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In Computer Vision, images of dynamic or segmented scenes are 
modeled as linear projections from Pk to P2. The reconstruction 
problem consists in recovering the position of the projected objects 
and the projections themselves from their images, after identifying 
many enough correspondences between the images. A critical locus 
for the reconstruction problem is a variety in Pk containing the 
objects for which the reconstruction fails. In this paper, we deal 
with projections both of points from P4 to P2 and of lines from P3

to P2. In both cases, we consider 3 projections, minimal number 
for a uniquely determined reconstruction. In the case of projections 
of points, we declinate the Grassmann tensors introduced in 
Hartley and Schaffalitzky (2004) in our context, and we use them 
to compute the equations of the critical locus. Then, given the ideal 
that defines this locus, we prove that, in the general case, it defines 
a Bordiga surface, or a scheme in the same irreducible component 
of the associated Hilbert scheme. Furthermore, we prove that every 
Bordiga surface is actually the critical locus for the reconstruction 
for suitable projections. In the case of projections of lines, we 
compute the defining ideal of the critical locus, that is the union of 
3 α-planes and a line congruence of bi-degree (3, 6) and sectional 
genus 5 in the Grassmannian G(1, 3) ⊂ P5. This last surface is 
biregular to a Bordiga surface (Verra, 1988). We use this fact to 
link the two reconstruction problems by showing how to compute 
the projections of one of the two settings, given the projections of 
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the other one. The link is effective, in the sense that we describe 
an algorithm to compute the projection matrices.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear projections from P3 to P2 are the natural geometric model for pictures of static three-
dimensional scenes taken from pinhole cameras. Similarly linear projections from Pk to P2, with 
k ≥ 3, arise when images of particular dynamic and segmented scenes are considered (Wolf 
and Shashua, 2002; Hartley and Schaffalitzky, 2004; Huang et al., 2002; Fan and Vidal, 2007;
Hartley and Vidal, 2004).

Given multiple images of an unknown scene, taken from unknown cameras, the reconstruction of 
the positions of cameras and scene points is a classical problem in Computer Vision, which has been 
generalized as well in the setting of higher dimensional projective spaces.

Sufficiently many images and sufficiently many sets of corresponding points in the given images 
should in principle allow for a successful projective reconstruction. Anyway, there exist sets of points, 
in the ambient space Pk , for which the projective reconstruction fails. These configurations of points 
are called critical, which means that there exist other non projectively equivalent sets of points and 
cameras that give the same images in the view planes.

Critical loci for projections from P3 to P2 have been studied by many authors. Among the many 
papers on the subject, we recall Buchanan (1988), Krames (1940), Maybank (1992), Hartley (2000), 
Kahl et al. (2001), Hartley and Kahl (2007), Shashua and Maybank (1996), Åström and Kahl (2003). 
In the case of projections from higher dimensional Pk to the projective plane P2, when k ≥ 4, critical 
loci were described in Bertolini and Turrini (2007) in the case of one view, and in Bertolini et al.
(2007a, 2007b, 2008, 2009, 2015) in the case of multiple views.

In this paper we focus on the case of three projections from P4 to P2, that is the first non-classical 
case, since three views is the minimum number which allows us to reconstruct the scene, when the 
scene points are general (in a sense which will be clear later). Our purpose is to get a scheme-
theoretical description of the critical locus. The critical locus comes out to be a classical surface in P4, 
the so-called Bordiga surface (Bordiga, 1887). The approach used here to obtain the polynomials that 
generate the ideal of the critical locus is different from the one followed in Bertolini et al. (2015): we 
use the Grassmann tensor introduced in Hartley and Schaffalitzky (2004). In Åström and Kahl (2003), 
a first seminal case of this idea has been applied to two projections from P2 to P1, while in Bertolini 
and Magri (2017) this approach is used to study the critical locus when it is a hypersurface. The con-
struction of the critical locus given in Bertolini et al. (2015) allowed the set-theoretical description of 
it, while the one given here through the Grassmann tensor allows us to compute the generators of 
the ideal of the critical locus and its first syzygy module, so giving a scheme-theoretical description 
of the critical locus itself. In more details, the ideal is minimally generated by 4 degree 3 forms that 
are the maximal minors of a 4 × 3 matrix with linear entries. From the Hilbert–Burch Theorem, it 
follows that the critical locus is a determinantal variety of codimension 2 and degree 6 in P4, and so 
it belongs to the irreducible component of the Hilbert scheme containing Bordiga surfaces.

A very natural question arising as a consequence of the above results is whether every Bordiga 
surface in P4 is the critical locus of suitable projections. To give a positive answer to this question, 
we heavily use the geometry of Bordiga surfaces.

We recall that a Bordiga surface S is the blow-up of P2 at 10 general points, embedded in P4

via the complete linear system of the quartics through the 10 points. S contains exactly 10 lines, 
corresponding to the base points of the linear system. The ideal of the 10 points is determinantal, 
too. The 5 × 4 matrix of linear forms whose maximal minors are the generators of the ideal of the 
10 points in P2 is strongly related to the matrix that presents the surface S in P4. We use such a 
relation to prove that the generators of the first syzygy module of the ideal of S can be chosen in a 
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very particular form. Finally, we use this particular presentation to prove that every Bordiga surface 
is the critical locus for suitable projections, that we explicitly construct.

Quite surprisingly, the Bordiga surface is linked to another classical problem in Computer Vision: 
reconstruction using lines. Given an unknown scene in P3, consisting of a set of lines (i.e. a subset 
of the Grassmannian G(1, 3)), and taken multiple images of this scene, in which corresponding lines 
in the different views are identified, the goal is the reconstruction of the scene. The reconstruction 
using lines is particularly significant in the real word, since images of lines can be more easily and 
accurately detected and tracked than points (Maybank, 1995). A classical result of Buchanan and May-
bank shows that the critical locus for reconstruction in P3 using lines is essentially a line congruence 
of bidegree (3, 6) and sectional genus 5 in G(1, 3). This congruence admits a biregular model in P4

which is a Bordiga surface (Verra, 1988). Furthermore, Maybank proves that every Bordiga surface can 
be obtained in this way, i.e. as model in P4 of a congruence in G(1, 3) which arises as the critical 
locus for the reconstruction using lines. As a consequence of this, we have more deeply investigated, 
also from an algebraic point of view, the relations between the two critical loci. To do this we have 
computed the generators of the ideal of the critical congruence, obtaining its scheme-theoretical de-
scription, and proved that the whole critical locus in G(1, 3) is the union of the quoted congruence 
with three α-planes corresponding to the lines through the centers of projection.

Finally we have explicitly described how to link the projections from P3 to P2 used in the recon-
struction using lines, with the ones from P4 to P2 used in the reconstruction using points, which give 
rise to biregular critical loci, and conversely. This provides a connection between the two reconstruc-
tions, a priori independent each other.

The plan of the paper is as follows. In sections 2 and 3 we recall the geometric constructions 
of the Bordiga surface and of the (3, 6) line congruence respectively and, for both of them, we give 
the algebraic translation of their constructions. Moreover in section 3 we present some results on 
the (3, 6) line congruence we are not able to quote. Section 4 is devoted to recall the main facts 
on multiview geometry in higher dimension, in particular the description of the Grassmann tensor. 
In section 5 we prove that the generators of the ideal of the critical locus for 3 projections from 
P

4 to P2 can be deduced via the appropriate Grassmann tensor and that this locus is actually a 
Bordiga surface. Moreover we prove also that the converse holds, i.e. every Bordiga surface S is the 
critical locus of suitable linear projections. In section 6 we provide the definition of critical locus for 
reconstruction using lines, we compute the defining ideal of such a critical locus and finally we show 
that the (3, 6) congruence is the main component of this locus. Section 7 gives a bridge between the 
two above problems of criticality, by explicitly computing the equations of the maps between the two 
critical loci. From the maps we are able to compute the projections of one of the two settings given 
the projections of the other one. In section 8 we provide a Singular session in which we compute a 
degree 10 arithmetically Gorenstein curve contained in a given (3, 6) line congruence. We need this 
curve to make effective the algorithm in section 7.

2. On the Bordiga surface

In this section, we recall the construction of the Bordiga surface and some properties of this surface 
we’ll use later on in the paper. For more information on this surface, see Bordiga (1887), Dolgachev
(2012).

Let P2 = Proj(S = C[z0, z1, z2]) be the projective space of dimension 2 over the complex ground 
field C, and let p1, . . . , p10 ∈ P

2 be ten general points. Let P̃2 π−→ P
2 be the blow-up of P2 in 

p1, . . . , p10. The linear system |4π∗L − E1 − · · · − E10|, where L is the line divisor in P2 and Ei is 
the exceptional divisor associated to pi , i = 1, . . . , 10, embeds ̃P2 in P4 = Proj(R =C[y0, . . . , y4]), and 
becomes the hyperplane divisor H of the image. If ϕ : P̃2 ↪→ P

4 is the embedding, B = ϕ(̃P2) is named 
Bordiga surface. B is a smooth surface of degree 6 and sectional genus 3. ϕ maps each Ei onto a line, 
and moreover B contains exactly these 10 lines. It is possible to prove that these lines are pairwise 
skew and that no three of them are contained in a 3-dimensional linear space. The canonical divisor 
of B is K B = | − 3π∗L + E1 +· · ·+ E10|. By adjunction, it is possible to prove that the image of a plane 
cubic through 9 among p1, . . . , p10 is a plane cubic in B , as well. Moreover, the plane containing it 
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and the exceptional line associated to the 10th point are skew linear spaces. Finally, the image of a 
line containing no point among p1, . . . , p10 is a rational normal quartic curve � contained in B .

Now, we give the algebraic translation of the previous geometric constructions.
Because of the generality assumption, Z = {p1, . . . , p10} has Hilbert function hZ ( j) = min{( j+2

2

)
, 10}

for j ≥ 0, and so I Z , defining ideal of Z in S , is generated by 5 forms g0, . . . , g4 of degree 4. As Z is 
a codimension 2 arithmetically Cohen–Macaulay (ACM, for short) closed subscheme of P2, the ideal 
I Z is determinantal and its minimal free resolution is

0 → S4(−5)
N Z−→ S5(−4) → I Z → 0. (1)

The forms g0, . . . , g4 are a basis of the complete linear system of quartic curves through p1, . . . , p10. 
If we define ϕ : R → S as ϕ(yi) = gi, i = 0, . . . , 4, then I B = ker(ϕ) is the defining ideal of the Bordiga 
surface B = ϕ(̃P2). I B is determinantal too, and its minimal free resolution is

0 → R3(−4)
NB−→ R4(−3) → I B → 0. (2)

This proves that B is a codimension 2, ACM closed scheme in P4 with Hilbert polynomial pB (t) =
(6t2 + 2t + 2)/2. From Ellingsrud (1975), it follows that

Proposition 2.1. The Bordiga surface is the general element of the irreducible component of the Hilbert scheme 
HilbpB (t)(P

4) containing the codimension 2, ACM closed subschemes of P4 with Hilbert polynomial pB(t).

From the point of view of liaison theory, the Bordiga surface is linked to a degree 3 rational normal 
scroll. In fact, let S be the surface complete intersection of two general cubic hypersurfaces contain-
ing B . Then, by standard argument from liaison theory, the defining ideal of the residual surface B ′
has the following minimal free resolution

0 → R2(−3) → R3(−2) → I B ′ → 0

and so B ′ is a degree 3 rational normal scroll, as claimed. Moreover, the intersection between B and 
B ′ is an arithmetically Gorenstein curve of degree 8 and socle degree 3, as its minimal free resolution 
is

0 → R(−6) →
R2(−3)

⊕
R3(−4)

→
R3(−2)

⊕
R2(−3)

→ I B∩B ′ → 0,

computed by mapping cone from the short exact sequence

0 → I S → I B ⊕ I B ′ → I B∩B ′ → 0.

Such a curve is the image in B of a curve in the linear system |7π∗L − 2E1 −· · ·− 2E10| = | − K B + H |
and so the curve is a twisted anticanonical divisor on B (see, Kleppe et al., 2001 for generalities on 
such divisors). Such a linear system will play a role in next sections.

By adjunction (Ottaviani, 1995, pp. 48–49), one can prove that the matrices N Z and NB are related 
each other by

NB

⎛
⎝ z0

z1
z2

⎞
⎠ = N T

Z

⎛
⎜⎝

y0
...

y4

⎞
⎟⎠ . (3)

If p ∈ P
2 \ Z , then rank(N Z ⊗C(p)) = 4 as (1) remains exact after tensorization by C(p), residue field 

of p. So p is mapped to the point in P4 whose homogeneous coordinates solve the linear system
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(N Z ⊗C(p))T

⎛
⎜⎝

y0
...

y4

⎞
⎟⎠ = 0. (4)

If p ∈ Z , then rank(N Z ⊗ C(p)) = 3, and so the solutions of (4) are the points of the exceptional 
line E P . Moreover, if p ∈ Z , then I Z : I p has a unique generator in degree 3, the defining form fC
of the plane cubic curve C through Z \ {p}. For every line L � p, we have that l fC ∈ 〈g0, . . . , g4〉, 
with l ∈ C[z0, z1, z2]1 defining L, and so l fc = a0(l)g0 + · · · + a4(l)g4 for suitable ai(l) ∈ C. Then, the 
hyperplane a0(l)y0 + . . .a4(l)y4 = 0 contains ϕ(C). As there are two linearly independent lines in P2

containing p, we have that ϕ(C) is contained in a dimension 2 linear space, as well. Hence, ϕ(C) is 
a plane cubic, because I B is generated in degree 3. Now we want to explain why the above plane 
containing ϕ(C) is skew with E p . In fact, the solutions of (4) define the sub-linear system of plane 
quartics through p1, . . . , p10, singular at p. As the quartics defined by l fC are smooth at p, then they 
are not in the sub-linear system above, and so the intersection of the two linear spaces is empty.

Now, if L ⊂ P
2 is a general line, we can assume that L ∩ Z = ∅. Let p, q ∈ L be two distinct points 

and let ML =
⎛
⎝ z0p z0q

z1p z1q

z2p z2q

⎞
⎠ be the rank 2 matrix whose columns are homogeneous coordinates of the 

points p, q. Then NB ML is a 4 × 2 matrix of generic rank 2 of linear forms in R , and so its maximal 
minors define a rational normal curve � of degree 4 contained in B .

3. On the line congruence of bi-degree (3, 6) and sectional genus 5

In this section, we recall the construction and some properties of the line congruence K of bi-
degree (3, 6) and sectional genus 5 in the Grassmannian G(1, 3) of lines in P3, following Verra (1988), 
Arrondo and Sols (1992). Furthermore, we present three properties of K for which we are not able to 
quote a reference.

As in section 2, let P̃2 be the blow-up of P2 at 10 general points p1, . . . , p10. The linear system 
|7π∗L − 2E1 − · · · − 2E10| on P̃2 embeds P̃2 in G(1, 3) ⊂ P

5 = Proj(T = C[x0, . . . , x5]). For a suitable 
choice of the coordinates, G(1, 3) = V (x0x5 − x1x4 + x2x3). Let ψ : P̃2 → G(1, 3) be such an embed-
ding, and let K = ψ(̃P2) be its image. Then, K is a line congruence of bi-degree (3, 6) and sectional 
genus 5. The canonical divisor is K K = | − 3π∗L + E1 + · · · + E10| while the hyperplane divisor is 
H = |7π∗L − 2E1 − · · · − 2E10|. Moreover, the converse holds true, that is to say, every such a sur-
face is the embedding of P̃2 with |7π∗L − 2E1 − · · · − 2E10|. In G(1, 3), the ideal sheaf IK |G(1,3) is 
generated in degree 3 and it holds

0 → O5
G(1,3) → E2(1)3 → IK |G(1,3)(3) → 0 (5)

where E2 is the rank 2 vector bundle on G(1, 3) coming from the universal exact sequence

0 → E1 → H0(OP3(1)) ⊗OG(1,3) → E2(1) → 0.

The first result we are not able to quote concerns the shape of the minimal free resolution of the 
defining ideal I K of K in T .

Proposition 3.1. The minimal free resolution of I K has the shape

0 → T 5(−5) → T 12(−4) →
T (−2)

⊕
T 7(−3)

→ I K → 0. (6)

Proof. From (5), we get the resolution of I K |G(1,3) over TG = T /〈x0x5 − x1x4 + x2x3〉, that is periodic, 
and it is

· · · → T 12
G (−5) → T 12

G (−4) → T 7
G(−3) → I K |G(1,3) → 0
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as H0(E2(1)) = H0(OP3 (1)). By Shamash (1969), the minimal free resolution of I K has the shape

0 → T 5(−5) → T 12(−4) →
T (−2)

⊕
T 7(−3)

→ I K → 0

as claimed, where the degree 2 generator of I K is the defining form of G(1, 3). �
In particular, K is ACM with Hilbert polynomial pK (t) = (9t2 + t + 2)/2. A result similar to Propo-

sition 2.1 holds.

Proposition 3.2. The line congruence of bi-degree (3, 6) and sectional genus 5 is the general element of the 
irreducible component of the Hilbert scheme HilbpK (t)(P

5) containing the codimension 3, ACM closed sub-
schemes of P5 with Hilbert polynomial pK (t) and resolution (6).

Now, we go back to the geometric description of K .
As P̃2 is embedded both in P4 as a Bordiga surface B , and in G(1, 3) as a suitable line congru-

ence K , it is natural to look for maps from P4 to G(1, 3) that transform B into K . In Verra (1988), it 
is proved that the map θ that makes commutative the diagram

P̃
2

ψ

ϕ
B ⊂ P

4

θ

K ⊂ G(1,3)

(7)

is associated to the linear system |OP4 (2) \�| where � ⊂ B is a degree 4 rational normal curve in P4, 
and so � is the image in B of a line in P2. The map θ contracts lines that are bi-secant to � and so 
θ is an embedding of P4 \ F where F is the secant variety to �, a degree 3 hypersurface. Moreover, θ
maps F to a Veronese surface V .

Now, we can prove the second result we are not able to quote.

Theorem 3.1. The line congruence K of bi-degree (3, 6) and sectional genus 5 in G(1, 3) is Gorenstein linked 
to a Veronese surface V by an arithmetically Gorenstein surface S of degree 13 and socle degree 4.

Proof. The map θ−1 is defined on K \ C where C = K ∩ V and V is the contraction of the secant 
variety to � where θ is not an embedding. The curve C is in the linear system |10π∗L − 3E1 − · · · −
3E10| = | − K K + H | and so C is a twisted anticanonical divisor. By Kleppe et al. (2001, Lemma 5.4), 
C is arithmetically Gorenstein in P5, and its minimal free resolution can be easily constructed by 
self-duality, because the minimal free resolution of I V is a subcomplex of the resolution of IC . Then, 
we have

0 → T (−7) →
T 3(−4)

⊕
T 6(−5)

→
T 8(−3)

⊕
T 8(−4)

→
T 6(−2)

⊕
T 3(−3)

→ IC → 0.

Let S = K ∪ V . Then, we have the short exact sequence

0 → I S → I K ⊕ I V → IC → 0

from which we get the shape of the minimal free resolution of I S :

0 → T (−7) →
T 4(−4)

⊕
T (−5)

→
T (−2)

⊕
T 4(−3)

→ I S → 0 (8)
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and so we get that S is arithmetically Gorenstein of degree 13 and socle degree 4, as claimed. More-
over, K is algebraically linked to V by S and the linkage is geometric, because both K and V are 
irreducible varieties, and so they have no irreducible component in common.

Conversely, let V ⊂ G(1, 3) be a Veronese surface, and let S be an arithmetically Gorenstein surface 
of degree 13 and socle degree 4 containing V and contained in the Grassmannian G(1, 3). Then, the 
Hilbert function of the Artinian reduction of S is (1, 3, 5, 3, 1), and so its minimal free resolution 
is (8). Hence, the residual variety K has minimal free resolution (6) and so K is a line congruence of 
bi-degree (3, 6) and sectional genus 5, as claimed. �
Remark 3.1. As the shape of the resolution of IC allows cancellations, the general element of | − K K +
H | is not the intersection of K with a Veronese surface.

Now, we describe an algorithm, based on Notari and Spreafico (2000), to compute such a surface S , 
given a general line congruence K . It can be easily adapted to start from V . In last section 8, we 
implement it in Singular (Decker et al., 2016), as this explicit computation is needed in section 7, 
which is the algorithmic part of the paper.

Given a reduced Gröbner basis of I K with respect to the degree reverse lexicographic ordering (de-
grevlex, for short) in T , the initial ideal in(I K ) is generated by 〈x2x3, x3

0, x
2
0x1, x0x2

1, x
3
1, x

2
0x2, x0x1x2,

x2
1x2〉. With “general” line congruence, we mean that the generators of in(I K ) are as large as possible 

w.r.t. the degrevlex ordering and the Hilbert function of I K . Then, we write polynomials p1, . . . , p5
whose coefficients are indeterminates, and whose initial terms are x3

0, x
2
0x1, x0x2

1, x
2
0x2, x4

1, respec-
tively. Also in this case, we choose the largest monomial ideal compatible with the Hilbert func-
tion of S . We want to compute the indeterminate coefficients in such a way that {x0x5 − x1x4 +
x2x3, p1, p2, p3, p4, p5} is a reduced Gröbner basis of I S . At first, we reduce p1, . . . , p5 w.r.t. the Gröb-
ner basis of I K and we set equal to 0 their normal forms. This gives a linear system in the indetermi-
nate coefficients. We compute the solutions of this system, and we substitute them in the polynomials 
p1, . . . , p5. Then, we run the Buchberger algorithm on the input {x0x5 − x1x4 + x2x3, p1, p2, p3, p4, p5}
and we set equal to zero their S-polynomials. We get a new set of equations, no more linear. It is pos-
sible to check, however, that the equations allow us to express all but two of the remaining variables 
as rational functions of the last two ones. More precisely, the two special variables are the coeffi-
cients of x2

1x2, x0x1x2 in p4. For a random choice of them, we compute the polynomials p1, . . . , p5
and we get the arithmetically Gorenstein surface S we are looking for. As a by-product, we have 
that such surfaces form a dimension 2 family, whose parameter space contains an open subset of an 
affine plane A

2. This confirms that for every line in P2, containing no point among p1, . . . , p10, we 
can construct a rational normal curve � in the Bordiga surface B ⊂ P

4 and a curve C contained in 
K ⊂ G(1, 3) where the map θ is not an embedding.

As last result, we describe a geometric property of K .
We proved in section 2 that a plane cubic curve containing 9 of the 10 points in Z is mapped 

onto a plane cubic curve in B , as well. Now we prove that these plane curves are mapped by θ to 
plane curves again. Take, for example, an element in |3π∗L − E2 − · · · − E10|. The degree of its image 
in K is 3 and its genus, computed via adjunction, turns out to be 1. So it is a plane curve in K , too. 
The plane containing this curve is an α-plane in G(1, 3). To compute the equations of the α-plane, 
one can proceed as follows. Let Ci ⊂ P

2 be the cubic curve not containing pi , i = 1, . . . , 10, and let 	i j
be the line through pi, p j , with i �= j. Then, 	i j Ci C j is a degree 7 plane curve singular at p1, . . . , p10, 
and so it is a linear combination of a basis of the linear system. These linear combinations give the 
equations of the hyperplanes in G(1, 3) ⊂ P

5 containing the image of Ci . If we select p1, p2, p3 as 
distinguished points among p1, . . . , p10, and we set α1, α2, α3 the planes containing the images of 
C1, C2, C3, respectively, then each one of them intersects the other two ones, as the intersection point 
is image of the further intersection point of Ci and C j other then the base points.

Now, we can prove the last result we are not able to quote.

Proposition 3.3. With the previous notations, let Y be the union of the line congruence K and the three planes 
α1, α2, α3 . Then, Y is an ACM surface of bi-degree (6, 6) in G(1, 3) and the minimal free resolution of its 
defining ideal is
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0 → T 3(−6) →
T 3(−4)

⊕
T 4(−5)

→
T (−2)

⊕
T 4(−3)

→ IY → 0. (9)

Proof. To prove the result, we use mainly mapping cone procedure. The starting point is the following 
short exact sequence

0 → I K∩(α1∪α2) → I K∩α1 ⊕ I K∩α2 → I K∩α1∩α2 → 0.

As K ∩ αi is a degree 3 plane curve, the minimal free resolution of I K∩αi is Koszul, with 3 generators 
in degree 1 and a further generator in degree 3. On the other hand, K ∩ α1 ∩ α2 is a point, and 
so also the minimal free resolution of I K∩α1∩α2 is Koszul with 5 generators in degree 1. Furthermore, 
K ∩ (α1 ∪α2) is the union of two plane cubic curves meeting at a point, and so there are two minimal 
generators in degree 3.

Then, by mapping cone on the previous sequence, we get

0 →
T ( − 5)

⊕
T 2(−6)

→
T 5(−4)

⊕
T 6(−5)

→
T 8(−3)

⊕
T 6(−4)

→

T (−1)

⊕
T 4(−2)

⊕
T 2(−3)

→ I K∩(α1∪α2) → 0.

Before going on, we construct the minimal free resolution of Iα1∪α2∪α3 . We choose coordinates in 
P

5 in such a way that Iα1 = 〈x0, x1, x2〉, Iα2 = 〈x0, x3, x4〉, Iα3 = 〈x1, x3, x5〉, so to let them intersect 
pairwise. Hence, Iα1∪α2∪α3 = 〈x0x1, x0x3, x0x5, x1x3, x1, x4, x2x3, x2x4x5〉, and its minimal free resolu-
tion has the shape

0 → T (−6) →
T 3(−4)

⊕
T 3(−5)

→
T 8(−3)

⊕
T 3(−4)

→
T 6(−2)

⊕
T (−3)

→ Iα1∪α2∪α3 → 0.

Now, we consider the short exact sequence

0 → I K∩(α1∪α2∪α3) → I K∩(α1∪α2) ⊕ I K∩α3 → I K∩(α1∪α2)∩α3 → 0.

When we apply the mapping cone procedure, we consider that, by degree argument, the minimal free 
resolution of Iα1∪α2∪α3 is a sub-complex of the resolution of I K∩(α1∪α2∪α3) , and that K ∩ (α1 ∪α2) ∩α3

is a set of 2 points, and so its minimal free resolution is Koszul, too, with 4 generators in degree 1
and a generator in degree 2. Then, we get

0 → T 4(−6) →
T 3(−4)

⊕
T 12(−5)

→
T 8(−3)

⊕
T 12(−4)

→
T 6(−2)

⊕
T 4(−3)

→ I K∩(α1∪α2∪α3) → 0.

Finally, from the short exact sequence

0 → IY → I K ⊕ Iα1∪α2∪α3 → I K∩(α1∪α2∪α3) → 0

we get the result on the minimal free resolution of IY . From the minimal free resolution, it follows 
that Y is ACM. �
4. On multiview geometry for projections from PPP4 to PPP2

In this section we fix notation and terminology and give a short overview of classical facts in 
Computer Vision related to the problem of projective reconstruction of scenes and cameras from 
multiple views.



82 M. Bertolini et al. / Journal of Symbolic Computation 91 (2019) 74–97
Even if all the definitions can be given in full generality, we restrict ourselves to the case of 
projections from P4 to P2. In this context, a camera P is a linear projection from P4 onto P2, from a 
line C P , called center of projection. The target space P2 is called view. A scene is a set of points Xi ∈ P

4.
Using homogeneous coordinates in P4 and P2, we identify P with a 3 × 5 matrix of maximal rank, 

defined up to a multiplicative constant. Hence C P comes out to be the right annihilator of P .
Let us consider a set of cameras P j : P4 \ C P j → P

2 projecting the same scene in P4 and the 
corresponding set of images in the different target planes. In this setting, proper linear subspaces 
(points or lines), Li, i = 1 . . .m, of different views are said to be corresponding if there exists at least a 
point X ∈ P

4 such that Pi(X) ∈ Li for all i = 1 . . .m.
In the context of multiple view geometry, the problem of projective reconstruction of a scene, given 

multiple images of it, is the following: given many enough scene points in P4 and identified a suitable 
number of corresponding subspaces on each image, one wants to get the projection matrices (up to 
projective transformations), i.e. the cameras, and the coordinates in P4 of the scene points.

Hartley and Schaffalitzky (2004) have constructed a set of multiview tensors, called Grassmann 
tensors, encoding the relations between sets of corresponding subspaces. We recall here the basic 
elements of their construction in the case of three projections from P4 to P2, which turns out to be 
the minimal number of views allowing projective reconstruction.

Consider three projections P j : P4 \ C j → P
2, j = 1, 2, 3, with centers C1, C2, C3 in general position.

Let {L1, L2, L3} be three general linear subspaces (points or lines) of P2 of codimension α1, α2, α3, 
respectively. (L1, L2, L3) is a triple of corresponding subspaces if and only if (P1)−1(L1) ∩ (P2)

−1(L2) ∩
(P3)

−1(L3) is not empty. From the Grassmann formula, if 
∑

α j = 5, j = 1, 2, 3, the existence of points 
in the previous intersection gives a constrain which allows us to construct the Grassmann tensor. 
Hartley and Schaffalitzky call the triple (α1, α2, α3) a profile for the reconstruction problem. In our 
situation the only possible profiles are: (α1, α2, α3) = (2, 2, 1), (2, 1, 2) or (1, 2, 2).

Let {L1, L2, L3} be three general linear subspaces of P2 as above and let S j be the maximal rank 
matrix of type 3 × (3 − α j) whose columns are a basis for L j, j = 1, 2, 3. By definition, if the L j ’s 
are corresponding subspaces, there exists a point X ∈ P

k such that P j(X) ∈ L j for j = 1, 2, 3. In other 
words there exist three vectors vj ∈ C

3−α j j = 1, 2, 3 such that:

⎛
⎝ S1 0 0 P1

0 S2 0 P2
0 0 S3 P3

⎞
⎠ ·

⎛
⎜⎜⎝

v1
v2
v3
X

⎞
⎟⎟⎠ =

⎛
⎝ 0

0
0

⎞
⎠ . (10)

The existence of a non-trivial solution (v1, v2, v3, X) of system (10) implies that the coefficient 
matrix has determinant zero, as it is square of order 9 in our case. This determinant can be thought 
of as a tri-linear form (tensor) in the Plücker coordinates of the spaces L j . This tensor is the Grassmann 
tensor.

In the following we explicitly construct such a tensor for the profile (2, 2, 1), others being similar. 
Now L1, L2 are points and L3 is a line. We denote by (x1, x2, x3), (y1, y2, y3) the homogeneous coor-
dinates of L1 and L2, respectively, and by (z1, z2, z3) and (w1, w2, w3) the homogeneous coordinates 
of two points of L3. In this case the matrix of the coefficients of the linear system (10) becomes:

T P1,P2,P3
L1,L2,L3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 0 P1[1,1] P1[1,2] P1[1,3] P1[1,4] P1[1,5]
x2 0 0 0 P1[2,1] P1[2,2] P1[2,3] P1[2,4] P1[2,5]
x3 0 0 0 P1[3,1] P1[3,2] P1[3,3] P1[3,4] P1[3,5]
0 y1 0 0 P2[1,1] P2[1,2] P2[1,3] P2[1,4] P2[1,5]
0 y2 0 0 P2[2,1] P2[2,2] P2[2,3] P2[2,4] P2[2,5]
0 y3 0 0 P2[3,1] P2[3,2] P2[3,3] P2[3,4] P2[3,5]
0 0 z1 w1 P3[1,1] P3[1,2] P3[1,3] P3[1,4] P3[1,5]
0 0 z2 w2 P3[2,1] P3[2,2] P3[2,3] P3[2,4] P3[2,5]
0 0 z3 w3 P3[3,1] P3[3,2] P3[3,3] P3[3,4] P3[3,5]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Pi[ j, k] denotes the element in position ( j, k) of the matrix Pi .
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If L1, L2 and L3 are corresponding spaces then the linear system

T P1,P2,P3
L1,L2,L3

⎛
⎜⎜⎜⎝

λ

μ
α
β

X

⎞
⎟⎟⎟⎠ = 0 (11)

has a non trivial solution, and so det(T P1,P2,P3
L1,L2,L3

) = 0.
The converse is true for general L1, L2 and L3 since we are looking for a non trivial solution of 

(11) in which X is a point of P4 (i.e. X �= 0) and X /∈ C1 ∪ C2 ∪ C3.
In particular this happens if L1 /∈ P1(C2 ∪ C3) and L2 /∈ P2(C1 ∪ C3). Under this hypothesis, if 

det(T P1,P2,P3
L1,L2,L3

) = 0, then L1, L2 and L3 are corresponding as the linear system (11) has a non triv-
ial solution with X as required. Indeed the case X = 0 doesn’t occur, since, in the opposite case, either 
L1 or L2 are not points, or L3 is not a line. Moreover X /∈ C1 ∪ C2 ∪ C3, for the assumption.

In conclusion, for the chosen profile (2, 2, 1), one sees that det(T P1,P2,P3
L1,L2,L3

) = 0 is indeed the tri-
linear constraint between the coordinates x and y of the first and second view and the Plücker (i.e. 
dual) coordinates of the line < z, w > of the third view so to let them be corresponding.

5. Critical loci for projective reconstruction of points and their geometry

As discussed in the previous section, folklore on the reconstruction problem says that sufficiently 
many views and sufficiently many sets of corresponding points in the given views should allow one 
a successful projective reconstruction. This is generally true, but even in the classical set-up of two 
projections from P3 to P2 one can have non projectively equivalent pairs of sets of scene points and 
of cameras that produce the same images in the view planes, thus preventing reconstruction. Such 
configurations and the loci they describe are referred to as critical. In Bertolini et al. (2015), critical loci 
for projective reconstruction of camera centers and scene points from multiple views for projections 
from Pk to P2 have been introduced and studied. Here we shortly recall the basic definitions in the 
case in which we are interested in, i.e. three views from P4 to P2. Moreover we study the critical 
locus X for general projections. The non general case is under investigation, and some preliminary 
results are summarized in Bertolini et al. (in preparation).

Definition 5.1. A set of points {X j}, j = 1, . . . , N , N � 0, in P4 is said to be a critical configuration 
for projective reconstruction from three views if there exist two collections of 3 × 5 full-rank projection 
matrices Pi and Q i , i = 1, 2, 3, and a set of N points {Y j} ⊂ P

4, non-projectively equivalent to {X j}, 
such that, for all i and j, Pi(X j) = Q i(Y j), up to homography in the image planes. The two sets {X j}
and {Y j} are called conjugate critical configurations, with associated conjugate matrices {Pi} and {Q i}.

Remark 5.1. It can be proved that in the above definition N ≥ 7 is enough.

The generators of the ideal of the critical locus X can be obtained by making use of the Grassmann 
tensor introduced in the previous section.

Indeed, the Grassmann tensor T P1,P2,P3 encodes the algebraic relations between corresponding 
subspaces in the different views of the projections P1, P2, P3. Hence by definition of critical set, if 
{X j, Y j} are conjugate critical configurations, then, for each j, the projections P1(X j), P2(X j) and 
P3(X j) are corresponding points not only for the projections P1, P2, P3, but for the projections 
Q 1, Q 2, Q 3, too.

Following the construction of the previous section, we first choose the profile (2, 2, 1).
If L′

1, L
′
2, L

′
3 is a triple of corresponding spaces for the projections Q 1, Q 2, Q 3, where L′

1, L
′
2 are 

points with homogeneous coordinates L′
1 = (x′

1, x
′
2, x

′
3)

T , L′
2 = (y′

1, y
′
2, y

′
3)

T in the first two views re-
spectively, and L′

3 is the line spanned by z = (z′
1, z

′
2, z

′
3) and w = (w ′

1, w
′
2, w

′
3) in the third view, the 

trilinear relation between L′
1, L

′
2, L

′
3 is given by the vanishing of det(T Q 1,Q 2,Q 3

L′ ,L′ ,L′ ), where

1 2 3
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T Q 1,Q 2,Q 3
L′

1,L′
2,L′

3
=

⎛
⎝ L′

1 0 0 0 Q 1
0 L′

2 0 0 Q 2
0 0 z w Q 3

⎞
⎠ .

Considering as corresponding spaces L′
1 = P1(X), L′

2 = P2(X) and any line L′
3 passing through 

P3(X), with X any point in the critical locus, one gets that the determinant of the matrix

M ′ =
⎛
⎝ P1(X) 0 0 0 Q 1

0 P2(X) 0 0 Q 2
0 0 P3(X) v Q 3

⎞
⎠

must vanish for every choice of v = (a, b, c)T .
This implies that all the cofactors of the elements a, b, c in M ′ must vanish.
Since the above reasoning holds for all the possible profiles (2, 2, 1), (2, 1, 2) or (1, 2, 2), one sees 

that X is in the critical locus if and only if one has the vanishing of all the maximal minors of

M =
⎛
⎝ P1(X) 0 0 Q 1

0 P2(X) 0 Q 2
0 0 P3(X) Q 3

⎞
⎠ .

From the above discussion it follows that the maximal minors of M generate the ideal of the 
critical locus X , as X has to satisfy no other constraint.

Remark 5.2. In Bertolini et al. (2015), the critical locus for a suitable number n of projections from 
P

k to P2 has been introduced and studied in a more general context. If k is even, the critical locus 
is a determinantal variety, defined by 3n polynomials of degree n. In the particular case of three 
projections from P4 to P2, up to a constant, these polynomials are exactly the maximal minors of M
defined above.

Now we study the geometry of the critical locus X in a general situation, where general means 
that the greatest common divisor of the generators of the ideal is trivial.

Since the generators have a trivial greatest common divisor, by Hilbert–Burch Theorem (Eisenbud, 
1999, Theorem 20.15), a free resolution of the ideal IX they generate is

0 →
R3(−4)

⊕
R5(−3)

M−→ R9(−3) −→ IX → 0 (12)

where M is the above matrix.

By generality assumption, we can assume that rank

⎛
⎝ Q 1

Q 2
Q 3

⎞
⎠ = 5. Hence, we can cancel the sum-

mand R5(−3) from the resolution, and we get the minimal free resolution

0 → R3(−4)
NX−→ R4(−3) −→ IX → 0. (13)

Let us assume that a non-vanishing minor is given by the last 5 rows and columns in M . Then if we 
write M as the following block matrix

M =
(

A B
C D

)
with A of type 4 × 3, and D invertible, we can reduce M with elementary operations on rows and 
columns to the block matrix(

NX 0
0 I5

)



M. Bertolini et al. / Journal of Symbolic Computation 91 (2019) 74–97 85
where I5 is the 5 × 5 identity matrix, 0 are null matrices of suitable type, and

NX = A − B D−1C .

Because of the way it is obtained, NX has linear entries. As the elementary operations on the 
columns correspond to base changes in the free module R3(−4) ⊕ R5(−3) while the ones on the rows 
correspond to base changes in the free module R9(−3), the global effect is to construct a new set of 4
generators of the ideal IX again as maximal minors of NX . Then, the critical locus X is a codimension 
2 arithmetically Cohen–Macaulay scheme in P4 with Hilbert polynomial p(t) = (6t2 + 2t + 2)/2 =
pB(t). From Proposition 2.1, we have the following

Proposition 5.1. The general critical locus for projective reconstruction for three views from P4 to P2 is in the 
irreducible component of HilbpB (t)(P

4) containing the Bordiga surfaces.

It is then natural to characterize the locus filled by critical loci inside this irreducible component. 
Quite surprisingly, this locus coincides with the whole irreducible component. In fact, we have

Theorem 5.1. Let B be a Bordiga surface. Then B is a critical locus for the projective reconstruction from three 
views from P4 to P2 , that is to say, there exist two couples of three projections P1, P2, P3 and Q 1, Q 2, Q 3
from P4 to P2 such that the associated critical locus is B.

Proof. Let Z ⊂ P
2 be a set of 10 points in uniform position and let B be the associated Bordiga 

surface. B is irreducible, of course. We choose a reference frame in P2 in such a way that the funda-
mental points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) are in Z . For this choice, from equation (3), we have that 
the columns of NB in resolution (2) define three lines in P4 that lie on the Bordiga surface B . We 
take these lines as centers of three projections P1, P2, P3.

By performing elementary operations on the rows of NB = (nij), we can assume that n41 = 0 and 
n11, n21, n31 are linearly independent.

Now, we want to prove that n42 �= 0. Assume by contradiction that n42 = 0. Then, with easy com-
putations, we have that I B is generated by

n43 det(N
1̂4;3),n43 det(N

2̂4;3),n43 det(N
3̂4;3),det(N4̂).

So,

I B = 〈n43,det(N4̂)〉 ∩ 〈det(N
1̂4;3),det(N

2̂4;3),det(N
3̂4;3)〉

where î j;k denotes the cancellation of the rows i, j and of the column k from NB , while ̂ i denotes 
the cancellation of the i-th row, and hence B is not irreducible. In more details, 〈n43, det(N4̂)〉 defines 
a cubic surface in a P3 while 〈det(N

1̂4;3), det(N
2̂4;3), det(N

3̂4;3)〉 defines a cone in P4 over a twisted 
cubic curve in a suitable P3. Finally, the two surfaces meet along a twisted cubic curve. Then, n42 �= 0.

Analogously we get n43 �= 0.
Performing other elementary operations on the rows of NB , we can get n32 = 0. In analogy to the 

previous case, n33 �= 0 otherwise B would be non irreducible, as only an element in the third row of 
NB is non-zero. Let p1

3X, p2
3X, p3

3X be a basis of the ideal generated by ni3, i = 1, . . . , 4. Moreover, let 
E be the 4 × 3 matrix such that⎛

⎜⎜⎝
n13
n23
n33
n43

⎞
⎟⎟⎠ = E

⎛
⎜⎝ p1

3X

p2
3X

p3
3X

⎞
⎟⎠ .

As n33 �= 0 and n43 �= 0, the last two rows of E are non-zero, as well.
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Then, if we set

A =

⎛
⎜⎜⎝

n11 0 0
n21 0 0
n31 0 0
0 n42 0

⎞
⎟⎟⎠ and C =

⎛
⎜⎜⎜⎜⎜⎝

0 n12 0
0 n22 0
0 0 p1

3X

0 0 p2
3X

0 0 p3
3X

⎞
⎟⎟⎟⎟⎟⎠

we have that NB = A − F C for

F =

⎛
⎜⎜⎝

−1 0
0 −1
0 0
0 0

∣∣∣∣∣∣∣∣ −E

⎞
⎟⎟⎟⎟⎠ .

Let D be any invertible matrix of order 5 and take B = F D . Then, the maximal minor of the matrix

M =
(

A B
C D

)
generate the same ideal I B that defines the Bordiga surface B from which we started.

The matrices P1X, P2X, P3X are the three matrices deduced by taking the rows of 
(

A
C

)
three by 

three.

Let Q 1, Q 2, Q 3 the three matrices obtained by taking the rows of 
(

B
D

)
three by three. We want 

to check that Q i has maximal rank 3. This is obvious for Q 3 because the rows of D are linearly 
independent. Q 1 has rank three too, because the first three rows of F are linearly independent and D
is invertible. The last row of B is the last row of F times D , and so it is a linear combination of the 
last three rows of D with non-zero coefficients. So, it is not a linear combination of the first two rows 
of D , again because D has rank 5. Hence, Q 2 has maximal rank 3, too, and the proof is complete. �
6. Critical loci for projective reconstruction of lines and their geometry

In the previous sections, we have dealt with the reconstruction problem for sets of points from 
their images via three projections from P4 to P2. Moreover we have studied the critical loci for this 
problem.

A different reconstruction problem arises when one considers projections of lines in P3 instead of 
projections of points. This set-up has been considered and studied by various authors, in particular 
Buchanan (1992) and Maybank (1995). Given a set of lines in P3 and n projections of these lines to 
P

2, Buchanan (1992) shows that n = 3 is the minimum n such that it is possible to reconstruct the 
set from their images, up to projective transformations in P3. Of course, also in this context, there is 
a natural notion of critical locus, consisting of lines in P3.

Definition 6.1. A set of lines {λ j}, j = 1, . . . , N , N � 0, in P3 is said to be a critical configuration 
for projective reconstruction of lines from three views if there exist two collections of 3 × 4 full-rank 
projection matrices ϕi and ψi , i = 1, 2, 3, and a set of N lines {μ j} in P3, non-projectively equivalent 
to {λ j}, such that, for all i and j, ϕi(λ j) = ψi(μ j), up to homography in the (dual) image planes. The 
two sets {λ j} and {μ j} are called conjugate critical configurations, with associated conjugate matrices 
{ϕi} and {ψi}.

In Buchanan (1992), the author, using geometrical arguments, shows that given two triples of 
projections from P3 to P2, the associated critical set for reconstruction via lines is a congruence K of 
bi-degree (3, 6) and sectional genus 5 in the Grassmannian G(1, 3) (see section 3).
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In this section, via an algebraic approach, we compute the defining ideal of the critical locus for 
this reconstruction problem. We prove that the critical locus is the union of the above line congruence 
and of the three α-planes in G(1, 3) corresponding to the three centers of projection in P3.

To start, we denote by ϕi : P3 → P
2 and ψi : P3 → P

2, i = 1, 2, 3, two triples of projections and 
we consider the associated critical locus for the reconstruction problem through lines considered by 
Buchanan (1992). Let O i ∈ P

3 (respectively, O ′
i ∈ P

3) be the center of the projection ϕi (resp. ψi). As 
in the following we are interested in the rows of the matrices ψ1, ψ2, ψ3, we set⎛

⎝ ψ1
ψ2
ψ3

⎞
⎠ =

⎛
⎜⎝

R1
...

R9

⎞
⎟⎠ (14)

where Ri is a 1 × 4 matrix. As we consider general projections, we assume that the above matrix has 
rank 4.

As proved in Hartley and Zisserman (2004), if we call l a line in P3 and l′ its image in P2 via a 
projection ϕ = (ϕi j), the Plücker coordinates of l are transformed into the Plücker coordinates of l′ via

ϕ ∧ ϕ =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ ϕ21 ϕ22
ϕ31 ϕ32

∣∣∣∣
∣∣∣∣ ϕ21 ϕ23
ϕ31 ϕ33

∣∣∣∣
∣∣∣∣ ϕ22 ϕ23
ϕ32 ϕ33

∣∣∣∣
∣∣∣∣ ϕ21 ϕ24
ϕ31 ϕ34

∣∣∣∣
∣∣∣∣ ϕ22 ϕ24
ϕ32 ϕ34

∣∣∣∣
∣∣∣∣ ϕ23 ϕ24
ϕ33 ϕ34

∣∣∣∣∣∣∣∣ ϕ31 ϕ32
ϕ11 ϕ12

∣∣∣∣
∣∣∣∣ ϕ31 ϕ33
ϕ11 ϕ13

∣∣∣∣
∣∣∣∣ ϕ32 ϕ33
ϕ12 ϕ13

∣∣∣∣
∣∣∣∣ ϕ31 ϕ34
ϕ11 ϕ14

∣∣∣∣
∣∣∣∣ ϕ32 ϕ34
ϕ12 ϕ14

∣∣∣∣
∣∣∣∣ ϕ33 ϕ34
ϕ13 ϕ14

∣∣∣∣∣∣∣∣ ϕ11 ϕ12
ϕ21 ϕ22

∣∣∣∣
∣∣∣∣ ϕ11 ϕ13
ϕ21 ϕ23

∣∣∣∣
∣∣∣∣ ϕ12 ϕ13
ϕ22 ϕ23

∣∣∣∣
∣∣∣∣ ϕ11 ϕ14
ϕ21 ϕ24

∣∣∣∣
∣∣∣∣ ϕ12 ϕ14
ϕ22 ϕ24

∣∣∣∣
∣∣∣∣ ϕ13 ϕ14
ϕ23 ϕ24

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, we denote �i = ϕi ∧ ϕi : P5 → P
2 and similarly 
i = ψi ∧ ψi both for i = 1, 2, 3.

Remark 6.1. The center of the projection �i is the 2-plane in P5 defined by �i(X) = 0. They are 
contained in the Grassmannian G(1, 3) and parameterize the lines of P3 through O i , for every i, i.e. 
they are α-planes.

In a natural way, then, we are induced to consider the reconstruction problem for points in P5

from three views, which turns out to be the minimum number needed for the reconstruction of a 
scene. Let X = (x0, . . . , x5)

T be a point in P5. As done in section 5 while computing the critical locus 
for two triples of projections from P4 to P2, one has to consider the 9 × 9 matrix

M =
⎛
⎝ �1(X) 0 0 
1

0 �2(X) 0 
2
0 0 �3(X) 
3

⎞
⎠

where 0 is the 3 × 1 null matrix.

Remark 6.2. In the case of two triples of projections from P5 to P2, det(M) = 0 is the defining 
equation of the hypersurface that is critical for the reconstruction for points in this setting. Indeed, 
det(M) = 0 is equivalent to require that the linear system

M

⎛
⎜⎜⎝

λ1
λ2
λ3
Y

⎞
⎟⎟⎠ = 0

has a non-trivial solution such that Y �= 0.
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The condition det(M) = 0 is not enough in our case to describe the critical locus since both X and 
Y are lines and so their coordinates must satisfy the equation of Klein hyperquadric. For X we have 
x0x5 − x1x4 + x2x3 = 0. The situation for Y is more involved. Indeed we have first to compute the co-
ordinates of Y by solving suitable homogeneous linear systems, then to impose that such coordinates 
satisfy the Klein equation.

If we denote by Mî the matrix obtained from M by erasing the i-th row, the homogeneous linear 
system becomes

Mî

⎛
⎜⎜⎝

λ1
λ2
λ3
Y

⎞
⎟⎟⎠ = 0 1 ≤ i ≤ 9.

It follows from Cramer’s rule that

y j = (−1)1+ j det(M
î, j+4

), j = 0 . . . 5,

where Mĥ,k is the matrix obtained from M by erasing the h-th row and the k-th column. Now we 
have to impose that the computed y0 . . . y5 satisfy y0 y5 − y1 y4 + y2 y3 = 0.

To simplify notations, we set

�i(X) =
⎛
⎝ �i1

�i2
�i3

⎞
⎠ (15)

that are the natural variables to construct the generators of the ideal of the critical locus Y . In fact, 
while det(M) is a degree 3 form in the �i j ’s, irreducible in the general case, the form y0 y5 − y1 y4 +
y2 y3 has degree 6 and it is the product of three linear forms and a cubic form in the �i j ’s. To fix 
notations we denote by gi the cubic arising from the linear system associated to Mî . For example, let 
us consider the linear system associated to M1̂ . In this case, the linear forms are

�21 det

⎛
⎜⎜⎝

R7
R8
R9
R4

⎞
⎟⎟⎠ + �22 det

⎛
⎜⎜⎝

R7
R8
R9
R5

⎞
⎟⎟⎠ + �23 det

⎛
⎜⎜⎝

R7
R8
R9
R6

⎞
⎟⎟⎠ = 0,

�31 det

⎛
⎜⎜⎝

R4
R5
R6
R7

⎞
⎟⎟⎠ + �32 det

⎛
⎜⎜⎝

R4
R5
R6
R8

⎞
⎟⎟⎠ + �33 det

⎛
⎜⎜⎝

R4
R5
R6
R9

⎞
⎟⎟⎠ = 0,

�12b − �13a = 0,

where

a = (
1)21b12 − (
1)22b13 + (
1)23b23 + (
1)24b14 − (
1)25b24 + (
1)26b34,

b = (
1)31b12 − (
1)32b13 + (
1)33b23 + (
1)34b14 − (
1)35b24 + (
1)36b34

and (b12, . . . , b34) are the Plücker coordinates of the line through the points(
det((ψ2)1̂),det((ψ2)2̂),det((ψ2)3̂),det((ψ2)4̂)

)
and (

det((ψ3)1̂),det((ψ3)2̂),det((ψ3)3̂),det((ψ3)4̂)
)
,

where, this time, ĥ means that we erase the h-the column.
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We have then proved the following:

Theorem 6.1. The defining ideal IY of the critical locus is generated by the Klein hyperquadric, det(M) and 
g1 . . . , g9 .

Now we compute the minimal generators and free resolution of the ideal IY . It is straightforward 
to check that

gi =
1,2,3∑
j,h,k

�1 j�2h�3k det

⎛
⎜⎜⎝

Ri
R j

R3+h
R6+k

⎞
⎟⎟⎠ i = 1, . . . ,9

while

det(M) = −
1,2,3∑
i, j,h

�1i�2 j�3hci,3+ j,6+h

where

�i jh =
⎛
⎝ Ri

R j
Rh

⎞
⎠ and

ci, j,h = det

⎛
⎜⎜⎝

det((�1)1̂) det((�1)2̂) det((�1)3̂) det((�1)4̂)

det((�2)1̂) det((�2)2̂) det((�2)3̂) det((�2)4̂)

det((�3)1̂) det((�3)2̂) det((�3)3̂) det((�3)4̂)

det((�i jh)1̂) det((�i jh)2̂) det((�i jh)3̂) det((�i jh)4̂)

⎞
⎟⎟⎠ .

Let J be the ideal generated by g1, . . . , g9, det(M). Then,

Proposition 6.1. The minimal free resolution of J is

0 → T 3(−4) → T 4(−3) → J → 0

and so the scheme defined by J is ACM of codimension 2 in P5 .

Proof. Without loss of generality, we assume that R1, R2, R4, R7 are linearly independent, and so 
they are a basis of C4. Moreover, we set

Ri = αi1 R1 + αi2 R2 + αi3 R4 + αi4 R7 i = 3,5,6,8,9

and

D = det

⎛
⎜⎜⎝

R1
R2
R4
R7

⎞
⎟⎟⎠ .

We remark that D is the coefficient of �12�21�31 in g1.
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First, we verify that J is generated by g1, . . . , g4. In fact, it holds

g5 = −α31α54 − α34α51

α34
g1 − α32α54 − α34α52

α34
g2 + α54

α34
g3 − α33α54 − α34α53

α34
g4

g6 = −α31α64 − α34α61

α34
g1 − α32α64 − α34α62

α34
g2 + α64

α34
g3 − α33α64 − α34α63

α34
g4

g7 = −α31

α34
g1 − α32

α34
g2 + 1

α34
g3 − α33

α34
g4

g8 = −α31α84 − α34α81

α34
g1 − α32α84 − α34α82

α34
g2 + α84

α34
g3 − α33α84 − α34α83

α34
g4

g9 = −α31α94 − α34α91

α34
g1 − α32α94 − α34α92

α34
g2 + α94

α34
g3 − α33α94 − α34α93

α34
g4

det(M) = 1

α34 D
c2,3,4 g1 − 1

α34 D
c1,3,4 g2 + 1

α34 D
c1,2,4 g3.

The equalities have to be checked by verifying that the coefficients of �1i�2 j�3h are the same on 
both sides. It is very long, but straightforward. As example, we check some of them.

The first term we consider is �13�23�31 in the g5 relation. The coefficient on the left side is equal 
to

det

⎛
⎜⎜⎝

R5
R3
R6
R7

⎞
⎟⎟⎠ = det

⎛
⎜⎜⎝

α51 R1 + α52 R2 + α53 R4
α31 R1 + α32 R2 + α33 R4
α61 R1 + α62 R2 + α63 R4

R7

⎞
⎟⎟⎠ = D det

⎛
⎝ α51 α52 α53

α31 α32 α33
α61 α62 α63

⎞
⎠ .

On the right, we have

−α31α54 − α34α51

α34
det

⎛
⎜⎜⎝

R1
R3
R6
R7

⎞
⎟⎟⎠ − α32α54 − α34α52

α34
det

⎛
⎜⎜⎝

R2
R3
R6
R7

⎞
⎟⎟⎠ + α54

α34
det

⎛
⎜⎜⎝

R3
R3
R6
R7

⎞
⎟⎟⎠−

−α33α54 − α34α53

α34
det

⎛
⎜⎜⎝

R4
R3
R6
R7

⎞
⎟⎟⎠ = −α31α54 − α34α51

α34
det

⎛
⎜⎜⎝

R1
α32 R2 + α33 R4
α62 R2 + α63 R4

R7

⎞
⎟⎟⎠−

−α32α54 − α34α52

α34
det

⎛
⎜⎜⎝

R2
α31 R1 + α33 R4
α61 R1 + α63 R4

R7

⎞
⎟⎟⎠ − α33α54 − α34α53

α34
det

⎛
⎜⎜⎝

R4
α31 R1 + α32 R2
α61 R1 + α62 R2

R7

⎞
⎟⎟⎠ =

=D

{
−α54

α34

(
α31 det

(
α32 α33
α62 α63

)
− α32 det

(
α31 α33
α61 α63

)
+ α33 det

(
α31 α32
α61 α62

))
+

+
(
α51 det

(
α32 α33
α62 α63

)
− α52 det

(
α31 α33
α61 α63

)
+ α53 det

(
α31 α32
α61 α62

))}
=

=D

⎧⎨
⎩−α54

α34
det

⎛
⎝ α31 α32 α33

α31 α32 α33
α61 α62 α63

⎞
⎠ + det

⎛
⎝ α51 α52 α53

α31 α32 α33
α61 α62 α63

⎞
⎠

⎫⎬
⎭

and so the equality holds.
Now, we check the equality of the coefficients of �11�21�31 in the det(M) relation. On the left 

side, we have −c147. On the right side, we have
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+ 1

α34 D
c234 det

⎛
⎜⎜⎝

R1
R1
R4
R7

⎞
⎟⎟⎠ − 1

α34 D
c134 det

⎛
⎜⎜⎝

R2
R1
R4
R7

⎞
⎟⎟⎠ + 1

α34 D
det

⎛
⎜⎜⎝

R3
R1
R4
R7

⎞
⎟⎟⎠ =

= 1

α34
c134 + 1

α34 D
det

⎛
⎜⎜⎝

α32 R2
R1
R4
R7

⎞
⎟⎟⎠ = 1

α34
det

⎛
⎜⎜⎝

det((�1)1̂) . . .

det((�2)1̂) . . .

det((�3)1̂) . . .

det((�134 − α32�124)1̂) . . .

⎞
⎟⎟⎠ =

= 1

α34
det

⎛
⎜⎜⎝

det((�1)1̂) . . .

det((�2)1̂) . . .

det((�3)1̂) . . .

det((α34�174)1̂) . . .

⎞
⎟⎟⎠ = −c147

and so the equality holds also in this case.
As second step, we check that the minors with sign of the following matrix N are equal to 

g1, . . . , g4.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D

α34
�11 −

∣∣∣∣ α31 α34
α51 α54

∣∣∣∣�22 −
∣∣∣∣ α31 α34
α61 α64

∣∣∣∣�23

−α31�31 −
∣∣∣∣ α31 α34
α81 α84

∣∣∣∣�32−

−
∣∣∣∣ α31 α34
α91 α94

∣∣∣∣�33

D

α34
�12 −

∣∣∣∣ α32 α34
α52 α54

∣∣∣∣�22 −
∣∣∣∣ α32 α34
α62 α64

∣∣∣∣�23

−α32�31 −
∣∣∣∣ α32 α34
α82 α84

∣∣∣∣�32−

−
∣∣∣∣ α32 α34
α92 α94

∣∣∣∣�33

D

α34
�13 α54�22 + α64�23 �31 + α84�32 + α94�33

0
α34�21 −

∣∣∣∣ α33 α34
α53 α54

∣∣∣∣�22

−
∣∣∣∣ α33 α34
α63 α64

∣∣∣∣�23

−α33�31 −
∣∣∣∣ α33 α34
α83 α84

∣∣∣∣�32−

−
∣∣∣∣ α33 α34
α93 α94

∣∣∣∣�33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Once again, the check is straightforward. For example, let us consider the minor obtained by erasing 
the last row of N and let us compute the coefficient of �11�22�33 in the minor. It holds

D

α34

{
−α94

∣∣∣∣ α32 α34
α52 α54

∣∣∣∣ + α54

∣∣∣∣ α32 α34
α92 α94

∣∣∣∣
}

= D

α34
α34

∣∣∣∣ α52 α54
α92 α94

∣∣∣∣ = det

⎛
⎜⎜⎝

R4
R1
R5
R9

⎞
⎟⎟⎠

and so we get det(N4̂) = g4. With analogous computations, we get det(N1̂) = −g1, det(N2̂) = g2, and 
det(N3̂) = −g3. As g1, . . . , g4 are irreducible for general choices, we get the claim by Hilbert–Burch 
Theorem. Moreover, N represents the map T 3(−4) → T 4(−3) in the resolution of J . �
Remark 6.3. The scheme defined by J in P5 is a lifting of a Bordiga surface in P4 in the following 
sense. Let 	 be a general linear form in T . Hence there is an isomorphism between R and T /	. As J
is ACM the minimal free resolution of J remains exact over T /	 and so ( J + 	)/	 defines a Bordiga 
surface in P4 = Proj(R). Moreover, the matrices N and NX of the two minimal free resolutions have 
the same properties: the three columns span linear spaces of codimension 3, in position (4, 1) there 
is a zero, and the element in position (3, 2) is a linear combination of the ones in positions (1, 2) and 
(2, 2). The main difference is that the linear spaces spanned by the columns are pairwise skew in the 
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case of the Bordiga surface, while every couple of them has a point in common in the case of J , as 
the codimension 2 linear spaces are α-planes in this case, and so the intersection of two of them is 
the point corresponding to the line through the centers of the two nets of lines.

Now we can describe the geometry of the critical locus, starting from its defining ideal, and 
Buchanan’s result.

Theorem 6.2. The critical locus for the reconstruction problem for a pair of three projections ϕi , ψ j , i, j =
1, 2, 3, of lines from P3 to P2 is the union of a line congruence of bi-degree (3, 6) and sectional genus 5 and 
the three α-planes associated to the projection centers of the ϕi ’s. Moreover, each α-plane intersects the line 
congruence along a degree 3 plane curve.

Proof. The scheme defined by J is irreducible for general choices, and so the Klein hyperquadric is 
regular with respect to it. As the defining ideal of the critical locus Y is IY = J +(x0x5 −x1x4 +x2x3)T , 
then its minimal free resolution is

0 → T 3(−6) →
T 4(−5)

⊕
T 3(−4)

→
T (−2)

⊕
T 4(−3)

→ IY → 0

and so the Hilbert polynomial of Y is pY (t) = (12t2 − 8t + 8)/2. Hence, Y is a surface in P5 of 
degree 12. It is an easy check to verify that the centers α1, α2, α3 of the projections �1, �2, �3 are 
the α-planes associated to the centers of ϕ1, ϕ2, ϕ3 respectively and are contained in Y , as every 
maximal minor of N is a combination of �i1, . . . , �i3, for i = 1, 2, 3. Moreover, we know that a line 
congruence K of bi-degree (3, 6) and sectional genus 5 is contained in the critical locus. Then, by 
degree argument, Y = K ∪ α1 ∪ α2 ∪ α3. By using the same argument as in Proposition 3.3, we get 
that each αi intersects K along a degree 3 plane curve, as claimed. �
7. A bridge between the two reconstruction problems

In this section, we want to show that the two reconstruction problems considered in the previous 
sections are related each other, in the following sense. Given two triples of projections from P4 to 
P

2, and the corresponding critical locus X ⊂ P
4, it is possible to determine two triples of projections 

from P3 to P2 in such a way that the critical locus for the reconstruction problem for lines is the 
union of three suitable α-planes and the image of X in G(1, 3) via the rational map θ : P4 → G(1, 3)

quoted in (7). Furthermore, also the converse holds. Now we describe various steps to get the ϕi and 
ψ j from the Pi and Q j .

(1) Let Pi, Q j : P4 ��� P
2 be projections, with i, j = 1, 2, 3. The critical locus X ⊂ P

4 for the recon-
struction problem for points has been studied in section 5. In particular, we proved that X is a 
Bordiga surface, and we computed the 4 × 3 matrix NX whose columns generate the first syzygy 
module of IX from the 9 × 8 matrix M whose maximal minors generate the same ideal IX .

(2) As explained at the end of section 2, a degree 4 rational normal curve � ⊂ X can be obtained 
by taking the maximal minors q0, . . . , q5 of NX ML where ML is a general 3 × 2 matrix of 
maximal rank. To fix the order, q0 = det(NX ML)3̂4, q1 = det(NX ML)2̂4, q2 = det(NX ML)1̂4, q3 =
det(NX ML)2̂3, q4 = det(NX ML)1̂3, q5 = det(NX ML)1̂2, where, as usual, .̂. means that the corre-
sponding rows are omitted.

(3) Following Verra (1988), we define the map θ : T = H0∗(OP5 ) → R = H0∗(OP4 ) by setting θ(xi) =
qi, i = 0, . . . , 5. Then, θ−1(IX ) = I K where K is a line congruence of bi-degree (3, 6) and sectional 
genus 5 as the ones studied in section 3.

(4) From equation (3), we get N Z from NX where the columns of N Z generate the first syzygy 
module of I Z in S = H0∗(OP2 ), Z being a set of 10 points in general position, among which there 
are p1(1 : 0 : 0), p2(0 : 1 : 0), p3(0 : 0 : 1). We remark that X is the image of the embedding of P̃2, 
blow-up of P2 in Z , via the linear system |4π∗L − E1 − · · · − E10|.



M. Bertolini et al. / Journal of Symbolic Computation 91 (2019) 74–97 93
(5) Let Ci ⊂ P
2 be the plane cubic curve containing Z \ {pi}, with i = 1, 2, 3. The equation of Ci is the 

only degree 3 generator of I Z : I pi . Let C ′
i ⊂X be the image of Ci and C ′′

i ⊂ K be the image of C ′
i . 

The saturated ideal that defines C ′′
i is θ−1(IC ′

i
) and so we can compute the plane αi spanned by 

C ′′
i . The critical locus we are looking for is Y = K ∪ α1 ∪ α2 ∪ α3.

(6) The last map in the minimal free resolution of IY is T 3(−6) → T 4(−5) ⊕ T 3(−4). Let NY be the 
matrix that represents T 3(−6) → T 4(−5): the maximal minors of this matrix define the ideal 
J and so we can recover the projection matrices �i, 
 j from it, i, j = 1, 2, 3, as explained in 
Proposition 6.1. Hence, it is possible to compute the projections ϕi, ψ j : P3 → P

2 we want to 
construct.

Now, we give an algorithm that summarizes the previous discussion, and that can be easily imple-
mented in Singular (Decker et al., 2016), for example.

Input: projection matrices P1, P2, P3, Q 1, Q 2, Q 3.
Output: projection matrices ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3.

(1.1) Given the 5 × 1 matrix V Y = [y0, . . . , y4], compute P1 · V Y , P2 · V Y , P3 · V Y and the 9 × 8
matrix M .

(1.2) Compute the matrix NX = A − B D−1C as in section 5, and the ideal IX of the maximal minors 
of NX .

(2) Choose a general 3 × 2 matrix ML of numbers, compute M� = NX ML , and its maximal minors 
q0, . . . , q5 in the above order.

(3) Define the map θ by setting θ(xi) = qi, i = 0, . . . , 5, and compute I K = θ−1(IX ).
(4.1) Given the 3 × 1 matrix V Z = [z0, z1, z2], compute the matrix N Z from NX according to equa-

tion (3).
(4.2) Compute g0, . . . , g4, maximal minors of N Z with alternating signs, and set I Z the ideal they 

generate.
(4.3) Define the map π by setting π(yi) = gi, i = 0, . . . , 4.
(5.1) Compute F1 = (I Z : 〈z1, z2〉)3, F2 = (I Z : 〈z0, z2〉)3, F3 = (I Z : 〈z0, z1〉)3 and Iαi = (θ−1 ◦π−1(Fi))1, 

i = 1, 2, 3, where (. . . ) j means the degree j part of the ideal in parentheses.
(5.2) Compute IY = I K ∩ (⋂

i=1,2,3 Iαi

)
.

(6.1) Compute the third matrix in the minimal free resolution of IY and take the submatrix with 
linear entries.

(6.2) Put this matrix in the form of the proof of Proposition 6.1.
(6.3) Compute matrices �i, 
 j, 1 ≤ i, j ≤ 3, from the last matrix, and the associated projection matri-

ces ϕi, ψ j .

Now, we describe the converse construction.

(1) Given the projections ϕi, ψ j : P3 → P
2, we can compute the maps �i, 
 j and the critical locus 

Y ⊂ G(1, 3) for the reconstruction problem for projections of lines, as explained in section 6. 
Moreover, we compute the line congruence K and the three α-planes that are the irreducible 
components of Y .

(2) As explained in section 3, we compute a Veronese surface V ⊂ G(1, 3) such that K ∪ V is an 
arithmetically Gorenstein surface of degree 13 and K ∩ V is a degree 10 arithmetically Gorenstein 
curve.

(3) Let θ−1 : R → TG be the map associated to K ∩ V , where TG = T /〈x0x5 − x1x4 + x2x3〉 is the 
coordinate ring of the Grassmannian G(1, 3). Then, θ−1(I K ) = IX where X is a Bordiga surface.

(4) From Theorem 5.1, we get projections Pi, Q j : P4 → P
2, 1 ≤ i, j ≤ 3, such that X is the associated 

critical locus for the reconstruction problem.

As before, we give the corresponding algorithm. It can be implemented in Singular (Decker et al., 
2016).
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Input: projection matrices ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3.
Output: projection matrices P1, P2, P3, Q 1, Q 2, Q 3.

(1.1) Compute �i, 
 j, 1 ≤ i, j ≤ 3, as in section 6.
(1.2) Compute the critical locus Y for the reconstruction problem for lines, and its irreducible com-

ponents.
(2) In the line congruence K contained in Y , compute a degree 10 arithmetically Gorenstein curve 

C = K ∩ V whose ideal is generated by 5 quadrics q0, . . . , q4 in addition to the Klein hyper-
quadric x0x5 − x1x4 + x2x3.

(3) Define θ−1 : R → TG as θ−1(yi) = qi, i = 0, . . . , 4, and compute θ−1(I K ) = IX .
(4) Compute the generators of the first syzygy module NX of IX and compute a basis from which 

it is possible to reconstruct the projections Pi, Q j : P4 → P
2, 1 ≤ i, j ≤ 3, we are looking for.

8. A computer session concerning the line congruence

In this section, we present a computer session in Singular in which, staring from the ideal of 
a general line congruence K of bi-degree (3, 6) and sectional genus 5, we compute a degree 13
arithmetically Gorenstein surface S such that S = K ∪ V where V is a Veronese surface, and K ∩ V is 
a degree 10 arithmetically Gorenstien curve that allows us to compute the map θ−1 :G(1, 3) → P

4.

Input: ideal I K of a general line congruence.
Output: ideals I S and IC where S = K ∪ V , C = K ∩ V .

ring r = 0, (x(0..5), a(1..268)),dp;
ideal ik; \ \ This ideal has to be given as input. The first generator is the Klein hyperquadric.
option(redSB);
ideal k1 = std(ik); \ \ reduced standard basis of ik
\ \ In the following lines, we compute general polynomials that will become a reduced standard 

basis of is
matrix mon3[1][46] = x(5)3, x(4) ∗ x(5)2, x(3) ∗ x(5)2, x(2) ∗ x(5)2, x(1) ∗ x(5)2, x(0) ∗ x(5)2, x(4)2 ∗

x(5), x(3) ∗ x(4) ∗ x(5), x(2) ∗ x(4) ∗ x(5), x(1) ∗ x(4) ∗ x(5), x(0) ∗ x(4) ∗ x(5), x(3)2 ∗ x(5), x(1) ∗ x(3) ∗
x(5), x(0) ∗x(3) ∗x(5), x(2)2 ∗x(5), x(1) ∗x(2) ∗x(5), x(0) ∗x(2) ∗x(5), x(1)2 ∗x(5), x(0) ∗x(1) ∗x(5), x(0)2 ∗
x(5), x(4)3, x(3) ∗ x(4)2, x(2) ∗ x(4)2, x(1) ∗ x(4)2, x(0) ∗ x(4)2, x(3)2 ∗ x(4), x(1) ∗ x(3) ∗ x(4), x(0) ∗
x(3) ∗ x(4), x(2)2 ∗ x(4), x(1) ∗ x(2) ∗ x(4), x(0) ∗ x(2) ∗ x(4), x(1)2 ∗ x(4), x(0) ∗ x(1) ∗ x(4), x(0)2 ∗
x(4), x(3)3, x(1) ∗ x(3)2, x(0) ∗ x(3)2, x(1)2 ∗ x(3), x(0) ∗ x(1) ∗ x(3), x(0)2 ∗ x(3), x(2)3, x(1) ∗ x(2)2, x(0) ∗
x(2)2, x(1)2 ∗ x(2), x(0) ∗ x(1) ∗ x(2), x(1)3;

matrix cp1[46][1] = a(1..46);
poly p1 = (mon3 ∗ cp1)[1, 1] + x(0)3;
matrix cp2[46][1] = a(47..92);
poly p2 = (mon3 ∗ cp2)[1, 1] + x(0)2 ∗ x(1);
matrix cp3[46][1] = a(93..138);
poly p3 = (mon3 ∗ cp3)[1, 1] + x(0) ∗ x(1)2;
matrix cp4[45][1] = a(139..183);
poly p4 = (submat(mon3, intvec(1), intvec(1..45)) ∗ cp4)[1, 1] + x(0)2 ∗ x(2);
matrix mon4[1][85] = x(5)4, x(4) ∗ x(5)3, x(3) ∗ x(5)3, x(2) ∗ x(5)3, x(1) ∗ x(5)3, x(0) ∗ x(5)3, x(4)2 ∗

x(5)2, x(3) ∗ x(4) ∗ x(5)2, x(2) ∗ x(4) ∗ x(5)2, x(1) ∗ x(4) ∗ x(5)2, x(0) ∗ x(4) ∗ x(5)2, x(3)2 ∗ x(5)2, x(1) ∗
x(3) ∗ x(5)2, x(0) ∗ x(3) ∗ x(5)2, x(2)2 ∗ x(5)2, x(1) ∗ x(2) ∗ x(5)2, x(0) ∗ x(2) ∗ x(5)2, x(1)2 ∗ x(5)2, x(0) ∗
x(1) ∗ x(5)2, x(0)2 ∗ x(5)2, x(4)3 ∗ x(5), x(3) ∗ x(4)2 ∗ x(5), x(2) ∗ x(4)2 ∗ x(5), x(1) ∗ x(4)2 ∗ x(5), x(0) ∗
x(4)2 ∗ x(5), x(3)2 ∗ x(4) ∗ x(5), x(1) ∗ x(3) ∗ x(4) ∗ x(5), x(0) ∗ x(3) ∗ x(4) ∗ x(5), x(2)2 ∗ x(4) ∗ x(5), x(1) ∗
x(2) ∗ x(4) ∗ x(5), x(0) ∗ x(2) ∗ x(4) ∗ x(5), x(1)2 ∗ x(4) ∗ x(5), x(0) ∗ x(1) ∗ x(4) ∗ x(5), x(0)2 ∗ x(4) ∗
x(5), x(3)3 ∗ x(5), x(1) ∗ x(3)2 ∗ x(5), x(0) ∗ x(3)2 ∗ x(5), x(1)2 ∗ x(3) ∗ x(5), x(0) ∗ x(1) ∗ x(3) ∗ x(5), x(0)2 ∗
x(3) ∗ x(5), x(2)3 ∗ x(5), x(1) ∗ x(2)2 ∗ x(5), x(0) ∗ x(2)2 ∗ x(5), x(1)2 ∗ x(2) ∗ x(5), x(0) ∗ x(1) ∗ x(2) ∗
x(5), x(1)3 ∗ x(5), x(4)4 + a(231) ∗ x(3) ∗ x(4)3, x(2) ∗ x(4)3, x(1) ∗ x(4)3, x(0) ∗ x(4)3, x(3)2 ∗ x(4)2, x(1) ∗
x(3) ∗ x(4)2, x(0) ∗ x(3) ∗ x(4)2, x(2)2 ∗ x(4)2, x(1) ∗ x(2) ∗ x(4)2, x(0) ∗ x(2) ∗ x(4)2, x(1)2 ∗ x(4)2, x(0) ∗
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x(1) ∗x(4)2, x(0)2 ∗x(4)2, x(3)3 ∗x(4), x(1) ∗x(3)2 ∗x(4), x(0) ∗x(3)2 ∗x(4), x(1)2 ∗x(3) ∗x(4), x(0) ∗x(1) ∗
x(3) ∗ x(4), x(0)2 ∗ x(3) ∗ x(4), x(2)3 ∗ x(4), x(1) ∗ x(2)2 ∗ x(4), x(0) ∗ x(2)2 ∗ x(4), x(1)2 ∗ x(2) ∗ x(4), x(0) ∗
x(1) ∗ x(2) ∗ x(4), x(1)3 ∗ x(4), x(3)4, x(1) ∗ x(3)3, x(0) ∗ x(3)3, x(1)2 ∗ x(3)2, x(0) ∗ x(1) ∗ x(3)2, x(0)2 ∗
x(3)2, x(1)3 ∗ x(3), x(2)4, x(1) ∗ x(2)3, x(0) ∗ x(2)3, x(1)2 ∗ x(2)2, x(0) ∗ x(1) ∗ x(2)2, x(1)3 ∗ x(2);

matrix cp5[85][1] = a(184..268);
poly p5 = (mon4 ∗ cp5)[1, 1] + x(1)4;
ideal rel; \ \ This ideal will contain the relations among the a( j)’s
poly sp; \ \ the following are local variables
int i;
int j;
int k;
int f l;
ideal mx = x(0..5);
matrix mx3[1][56] = std(mx3); \ \ monomials of degree 3
matrix mx4[1][126] = std(mx4); \ \ monomials of degree 4
matrix lp1[1][8] = std(lead(k1)); \ \ leading monomials of k1

for(i = 1; i <= 8; i = i +1){k1[i] = k1[i]/leadcoef(k1[i]); }; \ \ normalized reduced standard basis 
of k1;

\ \ we compute the normal form of p1 with respect to k1 and we collect the coefficients of the 
monomials in the ideal rel

sp = p1;
for( j = 56; j >= 1; j = j − 1){
f l = 0;
k = 0;
while((k < 8)and( f l == 0)){
k = k + 1;
if(gcd(lp1[1, k], mx3[1, j]) == lp1[1, k]){ f l = 1; }};
if( f l == 0){
if(sp <> reduce(sp, std(mx3[1, j]))){
rel = rel, (sp − reduce(sp, std(mx3[1, j])))/mx3[1, j]; };
sp = reduce(sp, std(mx3[1, j])); };
if( f l == 1){
sp = sp − ((sp − reduce(sp, std(mx3[1, j])))/lp1[1, k]) ∗ k1[k]; }; };
\ \ repeat verbatim the above computation for sp = p2, p3, p4 and we collect the coefficients of 

the monomials in the same ideal rel
sp = p2;
.
.
.

\ \ we compute the normal form of p5 with respect to k1 and we collect the coefficients of the 
monomials in the same ideal rel

sp = p5;
for( j = 126; j >= 1; j = j − 1){
f l = 0;
k = 0;
while((k < 8)and( f l == 0)){
k = k + 1;
if(gcd(lp1[1, k], mx4[1, j]) == lp1[1, k]){ f l = 1; }};
if( f l == 0){
if(sp <> reduce(sp, std(mx4[1, j]))){
rel = rel, (sp − reduce(sp, std(mx4[1, j])))/mx4[1, j]; };
sp = reduce(sp, std(mx4[1, j])); };
if( f l == 1){
sp = sp − ((sp − reduce(sp, std(mx4[1, j])))/lp1[1, k]) ∗ k1[k]; }; };
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\ \ we compute a standard basis of rel, and we reduce p1, . . . , p5 modulo it. After this step, they 
belong to ik

rel = std(rel);
poly p11 = reduce(p1, rel);
poly p21 = reduce(p2, rel);
poly p31 = reduce(p3, rel);
poly p41 = reduce(p4, rel);
poly p51 = reduce(p5, rel);
\ \ we run Buchberger’s algorithm of the set {ik[1], p11, . . . , p51} and we compute the coefficient 

in such a way that they form a Gröbner basis. The relations are stored in rel
kill rel;
ideal rel;
matrix lp[1][6] = x(2) ∗ x(3), x(0)3, x(0)2 ∗ x(1), x(0) ∗ x(1)2, x(0)2 ∗ x(2), x(1)4;
matrix pp[1][6] = x(2) ∗ x(3) − x(1) ∗ x(4) + x(0) ∗ x(5), p11, p21, p31, p41, p51;
intmat b[9][2] = 1, 5, 2, 3, 2, 5, 3, 4, 3, 5, 2, 4, 4, 5, 4, 6, 3, 6;
for(i = 1; i <= 5; i = i + 1){
sp = (lp[1, b[i, 2]] ∗ pp[1, b[i, 1]] − lp[1, b[i, 1]] ∗ pp[1, b[i, 2]]);
sp = sp/gcd(lp[1, b[i, 2]], lp[1, b[i, 1]]);
for( j = 126; j >= 1; j = j − 1){
f l = 0;
k = 0;
while((k < 6)and( f l == 0)){
k = k + 1;
if(gcd(lp[1, k], mx4[1, j]) == lp[1, k]){ f l = 1; }};
if( f l == 0){
if(sp <> reduce(sp, std(mx4[1, j]))){
rel = rel, (sp − reduce(sp, std(mx4[1, j])))/mx4[1, j]; };
sp = reduce(sp, std(mx4[1, j])); };
if( f l == 1){
sp = sp − ((sp − reduce(sp, std(mx4[1, j])))/lp[1, k]) ∗ pp[1, k]; }; }; };
\ \ we choose randomly the values of a(182), a(183) and compute a standard basis of rel: in such 

a way, every coefficient has a numerical value that we substitute in p11, . . . , p51
ideal rel1 = a(182) − random(−5, 5), a(183) − random(−5, 5), rel;
rel1 = std(rel1);
poly p12 = reduce(p11, rel1);
poly p22 = reduce(p21, rel1);
poly p32 = reduce(p31, rel1);
poly p42 = reduce(p41, rel1);
poly p52 = reduce(p51, rel1);
ideal is = ik[1], p12, p22, p32, p42, p52;
ideal iv = quotient(is, ik);
ideal ic = iv , ik;
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