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Abstract
This paper presents an efficient cooperative interaction between multicore (CPU) and manycore (GPU) resources in the 
design of a high-performance video encoder. The proposed technique, applied to the well-established and highly optimized 
VP8 encoding format, can achieve a significant speed-up with respect to the mostly optimized software encoder (up to ×6), 
with minimum degradation of the visual quality and low processing latency. This result has been obtained through a highly 
optimized CPU–GPU interaction, the exploitation of specific GPU features, and a modified search algorithm specifically 
adapted to the GPU execution model. Several experimental results are reported and discussed, confirming the effectiveness 
of the proposed technique. The presented approach, though implemented for the VP8 standard, is of general interest, as it 
could be applied to any other video encoding scheme.

Keywords  Video coding · VP8 · CPU–GPU interaction · Hybrid/heterogeneous architectures · Parallel processing · 
NVIDIA CUDA

1  Introduction

Today, video data transmission covers about 75% of the 
global Internet traffic, and this percentage is expected to 
grow in the near future [16]. Video processing-based func-
tions, and in particular higher-resolution video encoders, 
have thus become key functions for network operators, in 
their continuous attempt to offer innovative services and 
attract customers.

To respond to the increased interest in cloud-based video 
services, video encoders have been recently implemented as 
virtual network functions (VNFs), which are software appli-
ances running on commodity servers in the cloud. Video-
processing VNFs have also attracted the attention of network 

operators in the multi-access edge computing context, since 
their aim is to offer innovative video services to the users 
by running software appliances at the network edge [11].

High-resolution video encoders, however, are not only 
highly compute-intensive workloads; often, they are also 
subject to strict time constraints, to minimize transmission 
latency and guarantee an adequate quality of service to 
the users. Conversely, the video decoding process is usu-
ally much less demanding in terms of compute resources; 
hence, researchers have mainly focused their attention on 
video encoding schemes [23].

To cope with the huge need of high-performance com-
puting resources brought about by video applications, HW 
implementations of some encoding algorithms are now 
available [2, 22]. Nonetheless, owing to the high variety of 
available video encoding schemes and the operators’ urge for 
flexibility in service management, software video encoders 
running on commodity servers in the cloud are often pre-
ferred to proprietary solutions based on bespoke hardware 
[17].

The open source community has further contributed to 
the success of software video encoders. In particular, the 
open source X264 [8] and WebM [2] projects, implement-
ing the widely used H.264 and VP8/VP9 schemes, respec-
tively, can obtain an impressive compute performance. For 
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instance, X264 can achieve up to a ×1000 speed-up com-
pared to the JM H.264 standard reference encoder [20, 23]. 
Such results have been obtained by thoroughly exploiting the 
optimized SSE/MMX/AVX assembly instruction set, which 
enables instruction-level parallelism (ILP) on register vec-
tors up to 512-bit-wide. Further performance improvements 
can be achieved when multi-core x86 CPU architectures are 
available, as video encoding algorithms efficiently scale on 
multiple cores, and can therefore greatly benefit from mul-
tithreading capabilities [26].

Another very promising approach to further accelerate 
software video encoders is based on the exploitation of the 
manycore architectures, which are nowadays commonly pro-
vided by off-the-shelf graphical processing units (GPUs). 
Most of such techniques exploit a CPU–GPU cooperative 
approach [15]. They usually run the most demanding tasks 
of the encoding process (typically, motion estimation, ME), 
on the GPU, while the CPU carries out the remaining func-
tional blocks. According to the results reported in literature, 
GPU-based schemes can achieve significant compute per-
formance improvements with respect to CPU-only software 
implementations. However, most of the algorithms proposed 
in literature are compared to the corresponding standard 
reference encoder, which is typically not optimized at all 
(such as the JM encoder for H.264), and often implements 
the still prohibitive (from the computational point of view) 
full search ME on CPU [20]. Conversely, to the best of the 
authors’ knowledge, only few works compare the achieved 
compute performance to the one provided by the fully accel-
erated version (that is, a version exploiting efficiently all 
ILP features, like MMX/SSE/AVX) of x264 or WebM VP8 
encoders. In particular, in [20, 23] GPU-accelerated H.264 
encoders have been compared to x264, while [17, 24] report 
some preliminary results about a GPU-accelerated VP8 ver-
sion. Such works clearly highlight that, when compared to 
the fully accelerated version of x264 or WebM VP8, the 
known collaborative GPU-based techniques do not exhibit 
significant compute performance improvements [21]. For 
instance, [20] reports a speed improvement of only 20% with 
respect to x264.

Furthermore, when the exploitation of manycore GPU 
resources is combined with implementations that effectively 
use ILP-Assembly instructions and the multicore architec-
ture, the achieved performance gain is usually modest. For 
instance, a comparison of the GPU-accelerated x264 encoder 
(using OpenCL-based motion estimation techniques [21]) to 
the x264 CPU-only version [23] yields disappointing results. 
Experiments performed by the authors with libvpx [1, 
2] have confirmed the difficulties in achieving a significant 
computation speed-up when combining multicore (CPU) 
with manycore (GPU) resources [23]. In fact, the use of CPU 
multithreading [23] further complicates the achievement of 
efficient synergy in GPU–CPU collaborative algorithms, 

as effective cooperation requires strict synchronization not 
only among GPU cores, but also between each CPU thread 
and its corresponding GPU resources. Thus, although many 
optimized GPU–CPU algorithms have been proposed in the 
literature for mature and widespread video formats like VP8 
and H.264, to the best of the authors’ knowledge, there are 
no encoding schemes able to achieve a significant speed-up 
compared to the best CPU-only implementations exploiting 
Assembly-optimized ILP [8].

This paper proposes an encoding scheme that combines 
the use of manycore GPU’s with CPU ILP-based accelera-
tion techniques in an efficient way, obtaining significant 
speed-up with respect to the best benchmarks. To this pur-
pose, the paper analyzes the problem of effectively combin-
ing highly optimized software encoders with GPU resources. 
The well-established open source VP8 WebM encoder [1] 
has been used as benchmark. This encoder, in fact, exploits 
both the full set of optimized Assembly instructions and the 
CPU multicore architecture. The presented modified VP8 
scheme, implemented in CUDA C running on NVIDIA GPU 
resources, can achieve up to × 6 speed-up with respect to 
the mostly optimized version of the reference VP8 WebM 
encoder (libvpx), with minimum degradation of visual 
quality.

The techniques presented in this paper, applied to 
VP8, could be potentially used also in more recent coding 
schemes, such as VP9 and HEVC. In particular, the proposed 
approach can guarantee sequential raster-order processing of 
video frame macroblocks by the CPU, introducing minimum 
latency. For this reason, we can adopt the well-known rate-
distortion optimized (RDO) techniques for motion estima-
tion [15, 28], widely used in recent coding schemes, thus 
overcoming one of the most challenging drawbacks in ME 
implementations on GPU’s [15]. The developed algorithm 
has been archived in the WebM Project repository, and is 
thus available for further investigations to the research com-
munity [4].

The paper is structured as follows: Sect. 2 gives an over-
view of the VP8 encoding scheme and of the literature on 
efficient computation of the ME in the VP8 encoding stand-
ard. Section 3 describes the proposed algorithm. Section 4 
presents the achieved experimental results. Finally, some 
conclusions are drawn in Sect. 5.

2 � Overview and related work

2.1 � Overview of the VP8 encoding scheme

Figure 1 illustrates the functional diagram of the VP8 encod-
ing scheme. At this level of detail, this diagram is com-
mon to all modern video encoding standards. Each frame 
of the video stream is divided into square blocks of pixels 
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(called macroblocks, MB), each consisting of 16 × 16 lumi-
nance pixels and two 8 × 8 blocks of chrominance pixels. 
The macroblocks are processed sequentially (left-to-right, 
top-down); for each block MBi , the best predicting mac-
roblock (i.e., the one maximally similar to MBi ) is chosen 
among the previously encoded MB. Then, the image dif-
ference between MBi and the best predicting macroblock, 
called the residue, is transformed using either the discrete 
cosine transform (DCT) or the Walsh–Hadamard transform 
(WHT), and the transformed coefficients are quantized and 
encoded, producing the final coded video bitstream [2, 12]. 
As Fig. 1 shows, the best predicting MB can be found either 
through intra-frame prediction, meaning that it is chosen 
among the already coded MBs of the same frame, or through 
inter-frame prediction, that is, chosen among neighboring 
MBs belonging to a previous frame. To this aim, the algo-
rithm selects some of the previous frames (called the last 
frame, the golden frame, and the alternate reference frame) 
during the encoding process, to consider them as possible 
sources of the inter-frame predicted macroblock. In case of 
inter-frame prediction, the optimal inter-frame macroblock 
is searched in one of the reference frames, by means of a 
motion estimation (ME) procedure, which finds the 16 × 16 
window that is maximally similar (in the sense of minimal 
pixel-by-pixel luminance/chrominance difference) to the 
currently analyzed macroblock. The result of this search is 
a motion vector (MV) representing the hypothetical motion 

of the macroblock from the reference (previous) frame to 
the current frame.

Once the best predicting MB is found, the pixel-by-pixel 
difference between MBi and its best prediction, called the 
residue, is transformed (through DCT or WHT) and the 
resulting coefficients are quantized and finally entropy coded 
through an arithmetic encoding scheme, together with all 
information describing the MB. The coded MB is then sent 

Fig. 1   Block diagram of the 
VP8 encoding scheme. Motion 
estimation plays a major role in 
the inter-frame prediction and it 
is one of the most computation-
ally intensive tasks of the whole 
encoding process

Fig. 2   Average encoding times (in ms) for the major functional 
blocks of the encodingFrame() function of the VP8 reference 
encoder for a sequence of 100 frames in Full HD resolution. Func-
tional blocks involving motion estimation (NewMV and SplitMV) are 
responsible for over 70% of the encoding frame time
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(or stored) as part of the coded stream but, at the same time, 
it undergoes the inverse process, that is the same decoding 
process carried out at the receiver side, and possibly taken as 
reference for intra-frame or inter-frame prediction.

In most current encoding schemes, like AVC/H.264, 
motion estimation is the most demanding functional block, 
in terms of computational effort [20, 28]. Since all mod-
ern encoding schemes resort to motion estimation in a very 
similar way, it is reasonable to assume that ME is the most 
demanding function also in VP8. To verify this assumption, 
we carried out some profiling of the reference VP8 encoder, 
by measuring the execution time of each major functional 
block involved in the encoding of a test sequence. Figure 2 
reports a summary of this experiment: the functional blocks 
NewMV and SplitMV, which make use of motion estima-
tion, take more than 70% of the encoding frame time, on 
average.

Besides that, motion estimation is one of the few tasks 
that can be massively parallelized (each MB can be com-
puted independently and therefore in parallel with the oth-
ers). This is the reason why we chose, in our approach, to 
delegate the motion estimation tasks to the GPU, while keep-
ing the inherently sequential tasks on the CPU, similarly as 
in many GPU–CPU cooperative approaches to high-perfor-
mance video encoding.

2.2 � Related work

Accelerating ME can provide significant compute perfor-
mance improvements, with reasonably low implementation 
efforts. The WebM VP8 software-only encoder available at 
[1], used in this work as the reference VP8 software encoder, 
suitably combines several techniques to perform ME in an 
effective and highly optimized way.

As in most video encoding standards, in VP8 ME is car-
ried out in the luminance plane of the YUV color space [2, 
12, 13]. As seen in the previous section, three different refer-
ence frames are used to evaluate the motion vector (MV) of 
a macroblock (MB): the last frame, the Golden Frame and 
the alternate reference frame [12, 13]. Five different motion 
estimation modes are available: ZEROMV, NEARESTMV, 
NEARMV, NEWMV and SPLITMV. ZEROMV indicates 
no motion of the current MB with respect to the reference 
frame, while NEARESTMV and NEARMV re-use the two 
most similar MVs among those of the already coded neigh-
boring MBs in the current frame. NEWMV, conversely, 
implies the calculation of a new MV for the current MB (a 
16 × 16 pixel block), while SPLITMV divides the MBs in 
sub-blocks of different pixel sizes (4 × 4, 8 × 8, 16 × 8 or 8 
× 16), each possibly with its own MV.

To exploit both spatial and temporal correlation among 
frames, VP8 processes MBs in sequential, raster-scan 
order. This constraint also holds for most recently proposed 

video codecs, such as H.264, HEVC or VP9, in which this 
sequential order is exploited by advanced RDO-ME tech-
niques [28]. In RDO-ME, the algorithm first finds a set of 
candidate motion vectors and then selects for transmission, 
among all candidates, the MV that minimizes a weighted 
function of distortion and rate. This algorithm therefore 
needs the MVs of the preceding MBs, as in VP8, to evaluate 
the so-called predicted motion vector (PMV). The need to 
proceed in sequential order causes an unavoidable depend-
ency between the MBs of the same frame, and represents one 
of the major obstacles to the parallelization of ME.

To accelerate ME, the reference VP8 encoder can use 
multithreading [2], so as to exploit data parallelism on the 
CPU. To overcome the MB dependency constraint, in this 
implementation [1] ME is performed along the frame diago-
nal: the first CPU thread starts processing the macroblocks 
of the first row; the second thread starts processing the sec-
ond row as soon as the neighboring MBs have been pro-
cessed by the first thread, and so on, for all the available 
threads. As in X264, MV calculation is based on a modi-
fied diamond search technique [29]. In the algorithm, the 
initial position is estimated from the motion vectors of the 
neighboring MBs, which are combined to give a predicted 
MV [15, 20] (in the following, this predicted MV will be 
referred to as the PMV from diamond search, or PMVDS, 
because its role is conceptually different from that of PMV). 
A large-sized diamond is moved around in the reference 
frame until a low energy area is found. Successively, a sub-
pixel search is performed, up to quarter-pixel resolution.

The above ME approach results in a highly optimized and 
effective ME procedure, that provides a very good trade-off 
between computational efficiency and high visual quality. 
Designing a GPU-accelerated ME VP8 encoding algorithm 
that outperforms the WebM reference encoder, is a complex 
activity that poses various challenges, briefly described in 
the following:

–	 Many GPU-based techniques address ME parallelization 
for H.264 or HEVC [19, 25]. In particular, in [28] a two-
step procedure is proposed, which performs a MV coarse 
search in the first step and a refined search in the second 
step. The coarse search supplies the PMV to the RDO–
ME algorithm, which selects the MV to be transmitted. 
However, the introduction of such a scheme into the VP8 
encoder would significantly alter its highly optimized 
software architecture, thus implying non-negligible 
integration efforts. Also, since such algorithm performs 
full search ME, it is questionable whether its use in VP8 
would lead to an actual speed-up against the software-
only version [15]. Similar considerations hold for most 
ME algorithms performing full search, as discussed in 
Sect. 1.
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–	 A different approach to ME parallelization suggests to 
replace the CPU ME procedure with an equivalent ME 
function running on the GPU, processing MBs sequen-
tially. This approach has been adopted in X264 for the 
H.264 codec, achieving a performance gain up to 55% 
[21]. However, the degree of parallelism that can be 
achieved by processing a single MB is very low, and can 
thus provide a quite disappointing performance. Further 
tests carried out using the ME technique suggested in 
[21] are reported and discussed in [23]; they show that 
in most cases the achieved gain is close to 5%.

–	 The off-diagonal approach to process MBs proposed in 
[15] can be successfully applied in a multicore CPU, with 
tens of parallel cores, but would not allow to fully exploit 
the massive parallelism of a GPU, which provide thou-
sands of cores.

–	 In ME procedures running on highly parallel architec-
tures, the search for the initial MV cannot be initialized 
to the PMVDS value, since different MBs are processed 
independently and simultaneously [15]. This may affect 
the performance of the ME process, in particular when 
the MV search area within the reference frame is small. 
This loss can be compensated using a wider MV search 
area, however, at higher computational costs.

The proposed GPU-based technique processes MBs in 
parallel and is able to overcome the described difficulties, 
leading to significant speed improvements, as shown by 
the experimental results presented in Sect. 4. In particular, 
our technique can be straightforwardly introduced in the 
existing reference VP8 implementation [1], preserving its 
highly optimized software architecture. The key features of 
the proposed approach are the exploitation of task stream-
ing techniques and the development of a modified diamond 
search-like algorithm, as described in the next section.

3 � The proposed cooperative CPU–GPU VP8 
encoding

3.1 � The cooperative approach: general architecture

The key idea of the proposed approach is to exploit the GPU 
computing power to perform the ME of the current frame 
with respect to the three reference frames, thus relieving the 
CPU (running the mainstream encoding process) from such 
burdensome task. The goal is to provide the CPU with the 
computed motion vectors as fast as possible, while the MBs 
are processed by the CPU in sequential order.

Naturally, as discussed in Sect. 2, during this cooperative 
process two conflicting requirements could arise. On one 
hand, the GPU should concurrently process as many MBs 
as possible, to fully exploit data parallelism and enhance the 

compute performance. On the other hand, to avoid laten-
cies in the CPU–GPU synchronization, only small chunks 
of MBs should be processed in parallel by the GPU, so that 
their MVs could be quickly returned to the CPU.

To cope with such opposite needs, in this approach the 
ME procedure running on the GPU is split into sub-tasks, 
which are launched sequentially as CUDA streams, each 
working on a subset of N macroblocks. This cooperative 
ME approach can be summarized as follows:

–	 Each time a new frame (the current frame) is available 
for encoding, it is copied into the GPU’s device memory, 
by performing a synchronous copy (the CPU waits until 
the copy is completed before continuing with the next 
instruction). This ensures that the full frame is available 
as the ME starts in the GPU.

–	 As soon as the frame copy has completed, the GPU starts 
computing the ME between the current frame and the 
three reference frames. The GPU performs ME on groups 
of N macroblocks in parallel, and copies the results back 
into the CPU memory. The ME kernels on the GPU are 
started asynchronously, i.e., the CPU launches their exe-
cution on the GPU, and immediately continues to the 
next instruction. From this point on, GPU and CPU work 
in parallel and independently.

–	 The CPU proceeds with the sequential encoding pro-
cess, one MB after the other. Each time this algorithm 
needs a MV for a MB (e.g., to evaluate the opportunity 
of inter-frame coding), it can simply resort to the already 
available GPU-computed MVs, thus saving the time that 
would be otherwise necessary for ME computations.

It is clear that the overall interaction between CPU and GPU 
must be suitably designed, to minimize the CPU latencies 
that could occur if waiting for MVs to become available.

3.2 � Using streams to minimize latencies

As said before, it is of crucial importance that the MVs com-
puted by the GPU are available before the CPU requires 
them. For this reason, the GPU kernel for ME has been 
structured in such a way as to produce the first results (the 
MVs of the initial frame MBs) as soon as possible. This has 
been accomplished using CUDA streams.

The structure of this CPU–GPU cooperation is shown 
in Fig. 3. The asynchronous launch of the three ME ker-
nels (the same GPU kernel, launched on each of the three 
frame pairs: current frame vs. last frame, current vs. golden, 
and current vs. AltRef) causes the start of the three streams 
in sequence, beginning with the first grid of each stream 
(grid 0), working on the initial MBs. After completion of 
one grid, the next one is immediately scheduled in the GPU 
execution queue. Even if the GPU does not guarantee the 
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sequential order among different CUDA streams launched in 
parallel, the order shown in Fig. 3 is respected because each 
grid takes 100% of the CUDA resources, therefore only one 
grid is executed at a time. Consequently, all subsequent grids 
are scheduled and executed, for the three reference frames 
in sequence, in order of grid number (last frame/grid 0 → 
golden frame/grid 0 → AltRef frame/grid 0 → last frame/
grid 1 → … ), as shown in Fig. 3. To verify these tempo-
ral assumptions, they have been experimentally verified by 
analyzing the timing results provided by the CUDA profiler 
(nvvp).

Each kernel grid is composed of N CUDA blocks; the 
computation of the MV for each MB is assigned to a block, 
consisting of 128 CUDA threads running in parallel, on the 
128 GPU cores of a SM. Each kernel grid terminates with an 
asynchronous copy of its computed motion vectors back into 
the host memory. This operation is scheduled and carried out 
in parallel with the following grid execution, as the device-
to-host (D2H) copy engine works independently (and con-
currently) from the processing cores. This scheme is called 
two-way concurrency in CUDA devices [5, 14] (not con-
sidering here the concurrency of the CPU). Theoretically, 
three-way concurrency would be also achievable, by frag-
menting the initial synchronous copy of the current frame 
into streams, and thereby exploiting concurrent operation of 
the host-to-device (H2D) copy engine. In practice, however, 
we have experienced, by means of experimental tests, that 
the two-way concurrent scheme leads to higher speed, due to 
the additional overhead of the H2D management and to the 
fact that the time necessary for the entire H2D synchronous 
copy is short, compared to the overall encoding time.

As soon as the synchronous D2H copies are completed 
by the first grid (grid 0), for all the 3 reference frames, the 
encoding mainstream on the CPU can read the MVs of the 
first macroblocks, computed by the GPU within this grid. 
Referring to Fig. 3, if, in the time between the start of the 
frame encoding process and the completion of grid 0, the 
encoding process on the CPU needs the MV for one of these 
initial macroblocks, the CPU process must wait for the D2H 
copies of grid 0 to complete. The occurrence and duration of 
this possible latency, tW , depends on the time at which the 

CPU needs the first MV. The worst case, corresponding to 
the maximum value for tW , occurs when the CPU encoding 
thread requests the MV of the very first macroblock (the 
up-most and left-most one) using as reference the AltRef 
frame (processed at last by the GPU). In this case, tW would 
be slightly less than the total GPU execution time for grid 0, 
as the timing diagram in Fig. 3 shows. After then, under the 
reasonable assumption that the GPU grid execution time 
tg,GPU is significantly smaller than the time needed by the 
CPU to process the same set of macroblocks, tg,CPU , no CPU 
latency can occur anymore, as the GPU will be at least one 
grid ahead, and the CPU will therefore always find already-
computed MV’s.

As a consequence, the size of the grid N (being N the 
total number of macroblocks processed at once) strongly 
influences the processing speed: smaller grids increase the 
overhead for scheduling and launching, thus reducing the 
speed, whereas bigger grids increase the time needed for 
the generation and transmission to the CPU of the initial 
results (the first set of motion vectors), which increases the 
occurrence of the described CPU latency, as well as the 
maximum value of its duration, tW . The optimal grid size is 
therefore device-dependent, as it mainly depends from the 
tg, CPU∕tg, GPU ratio. For this reason, the optimal size N has 
been determined experimentally; for the hardware adopted 
in this work, the maximum speed has been obtained with 
grids containing two rows of macroblocks ( N = 144 for full 
HD resolution, N = 288 for 4 k), rather independent of the 
frame resolution.

Each grid, launched as a stream instance, is composed 
of CUDA blocks, organized to run in parallel on the whole 
GPU device. The adopted device (NVIDIA GeForce 
980GTX) is composed of 16 streaming multiprocessors 
(SM), each containing 128 processing cores. The grid is 
made of a number of blocks multiple of 16, so that 16 mac-
roblocks are scheduled in parallel. Each macroblock is then 
processed by a CUDA block in one SM. This choice pro-
vides several advantages:

–	 All SMs perform exactly the same task, thus leading to 
full efficiency in the exploitation of the GPU device.

Fig. 3   Temporal diagram of the 
CPU–GPU cooperation scheme: 
after a new frame is copied from 
the CPU’s (host) to the GPU’s 
(device) memory, the three 
ME kernels start in the GPU, 
organized as streams, to provide 
the MVs needed by the CPU at 
the beginning of the encoding 
process, therefore avoiding CPU 
latencies
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–	 The access to the data is perfectly parallelized among dif-
ferent SMs, as each SM works on a different macroblock.

–	 No data interchange is needed among different SMs, as 
each MB is processed independently from the others.

3.3 � SM‑optimized diamond search

As said before, each stream grid is composed of N CUDA 
blocks. Each of them is scheduled on one SM. Each block 
performs the motion estimation procedure on one MB, 
therefore our device is able to process 16 MBs perfectly 
in parallel. Each block is composed of 128 threads to have 
a one-to-one match between threads and processing cores 
within each SMX streaming multiprocessor. This ensures the 
real parallelism of all the threads, which are thus executed 
SIMD-like.

The search for the best motion vector is based on the 
classic diamond search algorithm, adopted as a standard in 
many encoding schemes, including VP8 and H264. In its 
original proposal [29], the diamond search algorithm adopts 
a diamond-shaped search space, according to the statistical 
distribution of the motion vectors, empirically obtained by 
analyzing a large set of videos taken as standard [10]. Fig-
ure 4 shows the originally proposed diamond search space.

It has to be considered, however, that the analysis giving 
this result was carried out on videos in CCIR ( 720 × 480 ) 
and CIF ( 360 × 240 ) pixel resolutions. In contemporary 
video resolutions, such as “Full HD” ( 1920 × 1080 pixel), 
it is reasonable to scale the search space accordingly (that 
is, 3× to 5× ). For this reason, we propose an adapted dia-
mond-shaped search space shown in Fig. 5. Our search space 
extends up to ±16 pixel horizontally and ±12 pixel verti-
cally. This search space covers, in proportion, a larger area 
than in the original case (accordingly to the scale ratio). A 
larger area is needed because our aim is to implement a one-
shot search instead of an iterative search, as in the original 
paper [29]. Eventually, we have implemented both solutions 
(one-shot and iterative). A comparison of their performance, 
shown in the experimental results, has evidenced that the 

two approaches yield different trade-offs between processing 
speed and image quality.

The motion estimation algorithm is composed of the fol-
lowing main steps.

3.3.1 � Absolute difference computation

For each of the 256 pixels of the considered macroblock, a 
thread computes the absolute difference between its lumi-
nance and that of the corresponding pixel in the reference 
frame (last, golden, or AltRef). Each SM thread computes 
the absolute difference for 4 pixels and sum them: more pre-
cisely, thread j, where j = 0⋯ 63 , computes pixels j + 64k , 
with k = 0⋯ 3 , as shown in Fig. 6. In this way, the 128 
threads of a SM compute the differences for 2 vectors of the 
map at the same time. All these differences are computed 
and stored in a 128 × 64 difference matrix located in the 
shared memory; the matrix element DM(i, j) contains the 

Fig. 4   Original diamond-shaped search space, as proposed in [29] for 
CCIR ( 720 × 480 ) and CIF ( 360 × 240 ) video resolutions

Fig. 5   The proposed diamond-shaped search space, optimized for 
contemporary video resolutions, like full HD ( 1920 × 1080 pixel). 
The search space consists of 127 vectors; this enables a motion search 
optimized for the 128 processor cores of a CUDA SMX streaming 
multiprocessor

Fig. 6   Computing the absolute difference: GPU thread i computes the 
sum of the absolute values of the luminance difference (current frame 
− reference frame) for the four pixels: i + 64k , k = 0, 1, 2, 3
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sum computed by thread j [that is, the SAD (sum of absolute 
differences) of the 4 pixels j + 64k , with k = 0⋯ 3 ], for the 
ith vector of the search map in Fig. 5.

Since the shared memory is local to each streaming multi-
processor, all threads within a block will share the same DM, 
thus they are all cooperating to the motion estimation for the 
same MB, but there will be a different DM in each of the 16 
blocks processed in parallel, corresponding therefore to 16 
independently and simultaneously computed macroblocks.

3.3.2 � Sum of absolute differences

Each thread computes the sum of the absolute differences 
(SAD) for the ith displacement vector. This is carried out 
using a vector reduction approach, executed sequentially by 
each thread over the ith row of DM, and in parallel over 
all the displacement vectors. This algorithmic approach 
involves the execution of 63 subsequent CUDA multiply-
and-accumulate (MAC) instructions, whereas a conventional 
iterative loop to compute the sum would execute 64 MAC 
instructions. Nevertheless, in the proposed approach the 
optimized access to the DM matrix in the shared memory 
leads to a significantly lower computation time. The final 
sum of the absolute differences (SAD), for each displace-
ment vector i is stored in the first column of the DM, i.e., 
DM(i, 0).

3.3.3 � Minimum search

The search for the minimum SAD value among the 127 
computed values is carried out through binary vector reduc-
tion in parallel by a subset of the available processing cores 
within each SM, taking just seven subsequent MAC instruc-
tions (as log2 128 = 7).

3.3.4 � Search refinement

The vector with the minimum SAD has been found among 
all motion vectors of the displacement map shown in Fig. 5. 
As the figure shows, this map is characterized by two-pixel 
resolution, as the minimum distance between neighbor-
ing points is mostly two pixels. For this reason, the above 
described search is followed by a second, finer search, in 
which the best displacement is found in the direct neigh-
borhood of the previously determined displacement, this 
time with pixel resolution. The algorithm for this refine-
ment phase is the same as that described above, except for 
the reduced displacement map with one-pixel resolution, 
composed of 15 vectors only (for the sake of efficiency, 16 
threads are used, one per vector plus one remaining inac-
tive), as shown in Fig. 7. This map will be centered on the 
previously determined MV, therefore the resulting best vec-
tor represents an additional displacement, that will be added 

to the vector obtained in the main search. At the end, the 
final MV (the one characterized by the lowest SAD) is stored 
back into the GPU’s device memory, together with its SAD 
value representing the MV cost.

3.4 � Assembly‑optimized SAD

The most demanding part of the motion estimation proce-
dure is the initial computation of the SAD for each vector 
of the search map. During this procedure, as described in 
Sect. 3.3.2, each GPU thread computes the absolute differ-
ence of four pixels (as shown in Fig. 6) and stores the sum 
of these differences. This operation can be further optimized 
by exploiting CUDA’s PTX ISA (parallel thread execution 
instruction set architecture), the low-level instruction set of 
the CUDA cores [7]. In particular, we can resort to PTX 
SIMD instructions, which perform, within each single GPU 
thread, the same arithmetic operation in parallel on multiple 
data. SIMD4 instructions, in particular, consider a 32-bit-
wide word as a set of four independent 8-bit operands. In 
this particular situation, we can exploit the PTX-SIMD4 
instruction vabsdiff4() which computes the absolute 
difference of four byte-wide pairs of operands (regarded as 
unsigned integer values) and sums them into a 32-bit regis-
ter, as schematized in Fig. 8: by means of this instruction, 
it is possible to condensate the entire four-pixel SAD step, 
described in Sect. 3.3.2, into one single execution of vab-
sdiff4(), provided that the luminance values of the four 
considered pixel pairs are organized as four adjacent bytes 
within two 32-bit registers. For this reason, this approach is 
maximally efficient if applied to four adjacent pixels, which 
can be loaded into a 32-bit-wide local variable (or a local 
32-bit register) with a single access to the device memory. 

Fig. 7   The displacement map for the motion search refinement. This 
map is centered on the vector obtained through the main motion vec-
tor search, using the displacement map of Fig. 5, and allows to obtain 
the best motion vector with 1-pixel resolution
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After then, the four-pixel SAD is directly computed by call-
ing vabsdiff4(). The procedure works as follows: 

SAD Computation:
for all threads tid ↔ MV (tid) ∈ {Search Map} do

for all sets of 4 adjacent pixel 4i ∈ Macroblock do
A ← (int32) CF [ 4i ]
B ← (int32) RF [ 4i+MV (tid) ]
DM [tid][i] ← vabsdiff4(A,B)

end for
end for

where CF and RF are the current frame and the reference 
frame, respectively. This algorithm takes 64 iterations per 
macroblock, exactly as much as the standard SAD, but in 
this case, besides the advantage of performing 4 absolute 
differences and 3 sums with a single assembly instruction, 
each thread makes only two 32-bit-wide accesses to the 
device memory (to CF and RF) at each iteration, instead 
of eight 8-bit-wide accesses/iteration of the approach in 
Sect. 3.3.2. As the presented experimental results will show, 
the increased efficiency of the optimized SAD, compared to 
the former, leads to speed improvements that become nota-
ble only in conditions of frequent call of the motion estima-
tion procedure by the encoding process (depending on the 
encoding parameters like the speed factor, etc.).

3.5 � Exploiting the texture memory for sub‑pixel 
estimation

In VP8, MVs have quarter-pixel precision [12]. This 
approach gives a better visual quality by increasing the 
signal-to-noise ratio (SNR), but requires pixel interpolation 
from the current reference frame. To this end, VP8 synthe-
sizes each pixel by exploiting a 6-tap interpolating filter, 
both horizontally and vertically.

Our ME algorithm implements sub-pixel motion search 
as a refinement of the integer MV returned by the previous 
steps. This approach relies on the usage of the GPU texture 
memory for the synthesis of the interpolated pixels. The 
reference and input frames are stored as textures, so that the 
required sub-pixel luminance values are obtained by exploit-
ing the hardware interpolation capabilities of the GPU.

To this purpose, we have implemented a texture-based 
search employing the sub-pixel diamond-shaped search map 
shown in Fig. 9, which is composed of 93 search vectors in 
the interval [−1.75, 1.75] × [−1.75, 1.75] with spatial reso-
lution of 0.25 or 0.5 pixel—the former in the most internal 
area of the diamond and the latter along the edges.

3.6 � CPU–GPU architecture tuning

Generally, in GPU programming, the most challenging part 
of a development is the task of tailoring the algorithm to 
the available GPU architecture in such a way as to reach the 
maximum performance. There is, however, no general rule 
to achieve significant speed-ups on GPU; the optimization 
and parallelization choices that yield the best performance 
can be quite different from algorithm to algorithm.

A commonly suggested optimization approach in CUDA 
programming is to maximize the GPU occupancy, defined 
as the ratio between the actual number of threads actively 
running and the maximum number of threads that can be 
scheduled on a GPU. A high occupancy value generally 
means a high level of parallelism, thus leading to high per-
formance. High occupancy is normally obtained by perma-
nently having a large number of threads scheduled on the 
cores; this way, whenever a thread execution stops because 
of a global-memory access, another thread can be processed 
by the core, thus avoiding to waste time for memory laten-
cies (the so-called latency hiding [14]). In this approach, a 

Fig. 8   Computation diagram of the PTX SIMD4 instruction vabs-
diff4()  Fig. 9   The 93-point sub-pixel diamond-shaped search space, 

employed in the motion estimation refinement procedure that exploits 
the GPU’s texture memory interpolation capabilities
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fast switching among threads is obtained by partitioning the 
shared memory, to provide shared memory space to threads 
running on the same SMX but belonging to different blocks. 
For this reason, it is suggested to keep the allocated shared 
memory space as small as possible.

On the other hand, the shared memory is a precious 
resource to drastically reduce the latency of threads wait-
ing for global-memory access, and the efficiency of some 
algorithms is seriously compromised by a limitation of the 
shared memory space. The need to find a good trade-off 
between occupancy and use of shared memory is known in 
literature [18].

Our algorithms actually represent a typical exception to 
the described ‘high-occupancy’ rule: the need for massive 
parallel work on independent 256-pixel macroblocks takes 
such a great advantage from large shared memory space, 
that the best results in terms of speed are achieved by maxi-
mizing the shared memory space, even at cost of a lower 
occupancy. This peculiar behavior can be experimentally 
shown by measuring both occupancy and speed of the dif-
ferent approaches (using the standard CUDA profiling tool 
nvprof). We compared two different setups related to ker-
nels implementing the techniques described in Sect. 3.3: in 
the first setup, the kernel exploits all the available space 
of shared memory within a CUDA block, whereas in the 
second kernel the use of shared memory is reduced, to maxi-
mize the GPU occupancy (max-Occ).

The experiments have shown that max-Occ indeed obtains 
a much better occupancy, but the max-SM setup achieves a 
significantly higher speed. As an example, Table 1 reports 
a comparison of the obtained results, in terms of occupancy 
and speed, for one of the sequences used for the experimen-
tal tests (sequence Rush Hour, see Table 2 in Sect. 4) using 
the GeForce GTX 980 device. The results in Table 1 con-
firm that our “unorthodox” approach, which maximizes the 
deployment of shared memory, in spite of being character-
ized by a much lower level of occupancy with respect to the 
more “canonical” max-Occ approach ( ∼ 12 % vs ∼ 72 %, in 
average), is approximately ×4.4 faster, therefore it represents 
the better optimization approach to this algorithm.

4 � Experimental results

To give a detailed account of the GPU-accelerated behavior 
with respect to quality and speed, we tested the encoder with 
several different configurations, considering both mono- and 
multi-thread CPU settings. The speed/quality performance 
of any encoder strongly depends on the encoding param-
eters. For this reason, to perform significant experiments, 
three reasonable speed/quality trade-offs have been selected:

–	 GPU-fast, which implements the optimized techniques 
described in Sect. 3.3;

–	 GPU-splitmv, which adds to the previous approach a 
sub-block motion estimation that exploits the assembly-
optimized SAD described in Sect. 3.4;

–	 GPU-tex, which performs both sub-block ME, as in 
GPU-splitmv, and sub-pixel ME by exploiting the hard-
ware sub-pixel linear interpolation provided by the GPU 
texture memory, as described in Sect. 3.5.

All these modes are available in our version of the open 
source encoder software released in [4] as fork of the WebM 
project, and can be selected by setting the cuda-me com-
mand line parameter to 1, 2, or 3, respectively.

To assess speed and quality, the encoding time (ET) 
and the peak signal-to-noise ratio (PSNR) were calculated. 
The PSNR was obtained by comparing the original video 
sequence to the one obtained by (a) encoding it with the 
considered encoder and (b) decoding it with the WebM VP8 
reference decoder. The ET is defined as the execution time 
of the overall encoding process.

4.1 � General setup

For the experiments, we have selected five representa-
tive video sequences (selected among the most commonly 
used in literature [27]) from the Xiph.org video reposi-
tory [10]. Their main features are summarized in Table 2. All 
the test sequences shows moving fields, either due to camera 
or object motion, hence triggering the ME during the encod-
ing of each frame. As reference encoder [1], we have used 
the latest stable release of libvpx (1.6.0), compiled with 
gcc 5.4.0 and yasm 1.3.0; all hardware accelerators were 
enabled during compilation, and were therefore available at 

Table 1   Occupancy vs speed 
with different exploitations of 
the shared memory—kernel: 
GPU-fast; test sequence: Rush 
hour (see Sect. 4)

GPUfast setup 
kernel

Occupancy % Time (s)

Average Min Max Average Min Max

max-Occ 72.42 69.61 75.37 17.23 14.87 24.75
max-SM 12.43 12.25 12.49 3.90 3.73 4.13
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execution time. To the best of the authors’ knowledge, such 
encoder is the best performing VP8 encoder available when 
this paper was written. The code running on the GPU was 
compiled with nvcc 8.0.44 and the NVIDIA CUDA Toolkit 
was the latest available at the moment of writing (8.0) [6].

The tests have been performed on a workstation with two 
Intel Xeon E5-2620v3 CPU’s, each with six physical cores, 
2.40 GHz clock, 64 GB RAM memory, 2 TB disk space and 
Linux Ubuntu 16.04 as operating system. This machine was 
equipped with an NVIDIA GeForce GTX980 GPU, featur-
ing 2048 Maxwell cores with Compute Capability 5.2 and 
4 GB of video memory. To execute the tests and post-process 
the results, we followed the official contribution guidelines 
of the WebM Project, using the provided scripts and auto-
mated tools [9].

4.2 � Single‑thread performance analysis

A first set of tests was performed by assigning a single CPU 
core to the entire VP8 encoding process, both in the reference 
and in the proposed encoder. Each video sequence in Table 2 
was processed both by the reference encoder and by the three 
GPU-accelerated encoders, for different values of target-
bitrate, while all the other encoder control parameters 
remained unchanged. In VP8, the target-bitrate 
parameter sets, the objective output bitrate (in kbps) that the 
encoder should achieve [3]. In the tests, this parameter took 
values in the range 2000–8000 kbps with steps of 2000 kbps 
for the full HD sequences; in the range 5000–25,000 kbps 
with steps of 5000 kbps for the 4 k sequence. The complete 
set of parameters used in the encoding session is as follow:

Table 2   Summary of sample 
clips’ specifications

Old town: Camera on helicopter, slow constant and non-uniform motion, highly detailed. Pedestrian area: 
Fixed camera, big sprites fastly moving in front of the camera, chaotic object movements. Rush hour: Fixed 
and tilting camera, big and small sprites slowly moving, highly detailed and noisy. Tractor: Camera follow-
ing a big moving sprite, panning, zooming chaotic object movement. Big buck bunny: CGI sequence, pan-
ning, fast moving sprite, chaotic object movement, scene change

Clip # frames Resolution Ratio Format

Old town 500 1080p 16:9 YUV420

Pedestrian area 375 1080p 16:9 YUV420

Rush hour 500 1080p 16:9 YUV420

Tractor 690 1080p 16:9 YUV420

Big buck bunny 90 2160p 16:9 YUV420
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Fig. 10   Encoding performance 
achieved by the different GPU 
kernels on the test sequences 
in Table 2. On the left: average 
image quality, expressed as 
average PSNR (dB), as function 
of the data rate. On the right: 
average encoding frame time (s)
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Figure 10 shows the PSNR (left column) and the ET 
(right column), as a function of the target-bitrate, 
for the reference and the three versions of the proposed VP8 
encoder, considering all video sequences listed in Table 2. 
Reference encoder CPU is denoted by cyan dash–dot lines, 

vpxenc inputFile.y4m -o outputFile.webm --cpu-used=0 --target-bitrate=<br>
--auto-alt-ref=1 --lag-in-frames=25 --kf-min-dist=0 --kf-max-dist=99999
--static-thresh=0 --min-q=0 --max-q=63 --arnr-type=3 --arnr-maxframes=7
--arnr-strength=3 --drop-frame=0 --best --psnr --codec=vp8

GPU-fast by red lines, GPU-splitmv by yellow lines, and 
GPU-tex by violet lines.

The PSNR curves show that the quality provided by 
GPU-tex is very close to the one achieved by the refer-
ence encoder for every test sequence, while GPU-fast and 
GPU-splitmv yield slightly lower values than the reference 
encoder; however, these small differences are hardly perceiv-
able during the playback of the encoded sequences.

The three versions of the proposed encoder always exhibit 
significantly lower ET values than the reference encoder. 
The GPU-fast version achieves on average a ×4 speed-up, 
with a peak value of ×6.3 in one test, while GPU-splitmv 
and GPU-tex show an average speed-up of ×2 and ×1.5 , 
respectively. As expected, the complexity increase of GPU-
splitmv and GPU-tex kernels affects the overall speed-up 
of the entire encoding process. However, this drawback is 
partially balanced by the exploitation of the Assembly-opti-
mized SAD, which decreases the SAD computation time up 
to 75% . The average speed-ups achieved by the three GPU 
accelerated kernels computed on the pool of test clips of 
Table 2 are shown in Fig. 11.

To test the efficiency of the technique against differ-
ent GPU architectures (e.g., different number of cores per 
SM), we also tested the proposed kernels on three different 
CUDA architectures, namely Maxwell (on a GeForce GTX 
980—compute capability: 5.2), Kepler (Tesla K40—com-
pute capability: 3.5) and Pascal (Tesla P100—compute 
capability: 6.0). Table 3 reports the average speed-ups 
achieved by the overall encoding processes, distinct for 
GPUs and kernels. In particular, the average values have 
been computed taking into account all video sequences 
listed in Table 2 and all bitrates chosen in the previous test. 
As Table 3 shows, the performance of the three devices 
is comparable, with a slight predominance of the Max-
well architecture. This predominance, in spite of the lower 
clock rate and memory bandwidth of the Maxwell device, 
is a consequence of the algorithmic design choices, which 
tailored the kernel to this architecture, such as the use of 
128-thread blocks on a 128 cores per SM architecture to 
encode a single macroblock.

4.3 � Multi‑thread performance analysis

The proposed GPU–CPU cooperative encoder has also been 
tested in a multi-thread environment, to assess its scalability 
and to verify the effectiveness of the cooperation among the 
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Fig. 11   Solid lines represent the average speed-ups achieved by the 
three GPU-accelerated encoder versions with respect to the CPU ref-
erence encoder, running on the five sequences. Dotted lines show the 
individual speed-up achieved by the sole GPU-fast on all sequences

Table 3   Average speed-ups achieved by the three kernels: GPU-
fast, GPU-splitmv, and GPU-tex on three different CUDA devices: 
GeForce GTX 980 (Maxwell), Tesla K40 (Kepler) and Tesla P100 
(Pascal)

The first column reports the GPU architecture type (together with its 
compute capability, CC), the second one reports the total number of 
cores (and cores per SM). The following three columns report the 
average speed-up achieved by the three kernels, averaged over all 
the considered speed/quality (bitrate) settings and over all five test 
sequences

Speed-up: GPU architecture comparison

GPU architecture (CC) #cores (cores/SM) fast splitmv tex

Maxwell (5.2) 2048 (128) × 3.10 × 1.90 × 1.48

Kepler (3.5) 2880 (192) × 2.77 × 1.63 × 1.25

Pascal (6.0) 3584 (64) × 2.94 × 1.61 × 1.33
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GPU resources and multiple CPU cores. To this aim, we 
performed the same tests described in the previous section, 
using the same hardware configuration as the single-thread 
test, but varying the number of CPU threads assigned to the 
process. Hyperthreading was active in all the following tests, 
with each thread pinned to a processing core.

To assess the performance in a multi-thread environ-
ment, we have carried out two different experiments. Since 
the main focus of this work is the computation speed, the 
main experiment is focused on a detailed analysis of GPU-
fast, our fastest encoder. In addition, experiments have been 
carried out with the other two encoders, GPU-splitmv and 

Fig. 12   Performance achieved 
in multi-thread environment 
by the GPU-fast kernel on the 
considered test sequences. Left: 
average PSNR (dB) as function 
of the data rate. Right: average 
frame time (s)
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GPU-tex, to evaluate how their speed varies over the num-
ber of available CPU cores.

Figure 12 shows the results achieved by GPU-fast, in 
terms of PSNR (left column) and ET (right ) versus the dat-
columna rate, when launching 1, 4, 8, and 12 CPU threads. 
The reference encoder performances (dash–dot lines) are 
compared with the GPU-fast encoder (solid lines), both in 
a multi-threaded environment. Each line, both dash–dotted 
and solid, denotes a test run where a different number of 
CPU threads was assigned to the process, specifically 1, 4, 
8 and 12.

The plots show that, as in the single-thread case, the 
GPU–CPU approach keeps the image quality unchanged, 
while obtaining a substantial speed-up. They also confirm 
that the GPU-fast kernel scales well in a multi-thread envi-
ronment, as the computation speed is roughly proportional 
to the number of threads. These graphs indicate a sort of 
“equivalence” between GPU–CPU and CPU-only archi-
tectures: considering, for instance, the execution time, the 
graphs suggest that a system with two CPU cores and one 
GPU device can provide approximately the same perfor-
mance as a four-CPU core system.

Figure 13 shows the results of the speed-up tests for the 
three developed kernels, reported in a comparative way. The 
values reported in the plots represent the speed-up factor 
(defined as the processing time ratio, with vs without GPU) 
averaged over the different encoding data rates, for all the 
considered test sequences. The plots show that, as the num-
ber of CPU cores increases, the three kernels actually lose 

performance, with respect to the CPU-only algorithm. The 
most significant loss occurs for GPU-fast, where the speed-
up factor decreases by approximately 45% going from 1 to 
12 CPU cores. The performance loss with many CPU cores 
available can be explained as a consequence of the system 
architecture, where the communication channel between the 
host and the GPU (the PCI-Express bus) is shared by all 
CPU cores, thus causing increasing communication latencies 
as the number of CPUs grows.

5 � Conclusions

In this paper we present the design and the implementa-
tion of a VP8 video encoder that exploits a cooperative 
interaction between multicore (CPU) and manycore (GPU) 
resources. As the experimental results have shown, the pro-
posed technique can achieve, in the best conditions, up to 
× 6 speed-up with respect to the mostly optimized CPU-
only version of the VP8 WebM encoder [1], with minimum 
degradation of the visual quality. Moreover, the presented 
results show how the obtained performance improvements 
remain so significant also when multiple CPU cores are 
available, proving the effectiveness of the multicore/many-
core cooperation and the good scalability of the proposed 
approach.

Among all possible directions for future research work, 
we are interested in further investigating the performance in 
multi-thread environments, which can be considered as the 
standard situation in HPC scenarios.

Considering possible further software development, the 
encouraging results obtained in terms of speed-up vs. qual-
ity suggest to extend the proposed approach to the most 
recent encoding standards, such as VP9, AOMedia AV1, 
and HEVC. Despite the significant differences between 
these new standards and VP8, the way they all resort to 
motion estimation is quite similar, therefore such exten-
sions could represent a reasonable effort yielding significant 
improvements.
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