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ABSTRACT

Three cationic non-porous copper(I) coordination polymers containing bis-pyrazolyl flexible 

ligands have been prepared and characterized, namely {[Cu(μ-bdb)1.5](PF6)}n (1), {[Cu(μ-

bpb)2](PF6)}n (2) and {[Cu(μ-bpmb)2](PF6)}n (3) (bdb = 1,4-bis(3,5-dimethylpyrazolyl) 

methyl)benzene; bpb = 1,4-bis(pyrazolyl)butane; bpmb = 1,4-bis(pyrazolyl) methyl)benzene). 

All compounds were characterized by IR, PXRD, elemental and thermal analyses, and single-

crystal X-ray diffraction. Compound 1, with methyl-substituted pyrazolyl ligand, forms a chain 

of alternating rings and ribbons in which the copper(I) centers are three coordinated in distorted 

trigonal planar geometry. In compounds 2 and 3 copper(I) atoms adopt distorted tetrahedral 

geometries giving two dimensional sheet structures with 44-sql topology. Interestingly, iodine 

sorption experiments show that colorless crystals of 2 and 3 remain unchanged in the presence of 

iodine vapors, while the three coordinated compound 1 immediately absorb iodine and turn dark. 

Anion exchange behavior of compounds 1 and 2 was also investigated both in solution and in 

solid state.

Keywords: Copper(I), coordination polymer, non-porous, gaseous iodine capture, non-

coordinating anion.

INTRODUCTION
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Coordination polymers (CPs) and their unique subclass of metal organic frameworks (MOFs), 

belong to an interesting category of crystalline materials that is growning exponentially during 

the past three decades.1-3 Their structures are composed of organic linkers and metal ions or 

clusters nodes. Remarkable variety of structures and properties, ease of tailorability and wide 

range of applications, ranging from gas storage and separation to catalytic processes, electronic 

devices and biomedicine, made this category of materials one of the most exciting area of 

research and attracted many scientists.4-6

Considering coordination ability of copper atoms, it can be observed that copper(II) ions often 

form multinuclear Cu-carboxylate clusters trough coordination to oxygen atoms of carboxylic 

ligands.7-9 On the other hand copper(I) ions often form copper halides aggregates and, among 

them, especially CunIn clusters. A variety of copper(I) iodide-based structures with fascinating 

building blocks have been reported so far.10-14 The intense investigation in this research field is 

not only due to this structural variety, but also to the unique properties of copper(I) iodide 

aggregates, such as luminescence,14-17 catalytic activity,18,19 iodine sorption12,20,21 and others. 

Despite polymeric structures for copper(I) halides or pseudohalides are well known and 

investigated, CPs or MOFs made of copper(I) in the presence of non-coordinating anions, such 

as PF6
-, BF4

-, ClO4
-, and SbF6

-, are still rare and need to be explored more.22-26 Highly 

coordinating halides often act as the structure directing factor in the assembly of polymeric 

copper(I) halide compounds, thus preventing Cu(I) to fully exploit its coordination ability. 

Hence, the use of non-coordinating anions, allow copper(I) to exhibit variable coordination 

number and geometry. 

Alongside the role of metal ions and coordinating ability of counterions, the structure of 

coordination polymers are influenced also by other factors, such as the geometry of polydentate 

linker ligands, crystallization solvent, metal to ligand ratio and synthetic procedure.27-29 

Moreover, factors such as flexibility, steric hindrance, position of donor atoms, spacer group of 

the linkers and participation of ligands in non-covalent ∙∙∙ stacking interactions and hydrogen 

bonds also play important roles in the generation of novel structures and properties.30-32 

Among possible applications for CPs and MOFs attractive is the adsorption of environmentally 

harmful pollutants.33-35 In particular capture and isolation of radioactive iodine isotopes from the 

waste of nuclear power plants is an important subject.36-38 Because the high fission yield of 
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iodine, it can spread as volatile species in environment and readily accumulates in the thyroid. 

The result is the major changes in human metabolic processes and may causes thyroid cancer. 

Recently, adsorption of iodine into the pores of various MOFs have been reported by many 

researchers, however, most of such investigations are conducted in solution only.39-43 Iodine 

sorption studies in the vapor phase by non-porous coordination polymers are still rare and need 

to be explored well.44 Our recent research results show that even non-porous CuI-based 

coordination polymers can rapidly capture volatile iodine in the gas phase.45 On the basis of our 

experience on the design and synthesis of copper(I) coordination polymers,23,27,46-49 here we 

investigated the effect of different bispyrazolyl ligands (Scheme 1) on the assembly of non-

porous coordination polymers of copper(I) hexafluorophosphate, and characterized three novel 

compounds. In addition, vapor iodine absorption ability by the synthetized compounds was 

checked and related to their structure features. 

     

Scheme 1. Structure of the bispyrazolyl linker ligands.

EXPERIMENTAL SECTION

Materials and Instrumentation

All experiments were carried out in air. The starting materials were purchased from commercial 

sources and used without further purification; [Cu(CH3CN)4]PF6 was prepared by published 

method.50 The infrared spectra (4000-400 cm1) were recorded as KBr discs with BOMEN 

MB102 FT-IR or Perkin Elmer Spectrum two spectrometers. The elemental analyses for C, H 
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and N were performed on a Costech-ECS 4010 CHNSO analyzer. X-ray powder diffraction 

patterns were recorded on a Philips X’Pert Pro diffractometer (Cu Kα radiation, λ = 1.54184 Å) 

in the 2θ range 5−35(50)°. Simulated XRD powder patterns, based on single crystal X-ray 

diffraction data, were prepared using Mercury software.51 Energy dispersive X-ray (EDX) 

spectroscopy was carried out using an EDX-coupled electron microscope (VEGA 3-TESCAN). 

Thermogravimetric analyses (TGA) were carried out on a STA PT1600 (Linseis) thermal 

analyzer between 50 and 600 °C under N2 atmosphere. UV-Vis spectra were recorded on a 

Jenway 6715 spectrophotometer in EtOH solution in the range of 300–700 nm.

Synthetic Procedures

Preparation of bpmb, bdb, and bpb Ligands: The ligands were prepared according to 

published methods.52-55 Typically, a mixture of pyrazole (1.36 g, 20 mmol) or 3,5-dimethyl-

pyrazole (1.92 g, 20 mmol) and finely powdered potassium hydroxide (2.24 g, 40 mmol) in 

DMSO (12 mL) were vigorously stirred at 80 ºC for 2 h. Then, corresponding dihalides 1,4-

bis(chloromethyl)benzene (1.64 g, 10 mmol) or 1,4-dichlorobutane (1.11 mL, 10 mmol) in 

DMSO (5 mL) was added dropwise to the slurry mixture. The mixture was stirred at 80 ºC until 

completion of the reaction (checked by TLC), cooled to room temperature and then to 0°C in an 

ice bath. 250 mL of cooled water was poured into the reaction mixture and a precipitate formed 

immediately, which was collected by filtration, washed with water and dried under vacuum. In 

the case of bpb, as the product is a liquid, the reaction mixture was poured into water (250 mL) 

and extracted with chloroform (3×20 mL). The extract was washed with water (2×20 mL) and 

dried over calcium chloride. After evaporation of chloroform under vacuum, the product was 

isolated as a yellow oil. 

Preparation of {[Cu(μ-bdb)1.5](PF6)}n (1)

A solution of bdb (0.02 g, 0.08 mmol) in CH3OH (5 mL) was gently layered on the top of a 

solution of [Cu(CH3CN)4][PF6] (0.015 g, 0.04 mmol) in CH3CN (5 mL) in a test tube. Fern leaf-

shaped crystals of 1, suitable for X-ray crystallography, were obtained after a week. They were 

collected and washed with small amounts of EtOH and Et2O and dried in air. (0.021g, 80.7% 

yield based on Cu). Anal. Calcd for C27H33CuF6N6P: C 49.88, H 5.12, N 12.93; Found: C 50.74, 

H 5.58, N 13.19%.
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Preparation of {[Cu(μ-bpb)2](PF6)}n (2)

A solution of [Cu(CH3CN)4]PF6 (0.2 g, 0.54 mmol) in CH3CN (25 mL) was added to a solution 

of bpb (0.2 g, 1.0 mmol) in CH3CN (25 mL). The reaction mixture was stirred at room 

temperature for 6 h and the resulting mixture was filtered. Pale blue cubic single crystals of 2 

suitable for X-ray crystallography were obtained at room temperature by slow evaporation of the 

solvent after a week. The crystals were collected and dried in air. (0.17g, 53% yield based on 

Cu). Anal. Calcd for C20H28CuN8F6P: C 40.78, H 4.79, N 19.03; Found: C 40.60, H 4.67, N 

19.37%.

Preparation of {[Cu(μ-bpmb)2](PF6)}n (3)

A solution of [Cu(CH3CN)4]PF6 (0.2 g, 0.54 mmol) in CH3CN (20 mL) was added to a solution 

of bpmb (0.254 g, 1.06 mmol) in CH3CN (20 mL). The reaction mixture was stirred at room 

temperature for 6 h and then it was filtered. Colorless cubic single crystals of 3 suitable for X-ray 

crystallography were obtained at room temperature by slow evaporation of the solvent after two 

weeks. The crystals were collected and washed with small amounts of EtOH and Et2O and dried 

in air. (0.31g, 85.0% yield based on Cu). Anal. Calcd for C28H28CuF6N8P: C 49.09, H 4.12, N 

16.36; Found: C 49.43, H 4.18, N 16.52%.

Iodine Sorption Study

Crystals of coordination polymers 1-3 and {[Cu(µ-bbd)1.5](PF6)}n (refcode KEZXEU) and solid 

iodine were added separately into small vials. The vials were placed into a large vessel, sealed, 

and heated at 55°C for three different exposure times, 30 min, 50 min and 2 h. Color of the 

crystals 1 and KEZXEU changed immediately to brown, while the color of samples 2 and 3 

remained unchanged. The iodine adsorbed samples were collected, washed with cyclohexane, 

dried in air, and weighed.

Iodine Release Study 

Certain amounts of iodine-adsorbed samples 1-I2 and KEZXEU-I2 were suspended in 2 ml of 

EtOH. The color of the solvent change gradually from light yellow to dark orange. To ensure the 

completion of the release process, the samples were left in EtOH for 1 day. Solid materials of 

compounds 1 and KEZXEU were recovered by filtration, washed with pure ethanol, Et2O, dried 
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in air and identified by FT-IR and PXRD analyses. To determine the iodine content of the 

samples, released iodine solutions were diluted in 10 ml volumetric flasks and used for UV-Vis 

spectroscopic measurements at 358 nm.

Anion Exchange in Solution

Finely powdered samples of 1 and 2 (0.1 mmol) were suspended in 30 mL of aqueous solutions 

containing, respectively, KSCN (0.005 M), KI (1.0 M), NaClO4 (1.0 M) and NaBF4 (1.0 M) and 

the mixtures were stirred at room temperature for 1 day. The resulting anion-exchanged solids 

were separated by centrifugation and washed several times with water, EtOH and Et2O. After 

drying in air the exchanged solids were identified by FT-IR and PXRD analysis.

Anion Exchange in the Solid State

Mixtures of colorless powder of compounds 1 or 2 (0.1 mmol) with, respectively, KSCN, KI, 

NaClO4 or NaBF4 (0.1 mmol) were finely grinded in an agate mortar at room temperature for 30 

min. The resulting products were washed several times with water, EtOH and Et2O, dried in air 

and then identified by FT-IR and PXRD analysis.

X-ray Crystallographic Study

X-ray data were collected on a Bruker Apex II diffractometer using MoKα radiation. The 

structures were solved using direct methods and refined using a full-matrix least squares 

procedure based on F2 using all data.56 Hydrogen atoms were placed at geometrically estimated 

positions. Details relating to the crystals and the structural refinements are presented in Table 1. 

Full details of crystal data and structure refinements, in CIF format, are available as 

Supplementary Information. CCDC reference numbers 1824721-1824723 for 1, 2, and 3, 

respectively.
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Table 1. Crystallographic data and structure refinement details for 1-3.

Compound   1   2   3
Formula C27H33CuN6,F6P C20H28CuN8,F6P C28H28CuN8,F6P
Formula mass 650.10 589.02 685.09
T(K) 293 293 293
Cryst syst triclinic tetragonal tetragonal
space group P-1 P4/n P4/n
a(Å) 10.3544(8) 12.5954(7) 13.616(3)
b(Å) 11.5905(9)) 12.5954(7) 13.616(3)
c(Å) 13.8724(11) 7.9766(9) 7.984(3)
α(°) 70.766(1) 90. 90.
(°) 79.152(1) 90. 90.
(°) 89.788(1) 90. 90.
V(Å3) 1540.8(2) 1265.4(2) 1480.2(9)
Z 2 2 2
Dcalcd (g cm-3) 1.401 1.546 1.537
no. of reflns collected 30990 19496 18442
no. of independentreflns 7366 2079 1685
Rint 0.033 0.018 0.045
R1[I> 2σ(I)] 0.0509 0.0378 0.0435
wR2(all data) 0.1523 0.1115 0.1246

RESULTS AND DISCUSSION

Synthesis of Complexes 1-3. We set out to investigate the structural influence of the ligand 

geometry on the topology of the resultant copper(I) coordination polymers. For this purpose, we 

have prepared three bidentate pyrazolyl-based ligands and tuned their structures by varying the 

spacer group and pyrazolyl ring substituents (Scheme 1). In addition, we also used our related 

reported structure, {[Cu(μ-bbd)1.5](PF6)}n (refcode KEZXEU), for comparison.23 To accurately 

evaluate the effect of the geometry of the linkers on the structure of the assembled products, and 

to avoid side effects of the counter anion, we have used Cu(I) salt of the non-coordinating 

hexafluorophosphate (PF6
-) anion. The reactions of [Cu(CH3CN)4][PF6] with bpb, bdb and bpmb 

ligands in the 1:2 molar ratio produced three novel compounds which are almost stable in air and 

moisture. Characterization by elemental analyses, FT-IR spectroscopy, PXRD and single-crystal 

X-ray diffraction show one and two-dimensional polymeric structures for the three compounds.
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Description of the Crystal Structures

{[Cu(μ-bdb)1.5](PF6)}n (1)

Compound 1 crystallizes in the triclinic P-1 space group with Z=2 (Table 1). Among all the 

ligands considered in this work (Scheme 1) the bdb present in compound 1 results less flexible 

and more sterically hindered being the two pyrazolyl groups spaced by the –CH2–Ph–CH2– 

linker and decorated by methyl groups. As a result, the structure of 1 is a 1D coordination 

polymer consisting of a sequence of metallocyclic rings and ribbons. The asymmetric unit of 1 

contains one Cu(I) ion, one and a half µ-bdb ligand and a PF6
- counter ion (Figure 1a). Each 

copper atom is coordinated by three pyrazolyl nitrogen atoms from three µ-bdb ligands to form a 

slightly distorted trigonal planar CuN3 environment with N–Cu–N angles and Cu–N bond 

distances in the ranges 117.17(9)-124.20(9)° and 1.978(2)-1.998(2) Å, respectively (Table S1). 

Although the ligands in the structure of 1 and {[Cu(μ-bbd)1.5](PF6)}n (KEZXEU) are different, 

the overall structures are similar. Both are 1D, containing three coordinated copper centers and 

alternating rings and ribbons along the chains. Two crystallographically different types of μ-bdb 

ligands have been observed in the structure of 1. The ones that form the ribbons of the chains 

(blue color in Figure 1b) are centrosymmetric with (Cu)N–to–N(Cu) distance of 9.22 Å, and 

consequently the dihedral angle between the mean planes of two pyrazolyl rings is 0°. The other 

ligand form the [Cu2(µ-bdb)2]+ metallocycles and is shown in red color in Figure 1b. In this case, 

the dihedral angle between two pyrazolyl rings is 66.01° and the (Cu)N–to-N(Cu) distance is 

8.38 Å. Due to the different linker lengths, two types of Cu···Cu distances have been observed in 

the 1D structure of 1. The Cu···Cu separation in the ring motifs is shorter (8.26 Å) than the one 

between the rings (10.19 Å) as also observed in the structure of KEZXEU, where, however, 

such Cu···Cu distances are shorter of about 2 Å.23 The chains run along the [1 0 0] direction and 

pack with an AAA sequence. Disordered PF6
- counter-anions remain uncoordinated and are 

located in the space between the chains.
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(a)

(b)

  
(c)

Figure 1. Crystal structure of 1: a) Asymmetric unit with a labeling scheme for non-C, H atoms. 
b) 1D chain containing a sequence of metallocyclic rings (red) and ribbons (blue). c) Packing of 
the chains with PF6

- anions (left) and a closer view of the non-classic C–H···F interactions 
(right).
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{[Cu(µ-bpb)2]PF6}n (2)

Compound 2 crystallizes in the tetragonal P4/n space group with Z=2 (Table 1). Single-crystal 

X-ray diffraction analysis reveals that 2 contain cationic two dimensional [Cu(µ-bpb)2]+ motifs 

and PF6
- counter anions (Figure 2). The Cu atom is coordinated by four nitrogen atoms from bpb 

ligands, giving a CuN4 moiety with the N–Cu–N bond angles ranging from 96.74(8) to 116.19(4) 

Å (Table S1). Deviations from ideal tetrahedral geometry can be specified by τ4 parameter57 

which has values of 1.00 and zero for perfect tetrahedral and square planar geometries, 

respectively. Calculated τ4 value of 0.905 for copper ions in 2 represents a deviation from ideal 

tetrahedral towards square planar geometry, suggesting a distorted tetrahedral geometry for the 

copper centers. The Cu–N distance is 2.0765(14) Å, comparable to those found in the 

literature58,59 and longer than those found in the structure of 1 (1.978(2)-1.998(2) Å). Each 

copper atom is connected to four adjacent Cu(I) atoms by µ-bpb ligands to form an infinite 

cationic 2D sheet with 44-sql topology. The 2D sheets contain centrosymmetric 36-membered 

[Cu4(bpb)4] metallocyclic units (Figure 2b) and extend in the crystallographic ab plane. The 

layers are perfectly superimposed along [0 0 1] direction and disordered PF6
- counter-anions 

found place at the center of metallocycles and between adjacent layers. There are no significant 

interactions between PF6
- anions and copper(I) centers. However, closer inspection shows that 

there are weak C-H∙∙∙F contacts between not disordered axial fluorine atoms of PF6
- anions and 

CH atoms of pyrazolyl rings (Figure 2c). Details of the hydrogen bonding geometry are given in 

Table S2. No remarkable short contacts or π···π interactions were found between adjacent sheets.
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(a)

(b)

(c)
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Figure 2. Crystal structure of 2: a) Coordination environment around copper(I) atom with 
labeling scheme for the asymmetric unit part. b) View down c of a single layer with 44-sql net 
and space-filling representation of the PF6

- anions. c) View down a of a single layer and PF6
- 

anions evidencing the weak C-H···F hydrogen bonds. 

All the µ-bpb ligands are centrosymmetric and crystallographically equivalent exhibiting an anti-

anti-anti conformation for the C–C bonds of the –(CH2)4– spacer. The torsion angles NNCC, 

NCCC, and CCCC, along the ligand, are -86.1(2), -178.35(16) and 180.00(16), respectively, 

while the dihedral angle between the mean planes of the pyrazolyl rings is 0˚. As a result, the 

(Cu)N···N(Cu) ligand length is 7.85 Å. The Cu∙∙∙Cu distance along the µ-bpb ligand is 8.906 Å, 

which is longer than those observed in the structure of {[Cu(μ-bbd)1.5](PF6)}n (6.255 and 8.527 

Å).23 The longer Cu∙∙∙Cu separation in 2 can be due to the fully extended anti-anti-anti 

conformation of the bpb with respect to the gauche-anti-anti and gauche-anti-gauche 

conformations of the bbd ligands in KEZXEU.

{[Cu(μ-bpmb)2](PF6)}n (3)

Single-crystal X-ray diffraction analysis reveals that the same as 2, compound 3 crystallizes in 

the tetragonal P4/n space group with Z=2 (Table 1). The bpmb linker in the structure of 3 is 

similar to the bdb (compound 1) without the methyl substituents on the pyrazolyl groups (see 

Scheme 1). Compound 3 is a cationic 2D coordination polymer in which the coordination sites at 

the copper atoms are occupied by four nitrogen atoms of four μ-bpmb linkers in a CuN4 

coordination environment. The N–Cu–N bond angles are comprised in a smaller range 

[101.12(9)-113.80(7)˚], compared to the values observed in 2. Calculated τ4 value of 1.03 for 

copper(I) centers show almost an ideal tetrahedral geometry. The copper atoms are connected to 

four adjacent Cu(I) atoms by μ-bpmb ligands, forming an infinite cationic 2-D sheet with 44-sql 

topology. The structure is shown in Figure 3 and the atoms of the asymmetric unit, containing 

one copper ion and half ligand (centrosymmetric), are labelled. The dihedral angle between two 

pyrazolyl rings is 0˚ and the (Cu)N–to–N(Cu) distance is 8.78 Å. The Cu∙∙∙Cu distance (9.63 Å) 

in the 2D structure of 3 is in between the values observed in 1 (8.26, 10.19 Å).

The Cu–N distance is 2.074(2) Å, comparable to that found in the structure of 2 and longer than 

those found in the structure of 1 [1.980(3)-1.998(4) Å] and KEZXEU [1.983(2)-2.0022(19) Å]. 
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These observations indicate stronger Cu–N bonds for three coordinated copper(I) centers and 

nitrogen atoms of 3,5-dimethyl substituted pyrazolyl rings. 

The 2D sheets extend in the crystallographic ab plane and pack as AAA along the c axis, 

forming 1D channels across the 2D sheets that accommodate the PF6
- counterions. In contrast to 

the structure of 1, 2, and KEZXEU,23 significant π∙∙∙π stacking interactions occur in 3 (Figure 

3c). The conformation of the bpmb ligands are such as to bring one pyrazolyl ring of a ligand 

into close proximity of a phenyl ring of an adjacent bpmb ligand belonging to the same layer, 

with a centroid∙∙∙centroid distance of 3.647(2) Å and a dihedral angle of 6.88(17)° between the 

two rings.60 In addition, weak C-H∙∙∙F hydrogen interactions have also been observed between 

one of the fluorine atoms of the PF6
- anions and H atoms of the pyrazolyl rings (Table S2).61-64

(a)

(b)
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(c)

Figure 3. Crystal structure of 3: a) Coordination environment around copper(I) atom with 
labelling scheme for the asymmetric unit part. b) View down c of a single layer with 44-sql net 
and space-filling representation of the PF6

- anions. c) Intra-layer π∙∙∙π stacking interactions 
between two pyrazolyl and one phenyl rings belonging to three different bpmb ligands.

Effect of the Geometry of the Linker Ligands 

Tuning the structure of the linkers by varying the steric hindrance of pyrazolyl rings and/or the 

flexibility of the spacer groups show interesting and remarkable effect on the assembled 

coordination polymers. The bdb and bbd linkers with methyl decorated pyrazolyl rings (see 

Scheme 1), form one-dimensional polymeric structures composed of three coordinate copper 

centers in a trigonal planar geometry, while the bpmb and bpb linkers with un-substituted 

pyrazolyl groups, resulted in almost similar 2D structures with four coordinated copper centers. 

Changing the spacer group from a –(CH2)4– to –CH2–Ph–CH2– displays no meaningful effect on 

the structure of the resultant polymers (Scheme 2).

Preference towards trigonal planar geometry by copper atoms in the structures of 1 and 

KEZXEU and towards the four-coordinate tetrahedral one in the structures of 2 and 3 is most 

likely due to the large steric hindrance induced by the 3,5-dimethylpyrazole rings of the bpb and 

bpmb ligands. Moreover, the results clearly show the much more crucial role of the steric 

hindrance of the pyrazolyl ring in orienting the final Cu(I) coordination compared to the effect 

induced by the different nature of the pyrazolyl spacer groups. In the presence of non-

coordinating anions, such as PF6
-, copper centers show their intrinsic nature to select three- or 

four-coordinate geometry depending on the steric hindrance of the ligands.
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Interestingly, a significant relation between the structure of the coordination polymers and their 

ability to capture volatile iodine was observed. So, the 1D structures with three coordinate Cu(I) 

atoms act as an iodine sorbent, while 2D structures with four coordinate copper centers show no 

ability of iodine sorption. 

Scheme 2: Schematic view of the effect of the different bis-pyrazolyl ligands on the structure of 
cationic copper(I) coordination polymers. 

Spectroscopic Characterization

Infrared spectra of coordination polymers 1, 2 and 3 are shown in Figure S1. Stretching vibration 

of C=N bonds, typical of the pyrazolyl rings, are present at 1551 (bdb in 1), 1513 (bpb in 2) and 

1519 (bpmb in 3) cm-1. The location of the peaks depends on the type of substituents on the 

pyrazolyl rings. In compound 1, where the pyrazolyl rings bring two methyl substituents, this 

vibration is shifted to higher wavenumber with respect to the values found for compounds 2 and 

3 containing un–substituted pyrazolyl rings. The peaks with weak to medium intensity at 3142 

(bdb in 1), 3149 (bpb in 2) and 3135 and 3150 cm-1 (bpmb in 3) are assigned to the stretching 

vibration of aromatic C-H bonds of the coordinated ligands. Symmetric and asymmetric 

stretching vibrations of the methylene (–CH2–) and methyl (–CH3) groups are observed in the 
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region of 2866-2950 cm-1. The infrared spectra of the compounds also show two sharp bands at 

557 and 845 (multiple or broad) cm-1, attributed to the vibration bands of PF6
- counter anion.24 

Experimental and simulated powder X-ray diffraction (PXRD) patterns of the samples are shown 

in Figures 4. The results show suitable phase purity of the bulk materials.

(a)
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(b)

(c)
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(d)

Figure 4. Observed (black) and calculated from single-crystal structure (red) powder X-ray 
diffraction patterns for compounds; a) 1, b) 2, c) 3, and d) KEZXEU. PXRD patterns of iodine 
adsorbed samples of 1-I2 and KEZXEU-I2 (blue) and recovered 1 and KEZXEU (orange).

Iodine Sorption and Release

Most of the investigations on iodine sorption have been performed using porous coordination 

polymers or metal-organic frameworks but in solution only.39-43 However, iodine sorption studies 

in the gas phase by non-porous coordination polymers are still rare and need to be explored 

well.44 Kawano et. al., reported CuI-based 3D porous coordination networks with outstanding 

feature of iodine sorption in the gas phase12 and, by crystallographic evidence, showed both 

chemi- and physi-sorption of iodine in these porous coordination networks. Our recent research 

revealed iodine capture feature of non-porous CunIn-based coordination polymers in the gas 

phase.45 Herein, we have explored this property by non-porous cationic Cu(I) CPs not containing 

copper-iodide clusters moieties. Analysis of the structures by Platon65 confirms no accessible 

void for guest molecules.
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Fixed iodine vapor pressure strategy was employed, and vials containing colorless crystals of 

compounds 1-3 and that of the already reported structure {[Cu(µ-bbd)1.5](PF6)}n
23 were left in a 

capped vessel containing crystals of iodine and then heated at 55 °C for three different exposure 

times, 30 min, 50 min and 2 h (Table S3). Monitoring by naked eye revealed that the color of 

samples 1 and KEZXEU immediately changed to deep brown, while that of samples 2 and 3 

remained unchanged. Photographs of the samples before and after vapor iodine sorption are 

shown in Figure 5. Surprisingly, compounds having similar crystal structures, indifferently with 

respect to the ligands, behave in the same way. Hence, 1 and KEZXEU, with the same 1D chain 

structure and trigonal geometry of the copper atoms, showed vapor I2 adsorption. On the 

contrary, no iodine adsorption was evidenced for 2 and 3, with 2D structures and tetrahedral 

copper atoms. On the other hand, none of the four compounds showed the ability to adsorb 

iodine in cyclohexane solution. 

To evaluate the maximum amount of volatile iodine adsorbed by 1 and KEZXEU, the adsorbed 

crystals, taken after a given exposure time, were washed with cyclohexane to remove deposited 

iodine on their surface, dried and weighed. After 2h of exposure time the maximum of adsorbed 

I2 was reached for both samples and, as determined gravimetrically, it was of 47.0 and 58.2 wt % 

for 1 and KEZXEU, respectively (Table S3). In terms of moles this means that 1.20 and 1.33 

moles of I2 are adsorbed per formula unit of 1 and KEZXEU, respectively.
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Figure 5. Photographs of samples of compounds 1-3 and KEZXEU before and after iodine 
sorption.

To investigate the vapor iodine uptake process in 1 and KEZXEU, IR spectra and PXRD 

patterns on adsorbed samples 1-I2 and KEZXEU-I2 were acquired. FT-IR spectra of 1 and 1-I2 

are almost the same (Figure S1 a,b). PXRD patterns of 1-I2 and KEZXEU-I2 were recorded and 

compared with that of the relative pristine materials, and no substantial differences were found 

(Figure 4a,d). These may confirm that the structures of the two compounds are maintained 

during iodine sorption process. Thermal stability of the compounds before and after I2 sorption 

was also investigated by thermogravimetry under nitrogen atmosphere. The results (Figure S2) 

showed that the structures are stable up to about 250 °C and start to collapse at higher 
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temperatures, except for 1 that is stable up to about 200 °C. Comparison between the 

thermogravimetric traces of 1 and 1-I2 showed that iodine release occurs at temperature close to 

the decomposition point of 1. To understand whether thermal iodine release from 1-I2 can be 

attained with retention of the framework, powder of 1-I2 was heated at 200°C for 20 min in N2 

atmosphere. A color change from brown to yellow was visible after the first 5 min (Figure S3a) 

while the FT-IR spectrum, acquired on the sample heated for 20 min, (Figure S3 b) is 

comparable to that of the pristine samples. These results confirm that iodine in 1-I2 can be 

thermally released at 200°C without destruction of the framework. The TG trace of KEZXEU-I2 

show that iodine release occurs at lower temperatures (ca. 110°C) with respect to the 

decomposition temperature of KEZXEU. This may imply a weaker interaction of iodine 

molecules with the structure of KEZXEU compared to that of 1. The results are consistent with 

faster release of adsorbed iodine from KEZXEU-I2 in pure EtOH (vide infra).

In order to get a better insight on the iodine sorption behavior, energy dispersive X-ray (EDX) 

analyses have also been performed on 1-I2 and KEZXEU-I2. The EDX maps reveal uniform 

distribution of adsorbed iodine over the samples (Figure 6). Moreover, EDX elemental analysis 

predict average iodine content of about 51 and 60 wt% for 1-I2 and KEZXEU-I2, respectively, 

(Figure S4) which are almost consistent with the values obtained gravimetrically (Table S3).

          

          

(a)
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(b)

Figure 6. EDX mapping of a) 1-I2 and b) KEZXEU-I2. Black (C), red (N), green (F), violet (P), 
orange (Cu) and blue (I).

Iodine release was also investigated in polar EtOH and non-polar CCl4 solvents. The results 

show faster iodine release in polar EtOH with respect to CCl4. Probably, the interactions of 

iodine species with the polar molecules of EtOH provides sufficient energy to overcome the 

weak supramolecular interactions between adsorbed iodine molecules and the skeleton of the 

coordination polymers and set off the release of iodine by the polar solvent.66,67 Photographs of 

iodine release tests in ethanol and of recovered solid materials of compounds 1 and KEZXEU 

are shown in Figure S5. The iodine release from 1-I2 and KEZXEU-I2 in EtOH was also 

monitored by time-dependent UV-Vis measurements (Figure S5) following the increase in the 

intensity of the band at 358 nm. The results show faster release of iodine from KEZXEU-I2 with 

respect to 1-I2 confirming what observed in the TG analysis. Moreover, UV-Vis quantitative 

analysis of the iodine content of 1-I2 and KEZXEU-I2 obtained at 2 h exposure time gave values 

of 45.0 and 62.0 wt%, respectively, which are almost consistent with that obtained 

gravimetrically and comparable to that reported for porous coordination networks.12
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Encapsulation of iodine by MOFs and CPs could be ascribed to various supramolecular 

interactions between iodine and ligand moieties, such as, π···I and O/N/C–H···I hydrogen 

bonding66,67 or to interaction of iodine with open coordination sites in the skeleton of the 

structures.68 Another way to iodine capture is the formation of I–I halogen bond between I2 

molecules and [CuI]n moieties in the structure of copper iodide-coordination networks.12 In the 

present work, as compounds 2 and 3 with 2D sheet structures, that are containing aromatic rings 

and C–H groups, show no tendency to capture iodine, the most rational factor for iodine capture 

by the 1D CPs 1 and KEZXEU may be assigned to the presence of three coordinated trigonal 

planar copper atoms with open coordination sites.

Anion Exchange Properties of 1 and 2

As revealed by the crystal structure analyses of 1-3, the hexafluorophosphate anions are loosely 

connected to the cationic skeleton of the structures through weak C-H∙∙∙F interactions. To 

investigate whether the PF6
- anions can be exchanged by other anions, anion exchange reactions 

were carried out on 1 and 2 as representative of 1D and 2D structural type, respectively. Anion 

exchange processes were investigated both in solution and in the solid state and the anion-

exchanged products were identified by FT-IR and PXRD techniques. Hence, a certain amount of 

finely powdered samples of 1 or 2 were added to aqueous solutions containing, respectively, 

SCN- (0.005 M), I-, ClO4
- or BF4

- (1 M) and the resulting mixtures were stirred at room 

temperature for one day. The results show that PF6
- anions of 1 or 2 were replaced only by the 

strongly coordinating SCN- anion (Figure S1 a, c; 1-SCN and 2-SCN). The presence of SCN- in 

the anion-exchanged products is established from the appearance of a sharp band at 2113 cm-1, 

which is assigned to the CN stretching mode of the thiocyanate groups23 and the disappearance 

of vibrations bands due to PF6
- anions in the FT-IR spectra. Anion exchange experiments in the 

solid state were also investigated by grinding certain amount of 1 or 2 with solid KSCN, KI, 

NaClO4 and NaBF4 in an agate mortar (molar ratio 1:1). Anion exchange in the solid state for 2 

is the same as that in solution and only SCN- is able to replace PF6
-. Differently, the PF6

- anions 

in the structure of 1 were also replaced by iodide ions (Figure S1 b). This phenomenon could be 

put in relation to the presence of an additional accessible coordination site on the three 

coordinated copper(I) centers in the structure of 1. The anions ClO4
- and BF4

- resulted not able to 
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replace PF6
- in 1 and 2 either in solution or in the solid state, this may be due to their weakly 

coordinating character. To investigate structural change during anion exchange process, PXRD 

analyses were performed on anion- exchanged products 1-SCN, 1-I, and 2-SCN (Figure S6). The 

results indicate structural change during anion exchange. Concerning the anion exchange product 

1-I in the solid state, the results show structural transformation to a corresponding CuI 

coordination polymer [CuI(μ-bdb)]n (ACITAK)45 (Figure S6 a).

CONCLUSION

We reported the facile syntheses of three cationic Cu(I) coordination polymers with flexible 

bispyrazolyl linker ligands and investigated the effect of the geometry of the linkers on their 

structures and iodine sorption behavior. Due to the known structure-directing effects of halides 

and pseudo-halides on the structure of Cu(I) CPs, non- or weakly-coordinating PF6
- anion has 

been selected as counter anion. Crystal structure analysis on the isolated compounds show no 

clear effect of the pyrazolyl spacer groups but an evident influence of pyrazolyl ring steric 

hindrance. The relation of the structures with their capability in the capture of volatile iodine is 

also attractive. Ligands containing methyl-substituted bulky pyrazolyl rings form low 

dimensional coordination polymers of three coordinated copper centers and are good iodine 

sorbents. Ligands with non-substituted rings give rise to higher dimensional CPs with four 

coordinated copper centers with any ability of iodine sorption. Therefore, the results show that 

even non-porous copper(I) coordination polymers have potential application in sorption of 

gaseous iodine and that such ability can be tuned by changing the coordination geometry of 

copper(I) ions.

SUPPORTING INFORMATION AVAILABLE

Selected bond lengths (Å) and bond angles (˚) for compounds 1-3 (Table S1) and hydrogen 

bonds for compounds 2 and 3 (Table S2); Gravimetric and UV-Vis determination of iodine 

contents for compounds 1 and KEZXEU in different I2(g) exposure time (Table S3). FT-IR 

spectra for complexes and anion exchanged products (Figures S1,S3), TGA curves (Figure S2), 

EDX spectra and iodine contents information for iodine-adsorbed samples (Figure S4), 
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Photographs of iodine release tests (Figure S5), PXRD patterns for anion exchanged products 

(Figure S6). This material is available free of charge via the Internet at http://pubs.acs.org. 
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Three Cationic Non-Porous CuI-Coordination Polymers: Structural 

Investigation and Vapor Iodine Capture

Elham Baladi, [a] Valiollah Nobakht,*[a] Abbas Tarassoli,*[a] Davide M. Proserpio,[b],[c] Lucia Carlucci [b]

Ligands containing methyl-substituted bulky pyrazolyl rings form low dimensional coordination 

polymers of three coordinated copper centers and are good iodine sorbents. Ligands with non-

substituted rings give rise to higher dimensional CPs with four coordinated copper centers 

without any ability of iodine sorption.
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