 Dipartimento di Informatica, Università degli Studi di
Milano, Via Celoria 18, 20133 Milan, Italy

2 Italtel S.p.A. Research and Development, Castelletto di
Settimo Milanese, Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0834-4&domain=pdf

 Journal of Real-Time Image Processing

1 3

instance, X264 can achieve up to a ×1000 speed-up com-
pared to the JM H.264 standard reference encoder [20, 23].
Such results have been obtained by thoroughly exploiting the
optimized SSE/MMX/AVX assembly instruction set, which
enables instruction-level parallelism (ILP) on register vec-
tors up to 512-bit-wide. Further performance improvements
can be achieved when multi-core x86 CPU architectures are
available, as video encoding algorithms efficiently scale on
multiple cores, and can therefore greatly benefit from mul-
tithreading capabilities [26].

Another very promising approach to further accelerate
software video encoders is based on the exploitation of the
manycore architectures, which are nowadays commonly pro-
vided by off-the-shelf graphical processing units (GPUs).
Most of such techniques exploit a CPU–GPU cooperative
approach [15]. They usually run the most demanding tasks
of the encoding process (typically, motion estimation, ME),
on the GPU, while the CPU carries out the remaining func-
tional blocks. According to the results reported in literature,
GPU-based schemes can achieve significant compute per-
formance improvements with respect to CPU-only software
implementations. However, most of the algorithms proposed
in literature are compared to the corresponding standard
reference encoder, which is typically not optimized at all
(such as the JM encoder for H.264), and often implements
the still prohibitive (from the computational point of view)
full search ME on CPU [20]. Conversely, to the best of the
authors’ knowledge, only few works compare the achieved
compute performance to the one provided by the fully accel-
erated version (that is, a version exploiting efficiently all
ILP features, like MMX/SSE/AVX) of x264 or WebM VP8
encoders. In particular, in [20, 23] GPU-accelerated H.264
encoders have been compared to x264, while [17, 24] report
some preliminary results about a GPU-accelerated VP8 ver-
sion. Such works clearly highlight that, when compared to
the fully accelerated version of x264 or WebM VP8, the
known collaborative GPU-based techniques do not exhibit
significant compute performance improvements [21]. For
instance, [20] reports a speed improvement of only 20% with
respect to x264.

Furthermore, when the exploitation of manycore GPU
resources is combined with implementations that effectively
use ILP-Assembly instructions and the multicore architec-
ture, the achieved performance gain is usually modest. For
instance, a comparison of the GPU-accelerated x264 encoder
(using OpenCL-based motion estimation techniques [21]) to
the x264 CPU-only version [23] yields disappointing results.
Experiments performed by the authors with libvpx [1,
2] have confirmed the difficulties in achieving a significant
computation speed-up when combining multicore (CPU)
with manycore (GPU) resources [23]. In fact, the use of CPU
multithreading [23] further complicates the achievement of
efficient synergy in GPU–CPU collaborative algorithms,

as effective cooperation requires strict synchronization not
only among GPU cores, but also between each CPU thread
and its corresponding GPU resources. Thus, although many
optimized GPU–CPU algorithms have been proposed in the
literature for mature and widespread video formats like VP8
and H.264, to the best of the authors’ knowledge, there are
no encoding schemes able to achieve a significant speed-up
compared to the best CPU-only implementations exploiting
Assembly-optimized ILP [8].

This paper proposes an encoding scheme that combines
the use of manycore GPU’s with CPU ILP-based accelera-
tion techniques in an efficient way, obtaining significant
speed-up with respect to the best benchmarks. To this pur-
pose, the paper analyzes the problem of effectively combin-
ing highly optimized software encoders with GPU resources.
The well-established open source VP8 WebM encoder [1]
has been used as benchmark. This encoder, in fact, exploits
both the full set of optimized Assembly instructions and the
CPU multicore architecture. The presented modified VP8
scheme, implemented in CUDA C running on NVIDIA GPU
resources, can achieve up to × 6 speed-up with respect to
the mostly optimized version of the reference VP8 WebM
encoder (libvpx), with minimum degradation of visual
quality.

The techniques presented in this paper, applied to
VP8, could be potentially used also in more recent coding
schemes, such as VP9 and HEVC. In particular, the proposed
approach can guarantee sequential raster-order processing of
video frame macroblocks by the CPU, introducing minimum
latency. For this reason, we can adopt the well-known rate-
distortion optimized (RDO) techniques for motion estima-
tion [15, 28], widely used in recent coding schemes, thus
overcoming one of the most challenging drawbacks in ME
implementations on GPU’s [15]. The developed algorithm
has been archived in the WebM Project repository, and is
thus available for further investigations to the research com-
munity [4].

The paper is structured as follows: Sect. 2 gives an over-
view of the VP8 encoding scheme and of the literature on
efficient computation of the ME in the VP8 encoding stand-
ard. Section 3 describes the proposed algorithm. Section 4
presents the achieved experimental results. Finally, some
conclusions are drawn in Sect. 5.

2 Overview and related work

2.1 Overview of the VP8 encoding scheme

Figure 1 illustrates the functional diagram of the VP8 encod-
ing scheme. At this level of detail, this diagram is com-
mon to all modern video encoding standards. Each frame
of the video stream is divided into square blocks of pixels

Journal of Real-Time Image Processing

1 3

(called macroblocks, MB), each consisting of 16 × 16 lumi-
nance pixels and two 8 × 8 blocks of chrominance pixels.
The macroblocks are processed sequentially (left-to-right,
top-down); for each block MBi , the best predicting mac-
roblock (i.e., the one maximally similar to MBi) is chosen
among the previously encoded MB. Then, the image dif-
ference between MBi and the best predicting macroblock,
called the residue, is transformed using either the discrete
cosine transform (DCT) or the Walsh–Hadamard transform
(WHT), and the transformed coefficients are quantized and
encoded, producing the final coded video bitstream [2, 12].
As Fig. 1 shows, the best predicting MB can be found either
through intra-frame prediction, meaning that it is chosen
among the already coded MBs of the same frame, or through
inter-frame prediction, that is, chosen among neighboring
MBs belonging to a previous frame. To this aim, the algo-
rithm selects some of the previous frames (called the last
frame, the golden frame, and the alternate reference frame)
during the encoding process, to consider them as possible
sources of the inter-frame predicted macroblock. In case of
inter-frame prediction, the optimal inter-frame macroblock
is searched in one of the reference frames, by means of a
motion estimation (ME) procedure, which finds the 16 × 16
window that is maximally similar (in the sense of minimal
pixel-by-pixel luminance/chrominance difference) to the
currently analyzed macroblock. The result of this search is
a motion vector (MV) representing the hypothetical motion

of the macroblock from the reference (previous) frame to
the current frame.

Once the best predicting MB is found, the pixel-by-pixel
difference between MBi and its best prediction, called the
residue, is transformed (through DCT or WHT) and the
resulting coefficients are quantized and finally entropy coded
through an arithmetic encoding scheme, together with all
information describing the MB. The coded MB is then sent

Fig. 1 Block diagram of the
VP8 encoding scheme. Motion
estimation plays a major role in
the inter-frame prediction and it
is one of the most computation-
ally intensive tasks of the whole
encoding process

Fig. 2 Average encoding times (in ms) for the major functional
blocks of the encodingFrame() function of the VP8 reference
encoder for a sequence of 100 frames in Full HD resolution. Func-
tional blocks involving motion estimation (NewMV and SplitMV) are
responsible for over 70% of the encoding frame time

 Journal of Real-Time Image Processing

1 3

(or stored) as part of the coded stream but, at the same time,
it undergoes the inverse process, that is the same decoding
process carried out at the receiver side, and possibly taken as
reference for intra-frame or inter-frame prediction.

In most current encoding schemes, like AVC/H.264,
motion estimation is the most demanding functional block,
in terms of computational effort [20, 28]. Since all mod-
ern encoding schemes resort to motion estimation in a very
similar way, it is reasonable to assume that ME is the most
demanding function also in VP8. To verify this assumption,
we carried out some profiling of the reference VP8 encoder,
by measuring the execution time of each major functional
block involved in the encoding of a test sequence. Figure 2
reports a summary of this experiment: the functional blocks
NewMV and SplitMV, which make use of motion estima-
tion, take more than 70% of the encoding frame time, on
average.

Besides that, motion estimation is one of the few tasks
that can be massively parallelized (each MB can be com-
puted independently and therefore in parallel with the oth-
ers). This is the reason why we chose, in our approach, to
delegate the motion estimation tasks to the GPU, while keep-
ing the inherently sequential tasks on the CPU, similarly as
in many GPU–CPU cooperative approaches to high-perfor-
mance video encoding.

2.2 Related work

Accelerating ME can provide significant compute perfor-
mance improvements, with reasonably low implementation
efforts. The WebM VP8 software-only encoder available at
[1], used in this work as the reference VP8 software encoder,
suitably combines several techniques to perform ME in an
effective and highly optimized way.

As in most video encoding standards, in VP8 ME is car-
ried out in the luminance plane of the YUV color space [2,
12, 13]. As seen in the previous section, three different refer-
ence frames are used to evaluate the motion vector (MV) of
a macroblock (MB): the last frame, the Golden Frame and
the alternate reference frame [12, 13]. Five different motion
estimation modes are available: ZEROMV, NEARESTMV,
NEARMV, NEWMV and SPLITMV. ZEROMV indicates
no motion of the current MB with respect to the reference
frame, while NEARESTMV and NEARMV re-use the two
most similar MVs among those of the already coded neigh-
boring MBs in the current frame. NEWMV, conversely,
implies the calculation of a new MV for the current MB (a
16 × 16 pixel block), while SPLITMV divides the MBs in
sub-blocks of different pixel sizes (4 × 4, 8 × 8, 16 × 8 or 8
× 16), each possibly with its own MV.

To exploit both spatial and temporal correlation among
frames, VP8 processes MBs in sequential, raster-scan
order. This constraint also holds for most recently proposed

video codecs, such as H.264, HEVC or VP9, in which this
sequential order is exploited by advanced RDO-ME tech-
niques [28]. In RDO-ME, the algorithm first finds a set of
candidate motion vectors and then selects for transmission,
among all candidates, the MV that minimizes a weighted
function of distortion and rate. This algorithm therefore
needs the MVs of the preceding MBs, as in VP8, to evaluate
the so-called predicted motion vector (PMV). The need to
proceed in sequential order causes an unavoidable depend-
ency between the MBs of the same frame, and represents one
of the major obstacles to the parallelization of ME.

To accelerate ME, the reference VP8 encoder can use
multithreading [2], so as to exploit data parallelism on the
CPU. To overcome the MB dependency constraint, in this
implementation [1] ME is performed along the frame diago-
nal: the first CPU thread starts processing the macroblocks
of the first row; the second thread starts processing the sec-
ond row as soon as the neighboring MBs have been pro-
cessed by the first thread, and so on, for all the available
threads. As in X264, MV calculation is based on a modi-
fied diamond search technique [29]. In the algorithm, the
initial position is estimated from the motion vectors of the
neighboring MBs, which are combined to give a predicted
MV [15, 20] (in the following, this predicted MV will be
referred to as the PMV from diamond search, or PMVDS,
because its role is conceptually different from that of PMV).
A large-sized diamond is moved around in the reference
frame until a low energy area is found. Successively, a sub-
pixel search is performed, up to quarter-pixel resolution.

The above ME approach results in a highly optimized and
effective ME procedure, that provides a very good trade-off
between computational efficiency and high visual quality.
Designing a GPU-accelerated ME VP8 encoding algorithm
that outperforms the WebM reference encoder, is a complex
activity that poses various challenges, briefly described in
the following:

– Many GPU-based techniques address ME parallelization
for H.264 or HEVC [19, 25]. In particular, in [28] a two-
step procedure is proposed, which performs a MV coarse
search in the first step and a refined search in the second
step. The coarse search supplies the PMV to the RDO–
ME algorithm, which selects the MV to be transmitted.
However, the introduction of such a scheme into the VP8
encoder would significantly alter its highly optimized
software architecture, thus implying non-negligible
integration efforts. Also, since such algorithm performs
full search ME, it is questionable whether its use in VP8
would lead to an actual speed-up against the software-
only version [15]. Similar considerations hold for most
ME algorithms performing full search, as discussed in
Sect. 1.

Journal of Real-Time Image Processing

1 3

– A different approach to ME parallelization suggests to
replace the CPU ME procedure with an equivalent ME
function running on the GPU, processing MBs sequen-
tially. This approach has been adopted in X264 for the
H.264 codec, achieving a performance gain up to 55%
[21]. However, the degree of parallelism that can be
achieved by processing a single MB is very low, and can
thus provide a quite disappointing performance. Further
tests carried out using the ME technique suggested in
[21] are reported and discussed in [23]; they show that
in most cases the achieved gain is close to 5%.

– The off-diagonal approach to process MBs proposed in
[15] can be successfully applied in a multicore CPU, with
tens of parallel cores, but would not allow to fully exploit
the massive parallelism of a GPU, which provide thou-
sands of cores.

– In ME procedures running on highly parallel architec-
tures, the search for the initial MV cannot be initialized
to the PMVDS value, since different MBs are processed
independently and simultaneously [15]. This may affect
the performance of the ME process, in particular when
the MV search area within the reference frame is small.
This loss can be compensated using a wider MV search
area, however, at higher computational costs.

The proposed GPU-based technique processes MBs in
parallel and is able to overcome the described difficulties,
leading to significant speed improvements, as shown by
the experimental results presented in Sect. 4. In particular,
our technique can be straightforwardly introduced in the
existing reference VP8 implementation [1], preserving its
highly optimized software architecture. The key features of
the proposed approach are the exploitation of task stream-
ing techniques and the development of a modified diamond
search-like algorithm, as described in the next section.

3 The proposed cooperative CPU–GPU VP8
encoding

3.1 The cooperative approach: general architecture

The key idea of the proposed approach is to exploit the GPU
computing power to perform the ME of the current frame
with respect to the three reference frames, thus relieving the
CPU (running the mainstream encoding process) from such
burdensome task. The goal is to provide the CPU with the
computed motion vectors as fast as possible, while the MBs
are processed by the CPU in sequential order.

Naturally, as discussed in Sect. 2, during this cooperative
process two conflicting requirements could arise. On one
hand, the GPU should concurrently process as many MBs
as possible, to fully exploit data parallelism and enhance the

compute performance. On the other hand, to avoid laten-
cies in the CPU–GPU synchronization, only small chunks
of MBs should be processed in parallel by the GPU, so that
their MVs could be quickly returned to the CPU.

To cope with such opposite needs, in this approach the
ME procedure running on the GPU is split into sub-tasks,
which are launched sequentially as CUDA streams, each
working on a subset of N macroblocks. This cooperative
ME approach can be summarized as follows:

– Each time a new frame (the current frame) is available
for encoding, it is copied into the GPU’s device memory,
by performing a synchronous copy (the CPU waits until
the copy is completed before continuing with the next
instruction). This ensures that the full frame is available
as the ME starts in the GPU.

– As soon as the frame copy has completed, the GPU starts
computing the ME between the current frame and the
three reference frames. The GPU performs ME on groups
of N macroblocks in parallel, and copies the results back
into the CPU memory. The ME kernels on the GPU are
started asynchronously, i.e., the CPU launches their exe-
cution on the GPU, and immediately continues to the
next instruction. From this point on, GPU and CPU work
in parallel and independently.

– The CPU proceeds with the sequential encoding pro-
cess, one MB after the other. Each time this algorithm
needs a MV for a MB (e.g., to evaluate the opportunity
of inter-frame coding), it can simply resort to the already
available GPU-computed MVs, thus saving the time that
would be otherwise necessary for ME computations.

It is clear that the overall interaction between CPU and GPU
must be suitably designed, to minimize the CPU latencies
that could occur if waiting for MVs to become available.

3.2 Using streams to minimize latencies

As said before, it is of crucial importance that the MVs com-
puted by the GPU are available before the CPU requires
them. For this reason, the GPU kernel for ME has been
structured in such a way as to produce the first results (the
MVs of the initial frame MBs) as soon as possible. This has
been accomplished using CUDA streams.

The structure of this CPU–GPU cooperation is shown
in Fig. 3. The asynchronous launch of the three ME ker-
nels (the same GPU kernel, launched on each of the three
frame pairs: current frame vs. last frame, current vs. golden,
and current vs. AltRef) causes the start of the three streams
in sequence, beginning with the first grid of each stream
(grid 0), working on the initial MBs. After completion of
one grid, the next one is immediately scheduled in the GPU
execution queue. Even if the GPU does not guarantee the

 Journal of Real-Time Image Processing

1 3

sequential order among different CUDA streams launched in
parallel, the order shown in Fig. 3 is respected because each
grid takes 100% of the CUDA resources, therefore only one
grid is executed at a time. Consequently, all subsequent grids
are scheduled and executed, for the three reference frames
in sequence, in order of grid number (last frame/grid 0 →
golden frame/grid 0 → AltRef frame/grid 0 → last frame/
grid 1 → …), as shown in Fig. 3. To verify these tempo-
ral assumptions, they have been experimentally verified by
analyzing the timing results provided by the CUDA profiler
(nvvp).

Each kernel grid is composed of N CUDA blocks; the
computation of the MV for each MB is assigned to a block,
consisting of 128 CUDA threads running in parallel, on the
128 GPU cores of a SM. Each kernel grid terminates with an
asynchronous copy of its computed motion vectors back into
the host memory. This operation is scheduled and carried out
in parallel with the following grid execution, as the device-
to-host (D2H) copy engine works independently (and con-
currently) from the processing cores. This scheme is called
two-way concurrency in CUDA devices [5, 14] (not con-
sidering here the concurrency of the CPU). Theoretically,
three-way concurrency would be also achievable, by frag-
menting the initial synchronous copy of the current frame
into streams, and thereby exploiting concurrent operation of
the host-to-device (H2D) copy engine. In practice, however,
we have experienced, by means of experimental tests, that
the two-way concurrent scheme leads to higher speed, due to
the additional overhead of the H2D management and to the
fact that the time necessary for the entire H2D synchronous
copy is short, compared to the overall encoding time.

As soon as the synchronous D2H copies are completed
by the first grid (grid 0), for all the 3 reference frames, the
encoding mainstream on the CPU can read the MVs of the
first macroblocks, computed by the GPU within this grid.
Referring to Fig. 3, if, in the time between the start of the
frame encoding process and the completion of grid 0, the
encoding process on the CPU needs the MV for one of these
initial macroblocks, the CPU process must wait for the D2H
copies of grid 0 to complete. The occurrence and duration of
this possible latency, tW , depends on the time at which the

CPU needs the first MV. The worst case, corresponding to
the maximum value for tW , occurs when the CPU encoding
thread requests the MV of the very first macroblock (the
up-most and left-most one) using as reference the AltRef
frame (processed at last by the GPU). In this case, tW would
be slightly less than the total GPU execution time for grid 0,
as the timing diagram in Fig. 3 shows. After then, under the
reasonable assumption that the GPU grid execution time
tg,GPU is significantly smaller than the time needed by the
CPU to process the same set of macroblocks, tg,CPU , no CPU
latency can occur anymore, as the GPU will be at least one
grid ahead, and the CPU will therefore always find already-
computed MV’s.

As a consequence, the size of the grid N (being N the
total number of macroblocks processed at once) strongly
influences the processing speed: smaller grids increase the
overhead for scheduling and launching, thus reducing the
speed, whereas bigger grids increase the time needed for
the generation and transmission to the CPU of the initial
results (the first set of motion vectors), which increases the
occurrence of the described CPU latency, as well as the
maximum value of its duration, tW . The optimal grid size is
therefore device-dependent, as it mainly depends from the
tg, CPU∕tg, GPU ratio. For this reason, the optimal size N has
been determined experimentally; for the hardware adopted
in this work, the maximum speed has been obtained with
grids containing two rows of macroblocks (N = 144 for full
HD resolution, N = 288 for 4 k), rather independent of the
frame resolution.

Each grid, launched as a stream instance, is composed
of CUDA blocks, organized to run in parallel on the whole
GPU device. The adopted device (NVIDIA GeForce
980GTX) is composed of 16 streaming multiprocessors
(SM), each containing 128 processing cores. The grid is
made of a number of blocks multiple of 16, so that 16 mac-
roblocks are scheduled in parallel. Each macroblock is then
processed by a CUDA block in one SM. This choice pro-
vides several advantages:

– All SMs perform exactly the same task, thus leading to
full efficiency in the exploitation of the GPU device.

Fig. 3 Temporal diagram of the
CPU–GPU cooperation scheme:
after a new frame is copied from
the CPU’s (host) to the GPU’s
(device) memory, the three
ME kernels start in the GPU,
organized as streams, to provide
the MVs needed by the CPU at
the beginning of the encoding
process, therefore avoiding CPU
latencies

Journal of Real-Time Image Processing

1 3

– The access to the data is perfectly parallelized among dif-
ferent SMs, as each SM works on a different macroblock.

– No data interchange is needed among different SMs, as
each MB is processed independently from the others.

3.3 SM‑optimized diamond search

As said before, each stream grid is composed of N CUDA
blocks. Each of them is scheduled on one SM. Each block
performs the motion estimation procedure on one MB,
therefore our device is able to process 16 MBs perfectly
in parallel. Each block is composed of 128 threads to have
a one-to-one match between threads and processing cores
within each SMX streaming multiprocessor. This ensures the
real parallelism of all the threads, which are thus executed
SIMD-like.

The search for the best motion vector is based on the
classic diamond search algorithm, adopted as a standard in
many encoding schemes, including VP8 and H264. In its
original proposal [29], the diamond search algorithm adopts
a diamond-shaped search space, according to the statistical
distribution of the motion vectors, empirically obtained by
analyzing a large set of videos taken as standard [10]. Fig-
ure 4 shows the originally proposed diamond search space.

It has to be considered, however, that the analysis giving
this result was carried out on videos in CCIR (720 × 480)
and CIF (360 × 240) pixel resolutions. In contemporary
video resolutions, such as “Full HD” (1920 × 1080 pixel),
it is reasonable to scale the search space accordingly (that
is, 3× to 5×). For this reason, we propose an adapted dia-
mond-shaped search space shown in Fig. 5. Our search space
extends up to ±16 pixel horizontally and ±12 pixel verti-
cally. This search space covers, in proportion, a larger area
than in the original case (accordingly to the scale ratio). A
larger area is needed because our aim is to implement a one-
shot search instead of an iterative search, as in the original
paper [29]. Eventually, we have implemented both solutions
(one-shot and iterative). A comparison of their performance,
shown in the experimental results, has evidenced that the

two approaches yield different trade-offs between processing
speed and image quality.

The motion estimation algorithm is composed of the fol-
lowing main steps.

3.3.1 Absolute difference computation

For each of the 256 pixels of the considered macroblock, a
thread computes the absolute difference between its lumi-
nance and that of the corresponding pixel in the reference
frame (last, golden, or AltRef). Each SM thread computes
the absolute difference for 4 pixels and sum them: more pre-
cisely, thread j, where j = 0⋯ 63 , computes pixels j + 64k ,
with k = 0⋯ 3 , as shown in Fig. 6. In this way, the 128
threads of a SM compute the differences for 2 vectors of the
map at the same time. All these differences are computed
and stored in a 128 × 64 difference matrix located in the
shared memory; the matrix element DM(i, j) contains the

Fig. 4 Original diamond-shaped search space, as proposed in [29] for
CCIR (720 × 480) and CIF (360 × 240) video resolutions

Fig. 5 The proposed diamond-shaped search space, optimized for
contemporary video resolutions, like full HD (1920 × 1080 pixel).
The search space consists of 127 vectors; this enables a motion search
optimized for the 128 processor cores of a CUDA SMX streaming
multiprocessor

Fig. 6 Computing the absolute difference: GPU thread i computes the
sum of the absolute values of the luminance difference (current frame
− reference frame) for the four pixels: i + 64k , k = 0, 1, 2, 3

 Journal of Real-Time Image Processing

1 3

sum computed by thread j [that is, the SAD (sum of absolute
differences) of the 4 pixels j + 64k , with k = 0⋯ 3], for the
ith vector of the search map in Fig. 5.

Since the shared memory is local to each streaming multi-
processor, all threads within a block will share the same DM,
thus they are all cooperating to the motion estimation for the
same MB, but there will be a different DM in each of the 16
blocks processed in parallel, corresponding therefore to 16
independently and simultaneously computed macroblocks.

3.3.2 Sum of absolute differences

Each thread computes the sum of the absolute differences
(SAD) for the ith displacement vector. This is carried out
using a vector reduction approach, executed sequentially by
each thread over the ith row of DM, and in parallel over
all the displacement vectors. This algorithmic approach
involves the execution of 63 subsequent CUDA multiply-
and-accumulate (MAC) instructions, whereas a conventional
iterative loop to compute the sum would execute 64 MAC
instructions. Nevertheless, in the proposed approach the
optimized access to the DM matrix in the shared memory
leads to a significantly lower computation time. The final
sum of the absolute differences (SAD), for each displace-
ment vector i is stored in the first column of the DM, i.e.,
DM(i, 0).

3.3.3 Minimum search

The search for the minimum SAD value among the 127
computed values is carried out through binary vector reduc-
tion in parallel by a subset of the available processing cores
within each SM, taking just seven subsequent MAC instruc-
tions (as log2 128 = 7).

3.3.4 Search refinement

The vector with the minimum SAD has been found among
all motion vectors of the displacement map shown in Fig. 5.
As the figure shows, this map is characterized by two-pixel
resolution, as the minimum distance between neighbor-
ing points is mostly two pixels. For this reason, the above
described search is followed by a second, finer search, in
which the best displacement is found in the direct neigh-
borhood of the previously determined displacement, this
time with pixel resolution. The algorithm for this refine-
ment phase is the same as that described above, except for
the reduced displacement map with one-pixel resolution,
composed of 15 vectors only (for the sake of efficiency, 16
threads are used, one per vector plus one remaining inac-
tive), as shown in Fig. 7. This map will be centered on the
previously determined MV, therefore the resulting best vec-
tor represents an additional displacement, that will be added

to the vector obtained in the main search. At the end, the
final MV (the one characterized by the lowest SAD) is stored
back into the GPU’s device memory, together with its SAD
value representing the MV cost.

3.4 Assembly‑optimized SAD

The most demanding part of the motion estimation proce-
dure is the initial computation of the SAD for each vector
of the search map. During this procedure, as described in
Sect. 3.3.2, each GPU thread computes the absolute differ-
ence of four pixels (as shown in Fig. 6) and stores the sum
of these differences. This operation can be further optimized
by exploiting CUDA’s PTX ISA (parallel thread execution
instruction set architecture), the low-level instruction set of
the CUDA cores [7]. In particular, we can resort to PTX
SIMD instructions, which perform, within each single GPU
thread, the same arithmetic operation in parallel on multiple
data. SIMD4 instructions, in particular, consider a 32-bit-
wide word as a set of four independent 8-bit operands. In
this particular situation, we can exploit the PTX-SIMD4
instruction vabsdiff4() which computes the absolute
difference of four byte-wide pairs of operands (regarded as
unsigned integer values) and sums them into a 32-bit regis-
ter, as schematized in Fig. 8: by means of this instruction,
it is possible to condensate the entire four-pixel SAD step,
described in Sect. 3.3.2, into one single execution of vab-
sdiff4(), provided that the luminance values of the four
considered pixel pairs are organized as four adjacent bytes
within two 32-bit registers. For this reason, this approach is
maximally efficient if applied to four adjacent pixels, which
can be loaded into a 32-bit-wide local variable (or a local
32-bit register) with a single access to the device memory.

Fig. 7 The displacement map for the motion search refinement. This
map is centered on the vector obtained through the main motion vec-
tor search, using the displacement map of Fig. 5, and allows to obtain
the best motion vector with 1-pixel resolution

Journal of Real-Time Image Processing

1 3

After then, the four-pixel SAD is directly computed by call-
ing vabsdiff4(). The procedure works as follows:

SAD Computation:
for all threads tid ↔ MV (tid) ∈ {Search Map} do

for all sets of 4 adjacent pixel 4i ∈ Macroblock do
A ← (int32) CF [4i]
B ← (int32) RF [4i+MV (tid)]
DM [tid][i] ← vabsdiff4(A,B)

end for
end for

where CF and RF are the current frame and the reference
frame, respectively. This algorithm takes 64 iterations per
macroblock, exactly as much as the standard SAD, but in
this case, besides the advantage of performing 4 absolute
differences and 3 sums with a single assembly instruction,
each thread makes only two 32-bit-wide accesses to the
device memory (to CF and RF) at each iteration, instead
of eight 8-bit-wide accesses/iteration of the approach in
Sect. 3.3.2. As the presented experimental results will show,
the increased efficiency of the optimized SAD, compared to
the former, leads to speed improvements that become nota-
ble only in conditions of frequent call of the motion estima-
tion procedure by the encoding process (depending on the
encoding parameters like the speed factor, etc.).

3.5 Exploiting the texture memory for sub‑pixel
estimation

In VP8, MVs have quarter-pixel precision [12]. This
approach gives a better visual quality by increasing the
signal-to-noise ratio (SNR), but requires pixel interpolation
from the current reference frame. To this end, VP8 synthe-
sizes each pixel by exploiting a 6-tap interpolating filter,
both horizontally and vertically.

Our ME algorithm implements sub-pixel motion search
as a refinement of the integer MV returned by the previous
steps. This approach relies on the usage of the GPU texture
memory for the synthesis of the interpolated pixels. The
reference and input frames are stored as textures, so that the
required sub-pixel luminance values are obtained by exploit-
ing the hardware interpolation capabilities of the GPU.

To this purpose, we have implemented a texture-based
search employing the sub-pixel diamond-shaped search map
shown in Fig. 9, which is composed of 93 search vectors in
the interval [−1.75, 1.75] × [−1.75, 1.75] with spatial reso-
lution of 0.25 or 0.5 pixel—the former in the most internal
area of the diamond and the latter along the edges.

3.6 CPU–GPU architecture tuning

Generally, in GPU programming, the most challenging part
of a development is the task of tailoring the algorithm to
the available GPU architecture in such a way as to reach the
maximum performance. There is, however, no general rule
to achieve significant speed-ups on GPU; the optimization
and parallelization choices that yield the best performance
can be quite different from algorithm to algorithm.

A commonly suggested optimization approach in CUDA
programming is to maximize the GPU occupancy, defined
as the ratio between the actual number of threads actively
running and the maximum number of threads that can be
scheduled on a GPU. A high occupancy value generally
means a high level of parallelism, thus leading to high per-
formance. High occupancy is normally obtained by perma-
nently having a large number of threads scheduled on the
cores; this way, whenever a thread execution stops because
of a global-memory access, another thread can be processed
by the core, thus avoiding to waste time for memory laten-
cies (the so-called latency hiding [14]). In this approach, a

Fig. 8 Computation diagram of the PTX SIMD4 instruction vabs-
diff4() Fig. 9 The 93-point sub-pixel diamond-shaped search space,

employed in the motion estimation refinement procedure that exploits
the GPU’s texture memory interpolation capabilities

 Journal of Real-Time Image Processing

1 3

fast switching among threads is obtained by partitioning the
shared memory, to provide shared memory space to threads
running on the same SMX but belonging to different blocks.
For this reason, it is suggested to keep the allocated shared
memory space as small as possible.

On the other hand, the shared memory is a precious
resource to drastically reduce the latency of threads wait-
ing for global-memory access, and the efficiency of some
algorithms is seriously compromised by a limitation of the
shared memory space. The need to find a good trade-off
between occupancy and use of shared memory is known in
literature [18].

Our algorithms actually represent a typical exception to
the described ‘high-occupancy’ rule: the need for massive
parallel work on independent 256-pixel macroblocks takes
such a great advantage from large shared memory space,
that the best results in terms of speed are achieved by maxi-
mizing the shared memory space, even at cost of a lower
occupancy. This peculiar behavior can be experimentally
shown by measuring both occupancy and speed of the dif-
ferent approaches (using the standard CUDA profiling tool
nvprof). We compared two different setups related to ker-
nels implementing the techniques described in Sect. 3.3: in
the first setup, the kernel exploits all the available space
of shared memory within a CUDA block, whereas in the
second kernel the use of shared memory is reduced, to maxi-
mize the GPU occupancy (max-Occ).

The experiments have shown that max-Occ indeed obtains
a much better occupancy, but the max-Sm setup achieves a
significantly higher speed. As an example, Table 1 reports
a comparison of the obtained results, in terms of occupancy
and speed, for one of the sequences used for the experimen-
tal tests (sequence Rush Hour, see Table 2 in Sect. 4) using
the GeForce GTX 980 device. The results in Table 1 con-
firm that our “unorthodox” approach, which maximizes the
deployment of shared memory, in spite of being character-
ized by a much lower level of occupancy with respect to the
more “canonical” max-Occ approach (∼ 12 % vs ∼ 72 %, in
average), is approximately ×4.4 faster, therefore it represents
the better optimization approach to this algorithm.

4 Experimental results

To give a detailed account of the GPU-accelerated behavior
with respect to quality and speed, we tested the encoder with
several different configurations, considering both mono- and
multi-thread CPU settings. The speed/quality performance
of any encoder strongly depends on the encoding param-
eters. For this reason, to perform significant experiments,
three reasonable speed/quality trade-offs have been selected:

– GPU-faSt, which implements the optimized techniques
described in Sect. 3.3;

– GPU-Splitmv, which adds to the previous approach a
sub-block motion estimation that exploits the assembly-
optimized SAD described in Sect. 3.4;

– GPU-tex, which performs both sub-block ME, as in
GPU-Splitmv, and sub-pixel ME by exploiting the hard-
ware sub-pixel linear interpolation provided by the GPU
texture memory, as described in Sect. 3.5.

All these modes are available in our version of the open
source encoder software released in [4] as fork of the WebM
project, and can be selected by setting the cuda-me com-
mand line parameter to 1, 2, or 3, respectively.

To assess speed and quality, the encoding time (ET)
and the peak signal-to-noise ratio (PSNR) were calculated.
The PSNR was obtained by comparing the original video
sequence to the one obtained by (a) encoding it with the
considered encoder and (b) decoding it with the WebM VP8
reference decoder. The ET is defined as the execution time
of the overall encoding process.

4.1 General setup

For the experiments, we have selected five representa-
tive video sequences (selected among the most commonly
used in literature [27]) from the Xiph.org video reposi-
tory [10]. Their main features are summarized in Table 2. All
the test sequences shows moving fields, either due to camera
or object motion, hence triggering the ME during the encod-
ing of each frame. As reference encoder [1], we have used
the latest stable release of libvpx (1.6.0), compiled with
gcc 5.4.0 and yasm 1.3.0; all hardware accelerators were
enabled during compilation, and were therefore available at

Table 1 Occupancy vs speed
with different exploitations of
the shared memory—kernel:
GpU-faSt; test sequence: Rush
hour (see Sect. 4)

GpUfaSt setup
kernel

Occupancy % Time (s)

Average Min Max Average Min Max

max-Occ 72.42 69.61 75.37 17.23 14.87 24.75
max-Sm 12.43 12.25 12.49 3.90 3.73 4.13

Journal of Real-Time Image Processing

1 3

execution time. To the best of the authors’ knowledge, such
encoder is the best performing VP8 encoder available when
this paper was written. The code running on the GPU was
compiled with nvcc 8.0.44 and the NVIDIA CUDA Toolkit
was the latest available at the moment of writing (8.0) [6].

The tests have been performed on a workstation with two
Intel Xeon E5-2620v3 CPU’s, each with six physical cores,
2.40 GHz clock, 64 GB RAM memory, 2 TB disk space and
Linux Ubuntu 16.04 as operating system. This machine was
equipped with an NVIDIA GeForce GTX980 GPU, featur-
ing 2048 Maxwell cores with Compute Capability 5.2 and
4 GB of video memory. To execute the tests and post-process
the results, we followed the official contribution guidelines
of the WebM Project, using the provided scripts and auto-
mated tools [9].

4.2 Single‑thread performance analysis

A first set of tests was performed by assigning a single CPU
core to the entire VP8 encoding process, both in the reference
and in the proposed encoder. Each video sequence in Table 2
was processed both by the reference encoder and by the three
GPU-accelerated encoders, for different values of target-
bitrate, while all the other encoder control parameters
remained unchanged. In VP8, the target-bitrate
parameter sets, the objective output bitrate (in kbps) that the
encoder should achieve [3]. In the tests, this parameter took
values in the range 2000–8000 kbps with steps of 2000 kbps
for the full HD sequences; in the range 5000–25,000 kbps
with steps of 5000 kbps for the 4 k sequence. The complete
set of parameters used in the encoding session is as follow:

Table 2 Summary of sample
clips’ specifications

Old town: Camera on helicopter, slow constant and non-uniform motion, highly detailed. Pedestrian area:
Fixed camera, big sprites fastly moving in front of the camera, chaotic object movements. Rush hour: Fixed
and tilting camera, big and small sprites slowly moving, highly detailed and noisy. Tractor: Camera follow-
ing a big moving sprite, panning, zooming chaotic object movement. Big buck bunny: CGI sequence, pan-
ning, fast moving sprite, chaotic object movement, scene change

Clip # frames Resolution Ratio Format

Old town 500 1080p 16:9 YUV420

Pedestrian area 375 1080p 16:9 YUV420

Rush hour 500 1080p 16:9 YUV420

Tractor 690 1080p 16:9 YUV420

Big buck bunny 90 2160p 16:9 YUV420

 Journal of Real-Time Image Processing

1 3

Fig. 10 Encoding performance
achieved by the different GPU
kernels on the test sequences
in Table 2. On the left: average
image quality, expressed as
average PSNR (dB), as function
of the data rate. On the right:
average encoding frame time (s)

2 3 4 5 6 7 8
Bitrate (kbps)

33.5

34

34.5

35

35.5

36

36.5

P
S

N
R

 (
dB

)

Old town (FullHD)

2 3 4 5 6 7 8
Bitrate (kbps)

0.4

0.6

0.8

1

1.2

1.4

1.6

A
vg

 fr
am

e
tim

e
(s

ec
)

2 3 4 5 6 7 8
38

39

40

41

42

43
Pedestrian area (FullHD)

2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

2 3 4 5 6 7 8

40.5

41

41.5

42

42.5

43

Rush hour (FullHD)

CPU
GPU-FAST
GPU-SPLITMV
GPU-TEX

2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7

34

35

36

37

38

39

40

Tractor (FullHD)

2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

5 10 15 20 25

42

44

46

48

50

Big buck Bunny (4K)

5 10 15 20 25

1

1.5

2

2.5

Journal of Real-Time Image Processing

1 3

Figure 10 shows the PSNR (left column) and the ET
(right column), as a function of the target-bitrate,
for the reference and the three versions of the proposed VP8
encoder, considering all video sequences listed in Table 2.
Reference encoder cpU is denoted by cyan dash–dot lines,

vpxenc inputFile.y4m -o outputFile.webm --cpu-used=0 --target-bitrate=

--auto-alt-ref=1 --lag-in-frames=25 --kf-min-dist=0 --kf-max-dist=99999
--static-thresh=0 --min-q=0 --max-q=63 --arnr-type=3 --arnr-maxframes=7
--arnr-strength=3 --drop-frame=0 --best --psnr --codec=vp8

GPU-faSt by red lines, GPU-Splitmv by yellow lines, and
GPU-tex by violet lines.

The PSNR curves show that the quality provided by
GPU-tex is very close to the one achieved by the refer-
ence encoder for every test sequence, while GPU-faSt and
GPU-Splitmv yield slightly lower values than the reference
encoder; however, these small differences are hardly perceiv-
able during the playback of the encoded sequences.

The three versions of the proposed encoder always exhibit
significantly lower ET values than the reference encoder.
The GPU-faSt version achieves on average a ×4 speed-up,
with a peak value of ×6.3 in one test, while GPU-Splitmv
and GPU-tex show an average speed-up of ×2 and ×1.5 ,
respectively. As expected, the complexity increase of GPU-
Splitmv and GPU-tex kernels affects the overall speed-up
of the entire encoding process. However, this drawback is
partially balanced by the exploitation of the Assembly-opti-
mized SAD, which decreases the SAD computation time up
to 75% . The average speed-ups achieved by the three GPU
accelerated kernels computed on the pool of test clips of
Table 2 are shown in Fig. 11.

To test the efficiency of the technique against differ-
ent GPU architectures (e.g., different number of cores per
SM), we also tested the proposed kernels on three different
CUDA architectures, namely Maxwell (on a GeForce GTX
980—compute capability: 5.2), Kepler (Tesla K40—com-
pute capability: 3.5) and Pascal (Tesla P100—compute
capability: 6.0). Table 3 reports the average speed-ups
achieved by the overall encoding processes, distinct for
GPUs and kernels. In particular, the average values have
been computed taking into account all video sequences
listed in Table 2 and all bitrates chosen in the previous test.
As Table 3 shows, the performance of the three devices
is comparable, with a slight predominance of the Max-
well architecture. This predominance, in spite of the lower
clock rate and memory bandwidth of the Maxwell device,
is a consequence of the algorithmic design choices, which
tailored the kernel to this architecture, such as the use of
128-thread blocks on a 128 cores per SM architecture to
encode a single macroblock.

4.3 Multi‑thread performance analysis

The proposed GPU–CPU cooperative encoder has also been
tested in a multi-thread environment, to assess its scalability
and to verify the effectiveness of the cooperation among the

2 4 6 8
Bitrate (kbps)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
S

pe
ed

up
Single-CPU-thread average speedups

CPU / GPU-FAST
CPU / GPU-SPLITMV
CPU / GPU-TEX

Fig. 11 Solid lines represent the average speed-ups achieved by the
three GPU-accelerated encoder versions with respect to the CPU ref-
erence encoder, running on the five sequences. Dotted lines show the
individual speed-up achieved by the sole GPU-faSt on all sequences

Table 3 Average speed-ups achieved by the three kernels: GPU-
faSt, GPU-Splitmv, and GPU-tex on three different CUDA devices:
GeForce GTX 980 (Maxwell), Tesla K40 (Kepler) and Tesla P100
(Pascal)

The first column reports the GPU architecture type (together with its
compute capability, CC), the second one reports the total number of
cores (and cores per SM). The following three columns report the
average speed-up achieved by the three kernels, averaged over all
the considered speed/quality (bitrate) settings and over all five test
sequences

Speed-up: GPU architecture comparison

GPU architecture (CC) #cores (cores/SM) faSt Splitmv tex

Maxwell (5.2) 2048 (128) × 3.10 × 1.90 × 1.48

Kepler (3.5) 2880 (192) × 2.77 × 1.63 × 1.25

Pascal (6.0) 3584 (64) × 2.94 × 1.61 × 1.33

 Journal of Real-Time Image Processing

1 3

GPU resources and multiple CPU cores. To this aim, we
performed the same tests described in the previous section,
using the same hardware configuration as the single-thread
test, but varying the number of CPU threads assigned to the
process. Hyperthreading was active in all the following tests,
with each thread pinned to a processing core.

To assess the performance in a multi-thread environ-
ment, we have carried out two different experiments. Since
the main focus of this work is the computation speed, the
main experiment is focused on a detailed analysis of GPU-
faSt, our fastest encoder. In addition, experiments have been
carried out with the other two encoders, GPU-Splitmv and

Fig. 12 Performance achieved
in multi-thread environment
by the GPU-faSt kernel on the
considered test sequences. Left:
average PSNR (dB) as function
of the data rate. Right: average
frame time (s)

2 3 4 5 6 7 8
Bitrate (kbps)

33

34

35

36

P
S

N
R

 (
dB

)

Old town (FullHD)

2 3 4 5 6 7 8
Bitrate (kbps)

0.5

1

1.5

A
vg

 fr
am

e
tim

e
(s

ec
)

2 3 4 5 6 7 8

38

39

40

41

42

43
Pedestrian (FullHD)

2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

40

41

42

43

Rush hour (FullHD)

1-th-CPU
4-th-CPU
8-th-CPU
12-th-CPU
1-th-GPU
4-th-GPU
8-th-GPU
12-th-GPU

2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 7

34

36

38

40

Tractor (FullHD)

2 3 4 5 6 7

0.5

1

1.5

2

5 10 15 20

40

42

44

46

48

Big buck Bunny (4K)

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Journal of Real-Time Image Processing

1 3

GPU-tex, to evaluate how their speed varies over the num-
ber of available CPU cores.

Figure 12 shows the results achieved by GPU-faSt, in
terms of PSNR (left column) and ET (right) versus the dat-
columna rate, when launching 1, 4, 8, and 12 CPU threads.
The reference encoder performances (dash–dot lines) are
compared with the GPU-faSt encoder (solid lines), both in
a multi-threaded environment. Each line, both dash–dotted
and solid, denotes a test run where a different number of
CPU threads was assigned to the process, specifically 1, 4,
8 and 12.

The plots show that, as in the single-thread case, the
GPU–CPU approach keeps the image quality unchanged,
while obtaining a substantial speed-up. They also confirm
that the GPU-faSt kernel scales well in a multi-thread envi-
ronment, as the computation speed is roughly proportional
to the number of threads. These graphs indicate a sort of
“equivalence” between GPU–CPU and CPU-only archi-
tectures: considering, for instance, the execution time, the
graphs suggest that a system with two CPU cores and one
GPU device can provide approximately the same perfor-
mance as a four-CPU core system.

Figure 13 shows the results of the speed-up tests for the
three developed kernels, reported in a comparative way. The
values reported in the plots represent the speed-up factor
(defined as the processing time ratio, with vs without GPU)
averaged over the different encoding data rates, for all the
considered test sequences. The plots show that, as the num-
ber of CPU cores increases, the three kernels actually lose

performance, with respect to the CPU-only algorithm. The
most significant loss occurs for GPU-faSt, where the speed-
up factor decreases by approximately 45% going from 1 to
12 CPU cores. The performance loss with many CPU cores
available can be explained as a consequence of the system
architecture, where the communication channel between the
host and the GPU (the PCI-Express bus) is shared by all
CPU cores, thus causing increasing communication latencies
as the number of CPUs grows.

5 Conclusions

In this paper we present the design and the implementa-
tion of a VP8 video encoder that exploits a cooperative
interaction between multicore (CPU) and manycore (GPU)
resources. As the experimental results have shown, the pro-
posed technique can achieve, in the best conditions, up to
× 6 speed-up with respect to the mostly optimized CPU-
only version of the VP8 WebM encoder [1], with minimum
degradation of the visual quality. Moreover, the presented
results show how the obtained performance improvements
remain so significant also when multiple CPU cores are
available, proving the effectiveness of the multicore/many-
core cooperation and the good scalability of the proposed
approach.

Among all possible directions for future research work,
we are interested in further investigating the performance in
multi-thread environments, which can be considered as the
standard situation in HPC scenarios.

Considering possible further software development, the
encouraging results obtained in terms of speed-up vs. qual-
ity suggest to extend the proposed approach to the most
recent encoding standards, such as VP9, AOMedia AV1,
and HEVC. Despite the significant differences between
these new standards and VP8, the way they all resort to
motion estimation is quite similar, therefore such exten-
sions could represent a reasonable effort yielding significant
improvements.

References

 1. libvpx code repository. https ://chrom ium.googl esour ce.com/
webm/libvp x (2016)

 2. WebM: an Open Web Media Project. https ://www.webmp rojec
t.org (2016)

 3. WebM project—VP8 encode parameter guide. https ://www.
webmp rojec t.org/docs/encod er-param eters (2016)

 4. Italtel-Unimi—github repository. https ://githu b.com/Italt el-Unimi
(2017)

 5. NVIDIA CUDA C programming guide, Version 8.0. NVIDIA
Corp. http://docs.nvidi a.com/cuda/cuda-c-progr ammin g-guide
(2017)

1 4 8 12
#CPU-theads

1

1.5

2

2.5

3

3.5

4

4.5

S
pe

ed
up

Multi-CPU-thread average speedups

CPU / GPU-FAST
CPU / GPU-SPLITMV
CPU / GPU-TEX

Fig. 13 Solid lines represent the average speed-ups achieved by the
three GPU-accelerated encoder versions with respect to the CPU ref-
erence encoder. Values have been computed averaging on both differ-
ent encoding bitrates and the five sequences. Dotted lines show the
individual speed-up achieved by the sole GPU-faSt for all sequences

https://chromium.googlesource.com/webm/libvpx
https://chromium.googlesource.com/webm/libvpx
https://www.webmproject.org
https://www.webmproject.org
https://www.webmproject.org/docs/encoder-parameters
https://www.webmproject.org/docs/encoder-parameters
https://github.com/Italtel-Unimi
http://docs.nvidia.com/cuda/cuda-c-programming-guide

 Journal of Real-Time Image Processing

1 3

 6. NVIDIA CUDA Toolkit 8.0, NVIDIA Corp. https ://devel oper.
nvidi a.com/cuda-toolk it (2017)

 7. NVIDIA, Parallel Thread Execution ISA—Application Guide,
v5.0, NVIDIA Corp. http://docs.nvidi a.com/cuda/pdf/ ptx_
isa_5.0.pdf (2017)

 8. libx264 project and code repository. http://www.video lan.org/
devel opers /x264.html (2017)

 9. WebM Project—Contribution guidelines. Tech. rep. https ://chrom
ium.googl esour ce.com/webm/contr ibuto r-guide (2017)

 10. Xiph.org video test media (derf’s collection). https ://media .xiph.
org/video /derf (2017)

 11. Albanese, A., Crosta, P., Meani, C., Paglierani, P.: Gpu-acceler-
ated video transcoding unit for multi-access edge computing sce-
narios. In: The Sixteenth International Conference on Networks
(ICN2017), Venice, 23–27 April, pp. 143–147 (2017)

 12. Bankoski, J., Koleszar, J., Quillio, L., Salonen, J., Wilkins, P., Xu,
Y.: VP8 data format and decoding guide (rfc 6386). http://www.
rfc-edito r.org/info/rfc63 86 (2011)

 13. Bankoski, J., Wilkins, P., Xu, Y..: Technical overview of VP8, an
open source video codec for the web. In: 2011 IEEE International
Conference on Multimedia and Expo, pp. 1–6 (2011)

 14. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C
Programming. Wiley, Indianapolis, Indiana (2014)

 15. Cheung, N.M., Fan, X., Au, O.C., Kung, M.C.: Video coding on
multicore graphics processors. IEEE Signal Process. Mag. 27(2),
79–89 (2010)

 16. CISCO Corporation: The Zettabyte Era: Trends and Analysis.
http://www.cisco .com/c/en/us/solut ions/colla teral /servi ce-provi
der/visua l-netwo rking -index -vni/vni-hyper conne ctivi ty-wp.html
(2017)

 17. Comi, P., Crosta, P.S., Beccari, M., Paglierani, P., Grossi, G., Ped-
ersini, F., Petrini, A.: Hardware-accelerated high-resolution video
coding in virtual network functions. In: 2016 European Confer-
ence on Networks and Communications (EuCNC), pp. 32–36
(2016)

 18. Hayes, A.B., Li, L., Chavarría-Miranda, D., Song, S.L., Zhang,
E.Z.: Orion: A framework for gpu occupancy tuning. In: Proceed-
ings of the 17th International Middleware Conference, Middle-
ware ’16, pp. 18:1–18:13. ACM, New York (2016)

 19. Jiang, W., Wang, P., Long, M., Jin, H.: A novel parallelized motion
estimation algorithm for GPU based video encoding. In: 2016
IEEE 17th International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), pp. 1–8 (2016)

 20. Ko, Y., Yi, Y., Ha, S.: An efficient parallel motion estimation
algorithm and x264 parallelization in cuda. In: Proceedings of
the 2011 Conference on Design Architectures for Signal Image
Processing (DASIP), pp. 1–8 (2011)

 21. Marth, E., Marcus, G.: Parallelization of the x264 encoder using
opencl. In: International Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 2010, Los Angeles, July
26–30, 2010, Poster Proceedings, p. 72:1 (2010)

 22. NVIDIA Corporation: High performance video encoding with
NVIDIA GPUs. In: 2016 GPU Technology Conference. http://
on-deman d.gpute chcon f.com/gtc/2016/ prese ntati on/s6226 -abhij
it-patai t-high-perfo rmanc e-video .pdf (2016)

 23. Paglierani, P., et al.: Network functions implementation and test-
ing. Tech. rep., T-NOVA Project Deliverable D5.31 http://www.t-
nova.eu/resul ts (2015)

 24. Paglierani, P., Grossi, G., Pedersini, F., Petrini, A.: GPU-based
VP8 encoding: Performance in native and virtualized environ-
ments. In: 2016 International Conference on Telecommunications
and Multimedia, TEMU 2016, pp. 1–5 (2016)

 25. Radicke, S., HaHn, J.-U., Wang, Q., Grecos, C.: Many-core HEVC
encoding based on wavefront parallel processing and GPU-accel-
erated motion estimation, In: Obaidat, M., Holzinger, A., Filipe,
J. (eds.) E-Business and telecommunications: 11th international
joint conference, ICETE 2014, Vienna, Austria, 28–30 August
2014. Communications in computer and information science, vol.
554, pp. 393–417. Springer (2015)

 26. Sankaraiah, S., Shuan, L.H., Eswaran, C., Abdullah, J.: Perfor-
mance optimization of video coding process on multi-core plat-
form using gop level parallelism. Int. J. Parallel Program. 42(6),
931–947 (2014)

 27. Shah, N.N., Dalal, U.D., Prajapati, P.H.: Multi-point search pat-
tern for fast search motion estimation of high resolution video
coding. In: I. J. Image, Graphics and Signal Processing (IJIGSP),
pp. 60–68 (2015)

 28. Shahid, M.U., Ahmed, A., Martina, M., Masera, G., Magli, E.:
Parallel h.264/AVC fast rate-distortion optimized motion estima-
tion by using a graphics processing unit and dedicated hardware.
IEEE Trans. Circuits Syst. Video Technol. 25(4), 701–715 (2015)

 29. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast
block-matching motion estimation. IEEE Trans. Image Process.
9(2), 287–290 (2000)

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://docs.nvidia.com/cuda/pdf/%20ptx_isa_5.0.pdf
http://docs.nvidia.com/cuda/pdf/%20ptx_isa_5.0.pdf
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
https://chromium.googlesource.com/webm/contributor-guide
https://chromium.googlesource.com/webm/contributor-guide
https://media.xiph.org/video/derf
https://media.xiph.org/video/derf
http://www.rfc-editor.org/info/rfc6386
http://www.rfc-editor.org/info/rfc6386
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://on-demand.gputechconf.com/gtc/2016/%20presentation/s6226-abhijit-patait-high-performance-video.pdf
http://on-demand.gputechconf.com/gtc/2016/%20presentation/s6226-abhijit-patait-high-performance-video.pdf
http://on-demand.gputechconf.com/gtc/2016/%20presentation/s6226-abhijit-patait-high-performance-video.pdf
http://www.t-nova.eu/results
http://www.t-nova.eu/results

	Enhanced multicore–manycore interaction in high-performance video encoding
	Abstract
	1 Introduction
	2 Overview and related work
	2.1 Overview of the VP8 encoding scheme
	2.2 Related work

	3 The proposed cooperative CPU–GPU VP8 encoding
	3.1 The cooperative approach: general architecture
	3.2 Using streams to minimize latencies
	3.3 SM-optimized diamond search
	3.3.1 Absolute difference computation
	3.3.2 Sum of absolute differences
	3.3.3 Minimum search
	3.3.4 Search refinement

	3.4 Assembly-optimized SAD
	3.5 Exploiting the texture memory for sub-pixel estimation
	3.6 CPU–GPU architecture tuning

	4 Experimental results
	4.1 General setup
	4.2 Single-thread performance analysis
	4.3 Multi-thread performance analysis

	5 Conclusions
	References

