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Thesis overview

Preface

In my Master’s thesis, titled ”Antimatter wave interferometry with e+, positronium and p”,
I studied the possibility of testing aspects of fundamental quantum mechanics on anti-
matter systems, using grating-based matter wave interferometry as a tool [1, 2]. We also
investigated the use of nuclear emulsion detectors for this application. Our group has
access to this technology thanks to a collaboration with the Laboratory for High Energy
Physics at the University of Bern [3].

By the time I started my PhD program, these ideas had evolved into the experi-
mental project that we refer to as QUPLAS: QUantum interferometry and gravity with
Positronium and LASers. The proposed activities are based on the positron beam facility
of the L-NESS laboratory in Como [4].

QUPLAS has the ambitious long-term goal of measuring the gravitational acceler-
ation of positronium (Ps): a matter-antimatter symmetric, purely leptonic exotic atom,
discovered in 1951 by Martin Deutsch [5]. Positronium has two spin states, the spin
zero state (para-positronium) has a very short radiative lifetime of 125 ps and decays in
two 511 keV gamma rays, while the spin triplet state (ortho-positronium) decays in three
gammas with a lifetime of τ = 142 ns 3.

The topic of gravitational interactions of antimatter at low energy has attracted a
large interest in the scientific community, as evidenced by the combined effort of the
experiments currently ongoing at CERN (AEgIS[6], ALPHA[7], GBAR[8]), targeting an-
tihydrogen gravity with various techniques. The proposed positronium measurement
would be complementary to these studies on antihydrogen.

The short term goal of QUPLAS, on the other hand is the observation of matter-wave
interference of positrons; this is instrumental in paving the way for future measurements
on positronium by establishing the basic techniques, and would be an original result on
its own. We refer to this initial phase of the project as QUPLAS-0. At the time when the
QUPLAS collaboration started, matter wave phenomena had been demonstrated on a
large class of objects: electrons [9, 10], neutrons [11], even larger objects like C60 fullerene
[12], but not yet on elementary antimatter.

During the first year as a PhD student, I took part to the preliminary design of all
the phases of QUPLAS. The main body of work was constituted by the theoretical mod-
elling of the QUPLAS-0 positron interferometry experiment, which required to find the

3In this thesis the prefix ”ortho-” will often be suppressed. The name positronium or the symbol Ps always
refers to the longer lived state, unless otherwise stated.

xv



xvi Thesis overview

most suitable interferometric configuration to carry out the measurement, given the con-
straints of our experimental setup. As a result of this study, a paper was published [13],
where the use of a novel asymmetric Talbot-Lau interferometer is suggested. This design
is based on unequal grating periodicities and produces period-magnifying effects, which
could also improve inertial sensitivity in future applications to positronium gravimetry.

At the same time, I was also involved in the data taking and analysis for a test expos-
ure of nuclear emulsion detectors. The results were then published in a paper [14] where
the capability to detect low energy positrons with high efficiency is assessed.

Since the beginning of my second year I have been more deeply involved in the ex-
perimental implementation of QUPLAS-0: a first interferometric test was performed. I
was responsible for the rotational alignment of the diffraction gratings, and helped the
L-NESS team in the preparation of the beam and installation of the interferometer in
the weeks before the experiment. The analysis of the measurement protocols prompted
an in-depth investigation of the interplay between beam coherence and interferometer
alignment from a theoretical point of view. Coupling well-known analytical models
with a detailed description of the specific features of our beam I was able to determ-
ine the alignment requirements on the interferometer components, thus the necessary
technical improvements needed. To open up the possibility of interferometric studies on
a more intense and coherent beam, I started (in collaboration with the Plasma Physics
group of the University of Milan) the implementation of a test electron beam with suit-
able features. I was also co-supervisor of a Bachelor’s Degree thesis connected with this
activity. Meanwhile, I also developed the data analysis software needed to reconstruct
the interference fringes from the raw data digitized from the emulsion film at the Bern
microscope scanning facility. In the framework of this collaboration with the Bern group,
an experiment was devised to assess the performance and spatial resolution of emulsion
detectors for the specific purpose of positron interferometry. I participated to the data
taking at L-NESS, as well as to the emulsion development and scanning phase in Bern. A
paper [15] was published in which 6µm fringe patterns were successfully detected. This
is approximately the expected periodicity of the quantum interference pattern produced
by the QUPLAS-0 interferometer.

This test allowed me to refine and validate the data analysis software in view of the
interferometric tests. During my third year I started to work routinely at the L-NESS
laboratory in preparation for the positron interferometry runs. In particular I took part
in the preliminary beam characterization and collimation phases, and was responsible
for the longitudinal and rotational alignment of the diffraction gratings. Specifically, I
developed a reliable laser-based protocol for rotational alignment with ≈ 10 µrad accur-
acy. The apparatus has been able to run reliably for the long exposure times required (of
the order of a week), and a few attempts to the interferometric measurement have been
made in different experimental conditions.

First evidence of a periodic pattern produced at the positron energy of 14 keV, con-
sistent with the theoretical expectations was eventually found. This result proves that the
QUPLAS-0 system, designed and commissioned in the framework of this thesis, fulfils
the requirements in terms of beam quality, alignment accuracy and detector perform-
ance to perform matter-wave interference experiments. This preliminary results consti-
tutes the foundation of a measurement campaign at different energies that established
the quantum-mechanical origin of the observed phenomenon by excluding geometrical
shadow (moiré) effects.
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Organizational note

The structure of this Thesis follows the summary of activities outlined above. The work
is therefore divided in three main parts:

Part I - Introduction to the QUPLAS project. An overview of QUPLAS is presen-
ted: focus is on the physics goals and their theoretical motivation. A preliminary
design of the planned future stages is also illustrated; additional details on a study
of Ps motion in external fields are reported in Appendix A.
Part II - QUPLAS-0: theoretical modelling. A realistic model of matter-wave
interference experiments, suitable for our setup, is described. Attention is given
to the Talbot-Lau regime that has been employed in all the phases of the experi-
ment. In particular the interplay of beam coherence and interferometer alignment
requirements is studied.

Part III - QUPLAS-0: experimental results. The main items connected to the ex-
perimental implementation of QUPLAS-0 are discussed: interferometer alignment
techniques, beam preparation and characterization, the use of nuclear emulsions
for the detection of micrometric-scale fringe patterns. Finally, results of the meas-
urement runs with the QUPLAS-0 interferometer are reported.
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CHAPTER 1

Matter-wave interference

Since matter-wave interference is the main ingredient behind QUPLAS, this chapter aims
to provide a concise introduction to the underlying physics. A more advanced treatment
is discussed in Part II.

1.1 Interference: basic principle

Generally speaking, the term interference in physics refers to a class of phenomena were
two suitably correlated (coherent) waves are superimposed to form a resulting wave of
different amplitude, dependent on their relative phase and frequency. This phenomenon
is observed, for instance, for the whole electromagnetic spectrum, for acoustic waves
and for surface waves on water. All these examples of wave-like propagation have dif-
ferent physical origin, yet all of them obey the superposition principle. Together with
phase coherence this is the requirement for the manifestation of interference. The su-
perposition principle is one of the main postulates of quantum mechanics, therefore it
is apparent that in suitable circumstances, interference effects that share common traits
with their classical counterparts are possible. Interferometry labels a range of techniques
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Figure 1.1. Left: scheme of the traditional optical Michelson interferometer. Right: Interference
fringes in the intensity at a fixed observation point, swept by moving one of the two mirrors by δM ,
as a function of the ratio δM/λ. The parameter λ is the wavelength of the interfering light.

where waves are made to interfere in a controlled manner, in order to extract meas-
urable information on their properties. The apparatus to perform this measurement is
aptly named an interferometer, the most familiar among them is probably the Michelson
interferometer. It is useful to recall a few points to stress differences and similarities with

3



4 1.2 Mirrors and beamsplitters

the quantum matter-wave experiments we will describe later. A scheme of the Michel-
son apparatus is shown in Fig. 1.1: a coherent light source such as a laser beam, is split
by a beam splitter, the two wavefronts are made to propagate along two different paths
by means of mirrors and finally detected after they overlap again in space.

Mirrors and beamsplitters are two key building blocks of the Michelson interferometer.
In the following discussion, it will be apparent that all the of interferometers we will
mention, also for matter waves, ultimately make use of different mechanisms to imple-
ment the action of mirrors and beam splitters: material diffraction gratings, crystalline
solids, excitation laser pulses...

In a minimal description of the physics, we can assume the output of the Michel-
son interferometer is the superposition of two plane waves of equal amplitude and fre-
quency,

x(t) = A cos(ωt− kz) +A cos(ωt− kz′)

where z and z′ represent the optical path length traveled by the two waves. Summing
the terms and taking the square, the intensity at a fixed observation point is proportional
to:

I ∝ cos2

[
k(z − z′)

2

]
= cos2(kδM ).

Here an optical path length difference z−z′ is generated by moving one of the mirrors by
δM = (z− z′)/2, therefore the interference is constructive and yields maximum intensity
for displacements which are integer multiples of λ/2, as shown in Fig. 1.1. In practice it
is not required to move the mirror to see interference fringes, as they naturally appear if
the interferometer output is observed on a screen. This fact is due to the finite size of the
wavefronts. However we wanted to emphasize the idea that the experimenter can sweep
a fringe pattern by varying a parameter. This helps to understand the working principle
of atom gravimeters based on quantum interference that we are going to describe shortly.

1.2 Mirrors and beamsplitters

As mentioned before, exploiting the analogy with the working principle of the Michel-
son interferometer most (if not all) kinds of interferometers for matter waves rely on the use
of appropriate mirrors and beam splitters. We will now present an introductory descrip-
tion of the most common examples, to set the stage for the theoretical motivation of the
relevance of QUPLAS discussed in the following chapter.

1.2.1 Matter-wave interference with diffraction gratings

The previous example was related to the interferometry of classical electromagnetic ra-
diation. We now introduce the idea of matter-wave interference with quantum mechanical
objects, starting from a simple ideal experiment.

Consider a single point-like particle with speed v and mass m that travels towards a
screen with two apertures, and assume a position-sensitive detector is located a distance
L downstream the slits (see Fig. 1.2). This is the quantum-mechanical analogue of the
Young double slit interference experiment and can be generalized to more complicated
diffraction gratings; it is therefore useful as the main building block for two (or more)
grating interferometers. What is the expected position distribution of the particles on
the screen? Two famous experiments answered this question a few decades ago and
their results are reproduced in Fig. 1.3. In 1974 the team of Pier Giorgio Merli, Gian
Franco Missiroli and Giulio Pozzi at the University of Bologna observed for the first time
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Figure 1.2. Schem-
atic representation
of a Young like ex-
periment with a
particle of mass m
and speed v.

electron interference from a double slit [10] or, more precisely, from an electron biprism
acting as a double slit [16]. The effect of interference is the appearance of a fringe pattern
in the position distribution of electrons on the detector. The result was later confirmed
independently in 1989 by Akira Tonomura et al. [9] with a very low intensity beam
(electrons passing one by one through the slits), proving that a true quantum interference
effect was being observed without any influence of electron-electron interactions. This
single-electron double-slit experiment, originally proposed as a thought experiment by
Richard Feynman [17], was voted ”The most beautiful experiment in physics” by Physics
World readers [18] in 2002.

Figure 1.3. On the left, the distribution of electrons in the famous Tonomura experiment [9]. On
the right, a similar result from the Merli, Missiroli, Pozzi experiment performed in 1974 [18]. (Both
images available for reproduction under the Creative Commons license).

The theoretical explanation for this observation is the heart of quantum matter-wave
interference. In 1924 L. de Broglie proposed in his PhD thesis [19] that under appropri-
ate circumstances massive particles can show a wave-like behavior with a wavelength
inversely proportional to their momentum p = mv

λdB =
h

p

The so called de Broglie hypothesis, revolutionary at the time of its proposal, is now well
established and experimentally confirmed, not only on point-like particles like electrons
or neutrons [11], but also on extended objects with a complex internal structure like
C60 and C70 fullerene molecules. These mesoscopic particles produce interference pat-
terns dependent on the deBroglie wavelength associated with their center-of-mass mo-
tion [12, 20].

One could invoke the deBroglie hypothesis to conclude that the observed pattern is no
different to the one produced with radiation of wavelength λ = λdB on the same grating.



6 1.2 Mirrors and beamsplitters

Although this is essentially correct, the analogy between classical optics and quantum
mechanics can be established more carefully.

Let us go back to our (nonrelativistic) particle of momentum p =
√

2mE impinging
on a set of slits (see Fig. 1.2). Under the assumption that the particle energy E is weakly
perturbed during its propagation, the relevant equation to describe its motion is the
spatial part of the Schrödinger equation for the wave function ψ(x):

∇2ψ(x) + k2
dB [1− V (x)/E]︸ ︷︷ ︸

n2
q(x)

ψ(x) = 0. (1.1)

We defined the de Broglie wave number as kdB = 2π/λdB and assumed that an interac-
tion potential V (x) acts on the particle, the coordinate x being the position of the center
of mass. On the other hand, it is well known [21, 22] that diffraction from a system of
apertures of a monochromatic scalar field, for instance, one Cartesian component of the
electric vector field u(x) is well described by the Helmholtz equation:

∇2u(x) + k2n2(x)u(x) = 0 (1.2)

where k is the wave number and n(x) is the refractive index, possibly position depend-
ent. Comparing equations (1.1) and (1.2), it is clear that u and ψ satisfy the same equa-
tion, where the potential term n2

q(x) = [1− V (x)/E] plays the role of a refractive index
for the quantum mechanical object. Finally, the measured quantity is in the classical case
the intensity distribution of the diffracted light, and is in the quantum case the position
distribution of the particles; both quantities, are proportional to the square modulus of
u and ψ respectively:

Iclass.(x) ∝ |u(x)|2

Iquant.(x) ∝ |ψ(x)|2

This completes the formal analogy, which allows us to adopt classical optics to model
quantum interference, although the different physical meaning of the quantities involved
should always be kept in mind. For the sake of simplicity, in this work the term intensity
will be used loosely, to indicate the expected spatial distribution particles in a quantum
interference experiment, whether it was derived with a classical optics analogy or a
quantum mechanical treatment. Moreover, we will drop the subscript dB to identify
the de Broglie wavelength, and simply use the symbol λ throughout all this thesis.

If the potential is negligible with respect to the particle energy, then n2
q ≈ 1, therefore

the wave function obeys the same equation of classical light diffracted in vacuum. In this
simplified case, we will now sketch how the intensity pattern behind a system of slits is
linked to the evolution of the initial wavefunction. This discussion follows the paper
”Matter-wave interferometry: towards antimatter interferometers” published on Journal of
Physics B: Atomic, Molecular and Optical Physics and based on results from my Master’s
thesis [1].

If the slits are sufficiently wide along the z-axis (see Fig. (1.2)) diffraction is negligible
in that direction. Therefore we can represent the state just after the grating at time t = 0
and y = 0 as the following superposition state [23, 24]:

ψ(N)(x, t = 0) ∝
N∑
n=1

ψn(x, t = 0), (1.3)
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where ψn(x, t = 0), with n = 1, . . . , N , is the wave function describing the particle
passed through the n-th slit. Note that we identified t = y/v; this corresponds to the
assumption of classical unperturbed motion along the y-axis. For a system of identical
slits with period D, we can write ψn(x, 0) = ψ0(x − nD). As the grating prepares the
system in the state of equation (1.3), we can assume that the motion along the x-axis is
governed by the free Hamiltonian:

Heff =
p2
x

2m
. (1.4)

Therefore, the evolved state ψ(x, t) is obtained by solving the Schrödinger equation with
the Hamiltonian (1.4). In particular, the probability density distribution along the x-
axis on the screen at position y = L (i.e. the interference pattern), is given by I(x) =

|ψ(N)(x, t = L/v)|2, with:

ψ(N)(x, t = L/v) =
1√
iλL

∫ +∞

−∞
exp

[
i
π

λL
(x− x′)2

]
ψ(N)(x′, 0) dx′, (1.5)

which is formally identical to the Fresnel integral of classical optics [22], as expected
from the formal analogy we established. Following a common assumption adopted in
the literature [23, 24, 25], it is convenient to assume a Gaussian form for the initial single
slit wavefunction, namely (dropping the overall normalization constants):

ψn(x, 0) = exp

[
− (x− nD)2

4σ2

]
, (1.6)

where the parameter σ is usually set to σ = a/(2
√

2π). This choice allows to compute
equation (1.5) analytically, in particular the solution for a double slit (N = 2) is compactly
expressed as

ψ2(x̂, L̂) =
∑
n=1,2

exp

− (x̂− x̂n)
2

4
(

1 + L̂2
) (1− iL̂

)
Where we introduced the adimensional variables:

x̂ =
x

σ
, D̂ =

D

σ
, and L̂ =

~t
2mσ2

=
Lλ

4πσ2
, (1.7)

in particular, x̂1 = −D̂/2 and x̂2 = +D̂/2. The generalization for a set of N equally
separated slits is straightforward. After simple algebraic manipulations, defining

F± = exp

[
− (x̂± D̂/2)2

2(1 + L̂2)

]

the intensity reads

I(x̂, L̂) = F+ + F− + 2
√
F+F− cos

[
L̂x̂D̂

2(1 + L̂2)

]
, (1.8)

which clearly shows the appearance of an interference pattern due to the oscillating term
(see Fig. 1.4). It is worth noting that the condition for observing the interference maxima
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Figure 1.4. The buildup of the interference pattern (1.8) shown with its dependence on the screen
distance L.

in far field turns out to be the usual relation of classical optics; in the limit L̂ � 1, the
condition for observing a maximum reduces to

x̂D̂

2L̂
= 2nπ → xDπ

Lλ
= nπ

which is indeed the expected classical relation. The formal analogy with classical optics
also ensures that the choice of the initial single slit profile impacts only the envelope
of the intensity pattern and not its oscillatory behaviour. The classical Fraunhofer field
outgoing a double slit setup reads

Iclass(x, L) ∝ sinc2

(
πa
xL

λ

)[
1 + cos

(
2πD

xL

λ

)]
while starting from (1.8) it easy to recover a Fraunhofer-like expression by taking the far
field limit in the form L̂� 1 and x̂� D̂, so that

F+ = F− ' exp

(
− x̂2

2L̂2

)
.

Finally, in order to highlight the similarity with the classical expression in the Fraunhofer
limit, we use equations (1.7) and (1.8) to obtain:

I(x, L) = 2 exp

[
−2
(

2π σ
x

λL

)2
] [

1 + cos

(
2πD

xL

λ

)]
. (1.9)

So, much alike the classical case, in a quantum treatment based on the free evolution
of single-slit wave functions, the latter factorizes and determines the envelope of the
pattern. This Young-like experiment is the main building block of grating-based matter-
wave interference experiments. Now we can more accurately define the term matter-
wave interference: the quantity that manifests wave-like interference phenomena is the
wavefunction ψ describing the translational motion of the center of mass of the particle.
Therefore, by shining a low intensity beam towards, for instance, a single diffraction
grating and gradually accumulating the impact point on a position-sensitive detector,
one can sample the underlying probability distribution, proportional to |ψ|2. This is the
matter wave counterpart to a traditional Fraunhofer diffraction experiment performed
in classical optics and described by scalar diffraction theory.

With this tool in our hands, gratings can be combined to arrange a proper interfer-
ometer in several different schemes. The most interesting setups require two gratings
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Figure 1.5. Scheme of a general two grating based interferometer. The goal is to form interference
fringes at a certain plane where a suitable detector is placed. The two gratings G1 and G2 are
commonly chosen with the same period d. In Part II we will discuss the advantages of using
different periods in a two grating interferometer.

to produce high-contrast interference patterns. A sketch of the geometry is drawn in
Fig. 1.5. This two grating setup can operate in different regimes, as in classical optics,
and the boundary between these working conditions is set by the same rules of classical
diffraction. Introducing the Fresnel number [21] as

F =
d2

Lλ
,

then if the second grating is located in the far field of the first, namely F � 1 (and the
same holds for the detector plane and the second grating, due to the symmetry of the
configuration) a Mach-Zehnder type interferometer is realized [26]. We have sketched be-
fore that in the far field of a diffraction grating, distinct peaks form as the wave function
propagates. So we can say that qualitatively in the Mach-Zehnder regime the particle is
split into distinct wave packets that travel different trajectories in space and are then re-
combined to interfere at the detector. The gratings are truly acting as mirrors and beam
splitters for the wave function of the particle. As it is well known from the classical the-
ory coherent light is needed to observe far field diffraction. The same then holds for a
matter wave Mach-Zehnder setup, where the role of coherence is inherited essentially by
the width of the transverse (along the x-axis in Fig. 1.5) momentum distribution of the
particle beam (see Part II for a detailed discussion).

It is not straightforward to have arbitrarily well collimated, hence coherent, beams
especially when low intensity antimatter sources are used. For this reason, QUPLAS is
based on the Talbot-Lau interferometer [26, 27, 28], which is obtained when the gratings
operate in the near field of each other.

The physics arises from the interplay of two effects: in the near field (F & 1) of
a coherently illuminated diffraction grating (for example point source or plane wave
illumination [2]), high contrast interference fringes appear, with a peculiar longitudinal
structure known as the talbot carpet (see Fig. 1.6). In particular if the observation distance
L satisfies

L =
d2

λ
= LT (1.10)

the detected fringes are self-images of the grating transmission function. This is known
as the Talbot effect [22] and the distance defined in Eq. (1.10) is labelled the Talbot Length1.

1Actually self-images at even and odd multiples of LT are shifted by half periods, as evident in Fig. 1.6.
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In 1948 it was discovered [30] that if two identical gratings are arranged in the sym-

Figure 1.6. Example of a Talbot carpet from plane wave illumination of a single grating, calculated
in Kirchhoff diffraction theory [2]. The longitudinal scale is in units of the Talbot length, and the
grating period is d = 10 µm. Intensity is represented by the color scale. Fractional period self
images can be seen at the expected distances, in addition to the main d-periodic Talbot revival at
L = LT . Similar carpets have been observed experimentally in both classical and atom optics
experiments [29]

metric configuration of Fig. 1.5 and L = LT , high contrast fringes are observed even
with incoherent illumination. This phenomenon is known as the Lau effect and can be
understood by considering the slits of the first grating as an array of point sources [31].
A displaced point source will produce a displaced talbot carpet [2, 31]. Since the Talbot
images are periodic, it is possible for an ensemble of laterally displaced and mutually
independent point sources to produce fringes that overlap ”constructively”. This occurs
if the elementary displacement on the detector plane produced in moving between ad-
jacent sources equals the period of the Talbot image (or an arbitrary integer multiple).
This is realized when the resonance conditions L = LT are met. With more sophisticated
tools the same principle is described in terms of the first grating producing light with
a d-periodic mutual intensity function [32], thus able to coherently illuminate the second
grating and produce a Talbot-like effect.

In more practical terms, this means that a Talbot-Lau setup in matter wave interfero-
meter will produce high contrast fringes even when illuminated by a poorly collimated
beam. This is in principle correct, however, as the beam gets increasingly less coher-
ent the region along the longitudinal axis where fringes are visible becomes narrower.
This in turn requires to know the grating periods with a very high degree of accuracy.
The issue is discussed in details in Part II and represents one of the main experimental
challenges for QUPLAS.

1.3 Inertial sensing and interactions with external fields

A Talbot-Lau interferometer is also an inertial sensing device: an external constant force
acting on the particles in the transverse direction produces a rigid displacement of the

For this reason in the literature the Talbot length is sometimes defined as 2d2

λ
. In this thesis we adopt instead

the convention of equation (1.10).
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interference fringes [13, 33]. For instance, if we consider the force due to the gravitational
field of the Earth F = mg, then this displacement is given by :

∆x ∝ gT 2 (1.11)

where T is the time of flight between the two gratings, and the exact proportionality
constant depends on the geometry of the apparatus (see Part II). Effective techniques
have been demonstrated2 to measure fringe shifts down to the level of 10µm [34], which
allow to perform gravimetry on slow atomic beams.

So far we have relied on the full analogy between equations (1.1) and (1.2), so it is
worth concluding this overview with the key difference that prevents the correspond-
ence to be completely trivial, namely the potential term n2

q(x) = [1− V (x)/E]. In this
context we neglected any interaction of the interfering particle with the environment.
This is usually physically reasonable in vacuum, save for peculiar cases, where the whole
issue of decoherence comes into play [25, 35, 36, 37]. However, when transmitted by ma-
terial gratings the particles are forced to pass at very short distances from the walls of
the gratings (membranes with a slit width as small as 45 nm have been used for electron
experiments [38]). This inevitably gives rise to an interaction mediated by a potential
V (x). Since the thickness of the gratings δ (see Fig. 1.7) is much smaller than the free
propagation distance, it is convenient to drop the potential term from the equations of
motion. The effect of the grating is rather incorporated into a transmission function T (x)
that acts as a multiplicative factor on the incoming wavefunction ψ(x). This usually
has a periodic real part accounting for the spatial intensity modulation, and a phase
factor acting on each period, as sketched in Fig. 1.7. For neutral atoms and molecules,

Figure 1.7. Sketch of the interfering particles interacting with the walls of a grating slit. The effect
of interactions is typically embedded in a transmission function of the form eiφ(ξ), where ξ labels
the transverse coordinate. More details can be found in [1] and references therein.

the dominant contribution is the van der Waals atom-surface interaction [39] defined as
V (r) = −C3r

−3, where r is the distance from the slit walls and the C3 coefficient was
first introduced by Lifshitz [40]. A more general form of the interaction that includes
retardation effects is the so called Casimir-Polder potential [41, 42] which scales as r−4.
Charged particles will interact via the Coulomb force, which in this scenario is typic-
ally modelled with an image-charge model that depends on the dielectric constant of the

2To avoid confusion, I remark that the work cited employs a moiré deflectometer. It is essentially the very
same two grating setup outlined above, but operating in the classical regime, where quantum diffraction is
negligible and particles behave as ballistic projectiles. This condition is realized if the gratings operate at
distances much smaller than the Talbot Length. Nevertheless, the inertial sensitivity properties are analogous
(see Part II).
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material gratings [1]. For weak potentials, the standard approach [38, 39, 43] is to de-
termine the phase shift ϕ(ξ) via the semiclassical eikonal approximation. Denoting with
v the particle speed:

ϕ(ξ) = − 1

~v

∫
V (ξ, y) dy. (1.12)

The potential must be specified on the (ξ, y) plane, and complicated geometries as shown
in Fig. 1.7 can be considered. It can be shown [1] that as a first approximation the effect of
a potential is to reduce the effective slit width; this feature has been observed in various
situations [39], a notable example being the C60 experiments [12].

We now describe two notable examples of matter-wave interferometers related to the
field of gravitational measurements applied to elementary particles and atoms.

1.3.1 The COW experiment

The so-called COW experiment (from the initials of its authors Colella, Overhauser and
Werner) was conducted in 1957, and observed interference effects do to the quantum-
mechanical phase shift caused by interaction with the gravitational field in a neutron
interferometer. Their 1975 paper titled ”Observation of Gravitationally Induced Quantum In-
terference” [44] is well known as one of the first works investigating the interface between
gravity and quantum mechanics.

The geometry of the apparatus is sketched (simplified to rectangular shape) in Fig.
1.8: a beam of neutrons with a de Broglie wavelength of λ = 1.445 Å was split (point z1)
in two separate trajectories and then recombined (at point z3) by means of three thin sil-
icon slabs (yet another different way to realize mirrors and beam splitters). This device
was derived from the so-called Bonse-Hart interferometer [45], and could rotate by an
angle θ in such a way that the horizontal branches of each trajectory were separated by
a gravitational potential difference ∆U = mn

g∆zg sin θ, where mn
g is the neutron gravit-

ational mass. The difference in neutron intensities ∆I(θ) at the two output detectors of
the interferometer displayed interference fringes as a function of θ [44]. This is an effect

Figure 1.8. Left: sketch of the geometry of the COW experiment[44] in real space. The gray dotted
lines represent the silicon crystals, which are acting as beam splitters and mirrors for the neutrons.
Right: parabolic motion in the two arms of the interferometer which is used to calculate the phase
shift in the presence of gravity. The transit times t1 and T defined in the picture are relevant for
equation (1.14).

of the phase shift ∆φ induced by the potential difference. To derive its dependence (for
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our simplified geometry) it is useful to introduce a path integral description [46], which
relates the phase shift between two trajectories to the difference of the classical action
evaluated along the paths, namely ~∆φ = SLcl − SUcl . The U/L labels refer to the upper
and lower trajectories in the z − t diagram of the simplified COW interferometer shown
in Fig. 1.8. For a particle in a gravitational potential, the classical action between the
points (za, ta) and (zb, tb) has the following analytical expression [46]:

Scl(zb, tb; za, ta) =
mg

2

(zb − za)2

tb − ta
− gmg

2
(zb − za)(tb − ta)− g2mg

24
(tb − ta)3. (1.13)

Taking into account that z2−z1 = z3−z4 = ∆z (see Fig. 1.8) and making the substitution
g → g sin θ, the final result for the phase shift is:

∆φ =
mgg sin θ

~
(∆zT + t1(z1 − z4)) ≈ mgg sin θ∆zT

~
, (1.14)

where the approximation3 is justified by T � t1 and ∆z � (z1 − z4). Manipulating the
expression further in terms of the de Broglie wavelength, one obtains:

∆φ =
2πmImgg sin θλ∆x∆z

h2
, (1.15)

which, apart from a difference in numerical factors due to the simplified geometry, cap-
tures all the physics of the COW experiment. We remark that the calculated phase shift
of quantum-mechanical origin arises from the free propagation of the two trajectories
which are subjected to different gravitational potentials. This simple final expression
containing both Planck’s constant and Newton’s constant (through g), indeed places this
experiment at the interface between gravity and quantum mechanics.

1.3.2 The Kasevich-Chu interferometer

The so called Kasevich-Chu interferometer, proposed in [47], uses stimulated Raman
transitions to manipulate atoms. It is this interaction to play the role of the mirror and
beam splitter that we need to build an interferometer.

The working principle of this device can be summarized as follows: alkali atoms
are cooled in a magneto-optical trap down to ≈ µK temperatures or even lower (in the
most recent experiments, Bose Einstein condensates are even used [48]). The atom cloud
is then launched upwards in an atomic fountain and interrogated with a series of laser
pulses, separated by a fairly large time interval (even up to T ≈ 1 s). The probabil-
ity to find the atom in a chosen (e.g. excited) state is then measured by fluorescence.
We will sketch a derivation of the dependence of this probability on the phase shift φ
accumulated during propagation and interaction with the lasers. In particular, in con-
trast with the COW experiment, in this setup the contribution due to propagation alone
cancels out to first order (i.e. if gravity gradients are neglected). The laser-dependent
part instead is controlled by the experimenter (in analogy with the movable mirror in
a Michelson interferometer), so the experiment can be repeated multiple times and the
probability measured to sweep a fringe pattern (see Fig. 1.9). We can derive the phase
shift due to the laser within a simple toy model that contains the basic physics. Con-
sider an ideal two-level atom (basis |g〉 , |e〉), interacting with an external electric field

3Note that the same result could also be obtained with a straightforward calculation of the quantum-
mechanical phase shift between two free particles (plane waves) propagating for a time T , subjected to a
potential difference ∆U = mgg sin θ∆z. In the eikonal approximation this reads: ∆φ = ∆UT

~ .
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Figure 1.9. Left: sketch of the sequence of laser pulses with their phases φ1, φ2, φ3 in a Kasevich-
Chu interferometer. Right: typical fringe pattern as a function of a reference laser phase (see text).
The data shown (from [49]) were taken in one minute with pulses separated by T = 160 ms and a
least squares fit determines g with an uncertainty of 3× 10−9g.

of the form E = E0 cos(ωt + φ) representing an excitation laser. Then the interaction
Hamiltonian ĤI = −d · E gives rise to the well known phenomenology of Rabi oscilla-
tions [50]. Defining the Rabi frequency as Ωr = d ·E0/~ and the interaction time τ , then
two meaningful combinations can be realized:

• Ωrτ = π/2, usually called a π/2-pulse, the action on the ground state is [49]:

Û
π
2 |g〉 ∝ |g〉 − ie−iφ |e, ~kL〉 .

This is a superposition state, where due to conservation of momentum, the excited
state also undergoes a momentum kick ~kL depending on the laser wave number
kL. Therefore the two parts of the wave packet propagate trough different paths in
space. For this reason, this is also aptly named a beam splitter pulse.

• Ωrτ = π, usually called a π-pulse, acting on the ground state as [49]:

Ûπ |g〉 ∝ −ie−iφ |e, ~kL〉 .

The result is a population reversal, with the same momentum kick and, as before,
the laser phase is imprinted on the wave function of the state. This is usually called
the mirror pulse.

In the Kasevich-Chu interferometer, three of such pulses separated by a time interval T
are combined in the so called ”π/2− π − π/2” sequence, which acts on the ground state
as follows:

|g〉 → Û
π
2 ÛπÛ

π
2 |g〉 = − i

2

(
e−iφ2 + ei(φ2−φ1−φ3)

)
|e〉+ (· · · ) |g〉

where the phase of the tree laser pulses are labelled as φ1,2,3. The probability of finding
the atom in the excited state is easily obtained

Pe =
1

2
[1− cos(∆φ)]
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with ∆φ ≡ φ1 + 2φ2 + φ3. The pulse sequence suggests a schematic representation as
shown in Fig. 1.9 on the left hand side. The phase shift ∆φ can be controlled (all the
experimental details are outside the scope of this work), producing the fringe pattern in
probability shown in Fig. 1.9 as predicted by the equation above. If one compares Fig.
1.9 with Fig. 1.1, the conceptual analogy is pretty striking.

One of the most important applications of this interferometer is as a gravimeter. Our
sketchy derivation can be made more precise by accounting for the presence of gravity,
which determines the exact trajectory of the atoms, therefore the position at which they
interact with the laser pulse, and in turn the correct value of the overall phases φ1,2,3.
The resulting phase shift in the presence of constant and uniform gravity is [49]:

∆φ = ∆φlas + ����∆φprop = kLgT
2 + φ0

1 − 2φ0
2 + φ0

3 (1.16)

The parameters φ0
i are constant phase factors that can be controlled experimentally.

Without going into the details, we want to stress that the total phase shift expressed
in equation (1.16) has in principle two contributions: the laser phase shift ∆φlas which
gains the additional kLgT 2 term, and the phase shift due to propagation ∆φprop. The
latter can be evaluated in a path integral approach as outlined for the COW experiment
[46], but is exactly zero for this ”atomic fountain” configuration. A nonzero contribution
emerges when gravity gradients are accounted for (which is necessary for very precise
measurements). This point highlights the different physical origin of the interference
effects with respect to the COW experiment. In the Kasevich-Chu interferometer the po-
sition of atoms as they fall is imprinted into the phases of their wave functions by the
laser interactions; the sequence of pulses is constructed so that a measurement of these
phase differences yields experimental access to g [49]. In a certain sense it is reminiscent
of how a classical ”falling corner cube” gravimeter [51] measures the position of an ob-
ject as it falls at three instants of time separated by an interval T to obtain a measurement
of g.

There are several techniques to exploit the phase shift dependence on g to realize
an absolute gravimeter[49]. The sensitivity scales quadratically with the time interval.
To this date, atom interferometers are the benchmark for absolute gravimetry of atoms,
reaching a level of precision better than σg/g = 10−9 on Cs atoms [52], with proposed
experiments set to reach the 10−15 level [53, 54]. This capability can be useful both for
applied physics (geodesy, for instance [55]) and fundamental research. Two different
atomic species can be run trough the same atomic fountain at the same time, to perform
a differential g mesurement. This is a test of the weak equivalence principle of General
Relativity. The relevance of such measurements from a theoretical point of view will be
discussed in the next chapter.

To conclude this section we stress that, although this technique is the current bench-
mark for accuracy on absolute and differential g measurements, it is not easily adapted to
exotic systems such as positronium, nor it is particularly advantageous; mainly because
the g-dependent sensitivity scales as the square of the ”interaction time” just like the
Talbot-Lau interferometer, so the extremely short lifetime of positronium (τPs = 142 ns
for the longest lived spin triplet ground state) remains the main limit for the measure-
ment precision. Furthermore, the Kasevich-Chu interferometer is so accurate as a con-
sequence of the high degree of control that current technology can provide on alkali
atoms. It is not yet feasible, to the best of our knowledge, to produce an ultra cold (sub-
µK) cloud of positronium, neither it is easy to perform coherent and carefully controlled
laser excitation to long-live states with properties comparable to the ones of alkali atoms.





CHAPTER 2

Motivation

This chapter illustrates the motivation for pursuing the goals set forth in the QUPLAS
project, and discusses their relevance in the present state of the art.

2.1 The three phases of QUPLAS

As mentioned in the introduction, QUPLAS foresees three consecutive stages of increas-
ing sophistication, each one targeting an intermediate goal which is instrumental for the
completion of the subsequent step.

1. QUPLAS-0: observation of matter wave interference of positrons (e+) in a Talbot-
Lau interferometer. The result can be compared with an electron beam in the same
apparatus with almost identical experimental conditions. Direct detection of the
interference pattern will be carried out with high-resolution nuclear emulsions.

2. QUPLAS-I: observation of matter wave interference of positronium (Ps), again in
a Talbot-Lau configuration. This can give experimental access to several properties
of this peculiar system.

3. QUPLAS-II: measurement of the gravitational acceleration gPs of Rydberg excited
(high principal quantun number n) Ps atoms, using inertial sensing techniques
based on Talbot-Lau interferometry.

The three main goals are a concise description of what QUPLAS aims to achieve. The
following sections aim to explain why these goals are relevant and interesting to pursue.

2.2 Testing the Weak Equivalence Principle on antimatter

We start this discussion from the final and most ambitious phase of QUPLAS, which
fits into the wide field of research that probes our current understanding of gravitation,
namely General Relativity, in a low energy regime. Low energy means targeting sys-
tems on a small (non cosmological) scale such as atoms, in the gravitational field of the
Earth. We will focus on the general theoretical framework that is the motivation for this
research and thus for the QUPLAS project.

17
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2.2.1 General relativity and the Einstein Equivalence Principle (EEP)

General relativity (GR) is commonly accepted as the current description of gravitation
in modern physics. It is based on a consistent mathematical formalism and provides
a satisfactory description of most of the observed phenomenology: from the so called
classical tests of general relativity1, proposed by Einstein [58] in 1916, to the recent direct
detection of gravitational waves [59].

Nevertheless, there are still sufficiently strong reasons to question the validity of GR
as the most fundamental theory of gravity, and to motivate the search for hints of physics
beyond GR:

• General relativity is a classical (as in non quantum) theory, difficult to reconcile with
quantum field theory.

• Dark energy and dark matter.

These are widely believed to be among the most pressing ”unsolved problems” in mod-
ern physics. According to the currently accepted ΛCDM cosmological model and the
most recent experimental data [60], the Universe contains only 4.9% baryonic matter,
while the bulk is 26.8% dark matter, 68.3% dark energy and a small amount of neutrinos
and photons. Although the model gives an accurate account of many observed proper-
ties of the cosmos, such as the features of the cosmic microwave background radiation,
the data we mentioned suggest that some modifications or extensions are needed, either
in the standard model of particle physics, or in our understanding of gravity.

Atom interferometry is a useful (and very precise) tool to search for deviations from
the predictions of GR. In particular we focus on tests for violations of the so-called weak
equivalence principle, which will be formally defined shortly.

General Relativity belongs to the class of metric theories of gravitation. Following Will
[61], these theories are characterized by the following defining features:

i Spacetime is endowed with a metric tensor gµν

ii The world lines of test bodies are geodesics of the metric

iii In local freely falling frames the laws of physics are those of special relativity

Loosely speaking, these features correspond to a description of gravity as a geomet-
rical phenomenon: knowledge of spacetime geometry allows to predict the motion of
all bodies. Gravity is in this sense universal: in the language of field theories it couples
with the same strength to all forms of matter, there is no such thing as a gravitational
charge. Different theories can be constructed starting from these principles, for example
by postulating different equations of motion for the metric. The Einstein equations [62]
Gµν = 8πTµν , are a particular choice giving rise to general relativity, but other theories
also exist (such as the so called Brans-Dicke theory [63]).

1The precession of the perihelion in Mercury’s orbit, the deflection of light by the sun, and the gravitational
redshift of light. Only the anomaly in the speed of Mercury’s precession was known at the time, and GR theory
correctly justifies it. The latter two were predictions, whose experimental confirmation [56, 57] contributed to
establish GR as the mainstream theory of gravitation.
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It can be proven that metric theories of gravity satisfy the Einstein Equivalence Prin-
ciple [61] (EEP), which can be stated in terms of these three sub-principles:

• Weak equivalence principle (WEP) or Universality of free Fall (UFF): if an un-
charged test body is placed at a given point in spacetime, and given an initial ve-
locity there, its trajectory will be independent of its internal structure and compos-
ition.

• Local position invariance (LPI): the outcome of any local non-gravitational exper-
iment is independent of the location in space-time where it is performed.

• Local lorentz invariance (LLI): the outcome of any local non-gravitational experi-
ment is independent of the velocity of the (freely falling) apparatus.

The so called Shiff’s conjecture [61] states that a violation of any one of the three sub-
principles implies a violation of the other two. This has not been proven with mathem-
atical rigour, but several arguments can be made in favour of this hypothesis. The main
point is that the validity of all three principles holds in any metric theory of gravity (ac-
cording to the above definition), including general relativity. Therefore, irrespective of
the validity of Shiff’s conjecture, a violation of the WEP undermines the very founda-
tion of General relativity as a geometrical theory of gravity, implying that the correct
description cannot be in the form of a metric theory. In this sense we can say that test-
ing the WEP is more fundamental than testing the phenomenology that is predicted by
the Einstein equations. A modification of the Einstein equations within the same frame-
work would not be sufficient to produce a WEP violating theory of gravity. The same
reasoning applies to the other sub-principles, which motivates for instance the search of
Lorentz invariance violations in ultra-high-energy cosmic rays [64, 65].

Although there are theories which predict a violation of the WEP in certain systems2,
it is generally impossible to produce a quantitative estimate of the level at which the viol-
ation should occur. Therefore the current approach guiding the experiments is to search
for violations on a large class of systems (recall that WEP states the universality of free
fall), and to use the results to put increasingly strict bounds on WEP violating paramet-
ers. As an example, a simple parametrization used in the literature [61, 67] assumes that
the motion of a test body in a gravitational field U(x) (we can assume one dimensional
motion for simplicity) is governed by the following non-newtonian Lagrangian3:

L = −m0c
2 +

1

2
m0v

2 − (m0 + δmU
p )U(x),

where m0 is the total mass including binding energy for composite objects. The para-
meter δmU

p is called passive anomalous gravitational mass, and arises from an hypothet-
ical anomalous coupling between the test body and the source of the gravitational field.
Therefore it depends on both the nature of the body (if composite, from the interactions
contributing to its binding energy) and from the source of the gravitational field. The su-
perscript U is added to remind this dependence. Different combinations of sources and
test bodies thus put constraints on independent parameters. The equations of motion
following from L read:

d2x

dt2
=

(
1 +

δmU
p

m0

)
dU(x)

dx
,

2For a recent overview of this topic, see [66].
3We consider a minimal toy model starting from the general formulation [61], sufficient to capture the

meaning of the WEP violating parameters.
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defining βU =
δmUp
m0

, and assuming the source to be the approximate gravitational field
on the surface of the Earth (the potential is of the form U(x) = g0x), then

d2x

dt2
=
(
1 + βEarth

)
g0.

This is clearly a WEP violating result, since different bodies having a different β para-
meter fall at a different rate. Differential acceleration measurements between two objects
labelled X and Y can then be performed to put bounds on the combination

ηEarth
X,Y = 2

βEarth
X − βEarth

Y

βEarth
X + βEarth

Y

which is essentially the so-called Eötvös parameter. In Table 2.1, we summarize some of

Technique Species compared Result or goal for ηX,Y

Torsion balance [68] Be/Ti test masses (0.3± 1.8)× 10−13

Lunar laser ranging [69] Earth/Moon in the field
of the Sun (−0.8± 1.8)× 10−13

Atom interferometry (AI)
[70]

Cs atoms/falling Corner
Cube (CC) (7± 7)× 10−9

Dual species AI [71]
88Sr/87Sr atoms (boson

vs. fermion) (0.2± 1.6)× 10−7

Moiré deflectometer [6,
72] (AEGIS) Antihydrogen (H)/CC 10−2 (goal)

Talbot-Lau interferometer
(QUPLAS) Positronium/CC 10−1-10−2 (goal)

Table 2.1. Comparison of selected (proposed and already performed) experimental tests of the
WEP. The techniques mentioned are all ground based, with several space-based atom interfero-
metry experiments to be launched in the near future [73, 74]. In terms of our parametrization, all
experiments measure ηEarth

X,Y , except the Lunar laser ranging experiment. The latter is a measure-
ment of the differential acceleration of the Earth and the Moon freely falling in the field of the Sun
(measuring ηSun

Moon,Earth). The falling Corner Cube refers to the moving mirror freely falling in a clas-
sical gravimeter such as the FG5-x [51]. The last two experiments, including the present project
are proposed tests on antimatter.

the current experimental bounds on the violation of the WEP, with different techniques.
The first two experiments, employing macroscopic test masses, are still the most precise.
In the future dual species atom interferometers are expected to surpass them and reach
the level of 10−15 [54]. However, in light of our discussion it is not particularly mean-
ingful to compare these results in terms of accuracy, since they are actually measuring
different parameters by testing different species. Objects to be compared are therefore
usually chosen following some rationale, for example the dual species test on 88Sr/87Sr
atoms aims to constrain possible anomalous coupling of gravity with spin, by comparing
isotopes of different total spin (spin-zero boson vs. fermion).
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WEP tests on antimatter

The AEGIS experiment mentioned in Table 2.1 was designed to search for WEP viola-
tions on antihydrogen atoms at the level of 10−2 [6, 72] using beam based techniques
(a moiré deflectometer). There is a striking difference of 7 orders of magnitudes with
respect to the most precise test performed to date on individual Caesium atoms [70]. As
we mentioned in concluding section 1.3.2, the precise techniques of atom interferometry
cannot be applied on systems like H and positronium, although advancements in this
directions have been made4. The unique experimental challenges posed by exotic atoms
will be apparent in the following chapters, and suggest a distinction between two dif-
ferent philosophies: on the one hand one can rely on objects that can be controlled very
well and reach ever increasing accuracy; on the other hand one can probe exotic systems
where there are stronger reasons to believe that unusual physics might be at play.

Are there reasons to believe that antimatter might violate the WEP? The issue is con-
troversial. For an historical overview summarizing the main arguments against ”anti-
gravity”, the idea that matter and antimatter could have a repulsive gravitational in-
teraction, see [77]. A more recent paper [78] argued that antigravity follows naturally
when the CPT theorem is applied to general relativity. This conclusion has later been
challenged on theoretical grounds [79]. A suggestive cosmological model, known as
Dirac-Milne cosmology [80], by assuming antigravity as a postulate, gives an elegant
solution to two well known problems of the ΛCDM cosmological model (known as the
horizon problem and the cosmic age problem).

In summary, the debate cannot be settled until sufficient experimental evidence has
been collected. Currently the most stringent bound comes from the ALPHA Antihydro-
gen experiment [7], that loosely constrains the gravitational to inertial mass ratio for H
to the range −65 < mg/mi < 110. This result still does not rule out antigravity, and
would be substantially bettered by the foreseen 10−2 level measurements.

The search for WEP violations in positronium has already been proposed in the past
[81, 82]. This section should have clarified the importance of testing the WEP on a variety
of systems, and the main reasons why the proposed Ps measurement well complements
the ongoing efforts on H are:

• It would still be able to rule out ”antigravity”, by measuring gPs 6= 0.

• It can put constraints on WEP violation parameters (δmp) on a purely leptonic
system, bound by the electromagnetic interaction only.

2.3 Developing new techniques in matter wave-interferometry

We recall that matter-wave interference (in any shape or form) has been observed on
a broad range of objects, initially elementary particles [9, 10, 11], and recently on com-
posite objects up to the size of large molecules [83] which require a variety of different
techniques. It will become clear in the next chapter that tackling the measurement of gPs

requires improvements in several technical items which are at the forefront of current re-
search. Therefore, the first two phases of QUPLAS are instrumental in developing such
techniques, contributing with new solutions to an already rich state of the art.

Several interesting studies of fundamental interest could also be carried out on exotic
antimatter systems like Ps. We summarize schematically the main points of interest,

4For example, the Alpha collaboration at CERN succeeded in trappingH for the first time [75] and recently
paved the way for precision spectroscopy of antihydrogen [76].



22 2.3 Developing new techniques in matter wave-interferometry

beyond the gravitational measurement, that motivate the efforts on Ps interferometry
experiments.

2.3.1 QUPLAS-0 and positron interferometry

• Matter wave interference on elementary antimatter has not been observed yet,
and in our apparatus we have the possibility to compare in the same conditions
positrons with electrons. The CPT theorem [84] establishes the equality of the
e+/e− masses, which has been tested to very high precision (10−8 level [85]) in
Ps spectroscopy experiments. However, recalling the de Broglie relation λ = h

mv

the question if λ = λ, while not competitive as a test of the equality of the masses
can still be interesting to answer; at least interpreted as the search for any possible
difference between e+/e− interferometric patterns.

• A potential source of discrepancies could arise from the interaction with the grat-
ings. Interaction with material gratings for electrons has been a subject of several
studies [38] and could be further investigated for positrons.

• The theory of matter-wave interference experiments is grounded in non-relativistic
quantum mechanics, and most experimental work involved low energy electrons
(up to 5 keV [27]) or atomic beams travelling at an even lower speed. At 20 keV
relativistic effects start to be non-negligible. The minimal modification required is
a correction to the de Broglie wavelength to account for the relativistic momentum.
In terms of the kinetic energy it reads:

λrel =
h√

2mEk

[
1 +

Ek
2mc2

]− 1
2

. (2.1)

It is worthy of investigation whether this correction to the wavelength is sufficient
to describe the observed patterns with the usual theoretical models, which are
based on the non-relativistic Schrödinger equation, or if more profound changes
are required.

• We propose a novel asymmetric Talbot-Lau configuration (Part II), and the use
of nuclear emulsion detectors (Part III). By virtue of its unmatched position res-
olution this detector allows direct detection of micrometric fringe patterns. The
synergy of high position resolution and a careful theoretical modeling of the beam
could prove useful to extract more detailed information from the detected pattern
in comparison to detectors based on moving grating masks [86].

2.3.2 QUPLAS-I and positronium interferometry

• Positronium interference has never been observed so far, and grating-based inter-
ferometers can be useful to investigate several properties of this exotic system.

• For instance, with the possibility to excite Rydberg states, studies on the transmis-
sion of such states by mechanical apertures [87] could be improved. The impact
of finite ”classical” size of the Rydberg atoms on the interference pattern could be
studied.
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• Atomic properties can be measured accurately in grating interferometers. The
most precise determination of the ground-state polarizability of caesium and ru-
bidium was recently performed with a three-nanograting Mach-Zehnder interfer-
ometer [88].

• Being very light, positronium could be an interesting probe for the physics of de-
coherence (for instance by experimentally controlling the vacuum pressure to tune
the coupling strength with the environment [89]).

Positronium interferometry requires the development of several techniques, which could
also be useful for other applications and experiments. An overview of the required ad-
vancements is discussed in the next chapter.





CHAPTER 3

Towards positronium interferometry

This chapter contains an overview of the main ideas behind the QUPLAS-I and QUPLAS-
II phases of the experiment. I was involved in the development of these ideas, and also
performed a preliminary study on the motion of positronium in magnetic and electric
fields. This is of interest for several stages of the experiment. The main focus of this
thesis is on QUPLAS-0, therefore these results are postponed to appendix A to keep the
presentation more compact. Furthermore, we stress that this chapter does not aim to
provide a quantitative feasibility study of the advanced QUPLAS phases, but rather to
introduce the reader to the main challenges involved and discuss possible solutions.

The L-NESS positron beam

The positron beam operating at the L-NESS laboratory [4], shown in Fig. 3.1, is the main
building block of all QUPLAS phases. It exploits a 22Na source (activity at the time of

Figure 3.1. Positron beam
facility at the L-NESS
laboratory [4]. Labelled
parts are: 1. 22Na radio-
active source and mod-
erator inside lead shield-
ing; 2. Electrostatic optics
and 90◦ bend; 3. Main ex-
perimental chamber; 4.
Extended chamber with
mu metal shielding, hous-
ing the interferometer; 5.
High purity germanium
detector (HpGe); 6. Power
supply and beam control
electronics.

writing is approximately 5 mCi). High-energy positrons from β decay (end-point en-
ergy is approximately 540 keV) are moderated by a monocrystalline tungsten film, from
which thermalized positrons are emitted with a small energy (≈ 3 eV) related to the work
function of the material. Moderated e+ are then electrostatically accelerated and guided
trough a 90◦ bend which filters out the unwanted residual high-energy component (the
purpose of the bend is also to allow more effective shielding against the γ background
from the source). Positron energy can be tuned in the 0.1 − 20 keV range and the beam
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is highly monochromatic (σE/E � 1%, limited mainly by the stability of the associated
electronics). The typical positron flux is at the level of 103 to 104 s−1.

The L-NESS beam is a low intensity continuous beam, thus well suited to perform
true single-particle matter-wave interference experiments. The electrostatic optics also
ensures the required stability for fairly long measurements (on the time scale of one
week), which are routinely performed at L-NESS [4].

Main challenges in positronium interferometry

A sketch of the foreseen QUPLAS-I/II setup is shown in Fig. 3.2 for positronium interfer-
ometry and, possibly, gravity measurements. In the following the main steps involved
are described:

g

CW laser excitation to high-n
Rydberg levels
τ ≈400 µs

Or circular (high-l) states
τ ≈1000 µs

e+ Fast Ry Ps (105 m/s) Slow Ry Ps (103 m/s) T.-L. setup (1m long)

µm level fringe shiftThin mesoporous
silica converter

Stark
decelerator

Figure 3.2. Sketch of the foreseen setup to perform positronium interferometry (QUPLAS-I) and
possibly gravity measurements (QUPLAS-II). Details are discussed in the text.

Positronium production is achieved by implanting positrons in a suitable converter ma-
terial, typically made of porous materials such as silica, with a variety of different struc-
tures [90, 91, 92]. For interferometry a beam of particles with a well defined direction is
needed, and many efforts are ongoing in the community to reach this goal. A relevant
step in this direction could be the development of transmission-mode conversion targets
[93]: samples sufficiently thin to allow the escape of positronium atoms in the down-
stream direction, possibly with smaller angular spread compared to typical reflection-
mode targets. Recent advances have been made [91, 92]: in particular conversion effi-
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Figure 3.3. Scketch of the process of
positronium formation and emission in
vacuum in mesoporous materials. The im-
planted positrons can form positronium
after stripping an electron from the mater-
ial as they scatter inside it. If a long lived
ortho-Ps state is formed, it can escape in
vacuum through the open pore network.
Pores have a typical average diameter of
several nanometres. Annihilation of the
positron to 2γ can also occur with an elec-
tron from the material either before of after
Ps formation. The latter process is called
pick-off annihilation.

ciencies of the order of 10% for atoms forward-emitted with an angle smaller than 50◦

has been demonstrated [91]. Promising transmission targets (called ”3D silica”) have
also been realized in the framework of our collaboration [94]. Ps atoms are typically
emitted from mesoporous targets with a high average velocity of the order of 104 to
105 m/s and a broad Maxwell-Boltzmann type distribution.

Laser excitation of Ps atoms to Rydberg levels might also be required to extend the
lifetime of positronium to match the intended time-of-flight through the interferometer
[95, 96]. The lifetime of Rydberg states scales with the principal and orbital quantum
numbers approximately as n3l2 [97]. For reference an n = 65, l = 2 state has a lifetime of
τ ≈ 290 µs (see Fig. 3.4). A viable continuous-wave laser system consists of two tunable
Ti:Sa units, both pumped by the 2nd harmonic of a 1064 nm Nd:YAG. A first 1.5 W Ti:Sa
system will operate at 972 nm, to generate, upon quadruplication, approximately 300 µW
of 243 nm radiation driving the 1→ 2 transition. The second Ti:Sa laser will generate up
to approximately 4 W of ≈ 730 nm light, to excite the transition to Rydberg states, up to
n = 70− 90.
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Figure 3.4. Left: lifetime of Rydberg levels as a function of l for representative choices of the
principal quantum number n; the dotted line at τ = 1 ms is added to guide the eye and represents
the ideal goal for gravity measurements. Right: preliminary simulation of the expected excitation
probability as a function of Ps velocity with realistic laser parameters.

This excitation scheme, applied to a continuous Ps beam, can also provide velocity se-
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lection: the distance of the laser spot from the Ps production target can be tuned so
that a sizeable fraction of atoms (below a certain speed threshold) decays before reach-
ing the excitation region. On the other hand, laser intensity can be selected so that fast
atoms will have an interaction time too short for efficient excitation. I performed a proof-
of-concept simulation of this principle, using a Bloch equations approach with realistic
spectral features, adapting a model of laser phase noise from [98]. An example of the
velocity-dependent excitation probability is shown in Fig. 3.4. In particular the n = 20
case is reported, with an elliptical Gaussian laser spot of 200µm × 20µm located 1 mm
after the converter; the applied power was set to 360 µW and 270 mW for the 1→ 2 and
2 → n transitions respectively. Very high-n states are very fragile and sensitive to stray
fields (consider that the polarizability scales as n7 [97]). This drives the ongoing effort
towards the development of techniques for the excitation of the so called circular states
(high-l) states. This likely requires the addition of a microwave excitation system, as
demonstrated experimentally on Na atoms [99] and Hydrogen atoms [100]. To the best
of our knowledge, the technique has not yet been implemented on positronium.
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Figure 3.5. Left: stark decelerator suitable for Ps, with the same geometry proposed in [101] (the
numerical simulation was performed independently using the maxFEM software [102]); contour
lines for |E| are shown. Right: plot of |E| and of the y-component of ∇|E| ∝ F along the y-axis.
Rydberg-Stark states should be produced inside the decelerator (in the constant field region) and
decelerated by the strong gradient near the gap between the two top electrodes.

A cold positronium beam, with an average speed down to approximately 103 m/s could
be required for the gravity measurement, in order to maximize the transit time T for a
given interferometer length (we recall that in Talbot-Lau based gravimeters, the fringe
displacement due to gravity is proportional to gT 2). Rydberg atoms have high polariz-
ability and can be manipulated by means of the Stark effect. An inhomogeneous electric
field E will exert a force on the atom F ∝ ∇|E|. Stark decelerators based on time-
indepentend electric fields (thus suited for continuous beams) have been demonstrated
for hydrogen atoms [101] and are capable of accelerations of the order of 108m s−2.
Lighter positronium atoms are even easier to accelerate; preliminary simulations sug-
gest that it is possible to decelerate 104 m/s Ps down to 103 m/s in a few centimetres long
setup like the one shown in Fig. 3.5. The implementation of such a device is correlated
with the laser excitation. The landscape of accessible states is changed in an external
field (to the so called Rydberg-Stark states [103]). States with a well-defined combina-
tion of quantum numbers have to be selectively excited so that they can be coherently
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Figure 3.6. On the left, sketch of the geometry of a wire-based ionization detector coupled with
emulsion films. On the right, a proof-of-concept simulation of the electric field in such a configur-
ation. Wires 0.1 mm in diameter are separated by 1 mm and located at a distance of 5 mm from the
planar electrode. The potential difference is set to 10 kV.

decelerated [104]. More details on the motion of Rydberg states in field gradients are re-
ported in Appendix A, for an extensive review of Stark deceleration techniques see [103].

A suitable Talbot-Lau setup has to be devised for the intended application. At a speed
of 105 m/s ground state ortho-Ps (τ ≈ 142 ns) can survive a few centimetres, and its de
Broglie wavelength is approximately λ = 3.6 nm. A short Talbot-Lau setup can therefore
be built using d ≈ 10µm material gratings (Talbot length≈ 2.7 cm). This could constitute
a viable QUPLAS-I setup to perform the range of studies suggested in 2.3.2. For the pro-
posed QUPLAS-II gravity measurements, the inertial sensitivity of a candidate 1 m long
Talbot-Lau setup will be thoroughly discussed in section 4.2. This order of magnitude
in total length is arguably the best compromise between a sizeable fringe displacement
in the µm range (scaling quadratically with the time of flight) and the loss of intens-
ity suffered by a slow Rydberg Ps beam (v ≈ 103 m/s) excited to τ ≈ 102 µs lifetimes.
This setup would require a grating periodicity of approximately 400µm. Depending on
the Rydberg states employed (circular or very high-n), the feasibility of interferometry
with material diffraction gratings has to be evaluated carefully: although the slit width
will still be larger than the (classical) size Rydberg Ps, and there are models suited for
strong interaction regimes[105], the C3 coefficient of van der Waals interaction for Ry-
dberg Ps can be several orders of magnitude higher than in the ground state. This sug-
gests to consider laser-produced light gratings based on the so called Kapitza-Dirac effect
[106, 107, 108], that have been developed specifically for highly-polarizable molecules
[109].

Detection of the interference pattern is a challenge even if the periodicity of the in-
terference pattern could be in the 10µm range for QUPLAS-I and approach 102 µm for
the gravity measurement. Being neutral objects with sub-eV kinetic energy, Ps atoms
cannot be observed directly with nuclear emulsions even for v > 105 m/s. A possib-
ility that is being investigated is to supplement the emulsion detector with an electric
field that ionizes Ps and accelerates the positrons (or electrons) at a few keV towards the
emulsion surface. A geometry as sketched in Fig. 3.6 could be devised, with electrode
wires long enough to ensure that there is negligible field gradient in a preferred direc-
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Figure 3.7. Principle of moving mask detec-
tion: a grating mask with the same period-
icity is placed on the plane where interefer-
ence fringes are expected. The mask must
be moved with a linear piezo motor, and the
intensity I(x) of transmitted (or stopped) is
monitored as a function of mask position x.
The output of several detectors can be com-
bined with standard time or time/energy co-
incidence methods to improve the signal-to-
noise ratio. Annihilations to two photons on
the mask or on a target placed downstream,
as well as three-photon decays in flight can be
exploited.

tion. The detector can then be oriented to provide the best resolution in the direction
where interference effects takes place. The field gradient should be fine-tuned for the
target Rydberg levels, to ensure that the majority of ionization events occur well inside
the region of approximately uniform electric field. Additional details on the calculation
of ionization lifetimes for high-n Rydberg states in strong electric fields are discussed
in Appendix A. An alternative approach exploits the more conventional grating mask
method and is sketched in Fig. 3.7. The mask allows to recover the contrast of the ori-
ginal fringe pattern as a modulation of the intensity of transmitted (or stopped) atoms
as a function of mask position. This scheme is very flexible and allows to consider sev-
eral different signals, depending on the geometry of the setup. For instance the direct
annihilation on the mask can be monitored with one (or more) pairs of HpGe detectors
in time coincidence for the two 511 keV back-to-back photons. Unless a detector with a
very small opening is employed to suppress (geometrically) any signal from annihila-
tions on the other two gratings, this configuration is better suited for Talbot-Lau layouts
longer than a few cm. Annihilations on a fixed target placed at a certain distance after
the mask can also be used. Detection of the three coincident photons with E < 511 keV
from in-flight decays (with a larger array of detectors) is also viable. Accurate simu-
lations should be conducted, but the high energy resolution of HpGe detectors coupled
with standard time coincidence methods should ensure a very high signal-to-noise ratio.

Detection of the gravity-induced fringe shift ∆x ∝ gT 2 requires sensitivity to relative
displacements ∆x/d3 of the order of 1% or less, d3 being the fringe period. Further-
more, how to establish the reference ”g = 0” position is not trivial and could require a
form of very precise geometrical alignment between the two gratings and the mask, or to
perform a Talbot-Lau interference experiment with light on the same setup. A peculiar
advantage of slow positronium is that its de Broglie wavelength is in the visible range (
λ = 454 nm at v = 800 m/s), therefore a reference laser could be used in the same setup.

A high intensity e+ beam is needed for gravity measurements, due to the many pro-
cesses with finite efficiency involved in the experimental chain, from Ps production to
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pattern detection. A realistic order-of-magnitude estimate can be attempted. For refer-
ence we now estimate the required positron flux to obtain a σg

g = 10% level measure-
ment of g in one day of data taking. The main ingredient is the formula for the inertial
sensitivity that will be derived in section 4, and reads:

σg
g

=
1√
N

1

2πC ∆x/d3
,

where C is the contrast of the pattern and N is the integrated flux at the detector. We can
define this quantity in terms of the integration time Tmeas = 86 400 s, an initial positron
flux η0 and a total efficiency εtot, namely N = η0εTOTTmeas. The total efficiency is the
product of several factors that we estimate as follows: conversion efficiency εconv ≈ 0.1,
Rydberg excitation efficiency εexc ≈ 0.1, deceleration and velocity selection εvel ≈ 0.1,
geometrical losses (collimation of the formed beam) εcoll ≈ 0.01, transmission of the two
gratings εtransm ≈ 0.1, detection efficiency εdet ≈ 0.1, radiative decay in flight εdec =
exp (−2T/τ). Assuming a lifetime τ = 500 µs, then εdec ≈ 0.13 setting T = 500 µs as
the time of flight between the first two gratings. Putting all the information together the
required positron flux is estimated as

η0 ≈ 2× 108 s−1

Clearly, this estimate is affected by a very large uncertainty, since several efficiency
factors are poorly known at this stage, and technology is rapidly advancing for example
in the field of transmission targets specialized on slow Ps production. This discussion
is perhaps best seen as a way to establish realistic requirements that each process should
reach rather than as an assessment of the feasibility with current technology.

However, this result does not exclude the feasibility of a QUPLAS-II type experiment,
since very intense e+ beams are available at user facilities such as the
NEPOMUC [110] nuclear reactor based source, providing a flux of 1× 109 moderated
1 keV positrons per second. The L-NESS beam could also be upgraded with a new source
and a suitable solid neon moderator could be implemented. This improvement could
lead to a flux at the level of 105 − 106s−1. In a best case scenario where the required flux
has been overestimated by an order of magnitude, a 10% level g measurement is within
reach in tens of days of data taking with a highly upgraded L-NESS beam.

To conclude this section, we stress that all the outlined steps are highly challenging
if undertaken individually, even more so if integrated together. Interesting alternative
proposals of gravity measurements on purely leptonic systems, such as muonium 1 have
been put forward [112], and involve unique challenges as well. The ideas proposed in
the framework of this thesis and the QUPLAS project could provide interesting contribu-
tions to the field of positronium interferometry and gravity. This is a developing field, as
evidenced by striking recent results such as the experimental demonstration of a focused
beam of fast Rydberg positronium able to travel for 6 m [113].

1The bound state of an electron and an anti-muon, which decays with a lifetime τ ≈ 2.2 µs [111].
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CHAPTER 4

Asymmetric Talbot-Lau interferometry

In this chapter, we will discuss in details the properties of an interesting family of Talbot-
Lau configurations. A period-magnifying Talbot-Lau setup will be exploited by the
QUPLAS-0 positron interferometer to allow direct detection of the interference fringes
with nuclear emulsion detectors. The theoretical model employed, based on the Wigner
function formalism [114], makes the simplifying assumption of a fully incoherent in-
coming beam (the meaning of this statement will be clarified). A more refined model
for partially coherent beams will be introduced in chapter 5, where we will also argue
that the two approaches are fully consistent and formally equivalent although based on
a different mathematical description. In spite of the simplified treatment of the beam,
this chapter should serve as a useful introduction for the reader to the general features
(resonance conditions, inertial sensitivity) of Talbot-Lau interferometers.

This study was stimulated by the need to find the interferometric scheme best suited
to the peculiar features of our beam and detector. This optimization effort is made pos-
sible by the flexibility of grating-based interferometry, which offers several useful work-
ing regimes.

Considering the recent interest (as outlined in the introduction) for the topic of an-
timatter gravity it is also worthwhile to search for the best configuration using inertial
sensitivity as a figure of merit. Given the challenges in manipulating antimatter beams,
any advantage in comparison to the standard Talbot-Lau setup could be relevant for the
feasibility of a certain measurement. Inertial sensors based on material diffraction grat-
ings exist and have been studied extensively (see for example [115, 116]). Commonly,
these devices are moiré deflectometers [117]: two-grating setups operating in the clas-
sical regime, with the particles following ballistic trajectories to produce geometrical
shadow fringe patterns. We recall that a constant and uniform force in the transverse
direction (corresponding to an acceleration a) induces a displacement ∆x ∝ aT 2

1 in the
fringe pattern, where T1 is the time of flight between the two gratings. It is known that
the Talbot-Lau matter-wave interferometer also possesses the same inertial sensitivity
[33], as we already mentioned. In this chapter we will prove these statements, then pro-
ceed to investigate the sensitivity properties of a peculiar period-magnifying [31, 118]
setup that we refer to as the asymmetric Talbot-Lau interferometer. The following ana-
lysis shows that the absolute fringe displacement scales quadratically with the period
magnification factor in asymmetric configurations. The se calculations are also useful
to find the best trade-off in the design of an inertial sensor based on a Talbot-Lau in-
terferometer, given the specific properties of the particle beam and the limitations of
the detection technique. We conclude this chapter with a numerical simulation applied
to the case of positronium gravity measurements; the results indicates that asymmetric

35



36 4.1 General description of a Talbot-Lau interferometer

configurations are useful for this purpose due to their peculiar properties.

The structure of this chapter closely follows the paper ”Asymmetric Talbot-Lau interfero-
metry for inertial sensing” [13], published as a result of this study.

4.1 General description of a Talbot-Lau interferometer

A satisfactory treatment of grating based matter-wave interferometers exploits the ana-
logy with classical scalar diffraction theory [1, 31]. This is justified by the formal corres-
pondence between the time evolution of the wave function calculated via the Schrödinger
equation, and the Fresnel-Kirchhoff diffraction integral [31, 119] for a classical scalar
field of wavelength λ = λ(v) = h/(mv), where m and v are the mass and velocity of
the particle, respectively. We recall one of the main features of the Talbot-Lau interfer-
ometer (sketched in Fig. 4.1), namely the capability to operate with weakly collimated
beams. This result is known as the Lau effect [30, 120] and originates from the matching
of the periodicity of the coherence function generated by the first grating, acting as a
pure intensity mask, with the period of the second grating, d2 [32]. The role of coherence
in our specific asymmetric Talbot-Lau interferometer is discussed in details in chapter 5
for partially coherent beams. For the time being we assume a fully incoherent beam. The
intensity pattern produced by such a beam can be modeled by integrating the intensity
distribution of point sources placed on the plane of the first grating [1, 31, 118]. Schem-
atically, the intensity pattern measured at the detection plane (see Fig. 4.1) is given by

I(x|λ) =

∫
IPoint(x|x0, λ)|T1(x0)|2dx0 (4.1)

where IPoint(x|x0, λ) is the intensity pattern produced by a monochromatic point source
of wavelength λ = λ(v) illuminating the second grating from the point x0. The func-
tion T1(x) is the transmission function of the first grating [22]. In the case of non-
monochromatic beams (as considered in section 4.3), the intensity pattern I(x) is found
by further integrating I(x, λ) weighted by the probability distribution pλ(λ), or equival-
ently the speed distribution P (v):

I(x)NM =

∫
IPoint (x|x0, λ) |T1(x0)|2P (v)dx0dv (4.2)

The Fresnel integral formalism cannot easily take into account the presence of an ex-
ternal force acting on the interfering particles. We will thus employ an equivalent de-
scription of the Talbot-Lau interferometer based on the Wigner function [114, 121]. This
approach allows to incorporate a constant acceleration a in a straightforward manner
[33, 121], and has been used to obtain the intensity pattern for symmetric configurations
(d1 = d2 and η = 1) in the presence of a transverse acceleration [33]. The same theoretical
framework has also been applied to the asymmetric setups of our interest (d1 6= d2 and
η 6= 1), but the external force was neglected [105].

A general calculation that takes both effects into account is now developed, together
with an in-depth analysis of the period magnification properties of asymmetric setups.
Following [33, 105], we introduce the Wigner function phase-space representation of the
quantum state of the particle within the interferometer, given its density operator ρ:

W (x, p) =
1

2π~

∫
eips/~ 〈x− s/2| ρ |x+ s/2〉ds. (4.3)
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Figure 4.1. General Talbot-Lau setup in the presence of an external acceleration a acting on the
particles along the x-direction. The particles travel along the z-axis with longitudinal speed v.
Two diffraction gratings G1 and G2 of period d1 and d2 are located on the z = 0 and z = L planes,
respectively. The detection plane is placed at z = (1 + η)L, where an interference fringe pattern
I(x) with period d3 is formed. The time of flight between the two gratings is T1 = L/v while
T2 = ηT1 is the time of flight between G2 and the detection plane for an unperturbed longitudinal
motion. Grating slits are taken to extend indefinitely in the y-direction, therefore the intensity
pattern is considered to be a one dimensional function of the transverse coordinate x only.

In our analysis, the relevant degrees of freedom are the transverse center-of-mass position
and momentum (x and p respectively), whereas the longitudinal motion (along the z-axis
in Fig. 4.1) is assumed to be essentially classical. Specifically, uniform motion satisfying
t = z/v where v is the longitudinal speed of the particle. This relation links time to
the longitudinal space evolution of the interference pattern. In the presence of a linear
potential V (x) = −xma, resulting in a constant acceleration a along the x-direction, the
Wigner function evolved at time t reads [33, 105]:

Wt(x, p) = W0

(
x− pt

m
+ a

t2

2
, p−mat

)
. (4.4)

Therefore, the intensity distribution, is given by the marginal distribution

It(x) =

∫
Wt(x, p)dp.

We now focus on the Talbot-Lau interferometer. The action of the grating on the in-
coming particle in the state ρ = |ψ〉 〈ψ| is modelled by a transmission function T (x).
Therefore, just after the grating, the particle wave function is ψ′(x) = T (x)ψ(x), where
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ψ(x) = 〈x|ψ〉. The corresponding Wigner function is:

W̃ (x, p) =
1

2π~

∫
ds eips/~ T (x− s/2) T ∗(x+ s/2)

× 〈x− s/2|ψ〉 〈ψ|x+ s/2〉 , (4.5)

=

∫
dx0dp0K(x, x0; p, p0)W (x0, p0), (4.6)

where [105]:

K(x, x0; p, p0) =
δ(x− x0)

2π~

×
∫

ds ei(p−p0)s/~ T (x− s/2)T ∗(x+ s/2). (4.7)

Assuming the incoming particle beam is fully incoherent, namely, ∆p � ~/d1 [105],
where ∆p is the standard deviation of the transverse momentum distribution1, the Wigner
function after the grating G1, defined by its transmission function T1(x), reads [105]:

W̃0(x, p) =
1

Npy
|T1(x)|2P

(
p

py

)
, (4.8)

where py = mv is the longitudinal momentum, P(p/py) the transverse momentum dis-
tribution, and N a suitable normalization factor. The initial state (4.8), first undergoes
free evolution for a time T1 = L/v, governed by Eq. (4.4). The grating transforma-
tion (4.6) is then applied with the transmission function T2 of G2, followed by free
evolution for a time T2 = ηT1 to obtain the Wigner function at the detection plane:
WT1+T2

(x, p) ≡ W2(x, p). The calculation therefore proceeds as in the following scheme
(we drop the explicit dependence on x and p):

W̃0
G1→G2−−−−−→
T1

W1
G2−−−→
T2(x)

W̃1
G2→Screen−−−−−−−−→

T2

W2

where we have introduced the Wigner functions immediately before and after the second
grating, W1(x, p) and W̃1(x, p) respectively, and the final state W2(x, p) from which the
intensity distribution at the detection plane is recovered.

We now develop explicitly the steps needed to evolve the initial state (4.8) to the
observation plane. First of all we note that assuming the second grating has a periodic
transmission function T2(x), it can be expanded in a Fourier series. Inserting the Fourier
decomposition T2(x) =

∑
n b

(2)
n ei

2π
d nx into equation (4.7) yields the following form for

the needed grating transformation:

K2(x, x0; p, p0) = δ(x− x0)
∑
k,n

ei2πx(n−k)/d2

× b(2)
n

[
b
(2)
k

]∗
δ

[
p− p0 −

π~
d

(n+ k)

]
. (4.9)

1The link between beam coherence and the transverse momentum distribution will be established more
carefully in chapter 5 with the aid of a more realistic model of the beam.
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Applying the evolution equation (4.4) and the grating transformation (4.6) with the form
(4.9) for the grating convolution function, we get the following expressions:

W1(x, p) = W̃0

(
x− pT1

m
+ a

T 2
1

2
, p−maT1

)
and

W̃1(x, p) =

∫
dx0dp0K2(x, p;x0, p0)W̃0

(
x0 −

p0T1

m
+ a

T 2
1

2
, p0 −maT1

)
and finally the state W2(x, p) after a final free evolution step for a time T2:

W2(x, p) =

∫
dx0dp0 P

(
p0 −maT1

py

)
1

Npy

∣∣∣∣T1(x0 −
p0T1

m
+ a

T 2
1

2
)

∣∣∣∣2×
×K2

(
x− pT2

m
+ a

T 2
2

2
, p−maT2;x0, p0

)
.

We now first apply the following change of variables in the integral (the Jacobian de-
terminant is equal to 1) {

p′0 = p0 −maT1

x′0 = x0 − p0T1/m+ aT 2
1 /2

then insert the explicit expression (4.9) for the convolution factor K2, and integrate over
p to get the final position distribution I(x) =

∫
W2(x, p)dp:

I(x) =
∑
n,k

bnb
∗
k

Gpy

∫
dx′0dp

′
0dp |T1(x′0)|2P

(
p′0
py

)
exp

{
i
2π(x− pT2/m+ aT 2

2 /2)

d2
(n− k)

}
×

× δ
[
p−maT2 − p′0 −maT1 −

π~
d2

(n+ k)

]
δ

(
x− pT2

m
+ a

T 2
2

2
− x′0 −

p′0T1

m
− aT

2
1

2

)
.

(4.10)

After performing the integration over p and x′0, shifting the k summation index as k′ =

n−k, and also introducing the Fourier series expansion of |T1(x)|2 =
∑
lAle

i2πxl/d1 , one
obtains:

I(x) =
∑
n,k,l

∫
dp′0
Npy

P
(
p′0
py

)
Albnb

∗
n−k exp

{
i 2π2 (k − 2n)~T2

m

(
k

d2
2

+
l

d1d2

)}
×

× exp

{
i 2π

k

d2

(
x− T2p

′
0

m
− aT

2
2

2
− aT1T2

)}
× exp

{
i 2π

l

d1

[
x− p′0

m
(T1 + T2)− a

2
(T1 + T2)2

]}
. (4.11)

We now introduce the so-called Talbot coefficients [33]:

Bk(ξ) =

∞∑
n=−∞

bnb
∗
n−ke

iπξ(k−2n) (4.12)

and the scaled Fourier transform of the initial momentum distribution∫
dp

py
P
(
p

py

)
e−ipq ≡ P̃(q). (4.13)
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The expressions (4.12) and (4.13), with the definition

ξ = 2π
~T2

m

(
k

d2
2

+
l

d1d2

)
,

can be substituted in (4.11) to obtain

I(x) =
1

N
∑
k,l

AlBk(ξ)P̃
(

2π

m

[
l

d1
(T1 + T2) + k

T2

d2

])
exp

{
i
2π

d2

[
x

(
k + l

d2

d1

)]}
×

× exp

{
− i2π

d2

[
a

(
kT1T2 + k

T 2
2

2
+
ld2

2d1
(T1 + T2)2

)]}
. (4.14)

Upon assuming that the momentum distribution is broad enough that P̃(q) ≈ δ(q)
and substituting T2 = ηT1, the final expression for the intensity distribution I(x) ≡∫
W2(x, p)dp reads:

I(x) =
1

N

∞∑
l=−∞

A∗lBl·q (αl) exp

{
2iπl

ηd1
[x−∆x]

}
. (4.15)

We have introduced the following expression for the Talbot coefficients:

Bl·q(αl) =

∞∑
n=−∞

b(2)
n (b

(2)
n−l·q)

∗ eiπαl(l·q−2n), (4.16)

where:
αl =

L

LT

d2

d1
l. (4.17)

The parameter αl contains the usual definition of the Talbot length LT = d2
2/λ [28, 31],

and the parameter q reads:

q =
d2

d1

(1 + η)

η
. (4.18)

In general, q can be a rational number, however in the following we focus on the special
case of integer q, as this choice corresponds to the highest visibility resonances [105].
Finally, it is apparent that the effect of a nonzero acceleration a is to rigidly displace the
fringe pattern by the following quantity:

∆x = a
T 2

1

2
η(η + 1), (4.19)

which is proportional to aT 2
1 as anticipated. The inertial displacement is discussed in

section 4.2. We remark that the use of Fourier series expansion to define the coefficients
(4.16) and Al is appropriate because the functions Ti(x) are periodic. To obtain our final
result, equation (4.15) it is also assumed that the gratings extend indefinitely in space.
This is a reasonable requirement, as long as the number of periods N illuminated by the
particle beam is large N & 102.

Being based on the transmission function formalism, this model is very general and
can be applied to a wide range of particles and diffraction gratings at G2, pure intens-
ity masks as well as phase gratings that alter the phase of the incoming wavefunction.
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Furthermore, this treatment can also account for a broad range of particle-gratings inter-
actions; examples include the van der Waals atom-surface interaction [1, 39, 122] or elec-
trostatic forces for charged particles [1, 38]. Sufficiently weak interactions, in particular,
result in a reduced effective slit width [1, 39], that has also been observed experimentally
[12]. For stronger interactions, a more general approach beyond the Eikonal approxim-
ation [105] can still make use of this formalism. The properties of the general equation
(4.15) are now discussed in detail for the cases of our interest.

4.1.1 Features of the interference pattern and resonance conditions

First of all we note that equation (4.15), describing the statistical interference fringe pat-
tern in a Talbot-Lau interferometer, is a Fourier series expansion with a magnified period
d3 ≡ ηd1. The dependence on the length L only enters through the dimensionless ratio
L/LT . The factor η can also be less than unity, however we are particularly interested in
the case η > 1, therefore, from now on we will refer to η as the magnification factor. As
we mentioned, the properties of the gratings are encoded in the coefficients Bl·q(αl) and
Al. For the sake of clarity, we now specialise our analysis to gratings described by the
following (single period) transmission function:

T (x|w, z, f, d) =

{
w if x ∈ [0, fd]
z if x ∈ [fd, d],

where d and f are the period and the open fraction of the grating, respectively, and
w, z ∈ C. This form is particularly convenient since, upon writing the Fourier expansion
T (x, |w, z, f, d) =

∑
n bn(w, z, f) exp {i2πx/d}, we have the following analytical expres-

sion for the Fourier coefficients:

bn(w, z, f) = f sinc(πnf)
(
z e−iπnf + w eiπnf

)
. (4.20)

Partial transparency of the grating substrate together with a possible (constant) phase
added could be accounted for by a suitable choice of w and z. However, in the present
calculation we setw = 1 and z = 0, to describe material gratings realised as open slits in a
substrate [12, 123]. The open fraction then corresponds to the ratio between the slit width
and the grating period. Furthermore, in the following we drop the explicit dependence
of the Fourier coefficients (4.20) on the parameters (w, z, f) as the two gratings G1 and
G2 are assumed to have the same open fraction and transmission properties. We now
look for the resonance conditions of equation (4.15), i.e., the set of parameters η, d1, d2,
and L/LT that maximises the visibility of the pattern. Note that while η, d1, and d2

characterize the gratings, L/LT depends on the De Broglie wavelength (see Fig. 4.1)
through the definition of TL. We recall that the visibility or contrast C of the fringe
pattern I(x) is defined as

C =
Imax − Imin

Imax + Imin
. (4.21)

Since the function I(x) is a Fourier series, one can truncate the summation to the lowest
orders, and consider the visibility of the resulting sinusoidal function as a good approx-
imation of the actual visibility. This parameter is called the sinusoidal visibility [12, 20],
and for equation (4.15) it reads:

Csin(α1, q) = 2
|A0Bq(α1)|
|A0|2

= 2
|Bq(α1)|
|A0|

. (4.22)
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Figure 4.2. Plots of the functions |B1(α1)|, on the left, and |B2(α1)|, on the right, for three values
of the open fraction f = 0.25, 0.33, 0.5. This results have been calculated by truncating the sum-
mation of equation (4.16) to |n| < 20. It is apparent that the shape of the functions |Bq(α1)| for
the symmetric case (q = 2), strongly depends on the open fraction f . The functions are always
symmetric and periodic with respect to α1 = 1, reflecting the properties of the underlying Talbot
effect.

The constant coefficients A0 are the zeroth-order Fourier coefficients of |T1(x)|2, the in-
tensity transmission function of the first grating (for the case z = 1 andw = 0 it coincides
with the transmission function itself). Equation (4.22) suggests the modulus of the q-th
Talbot coefficient as a good estimator of the pattern visibility. The requirement that q,
defined in equation (4.18), is an integer allows to enumerate different families of reson-
ance conditions as a function of the physical parameters. If we consider the lowest values
of q we have:

q = 2⇒d1

d2
=

(1 + η)

2η
, (4.23a)

q = 1⇒d1

d2
=

(1 + η)

η
. (4.23b)

The optimal value of η is related to the ratio of the two grating periods. The most com-
mon standard symmetric Talbot-Lau setup belongs to the case q = 2 and has η = 1,
implying that d1 = d2. In the following we will study the interesting properties of the
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case q = 1 and η > 1. We will refer to this choice as the asymmetric setup. The value of q
determines the relevant Talbot coefficients influencing the visibility, respectively B1(α1)
for the asymmetric case, and B2(α1) for the standard symmetric setup. We now turn
our attention to the α dependence of |B1(α1)| and |B2(α1)|. The two functions are plot-
ted in Fig. 4.2 for different values of the open fraction f . The position of the relative
maximum of the relevant Talbot coefficient sets the resonance condition on the length.
For instance we see that for the B1(α1), this always occurs for α1 = 1, whereas the be-
haviour of B2(α1) is more irregular and depends on the open fraction. Assuming for
definiteness that the maximum occurs for α1 = 1, and using the definition (4.17), we
obtain the resonance condition:

L =
d1

d2
LT =

d1d2

λ
, (4.24)

where the periods of the gratings and magnification factor η have to satisfy either of
the conditions (4.23) (or any other combination corresponding to an integer value of
q, defined by (4.18)). Quantum diffraction takes place at the second grating, so in this
general configuration with d1 6= d2, it is d2 that sets the relevant length scale trough
the Talbot length LT = d2

2/λ. Furthermore, as a manifestation of the underlying Talbot
effect, resonance is possible also at higher integer multiples of LT . This is reflected in the
periodicity of the Talbot coefficients in their argument α1.

The case of a standard symmetric setup (q = 2, η = 1, d1 = d2) with f = 0.5 is
peculiar, and does not satisfy the same resonance conditions, since it is evident from
Fig. 4.2 that it achieves a maximum visibility for α 6= 1. The case f = 0.5 is also critical in
the classical case: the visibility of a moiré deflectometer with f = 0.5 is exactly zero [117].
It is interesting to see that if an asymmetric setup is employed, all the chosen values
of open fraction, including f = 0.5, behave similarly. This property has favourable
consequences, which motivate our choice to study the q = 1 family of resonances.

4.1.2 Asymmetric setups and period magnification

The features of the interference pattern produced by the asymmetric configuration are
best illustrated with an example. For the resonance condition (4.23b), the intensity pat-
tern is given by the general equation (4.15). The relevant properties of the interference
patterns can be summarised in a carpet as shown in Fig. 4.3. This is a two dimensional
density plot where each section is the intensity distribution I(x) for a given value of
L/LT and x is the transverse coordinate: the carpet can be scanned by tuning the particle
energy (or the de Broglie wavelength) to adjust LT . Note that in this case we are as-
suming that the parameter η is fixed, thus both distances are scaled keeping their ratio
constant. We will adopt a more general point of view where we investigate the behavior
off-resonance in the next chapter. A plot of the visibility as a function of L/LT is shown
in Fig. 4.4. The features of the asymmetric Talbot-Lau setup are generally described as
follows:

• The maximum fringe period is magnified and given by d3 = ηd1. Fractional reviv-
als are also present and are peculiar of the Talbot effect (see Fig. 4.3).

• The total length is given byL(TOT) = L(1+η). Imposing the appropriate resonance
conditions on the grating periods (4.23b) yields:

L(TOT) = (1 + η)
d1

d2
LT = (1 + η)

d1d2

λ
. (4.25)
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Figure 4.3. Plot of the intensity
I(x) (in arbitrary units), from equa-
tion (4.15), also as a function of
the de Broglie wavelength which
varies along the y-axis. For def-
initeness we set realistic para-
meters for low energy (10 keV)
positrons (or electrons): d2 = 1µm,
d1 = 4/3 d2, η = 3, L = 0.11 m and
f = 0.3. As predicted we see the
main interference fringes appear at
L/LT = d1/d2 and have a magni-
fied period d3 = ηd1. It is worth
noting that only the adimensional
ratios L/LT and d1/d2 appear in
(4.15), thus our plot shows the gen-
eral form of the Talbot carpet for the
η = 3 configuration with f = 0.3
material gratings. We specialized
on particles of mass me only to give
a sense of the physical scales.

Figure 4.4. Visibility of the interference pat-
tern of Fig. 4.3, in the neighborhood of the
main interference peak, calculated with
equation (4.21). The maximum occurs at
L/LT = d1/d2, as predicted in section 4.1.
Note that the shape of the peak differs from
the plots of Fig. 4.2. Those curves are pro-
portional to the sinusoidal visibility, which
is only an approximation, while here there
are contributions from higher orders of the
Fourier series (4.15).
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The properties of the two configurations relevant for the calculations to follow are sum-
marised in Table 4.1.

Symmetric Asymmetric

L(TOT) 2
d2

2,s

λ

(η + 1)2

η

d2
2,a

λ

d3 d2,s (η + 1)d2,a

Table 4.1. Summary of the relevant properties L(TOT) and d3 = ηd1 for the standard symmetric
setup (4.23a) with d1 = d2 = d2,s, and the asymmetric setup (4.23b) with d2 = d2,a and d1 =
(η + 1)d2,a/η.

It is possible to prove that for a given energy (wavelength) and at a fixed total inter-
ferometer length, asymmetric configurations allow to maximize the period of the inter-
ference fringes with respect to the standard setup. If the ratio r = d3,a/d3,s is evaluated
under the constraint that the two interferometers are of the same total length, namely,

d2
2,a

d2
2,s

=
2η

(η + 1)2
, (4.26)

the following result is obtained:

r|Equal length =
d3,a

d3,s
= η · η + 1

η

d2,a

d2,s
=
√

2η. (4.27)

So we see that asymmetric configurations provide a systematic improvement of the ratio
d3/L

(TOT) that scales well with the magnification factor. This can be of interest experi-
mentally for a variety of cases [1]. Magnifying configurations have been actually realized
for low energy electrons [27], using however different resonance conditions and an ex-
treme (η = 100) magnification factor, so that the observation plane was effectively in the
far field of the second gratings. As a matter of fact that configuration requires differ-
ent coherence conditions than the Talbot-Lau interferometer and is referred to as a Lau
interferometer [26].

4.2 Inertial sensitivity and applications

We now turn our attention to the inertial sensitivity of Talbot-Lau interferometers. In
section 4.1 we determined the displacement of the pattern induced by an external ac-
celeration a, equation (4.19). This is a generalisation of the result from [33] that allows
for gratings of different periods and a magnification factor η. If we set η = 1 we obtain
the ∆x|η=1 = aT 2

1 , which is the well known displacement law for the the geometrical
shadow pattern in a moiré deflectometer due to the same effect [117]. This correspond-
ence will be further discussed, also in the asymmetric configuration, in section 4.2.1. The
displacement (4.19) is quadratic in the magnification factor η. This interesting property
might be helpful when the total length of the setup is limited by the properties of the
interfering particles or the experimental apparatus. For example if the particles have a
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finite lifetime [1], or need to propagate in vacuum, under shielding from stray fields or
in a cryogenic environment [1, 124]. An interesting potential application for a Talbot-Lau
inertial sensor is the measurement of the gravitational acceleration g of the positronium
atom. In this scenario all the experimental challenges we mentioned are relevant.

It is apparent from the geometry of the setup (Fig. 4.1) that increasing the asymmetry
factor η at fixed total length L(TOT) = L(1 + η), also reduces T1. Equation (4.19) shows
a quadratic dependence of the inertial displacement on both parameters. For this reason
we apply the same reasoning of section 4.1.2 to find if there is a systematic gain in the in-
ertial displacement from symmetric to asymmetric setups of the same length. We define
the displacement per unit interferometer length as:

r∆x = ∆x/L(TOT)

in the symmetric and asymmetric case under the constraint (4.26). Using the same nota-
tion of section 4.1.2, one can prove that (assuming η > 1):

r∆x,a

r∆x,s
=

∆xa

∆xs

∣∣∣∣
Equal length

=
2η

(η + 1)
> 1. (4.28)

Though this factor is greater than unity, it is limited to a maximum value of ∆xa/∆xs = 2
for η � 1. However, already for η = 3 one can magnify the fall of the beam by 50% with
respect to a symmetric configuration of the same length. This can already be a sizeable
gain for some specific applications.

From a practical point of view, it can be proven [115], that the relative uncertainty
σa/a with which the acceleration a can be measured by detecting a shift ∆x in a fringe
pattern with period d3 and contrast C reads:

σa
a

=
1√
N

1

2πC ∆x/d3
, (4.29)

where N is the number of data points forming the pattern, which depends on the beam
intensity and the efficiency of the detector, for a given measurement time. Furthermore,
the contrast is mainly influenced by the longitudinal velocity spread of the incoming
particles. For a non-monochromatic beam the intensity pattern is recovered by integrat-
ing over the speed distribution. Generally this causes a loss in visibility that depends on
the width of the speed distribution (see section 4.3). The chosen Talbot-Lau configura-
tion directly influences the inertial sensitivity via the relative displacement ∆x/d3, where
we recall that d3 is the period of the interference fringes. It is thus useful to derive an
expression for the ratio in the two cases of our interest. Starting from the asymmetric
setup, defined by the resonance conditions (4.23b) and (4.24) we have

∆xa

d3,a
=
aT 2

1 η(η + 1)

2ηd1,a
=
a

2

√
η

(η + 1)

√
m

h

[
T(TOT)

]3/2
. (4.30)

The last equality follows from simple substitutions and algebraic manipulations using
equation (4.25), the resonance conditions and the definitions of the Talbot length LT =
d2

2/λ and of the de Broglie wavelength. We introduced T(TOT) as the total flight time
from the first grating to the detection plane, namely L(TOT)/v.

On the one hand, equation (4.29) tells that to improve the sensitivity, the relative
displacement ∆x/d3 should be maximised. On the other hand, equation (4.30) shows
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that this quantity increases monotonically with the total flight time, as expected, but
also that it tends to zero as η � 1.

We can physically motivate the dependence of equations (4.30) and (4.31) from the
particle mass: for a fixed total interferometer length and longitudinal speed v, any
particle subjected to the same acceleration a, will undergo the same transverse displace-
ment, according to equation (4.19). However, the heavier the particle, the smaller its
de Broglie wavelength would be, thus leading to shorter periods for the two gratings
and for the resulting fringe pattern. Following this line of reasoning, the ratio ∆x/d3 is
expected to increase with the particle mass. The relative displacement for the standard
setup instead reads:

∆xs

d3,s
= a

1

2
√

2

√
m

h

[
T(TOT)

]3/2
. (4.31)

First we remark that it does not coincide with the result of equation (4.30) for η = 1.
This is a consequence of the fact that the two configurations belong to two different
sets of resonance conditions with different relevant Talbot coefficients, as discussed in
section 4.1. As a matter of fact the “asymmetric configuration with η = 1” differs from
the standard symmetric setup because d1 = 2d2 in the former, whereas d1 = d2 in the
latter; as required by (4.23b). Even in this case we have ∆xa/d3,a < ∆xs/d3,s at the same
total length, so we see that the asymmetric setups we studied always provide a smaller
relative displacement in the presence of a constant acceleration. This property, according
to equation (4.29) can be a disadvantage if the aim is to measure the acceleration a with
great accuracy. However, in some realistic experimental situations it may be preferable to
have a larger absolute displacement at the expense of the relative shift (for instance, due
to the finite detector resolution). A comparison of Eqs. (4.30) and (4.31) suggests that the

Symmetric

Asymmetric

Figure 4.5. The top panel shows a compar-
ison of Eqs. (4.30) and (4.31) (assuming arbit-
rary units in which a = h = m = T (TOT) =
1). It is apparent that the asymmetric setup
always provides a smaller relative displace-
ment under the acceleration a. The absolute
displacement is, however, always larger, as
shown in the bottom panel. A smaller relat-
ive displacement is not desirable for inertial
measurements, but also implies a reduced
sensitivity to external disturbances. Gen-
erally the best trade off has to be found de-
pending on the specific experimental applica-
tion.

impact of random external perturbations on the pattern visibility is effectively reduced
by using a magnifying setup of the same length. An example is the Lorentz force acing
on charged particle due to stray electromagnetic fields [1]. To summarise the results of
this section, Fig. 4.5 displays the scaling with η of the parameters we introduced.



48 4.2 Inertial sensitivity and applications

4.2.1 Comparison with moiré deflectometers

A moiré deflectometer, as described in [117], is a two-grating setup completely analog-
ous to the one shown in Fig. 4.1. The crucial difference is that the grating periods d(m)

and the length L(m) are chosen to satisfy the constraint [1]:

L(m) λ

d(m)
� d(m) → L(m) � LT . (4.32)

Therefore, quantum diffraction is negligible. We introduced the superscript (m) to de-
note the grating periods and length of the classical configuration. Equation (4.32) implies
that a given resonant Talbot-Lau setup with parameters η, L, d1, d2 at fixed de Broglie
wavelength λ, can be made into a classical device by changing the grating periods to
larger values: d(m)

i � di for i = 1, 2. On the other hand one could decrease the length
and keep the same gratings, so that L(m) � L. However, since we are interested in in-
ertial sensing application and the fringe displacement strongly depends on the length,
in the following we always assume that the first route is taken when comparing the two
devices.

For this reason, a moiré deflectometer will always produce a fringe system with a
larger period than the Talbot-Lau setup of the same length tuned for the same particle
beam.

We now derive in very simple terms the main features of the classical fringe pattern
in the presence of an external acceleration a. Let us suppose that the incoming particle
with speed v starts with a transverse position and speed (x0, v0), on a plane located at
a distance Ls = vTs before the first grating. From the laws of uniformly accelerated
motion it is then straightforward to write the following system of equations:

x1 = x0 + v0Ts + 1
2aT

2
s

x2 = x0 + v0(T1 + Ts) + 1
2a(T1 + Ts)

2

x3 = x0 + v0(T1 + T2 + Ts) + 1
2a(T1 + T2 + Ts)

2.

(4.33)

Where x1, x2 , x3 are the x-positions of the particle on the plane of G1, G2 and the
detector respectively, T1 and T2 being the corresponding times of flight. After some
algebraic manipulations we can eliminate the dependence on x0 and v0, solving for x3

as a function of x1 and x2:

x3 = x2

(
1 +

T2

T1

)
− x1

T2

T1
+

1

2
a
(
T 2

2 + T1T2

)
. (4.34)

It is worth noting that equation (4.34) does not depend on the initial conditions x0 and
v0: only the dynamics after the first grating are relevant. The same expression could
have been obtained by assuming initial conditions on the plane of x1. One also sees that
the displacement due to a is the sum of two contributions depending on both times of
flight, as expected since the force acts in both regions.

Equation (4.34) must be coupled with the requirement that the intermediate arrival
positions onto the gratings are contained in the support of the gratings transmission
function. To get an intuitive picture we implement this requirement by the simple re-
placements

x1 = nd
(m)
1 and x2 = md

(m)
2 , (4.35)
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that constrain the x-positions to be exact multiples n and m, respectively, of the grating
periods. This substitution, together with T2 = ηT1 yields:

x3 = md
(m)
2 (1 + η)− nd(m)

1 η +
aT 2

1

2
η(η + 1). (4.36)

A physically interesting periodic pattern arises if the grating periods and η are chosen
to cast equation (4.36) in the form: x3 = bd

(m)
3 + 1

2aT
2
1 η(η + 1), where b is an integer

number that depends on m,n and d(m)
3 is the period of the fringes, generally depending

on η. For example, the standard moiré deflectometer, defined by d(m)
2 = d

(m)
1 and η = 1

is a suitable choice. However, we observe that also by using the asymmetric resonance
conditions (4.23b) we obtain the following expression

x3 = ηd
(m)
1 (m− n) +

aT 2
1

2
η(η + 1), (4.37)

meaning that the final position is a multiple of d(m)
3 = ηd

(m)
1 . As we anticipated, the

last line shows that period magnification and a-dependent fringe displacement have the
same features in the classical and quantum description of the setup of Fig.4.1. Given this
similarity, all the considerations made about the sensitivity (see equation (4.29)) remain
valid. An important remark is that all other parameters being equal, the requirement
d

(m)
i � di causes the classical configuration to always produce a smaller relative dis-

placement ∆x/d3, thus generally lowering the sensitivity (4.29).
However, the properties of the quantum and classical fringe patterns are markedly

different. For example in the moiré deflectometer the visibility is independent of the
particle energy [1], as also shown in section 4.3. This is why we carefully referred to
the output of the moiré deflectometer as geometrical shadow patterns, in contrast with the
genuine quantum interference fringes of a Talbot-Lau interferometer.

4.3 Numerical analysis

In the Talbot-Lau interferometer, the parameters C and ∆x appearing in equation (4.29)
for the inertial sensitivity are dependent on the speed distribution P (v) of the particle
beam. We now analyze this dependence with a numerical simulation. For definiteness,
we will assume that the function P (v) is a Gaussian with variance σ2

v . Hence we can
write the general expression:(σa

a

)
NM

(σv) =
1√
N

1

2π C(σv) ∆xeff(σv)/d3
, (4.38)

where C(σv) is the contrast, ∆xeff(σv) is an effective displacement and the subscript NM
recalls that it applies to non-monochromatic beams. As Eqs. (4.15) and (4.2) suggest,
the intensity for a non-monochromatic beam in the presence of an external force has the
general structure:

INM(x) =

∫
I(x−∆x(v)|v)P (v)dv (4.39a)

≈
∫
I(x−∆xeff |v)P (v)dv (4.39b)
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Figure 4.6. Example result of the fit procedure outlined in the text. In particular for the case
σv/〈v〉 = 0.3 and the asymmetric configuration also described in sec 4.3. The box shows a detail
of the portion around the peak to highlight the very small displacement of the interference pattern
due to the gravitational acceleration with respect to the reference pattern with a = 0 (with the
chosen parameters ∆xeff = 4µm). It is also evident the good agreement between the fit function,
equation (4.39b), and the intensity (4.39a).

where ∆x(v) and I(x|v) are given by Eqs. (4.19) and (4.15) respectively, and we high-
lighted the parametric dependence on v for clarity. Since there is a dependence on
the integration variable both from the argument and in the functional form of I(x), the
second equality is in principle an approximation. The intensity distribution INM(x) in
the presence of the external force and a speed distribution P (v) is evaluated as defined
by equation (4.39a). A least squares fit procedure is then performed with the function:

Ifit(x, x
′) =

∫
I(x− x′|v)P (v)dv

with the displacement x′ being the only free parameter. The displacement ∆xeff is then
defined as the best fit value of x′, and depends on P (v), hence in our case, ∆xeff =
∆xeff(σv). By inspecting the results of our numerical analysis (see Fig. 4.6), this is a
reliable method to calculate the effective displacement, given the agreement between
the fit function and the exact intensity2.This method is indeed sensitive to the relative
displacements smaller than 1% that we encountered. In order for the fit parameter to
correspond exactly to the physical displacement we are after, an absolute reference frame
has to be established. This is easily done in our computational simulation, by displacing
the (monochromatic) intensity function I(x) so that it has an interference peak for the
speed 〈v〉 at x = 0. For example, for the asymmetric configuration it is necessary to
apply a shift of ηd1/2.

A set of parameters suitable for a possible cold positronium beam was chosen: a
mean speed 〈v〉 = 800 m/s, corresponding to a de Broglie wavelength λ = 454 nm, and a
total interferometer length L(TOT) = 1 m. The expected fringe displacement due to the

2This agreement justifies the relation between equations (4.39b) and (4.39a).
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gravitational acceleration on the Earth surface a = g = 9.81 m/s2 is thus of the order of a
few microns. The chosen velocity distribution is a Gaussian normal:

P (v) =
1√

2πσv
exp

[
− (v − 〈v〉)2

2σ2
v

]
(4.40)

whose variance σ2
v has been chosen so that 〈v〉 − 3σv > 0, to ensure that the Gaussian

function is not truncated, to a very good approximation. Therefore in the plots of section
4.3, we are always comparing distribution of the same functional form. The Talbot-Lau
setups analyzed are at resonance for the mean speed 〈v〉. We focus in particular on two
configurations: a symmetric setup (4.23a) with d1 = d2 = 476µm, and an asymmetric
setup (4.23a) with d1 = 1.5d2 = 476µm and η = 2. We chose this low magnification
setup because, according to equation (4.30), the relative displacement of the asymmetric
configuration is decreasing with η. As a matter of fact, this choice of parameters pro-
duces a particularly challenging case where the relative gravitational displacement is
very small (∆x/d3 < 1%), due to the small mass of the positronium atom (see equation
(4.30)). For different experimental conditions (like heavier atoms) with a more sizable
relative displacement, high magnification setups could also be advantageous. A simple
Monte Carlo simulation of a moiré deflectometer was also used to provide a comparison
with the classical setup. It is based on a direct calculation of the particles trajectories with
the law of motion (4.33), taking into account the transmission properties of the gratings.
The intensity factor N in equation (4.38) can always be defined as N = MTint, where
M is the beam intensity at the detector and a Tint is the integration time. As we will
show, the visibility of a Talbot-Lau pattern is very sensitive to the v-distribution, so in
many realistic particle beams, a velocity selection could be needed. In these cases the
factorM (and in turn N ) depends on σv as well, and the best trade-off between visib-
ility (decreasing with σv) and statistics (increasing with σv) has to be found. Since this
study is specific to each experimental situation, in the following we only focus on the
functions C(σv) and ∆xeff(σv). We also considered the dependence on the open frac-
tion f of the gratings, since the form of the Talbot coefficients indicates that not only the
visibility generally depends on f , but also that the behavior of the asymmetric and sym-
metric setups can be very different for certain values of f . In particular, Fig. 4.2 suggests
that at f ≈ 50 % the asymmetric setups could provide an advantage in the visibility.
This property is confirmed by our simulations and is physically relevant: in applications
where the beam intensity is low (e.g. the inertial sensing of antimatter beams), it is most
desirable to employ large open fractions (f > 30 %), in order to maximize the flux.

The contrast C of the intensity patterns was calculated via equation (4.21) and the
result is shown in Fig. 4.7 and Fig. 4.8, alongside the visibility of the relevant moiré
setups for comparison.

In particular, Fig. 4.7 reports results for f = 0.3 = 30 %: the asymmetric (η = 2)
configuration provides a marginally higher visibility than the standard symmetric setup
of the same length. In the highly monochromatic case (σv/〈v〉 = 1%) both setups match
the classical visibility of the moiré setup, which is close to unity at this open fraction. As
expected, there is no dependence on the speed distribution in the classical case.

In Fig. 4.8 the contrast is shown for the case f = 50%. Note that the periodicity of the
symmetric setup has been adjusted to satisfy the appropriate maximum visibility con-
dition at f = 50 %, that is L/LT ≈ 1.33 (see Fig. 4.2). In this situation the asymmetric
setup provides a sizeable advantage in visibility, also compared to classical moiré deflec-
tometers with f = 50 % and f = 40 %. To make our description even more specific, the
finite lifetime of positronium was finally accounted for. We recall that the longer lived
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Figure 4.7. Visibility, equation (4.21), as a
function of σv/〈v〉. The symmetric setup
has d1 = d2 = 476µm, f = 0.3, L = 0.5 m,
and a = 9.81 ms−2, whereas the asym-
metric setup is defined by d1 = 1.5d2 =
476µm, η = 2 and L = 0.33 m. These para-
meters are resonant for a v = 800 ms−1

positronium atom. Included for compar-
ison a symmetric moiré setup of the same
length with d1 = d2 = 800µm. We note
that in equation (4.15) only the dimension-
less ratios of the grating periods and the
parameter LT /L ∝ v appears,so the results
should be sufficiently general.

Figure 4.8. Visibility in the same conditions
of Fig. 4.7, with an increased open fraction
f = 50 % and the period of the symmetric
setup set to d1 = d1 = 413µm (see text for
details). The dashed lines show the visibil-
ity of classical moiré setups for three values
of the open fraction: f = 50, 40 and 30 %.
Most importantly, we observe that the
asymmetric Talbot-Lau setup provides con-
siderably higher contrast than the symmet-
ric setup, for which the value f = 50%
is particularly critical, in analogy with
the classical deflectometer [117] (see also
Fig. 4.2).

Figure 4.9. Relative displacement ∆xeff/d3

for the same Talbot-Lau configurations
described in Fig. 4.7. Both for ideal stable
particles, and with a finite lifetime τ =
500µs that alters the effective speed distri-
bution (see the text for details).
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spin triplet ortho-positronium state has a lifetime τ0 = 142 ns [85] in its ground state,
and to devise a Talbot-Lau configuration yielding a measurable displacement under the
gravitational acceleration for such a short lived particle is impossible. However the use
of Rydberg states of Ps is feasible and has been proposed for this purpose [82, 125, 126].
In particular, for high-n Rydberg states [97], the lifetime scales as τ ∝ n2l3 with n and l
being the principal and angular quantum numbers respectively, so it is in principle pos-
sible to reach lifetimes of the order of τ ≈ 500µs. We take the finite lifetime into account
by assuming that atoms decaying before the detector plane (see Fig. 4.1) are not detected.

The relative displacement ∆xeff/d3 is analyzed both in the presence and in the ab-
sence of decay, focusing on the f = 30% case (the inertial displacement is unaffected by
f ). As seen in Fig. 4.9 the symmetric setup provides a larger relative displacement by the
factor ≈ 1.3 predicted by Eq. (4.28) for η = 2. We also observe that, for the symmetric
case in particular, there is a sizable dependence of the effective displacement on σv . This
has a physical origin in the fact that, although the maximum variance σv has been care-
fully chosen, as the speed distributions widens the contribution from the slower particles
starts to dominate. If one calculates the mean value of the displacement ∆x(v) ∝ 1/v2,
equation (4.19) for the distribution (4.40), a parameter that strongly correlates with ∆xeff ,
the same rise appears as a function of σv . The disappearance of this increase when the
particles decay confirms this conclusion: the exponential decay with lifetime τ produces
an effective speed distribution Peff(v), different from the one the atoms were initially
produced with, namely P (v). This function has the following form:

Peff(v) ∝ P (v) exp

(
−L

(TOT)

τv

)
, (4.41)

it is peaked on a higher speed than 〈v〉, and the slower end of the spectrum is suppressed.

4.3.1 Inertial sensitivity comparison

In this chapter we investigated the inertial sensitivity of several Talbot-Lau configura-
tions representative of the general features of this type of interferometer. In particular,
we considered the asymmetric configuration (η = 2, L(TOT) = 1 m), and the symmetric
setup of the same length, at resonance for positronium atoms at v = 800 m/s. In both
cases two values of the open fractions: f = 30% and f = 50% were studied, and the
grating periods chosen to achieve the maximum visibility, according the results of sec-
tion 4.1. The parameter f , in addition to the visibility, also affects the particle flux. In
particular it is reasonable to assume that the intensity is proportional to the square of f ,
namely N = f2N0. Thus we can define a significant estimator for the inertial sensitivity
as: √

N0
σa
a

∣∣∣
N=f2N0

, (4.42)

where σa/a is defined by equation (4.38), performing the substitution N = f2N0. The
impact of the open fraction is thus taken into account, and the rescaling is meant to
remove the dependence on the integrated flux. In Fig. 4.10, we plot the function (4.42)
in the absence of decay, that is, for purely Gaussian speed distributions. Throughout
most of the σv range, the best performing configuration is the asymmetric f = 50%
configuration. Moreover, the inertial sensitivity is not the only figure of merit to be
considered: the asymmetric setup also provides a larger absolute displacement ∆xeff and
interference fringes period d3 by a factor 2η/(η+ 1), and

√
2η respectively (see equations

(4.28) and (4.26)). These parameters are relevant when a finite experimental resolution is
taken into account.
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Figure 4.10. Rescaled inertial sensitivity,
defined in equation (4.42). We compare the
four Talbot-Lau configurations of the same
total length, L(TOT) = 1 m, defined in
Figs. 4.8 and 4.7.

By virtue of their more regular behavior (see Fig. 4.2 and the associated discussion),
asymmetric setups can employ higher open fractions, while still matching the visibility
of the standard Talbot-Lau layout. To showcase this general behavior, we selected a real-
istic set of parameters that represent the best compromise between visibility and grating
transmission for each setup. Our analysis suggests how to perform a fine tuning to
find the optimal configuration for the specific experimental conditions. In particular the
form of the speed distribution can vary widely between different applications [83]. The
magnifying resonance conditions we described were known to exist for the Talbot-Lau
interferometer [31, 105], but were never studied in detail especially with respect to their
inertial sensing capabilities. Of particular interest, naturally relevant for the QUPLAS
project, is the application of Talbot-Lau quantum interferometry to the measurement of
the gravitational acceleration of neutral antimatter. In this emerging field of research
[82, 112] the requirements on the optimization of the interferometric schemes are more
stringent, therefore the advantages provided by the asymmetric configurations can be
relevant.

In regards to the QUPLAS-0 setup for positron interferometry, the relevant figure of
merit to be optimized is the interference fringe period for a given total interferometer
length. We have shown how period-magnifying setups are best suited for this purpose.
An asymmetric setup with η = 5 can produce d3 = 6µm interference fringes in a total
length of less than 70 cm, at resonance for E = 14 keV positrons. This fringe periodicity
enables direct detection with nuclear emulsions, and is achieved with micrometric peri-
odicity diffraction gratings. Therefore, this layout was chosen for the QUPLAS-0 phase,
and will be described in details in the following chapters.



CHAPTER 5

Talbot-Lau interferometry with partially coherent beams

So far we made the assumption of a fully incoherent beam, implemented mathematecally
by the requirement of a wide transverse speed (or momentum) distribution. This de-
scription is appropriate for weakly collimated beam with a large angular divergence.
The Talbot-Lau setup still admits resonance conditions with high visibility even in this
condition. This statement is valid as long as all the physical parameters (grating periods,
distances) are taken to be exact and free of experimental uncertainty. To better evaluate
the expected contrast of an interferometer when alignment errors are taken into account,
a more realistic description of the particle beam is needed. A suitable model is pro-
posed in [26]. We will start from a review of the required formalism, which we will
prove to be fully equivalent to the Wigner function approach previously employed. The
main difference which introduces more generality is a more accurate choice of the initial
state Wigner function. A finite coherence length (i.e. a finite width of the transverse
momentum distribution), as well as the convergent or divergent nature of the beam are
taken into account. Moreover, we will move to a two dimensional description in the
transverse plane, to account for relative rotations of the gratings, which have a sizable
impact on the visibility.

The model [26] exploits the analogy with classical optics we already established. The
particle beam is described as a Gaussian Schell-model (GSM) beam: a statistical distribu-
tion of Gaussian beam modes [127] that lends itself to a fully analytical treatment. Given
a field φ(x, z, t), we define its mutual intensity function as:

J(xa,xb; z) = 〈φ∗(xa, z, t)φ(xb, z, t)〉t

where the vector x denotes coordinates in the plane transverse to the propagation direc-
tion z, and the angular brackets denote a time average over the statistical fluctuations of
the field. The intensity on a plane at constant z is given by:

I(x; z) = J(x,x; z)

In analogy with chapter 4, the mutual intensity is propagated through free space and
through the two gratings. Specifically, free propagation follows Zernike’s propagation law
[128, 129]:

J(x,∆x; z) =
1

λ2z2

∫
d∆x′

∫
dx′e−(i2π/λz)(x′∆x′−x′∆x−x∆x′+x∆x)J(x′,∆x′; 0), (5.1)

where the convenient set of variables x = (xa + xb)/2 and ∆x = xb − xa has been
introduced. The parameter λ is the wavelength of the classical field, to be identified
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with the de Broglie wavelength in a semi-classical description of a matter-wave beam.
The grating, given its transmission function T (x) acts on J as:

J̃(x,∆x; z) = T ∗
(
x− ∆x

2

)
T
(
x +

∆x

2

)
J(x,∆x; z), (5.2)

using the tilde notation in analogy to chapter 4. However, a comparison of equation (5.2)
with the grating transformation for the Wigner function (4.6), suggests that the analogy
is more profound. The two expressions would look formally identical (apart from the
vector nature of the arguments which was disregarded in the previous one-dimensional
treatment) if the following relation holds:

J(x,∆x; z) =

∫
e−

ip∆x
~ W (x,p; z)dp, (5.3)

namely the mutual coherence and Wigner functions are linked by Fourier transforma-
tion. This formal correspondence is not surprising given that the Wigner function de-
scription is fully equivalent to a solution of the Schrödinger equation. Recall then the
analogy between the latter and the Helmholtz equation of scalar diffraction theory, from
which the mutual coherence formalism and the related propagation laws descend. As
an additional consistency check one should prove that the evolution equation (5.1) in-
duces the correct propagation law for the Wigner function. Starting from (5.1), taking
the Fourier transform on both sides yields:∫

e−
ip∆x

~ W (x,p; z)dp =
1

λ2z2

∫
d∆x′

∫
dx′
∫
dp e−(i2π/λz)(x′∆x′−x′∆x−x∆x′+x∆x)×

× e−
ip∆x′

~ W (x′,p; 0).

Grouping terms proportional to ∆x′ in the exponential phase factor on the right and
performing the integration (a change of variables is convenient d∆x′ = λ2z2

4π2 ds) yields a
Dirac delta function and the factor 1

λ2z2 simplifies:∫
e−

ip∆x
~ W (x,p; z)dp =

∫
dx′
∫
dp δ

(
x′ − x +

pλz

2π~

)
e−(i2π/λz)(−x′∆x+x∆x)W (x′,p; 0).

Integration over dx′ gives:∫
e−

ip∆x
~ W (x,p; z)dp =

∫
e−

ip∆x
~ W

(
x− pλz

2π~
,p; 0

)
dp,

which is almost the desired result. To complete the connection we use the definition
of the de Broglie wavelength λ = 2π~

mv = 2π~z
mt , where the usual assumption of classical

point-particle like propagation along the z direction is exploited. Finally, we are left
with:

W (x,p; z = vt) = W

(
x− pt

m
,p; 0

)
, (5.4)

completely equivalent to equation (4.4) for the evolution of the Wigner function under
the free particle Hamiltonian (a = 0 in equation (4.4)).

This result confirms that the interpretation of the mutual coherence function as a
Fourier transform of a Wigner function is sound in this context, and that this formula-
tion is thus fully consistent with our previous treatment. Moreover, the correspondence
ensures that the influence of an external acceleration (which was not considered in [26])
is unchanged for partially coherent beams.
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5.1 Analytical expression for the intensity

We now focus on the specific choice of a Gaussian Schell-model beam as the initial state,
following [26]. The mutual intensity function reads1:

J(x,∆x; 0) = e−π[x2/w2
0+∆x2/l20+2ix∆x/(λr0)] (5.5)

Three parameters define the initial state and are an input to the model:

• w0, the beam width

• l0, the transverse coherence length

• r0, the radius of curvature of the wavefront

More insight on the physical meaning of these parameters will be given in section 5.2
where we discuss how they can be measured experimentally. Via Fourier transformation
(see 5.3), the Wigner function corresponding to this choice can be calculated exactly as a
standard Gaussian integral:

W (x,p; 0) =
l20

4π
√
π~2

e
−πx2

(
1

w2
0

+
l20
λ2r20

)
− p2l20

4π~2 +
xpl20
~λr0 (5.6)

One can take the limit r0 →∞ and w0 →∞ (plane wave with flat envelope) to obtain:

W (x,p; 0) =
l20

4π
√
π~2

e−
p2l20
4π~ , (5.7)

namely the transverse momentum distribution has a Gaussian form with σp ∝ ~/l0.
We thus recover the notion that the coherence length is inversely proportional to the
width of the transverse momentum distribution. In chapter 4 we started from a generic
distribution and eventually took the limit σp → ∞. It is apparent that this choice of
initial state is more general and effectively describes a partially coherent beam (l0 > 0).

Having established the form of the initial state, either the Wigner function or the
mutual intensity function evolution formalism has to be applied. In the latter case, a
useful property of GSM beams [26] is that free propagation for a distance z results in the
same functional form of equation (5.5), with the evolved parameters:

w(z) = w0

√(
1 +

z

r0

)2

+

(
λz

w0l0

)2

l(z) = l0

√(
1 +

z

r0

)2

+

(
λz

w0l0

)2

r(z) = z

(
(1 + z/r0)2 + (λz/w0l0)2

(z/r0)(1 + z/r0) + (λz/w0l0)2

)
(5.8)

in place of w0, l0, r0. Therefore for a general distance z the J function reads:

J(x,∆x; z) = e−π[x2/w(z)2+∆x2/l(z)2+2ix∆x/(λr(z))]. (5.9)
1To simplify the notation, an isotropic beam (that is, cylindrically symmetric along the optical axis) is as-

sumed. We will clarify the different impact of beam coherence in the two transverse directions on alignment
requirements in the next chapter.
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Intensity on the transverse plane is calculated in this formalism as:

I(x) = J(x, 0; z). (5.10)

The lengthy calculation of the intensity after interaction with the two gratings and propaga-
tion to the detector plane is described in [26]. In particular the full result assuming an
anisotropic two-dimensional Gaussian beam (wx0 6= wy0, and similarly for the other
parameters), and a rotation of the second grating along the optical axis by an angle φ,
is given. However, in an attempt to reproduce the results reported in [26], I discovered
that the formula was unable to replicate several of the many examples provided (see
Fig. 5.1, for an example). Therefore I independently performed the full analytical calcu-
lation and found out that the expression contains a few typos. Nevertheless, I remark
that all the results contained in the paper and the associated analysis are correct2. Fol-

Figure 5.1. On the left, an attempt to reproduce Figure 6 from [26] with equation 18 from the same
paper. On the right, results correctly reproduced with the correct phase factor given in equation
(5.12) (full expression reported in Appendix B).

lowing the notation of [26], the intensity distribution after crossing the two gratings and
propagation to the observation plane (see Fig. 4.1) is in the form of a quadruple sum:

I(x; z3) =
wx0wy0

wy(z3)wx(z3)

∞∑
m,m′,n,n′=−∞

a∗m′amb
∗
n′bnD

m
n (x, z3, wx,y(z3))F∆m

∆n (x, z3, rx,y(z3))×

×Pm,∆mn,∆n (z3, rx,y(z3))V ∆m
∆n (x, z3, lx,y(z3)).

(5.11)

The evolved parameters, different in the two directions (for instance wx(z) is the beam
width along x at the distance z from the plane on which the initial value wx0 = wx(0) is
measured) are given in equation (5.8). The coefficients ak, bk are Fourier series expansion
coefficients of the transmission function of the first and second grating respectively (see
for instance equation (4.20)). Auxiliary indexes ∆m = m − m′ and m = (m + m′)/2
(similarly for n, n′) are introduced for convenience. The distance z3 is measured from
the initial plane located at z = 0 to the observation plane.

2The PhD thesis of one of the authors of the paper is available [130] and contains the numerical code used
to carry out the simulations in [26]. The analytical expression that I was able to infer from the code agrees with
the result of my independent calculation, while it differs from the equation published in [26].
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The expression for the four phase factors is complicated and can be found in equa-
tions 18b-18e in [26]. However, given the aforementioned issues, we report here the
correct expression for the factor Pm,∆mn,∆n (z3, rx,y(z3)) (equation 18d in [26]), and for the
sake of completeness, the full expression is also given in Appendix B together with some
details on the numerical implementation.

Pm,∆mn,∆n (z3, rx,y(z3)) = exp

[
2iπλz13∆m

d1

(
n cosφ

d2

z23

z13
+
m

d1

)(
1− z13

rx(z3)

)]
×

× exp

{
2iπλz23∆n

d2

[
m cosφ

d1

(
1− z13

rx(z3)

)
+

n

d2
− nz23

d2

(
cos2 φ

rx(z3)
+

sin2 φ

ry(z3)

)]}
(5.12)

The distances z13 = L(η + 1) and z23 = ηL are measured from the observation plane
to the first (period d1) and to the second (period d2) grating respectively. To make the
connection with the notation of section 4, the distances are easily expressed in terms of
L and η. As a final consistency check for the equivalence of this formalism with the
Wigner function description it can be proven that the full expression, equation (5.11), in
the limits of a fully incoherent wide beam with no divergence (l0 → 0, w0 →∞, r0 →∞)
and φ = 0 reduces exactly to equation (4.15) for the intensity. The calculation is lengthy
and not particularly instructive, therefore it is not reported in this thesis.

5.2 Measuring the input parameters

Application of the model to a realistic experimental setup requires the measurement of
the input parameters w0, l0, r0. To this end, we propose a method that exploits the
free evolution equations (5.8) to infer the coherence length from the transverse beam
size alone. For a freely evolving, isotropic, GSM beam described by equation (5.9), the
transverse intensity profile has the following Gaussian form:

I(x; z) = J(x, 0; z) = e
−π x2

w(z)2 . (5.13)

This is usually a good approximation for electron beams (and for the L-NESS positron
beam as well [14]), and also captures the relevant features of slit collimated atomic beams
[131]. Note that with the chosen conventionsw(z) = FWHM(z)

√
π

log 2
1
2 ≈ 1.06 FWMH(z),

where the usual definition of full width at half maximum is implied. A close look at
equations (5.8) reveals that the l(z) and w(z) have the same functional dependence on
z. For this reason a good figure of merit of the overall degree of coherence is the ratio [26]
β = l(z)

w(z) = l0
w0

, which is left unchanged as the beam propagates. In Figure 5.2 an ex-
ample of the behaviour of the functionsw(z), r(z) and l(z) is reported. Numerical values
are chosen to represent the L-NESS positron beam, yet the qualitative features apply to
most collimated particle beams. The beam width parameter w(z) has a minimum (beam
waist using the terminology of classical optics) at the position zw. Differentiation with
respect to z yields:

dw(z)

dz

∣∣∣∣
z=zw

= 0 ⇐⇒
(

1 +
zw
r0

)
1

r0
+
λ2zw
w0l0

= 0.

At the position zw which satisfies the condition above, the denominator of r(z) in equa-
tion (5.8) vanishes. Therefore if we set the reference plane (where initial conditions for
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Figure 5.2. Plot of the evolution of the model parameters given by equations (5.8). The chosen ini-
tial values are chosen to be compatible with the L-NESS beam, specifically at z = 0 the numerical
values are l0 = 0.65 nm and w0 = 2.8 mm. At the beam waist (see text for a discussion) the radius
of wavefront curvature diverges to ±∞.
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the propagation are evaluated) to coincide with the position of the beam waist zw, the
w(z) and l(z) evolution equations onwards from that plane simplify to:

w(z) = w∗0

√
1 +

(
λz

w∗0l
∗
0

)2

l(z) = l∗0

√
1 +

(
λz

w∗0l
∗
0

)2

. (5.14)

The initial values w∗0 and l∗0 are taken on the beam waist plane. If one can locate the waist
plane experimentally, and measure both w∗0 and the width w(zr) on a plane located zr
downstream the waist, then the first line of equation (5.14) can be solved for l∗0 .

Another interesting link between the model parameters and physically measurable
properties is given by the divergence angle θ, measured far away from the beam waist
(see Fig.5.3), namely:

tan θ = lim
z→∞

w(z)

z
=
w∗0
z

λz

w∗0l
∗
0

=
λ

l∗0
.

This result is consistent with the classical intuition for the coherence length of optical
radiation far away from an incoherent source. Via the Wigner function formalism the co-
herence length is also seen to be inversely proportional to the width of the transverse
momentum distribution, revealing a sensible interpretation in the context of particle
beams. To get a grasp of the length scales involved, typical input values of l∗0 and w∗0

Figure 5.3. Schematic depiction of the geometrical propagation of a partially coherent particle
beam. The divergence angle θ is typycally in the range of a few mrad for weakly collimated
incoherent beams such as the L-NESS beam.

measured for the L-NESS beam without any additional collimation are: w∗0 ≈ 2.4 mm

l∗0 ≈ 0.7 nm (L-NESS beam reference parameters)
(5.15)

Additional detals on the measurement techniques are discussed in Part III. By tuning the
beam focusing these values can be controlled and slightly tuned, but not in such a way
to significantly alter the features of the interferometric visibility. It is apparent that the
global degree of coherence, β ≈ 10−6 is very small. As a matter of fact the β parameter
is several orders of magnitude smaller with respect to similar experiments with partially
coherent electron beams [132]. Those small-size beams were produced with electron
guns adapted from electron microscope columns.





CHAPTER 6

Modelling QUPLAS-0 on the L-NESS beam

6.1 The reference QUPLAS-0 interferometer

A period-magnifying asymmetric Talbot-Lau configuration was chosen for the QUPLAS-
0 phase of the experiment. The choice was motivated by the properties highlighted in
chapter 4: the capability to produce the largest interference fringe period (sufficiently
large for direct detection with nuclear emulsions) when total length is limited (to ap-
proximately 80 cm in our chamber). Asymmetric setups are also able to work with large
open fraction gratings, useful to reduce intensity losses. An alternative option fulfilling
some of the above requirements is the so-called lau interferometer regime [26]. This layout
essentially corresponds to what we call asymmetric Talbot-Lau regime, with very large
(η ≈ 500 [132]) magnification factors. This idea was discarded because it required a more
coherent beam (see the discussion in [26]), and gratings with approximately 200 nm peri-
odicity. Such gratings were initially considered to be difficult to obtain commercially and
impossible to manufacture in our facilities.

With regards to the issue of coherence, the paper [26] suggests that in the Lau inter-
ferometer regime, where the observation plane is in the far field of the second grating, the
following requirement applies to the coherence length at the detector plane ldet >

L1λ
d1

,
whereas the standard Talbot-Lau setup does not need to meet this criterion. The mag-
nification factor η can vary continuously, thus one expects that the transition between
the two regimes should be smooth. In fact numerical simulations suggest that for low
(η . 10) magnification factors the device indeed operates in an intermediate regime
where some magnification is provided but the less demanding coherence requirements
of the standard Talbot-Lau interferometer still apply. However, although it is appropri-
ate to state that a Talbot-Lau interferometer works with a fully incoherent beam, there
is a delicate interplay between beam coherence, knowledge of experimental parameters

Figure 6.1. Scheme of the chosen final config-
uration for the QUPLAS-0 interferometer and
nominal values of the parameters.

63
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such as the grating periods, and alignment requirements. In this chapter we will tackle
this issue in details, focusing specifically on our reference configuration and beam para-
meters. The nominal values defining the ideal QUPLAS-0 configuration which will be
used for the numerical simulations are defined as follows (see also Fig. 6.1):

d1 = 1.2d2 = 1.2 µm

E = 14 keV

λ = 1.03× 10−11 m

LT =
d2

2

λ = 9.71 cm

L1 = d1

d2
LT = 11.65 cm

L2 = L1

d1/d2−1 = 5L1 = 58.25 cm

d3 = d1

d1/d2−1 = 6.0 µm

(QUPLAS-0 nominal parameters) (6.1)

The above expressions are consistent with the resonance conditions discussed in section
4.1.1, adapted to the notation of Fig. 6.1, more suited to a discussion of alignment from
an experimental point of view.

The grating periods are fixed input values known with experimental uncertainty.
To achieve maximum visibility, the ratio of the two distances η = L2

L1
should satisfy

the resonance conditions (4.18) with q = 1, namely: η∗ = 1
d1/d2−1 . It is worth noting

that the small spread in λ of our beam (of the order of 1% or less) was found to be
completely negligible by numerical simulations, therefore the beam will be considered
monochromatic throughout all the analysis.

6.2 Alignment requirements

The theoretical model discussed in the previous sections will now be applied to the
QUPLAS-0 setup (6.1), using the reference parameters for the partially coherent L-NESS
beam (5.15). The goal is to estimate the needed requirements on the alignment of the
interferometer.

Longitudinal alignment

We start by addressing the issue of longitudinal alignment, that is how precisely the
distances L1 and L2 should be controlled.

So far we assumed for simplicity an isotropic beam, that is with cylindrical symmetry
along the propagation axis. However, for the discussion to follow it is necessary to dis-
tinguish the role of beam coherence in the two directions orthogonal to the optical axis.
In keeping with the notation of the previous chapters, x labels the coordinate parallel to
the grating periodicity, while y is the direction parallel to the grating slits. First of all,
the predicted shape of the interference pattern at resonance is shown in Fig. 6.2. This
is a one-dimensional pattern, as the approximation of indefinitely extended slits is still
adopted. The expected contrast in ideal conditions is very high (C ≈ 94%), and the
periodicity is exactly d3 = 6 µm as expected. We now examine contrast as a function of
the total length L(TOT) = L1 + L2 of the setup, assuming that resonance conditions are
satisfied (L2 = L1

d1/d2−1 = η∗L1). The relevant plot is shown in Fig. 6.3. In Fig. 6.4 the
contrast as a function of the two lengths L1 and L2 separately is also shown. The result
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Figure 6.2. Calculated shape of the interference pattern at resonance using the QUPLAS-0 nominal
values (6.1) and the reference L-NESS beam parameters (5.15), assuming that the first grating is
placed on the beam waist. Translational invariance in the direction of the slits is assumed, therefore
the pattern is presented as a one dimensional function of position in the x direction transverse to
the optical axis.

Figure 6.3. Contrast as a function of total length, fixing L1/L2 to resonance conditions,

C
(
L(TOT)

)∣∣∣
η=η∗

. Peak visibility occurs at the expected nominal value. The function is how-

ever very broad. Therefore, for fixed λ, small errors in the total length weakly affect visibility. The
only relevant parameter is effectively the ratio L2/L1 (see Fig. 6.4). Similarly, a broad peak would
be observed for C(λ) at fixed geometry, which justifies the assumption of a monochromatic beam.
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clarifies how the apparatus is robust with respect to errors in the total length, while the
ratio L2/L1 strongly affects the visibility. It is therefore appropriate to adopt a point

Figure 6.4. Contrast as a function of
L1 and L2.

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

of view where L1 is fixed to a sensible value (see eq. (6.1)), measured experimentally to
a given uncertainty1, namely L1 = L1 ± δL1 . The relevant quantity to consider is then

Figure 6.5. Point of view adopted for discuss-
ing tolerance to longitudinal misalignments.

the contrast as a function of the distance of the detector plane from the second grating,
namely C(L2). This function for the nominal parameters is displayed in Fig. 6.7, which
shows that the behavior is well described by a Gaussian shape of the form:

C(L2) = C0e
− (L2−L2)2

2σ2
L2 , (6.2)

where C0 is the peak contrast value. The location of the mean value of the Gaussian,
L2, physically corresponds to the center of the region along the optical axis where high
contrast fringes are visible: the optimal position of the detector plane. The width of
this region is proportional to σL2 , hence this parameter quantifies the robustness of the
interferometer with respect to detector positioning. Fig. 6.6 should illustrate the physical
intuition underlying this statement. The parameter L2 is naturally the distance which
satisfies the resonance conditions. It depends, as stated in equation (6.1), on the grating
periods, which are affected by an experimental error. Therefore, setting d1,2 = d1,2±δd1,2

,
we obtain

L2 =
L1

d1/d2 − 1
.

1In this section experimental uncertainties will be denoted with the letter δ.
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Figure 6.6. Intensity in color scale is represented as a function of the transverse coordinate x and
of detector position L2, in the region of the main resonance, using the reference beam and inter-
ferometer parameters from Eq. (6.1). From the left to the right panel the beam width is reduced
(w0x → w0x/10) to show the effect of increased coherence. The shaded white band represents
schematically the region over which the contrast peak (L2, the ideal detector location) is expected,
the width of said region is proportional to the experimental uncertainty δL2 . This depends on
experimental errors on the measurements of L1 and of the grating periods (see equation (6.3)).

0.580 0.581 0.5820.5790.5780.577

Figure 6.7. Contrast C(L2)
as a function of detector
position for L1 fixed to the
nominal value (6.1). The
numerical result is well
fit by a Gaussian function
of the form of equation
(6.2). Specifically, for the
nominal QUPLAS-0 para-
meters, σL2 ≈ 0.6 mm.
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Applying standard error propagation, the uncertainty on L2, that is on the position
where the detector should be placed, given all the other parameters, reads:

δL2 = L2

√(
δL1

L1

)2

+

(
δr

r − 1

)2

(6.3)

where for convenience we introduced the ratio of the grating periods r = d1

d2
± δr. The

ideal detector position L2 acquires therefore an uncertainty that depends on the meas-
urement precision of r and L1. The error parameter δL2

must be compared with the
width of the high contrast region, σL2 , to estimate the feasibility of a single exposure
experiment2. Consider the limiting cases: if σL2

� δL2
, as sketched in the left panel of

Fig. 6.6, the uncertainty on the theoretical ideal detector position is larger than the align-
ment error tolerated by the setup. Therefore, a single exposure experiment is essentially
unfeasible. If the converse is true (σL2 � δL2 ) as suggested in the right panel, then high
contrast can be retrieved with sizeable probability in a single attempt. The width σL2

is
controlled by the parameters of the partially incoherent beam in the x direction. In fig-
ure 6.6, it is shown that by reducing the beam width w0x by an order of magnitude, and
leaving all other parameters intact, σL2 increases by approximately the same factor. In
particular in Part III, we will show how σL2

is essentially proportional to the coherence
length on the detector plane in the x-direction, namely ldet

x .

Rotational alignment

We now consider the issue of rotational alignment between the grating slits. The intens-
ity given by equation (5.11) depends on the angle φ formed by the slits (see the sketch in
the inset of Fig. 6.8), therefore it is possible to calculate numerically the contrast depend-
ence on the angle C(φ). Alternatively, following [26], an useful approximate expression
reads:

C(φ) ∝ e
−π

(
λL2φ

d2l
det
y

)2

. (6.4)

A Gaussian dependence is predicted, with standard deviation

σφ =
1√
2π

d2l
det
y

λL2
, (6.5)

where ldet
y denotes the coherence length in the direction parallel to the length of the slits,

on the detector plane. In Fig. 6.8 a comparison between equation (6.4) and the full nu-
merical calculation shows very good agreement. For the nominal QUPLAS-0 beam and
interferometer parameters the alignment tolerance is σφ ≈ 200 µrad. We remark that this
is controlled by beam coherence in the y direction (see equation (6.5)). Results from a
Monte Carlo simulated moiré deflectometer with the same geometrical features are also
shown in Fig. 6.8. Although peak contrast is lower, the angular dependence is com-
parable. Therefore this phenomenon has a classical counterpart, and cannot be used
to discriminate genuine quantum interference from moiré shadow effects (at least not
without a very precise measurement and a more careful simulation of the moiré setup).
It is also useful to compare expression (6.4) with the naive expectation based on purely

2We recall that for QUPLAS-0 we plan to use nuclear emulsion detectors, that do not provide an online
feedback. Naturally, a scan of several exposures can be considered. Careful evaluation of the parameters δL2

and σL2
would allow to optimize the number of exposures needed to effectively cover a wide region along z.
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Figure 6.8. Contrast C as a function of the misalignment angle φ between the gratings, as sketched
in the inset. For the Talbot-Lau setup, the nominal QUPLAS-0 parameters have been used. Res-
ults of a Monte Carlo simulated moiré deflectometer with the same geometrical features are also
shown.

geometrical considerations. The slits of the first grating in a (standard, symmetric for
symplicity) Talbot-Lau interferometer can be modeled as a collection of point sources
which sum up incoherently to produce the interference fringes [1, 2]. It can be calculated
[2, 21], that a transverse displacement ∆x in the x direction of a point source induces a
displacement ∆x in the fringe pattern. A small rotation by an angle φ, if the slits have
length h, produces a displacement ∆x ∝ hφ. The maximum tolerable displacement is
of the order of the fringe period, namely d = d1 = d2. Therefore, an alignment tol-
erance φ < d

h is estimated. Assuming that the beam is larger than h, then as a rough
approximation, diffraction from an aperture with width h, produces a coherence length
proportional to the distance ldet

y ≈ L2λ/h. Substituting into Equation (6.5) reduces it to
σφ ∝ 1√

2π
d
h , in qualitative agreement with the naive estimate.

To conclude this section we remark that, while it is correct to state that a Talbot-Lau
interferometer produces high contrast fringes regardless of the coherence of the beam,
it must be stressed that as β → 0, the region of space where high contrast is detectable
becomes narrower. Therefore requirements locating an positioning the grating and de-
tector planes become very strict. Angular alignment requirements are similarly affected.
More specifically, coherence length in the x direction controls the robustness of the ap-
paratus with respect to longitudinal misalignments σL2

, whereas the coherence length in
the y direction controls the tolerance to angular misalignments between the grating slits
σφ. This behavior is not peculiar of the asymmetric setup and the same exact reasoning
applies to the standard setup with the appropriate formulas for the resonance conditions.
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6.3 Beam coherence and collimation slits

We established the connection between beam coherence and alignment requirements. In
this section we discuss the most straightforward method for improving beam coherence,
which consists in collimating the beam with narrow slits (narrow compared to the beam
width). It has been suggested [131] that GSM beams are still effective in modeling slit-
collimated atomic beams. In [131], it is assumed that a pair of slits is used to form a
beam from a completely incoherent source. Here we introduce a simple generalization
to the case where the input beam, before the collimating slit is already a GSM beam with
known properties (w, l, r). As evidenced by the example of Fig. 6.9, this generalization
is indeed needed to accurately model our system. Recalling the definition of the mutual
coherence function (5.5), and considering only one coordinate (generalization to a round
slit acting on both directions is straightforward), we have:

J(x,∆x) = e−π[x2/w2+∆x2/l2+2ix∆x/(λr)].

A hard-edged slit of width s would have a transmission function of the form t(x) =
χ[−s/2,s/2](x). It is however more convenient to assume a Gaussian transmission func-
tion

t(x) = e−πx
2/s2

This choice leads to a simple analytical result and at large distances from the slits com-
pares well with exact numerical calculations [131]. The mutual coherence function after
the slit is given by equation (5.2), and reads

J ′(x,∆x) = t(x+∆/2)t∗(x−∆x/2)J(x,∆x) = e−π[x2(2/s2+1/w2)+∆x2(1/l2+1/(2s2))+2ix∆x/(λr)],

which is the functional form of a GSM beam with parameters

w′ =
sw√

2w2 + s2
(6.6)

l′ =

√
2ls√

2s2 + l2
s�l−−→ l (6.7)

We have highlighted the fact that in the typical scenario where the slit width is much
larger than the coherence length (l ≈ 1 nm in the uncollimated L-NESS beam), a slit
will not affect the coherence length but will, as expected, reduce the beam size. This is
already sufficient, as suggested in Fig. 6.6, to loosen the alignment requirements (the
global degree of coherence, β is increased β′ = l′/w′ = β

√
2w2+s2

s > β).
Two slits at a sizeable distance will however improve also the coherence length, as the

free evolution of the beam in the space between them, with a reduced diameter thanks
to the first aperture, has to be taken into account (recall the analytical expressions for
the free evolution of the GSM beam given by equations (5.8)). A realistic example of
collimation based on the nominal QUPLAS-0 parameters is displayed in Fig. 6.9. To
give a sense of scale, collimation of this level already increases the calculated tolerance
to longitudinal and angular misalignments by approximately a factor of four for the
QUPLAS-0 setup (the improvement is found to be proportional to β′/β). The actual
collimation system employed for the measurements will be described in the next chapter
devoted to the experimental results.
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Figure 6.9. Effect on beam width w and coherence length l of two s = 1.5 mm wide collimating
slits (modeled with a Gaussian transmission function), placed on the L-NESS beam with nominal
parameters. The second slit is located on the waist of the uncollimated beam, 8 cm after the first
one. For comparison, the prediction assuming instead that the beam impinging on the slits is fully
incoherent, which is not a good approximation in our set-up.





Part III

QUPLAS-0: experimental results





CHAPTER 7

An optical asymmetric Talbot-Lau interferometer

Before introducing the positron interferometer we report the results of a preliminary test
of the chosen asymmetric configuration that was performed in the optical domain as a
proof-of-concept using simple diffraction gratings produced with photographic films.

At the very beginning of our study of asymmetric Talbot-Lau interferometry in a
period-magnifying configuration a simple optical experiment was realized to test the
predictions of the models. To this end, we produced diffraction gratings of suitable peri-
odicity by taking pictures of printed periodic masks with conventional black-and-white
photographic film and a reflex camera. This allowed us to produce a set of gratings
with a well known ratio between their periods (as the mask was changed but the camera
stood stationary between exposures). Pictures characterising the gratings are shown in
Fig. 7.1. Samples with a nominal open fraction fo ≈ 30% and periods d1 ≈ 280 µm and

1 mm

Figure 7.1. On the left, the ≈ 280µm periodic grating imaged on a CMOS camera with coherent
laser light and a single lens. On the right, natural light picture of the same grating, the inset shows
a detail of the intensity periodic mask with higher magnification.

d2 = 5/6d1 were tested, to allow a magnifying setup with η = 5 in analogy with the
foreseen QUPLAS-0 interferometer. Partially coherent illumination was provided by a
He-Ne laser (λ = 632.8 nm) transmitted by a rotating ground glass disk (also known as
an Arecchi’s disk [133]); a sketch of the layout is shown in Fig. 7.2. The beam thus formed
was described with the formalism of GSM beams. In particular, to apply equation (5.11)
to predict the intensity, it is necessary to measure the beam parameters. Assuming an

75



76

isotropic beam, the estimated parameters werew0 ≈ 650 µm, l0 ≈ 2× 10−6 µm , r0 ≈ 1 m,
on a plane 2.7 cm before the first grating. The distances L1 and L2 were optimized to find

Figure 7.2. Sketch of the experimental setup for the measurement. The camera was equipped with
a 1280× 1024 pixel CMOS sensor, with a pixel size of 5.2µm.

the best visibility. We stress that the apparatus in these conditions is much more robust
to both angular and longitudinal misalignments compared to the foreseen QUPLAS-0
setup. For instance the above mentioned parameters imply σφ ≈ 8.5◦, according to
equation (6.5). The diffraction pattern was observed with a conventional CMOS camera;
a representative result is shown in Fig. 7.3. Data show a fairly high contrast of 86%,
which is lower compared to the 99% predicted by the model in the ideal resonance con-
ditions. Several factors could be contributing to a reduction in contrast. For instance, the
spatial quality of the gratings is compromised by distortions in the imaging system for
producing the periodic pattern. Partial transparency of the absorbing region of the grat-
ings could also reduce the visibility, as well as deviations from the ideal ”square wave”
profile of the grating transmission function assumed in the model. The latter effect nat-
urally occurs as a result of the finite optical resolution of the film and camera system. In
Fig. 7.3 we show a fit of the result with a function of the form I ′(x) = AI(x − x0) + B,
where I(x) is the intensity from equation (5.11), scaled and shifted, with an additional
constant B to account for residual uniform background. Realistic sources of a constant
background could be stray ambient light (also produced by diffusion of the laser itself)
as well as residual electronic noise of the sensor which is not effectively subtracted. Be-
sides the explicitly mentioned parameters (A,B, x0), I(x) depends on several physical
quantities that could be extracted as fit parameters from the data. To this end L1, L2

and the beam parameters were constrained to a range centered on the measured val-
ues consistent with the measurement errors. The parameters fo, d1 resulting from the fit
procedure are fo ≈ 26% and d1 ≈ 286 µm. The observed shape of the pattern is very
well reproduced by the GSM model of equation (5.11). The introduction of a constant
background was however necessary to account for the lower observed contrast.
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CHAPTER 8

The QUPLAS-0 interferometer and grating alignment

In this chapter we discuss the QUPLAS-0 apparatus from an experimental point of view,
with emphasis on the rotational and longitudinal alignment techniques employed to
meet the requirements introduced in the theoretical description of Part II.

8.1 Design and specifications of the apparatus

  

1

23

4

5

6

e+  beam

7

Figure 8.1. Picture of the L-NESS beam and experimental chamber configured for interferometry
and beam characterization. The orange arrow is inserted to guide the eye on the direction of the
e+ beam. Labelled parts are: 1) Experimental chamber housing the interferometer inside a double-
layer mu-metal shield. 2) Turbomolecular pump and valves. 3) x-y manipulator moving on the
detector plane, used for beam characterization. 4) Transparent window which allows laser align-
ment. 5) BaF2 detector. 6) High voltage control electronics. 7) Bellow allowing small adjustments
of the chamber position and angle with respect to the beam optics.
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80 8.1 Design and specifications of the apparatus

Figure 8.2. Drawing (courtesy of Marco Leone) of the interferometer tube coupled to the main
experimental chamber. The mu-metal support structure is fixed inside the interferometer chamber
(the mu-metal cylinders are not shown). Magnetic shielding (our double-layer shield is estim-
ated to provide a reduction greater than a factor 100) against the field of the Earth is required to
avoid sizeable deviations (∼ 1 cm) of the beam as it propagates 80 cm. The rail supporting the
interferometer slides out of the chamber to allow optical alignment (see Fig. 8.3).

In Fig. 8.1 a picture of the L-NESS beam and experimental chamber with the as-
sociated equipment is shown and described, a sketch of the interferometer structure is
displayed in Fig. 8.2, while the interferometer components are pictured in Fig. 8.3. They
are mounted on an optical rail that can be removed and inserted in the chamber with
a sufficiently repeatable positioning. This is a necessary requirement, as the rotational
and longitudinal alignment procedures take place on an optical table. We will describe
in details these techniques in the following sections. The first grating holder is a mirror
mount, made of fully non-magnetic materials by Radiant Dyes Laser Acc. GmbH [134],
whereas the second grating is located on a piezoelectric rotator. Specifically, the unit
was custom-made to our specifications by MICRONIX USA, LLC [135] with a fully non-
magnetic construction1. It features an optical encoder with a nominal resolution of ap-
proximately 0.8 µrad and a bi-directional repeatability at the level of 3 µrad. The gratings
are mounted on aluminium disks which can be moved on the x−y plane using the brass
screws visible in Fig. 8.3 for fine-grained centering on the optical axis. The alignment
laser is a Thorlabs, Inc.[136] CPS670F, 670 nm, 4.5 mW diode laser with adjustable focus.
Focusing on the camera plane yields the best visibility of the diffracted spots used for
the rotational alignment. The camera used for this purpose is a Thorlabs DCC1545M,
equipped with a 1280× 1024 CMOS sensor (pixel size is 5.2µm). The total length of the
interferometer rail is approximately 80 cm, sufficient to fit the whole apparatus with geo-
metrical parameters at resonance at the design positron energy of 14 keV (see Table 8.1).
This geometrical configuration will be used for the QUPLAS-0 experimental campaign.

1To clarify the importance of this point, we found out that it is necessary to avoid parts containing ferromag-
netic components. We tested a piezoelectric rotating mount with an aluminium body and observed complete
loss of beam intensity at the end of the chamber. Although the main body was made of aluminium, steel parts
contained inside had acquired a very strong magnetization (detected with a Hall probe), likely as a result of
mechanical machining.
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Figure 8.3. Picture of the two grating holders mounted on the main interferometer rail. Labelled
parts are: 1) First grating holder. 2) Piezoelectric rotator housing the second grating. 3) Support
rail. 4) Alignment laser. 5) Camera used for rotational alignment. 6) Screws for fine x-y grating
positioning. Details on the components are discussed in the text.

8.2 Longitudinal alignment

Longitudinal alignment refers to the procedure of setting the correct distances between
the planes of the two gratings and the detector. This alignment has to be carried out
within a certain tolerance which is determined by beam coherence, as discussed in de-
tails in chapter 6 from a theoretical point of view. We now discuss the experimental
implementation. First of all we report the most precise measurements of the grating
periods at our disposal:

d1 = (1.2097± 0.0003)µm

d2 = (1.0047± 0.0003)µm (8.1)
d1

d2
= 1.2040± 0.0005

These values were provided by the manufacturer, and were obtained using far-field dif-
fraction over a long baseline with a highly stable laser in a reflection geometry2. The

2All information regarding the grating fabrication process and period measurement techniques comes from
personal communications with Tim Savas (Lumarray).
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above quantities are weighted averages of two measurements using different diffraction
orders. We note that the sample variation in periodicity between gratings of the same
batch is at the 10−6 level, therefore negligible with respect to the measurement error re-
ported above. This feature is due to the peculiar manufacturing technique employed.
From the measured grating periods the expected periodicity on the plane of resonance
is obtained as:

d3 =
d1d2

d1 − d2
= (5.93± 0.01)µm (8.2)

We now recall the relevant equations from chapter 6 to discuss the alignment require-
ments. The distance between the second grating and the detector plane is:

L2 =
L1

d1/d2 − 1
,

where r = d2/d2 and L1 is the experimentally measured distance between the two grat-
ings, with uncertainty δL1

. As already motivated, we adopt the point of view of a fixed

Eres [keV] λ [×10−11 m] L1 [m] L2 [m] LTOT [m]

1 3.8764 0.0314 0.1537 0.1850

10 1.2205 0.0996 0.4881 0.5877

11 1.1631 0.1045 0.5122 0.6167

12 1.1131 0.1092 0.5352 0.6444

13 1.0689 0.1137 0.5574 0.6711

14 1.0295 0.1181 0.5787 0.6967

15 0.9941 0.1223 0.5993 0.7215

16 0.9621 0.1263 0.6192 0.7456

17 0.9329 0.1303 0.6386 0.7689

Table 8.1. Summary of the optimal geometrical parameters (rounded to the last significant digit,
given the errors discussed in the text), as a function of the chosen design energy, that is the positron
energy at which the Talbot-Lau configuration is to be at resonance. The de Broglie wavelength is
calculated with the relativistic expression (2.1). We stress that, as motivated in chapter 6, the
contrast for fixed wavelength depends essentially only on the ratio of the two lengths. The selected
parameters for the QUPLAS-0 experimental campaign are highlighted.

L1 distance and discuss the uncertainty δL2 on L2, that is on the ideal detector position.
The latter reads:

δL2
= L2

√(
δL1

L1

)2

+

(
δr

r − 1

)2

Typical values of the distance L1, calculated as L1 = d1d2

λ are reported in table 8.1 for
selected energies (assumed exact). We stress that the contrast for fixed wavelength only
depends on ratio of the two distances, the optimal value of which is dictated by d1/d2.

The best estimate of the ratio of the grating periods yields
(
δr
r−1

)2

≈ 6× 10−6. Since L1
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is of the order of 10 cm in our energy range, an accuracy target of δL1
= 0.1 mm already

makes the measurement error on the length largely negligible (since
(
δL1

L1

)2

≈ 7× 10−7).
The dependence of δL2

as a function of δL1
is plotted in Fig. 8.4 for three reference ener-

gies using the best determinations of the grating periods and assuming a realistic range
for δL1

. This plot provides very important information: the uncertainty δL2
is of the

order of 1− 2 mm. To assess the feasibility of a single exposure, this value must be com-
pared with the longitudinal extent of the interference fringes σL2

. The latter depends
on beam coherence, as discussed in chapter 6. In other words, the degree of coherence
of the beam should be increased to the point that σL2

& δL2
. We will discuss how this

target is reached by means of mechanical collimation slits in chapter 9. In addition, Fig.
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Figure 8.4. Plot of δL2 as a function of δL1 for three reference energies, using the nominal para-
meters of table 8.1, and the best estimates of the grating periods.

8.4 also suggests that a requirement of δL1 = 0.1 mm is very conservative, as the depend-
ence of the relevant parameter δL2

on δL1
is rather weak. This level of accuracy is easily

achieved by standard mechanical workshop machining and measurement techniques.
Therefore a system based on a reference plane which moves along the interferometer
rail was devised. The position of the plane is read by a linear scale (Mitutoyo ABS AT715
series [137]) with a nominal accuracy of 7µm and also moves orthogonally to the inter-
ferometer rail, to be able to move past the mounted grating holders. The orthogonality
of the plane motion along the secondary axis with respect to the main direction of travel
is ensured by means of standard mechanical measurements at the level of approximately
20µm of displacement over the full length of the plane. This auxiliary plane is mounted
on the optical table on an elevated support (see Fig. 8.5 for a picture of the components),
and the interferometer rail is finely positioned using linear gauges so that it is parallel
to the direction of movement of the reference plane at the level of 20 − 30µm over the
length of the rail (approximately 80 cm). The reference plane can then be used to measure
the distances between plane objects that touch its surface. For instance, the gratings are
mounted in such a way that the silicon chip is exposed and can be put in contact with
the reference plane. Measurements thus performed, between the two grating planes,
were found to be repeatable at the level of at least 0.05 mm. This is mainly limited by the
residual mechanical play in the carriages supporting the moving plane. Furthermore,
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there could be systematic errors induced by the loss of parallelism between the refer-
ence plane and the grating planes. To perform the rotational alignment, an optical axis
defined by the alignment laser is set to be parallel to the interferometer rail at the level
of 1 mrad (a 0.5 mm positioning error of the laser spot over a length of 80 cm). Using the
back-reflected spots, the gratings will be tilted 3 to be orthogonal to the laser axis again
at a level of a few mrad. The result of these measurements, which must be consistent
with one another is to ensure the grating faces will be parallel to the reference plane at
the level of (conservatively) at least θ = 10 mrad. Given that the silicon chip is a square of
side l = 1 cm, this would induce an error on distances measured with the reference plane
of approximately l

2 tan θ ≈ 0.05 mm. In conclusion, the alignment setup devised is able
to provide the required accuracy, as both sources of systematic errors and the observed
statistical fluctuations of repeated measurements are at the level of 0.05mm. The general
measurement protocol is as follows:

1. With the aid of the reference plane, gratings are positioned at a distance approxim-
ately4 equal to the value suggested in table 8.1. This yields L1 ± δL1

.

2. The optimal value of L2 is calculated: L2 = L1

d1/d2−1
.

3. The detector plane is then placed at a distance from the second grating L2 = L2.

3Either using the degrees of freedom of the mirror mount for the first grating or the play built for this
purpose into the x-y positioning system.

4We recall once again that discrepancies with respect to the optimal value even at the level of several mm
would not affect the visibility in any measurable way (see Fig. 6.4).



The QUPLAS-0 interferometer and grating alignment 85

  

1

2

3

3

1

Figure 8.5. Right (top and bottom): two views of the reference plane (3) which moves on a car-
riage mounted on a linear guide (1), and can be retracted on an orthogonal axis to move past the
interferometer components. The plane position is read by an optical linear scale (2). Left: the par-
allelism between the direction of movement of the reference plane and the interferometer rail is
ensured by means of a standard dial indicator (a linear gauge).
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8.3 Rotational alignment

As discussed in Part II, chapter 6, the reciprocal rotational alignment between the grat-
ing slits is a critical parameter. In particular we estimated that with the nominal L-NESS
beam and QUPLAS-0 parameters, given in equations (5.15) and (6.1), the visibility drops
rapidly as a Gaussian function of the angle φ with a standard deviation of the order of
σφ ≈ 200 µrad. The misalignment angle must therefore be controlled at the level of tens
of µrad for optimal results. A straightforward approach would be to rotate one of the
gratings while monitoring the contrast of the interference fringes in real time. How-
ever, this is not viable in our system due to the extremely low intensity of the positron
beam which prevents real-time measurements. Therefore, an indirect method that can be
performed on an optical table with an alignment laser has been devised. Although the
working principle is simple, in this section we attempt to discuss in details its effective
accuracy by examining the main sources of systematic alignment errors.

The typical far field diffraction pattern produced by the QUPLAS-0 micrometric grat-
ings is sketched in Fig. 8.6. Along the horizontal axis, diffraction by the d ≈ 1 µm
apertures is observed, while the more closely spaced points in the vertical direction are
produced by the 7 µm periodicity support structures. The first order diffraction maxima
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Figure 8.6. Left: calculated diffraction pattern of a d = 1 µm grating obserbed at a distance of
L = 1 m illuminated by a λ = 670 nm diode laser. Right: SEM image (courtesy of Tim Savas of
Lumarray Inc. [138], who manufactured the gratings) of the d = 1.2µm silicon nitride diffraction
gratings used for QUPLAS-0, showing the approximately 7µm periodic support structure that
produces diffraction along the y-axis in the left panel. More details on the structure are discussed
in chapter 10.

projected on a plane are arranged on an hyperbola, as explained by geometrical optics:
the angular direction of the n-th diffraction maximum in a diffraction grating illumin-
ated by a plane wave, with respect to the normal to the surface, reads

θn = arcsin

(
m
λ

d
+ sin θi

)
(8.3)

where d is the periodicity of the slits, and θi is the angle of incidence of the incoming
plane wave. For the grating and laser mentioned in Fig. 8.6, the diffraction angles in the
vertical and horizontal direction respectively turn out to be θx = 42.0◦ and θy = 5.5◦. On
a plane a distance L away from the grating surface the effective distance travelled by the
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light rays increases as you increase the y-direction diffraction order as L′ = L/ cos(θv) =√
L2 + y2, so when one projects the two symmetric first order maxima of the d ≈ 1 µm

diffraction, their distance on the screen increases as well. The diffraction angle in the ho-
rizontal direction is large enough that when the two gratings are put at their working dis-
tance for positron interferometry (approximately 11.5 cm at resonance for E = 14 keV),
the two first order maxima are able to pass geometrically beyond the second grating and
its support. Furthermore, it is observed that the central zero order maximum (defining
the optical axis) is able to produce a diffraction pattern from the second grating as well.

Therefore, the two diffraction patterns can be simultaneously detected on a plane
located beyond both gratings. If one is mounted on a rotating support, its diffraction
image rotates independently from the other allowing the alignment procedure.

A schematic view from the top of the two grating arrangement is shown in Fig. 8.7.
An interesting feature of the asymmetric setup chosen is that the first grating has a larger
period (d1 ≈ 1.2d2), thus diffracts light at a smaller angle. This guarantees the existence
of an intersection between the propagation direction lines of the first order maxima. The
intersection points are marked by black dots in Fig. 8.7 and are located at a distance
D ≈ 30 cm from the optical axis and L ≈ 30 cm downstream the second grating. If one
of the gratings is rotated by an angle φ along the optical axis, the diffracted laser spots
move on a circle of radius D on the plane orthogonal to the optical axis which contains
the points of intersection. Obviously the ideal rotational alignment condition is met
when the two pairs of spots (two on the left side and two on the right side) coincide. If
the laser spots on both sides are superimposed with an uncertainty δx, the error on the
alignment angle is estimated as:

σφ ≈
δx

D
. (8.4)

To achieve a reasonable σφ . 100 µrad accuracy one must ensure δx . 30 µm. In the
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Figure 8.7. Sketch of the two gratings viewed from the top. Gratings are oriented so that strong
diffraction takes place along the x-direction. The direction of the optical axis defined by the zero
order maximum and the two first order maxima for each grating are represented by straight lines.
The intersection points are monitored with two cameras to perform the alignment.
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following sections several sources of error arising in a practical implementation of this
idea are presented, to quantify the ultimate accuracy limit of the procedure.

8.3.1 Limits to the alignment accuracy

First of all, it could be argued that D should be increased to improve the accuracy of the
procedure, for example by rotating the system 90◦ and performing the alignment using
the light diffracted by the support structure. However it was observed that the two peri-
odic patterns are not orthogonal, to a level of a few mrad, an order of magnitude larger
than the required accuracy. This deviation from orthogonality is due to the fabrication
process and was also confirmed by the manufacturer.

Orthogonality of the alignment laser to the surface of both gratings was found to be
critical for good alignment, depending on the direction in which the tilt of the gratings
takes place. A simple geometrical optics reasoning provides a satisfactory treatment of
the observed effect: consider equation (8.3), if the angle of incidence is non-zero then
the zero order maximum (m = 0) comes out at the same incidence angle, but the two
first order maxima (m = ±1) are no longer emitted symmetrically. Schematically, this
produces the effect shown in Fig. 8.8 when one of the gratings is tilted with respect to
the laser along the y-axis. The system becomes asymmetric, but there are still unique
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Figure 8.8. Tilting one of the two gratings with respect to the laser in the direction of the large
angle diffraction angle makes the system geometry asymmetric.

intersections and an optimal rotation alignment condition can be found. Tilting, for
instance, the first grating by 1 mrad introduces a mismatch between D and D′ of 6 mm,
so orthogonality of the laser in this direction can be kept under control by checking for
left-right symmetry to the level of a few mrad. To a first degree of approximation, this
error does not affect significantly the accuracy of the rotational alignment along the z-
axis. Of course if the gratings are not parallel the contrast of the positron interference
fringes can be affected.

If the gratings are instead tilted along the x-axis by an angle θt, then an effect which
limits the alignment accuracy occurs. If θt = 0, the three maxima of order m = 0,±1
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produced by each gratings should lie on a straight line as it is expected. However, these
three points are also zero order maxima for the diffraction in the orthogonal direction
(diffraction by the support structure), therefore they are propagating with the angle θt.
Assume that the laser propagates purely along the z-axis, and the grating is tilted, then
v0 = ûz is a vector representing the propagation of the zero order maximum. The first
order maxima are obtained by rotating this vector as follows:

v±1 = R̂x(θt)R̂y(θ±1)ûz

where R̂xi(α) denotes a standard rotation matrix around the coordinate axis xi and the
angles θ±1 are given by equation (8.3). As a result of this, when the vectors are propag-
ated to a plane away from the grating, the intersections with the plane do not lie on a
straight line, as shown in Fig. 8.9. The difference in height ∆y arising from the grating
tilt can be computed from the explicit expression of the vectors and reads:

∆y = L tan θt

(
1− 1

cos θd

)
. (8.5)

The distance of the observation plane from the grating is denoted by L, and θd is the ap-
propriate diffraction angle (θd = θ±1). This formula obtained with simple ray optics con-
sistently describes the physics observed in practice by tilting the gratings. By inspection

Figure 8.9. Diffraction maxima produced by two gratings in the arrangement of Fig. 8.7, one of
which rotated around the x-axis by an angle θt = 1 mrad, on the plane where superposition of the
spots is expected. The dimensions are realistic as the drawing uses all the parameters from the real
experimental layout.

of figure 8.9, where the gratings are supposed to be rotationally aligned (φ = 0) but tilted,
it is apparent that if, for instance, the two maxima on the right hand side are brought to
coincide by rotating the grating, this deviates from the correct alignment condition. For
this reason it is crucial to monitor the superposition of both pairs of spots simultaneously
with two independent cameras. For θt 6= 0 improving the apparent alignment on one side
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moves the spots farther away on the other. Thus by a series of iterative steps, the direc-
tion of the laser and the orientation of the grating mounted on the mirror mount can be
adjusted to minimize this asymmetry effect. Actually this effect can be exploited to de-
vise a robust repeatable protocol that rapidly converges to a good, symmetric alignment,
as it will be described. On the other hand, the ideal alignment condition could also be
generalized to having an equal ∆y on both sides, which would work also for tilted grat-
ings. However this is hardly convenient and this source of misalignment is correlated
to other sources of asymmetry like the one discussed before which can combine to give
unpredictable results. The rotational alignment procedure complements the mechanical
measurements to ensure this condition. For reference, supposing the orthogonality of
the laser to the gratings is controlled at the level of θt ≈ 1 mrad, then ∆y = 100µm,
which would produce an alignment error σφ ≈ 300 µrad if left-right symmetry was ig-
nored. We will show that with our setup it is possible to ensure superposition of the
laser spots on both sides at the level of a few microns.

In a first pre-alignment phase, the first grating (not mounted on the piezoelectric
mount) is rotated manually so that the diffracted spots lie on the same height as the
optical axis with respect to the plane of the optical table, namely an horizontal plane is
defined (labelled the x-axis in Fig. 8.10, in keeping with the notation used so far: that is
the direction where positron diffraction will take place). Small rotations from the ideal
conditions by the angle φ would then produce displacement of the spots primarily in
the orthogonal y-axis. Therefore, rotational alignment will be performed by ensuring
optimal superposition of the y coordinate of the spots centres. Suppose however that the
reference frame of the camera sensor is tilted5 by an angle α with respect to these ideal
axes, and also that the sensor is not placed exactly on the points of intersection of the
diffraction spots, so that the spots centres acquire a distance l. The situation is sketched
in Fig. 8.10, where the distances are greatly exaggerated for the sake of clarity. In the

Figure 8.10. Sketch of a camera frame taken with a tilted camera and far from the ideal intersection
plane. See text for a discussion.

absence of such tilt (α = 0), then rotating the gratings until the spot centres coincide in y
yields a correct alignment even if l 6= 0, that is if the camera is not placed exactly on the
intersection plane.

If this strategy was instead applied in the presence of a small angle α, one would
rotate the mount until the red spot moves upwards by ∆y = l sinα. Assuming a worst-
case scenario where α = 10 mrad, and that the distance is at the level of the x-direction
spot size (see Fig. 8.11) l = 250 µm the resulting misalignment angle is:

δφ =
∆y

D
≈ 8 µrad

which is a very small contribution, completely negligible if the spots are superimposed
also in the x-direction with the same µm-level accuracy as in y. The procedure is indeed
observed to be very robust with respect to this misalignment.

5The level of control on the rotation of the first grating, not on a dedicated rotation mount, is at the level of
approximately 3 mrad: horizontal alignment is obtained by rotating the grating manually and moving a ruler
on the optical table until the zero and first order maxima are at the same height.
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8.3.2 Measurement protocol and implementation

We now describe a repeatable protocol that is able to achieve µrad level accuracy in
rotational alignment. A Gaussian fit (see Fig. 8.11) converges very well with a sub-

Figure 8.11. Example of the real-time analysis software implemented for the alignment procedure
(using Python, the OpenCV [139] library to interact with the cameras through the DirectShow
interface). The left and right panels are relative to the two cameras. For each cameras, from
bottom left in clockwise order: raw image (units in pixels), integral of the image along y direction
(units in microns), integral along x. The bottom right plot is used for other purposes unrelated to
rotational alignment. Note that the unequal heights of the spots is just due to the cameras being
installed on different mounts.

pixel statistical error on the single frame, and the fitted peak position is stable across
frames with fluctuations of the order of 1 − 2µm (using the pixel size provided by the
manufacturer). The laser spots are elliptical (and the laser has was oriented in such a way
that the shortest semi-axis lies in the y direction where the utmost accuracy is needed),
and have been focused on the plane of the cameras for the best visibility. The resulting
spot size is of the order of 540µm × 120µm FWHM. The image reported has both laser
spots superimposed in a ”perfect” rotational alignment condition. The accuracy of this
superposition is however not limited by the spot size, taking advantage of the fact that
the diffraction maxima coming from the two gratings travel spatially separated paths
(see Fig. 8.7). It is possible to mask one spot at a time with an obstacle and ensure
superposition on the y-axis at a level limited only by the stability of the Gaussian fit and
the ability co control the tilt of the mirror mount to remove left-right asymmetry (the
piezoelectric rotator itself is capable of sub-microradians adjustments). We now provide
a step-by-step description of the measurement protocol, starting from the mounting and
pre-alignment of the gratings:

• Definition of the optical axis: using a moving pinhole mounted on a suitable sup-
port the alignment laser is made parallel to the interferometer rail. This procedure
can be performed at the level of 1 mrad.

• Preliminary alignment of the gratings: gratings are mounted on the supports,
centered on the x-y plane with respect to the optical axis. The first grating is also
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rotated manually within the support to define the horizontal plane. Then the pin-
hole is put before each grating mount, and the grating tilt is adjusted so that the
back-reflected spot from the membrane coincides with the pinhole. This ensures
orthogonality of both gratings with the laser.

• Positioning of the grating supports: the grating mounts are positioned in their
final position at the correct distance (this step can be performed again after rota-
tional alignment, which is then repeated, in an iterative fashion if necessary).

• Positioning of the cameras: the piezo mount is rotated until rotational alignment
is obtained to the naked eye on a screen. The cameras are then moved on the plane
of the optical table until the intersection plane of the laser spots is found. The
process is aided by monitoring the variance of the Gaussian fit of the x-projection,
which is displayed in real time, and has an absolute (and local) minimum on the
intersection plane.

• Finely adjusting grating parallelism: this step conveniently exploits the phenomenon
outlined in Fig. 8.9 to ensure left-right symmetry in a robust manner. The piezo
mount is rotated relatively far from the alignment condition. In this condition all
four spots are observable on the cameras (see Fig. 8.12), and the distance between
pairs on the same side can be monitored in real time. Tilting the first grating ver-
tically controls the aforementioned distance. The mount can thus be adjusted until
equal distances are observed on the right and left side. This in turn ensures good
grating parallelism.

Figure 8.12. Condition ensuring parallelism of the two gratings: the distances between the two
spots is equal in the left and right hand cameras. The distance is monitored in real time and
is controlled by the vertical tilt of the mirror mount of the first grating, in a condition of poor
rotational alignment. Note that the spots coming on each camera have to be filtered with unequal
optical densities to achieve the same intensity (and avoid saturation, as unavoidably the intensity
difference exceeds the dynamic range of the camera).

• Finely adjusting rotation: Finally, starting from the previous condition the piezo
rotator can be moved back towards a superposition condition. Left-right symmetry
should be obtained and is indeed observed experimentally (at least at the level of a
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few microns), confirming how this protocol ensures good parallelism between the
gratings. Successive fine adjustments are done by masking one spot at a time until
superposition is achieved.

The result after a few iterations of the last two steps is typically to obtain superposition
of the spots at the level of 10µm or better on both sides. This would correspond to a rota-
tional alignment at the 30 µrad level. One order of magnitude smaller than the sensitivity
of the apparatus in the worst-case scenario (uncollimated beam). This is however still
an indirect procedure, and the validity of the above statement should ideally be checked
with a real time interferometric measurement.

Stability of the self-locking rotation mount

The protocol described in the previous section is not applied directly in the experimental
chamber, therefore the stability of the obtained alignment after the rail is removed from
the optical table and inserted in the chamber must be kept into account. A careful ex-
perimental investigation was carried out and revealed that in spite of its self-locking cap-
ability, the piezoelectric rotator cannot guarantee long-term stability when power is re-
moved, especially if it is moved or subjected to vibrations. Therefore, it is necessary to
keep it connected and in a closed-loop feedback operation6 during transportation of the
rail to the chamber as well as during the measurement. This was technically feasible, and
was routinely performed after it was confirmed experimentally that the magnetic field
produced by the motor and sensor operation is negligible. The field was measured with
a Hall probe and found in the center of the mount to be at a level indistinguishable from
the Earth magnetic field BE (which is still a perturbation over the background inside
the mu-metal shield, which should be less than BE/100). The spatial extent of the field
is however limited, and ON/OFF comparison measurement of the beam position and
intensity at the end of the chamber found no deviation within the experimental error
of the procedure (which is described in the next chapter). Several week-long exposures
were carried out during the QUPLAS-0 measurement campaign. The interferometer
was rotationally alignment before each exposure, moved to the chamber, and the an-
gular alignment checked after the exposure. Typically, the angular misalignment found
after the measurement was at the level of φ1 ≈ 70 µrad, starting from an initial condition
of the order of φ0 ≈ 30 µrad or better. This figure is still sufficient to ensure good visibil-
ity even in the worst-case scenario of an uncollimated beam (which was, however, never
used in practice except from an early test measurement). Furthermore, it is impossible to
tell when the deviation from the initial alignment condition was introduced: whether it
occurred as a gradual drift over the course of the measurement or was induced by mov-
ing the interferometer to and from the experimental chamber. Thus ψ1 is only an upper
limit to the effective misalignment condition in which the measurement took place.

6That is, absolute position is kept stable by the motor controller using the optical encoder reading as an
input.





CHAPTER 9

Beam preparation and characterization

This chapter describes how the L-NESS beam was characterized and suitably prepared,
by the addition of mechanical collimation slits, to carry out positron interferometry. In
particular three main items will be discussed:

1. The protocol used to set up a reference laser to coincide with the beam and then to
place the optical axis of the interferometer on the same axis.

2. The beam spot size on the plane of the detector and its dependence on the focusing
voltage for various energies.

3. The impact of collimation and beam focusing on the tolerance of the interferometer
to rotational and angular misalignments (using the theoretical tools developed in
chapter 6).

9.1 Beam alignment and collimation
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Figure 9.1. Scheme of the experimental chamber with collimation slits and beam position/size
measurement apparatus in place at the end of the chamber. See text for a detailed description.

In Fig. 9.1 a sketch (cross-section) of the interferometer chamber is shown. The cham-
ber is composed of two sections connected by a bellows: the main chamber on the right
is rigidly connected to the rest of the beam chamber (containing the optics, source and
moderator) and is stationary with respect to the laboratory reference frame. The elong-
ated part of the chamber housing the interferometer rail, which is connected to this sec-
ondary chamber only, can be moved with respect to the main chamber (and thus the

95
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Figure 9.2. Scheme of the
measurement process of
the beam width used on
the L-NESS beam. On the
bottom panel a repres-
entative result is shown.
Typically the statistical
uncertainties from the fit
with a sensible number
of points is of the order
of σ < 1 mm both for the
parameter x0 and for σx.
Two independent scans
are required to locate the
beam in the x-y plane.
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beam optics). This degree of freedom allows to place the optical axis of the interfero-
meter on beam axis. The bellows can then be firmly locked in place by means of four
bolts. We describe the remaining items in Fig. 9.1 starting from the right-hand side. An
aluminium tube with two circular collimation slits was placed so that the second slit is
located Lsc = 2 cm before the center of the main chamber, the length of the tube, hence
the distance of the slits is Ls = (10.2 ± 0.1) cm, and the slit diameter is r = 2 mm. The
plane of the first grating is located at a distance Lcg = 3 cm from the center of the cham-
ber, and the usual distances L1 and L2 define the detector plane. The distances reported
without error are approximate and may change slightly depending on how the grating
mounts are positioned and the bellow connection is locked in place. They are not crucial
to the feasibility of the experiment, as it will be apparent from the following sections
of this chapter. On the detector plane, an approximately 2.5 × 2.5 cm2 copper target is
moved in the x-y plane (transverse to the optical axis) and is used to measure the beam
position and dimension (see Fig. 9.2 and the related description). The flange on the left
end of the chamber is transparent and allows to see the spot of an alignment laser inside
the chamber. The main reference laser is a collimated He-Ne laser located at a distance
of approximately 4 m from the chamber, with a sub-mm spot size. A BaF2 detector is
used to monitor the intensity of the positron beam transmitted by the moving target (see
9.2 for an example). The measurement is based on the simple scheme shown in Fig. 9.2:
an absorbing copper target larger than the full size of the beam is moved by means of an
external manipulator. Assuming a Gaussian transverse intensity profile, of the form

n(x, y) = n0e
−(x−x0)2/2σ2

x−(y−y0)2/2σ2
y ,

then the intensity of the annihilation signal1I as a function of the target position as it
1The transmitted positrons will annihilate on the face of the glass flange that terminates the chamber, and
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moves for instance in the x direction, assumes the form

I(x) = a+ b

[
1− erf

(
x− x0√

2σx

)]
.

If the target position is scanned with the manipulator as shown in Fig.9.2, then the para-
meters σx and x0 can be extracted from the fit, to estimate the beam position and trans-
verse dimension. Once two independent scans are performed, the manipulator can be
placed in the positions x0 and y0, and the edge of the square target coincides with the
center of the beam. The spot of a secondary reference laser can be centered on the edge to
indicate the beam position on the plane considered. The beam trajectory in the magnetic
field of the Earth would be circular, with a curvature radius given by the well-known
expression R = me+v/qB. Assuming a conservative shielding factor of 100 from the
mu-metal tubes, the radius for v ≈ 0.3c positrons is R ≈ 1200 m. It is therefore reason-
able to make the assumption of straight line propagation between the two known points
from which the beam passes: the measured position on the detector plane, defined by
the secondary reference laser, and the center of the second collimation slit.

Alignment protocol

An alignment protocol can thus be performed according to the following steps:

1. Beam position (x0, y0) is measured on the detector plane and the spot of a second-
ary reference laser is placed on the beam center on that plane.

2. A pinhole located on the optical axis of the interferometer is mounted and posi-
tioned at the detector plane. The chamber is moved using the bellows (motion is
controlled by a set of screws) to align the pinhole with the laser spot.

3. Then, the primary reference laser is adjusted until the beam passes through the
pinhole and the second collimation slits.

This results in the alignment of the laser with the positron beam axis. The uncertainty
of this superposition is estimated from two main contributions: the error of the exper-
imenter in placing the laser spots on the targets, estimated to be σl ≈ 0.5 mm and the
statistical uncertainty from the fit parameters, typically σx0,y0

≈ 0.5 mm. We can there-
fore conclude that on each plane the laser spot should coincide with the beam spot at the
level of σalig ≈ 1 mm, corresponding to an angular misalignment of σα ≈ 2.5 mrad.

4. A second pinhole is placed at the beginning of the interferometer rail. The inter-
ferometer chamber is moved until the two pinholes are superimposed with the
reference laser.

5. The bellows is locked in place carefully. This is necessary to avoid unwanted mo-
tion due to the atmospheric pressure once vacuum is obtained. It is possible to
tighten the bolts which secure the bellows gradually while monitoring the laser
alignment to ensure that it is not altered.

At the end of this procedure, alignment of the beam axis with the optical axis of the
interferometer at the level of a few mrad should be achieved. Since many steps are

the detector placed in direct contact with the latter measures the 511 keV gamma annihilation signal.
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Figure 9.3. Sketch of the electro-
static optics configuration of the
L-NESS beam. The 90◦ bend is re-
quired to get rid of the fast non-
thermalized positrons escaping the
moderator, and to reduce the flux of
secondary γ directed from the 22Na
source to the experimental chamber.
There are several deflection and fo-
cusing electrodes before and after
the bend. In the inset the beam spot
on a phosphor screen using an elec-
tron source is shown.

performed by visual inspection, it is difficult to provide a quantitative estimate of the
uncertainty. A more careful estimate would also not be particularly helpful, since it is
observed that in the time frame of several days, the beam position at the end of the
chamber can undergo gradual drifts of the order of 0.5 mm due to slight instability of
the beam optics. Those shifts are not detectable in real time during the measurements.
Nevertheless, to a first degree of approximation traversing the gratings with a small
angle β, for instance on the x-axis, could be modelled by a rescaling of both the periods
(d → d cosβ) and the lengths (L1,2 → L1,2/ cosβ), which preserves the ratios d1/d2 and
L1/L2, therefore the visibility should not be significantly affected.

9.2 Beam spot size and beam focusing

Several measurements of the beam spot size on the detector plane were made in the time
frame of several weeks, using the technique we described. The beam has many deflec-
tion and focusing electrodes, both before and after the 90◦ bend (see Fig. 9.3). Before the
measurement campaign the voltages of the deflection electrodes were adjusted to max-
imize the intensity transmitted through the two collimation slits. This condition should
correspond to the best possible parallelism between the beam axis and the axis of the
collimators. During the spot size measurement the intensity was monitored and small
corrections applied if necessary to correct for possible drifts in the voltages. The spot
size, expressed by its FWHM was studied as a function of the voltage of the last focusing
electrode (the one nearest to the experimental chamber), namely VF , for various positron
energies. The energy is controlled by the potential VE , following the relation:

E = e[VE + VM ] = e[VE + 1 kV],

where VM = 1 kV is the fixed potential of the moderator with respect to the target (at
ground). It was found out experimentally that it is convenient to introduce the adimen-
sional ratio

R =
VF
VE

since the beam size FWHM(R) as a function of R is well approximated by a linear fit,
independently on the positron energy. The experimental results with the best fit are re-
ported in Fig. 9.4 for the y-coordinate. The same information could be extracted for
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Figure 9.4. Spot size in the y-direction, FWHMy as a function of the focusing voltage VF .

the dimension FWHMx, and the aspect ratio2 of the beam FWHMx/FWHMy is approx-
imately 1.2 (weakly dependent on beam focusing). The linear fit suggests a universal
empirical formula for the beam dimension as a function of R:

FWHMy(R) ≈ αR− β (9.1)

with α = (39 ± 2) mm and β = (15 ± 1) mm. This allows to conveniently set the focus-
ing voltage to the suitable value, for instance to keep the beam dimension stable as the
energy is scanned in consecutive interferometric measurements. Due to the presence of
the collimators, beam dimension on the detector plane is correlated to the beam intens-
ity. This follows from a simple geometrical argument: when the beam has the smallest
spot size it is being focused far from the center of the chamber, therefore its size will be
larger in the vicinity of the collimators, which will then filter out a larger fraction of the
total intensity. Depending on the focusing voltage, the two collimation slits will transmit
a fraction of the original beam intensity in the 10 − 20% range. This behaviour can be
studied with a series of measurements of total intensity (by means of the BaF2 detector
located at the end of the chamber) at different energies. A typical result is shown in Fig.
9.5: a fit is performed on the experimental data (on each peak independently) with a
function of the form

I(VF ) = Ce
−

(VF−VF0
)2

2σ2
V + C ′. (9.2)

This modulation is due to the presence of the collimators: there is an optimal focusing
VF0

for each energy which maximizes the transmission. From purely geometrical con-
siderations, this arguably corresponds to the voltage for which the beam waist would be
located roughly in the center of the collimator tube in the absence of the slits. Intensity
drops symmetrically on both sides of the peak, where the uncollimated beam would be

2It is expected that the beam could be elliptical, and in particular that it can be larger in the x direction as a
consequence of the 90◦ bend.
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Figure 9.5. Typical ex-
ample of a focusing plot:
total intensity is meas-
ured as a function of VF
for different positron en-
ergies (and thus acceler-
ation voltages VE). Solid
lines are least squares fit
with a Gaussian func-
tion plus a constant back-
ground. Measurement
time for each point was set
to 1000 s.
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focused before (VF > VF0 ) or after (VF < VF0 ) the aforementioned plane. The slight drop
in peak intensity at decreasing energy is due to an energy-dependent transport efficiency
of the beam optics and cannot be avoided. The empirical expressions (9.1) and (9.2) can
be combined to estimate the average positron density on the detector plane as a function
of VF . To this end we define a parameter D(VF ) as:

D(VF ;E) =
I(VF )/I(VF0)

[FWHMy(VF /VE)]
2 (9.3)

which is proportional to the positron density, as the area covered by the spot scales quad-
ratically with FWHMy, and we have normalized the intensity to the maximum value for
each given energy. The parameter is plotted (in arbitrary units, as only relative changes
are significant) in Fig. 9.6. All three energies display a similar trend: as the focusing
voltage is decreased below VF0

the density has a local maximum followed by a local
minimum, then starts to increase up to a factor of two with respect to D(VF0 ;E). Ana-
lytically the function is unbounded, but we have restricted our analysis to physically
meaningful values of VF . A factor of two increase is not negligible considering that (as
we will discuss) typical exposure times with the collimated beam are of the order of days
and the density, rather than the total number of positrons impinging on the emulsion is
the figure of merit that should be maximized. Therefore, the analysis of experimental
data suggests that the best working condition for positron density is achieved when the
beam is focused towards the detector plane, to minimize the spot size. To supplement
this information, in the following section we will estimate the impact of beam focusing
on its coherence, and thus on the feasibility of the experiment. Density should in fact be
maximized, as long as it is not detrimental for the expected tolerance to misalignments.
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Figure 9.6. Plot of the density parameter D(VF ;E) for three reference energies. The dashed lines
indicate the voltages corresponding to maximum intensity VF0 .

9.3 Beam coherence and interferometric visibility

We now discuss the influence of beam focusing on beam coherence, and thus on the toler-
ance to positional and rotational misalignments of the gratings. We will make extensive
use of the concepts already introduced in Part II. We will support the conclusion that
when the beam is collimated with two slits the relevant parameter, namely transverse
coherence length on the detector plane ldet, is very weakly dependent on beam focusing.
Slit geometry (distance and size) is the dominant contribution to determine beam coher-
ence. To get a grasp of this behaviour, we focus on two reference beam configurations
with and without collimation, characterized by a realistic set of nominal parameters:

• Focused mode which assumes the beam, when uncollimated, is focused in the cen-
ter of the chamber (approximately where the second slit is located) to a beam spot
of FWHM0 = 2.3 mm that diverges to FWHMdet = 10.0 mm on a plane 70 cm after
the beam waist3.

• Unfocused mode which assumes a beam with FWHMdet = 5 mm and FWHM0 =
8 mm, on the same reference planes. This configuration can be achieved by lower-
ing the focusing voltage VF in comparison to the previous case.

3The chosen parameters are the best estimates from a set of measurements obtained in the early stages of
the experiment. Due to a change in the chamber configuration it was later not viable to characterize at the same
time beam width at the center and at the end of the chamber. Also note that we assume an isotropic beam for
simplicity, but we recall that beam coherence on the x-axis influences robustness to longitudinal misalignments
whereas y-axis coherence is related to rotational alignment.
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In these two representative situations we calculate the beam evolution with and
without a pair of 2 mm collimation slits placed 10.2 cm apart, using the approach of sec-
tion 6.3. The results are displayed in Fig. 9.7 and Fig. 9.8. As already discussed in Part

Figure 9.7. Evolution of the beam width parameter w(z) (left) and of the transverse coherence
length l(z) (right) for the Focused mode configuration with and without collimation. Improvement
in the global degree of coherence brought by collimation β′/β is also shown.

Figure 9.8. Evolution of the beam width parameter w(z) (left) and of the transverse coherence
length l(z) (right) for the Unfocused mode configuration with and without collimation. Improve-
ment in the global degree of coherence brought by collimation β′/β is also shown.

II, the contrast has a Gaussian dependence both on the angle between the gratings φ and
the position of the detector L2 (for fixed L1). In each of the above four cases we evalu-
ated the variances σφ and σL2 with the analytical expression (6.5) and with a numerical
simulation using equation (5.11) respectively. The relevant parameters are summarized
in Table 9.1. We recall from section 8.2 that the uncertainty on the determination of the
ideal detector position δL2

is of the order of 1.5 mm, and that for a single-exposure exper-
iment to be realistically feasible the condition σL2

> δL2
must be satisfied4. From Table

4The issue is discussed in details in Part II, however the intuitive meaning is that the tolerance to longitud-
inal misalignments must be greater than the uncertainty on the ideal detector position.
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Configuration l0 [nm] w0 [mm] ldet [nm] σφ [µrad] σL2
[mm]

Focused / Uncoll. 0.65 2.4 2.6 210 0.7

Unfocused / Ucoll. 1.00 5.3 1.5 116 0.4

Focused / Coll. 0.99 1.0 8.3 579 2.0

Unfocused / Coll. 1.25 1.0 7.9 552 1.9

Table 9.1. Summary of the relevant parameters for the four combinations of beam modes dis-
cussed in the text whose evolution is plotted in Fig. 9.7 and Fig. 9.8. See text for a discussion.

9.1 it is apparent that the uncollimated beam in both configuration does not provide
the required degree of coherence5. This fact motivated the introduction of collimation
slits, which are able to significantly improve the coherence length on the detector plane
(the true figure of merit for comparing different configurations). The parameter σφ is
increased well above the estimated accuracy of our alignment procedure which is of the
order of a few tens of µrad, and the condition σL2

> δL2
is satisfied. For this reason

the slit geometry configuration outlined in Fig. 9.1 was considered the best comprom-
ise between an adequate residual beam flux and a limited necessity to scan the detector
position over a large area (which would be needed if σL2 < δL2 ). With our current meas-
urement techniques it is not feasible to perform a scan along the z-axis to measure beam
size evolution accurately. An interesting trend observed from the data in Table 9.1 is that
collimation reduces the difference in ldet between the two modes from a factor ∼ 1.7 to
a factor of ∼ 1, which suggests that once the slits are in place, it is their geometry to ef-
fectively control the coherence length on the detector plane regardless of beam focusing.
This observation motivates the introduction of an approximate but convenient treatment
to estimate the coherence properties of the beam based on its size on the detector plane
alone. As it can be appreciated from Fig. 9.7 and 9.8, in both modes the collimated beam
can be considered as having its waist on the second slit plane, and the size w0 looks very
weakly dependent on the size and focusing of the beam before the introduction of the
slits. This fact can also be appreciated with an analytical calculation. Applying the first
line of equation (6.7) two times subsequently, for two identical slits of width s, assuming
an initial beam size w yields:

w′′ =
ws2

√
4s2w2 + s4

(9.4)

This function for our range of realistic parameters w ∈ [2.4 mm, 10 mm] and s = 2 mm
depends weakly on w as it evaluates to w′′ = 0.92 and w′′ = 0.99 at the extremes of the
interval (basically w′′ ≈ s/2 for w > s). Therefore it is sensible to approximate the size of
the beam outgoing from the second slit with a constant value, for instance the average
value w0 = 〈w′′〉 = 0.96 mm over the interval considered, and to assume that the beam
waist is indeed located on the second slit, as the beam is always observed to have a size
larger than w0 downstream the collimation slits. Therefore the approach of equations
(5.14) can be applied and for a given spot size6 on the detector plane wdet the full evolu-
tion of the beam can be computed analytically (including ldet) to estimate the parameters

5For the Unfocused/Uncollimated mode, the spot size in the region of the two gratings will be significantly
larger than their size (3 × 3 mm2, whereas the model assumes it to extend indefinitely), therefore their action
as effective collimation slits cannot be neglected, and would arguably bring the actual performances closer to
the Focused/Uncollimated mode.

6We recall that the actual measured parameter will be the beam FWMH that is related to what we refer to
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σφ and σL2
. Results of this calculation are shown in Fig. 9.9, where a weak dependence

Figure 9.9. Plot of the parameters σφ and σL2 as a function of the spot FWHM on the detector plane
(measured with the slits in place) and of the corresponding focusing voltage assuming the linear
depdendence of equation (9.1). The description is approximate, as a fixed beam sizew0 = 0.96 mm
after the second slit is assumed (see text for details).

of the tolerance parameters is observed over the full range of beam sizes (controlled by
focusing voltage) available in our setup. The parameters σφ and σL2

have the same func-
tional behaviour, as they are approximately linear in the ldet (more precisely the linear
dependence is predicted analytically for σφ by Equation (6.5) and was observed numer-
ically for σL2 ). There is good qualitative agreement between the values calculated with
this approximation and the results of Table 9.1, although the former technique predicts
a higher value of ldet for the unfocused mode rather than for the unfocused mode. We
stress that we are estimating tolerances that are not intended to be measured accurately.
In this context the only relevant conclusion is that a collimated beam should provide
σφ ≈ 550 µrad, almost an order of magnitude larger than the sensitivity of our alignment
procedure, and σL2 ≈ 1.95 mm > δL2 , regardless of the beam focusing mode. One can
therefore chose the focusing voltage that maximizes the flux density on the emulsion
detector without compromising the feasibility of a single exposure experiment.

Finite-size effects of the gratings

All theoretical models introduced in Part II do not consider gratings of finite size. This
approximation is sensible as long as the surface of the grating is significantly larger than
the beam spot on the grating plane. In our experiment, this condition is barely satisfied
given that the grating membranes span a surface of 3 × 3 mm2 whereas the spot size is
expected to be of the order of 1− 2 mm FWHM. The actual size cannot be directly meas-
ured in our setup, and it can be roughly inferred either from the geometrical propagation
of the beam (the spot size on the detector plane is known as well as the size of the slits)

as the size w by w = FWHM
√
π/ ln(2))/2.
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or from the theoretical evolution of the beam (with the approach outlined in the last sec-
tion). In the latter case it must be kept in mind that to allow an analytical treatment a
Gaussian shape for the slits transmission function was assumed (see 6.3). This approx-
imation is known to yield reliable results far away from the slit [131]. This is useful for
instance when the model is used to estimate the coherence length at the detector plane,
but might underestimate the beam size in close proximity to the collimation slits. Never-
theless, we will exploit this convenient analytical treatment to extract useful qualitative
information to aid the choice of the best focusing configuration for interferometry. To

4 6 8 10 12 14
FWHM(ng) [mm]

8.4

8.6

8.8

9.0

9.2

9.4

l d
et

[n
m

]

Gratings
No gratings

4 6 8 10 12 14
FWHM(ng) [mm]

2.5

5.0

7.5

10.0

12.5

15.0

FW
HM

[m
m

]

Gratings
No gratings

Figure 9.10. Left: coherence length ldet as a function of spot size FWHM(ng) (measured without
the gratings) on the detector plane. Finite-size diffraction gratings, when considered as additional
collimation slits, introduce an improvement on ldet of a factor ≈ 1.08, essentially independent on
beam focusing. Right: gratings also reduce the spot size, the strength of this effect is of course
increasing with FWHM(ng) as the beam is expected to be larger on the plane of the gratings.

this end we make a simplifying assumption and treat the gratings as an additional set
of two collimation slits of size sg = 3 mm, separated by a distance L1 = 118.1 mm (fol-
lowing the nominal parameters in Table 8.1). The first grating is assumed to be located a
distance Lsg = 4 cm from the second collimation slit, where we again assume the beam
waist is located with w0 = 0.96 mm. Then the evolution of the beam through the two
gratings can be computed analytically to extract the coherence length on the detector
plane (L2 = 578.7mm after the second grating). As a first approximation7 it is reason-
able to assume that the proportionality σφ, σL2 ∝ ldet still holds, and that ldet is still a
good figure of merit for the tolerance to misalignments, regardless of the fact that the
beam undergoes a form of mechanical collimation at the same time as it interacts with
the gratings. The length ldet and FWHM width of the beam on the detector plane were
studied as a function of the size of the beam without accounting for the grating. To avoid
ambiguity, we have labelled this parameter FWHM(ng) in this section, and the results are
shown in Fig. 9.10. As it could be expected, finite-size gratings acting as collimation slits
slightly improve the coherence length ldet by a factor of approximately 1.1, independent
on beam focusing. The reduction of the spot size is instead dependent on beam focusing,
as it is expected from a simple geometrical picture.

For the same reasons, it is also expected that the flux transmitted by the gratings de-

7To perform a full analytical calculation in the spirit of [26] and generalize the model to gratings of finite
size would be out of the scope of this work. As a matter of fact it might even be impossible to obtain a relatively
compact fully analytical expression if the infinite-size approximation is dropped. In this case a computationally
heavy numerical treatment would be the only option.
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Figure 9.11. Estimated in-
tensity transmission Tg
of the two gratings. The
shaded region represents a
width of ±1 standard de-
viation from the mean, as-
suming a grating position-
ing error of σg = 0.5 mm.
An exact open fraction
fTo = 0.38 was assumed.
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pends on beam focusing. To estimate this effect we calculated the transmitted intensity
through the two gratings using the beam size estimated by the model and performing
(analytically) on the plane of the two gratings Gaussian integrals8 of the form

Tg(a, b, σx, σy) =
fTo

2πσxσy

∫ d/2+a

−d/2+a

exp
[
−x2/(2σ2

x)
]

dx

∫ d/2+b

−d/2+b

exp
[
−y2/(2σ2

y)
]

dy,

(9.5)
where a and b are possible displacements of the gratings with respect to the beam axis,
fTo is the area open fraction of the grating9 and d is the side of the square membrane.
Since the error on grating positioning is sizeable (we assumed a realistic estimate σgp =
0.5 mm) a standard Monte-Carlo simulation was performed by drawing normally dis-
tributed displacements a1,2 and b1,2, independently for the two directions for each of the
two gratings. Total transmission is calculated as Tg = Tg(a1, b1, σ

1
x, σ

1
y)Tg(a2, b2, σ

2
x, σ

2
y)

and averaged over the distribution of the displacement. The result is plotted in Fig. 9.11,
where the shaded region represents a width of ±1 standard deviation from the aver-
age value. The configuration focused on detector plane undergoes significantly smaller
losses due to the gratings. This could further enhance advantage in terms of density per
unit exposure time of this operating mode, discussed in Fig. 9.6. However, this effect is
partly compensated by a less appreciable reduction in spot size due to the mechanical
effect of the gratings, as apparent in the right panel of Fig. 9.10. One can estimate the
change in the density parameterD, defined in equation (9.3) and taken here as a function
of FWHM(ng), as follows:

D′
(

FWHM(ng)
)

= D
(

FWHM(ng)
)
Tg

(
FWHM(ng)

)
×

(
FWHM(ng)

FWHM

)2

(9.6)

This is motivated by a linear scaling of the flux with the parameter Tg , while the area
is quadratic in the transverse size of the beam. The ratio D′/D is plotted in Fig. 9.12

8Accounting for the known asymmetry of the beam, its size was multiplied by a factor 1.2 (the average
measured aspect ratio FWHMx/FWMHy) in one direction to produce a more realistic result. This asymmetry
was neglected for simplicity in discussing the coherence properties of the beam.

9It is assumed that positrons which interact with the closed portion of the membrane are either absorbed
with unit probability (which is approximately correct only for energies below 10 keV) or scattered to random
angle with a wide enough distribution that they do not contribute significantly to the signal in the spot region.
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for the range of interest. The function is not constant and an increase is observed that
favours configurations focused closer to the center of the chamber (corresponding to
larger values of FWHM(ng)). By combining this information with the dependence of
beam width on beam focusing a plot analogous to Fig. 9.6 can be constructed, and is
shown in Fig. 9.13. Higher density is still obtained by lowering the focusing voltage
with respect to the value that maximizes the flux (VF0

). The advantage obtainable within
a realistic range of parameters is however slightly reduced if the effect of the gratings is
taken into account, as suggested by the increasing behaviour of the function D′/D.





CHAPTER 10

Emulsion detectors

This chapter contains the results of preliminary studies on various aspects of the emul-
sion detectors developed for the QUPLAS-0 experiment. In particular, a first experi-
mental run was aimed at evaluating the efficiency in detecting positrons in the energy
range of interest (10 − 20 keV). These results were published in the paper ”Detection
of low energy antimatter with emulsions” [14]. Subsequently, the capability to detect and
reconstruct micrometric-scale periodic patterns, even when operating in high vacuum
(HV) conditions for several days was assessed. The results of these analysis are con-
tained in the paper ”Nuclear emulsions for the detection of micrometric-scale fringe patterns:
an application to positron interferometry” [15].

10.1 The QUPLAS-0 emulsion detector

A hit position resolution for positrons significantly better than 1µm is required on the
detector plane to resolve the 6µm interference with a sizeable contrast. The sinergy of a
high resolution detection and a detailed theoretical model of the signal could allow to ex-
tract more information from the interference pattern with respect to the commonly used
approach of moving grating masks in a three-grating interferometer [86]. The intrinsic
position resolution of nuclear emulsions is known to be at the level of 0.1 µm [140] when
detecting grains left by high energy cosmic rays. This feature makes nuclear emulsion a
promising option for positron interferometry studies.

Nuclear emulsions are composed by silver-bromide microcrystals with a diameter
of approximately 0.2µm, embedded in a gelatine matrix. The latent image left by the
passage of ionizing particles is developed, via a chemical process, to silver grains ap-
proximately 1µm in diameter, visible through an optical microscope. A review of the
technology can be found in [141]. The emulsion gel used for the QUPLAS-0 experiment
was produced at the Nagoya University in Japan. It features a content of silver bromide
crystals of approximately 55% in volume, and a low background of thermally induced
grains, at the level of 1− 2 grains/1000µm3.

Typically the gel is poured on plastic supports, but for this application glass plates
were used. Glass has a thermal expansion coefficient one order of magnitude smaller
than plastic and ensures the necessary stability at a sub-micrometric level for the detec-
tion of patterns covering a surface of some mm2.

A (1.0± 0.1)µm thick gelatin layer is then applied on the active emulsion surface, to
protect it from mechanical stress during handling and transportation, which would res-
ult in an increased background. Glycerine is also added to the gel at a concentration of
1.5% to allow operation in vacuum. This is a particularly critical point, given that expos-
ures with a duration of several days could be needed to collect the necessary statistics

109



110 10.2 Emulsion efficiency studies

in the QUPLAS-0 measurements. A picture of emulsion detectors after development is
shown in Fig. 10.1.

Figure 10.1. Picture of the glass-supported emulsion films after development. Red circles mark
the position of the positron beam spot, visible as a faint black region in this picture.

10.2 Emulsion efficiency studies

A series of exposures to the L-NESS positron beam on the same emulsion film, moved by
means of an external manipulator, was performed at the energies of 3, 6, 9, 12, 15, 18 keV.
In order to estimate the detection efficiency, the positron rate at the target during the
measurement at 18 keV was estimated to be n0 = (7.6 ± 0.9) × 103 s−1. This estimate
was performed by measuring the intrinsic efficiency of HPGe detectors for photons of
511 keV using a calibrated 22Na source and taking into account the solid angle of the de-
tector, the attenuation of the vacuum chamber, the emulsion and the aluminium holder,
the positron backscattering, etc. [14]. A linear increase in flux, estimated at 8% for 9 keV,
was measured for lower energies. Therefore the observed counts on the emulsions has
been suitably rescaled and the flux is considered to be a constant. Exposure was per-
formed at a pressure in the 10−6 − 10−7mbar range, which is the standard requirement
for the correct operation of the L-NESS beam. Note that when working with emulsions
both cold and hot cathode pressure gauges cannot be employed, as it was observed that
stray light can be absorbed by the detector and produce a significant background in-
crease.

Absorption of positrons by the emulsion protective layer must to be taken into ac-
count, and this was performed by adapting a semi-empirical model [142, 143] based on
the parametrization of Monte Carlo simulations, which has been widely used for mod-
elling positron stopping profiles in several materials. It is expected that the total rate
detected on the emulsion nemu(E) depends on the incoming rate n0 as follows:

Nemu(E) = n0T (E)εemu(E), (10.1)

where T (E) is the transmission percentage of the protective layer at the energy E, calcu-
lated with the above mentioned method, and εemu(E) is a (possibly energy dependent)
intrinsic emulsion efficiency. The product N∗e+(E) = n0T (E) obviously represents the
predicted rate of positrons actually reaching the active emulsion layer.
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E (keV) T (%) N∗e+ (×103 s−1) Nemu (×103 s−1) εemu (%)

9 35± 6 2.7± 0.6 2.08± 0.04 78± 16

12 66± 6 5.0± 0.7 3.98± 0.06 79± 11

15 80± 3 6.1± 0.8 4.73± 0.07 78± 10

18 86± 2 6.5± 0.8 5.67± 0.07 87± 11

Table 10.1. Summary of the experimental results of the test run to evaluate emulsion efficiency,
which is defined by equation (10.1) as the ratioNemu/N

∗
e+ The content of this table is adapted from

[14].

Experimental results of this test are summarized in Table 10.1 and Fig. 10.2. No
positrons were observed at energies below 9 keV; calculations with the semi-empirical
model indeed show that the transmission probability is essentially zero already at 6 keV.

The calculated efficiency inherits the large errors that affect the determination of the
initial flux n0 and of the function T (E) (the latter in turn arises from a large 10% un-
certainty on the thickness of the protective layer). If a linear regression is performed
on the efficiency data, assuming the linear dependence ε(E) = A + BE, the estimated
fit parameters are A = 0.7 ± 1 and B = (0.008 ± 0.006) keV−1. The coefficient of the
energy dependent part is compatible with zero. Within the large uncertainties, this ana-
lysis supports the conclusion that the intrinsic emulsion efficiency is weakly dependent
on the energy in this range. All experimental points (see the inset of Fig. 10.2) are indeed
compatible, and suggest an efficiency of the order of 80%.

Figure 10.2. Plot of the results of Table 10.1, reported for ease of visualization.
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10.3 Detection of micrometric fringe patterns with nuclear emulsion

10.3.1 Experimental setup

To assess the performance of emulsions in a scenario comparable to the detection of
periodic fringes produced by the QUPLAS-0 interferometer, an experimental test was
devised and implemented. This consisted in placing diffraction gratings with period-
icities of 6, 7 and 20µm in close contact with the emulsion surface to act as absorption
masks for the incoming positrons, thus producing a periodic pattern.

In particular, two different silicon nitride diffraction gratings were exposed to the
positron beam:

• Grating A is part of the samples produced by LumArray Inc. [123, 138], specific-
ally for QUPLAS-0. Here we recall their specifications: the transmissive region is a
free standing silicon nitride (SiN) membrane, approximately 700 nm thick, coated
on both sides with a 10 nm thick gold layer to prevent charge build-up. The free
standing area has a surface of 3× 3 mm2, and is patterned with a system of rectan-
gular apertures. Slits with a periodicity d1 = (1209.7 ± 0.3) nm and an approxim-
ately 50% open fraction run along the horizontal direction (see figure 10.3). In the
orthogonal direction, the pattern has a period d2 = (7.00 ± 0.05)µm and an open
fraction of (79± 3)%.

• Grating B was produced at the L-NESS laboratory with a technique based on elec-
tron beam lithography. This free standing silicon nitride membrane is 325 nm thick,
and spans several adjacent but disconnected regions, each one 300×300µm2 wide.
This sample is also gold coated with a 10 nm gold layer. A system of slits is pat-
terned in two orthogonal directions, in analogy with the previous case. Periods are
d3 = (6000.0 ± 0.5) nm (open fraction of (58 ± 3)%) and d4 = (20000.0 ± 0.5) nm
(open fraction of (54± 1)%).

Figure 10.3. SEM images of Grating A (left) and Grating B (right).

The gratings were positioned in close contact with the emulsion surface by means of
a carefully aligned grating holder (see figure 10.4), with the necessary degrees of free-
dom for the grating to seat flat on the emulsion surface1. In the case of sample B, the

1Practically, the aluminium disk supporting the grating was given some mechanical play inside its holder
and was fastened with a single nut. Therefore it was possible to bring a test glass plate close to the grating
holder kept horizontal, release the nut to let the grating surface lie flat on the glass plate by gravity. The
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membrane-to-emulsion distance was limited by the thickness of the silicon wafer, which
was mounted as shown in figure 10.4. Therefore we estimated a distance of the order of
∆XB ≈ 0.3 mm. For Grating A, an arbitrarily small distance was possible. However a
spacing of ∆XA ≈ 0.1 mm was set to avoid breakage of the thin membrane.

Emulsion detector

Grating
holder

Free standing
membrane

Figure 10.4. Picture (left) and sketch (right) of the system used to put the grating membranes in
contact with the emulsion detector. The grating holder was mounted on an x-y translation stage
to allow alignment of the grating membrane with the beam by means of a reference laser. The
membrane-to-emulsion distance is defined as ∆X .

For these measurements the beam was delivering a nearly Gaussian beam spot, and
two different configurations were tested. In a ”focused” mode of operation the beam was
focused on the emulsion/grating plane, and had a diameter of approximately 2.3 mm
FWHM. An ”unfocused” mode where the beam was focused after the sample, thus de-
livering a larger≈ 5 mm FWHM spot was tested. In both cases the total positron flux was
approximately 5× 103 s−1. The grating membrane was centered on the peak intensity of
the beam by means of the reference laser in the ”focused” mode.

10.3.2 Pattern detection techniques

Emulsions were scanned at the automated scanning facility of the University of Bern. We
now briefly describe the scanning procedure: the microscope camera is equipped with
a 1280 × 1024 pixels CMOS sensor and grabs images corresponding to 378 × 294µm2

emulsion surface. The center portion of one of these images selected from exposure of
grating A is shown in figure 10.5 (a). A positioning stage moves the microscope on the
horizontal (x-y) plane and for each given position a sequence of 35 images is taken by
shifting the focal plane vertically along the z-axis (the pitch between consecutive images
is 1.5µm). The silver grains are reconstructed as clusters by a specific algorithm which
assigns them their corresponding (x, y, z) coordinates both in a coordinate system local
to the view, and in a global reference frame that takes into account the stage position.
In figure 10.5 (b) the distribution of the cluster coordinates from all the images taken at
a given horizontal position is shown, and in the following we will refer to these sets of
data as views. The volume of interest is scanned by repeating this procedure for adja-

emulsion and grating holders were mounted on a piece of rail similar to the main interferometer guide, which
allowed sufficiently repeatable positioning. To perform the measurements, the emulsion support with the
active detector was then gently pushed towards the grating mount.
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cent views. The following analysis will make use of the local coordinates only2. Global
coordinates are however used to examine the large scale features of the exposures such
as the beam profile. Positrons in the E < 20 keV energy range can penetrate less than

Figure 10.5. Center portion of a raw microscope frame at fixed z position (a), (x, y, z) position
of the reconstructed clusters in the view (b), histogram of the z coordinate of the clusters and
Gaussian fit used for the selection procedure (c). The arrow indicates the direction of incoming
positrons. Note that the origin of the z-axis is arbitrary and different for each view; the cut is
determined independently for each single view. Plot of the (x, y) position of the clusters (d). All
the above images refer to the same view, from the exposure of Grating A.

1µm in the active volume of the emulsion detector before annihilation takes place, there-
fore a sharp peak close to the surface is a clear signature of positron annihilation grains.
The peak is clearly evident in the histogram of the z coordinate shown in figure 10.5
(c). Background grains detected in the emulsion are due to various sources: an intrinsic
noise due to thermal effects, cosmic rays and Compton electrons from the 511 keV gam-
mas produced in positron annihilation events. To isolate the signal, a Gaussian fit is
performed on the peak of the histogram and a cut on the z coordinate is made using the
standard deviation σz and mean z0 from the fit results, namely |z0 − z| < 1.5σz .

Close to the edge of the microscope frames, optical aberrations are not negligible.
The decrease in sharpness and contrast in that region could worsen the performance of

2Attempts to make use of all the statistics in the global coordinate system were unsuccessful and lead to
measuring much lower contrasts. The motion of the microscope is not accurate enough to define a reference
frame that is consistent at the sub-micrometric level on the full scanning surface.
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the clustering algorithm, therefore a cut is also performed in (x, y), to an area of 340 ×
270µm2. Furthermore, aberrations result in a slight curvature of the average positron
implantation depth over the surface of the view, artificially enlarging the width of the
peak in z. The (x, y, z) coordinates are thus fit with a polynomial of the form f(x, y) =
(x − a)2 + (y − b)2 + c, and the z positions corrected accordingly. This improves the
effectiveness of the cut on z and consistently improves the measured contrast. The grain
positions on the (x, y) plane are not altered as this would require a more detailed model
of the optical distortion profile. The following discussion will show that regardless of
optical aberrations, accurate distance measurements at least at the level of 1%, which is
more than sufficient for our purposes, can be obtained. Figure 10.6 shows an example of
the effect of the correction of aberrations on the z coordinate on a selected view. The final
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Figure 10.6. Example of the (x, z) distribution of grains in a single view before (left) and after
(right) correction of optical aberrations is applied.

(x, y) distribution in a single view after aberration correction and the application of the
above mentioned selection criterion on z coordinate is shown in figure 10.5 (d) where a
hint of a periodic structure (with the expected 7µm periodicity) is appreciable even by
visual inspection.

The analysis of emulsion data needs to take into account the rotation angle α between
the laboratory and the microscope reference frames. Therefore, the periodic signal is ex-
pected in a linear combination of the (x, y) coordinates, that we define for instance as
t = −x sinα + y cosα, with the rotation angle α to be determined. The shape of the in-
tensity pattern produced by the gratings as absorption masks is well approximated by a
square wave. This assumption neglects the fact that gratings have a finite thickness, there-
fore positrons transmitted through the closed portions of the periodic structure would
undergo multiple scattering. The resulting smearing effect would then distort the pro-
file. However, in a regime of relatively strong absorption (as it will be inferred from the
data, the contrast produced by absorption only was > 65%), this effect can be neglected
without significantly impacting the results. For a period d, and an open fraction fo, the
general intensity profile, modulo an overall normalization constant reads:

I(t) =

∞∑
k=−∞

χ
[kd,(fo+k)d](t) +A(C0)χ[(fo+k)d,(1+k)d](t), (10.2)

where χ[a,b](t) is the characteristic function of the interval [a, b], and the parameter
A(C0) < 1 is related to the contrast by A(C0) = (1 − C0)/(1 + C0). The contrast C0

depends on the (energy-dependent) positron transmission rate through the closed por-
tion of the grating periodic structure and the protective emulsion layer. It represents the
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contrast of the signal before the introduction of finite resolution effects, and can be estim-
ated by a Monte Carlo simulation with the PENELOPE (Penetration and ENErgy LOss
of Positrons and Electrons) package [144]. Specifically the pyPenelope interface [145] was
used, and more details and examples will be discussed in the following section.

The effective resolution of the emulsion-grating system, defined as a Gaussian smear-
ing of the (x, y) position of the clusters has three main contributions: the intrinsic res-
olution of the scanning and clustering procedure σINT ≈ 0.1µm, the multiple scatter-
ing in the emulsion protective layer (σMSL ≈ 0.3µm)3, and finally σDIV = σθ∆X . The
latter is due to the angular divergence of the beam, projected through the emulsion-
membrane distance ∆X . The beam divergence for the ”focused” mode was estimated to
be σθ ≈ 6 mrad, by measuring its diameter on two planes 65 cm apart (one of which is the
beam waist), as discussed in section 5.2. This makes σDIV the dominant contribution to
the total resolution already for ∆X > 0.05 mm. The total effective resolution is therefore
given by:

σ =
√
σ2

INT + σ2
MSL + σ2

DIV, (10.3)

and the signal, including smearing effects, is obtained by convolving the square wave
I(t) with a Gaussian function. The integral Iσ(t) =

∫
exp

[
−(t− s)2/(2σ2)

]
I(s) ds is

easily performed and reads:

Iσ(t) =

∞∑
k=−∞

B

[
(1−A) erf

(
d(fo + k)− t+ t0√

2σ

)
+

+A erf

(
d(1 + k)− t+ t0√

2σ

)
− erf

(
kd− t+ t0√

2σ

)]
, (10.4)

where the sum can be truncated to |k| 6 2 given that σ � d is expected for successful
detection of the periodic signal. Overall constants are absorbed into the parameter B,
and t0 accounts for a phase shift (displacement) of the periodic signal. The measured
contrast follows from the usual definition:

Cσ =
Imax − Imin

Imax + Imin
, (10.5)

where Imax (Imin) is the absolute maximum (minimum) of the Iσ(t) function. It is worth
noting that it would be possible to derive a similar analytical expression also if the smear-
ing effect of multiple scattering by the grating is not neglected. The parameters σ and
A (or C0) in equation (10.4) are strongly correlated. Typically a good fit to the data is
obtained with different combinations of these two parameters. Essentially a poorer res-
olution can mimic the effects of a lower initial contrast and vice versa. This ambiguity
is eliminated by suitable constraints on the fit parameters, consistent with a realistic es-
timate of C0 via Monte Carlo simulation. The analytical expression (10.4) also allows to
conveniently estimate the required resolution to detect a given periodic pattern. Several
examples are shown in figure 10.7, which suggests that a resolution significantly bet-
ter than 1µm is required to detect the 6µm positron interference pattern with sizeable
contrast. Emulsion detectors are among the few detectors capable of this resolution.

3Estimated with a Monte Carlo simulation in the relevant energy range for these exposures, given the
density and composition of the protective layer [14]. We do not give a detailed discussion of the error, which
is dominated by the 10% uncertainty on the thickness of the layer.
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Figure 10.7. Plot of the ratio Cσ/C0, obtained with equation (10.4) for some representative com-
binations of periods and open fractions. The parameter C0 is the original contrast of the periodic
pattern, while Cσ is the contrast after smearing with a resolution σ (as defined in equation (10.5)).
The ratio is largely independent on the choice of initial contrast C0.

Equation 10.4 should fit the observed intensity profile, however, to enhance the vis-
ibility of the pattern, it is convenient to fold the data over one single period dfold, by
constructing a histogram of t′ = tmod dfold. A fit of the resulting histogram with the
equation 10.4 is then performed with the constraint d = dfold. An example is shown in
figure 10.8. The goal of the analysis is then to find the optimal combination of parameters
(α∗, d∗fold) that maximize Cσ , therefore d∗fold is the best estimate of the signal periodicity.
A two-parameter blind search is performed on a coarse-grained grid; a representative ex-
ample is shown in figure 10.8, where Cσ is plotted as a function of (α, dfold). The optimal
values (α∗, d∗fold) are then determined by means of a standard minimization algorithm.
The described analysis is performed independently on each view of the analyzed emul-
sion surface.

An alternative method based on the so-called Rayleigh test [146] was applied. This
approach is effective in finding periodicities in unbinned data even with low statistics,
and does not depend on a specific model for the shape of the expected signal. The test
statistic, R, is defined as [146]

R(α, dfold) =

∣∣∣∣∣∣ 1n
n∑
j=1

exp

(
i
2πtj(α)

dfold

)∣∣∣∣∣∣ . (10.6)

where tj(α) labels the rotated coordinate of the j-th cluster in a view. For large n, the
quantity 2nR2 is distributed as χ2 with two degrees of freedom [146], and this inform-
ation can be used to evaluate the significance of a periodic signal from the hypothesis
of uniformly distributed points. Therefore, in full analogy with the previous method, a
two parameter search is made to find the optimal values (α∗,d∗fold) maximizing R.

Finally, it is worth noting that if the data from emulsion scans are used to measure
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Figure 10.8. Left: example of a fit of the distribution of the grains for the same view of Grating
A exposure displayed in figure 10.5. The measured contrast is approximately 50%. Right: Cσ as a
function of (α, dfold).

length scales, such as the grating periods, the systematic error on the conversion factor
between image pixels and actual position on the emulsion surface must be taken into
account. This constant is estimated by moving the horizontal stage a few hundreds of
microns and comparing the displacement of a pattern of clusters in microns (as it is
measured by the stage encoder) and in pixels (as it is observed by the camera). We have
estimated an uncertainty of approximately 0.8% on the measurement of this parameter.
A more detailed discussion will follow in the results section.

10.3.3 Monte Carlo simulation of positron transport

As mentioned in the previous section, Monte Carlo simulations with the PENELOPE
code were used to evaluate the transport of positrons through several materials. This
approach will also be applied in other parts of this thesis, therefore we will now briefly
discuss the results produced by this software package. More specifically, the pyPenelope
graphical user interface [145] for the PENELOPE code was used. This software allows
to conveniently define the materials and the geometry of the substrate through which
positrons must be propagated. A run of the program performs a full Monte Carlo simu-
lation of an ensemble of positron trajectories, allows graphical visualization of the sim-
ulated particles (see Fig. 10.9, left panel), and outputs a detailed result file with all the
scattering events for each trajectory. Each positron is also tagged according to its final
state (backscattered, transmitted, absorbed). Relevant information that can be inferred
from this file include the energy or exit angle distribution of transmitted positrons (see
Fig. 10.10). In the paper [143] results of a Monte Carlo simulation specifically tuned
for positrons were reported, and phenomenological analytical models for the stopping
profile (distribution of the positron implantation depth in a given sample), called gener-
alized Mahkov profiles were obtained from the simulations. As a cross check on the results
of the general-purpose PENELOPE software, we (successfully) reproduced the results
from [143]. An example is shown in the right panel of Fig. 10.9: the stopping profile
for a multilayer of aluminium (113 nm) and platinum (113 nm) over a silicon substrate,
obtained from the PENELOPE simulation is superimposed to the analytical model with
the parameters reported in [143], displaying very good agreement.
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Figure 10.9. Graphical output (trajectories) of a typical pyPenelope simulation (left). Stopping
profile of 10 keV positrons in a multilayer of aluminium (113 nm)/platinum (113 nm)/silicon, on
the (right). A total of 20000 trajectories were simulated to obtain this result, which is shown as an
example of the good agreement between pyPenelope simulations and the literature. The solid line
is an analytical model developed in [143], based on Monte Carlo simulations performed with a
specifically tuned code.

Figure 10.10. Distribution of the energy (left) and exit angle (right) for positrons at 12 keV ini-
tial energy, transmitted through a 700 nm thick silicon nitride layer, with a 10 nm gold coating,
representing the membrane of the QUPLAS-0 diffraction gratings. The exit angle β is defined as
β = tan−1(

√
x2 + y2/z), where the z-coordinate is normal to the exit surface from the membrane.
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10.3.4 Results of the exposures

For each grating sample, a main 30 min long exposure with the beam in ”focused” mode
(we recall, focused on the grating/emulsion plane) was performed. Subsequently, the
emulsion detector was replaced and a 2 hour long exposure performed with the beam
in ”unfocused” mode. The ”unfocused” mode of operation could theoretically feature a
significantly reduced beam divergence, therefore this repeated test was aimed at finding
evidence for a variation in the observed resolution brought by changes in the σDIV para-
meter (which could also be an interesting way of measuring the divergence of a beam
with an exposure on a single plane). For several reasons the measurements were not
conclusive in this regard (which I stress was not the main aim of the exposures). We
recall from the definition of the smearing parameter σDIV = ∆Xσθ that it is directly
proportional to the distance. Therefore failure to repeat the reciprocal positioning of the
emulsion and the membrane with sufficient accuracy might have hidden any contrast
increase brought by reduced beam divergence. Furthermore, the beam position was
characterized in the ”focused” mode, and laser alignment of the gratings performed
accordingly. It was however found that changing the potential on the focusing elec-
trodes induced a displacement of the beam spot, therefore the membrane was exposed
to the tails of the beam which could first of all feature different divergence characterist-
ics (there could be local correlations between spatial position in the beam spot and mean
divergence angle of positrons in that position). Secondly, due to the unintended drop in
intensity caused by the displacement, the signal density was lower than expected. The
resulting decrease in signal-to-noise ratio naturally introduces a spurious loss of con-
trast. For this reasons, the following analysis covers the main exposures in ”focused”
mode. It is however important to stress that the pattern was successfully recovered with
similar contrast in both cases. The beam spots on the emulsion surface are shown in
Fig. 10.11 for the two (”focused” and ”unfocused”) exposures of Grating A. The square
shape of the membrane is clearly visible, as well as the aforementioned displacement of
the beam spot with respect to the membrane.

Figure 10.11. Beam spots (as 2D histograms) on the emulsion for the two exposures of Grating
A. The square shape of the 3 × 3 mm2 membrane is clearly visible. Each bin covers a surface of
300× 300µm2.
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Grating A exposure

Exposure of Grating A was performed at the positron energy EA = 12 keV. Transport
through the multilayer of gold and silicon nitride (Si3N4) was simulated with the method
described in 10.3.3, to extract the energy distribution of the transmitted positrons. This
distribution is then multiplied by the function T (E), defined (we recall from section 10.2)
as the the probability for a positron of energy E to be transmitted through the emulsion
protective layer. The integral of the resulting distribution allows one to calculate the
fraction FC of positrons impinging on the active emulsion surface having traversed the
closed part of the grating. The corresponding fraction for the open part of the grating is
simply T (EA). Therefore, the estimated contrast is C0 = [T (EA)− FC ] / [T (EA) + FC ].
Accounting for the errors on the protective layer thickness, a contrast range 0.75 < C0 <
0.85 for C0 was estimated, and serves as a useful constraint for the fit parameters in
equation (10.4).

An analysis software was written to apply the folding technique outlined in section
10.3.2 to all the views in a region of interest. The software makes use of ROOT [147]
scripts managed as parallel jobs with the aid of GNU Parallel [148] and Python scripts.
The parameters (Cσ, α

∗, d∗fold, σ, fo) are extracted by means of this analysis, which searched
for the expected periodicity of 7µm. The 1.2µm pattern is instead undetectable with this
setup, as the following discussion will clarify. Figure 10.12 shows the maps of the con-
trast Cσ and the angle α∗ as a function of the coordinates of the geometrical center of the
view on the emulsion surface (Xv,Yv).
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Figure 10.12. Maps of the contrast Cσ (left) and of the optimal angle α∗ (right), as a function of the
coordinates of the geometrical center of the views (Xv,Yv).

The shape of the membrane is clearly visible in the contrast plot (left panel of Fig. 10.12,
compare with the beam spot in the left panel of Fig. 10.11). The contrast modulation
within the surface is due to several factors, as for example the intensity fall-off of the
beam (FWHM ≈ 2.3 mm) that reduces the signal-to-noise ratio near the edge of the mem-
brane. Misalignments between the membrane and the emulsion plane, or correlations
between transverse position within the beam spot and the angular spread of incoming
positrons could also be responsible for a position-dependent resolution effect. Contrast
does not drop abruptly near the boundary of the membrane region since the edge of the
views is not necessarily aligned with the edges of the membrane itself.
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The right panel of Fig. 10.12 shows an equally coherent result for the angle α∗ as expec-
ted for a genuine periodic signal.
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Figure 10.13. Scatter plots of the optimal period d∗ (left) and resolution σ (right), versus the
contrast Cσ

In Fig. 10.13 the scatter plot of the periodicity (left) and resolution (right) versus the
contrast are shown for each view. In the left panel, there is clear evidence of a coherent
periodic signal in a portion of the region analyzed: points with contrastCσ > 40% belong
to views which fall entirely inside the membrane region, where fit results are physically
meaningful and reliable. The remaining points are low contrast views outside of the
membrane. An interesting behaviour can be appreciated in the right panel of figure
10.13, and is explained as follows: the function Iσ(t), defined in equation 10.4, formally
reduces to a constant (that is, a periodic signal with Cσ = 0) either in the limit C0 → 0
or σ →∞. In this analysis the parameter C0 is bounded to the range obtained by Monte
Carlo simulation. In low contrast views a good fit is obtained for larger values of σ, as
the parameter C0 cannot approach zero. Therefore a correlation between low contrast
and high estimated σ arises. In analogy with the previous discussion, no correlation is
present for Cσ > 40%, that is on views well within the membrane region with a sizeable
contrast and clear periodic content.

Period Folding Rayleigh test

d∗fold (6.944± 0.002stat ± 0.050syst)µm (6.942± 0.002stat ± 0.050syst)µm

α∗ (−0.0034± 0.0002) rad (−0.0036± 0.0002) rad

C0 (75.5± 0.2)% -

Cσ (56.2± 0.5)% -

fo (75.5± 0.2)% -

σ (0.630± 0.004stat ± 0.005sist)µm -

Table 10.2. Best estimate of the relevant parameters for the exposure of Grating A. Results for the
optimal angle and period found by the folding and Rayleigh test methods are fully compatible.
Systematic errors stems from the calibration of the optical imaging system, as discussed in section
10.3.2.

The best estimates of the parameters have been obtained by restricting the calculation
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to the views which fall completely inside the membrane region: |Xv| < 1 mm and |Yv| <
1 mm, and are summarized in table 10.2.

As a consistently check the Rayleigh test method was also applied to the same set of
data. The two parameter search in the (α, dfold) plane has yields compatible results on
single views (compare the left panel of Fig. 10.14 with the right panel of Fig. 10.8). A
scatter plot of the optimal values (α∗, d∗fold) found on the set of views within the mem-
brane with both methods is shown in the right panel of Fig. 10.14. The best estimates
of the two parameters produced by the methods are compatible. We can conclude from
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Figure 10.14. Left: plot of the function 2nR2(α, dfold), defined from equation 10.6, for the same
view shown in figure 10.8. Right: scatter plot of the optimal values (α∗, d∗fold) for the views in the
membrane region for both the period folding and the Rayleigh test methods.

this analysis that a periodic pattern with an average contrast of approximately 56% was
detected, with features consistent with the theoretical model of equation 10.4. The meas-
ured period and open fraction are compatible with the nominal specifications provided
by the manufacturer. Furthermore, the measured overall resolution of 0.63µm reported
in table 10.2 is fully compatible with expectations, as described in section 10.3.2, and
such a value prevents the detectability of the 1.2µm pattern. This also means that with
a more optimized setup, with smaller membrane-to-emulsion distance and possibly a
thinner protective layer, the detection of periodic patterns down to the ≈ 1µm length
scale in a genuine interferometer, where no spurious smearing effects are present, is
likely feasible.

Grating B exposure

For Grating B a positron energy of EB = 10 keV was chosen as the best compromise
to minimize the amount of positrons transmitted by the closed parts of the membrane
(significantly thinner than that of Grating A) and maximize the detection efficiency (see
section 10.2). As described before Grating B is composed of several disconnected re-
gions, therefore an extensive analysis of the whole surface was not meaningful. A total
of 6 views displaying a clear periodic signal with the 20µm periodicity were considered,
and a typical raw microscope frame from one of such regions is shown in Fig. 10.15 (left
panel). Each contains two detectable periodic patterns, and this feature can be exploited
to improve the results of the analysis. Fig. 10.7 suggests that the contrast of the 20µm
pattern is essentially independent of the smearing resolution σ up to σ ≈ 2µm, there-
fore Cσ(20µm) ≈ C0(20µm). On the contrary, the 6µm signal is highly sensitive to this
parameter. Furthermore, the parameters C0 and σ are independent of the periodicities
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Figure 10.15. Left: raw microscope image from a single view containing one of the open regions
of the diffraction grating (see figure 10.3). The 20µm support structure is clearly visible, whereas
the 6µm periodicity in the orthogonal direction cannot be distinguished. Right: folded signal of a
single view for both periodicities at their optimal values of period and angle, compared with the
best fit with equation 10.4.

of the patterns and should therefore have the same value for both periodic signals. As
it is apparent in comparing the raw microscope pictures, the signal density was much
lower for this exposure, and the less consistent spatial quality of the periodic structure
across the surface lead to larger fluctuations in contrast and in the measured geometrical
parameters between the views. Therefore the more robust approach of first applying
the Rayleigh test method was to find the optimal values (α∗, d∗fold), and then fitting with
equation 10.4 was devised. Taking advantage as explained of both patterns, in partic-
ular a first fit the 20µm signal is made to extract a reliable estimate of C0 = C0 ± σC0

(the uncertainty σC0
is obtained from the fit). Subsequently, equation 10.4 is fit to the

6µm pattern with the constraint |C0 − C0| < σC0
to obtain an estimate of all the para-

meters, including σ. Finally, a fit of the 20µm pattern is performed again with suitable
constraints on both C0 and σ. The results of this procedure averaged over the views are
summarized in table 10.3. Folded signals at the optimal angles and period are shown for
a representative view in the right panel of figure 10.15, and compared to the best fit with
equation 10.4.

20µm pattern 6µm pattern

d∗fold (19.2± 0.1stat ± 0.2syst)µm (5.93± 0.02stat ± 0.05syst)µm

Cσ (60± 2)% (17± 1)%

C0 (60± 2)% (60± 2)%

fo (53± 1)% (57± 1)%

σ (1.58± 0.05)µm (1.52± 0.05)µm

Table 10.3. Best estimate of the relevant parameters for the exposure of Grating B, for the two
periodic patterns with nominal periodicities of 20µm and 6µm.

The angle α∗ is not reported, since for this grating the disconnected regions do not
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have the same orientation. The procedure effectively yields self-consistent results between
the two patterns as the values of C0 and σ are compatible.

10.3.5 Long exposure in High Vacuum

As apparent from the results above, with the full intensity of the beam and a single dif-
fraction grating, 30 min of exposure are fully sufficient to obtain a signal density much
higher than the intrinsic or induced background noise, as evidenced by the sizable con-
trast detected. However, as discussed in section 6.2, for the actual QUPLAS-0 expos-
ures it could be necessary to collimate the beam to improve its spatial coherence. This
would introduce an intensity loss of about one order of magnitude, in addition to the
transmissive loss with two gratings in place, which amounts to approximaly another
order of magnitude. This could mean that exposure times of the order of one or more
days are required. It was reported in the past that emulsion films undergo an increase
of background when kept in High Vacuum (HV) conditions (namely pressures lower
than 10−6 mbar) for several days [149]. However, the detector developed for QUPLAS-0
features a new gel composition, therefore the background increase was investigated by
repeating the exposure of Grating A at the same positron energy, after the emulsion was
kept in the vacuum chamber at a pressure of the order of 10−6 − 10−7 mbar for 1 week.
The pressure cannot be monitored in real time but only estimated4, since both cold and
hot cathode pressure gauges can produce stray light and increase emulsion background
grains.

Figure 10.16. Left: contrast map covering the membrane surface, for an exposure performed after
1 week in High Vacuum (HV) conditions, at a pressure & 10−7 mbar . Right: density of grains
measured at a distance of about 4 mm from the center of the beam spot, for different emulsion
samples and positron exposure times as a function of the total time spent in HV.

The contrast map in the left panel of Fig. 10.16 confirms that the periodic structure is
still well resolved after the emulsion was left in vacuum. A direct comparison with the
previous results would be misleading since the membrane/emulsion positioning was
altered. The background measurements are summarized in the right panel of figure
10.16. Each data point represents a different emulsion detector sample, specifically an

4The typical time for our chamber to reach the working pressure of10−6 mbar is well known. We also
performed a specific test with an emulsion film to better estimate the time needed to reach the target pressure
in the presence of additional outgassing by the emulsion detector.
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average value of the grain density measured at a distance of about 4 mm from the center
of the beam spot in four different corners. This distance is sufficient to give a good
estimate of intrinsic noise which is independent on the positron exposure time. As a
matter of fact, close to the beam spot, a background increase arises from the Compton
electrons. The reported data also confirm that the hot cathode gauge (which was in this
case left on for only 1 hour) introduces a measurable background increase.

The main result is that an increase of exposure time to high vacuum by two orders
of magnitude induces an increase in background of a factor around 1.5 with respect to
the average of the other four observations. This indicates that the background level is
not directly proportional to the time spent in vacuum, therefore long exposure times can
effectively increase the signal-to-noise ratio in our experiment.



CHAPTER 11

Positron interferometry: preliminary measurements

11.1 Planned measurement campaign and goals

A series of measurements was planned with the goal of observing matter-wave interfer-
ence in the Talbot-Lau interferometer: the setup was first configured to be at resonance
for a positron energy of E = 14 keV (see Table 8.1) using the rotational and longitud-
inal alignment techniques described in chapter 8. The first objective was then to observe
sizable contrast on the emulsion at the resonance energy. The incoming positron energy
could then be tuned in the 11−17 keV range. A modulation in contrast due to the change
in λdB(E) is the signature of quantum interference effects as opposed to moiré (geomet-
rical shadow) phenomena. The suggested range is limited from below by the sensitivity
of standard emulsions with the protective layer applied. Although positrons could be
detected down to 9 keV energy in our previous tests (see Table 10.1), a transmission loss
by more than a factor of two with respect to E = 14 keV would make a measurement at
E = 9 keV prohibitively long. The upper limit to the energy range is instead dictated by
the capability of stable operation of the electrostatic optics for long measurement times.

The contrast dependence on positron energy is shown in the left panel of Fig. 11.1
for ideal angular and longitudinal alignment. The expected peak contrast is in excess
of 90%, and the functional dependence on E displays a peculiar structure with a local
minimum atE ≈ 11 keV and a small contrast revival for lower energies (the same feature
could be appreciated also in Fig 6.3, where the total length was being varied instead of
the energy). The modulation in contrast in this energy range, expressed for instance by
the ratio:

C(11 keV)

C(14 keV)
≡ C11

C14

is however fairly small, with a minimum value of approximately 0.78. A sizable angu-
lar misalignment, as displayed in the right panel of Fig. 11.1 will reduce the observed
modulation in contrast even further. The same effect is produced by carrying out the
measurements away from the ideal detection plane. This is the main reason why it is
necessary to find the optimal alignment by maximizing the contrast at resonance before
the scan in energy is attempted. The dependence of the maximum contrast modulation
C11/C14 as a function of both L2 and φ is plotted in Fig. 11.2.

This analysis suggests that in the worst case scenario one must be able to reconstruct
the contrast of the interference signal with a relative uncertainty at the level of a few
percent. A good understanding of the relevant sources of noise is therefore required.

127
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Figure 11.1. Left: contrast of the interference pattern as a function of incoming positron energy
for optimal rotational alignment φ = 0. Parameters used for the beam were w0 = 1 mm and
l0 = 1.25 nm on the beam waist, located 5 cm before the first grating. Right: the same function is
plotted for different relative angular positions of the gratings. The characteristic structures as well
as the relative contrast modulations in the considered range are dampened as φ increases.
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Figure 11.2. Plot of the contrast modulation parameter C11/C14 as a function of φ and L2.
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11.2 Background noise estimation

In this section we will evaluate the relevance of the two main sources of background
noise in the interferometric measurement. We first consider the contribution of positrons
transmitted from the closed portion of the grating membrane (that we will also refer to
as the grating bars). Intrinsic emulsion noise is discussed in the following section.

11.2.1 Grating membrane transmission

Although the QUPLAS-0 gratings1 are a factor of three thicker than gratings used in the
past for similar experiments [38, 132], our energy is also significantly higher. A series of
Monte Carlo simulations has been performed with the pyPenelope software for a range
of incoming positron energies (from 1 keV to 18 keV in steps of 1 keV). From the Monte

Figure 11.3. Energy and angle distribution of 14 keV positrons transmitted by the 700 nm thick
grating membrane (details on the membrane are reported in section 10.3.1). The simulation was
carried out for 50000 incoming positrons.

Carlo simulated trajectories, the energy distribution of the transmitted positrons can be
calculated, and an example for 14 keV incoming energy is shown in the left panel of Fig.
11.3. The right panel of Fig. 11.3 shows the distribution of the emission angle from the
surface in the x-direction, namely βx, defined as tan−1(x/z) where the z-axis is normal
to the exit surface from the membrane. The emission has rotational symmetry along the
z-axis, therefore an analogous result is obtained for βy . The angular distribution can be
approximated by a Gaussian function with σβ ≈ 0.57 rad. This parameter is observed to
be essentially independent of the incoming positron energy. The pyPenelope software
[145] should realistically account for surface effects at the membrane exit, and in the lit-
erature there are experimental results [150] (angle-resolved cross-section measurements)
as well as independent Monte Carlo calculations [151] that indicate that a broad angular
distribution can indeed be expected.

Positrons transmitted by the grating bars will produce on the emulsion a uniformly
distributed pattern (with at most a Gaussian modulation on a large scale) that is superim-
posed over the interference signal. By virtue of the broad angular distribution, a simple
geometrical argument suggests that this source of noise can be neglected: if positrons

1The geometry of the membrane for the QUPLAS-0 gratings has already been described in section 10.3.1,
where it was labelled ”Grating A”.
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are propagated as ballistic particles from the plane of the second grating with a Gaus-
sian angular distribution with σβ = 0.57 rad, they are found to be distributed on the
detector plane with FWHMnoise ≈ 0.8 m. On the other hand the typical size of the detec-
ted positron spot in the interferometric measurements we performed is FWHMsignal ≈
6.5 mm. Therefore, in terms of surface density, the contribution of this source of noise
is suppressed by a factor proportional to (FWHMnoise/FWHMsignal)

2 ≈ 104. Although
we established that this is a negligible contribution by several orders of magnitude, for
completeness we report the additional results extracted from the Monte Carlo simula-
tions. We define the function T1(E) as the fraction of positrons transmitted by the silicon
nitride membrane with a well-defined initial energy E. The function T2(E) is instead
defined as the transmitted fraction assuming a non-monochromatic input energy distri-
bution given by the distribution outgoing from an identical membrane hit by positrons
with energy E. Both functions are displayed in Fig. 11.4. With the above definitions
the product T1(E)T2(E) essentially represents the transmission probability through two
consecutive identical membranes with initial positron energy E. A positron incoming
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Figure 11.4. Transmission probability T1(E) through one grating membrane with a monochro-
matic input energy E. The function T2(E) is the transmission probability for an input energy
distribution given by the output distribution produced by an identical membrane hit by positrons
of energy E.

on the first grating can follow one out of four different paths to the detector plane. It
can go through the open parts of both gratings, this constitutes the interference signal
that we model analytically. The probability of this event is POO =

(
fTo
)2. The parameter

fTo is the surface open fraction of the grating and the geometrical cut introduced by the
frame of the second grating is neglected given the small angular divergence of the beam.
Alternatively the particle can be transmitted by the closed portion of both the first and
second grating, with probability PCC =

(
1− fTo

)2
T1(E)T2(E)Tg , where Tg is the prob-

ability for a positron scattered by the first membrane with the angular distribution of
Fig. 11.3 to fall inside the 3× 3 mm2 frame of the second grating (otherwise the positron
is absorbed). Finally it can go unperturbed through the slits of the first grating and be
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transmitted by the membrane of the second, or vice-versa. The corresponding probabil-
ities are respectively POC =

(
1− fTo

)
fTo T1(E) and PCO =

(
1− fTo

)
fTo T1(E)Tg . Given

these quantities, a signal-to-noise ratio in terms of flux can be defined as:

SNRf(E) =
N0POO

N0 (PCC + POC + PCO)
=

(
fT
o

)2
T1 (1− fT

o ) [(1− fT
o ) T2Tg + fo (1 + Tg)]

(11.1)

where we suppressed the E dependence. A more interesting figure of merit is however
the signal-to-noise ratio in terms of average flux density, that is related to equation (11.1)
as follows:

SNRd(E) = SNRf(E)
Ssignal

Snoise
(11.2)

where the parameters Ssignal and Snoise are the surface covered by the signal and noise
spots respectively. Assuming both are well approximated by Gaussian distributions they
are proportional to the square of the FWHM parameter. Using Monte-Carlo simulation
of ballistic trajectories one can estimate Tg ≈ 0.3%, so most of the positrons scattered
through the bars of the first grating are stopped by the frame of the second gratings.
The functions (11.1) and (11.2) are shown in Fig. 11.5 assuming Ssignal/Snoise ≈ 10−4 as
mentioned before. The SNR due to residual transmitted positrons is energy-dependent
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Figure 11.5. Signal-to-noise ratio in terms of flux and flux density (as defined in equations (11.1)
and (11.2) as a function of positron energy E. The decresing trend is due to the increased trans-
mission through the grating bars at higher energies.

and changes by an order of magnitude in the energy range of interest. However, strong
suppression due to the wide angular distribution of scattered positrons ensures that this
contribution is effectively negligible in terms of flux density on the emulsion surface.
This feature is particularly relevant, as the effects of a sizeable energy-dependent contri-
bution to background noise would have to be carefully discriminated from the genuine
contrast modulation shown in 11.1.
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11.2.2 Intrinsic emulsion noise

A more sizable, but energy-independent source of noise is due to thermally induced
grains that naturally appear in emulsion films, as mentioned in chapter 10. This contri-
bution is difficult to estimate precisely, as it manifests non-negligible sample variation
between emulsion batches, and it also depends on factors such as emulsion storage and
transportation conditions and time spent in vacuum. The thermal component is by far
dominant with respect to sources such as cosmic rays and the tracks left by Compton
electrons generated by the 511 keV gammas which come both from positrons annihilat-
ing directly on the emulsion and from the 22Na radioactive source. In measuring exper-
imentally a density of background grains, which are sensibly assumed to be uniformly
distributed, one naturally accounts also for these negligible contributions. Intrinsic noise
density, as it is suggested by the experimental data in Fig. 10.16, is not directly propor-
tional to the exposure time or to the time spent in vacuum, at least up to times of the
order of 100 hours that were tested.

Therefore increasing the exposure time will generally result in an improved signal-
to-noise ratio. Exposure time must be selected to obtain sufficient grain density while
avoiding saturation. To aid this process, a preliminary measurement was first per-
formed, with the diffraction gratings removed, but the collimators in place and the emul-
sion in its final position for the interferometric measurement. The result of a 6 hours
long exposure at E = 14 keV and VF = 7 kV is shown in Fig. 11.6 in the form of a
two-dimensional histogram. A 7µm deep region of interest on the z-axis (normal to the

Figure 11.6. Two-dimensional histogram of the distribution of detected grains on the emulsion
surface after 6 hours of exposure at E = 14 keV and VF = 7 kV. Bin size is 200× 200µm2.

surface of the emulsion) was selected to produce Fig. 11.6, and the region |x| < 180µm,
|y| < 135µm was considered for each view (coordinates x and y are in the local refer-
ence frame of the single view). This cut is necessary to remove the overlapping regions
from adjacent views thus avoiding double-counting of grains. An approximately Gaus-
sian beam spot with FWMH = (6.5 ± 0.5) mm is clearly visible. This result is in good
qualitative agreement with the expected width estimated at VF = 7 kV from the empir-
ical linear relation (9.1): FWMH = (6.0 ± 1.4) mm. The grain density drops from about
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28.5 grains/1000µm3 at the center of the peak to approximately 3.5 grains/1000µm3 far
away from the spot. Therefore, assuming a uniform noise density, we can estimate a
peak signal-to-noise ratio, with respect to the intrinsic and gamma-induced background
of approximately SNRint ≈ 7 in these conditions.

11.3 Interferometric measurement

The positron flux during the measurement with no gratings was monitored with an
HpGe detector located to the side of the emulsion holder. Gratings were then moun-
ted and properly aligned, and an interferometric measurement was started with a new
emulsion film located in the exact same position. By the counting rate of the HpGe de-
tector (with careful subtraction of the laboratory background), the percentage of flux
transmitted through the gratings was estimated as Tg = (11 ± 1)%. This corresponds
to a satisfactory alignment between the interferometer and the beam axes, as sugges-
ted by Fig. 9.11 for the observed spot size. Knowledge of the actual flux relative to
the no-gratings measurement allows one to tune the exposure time for the desired grain
density. To match the density at which the test 7µm geometric fringe patterns were de-
tected in chapter 10, an exposure time Texp = 120 h was estimated. The beam spot on
the emulsion after exposure is shown in Fig. 11.7. The peak density of grains is about

Figure 11.7. Distribution of detected grains on the emulsion surface after 120 hours of exposure at
E = 14 keV and VF = 7 kV. Bin size is 300× 300µm2. A depth of 7µm around the positron signal
peak along the z-axis was selected.

55.5 grains/1000µm3 and drops to approximately 7.5 grains/1000µm3 outside the beam
spot. Consistently with the results reported in Fig. 10.16, an increase in noise density
is expected for longer exposures to vacuum (at the level of 10−6 mbar during the meas-
urement, inferred from the current draw of an ion pump, as all conventional pressure
gauges have to be left off).
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11.3.1 Data analysis: pattern finding

The following geometrical parameters were measured using the alignment techniques
outlined in chapter 8:

L1 = (118.1± 0.1) mm (11.3)
L2 = (578.8± 0.1) mm

φ0 = (30± 10) µrad

φ1 = (70± 10) µrad

Distances are set for resonance at E = 14 keV given the measured grating periodicities
(see equation (8.1), Table 8.1 and the related discussion). The angular grating align-
ment φ0 was estimated on the optical table (8.1) before the interferometer was inser-
ted into the chamber. After the week-long measurement the interferometer was put on
the measurement system2 and the rotational alignment evaluated as φ1. In both cases
φ � σφ ≈ 500 µrad, therefore sizable contrast was potentially expected. Nevertheless,
we will conclude that no periodic signal was detected in this exposure. This conclusion
is supported by the analysis methods outlined in chapter 10, in particular the Rayleigh
test, coupled with a comparison with Monte Carlo generated signals. In Fig. 11.8 we
show a two dimensional plot of the functionRT ≡ 2nR2(α, dfold), defined from equation
10.6. The number of generated points n = 30000 is the typical number of grains detected

Figure 11.8. Plot of the function
RT ≡ 2nR2(α, dfold), defined from
equation 10.6 as a function of the
rotation angle α and folding period
dfold for a Monte Carlo generated
periodic signal with 20% contrast,
α = 0 and d = 5.93µm. The peri-
odic pattern with n = 30000 points
was generated using the full analyt-
ical expression (5.11).

0.1− 0.05− 0 0.05 0.1
(rad)α

5.82

5.84

5.86

5.88

5.9

5.92

5.94

5.96

5.98

6

m
)

µ(
fo

ld
d

0

100

200

300

400

500

600

)
fo

ld
, d

α(2
2n

R

in a single microscope view at the center of the beam spot in the real measurement. A
clear peak in the (α, dfold) search is well visible (compare also with the experimental res-
ult of Fig. 10.14). The statistical significance of the result can be estimated by observing
that Rayleigh test function RT = 2nR2 calculated for an ensamble of uniformly distrib-
uted points is distributed as χ2(RT ; 2): the chi-square distribution with two degrees of
freedom [146]. One can define a function Prd(RT) as follows:

Prd(RT ) =

∫ +∞

RT

χ2(x; 2) dx, (11.4)

2The interferometer support allows sufficiently repeatable positioning, however one cannot exclude that
part of the observed drift is due to moving the apparatus between the chamber and the optical table. The
estimated variation in the quality of rotational alignment can therefore be considered an upper limit to the
actual shift occurred during the measurement.
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which represents essentially the probability that a uniformly distributed signal (with no
periodicity) produces a value of the Rayleigh test greater or equal than RT by random
chance. In other words, Prd is the p-value relative to the null hypothesis of a uniform
distribution. In Fig. 11.9 the calculated RT for Monte Carlo generated periodic signals
with varying contrast C is shown together with a parabolic fit of the form RT (C) =
aC2 + b. Note that in this case a single search on the expected period was performed,
therefore Prd consistently represents a p-value, as no corrections for multiple trials are
necessary. The function Prd(RT (C)) is also plotted (using the parabolic fit RT (C)). It

Figure 11.9. Scatter plot of RT vs. contrast C for an ensemble of Monte Carlo generated periodic
signals, each with n = 30000 points. In the inset the full rangeC ∈ [0, 1] is shown, and the data are
in good agreement with a parabolic fit. The dotted line shows the probability that the observed
RT is due to a statistical fluctuation: Prd, as defined in equation (11.4).

becomes vanishingly small already for contrasts of the order of 10% (with the chosen
statistics, that matches the grain density observed experimentally). This feature ensures
the reliability of the Rayleigh test to detect periodic signals with small contrasts which
are undetectable by visual inspection or direct fitting techniques.

The two-parameter Rayleigh test-based search was applied systematically on the
emulsion surface, as it was done to detect the test fringe patterns. In Fig. 11.10 we
compare the result of three representative views (labelled a,b,c) taken at the center of the
beam spot with three other candidates: a Monte Carlo generated view with comparable
statistics and 3% contrast, a single view from the blank measurement with no diffraction
gratings and a Monte Carlo generated view with uniformly distributed grains. By visual
inspection one can readily appreciate that the three views, although adjacent, do not dis-
play any recognizable peak near the same values of (α, dfold). Furthermore, comparable
maximum values of RT are observed in a view from the blank exposure with no diffrac-
tion gratings, Fig. 11.10(e), as well as for a Monte Carlo generated uniformly distributed
view, Fig. 11.10(f). We already mentioned that for independent realizations of uniformly
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RT two-parameter search
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(a) Interferometer,
view ”a”, n ≈ 30000.

0.1− 0.05− 0 0.05 0.1
(rad)α

5.82

5.84

5.86

5.88

5.9

5.92

5.94

5.96

5.98

6

m
)

µ(
fo

ld
d

0

2

4

6

8

10

12

14

)
fo

ld
, d

α(2
2n

R

(b) Interferometer,
view ”b”, n ≈ 30000.
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(c) Interferometer,
view ”c”, n ≈ 30000.
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(d) Monte Carlo generated
C = 3%, n = 30000.
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(e) No gratings
one view n ≈ 18000.
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(f) Monte Carlo generated
Uniform, n = 30000.

Figure 11.10. Comparison of two-parameter searches based on the Rayleigh test function RT =
2nR2(α, dfold), defined from equation 10.6, where n is the number of points forming the pattern.
The data considered in each case are indicated in the sub-captions. See text for a discussion of the
results.
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distributed points the expected distribution of RT is χ2(RT ; 2). In Fig. 11.10(f), RT is
calculated on a grid of 6400 combinations of the parameters (α, dfold). Although they
are not strictly independent realizations (as they are related by rotations), the observed
distribution of RT agrees reasonably well with χ2(RT ; 2) (see Fig. 11.11). Under the ap-
proximation that they are independent realizations, the probability to exceed the value
RT = 14, is 0.091%, yet the probability that at least one uniformly distributed realiza-
tion out of 6400 yields RT ≥ 14 is 99.7%. The realizations are strongly correlated with
their nearest neighbours, therefore an extended peak tends to develop around the single
combination of parameters that by chance produces a sizeable value of RT . Correlations
therefore explain the formation of structures even for uniformly distributed data. This
qualitative reasoning explains how several peaks that might appear significant at a first
glance arise in two-parameter searches even in the absence of contrast. On the contrary,
the Monte Carlo signal with non-zero contrast shown in Fig. 11.10(d) is the only example
to display a single well-defined peak within the parameter space. The two-parameter
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Two-parameter search results

Figure 11.11. For independent real-
izations of uniformly distributed
points, the Rayleigh test variable
RT follows a χ2(RT ; 2) distribution.
The results of the two-parameter
search shown in Fig. 11.10(f) are
only approximately distributed as
χ2(RT ; 2), due to correlations.
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Figure 11.12. Scatter plot of the op-
timal values (α∗, d∗fold) maximizing
RT found in the two-parameter
search on single views, for three
different cases: interferometric
measurement, the same measure-
ment rotated by π/2 and Monte
Carlo generated views with α = 0 ,
d = 5.93µm and 3% contrast.

search was applied to 130 views covering the region of the peak, and the optimal values
(α∗, d∗fold) maximizing RT are shown in Fig. 11.12 for the interferometric measurement.
For comparison we also show the results of the same analysis applied to the views ro-
tated by π/2, and to a set of Monte Carlo generated views with α = 0 , d = 5.93µm and
3% contrast. The rotated views are a sensible choice as a comparison signal as they have
the same grain count yet should not contain any periodic component. It is apparent that
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the results for the real data are randomly scattered and there is no evidence of a coher-
ent signal. The rotated views also display the same behaviour, unlike the Monte Carlo
generated signal with 3% contrast. In the latter case the results are clustered around
the expected values, as it was observed for the successful experimental measurements
reported in Fig. 10.14 (right panel).

11.3.2 Single-exposure distance scan

Several reasons could be put forward to justify absence of a periodic pattern. If the
predictions of the analytical model on the tolerances to misalignment are considered
realistic, then both longitudinal and rotational alignment should have been well under
control. However, as we already mentioned, the ideal detector position is very sensitive
to the ratio of the grating periods. A systematic error at the level of 1nm can shift the
detector position by several mm. To perform a scan in L2 would be prohibitively long,
therefore we implemented a solution that exploits the features of the emulsion detector.
A holder to place the emulsion at a 45◦ angle was devised, and is shown in Fig. 11.13.

Figure 11.13. Picture of the emulsion holder modified to keep the film at a 45◦ angle with respect
to the optical (z) axis.

The vertical position on the emulsion surface, namely along the y-axis in Fig. 11.13 thus
becomes correlated with the distance along the optical (z) axis. This in a certain sense
allows one to simultaneously perform the experiment at different L2 using different ho-
rizontal slices of the emulsion covered by the ∼ cm wide beam spot. This solution could
allow to observe the contrast modulation with L2 predicted by the theoretical model.
Naturally each sector on the emulsion will not be performing a fully independent exper-
iment, as non negligible beam divergence will mix together components at different L2.
One thus expects that the maximum observed contrast with this method could be lower
compared to an orthogonal detector. Nevertheless, preliminary results indicate that this
technique is effective to detect measurable contrast even a few mm away from the center
of the beam spot. These results are reported in the next chapter.



CHAPTER 12

First evidence of a periodic pattern

12.1 Measurement summary

Several exposures were performed with the tilted emulsion support in different exper-
imental conditions. In this chapter we focus on two measurements at E = 14 keV
(VF = 7 kV). In a first attempt with the emulsion located at the nominal distance
L∗2 = 578.8 mm, an indication of a periodic signal consistent with the expected features
was found at the edge of the beam. A second measurement was then carried out mov-
ing the emulsion in the direction suggested by the position of the observed signal, which
resulted in a dramatic improvement in contrast. In summary, two exposures will be con-
sidered in the following:

A. L2 = L∗2, E = 14 keV, uncoated emulsion, T ≈ 120 h

B. L2 = L∗2 − 4 mm, E = 14 keV, uncoated emulsion, T ≈ 116 h

For these measurements, we employed emulsion films prepared without the 1µm thick
protective layer. The lack of protective layer makes the films more sensitive to damage
due to external agents. For this reason some areas of the film were found to display an
increase in background density, especially close to the emulsion surface. However, on
average no significant background increase with respect to standard emulsion films was
measured. In particular the grain density in the bulk of the emulsion in the region of
the positron spot was measured at approximately 7.5 grains/1000µm3, consistent with
previous experimental results for similar exposure times. The capability to work with
no protective allows to extend the range of available energies, thus gaining access to a
much more sizeable contrast drop. The measured distances and rotation angles, denoted
with the same symbols as equation (12.1) were as follows:

L1 = (118.1± 0.1) mm (12.1)

LA
2 = (578.8± 0.5) mm

LB
2 = (574.8± 0.5) mm

φ0 = (30± 10) µrad

φ1 = (60± 10) µrad

where the distances LA
2 and LB

2 refer to the first and second exposures respectively. A
larger error on L2 is quoted with respect to the distances measured with the upright
emulsion. This is due to the fact that with a tilted emulsion L2 is correlated to the vertical
position of the beam spot on the detector plane, which is known at the level of 0.5 mm.
Both measurements were performed in the usual pressure range of 10−6 − 10−7 mbar.
The same analysis technique outlined in the previous chapter was applied to the full
scanned surface in both exposures.

139
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12.1.1 Results of exposure A

The optimal values (α∗, d∗fold) found for the 573 individual views analysed are shown in
Fig. 12.1. From the projected histograms, an increase in the density of points clustered

Figure 12.1. Scatter plot of the optimal period and angle (α∗, d∗fold) found via the Rayleigh test on
individual views. An increase in density close to the center of the parameter space is appreciable
from the projection histograms. A rectangular region of interest (ROI) around the peak density is
highlighted for visualization purposes.

around d∗ ≈ 5.9µm is visible. This feature was not observed in the previous interfer-
ometric measurements and is a first indication of the presence of a coherent periodic
signal on the surface. A fit to the folded histogram at (α∗, d∗fold) was also performed with
a sinusoidal function to evaluate the contrast. Views with a sinusoidal contrast C > 7%
and (α∗, d∗fold) contained in the region displayed in Fig. 12.1 will be highlighted. This
is particularly helpful to guide the eye in the following plots. First we show, in the left
panel of Fig. 12.2 a scatter plot of the center position of the views in global emulsion sur-
face coordinates (X,Y ), superimposed to a heatmap of the number of grains entering
the Rayleigh test analysis, labelled n. This quantity accounts for the cut on grain depth
(z-axis), which is performed using a Gaussian fit as described in section 10.3.2, and indic-
ates the shape of the beam spot. The highlighted views display a measurable contrast,
consistent values of (α∗, d∗fold), and are located mostly in the y > −112000µm region.
Their distribution is not regular, but it is apparent that at the very edge of the beam spot
the signal-to-noise ratio is at a minimum. Furthermore, the quality of the periodic pat-
tern that could be produced is expected to decay far away from the optical axis. In the
right panel of Fig. 12.2 a map of the sinusoidal contrast C over the emulsion surface is
displayed. The view with the highest contrast and value of the Rayleigh test (which we
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Figure 12.2. Left: scatter plot of the center position of each analyzed view. The color scale rep-
resents the number of points n selected for the analysis after the required cuts. This quantity is
essentially proportional to the beam intensity. Right: sinusoidal contrast C is represented in color
scale. The position of the single best view with the highest measured contrast (and also the highest
value of the Rayleigh test, as shown in Fig. 12.3) is marked. Views with contrast greater than 7%
are highlighted to guide the eye.

label best view) is marked, and is seen to be surrounded by a cluster of views with meas-
urable contrast. The result of the two-parameter Rayleigh test search and of the resulting
folding histogram is shown in Fig. 12.3 for the best view and for an adjacent view. To
better highlight the shape of the fringes the histogram is folded on 3d∗fold to show three
full periods. In the insets inside the histograms the measured parameters (α∗, d∗fold) are
reported, with error estimated as the standard deviation of a two-dimensional Gaussian
fit on the peak of the two-parameter Rayleigh test search. The sinusoidal contrast C is
also given, with error extracted from the least squares fit. The results outlined in this
section allow one to conclude the following:

• In a region of at least 0.7 × 0.3 mm2, the Rayleigh test provides strong statistical
evidence of a departure from a uniform distribution at a periodicity d = (5.88 ±
0.02)µm (weighted average of the two views). The p-value, corrected for mul-
tiple trials in the two-parameter search1 is approximately 1 × 10−13 and 9 × 10−8,
respectively for the two views.

• Folding and fitting with a sinusoidal function gives a measured contrast of the
order of 10± 1% (average of the two views) in the considered region.

• The center of this region is located at a vertical distance ∆y = (4.3± 0.1) mm from
the center of the beam spot (the position of which is estimated with a Gaussian fit).

With the tilted emulsion geometry, one expect that a signal appearing at a distance ∆y

off-axis, could be detected on the beam axis by moving the emulsion a distance ∆y/
√

2
(due to the 45◦ tilt) in the correct direction. In this specific case, given the orientation of
the emulsion holder shown in Fig. 11.13, the data suggest to move the emulsion towards
the second grating, to reduce L2.

1We ignore the fact that the trials are correlated and multiply Prd defined in equation (11.4) for the number
of trials M = 6400. This gives a conservative estimate of the p-value.
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Figure 12.3. Two-parameter Rayleigh test search and folding histogram over 3d∗fold for the best
view (top) at E = 14 keV, and an adjacent view (bottom). In the inset the parameters (α∗, d∗fold)
and the measured sinusoidal contrast C are reported. The number of points entering the analysis
is n ≈ 13000 in both cases.

12.1.2 Results of exposure B

For exposure B, the emulsion holder was moved 4 mm, to obtain LB
2 = (574.8± 0.5) mm.

Before discussing the results it is worth noting that this emulsion film belongs to a differ-
ent production batch than the film used for exposure A. Transportation conditions were
also different, as emulsions from this batch were delivered in aluminium boxes in an
attempt to reduce the possibility of surface damage2. The film displayed signs of surface
contamination, which was successfully removed by cleaning after development. The
observed efficiency was lower than expected (flux density reduced by almost a factor of
two, in spite of the same emulsion time and no detectable change in incoming positron
flux, as monitored by the HpGe detector). Intrinsic noise density was also higher than
usual, measured at approximately 11 grains/1000µm3. The data were analysed with the
usual approach: in Fig. 12.4 the optimal angle and period (α∗, d∗fold) is shown, found
via the Rayleigh test on individual views. Clear peaks are visible in the projected histo-
grams, which can be fit with a Gaussian function plus a linear background to locate the
position of the peak. d0

fold = (5.86 ± 0.02 ± 0.05syst.)µm, where we report the variance
of the Gaussian function as the uncertainty on the measured parameter, and we remind
that a systematic uncertainty on distances measurements performed with emulsions at
the level of 0.8% was estimated. Statistical error from the fit on the parameter d0

fold would

2In comparison to the standard packaging, which consists in a simple opaque plastic sleeve, sealed against
light leaks.
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be 0.001µm, which is negligible with respect to the systematic error. Furthermore, due
to the tilt of the emulsion, it is expected that the period at different Y , hence at differ-
ent L2, varies slightly as d3(L2) = d1L2/L1, as suggested by equations (4.14) and (4.15).
Therefore, the variance of the Gaussian function is a more sensible choice for the un-
certainty on d0

fold, which serves as a semi-quantitative estimate of the average observed
period. This is different (although compatible within the errors) from the expected value
d3 = (5.93 ± 0.01)µm calculated in equation 8.2 from the measured grating periods. A

Figure 12.4. Scatter plot of the optimal period and angle (α∗, d∗fold) found via the Rayleigh test
on individual views. An increase in density close to the center of the parameter space is appre-
ciable from the projection histograms, and a Gaussian fit is superimposed. A rectangular region
of interest (ROI) around the peak density is highlighted for visualization purposes.

smaller period is fully consistent with the observed L2 position of the fringes, as we will
now discuss with the aid of Fig. 12.5: on the left panel the number of positrons in the
view is shown, and the position of views with sinusoidal contrast C > 15% belonging
to the region of interest displayed Fig. 12.4 is superimposed to the color scale plot. Si-
nusoidal contrast is also plotted on the right hand panel on the full scanned area. A
large area (tens of square mm) with significant contrast, up to 32% is visible. By com-
parison with the left hand side plot, it is apparent that this region is populated by views
with a consistent optimal period d∗fold and angle. This already is a strong signature that
a periodic signal has been successfully produced and detected on the emulsion surface.
We recall that with an upright emulsion at the expected distance L2 = (578.8± 0.1) mm
no periodic signal was detected. On the other hand, from the Y position of maximum
contrast (see also Fig.12.6) one can infer that the effective position of the observed signal
is Lobs

2 ≈ 572mm. Assuming for simplicity that this is indeed the position of maximum
contrast (which has to be assessed with further measurements), the value of the ratio
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Figure 12.5. Left: scatter plot of the center position of each analyzed view. The color scale repres-
ents the number of points n selected for the analysis after the required cuts. Views with contrast
greater than 15% and belonging to the period-angle region of interest displayed in Fig. 12.4 are
highlighted to guide the eye. Right: sinusoidal contrast C represented in color scale.

r = d1/d2 compatible with the experimental is calculated from:

ηobs =
Lobs

2

L1
=

1

r − 1
,

hence robs ≈ 1.206, while the expected value was r = 1.2040± 0.0005. The experimental
observation that a periodic signal appears for smaller L2 than expected (and, consist-
ently, with a smaller period) can be explained by a deviation on the expected d1/d2 of
the order of 0.2%. It is plausible that either the experimental error on the determina-
tion of the periods (σd = 0.3 nm) has been underestimated or that there are systematic
errors in the measurement procedure. A comparison with a different measurement tech-
nique is needed to assess the validity of these hypotheses. We recall that the optimal
L2 position is very sensitive to r: a systematic error of 1 nm (0.1% level) on one grating
period would displace the ideal detector plane by approximately 3 mm. In conclusion,
the periodicity of the detected signal and the distance at which it appeared are fully con-
sistent. It is interesting to examine the large-scale features of the high-contrast region, in
particular its width in the Y -direction, which is connected to the ”longitudinal width”
of the periodic fringes, predicted by the parameter σL2

appearing in equation (6.2), in
the framework of a quantum-mechanical description. It is worth noting, however, that
a contrast modulation along the optical axis is also predicted for a moiré deflectometer,
with the particles assumed to follow simple ballistic propagation. We will further dis-
cuss this point with the aid of a Monte Carlo simulation in the Conclusion (see Fig. 13.2).
To extract a contrast profile, views centered in the range |X −X0| < 500µm were selec-
ted, where X0 = 1.05 · 105 µm is the position of the view with the maximum observed
contrast (see Fig. 12.8). A Gaussian fit (with a constant background) was then performed
on the contrast of the selected views as a function of Y , as shown in Fig. 12.6. Fit results
for the relevant parameters (variance and location of the maximum) are:

σY = (910± 50)µm (12.2)
Y0 = (−111400± 45)µm (12.3)

Given the emulsion tilt, the corresponding width of the contrast modulation as a func-
tion of longitudinal distance is σz = σy/

√
2 ≈ 650µm. In comparison the predicted
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width σL2
, according to the quantum-mechanical model and realistic beam parameters,

is of the order of σL2
≈ 2 mm. This is displayed in Fig. 9.9. One possible interpretation

Figure 12.6. Sinusoidal contrast of each view as a function of Y - position of its center. A region of
interest is selected, as shown in the inset, and the corresponding views are highlighted. The solid
line is a fit with a Gaussian function plus a constant background, performed on the selected views
only.

of this discrepancy is that contrast was still rising for increasing Y (thus decreasing L2

along the z-axis), but positron density was also rapidly decreasing (the high-contrast re-
gion is close to the edge of the beam). The combination of the two effects could explain
the observed approximately Gaussian shape with a smaller width than predicted. The
soundness of this reasoning must be assessed experimentally by moving the emulsion
further towards the second grating to perform a scan in the z direction. Furthermore, if
this interpretation is correct, at the optimal emulsion position, the peak of the contrast
modulation along Y should coincide with the center of the beam (peak beam intensity).
On the other hand, there could be effects, unaccounted for by the analytical model, that
produce a distortion of the focal plane of the interferometer, in such a way that high con-
trast is recovered only off-axis. In other words, the optical axis of the beam might not
necessarily coincide with peak beam intensity. Several deviations from ideal conditions
indeed appear in the experimental setup: lack of parallelism between the gratings (at
the level of a few mrad), or between the gratings and the beam axis, an irregular (non
Gaussian) beam profile, finite grating size.

We now focus on the results of the Rayleigh test: in Fig. 12.7 the distribution of the
maximum value of RT is shown. A sizable fraction of the views is above RT = 100, a
threshold for which the p-value against the null hypothesis of a uniform distribution is
already vanishingly small (Prd < 10−18).
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Figure 12.7. Distribution
of the Rayleigh test res-
ults for the 1620 views
analyzed. The selected
views in the high-contrast
region (see Fig. 12.5) and
the remaining views are
shown as two separate
histograms (independ-
ently normalized to unit
area).

0 50 100 150 200 250 300
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10 3

10 2

Rayleigh test distribution
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Figure 12.8. Panel (a) is the depth distribution of the clusters (or grains), showing a clear peak close
to the surface of the emulsion. A Gaussian fit is used to estimate the width of the cut as explained
in chapter 10. Panel (b) shows the x-y position (in local view coordinates) of the grains remaining
after the cut in z. Panel (c) is the result of the two-parameter Rayleigh test search, and the folded
histogram at the optimal angle and period (α∗, d∗fold) found via the Rayleigh test is shown in panel
(d). Fit with sinusoidal fit yields a contrast of 32± 2%.
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The best result of RT = 323.8 corresponds to a view with 32% contrast. Relevant
plots for the analysis of this view are shown and described in Fig. 12.8 and Fig. 12.9
as a representative example. The number of grains entering the analysis after select-

Figure 12.9. Two-parameter Rayleigh test search and folding histogram over 3d∗fold for the best
view (top) at E = 14 keV, and an adjacent view (bottom). In the inset the parameters (α∗, d∗fold)
and the measured sinusoidal contrast C are reported. The number of points entering the analysis
is n ≈ 13000 in both cases.

ing a x-y-z region of interest following the usual approach is n = 6321. Average volu-
metric density of grains in the bulk of the emulsion in this view can be estimated as
11± 1 grains/1000µm3. Under the hypothesis that no significant increase in noise dens-
ity occurs close to the surface (which is a conservative assumption), the number of back-
ground noise grains entering the analysis can be roughly estimated as nbckg = 2800±300.
With this information one can estimate the original contrast of the interference fringes,
before introducing noise and finite position resolution, for instance by means of a Monte
Carlo simulation based on the profile predicted by the analytical expression (5.11). A
x-y distribution, which includes uniformly distributed points to represent noise, and a
position resolution (0.1µm was assumed) can be generated. The generated view is then
analyzed with the same software used for the experimental data. The contrast C0 of
the analytical signal is controlled by3 the parameter φ from equation (6.5). We do not
attempt a quantitative estimate and only provide an example for comparison: with the
measured signal-to-noise ratio, fringes with an initial contrast C0 = 0.6 (60%) yield aver-
age detected sinusoidal contrast 〈C〉C0=60% = 0.32, Normally distributed with standard

3This choice is arbitrary and was made for convenience, the exact shape of the function weakly affects the
result in this case.
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deviation σC0=60%
C = 0.01. Fig. 12.9 shows an histogram folded over three periods ob-

tained from the same view. The values reported in the inset for d∗ and α∗ are obtained
via the Rayleigh test, while the sinusoidal contrast is taken from the fit on the folded
histogram on a single period d∗. This is a more robust estimate of the contrast, however
a sinusoidal fit over three periods is superimposed to guide the eye (which still yields a
contrast compatible with the quoted value).
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CHAPTER 13

Conclusion and future directions

QUPLAS-0: summary of the results

The design and experimental implementation a Talbot-Lau positron interferometer for
the QUPLAS-0 experiment was the main goal of this thesis. In Part II a theoretical model
able to account for the most relevant features of the beam was introduced, and a novel
period-magnifying working regime was identified. As discussed in Part III, the capab-
ility to detect micrometric-scale fringe patterns with nuclear emulsion detectors was as-
sessed experimentally with test patterns. This allowed to develop and validate effective
analysis techniques which could be readily applied to the real interferometric signal.

In chapter 12, clear evidence of the detection of a periodic signal consistent with the
theoretical expectations was provided. Based on these results, a measurement campaign
could be arranged: first to perform a scan in detector position (taking full advantage
of the tilted emulsion configuration), then to assess the quantum-mechanical origin of
the signal. The unique signature of quantum matter-wave interference is the energy (or
de Broglie wavelength) dependence of contrast at fixed interferometer geometry. The
expected contrast modulation is shown in Fig. 13.1 for a wide range of energies. This
peculiar functional dependence is markedly different from the constant behaviour pre-
dicted for a classical moiré deflectometer. Contrast for an angular misalignment much
larger than the predicted accuracy of the alignment protocol is also shown in Fig. 13.1.
The observed effect is to smooth out the secondary peaks around resonance. It is reas-
onable to expect that other deviations from the ideal conditions assumed in the model
(such as indefinitely extended and perfectly parallel gratings) could produce a similar
result. The region from 3 keV to 14 keV is particularly promising as two full contrast
revivals could be observed. This region was initially believed to be impossible to study
with emulsion detectors, as the protective layer would stop positrons below E < 9 keV.
The latest results have shown that uncoated emulsions can operate reliably even for
long data taking runs in high vacuum conditions. Therefore, it is likely that the rapid
contrast drop in the low energy region can be exploited to obtain strong evidence of a
non-constant behaviour. This result would have been very challenging to prove from an
experimental point of view if positron energy were restricted to the 11 − 17 keV range.
Regardless of its classical or quantum-mechanical origin, the observation of a periodic
signal in the QUPLAS-0 apparatus is a significant result. As a matter of fact, the align-
ment requirements of a moiré deflectomer and of a Talbot-Lau interferometer with the
same geometry are comparable. This statement applies both to rotational (see Fig. 6.8)
and longitudinal (see Fig. 13.2) alignment. As a consequence, evidence that a periodic
signal was generated from the two-grating arrangement and successfully detected in the
QUPLAS-0 layout implies that the device fulfils the requirements in terms of alignment,
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Figure 13.1. Fringe contrast as a function of energy, normalized to the resonance value. The
QUPLAS-0 interferometer si considered at resonance for E = 14 keV and two representative ro-
tational alignment conditions are considered. No contrast modulation with energy is expected, in
principle, for a moiré deflectometer.

Figure 13.2. Contrast dependence on L2 for a moiré deflectometer with the same geometry of the
QUPLAS-0 setup. In the Monte Carlo simulation, a Gaussian transverse beam profile is assumed
on the plane of the second slit, with a width matched to the quantum-mechanical model (see (9.4)
and the related discussion). Ballistic trajectories are then propagated through the gratings acting
as intensity masks. The angle with respect to the optical axis is drawn from a Normal distribution
tuned to produce a beam spot on the detector plane with FWHM ∼ 6.5 mm, to match the observed
size. An approximately Gaussian contrast profile with standard deviation σM is retrieved. The
dashed line is the prediction of the quantum-mechanical model, significantly wider. Although
model-dependent, this difference might be useful to discriminate classical from quantum. The
tilted emulsion gives experimental access to a contrast profile with a single exposure.
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beam quality and detector performance to observe matter-wave interference. The exper-
imental results reported in chapter 12, although preliminary, prove that the QUPLAS-0
setup is working ”at least” as moiré deflectometer for positrons.

Future directions

QUPLAS-0

Strong evidence to support the quantum-mechanical origin of the periodic pattern pro-
duced by the QUPLAS-0 interferometer was actually obtained with the experimental
setup and techniques described here1. Improving the quality of the measurements re-
quires several technical upgrades: first of all the current source intensity is 5 mCi there-
fore with a new 50 mCi source (the maximum intensity available), positron flux can be
increased by an order of magnitude, to ∼ 4 × 104 e+/s. The experiment will remain in
the single-particle regime (transit time through the interferometer is of the order of nano-
seconds), but shorter exposure times, coupled to a manipulator which moves the emul-
sion to perform multiple exposures on the same film will make possible a much finer
optimization of the detector position. Impact of beam focusing and collimation could
also be studied more in details. Furthermore, better characterization of the beam (thus
determination of its parameters) would be achieved using an MCP detector coupled to
a phosphor screen to image the beam directly, even performing a scan along the op-
tical axis. This could likely improve the beam-interferometer alignment to maximize
the transmitted intensity and potentially increase the observed contrast. The synergy of
these improvements will hopefully allow to compare experimental results with the ana-
lytical model in a more quantitative fashion. A comparison with electrons in the same
setup to search for potential discrepancies (for instance due to surface interactions with
the gratings), could then become feasible.

QUPLAS-I and QUPLAS-II

Increased beam intensity is also crucial for the planned future phases of the experiment.
In chapter 3 (see also Appendix A) we have already reviewed the technical develop-
ments needed to tackle positronium interferometry and, possibly, measure the gravita-
tional acceleration of positronium. An interesting option that could be more promising
in the short term is to exploit the negative positronium ion, Ps−. This system can be pro-
duced by implanting slow positrons on metallic surfaces coated with alkali metals (such
as Na [152]). Ps− is very short-lived (τ ∼ 0.47 ns), but as a charged particle it can be
accelerated electrostatically, and ortho-Ps can be produced via a laser-driven photode-
tachment process[152], to form an energy-tunable Ps beam. A Talbot-Lau interferometer
for ground-state Ps atoms with kinetic energies of several keV could make use of the
same gratings and configuration of QUPLAS-0. Slow (v ∼ 104 m/s) Rydberg-excited
positronium, with all the related complications, naturally remains the only viable option
for gravity measurements based on Talbot-Lau interferometry. I am hopeful that the
results contained in this thesis can be a tiny contribution towards this ambitious goal.

1I took part in all the process from data taking to data analysis, discussion and editing of the results. How-
ever, since the activity took place after the thesis draft was submitted to the referees (and also for the sake of
brevity) detailed results are not included in the final version of this thesis. They are reported in the preprint
titled First observation of antimatter wave interference, arXiv:1808.08901, 2018.
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APPENDIX A

Positronium in external fields

This appendix contains several results of interest for the QUPLAS experiment, related to
the dynamics of (Rydberg) positronium atoms in external magnetic and electric fields.
A semi-classical model, called the classical trajectory Monte Carlo (CTMC) [153] approach
is introduced and used to evaluate the influence of stray magnetic field on a possible
gravity measurement. Finally the motion in electric field (manipulation of Ps atoms via
the Stark effect[154]) is discussed, both using the standard point-like description of the
atom and CTMC simulations. Good agreement was found between these techniques.
This result suggests that the CTMC approach could be used to simulate the motion of
Ps also for very highly excited states in strong and rapidly varying electric fields where
the point-like approximation might become unreliable. We also report the results of a
calculation of ionization rates in external electric fields for highly excited states. These
data are not readily available in the literature and could be necessary for the develop-
ment of position-sensitive detectors for Ps. While many simulation results are essentially
preliminary, they are useful to set future directions in the preparation of the following
QUPLAS phases.

A.1 Theoretical background

To introduce the CTMC approach for the simulation of the trajectories of Ps atoms , we
start from the Hamiltonian of two single particles (of charge e1 and e2), bound by the
Coulomb potential V (|r|) = e1e2/ |r|. This semi-classical description is well-suited for
the highly-excited Rydberg states, where the separation between the two particles is very
large. Suppose that the bound particles are moving in an external magnetic and electric
field, represented respectively by the vector and scalar potentials A(r) and φ(r). Then
the Hamiltonian reads [153]:

H =
∑
i=1,2

{
1

2mi
[pi − eiA(ri)]

2
+ eiφ(ri)

}
+ V (|r1 − r2|), (A.1)

where the usual definitions of the canonical momenta pi and coordinates ri apply. The
index i = 1, 2 labels the two interacting particles. We now specialize this equation to
the case of positronium, so we fix e1 = e = −e2 and m1 = m2 = m. Furthermore
we consider the case of a constant and uniform magnetic field B and fix the symmetric
gauge for the vector potential:

A(r) =
1

2
B× r

155
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The Hamiltonian thus reduces to:

H =
1

2m

{[
p1 −

e

2
B× r1

]2
+
[
p2 +

e

2
B× r2

]2}
− e2

|r1 − r2|
+ eφ(r1)− eφ(r2) (A.2)

A change to a more convenient set of variables is usually performed [153]:

(r1,p1, r2,p2)→ (R,K, r,p),

where K is called the pseudomomentum. In the absence of an electric field (or for con-
stant and uniform electric fields) it is a constant of motion. The exact definition of the
coordinate transformation reads:

R =
r1 + r2

2

K = p1 + p2 +
e

2
B× (r1 − r2)

r = r1 − r2

p =
p1 − p2

2
− e

4
B× (r1 + r2)

(A.3)

It can be checked that equation (A.3) is a canonical transformation which preserves the
correct commutation relations. For instance:

[pi,Kj ] =
[

p1i−p2i

2 − e
4εilmBl (r1m + r2m) ,p1j + p2j + e

2εjlmBl (r1m − r2m)
]

(A.4)

= − e2Bl (εjlmδim + εilmδjm) = 0.

With similar calculations one can prove the following:

[Ri,Kj ] = δij

[ri,pj ] = δij

[ri,Rj ] = [Ki,Rj ] = [pi,Rj ] = 0

(A.5)

Equation (A.3) is easily inverted and introduced in the Hamiltonian (A.2) to yield, after
some algebraic manipulation:

H =
1

2m

{
2p2 + K2/2 +

e2

2
(B× r)

2 − eK (B× r)

}
− e

2

|r|
+eφ (R + r/2)−eφ (R− r/2) ,

(A.6)
in accordance with the result quoted in [153], generalized with the addition of an external
electric field term. The equations of motion following from (A.6) read:

Ṙ =
1

2m
[K− e (B× r)]

K̇ = −e [∇R (φ (R + r/2)− φ (R− r/2))]

ṙ =
2p

m

ṗ = − e

2m
(B×K) +

e2

2m
B× (B× r)− e2 r

|r|3
− e [∇r (φ (R + r/2)− φ (R− r/2))]

(A.7)

In the specific case of a constant and uniform electric field, namely φ(r′) = E · r′, the
pseudomomentum is conserved, and a simple constant term −eE appears in the equa-
tion of motion for p.
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A.1.1 Selection of the Ps initial state

Positronium is a quantum-mechanical system. In the semi-classical approach we are es-
tablishing, it is needed to find appropriate initial conditions that well represent a specific
quantum-mechanical state with well-defined quantum numbers. In the unperturbed
case (i.e. without electric and magnetic fields), the Hamiltonian reduces to the familiar
form:

Hunp =
p2

2µ
− e2

|r|
,

where µ = 0.5 is the reduced mass of the system. This is the Hamiltonian of the well-
known two-body Kepler problem. Angular momentum and energy are constants of
motion in this setting, moreover closed trajectories are ellipses, and the momentum is
orthogonal to the position vector at the aphelion and perihelion of the trajectory (see Fig.
A.1 for a definition of the symbols). Conservation of energy and momentum implies the

Figure A.1. Kepler orbit of the relative
coordinate r. The momenta pP and
pA are orthogonal to the position vec-
tors rP and rA at the perihelion P and
aphelion A respectively.

following relations: p2
A −

1

rA
= p2

P −
1

rP
= En

pArA = pP rP = Ll

(A.8)

which can be related to the quantum-mechanical expressions (in atomic units) for energy
En = − 1

4n2 and modulus of the angular momentum Ll =
√
l(l + 1) as a function of the

principal (n) and orbital (l) quantum numbers. Solving the above system of equations
one obtains: 

rA = 2n2 + 2n2

√
1− l(l + 1)

n2

pA =

√
l(l + 1)

rA

(A.9)

for the initial conditions as a function of the quantum numbers. For convenience we
defined initial conditions on the aphelion, but to span all the phase space in a typical
Monte Carlo simulation, the generated initial vectors will be rotated randomly in three-
dimensional space. Furthermore, given that the period Torb of the orbit is known, to
generate initial conditions at any point on the allowed trajectory, a preliminary evolu-
tion with the unperturbed equations of motion for a randomly generated time tpreev ∈
[0, Torb] can be performed before the actual simulation of each atom starts. This proced-
ure should provide sensible initial conditions that well represent the quantum state, at
least in a weak field regime, where the assumption of an initially unperturbed state is
sensible. For strong field regimes, a form of adiabatic switch-on of the external field on the
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states prepared with the recipe outlined above can be considered [155]. We now discuss
the dynamics of Ps in some interesting cases using the CTMC formalism.

A.2 Homogeneous magnetic field

The assumption of a homogeneous magnetic field is adequate for the magnetic field of
the Earth, which already has a sizeable impact on the motion of positronium. We start
from the definition of the pseudomomentum K in terms of the physical velocity of the
center-of-mass:

K = MPsvPs + eB× r. (A.1)

This result follows either from the fourth of equations (A.7) or from the definition of the
mechanical momentum in terms of the canonical momentum, namely:

pmech
i = pi −

e

2
B× ri

The motion of Ps in a homogeneous magnetic field has been studied in [153] in 1991,
where the authors state that the equations cannot efficiently be solved in Cartesian co-
ordinates, and a complicated change of variables and integration scheme is devised.
However, I found that it is now possible to reproduce with little computational effort, all
the results of the paper directly in Cartesian coordinates1 (see Fig. A.2 for an example).
The study [153] focuses on a high magnetic field regime (B ≈ 1T ) in which a chaotic

Figure A.2. Left: plot in the ρ-z plane of the relative coordinates, where ρ =
√
x2 + y2, for the same

initial conditions of the reference paper [153]. Right: time dependence of the absolute value of the
center of mass position, for the same trajectory. All axes are in atomic units. This result, reported
in Figure 2 in [153] is reproduced in a fraction of a second directly in cartesian coordinates with
the above mentioned methods.

behavior is possible2. Furthermore the constraint K = 0 is imposed, however this is not

1In particular, all the simulations were performed with standard numerical methods such as the Dormand-
Prince [156] or Fehlberg [157] Runge-Kutta type solvers provided by the Odeint [158] C++ library.

2In the regime of interest for QUPLAS, no evidence of chaotic behaviour was found. We remark that in the
same conditions considered in [153] direct integration in Cartesian coordinates still correctly predicts a chaotic
behavior.
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a particularly interesting choice. According to equation (A.1), fixing K = 0 is equival-
ent to setting a particular value of the Ps velocity, that depends on the magnetic field
and on the initial condition on the internal coordinate, r0 (since K is a constant of mo-
tion). The typical initial values chosen in [153] correspond to an extremely small (and
experimentally unrealistic) Ps speed VPs ≈ 10 m/s.

We focus for definiteness on a Ps velocity VPs = 800 m/s, and assume the atoms
travel horizontally over a distance L = 1 m, in the magnetic field of the Earth. In a
dipole approximation, the radial and tangential components of the magnetic field are
given by the following expressions [159]:

Br = −2B0

R3
sinλ (A.2)

Bθ =
B0

R3
cosλ (A.3)

where B0 = 3.12 · 10−5 T is an empirical constant, λ is the latitude and R = r/RE is
defined in terms of the distance to the center of the Earth r and the mean Earth radiusRE .
Inserting for instance the data of the L-NESS lab in Como (coordinates N45◦48′4.376′′,
E9◦5′33.782′′ and an elevation of 219.4 m above sea level) we find:

Br = −4.479× 10−5 T

Bθ = 2.177× 10−5 T

Without loss of generality, we can fix a Cartesian laboratory reference frame with the

g = −gûz

Figure A.3. Laboratory reference frame for Ps gravity measurement. Atoms travel in the hori-
zontal direction forming an angle θ with the tangential component of the Earth magnetic field.

z-axis oriented vertically. That is the direction in which we would be observing the
interference pattern for gravity measurements (see Fig. A.3). We can orient the frame so
that the magnetic field reads:

B = (Bθ, 0, Br)

The positronium atom then travels in the x-y plane. The solution of equations (A.7) is
most conveniently carried out in a reference frame in which the magnetic field is oriented
along one coordinate axis. So we just transform the initial conditions with a rotation
about the y-axis of an angle φ = atan(Br/Bθ), that orients B purely along z. The final
position is then rotated back to the laboratory frame.
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Trajectories in an homogeneous magnetic field

Evaluating the first of equations (A.7) with the initial conditions for the relative coordin-
ates r0 = 1250 and p0 = 0.02, consistent (in atomic units) with a Rydberg state n = 25
and l = 24 yields:

|B× r0|
|K|

≈ 10−5 (A.4)

where K is a constant of motion. So we expect an essentially linear motion on a large
scale with small (O(10−5)) perturbations. The numerical solution confirms this predic-
tion. Figure A.4 compares the law of motion Y (t) of the y-coordinate of the center of
mass for B ≈ B0 and B = 1 T. As discussed in Fig. A.4, small oscillations are invis-
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Figure A.4. Plot of the time evolution of the Y center of mass coordinate in a weak B ≈ B0 mag-
netic field (left) and in a strongB = 1 T field (right). Time scale is in atomic units, the plotted range
corresponds to approximately 1 ns. On this time scale, as predicted, local periodic perturbation of
linear motion are totally negligible in a weak field regime. Still in large fields, the perturbations
appear periodic and if they are averaged out the trend is clearly linear.

ible on macroscopic time scales in a weak field regime. Consider also that the field will
be further reduced by applying a magnetic shielding of a factor 100 or 1000, feasible by
means of a multi-layer mu-metal shield. The most sizable effect is what the the equation
of motion already tells us: the center of mass moves with an effective velocity that is
modified by the presence of the magnetic field:

Ṙ = VPs → Ṙ = K/M.

Thus we can expect a deviation from the unperturbed trajectory that we want to estim-
ate. We will evaluate the deviation vector:

∆R = R
(B)
Fin −R

(0)
Fin = (∆X,∆Y,∆Z) (A.5)

where the unperturbed final position after a time T is simply R
(0)
Fin = VPs · T + R0,

and R
(B)
Fin is the numerical solution of the equations of motion. In the following it is

assumed that R0 = 0. Obviously both quantities will be taken in the laboratory frame
of reference by performing the required inverse rotation on the output of the numerical
algorithm. By the definition of K, equation (A.1) we see that the deviation depends on
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the initial conditions, in particular r0, both in modulus and direction. It is thus necessary
to look at the deviation of an ensemble of trajectories with a fixed initial positronium
velocity, varying the orientation in space of the internal orbital motion. The velocity
VPs = VPs · (cos(θ), sin(θ), 0), lies on the x-y plane (see Fig. A.3).

To set appropriate initial conditions on the internal coordinates, we use the semi-
classical correspondence established in equations (A.9). Thus we set initial position and
momentum vectors as:

r0 = (ra, 0, 0) p0 = (0, pa, 0).

The initial vectors are then rotated randomly, with a uniform sampling so that the normal
to the orbital plane spans all directions in space; there are various algorithms to realize
this sampling. In an axis/angle representation of three-dimensional rotations, one can
extract the rotation angle from the following distribution [160]:

P (α) =
2

π
sin2

(α
2

)
in the interval [0, π], and the rotation axis is taken as a unit vector uniformly distributed
on the surface of a sphere 3. The dependence on the orientation of the Ps velocity on the
x-y plane (the angle θ in Fig. A.3) was also investigated. For the single trajectory (that
is, a particular choice of r0 and p0) there is indeed a difference in the orientation of the
deviation vector. However the form of its distribution is very weakly affected; we will
present results from the cases θ = 0 and θ = π

2 . In summary, the algorithm employed to
evaluate the deviation vectors is as follows:

• Initial conditions r0, p0 are randomly rotated.

• The system is evolved with the equations of motion for a time much longer than the
(negligible) oscillating behavior. A suitable time interval is found to be Tsol = 106

(atomic units of time).

• The final position is found by normalizing the position at the end of the previous
evolution step to the physical timescale for an 1 m long trajectory, namely Tphys =
1013 (assuming the motion is linear).

• Repeat the above steps on an ensemble of trajectories, sampling uniformly dis-
tributed initial conditions as described. The distribution of the deviation vector,
defined in equation (A.5), is thus obtained.

In figures A.5 and A.6 we present a few representative results, assuming for definiteness
a shielding factor of 100. The deviations are found to be linear in the magnetic field, so
the expected deviations for any value of the shielding factor are readily estimated.

3This, in turn, is easily obtained for instance by normalizing three independent normally distributed points.
Uniformity is ensured by the rotational invariance of the distribution P (x, y, z) ∝ exp

{
x2 + y2 + z2

}
.
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Displacement for B = BEarth/100
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(e) n = 25 and l = 24
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Figure A.5. Deviation on the plane transverse to the motion for θ = 0 (so that vPs = 800 m/s along
the x axis), and the indicated quantum numbers. We assumed a magnetic shielding factor of 100.
The histograms are normalized and each contains 400 trajectories.
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Figure A.6. Deviation on the plane transverse to the motion for θ = π/2 (so that vPs = 800 m/s
along the y axis), and the indicated quantum numbers. We assumed a magnetic shielding factor
of 100. The histograms are normalized and each contains 400 trajectories.
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We observe that the distribution of the displacement in both directions is always
symmetrical about the origin. Therefore there are no systematic effects that can compete
with gravity. The deviation has been calculated for a flight length of 1 m, however since
we are concerned with linear motions, the results could be converted in deviation angles
to be completely general. The width of the distribution increases both with n and with
l, although the dependence on l is weaker. The width of the distributions is also linear
in the magnetic field strength, so the effect of the shielding is easily taken into account.
If we require, for definiteness, that the displacement on the z-axis (the only one relevant
for a gravitational measurement), must be of the order ∆Z ≈ 1µm we see that it roughly
requires a shielding factor s ≈ 1000 for n = 90 and s ≈ 100 for l = 25.

From a different point of view we can state that Ps is just propagating linearly with
a modified effective velocity. Thus this deviation can be seen as an additional contribu-
tion to the transverse velocity spread of the particle beam (additional with respect to the
intrinsic contribution). In Part II we have established the link between the transverse mo-
mentum distribution and what is typically referred to as the transverse coherence length.
Its impact on the visibility of the pattern and on the robustness of the interferometer with
respect to misalignments was studied. The observed deviations at the level of 102 µm,
correspond to deviations angles of approximately 0.1 mrad, therefore negligible with the
spread expected from a weakly collimated positronium beam (we recall for comparison
that the L-NESS positron beam has a typical divergence angle of the order of 6 mrad).

In conclusion, a constant and uniform magnetic field is found to produce an increase
in the angular spread of the Ps beam, which is negligible for the case of the magnetic
field of the Earth. Therefore, shielding requirements are not critical for a possible gravity
measurements, as no systematic effects possibly competing with gravity arise. However,
it must be stressed that although the motion remains linear on a large time scale, oscil-
lations in the center of mass motion could affect the quantum mechanical description
of the interference process, possibly reducing the visibility of the interference pattern.
Standard models are not able to account for perturbations in the motion in a straightfor-
ward manner. The relative strength of the perturbation can be limited by an appropriate
magnetic shielding, as suggested by equation (A.4).

A.2.1 A constant electric field

The case of a constant and uniform electric field F, with B = 0 is trivial, as the center-
of-mass and the internal motion are completely decoupled and the center-of-mass tra-
jectory is unaffected. Therefore we will consider the action of a constant electric field in
addition to the Earth magnetic field. It is observed from simulations of a large number
of trajectories that indeed the motion has the same linear character on a large scale that
is associated to the magnetic field only case. Given this feature, it is sensible to employ
the same reasoning introduced before and discuss the deviation from unperturbed tra-
jectories in the presence of the additional electric field. Since the effect is very small we
set a very large value of electric field F = 1000 V/m, n = 25, l = 1, and (in the same
reference frame discussed in section A.2) consider six possible cases for the orientation
of the F, namely along the three coordinate axes combined with the two possible orient-
ations of the vPs vector in the x-y plane. The results of simulations on an ensemble of
trajectories are summarized in Fig. A.7 and can be compared with figures A.5 and A.6.
The comparison reveals that in the z direction (the one relevant for our purposes) there
is an increase in the spread of the trajectories (spread of the transverse velocities), but
relatively limited considering the very strong value of the electric field. Moreover we
see that there is no marked asymmetry in the distributions introduced by the additional
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external field. The strength of the coupling between the center of mass motion and the
electric field is somewhat mediated by the magnetic field, in the sense that all informa-
tion about the F field comes from the term B × r in the derivative of the center of mass
coordinate. So shielding the magnetic field also effectively reduces the influence of stray
electric fields.

A.3 Stark effect and motion in electric field gradients

Although positronium is neutral, high-n Rydberg states can be very sensitive to electric
field gradients due to the large dipole moments they can acquire. The starting point for
a description of this effect is the theory of the Stark effect. We now briefly recap the
main equations relevant for our simulations. In an external electric field F = (0, 0, F )
that we can assume directed along the z-axis with no loss of generality, the perturbed
Hamiltonian of the Ps atom reads:

H = H0 + eFz,

where H0 is the hydrogenic part. This problem can be dealt with by solving the free
Hamiltonian in ”parabolic coordinates” (see [97, 161]), and evaluating the perturbation
energy. The states are labelled by four quantum numbers (only three of which are inde-
pendent):

|n, n1, n2,m〉

The two parabolic quantum numbers n1 and n2 satisfy n = n1 +n2 + |m|+1. The energy
of the eigenstates reads (to first order in F ) [103]:

Enn1 n2 m = −RMhc
n2

+
3

2
n(n1 − n2)ea0F + · · ·

where a0 = me
µ a

H
0 is the Bohr radius corrected for the reduced mass, and RM = R∞µ

me

is the corrected Rydberg constant. The quantum number k = (n1 − n2) is usually intro-
duced. Putting all this together and adopting atomic units yields, for the special case of
positronium (µ = 0.5me):

EPs
nkm = − 1

4n2
+ 3nkF + · · · (A.1)

The idea behind Stark acceleration (or deceleration) of Rydberg atoms is that if a Stark
state is created in an inhomogeneous electric field, then the states with k > 0 (called
”low-field-seeking”) will be attracted in the direction of decreasing electric field, and
vice-versa for the states with k < 0. So if a an atom travels in a field gradient with
a certain initial velocity, then energy transfer from the kinetic energy of the center of
mass to the coupling with the electric field will take place, leading to a decelerating or
accelerating effect depending on the sign of k and the direction of the gradient. The loss
or gain in kinetic energy can be estimated as [101]:

∆Ek = 3nk∆F

In particular an approximation used in the literature is that the istantaneous force f act-
ing on the atom is proportional to the gradiend of |F|. We can justify this statement
with the following reasoning: assume the field in the position where the Rydberg-Stark
state is initially excited is F0, then as the atom moves the field will vary both in intensity
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(b) F = F ĵ, and vPs = vPs î
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Figure A.7. Deviation on the plane transverse to the motion in the presence of the shielded (factor
100) Earth magnetic field and a strong electric field V = 1000 V/m, for the six orientation cases
mentioned in the text .
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and direction (generally). Physically it happens that the state acquires an electric dipole,
whose modulus is proportional to d ∝ 3nk, and is oriented along the field F0. In clas-
sical electromagnetism the force exerted on a dipole d in a field F is f = ∇(d · F) [103].
If one assumes that the electric field varies (spatially) slowly enough so that the dipole
moment of the atom remains parallel to the istantaneous field along the motion, then:

f = ∇(3nk
F

|F|
· F) = 3nk∇|F| (A.2)

so that the force is the gradient of the modulus of the electric field. This allows a com-
putationally simpler approach (with respect to CTMC) for the simulation of trajectories
in arbitrary electric fields by considering the atom as a point-like particle subjected to
the force (A.2). Since the force depends on the quantum number, radiative decay of the
Rydberg atom to the lower lying levels is a complication because the potential it feels
changes as it decays. For the time being we assume that the typical travel time in a de-
celeration/acceleration stage is much shorter than the radiative lifetime (τ ≈ 200µs for
an n = 20 state) and neglect decay altogether.

A.3.1 Field ionization rate of Rydberg-Stark states

On the contrary, field ionization is not negligible. In the so-called classical approximation
[103], the critical field scales rapidly with n−4:

Fclass =
2hcRM
ea09n4

≈ 1.4× 1010

n4
V/m (A.3)

where the quoted numerical constant is specific to positronium. This formula, in partic-
ular, gives the field at which the ionization lifetime is 10−8 s for the extreme Stark state
with quantum numbers (n1, n2,m) = (0, n − 1, 0) [97]. The acceleration field should be
everywhere much lower than this limit. Of course the mean force is increasing with the
electric field, so the best compromise between the risk of field ionization and accelera-
tion will have to be found. Experimental results for Hydrogen [101] suggest that it is
possible to obtain accelerations as high as a ≈ 1011 m/s with fields below the classical
ionization limits (Ps is 2000 times lighter than hydrogen).

It is interesting to consider the issue of field ionization of the Rydberg-Stark states of
Hydrogenoid atoms in more details. The semi-empirical formula often reported in the
literature [103, 162] states that the ionization rate for a a state with quantum numbers
|n, n1, n2,m〉 is given by:

Γn,n1,n2,m(F ) =
Eh
~

(4C)2n2+m+1

n3n2!(n2 +m)!
exp

{
−2

3
C − 1

4
n3 ea0F

Eh

(
34n2

2 + 34n2m+ (A.4)

+46n2 + 7m2 + 23m+
53

3

)}
,

where Eh = 2hcRM , with RM = R∞µ/me the Rydberg constant corrected for the re-
duced mass, and

C =
1

ea0

√
Eh

(−2En,n1,n2,m)3/2

F
.

This approximate expression is valid only for weak fields and low n states [162] (the
argument of the exponential factor can rapidly become very large and give unreliable
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results). Exact numerical calculations, which are not trivial, are generally needed to
correctly assess the ionization rates. There is a rich literature on the subject (see for ex-
ample [163, 164, 165, 166, 167]). Results based on numerical solution of the Schrödinger
equations are reported in [164] for several combinations of quantum numbers, but the
general algorithm presented is not easily implemented from the information contained
in the paper and does not appear to be very robust for strong electric fields, where ion-
ization lifetime approaches 10−12 s. I was able to reproduce the known results using
the approach of [166] to provide initial values for the semi-classical algorithm of [165].
The combination of these two methods allowed to extend the calculation to very strong
fields. Representative results for an n = 25 state with different combinations of the para-
bolic quantum numbers obtained with this method are shown in Fig. A.8.
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Figure A.8. Ionization lifetime of positronium as a function of the external field applied for n = 25
and several combinations of the parabolic quantum numbers. Note how the critical field predicted
by equation (A.3) is 36 kV/m, which indeed corresponds to the field at which the n2 = 24 state
has a lifetime of 10−8 s according to the exact numerical solution.

A.3.2 CTMC simulation in nonhomogeneous electric fields

We now perform a comparison of the CTMC approach with the point-like description of
the motion in nonhomogeneous electric fields. In particular we focus on the simple con-
figuration of a linearly varying field, oriented along the z-axis (which is also the direction
of travel of the atoms). To set realistic initial conditions in a non-negligible external elec-
tric field, the technique of adiabatic switch-on was applied. We briefly describe the steps
involved:

• Preparation of the free initial state. A suitable distribution of free-field initial
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states is prepared as previously discussed. A given n, l state is prepared in the
perihelion, on a fixed plane. Then it is evolved with the free equations of motion for
a uniformly sampled random fraction of the Kepler period (TK = 1

2π(rA + rP )3/2):



Ṙ = 0

K̇ = 0

ṙ =
2p

m

ṗ = −e2 r

|r|3

(A.5)

This produces a distribution of points in the (r,p) phase space that define elliptical
trajectories on a fixed plane with the appropriate energy and angular momentum.
An uniformly sampled random rotation is then applied.
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Figure A.9. Time dependence of F (t) and of a moving average of |r|, the modulus of the relative
e+/e− position. The average value of |r| is changed by the electric field turn-on and then reaches a
stable value. This suggests that indeed the state is approaching a condition that represents a well-
defined quantum state. As far as the force in a field gradient is concerned, the behavior of the atom
after E field switch on is consistent with the principal quantum number n being left unchanged,
and a value of k being acquired depending on the precise initial conditions.

• Adiabatic switching of the electric field. To simulate the Rydberg-Stark states, the
final state of the previous step is set as initial conditions for the evolution in a time-
varying electric field slowly approaching the value F0 (hence the name adiabatic
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switching on). In particular the evolution equations for this stage read:

Ṙ = 0

K̇ = 0

ṙ =
2p

m

ṗ = −e2 r

|r|3
+ eF (t)ûz;

(A.6)

(in previous equations it was assumed that F = ∇φ, here we adopt the usual
convention F(x) = −∇φ(x), hence the plus sign in the last equation). The time
dependence of the electric field was chosen to be a sigmoidal function (see Fig.A.9):

F (t, τ) =
F0

1 + exp {−(t− 10τ)/τ}

so that F (0) ≈ 0 and F (30τ, τ) ≈ F0. The time constant τ is chosen so that it is
much larger than the Kepler period, for example τ = 1000TK .
The resulting state after this step should correspond to one of the possible Rydberg-
Stark states with the chosen principal quantum numbers. One must relate classical
quantities to quantum numbers. In analogy with the free field case, it is useful to
use the total energy to do so. Rearranging equation (A.1), one obtains:

k = (E +
1

4n2
)/(3nF0) (A.7)

the energy E is the classical energy evaluated at the end of the trajectory (when a
constant field regime has been reached). In this case (K = 0) it reads:

E =
1

2m
· 2p2 − e2

|r2|
− F0ez. (A.8)

The above equations suggest a way to calculate the k quantum number associated
to a certain initial state. How to do the converse, that is decide the Rydberg-Stark
quantum numbers beforehand, and produce a suitable set of classical initial con-
ditions is not straightforward4. If time efficiency is not a concern, in a Monte Carlo
simulation approach one could just generate a certain number of states and only
retain results for the k states of interest.

• Evolution in a constant direction field of varying intensity. After the initial state
is prepared in a well-defined n, k state, simulation of the motion in a field of the
form:

F(x) = F (z)ûz with F (z) = F0 − z
(F0 − F1)

zm
is performed. Field intensity decreases linearly from F0 to F1 over a length zm, the
length of an hypothetical acceleration/deceleration stage based on a linear field
gradient. Such a field is given by the potential:

φ(x) = −zF0 +
z2(F0 − F1)

2zm
.

4Probably since the problem in a constant electric field (at the instant of time when the atom is excited
to Stark states) is cylindrically symmetric, one could obtain more states of unchanged k by rotating initial
conditions around the electric field axis, but this hypothesis has not been investigated yet.
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The equations of motions then read:

Ṙ =
K

2m

K̇ = −e (F0 − F1)

zm
zûz

ṙ =
2p

m

ṗ = −e2 r

|r|3
− e

(
−F0 +

(F0 − F1)

zm
Rz

)
ûz

(A.9)

If the CTMC approach is consistent with the point-like approximation the Ps atom
should experience a constant force directed along z, whose sign depends on k, and
on the sign of the gradient (F0 − F1)/zm. For definiteness we set the parameters
F0 = 50 V/cm, F1 = 5 V/cm and zm = 0.3 m. The choice of a very small distance
is dictated by the substantial computational load of this method if high accuracy
is required. The field gradient is then ∇F = (F1 − F0)/zm = 1500 v/cm2, thus
in the same range of the average gradients employed in stark decelerators [154]
(where, however, the spatial dependence is nonlinear). The incoming Ps atoms
are prepared with an initial velocity v = vûz with v = 104 m/s. Their quantum
number k is calculated as explained and a CTMC simulation is run. As the field is
decreasing along the trajectory in this example, states with positive coupling to the
field (k > 0) are expected to be accelerated (low-field seeking states) whereas the
k < 0 states should be decelerated.

Using equation (A.2) expressed in terms of the acceleration with the appropriate
sign, then the expected acceleration in this field is

a = −3nk∇F
2me

= −3nk∇F
2

(all quantities in atomic units) (A.10)

the equation can be used as a consistency check to test if the simulated acceleration
agrees with the expected value based on the previously outlined estimation of the
k quantum number.

Results and future developments

Qualitative inspection of a large ensemble of trajectories confirms that the simulated mo-
tion is indeed a uniformly accelerated motion along the z axis, with the expected value
of the acceleration. A typical example is shown in Fig. A.10. This result suggests that
both techniques can be applied tu study the motion in arbitrary electric fields such as the
one produced by the geometry sketched in Fig. 3.5 for a possible Stark decelerator. The
CTMC approach, although computationally heavier, is expected to be more accurate in
strong fields with respect to the point-like approximation.

Finally, we can consider an electric field gradient as a disturbance in a possible meas-
urement of g, and calculate the gradient that produces an acceleration a ≈ 9.81 m/s2.
Recalling equation (A.10), with the necessary conversion to atomic units, one obtains for
a typical worst case scenario , that is n = 25 and k = 24:

∇Fn=25,k=24
g ≈ 2 mV/m2 (field gradient that competes with gravity)
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Figure A.10. Time dependence of the three components of K = 2VPs for a =≈ 16 atom (in this
semi-classical approximation non-integer values are allowed), with the parameters described in
the text. Constant positive acceleration along the z-axis is observed as expected for a ”low-field
seeking” state and a decreasing electric field in the direction of travel. The observed acceleration
is a ≈ 6.9 × 1010 m/s2, consistent with the value of k predicted by the point-like approximation
for an initial state with the quantum number k (A.10).

So for the ”extreme Stark states” with k = n − 1 and n > 25 the required field uni-
formity is very high. Depending on their origin, nonhomogeneous stray fields might be
fluctuating (even randomly) in time and space whereas the gravitational acceleration is
exerted for the full time of flight along the same direction. Further studies are required
to assess the feasibility of a possible gravitational measurement in known experimental
conditions. The results of this appendix provide the foundation to carry out this invest-
igation.



APPENDIX B

Full expression and implementation of equation (5.11)

For the sake of completeness the full expression of equation (5.11) is reported in this
appendix. The formula has been verified with an independent calculation and correctly
reproduces the results of the original paper [26]. As discussed in chapter 5 the equation
displayed in the paper contained a few typos. The formula for the intensity reads:

I(x; z3) =
wx0wy0

wy(z3)wx(z3)

∞∑
m,m′,n,n′=−∞

a∗m′amb
∗
n′bnD

m
n (x, z3, wx,y(z3))F∆m

∆n (x, z3, rx,y(z3))×

×Pm,∆mn,∆n (z3, rx,y(z3))V ∆m
∆n (x, z3, lx,y(z3)),

where ak, bk are the Fourier series expansion coefficients of the transmission functions
of the first and second grating respectively. Convenient indexes are introduced and de-
noted ∆m = m − m′ and m = (m′ + m)/2. Furthermore we recall that the distances
zi with i = 0, 1, 2, 3 represent respectively the position of an initial reference plane, the
first and second grating plane and the detector plane. The evolution of the parameters
l(z), r(z), w(z) is computed with equations (5.8). The D function reads

Dm
n (ρ, z3, wx,y(z3)) = exp


−π
[
x− λz23

(
n cosφ
d2

+ m
d1

z13

z23

)]2
wx(z3)2

× exp

−π
(
y − n sinφλz23

d2

)2

wy(z3)2

 ,
and controls the overall envelope of the diffraction pattern. The functions F and P gov-
ern the periodicity of the interference fringes and their contrast modulations along the
optical axis:

F∆m
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∆n cosφ
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)]}
×

× exp
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−2iπy
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(
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ry(z3)
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,
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z23
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Finally, the V function describes the visibility of the interference fringes as a function of
the relative position and orientation of the gratings.

V ∆m
∆n (z3, lx,y(z3)) = exp


−π
[
λz23

(
∆n cosφ

d2
+ ∆m

d1

z13

z23

)]2
lx(z3)2

× exp

[
−π
(

∆n sinφλz23

d2ly(z3)

)2
]
.

The above formula was implemented in a C++ code, the gratings were modelled as pure
intensity masks with a well-defined open fraction f . The Fourier components are given
by equation (4.20) in section 4.1.1:

an(f) = f sinc(πnf)
(

eiπnf
)
.

To speed up the evaluation the table of Fourier components is precomputed in a first
initialization step. As suggested in [26], the summation was truncated to the first few
Fourier orders, namely −N ≤ m,n,m′, n′ ≤ N . Typically a value N = 4 was chosen, as
no significant differences in the calculated shape of the diffraction pattern (both trans-
verse and longitudinal) were observed for larger N . The choice of N = 2 introduces a
visible distortion of the diffraction pattern but considerably speeds up the calculation.
Salient features of the pattern such as the contrast and its dependence on the relative
angle and position of the gratings are correctly predicted only at a qualitative level. This
mode is thus only useful for rapid visualization purposes.
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[102] A. Bermúdez, D. Gómez, and P. Salgado. Electrostatics with MaxFEM, pages 267–298.

Springer International Publishing, Cham, 2014. ISBN 978-3-319-02949-8.
[103] S. D. Hogan. Rydberg-stark deceleration of atoms and molecules. EPJ Techniques and Instru-

mentation, 3(2), 2016.
[104] T. E. Wall, A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan, and D. B. Cassidy. Selective

production of rydberg-stark states of positronium. Phys. Rev. Lett., 114:173001, Apr 2015.
[105] S. Nimmrichter and K. Hornberger. Theory of near-field matter-wave interference beyond

the eikonal approximation. Phys. Rev. A, 78:023612, 2008.
[106] P. L. Kapitza and P. A. M. Dirac. Proc. Cam. Philos. Soc., 29, 1933.
[107] H. Batelaan. The kapitza-dirac effect. Contemporary Physics, 41(6), 2000.
[108] D. L. Freimund, K. Aflatooni, and H. Batelaan. Observation of the kapitza-dirac effect.

Nature, 413, 2001.
[109] S. Gerlich et al. A kapitza-dirac-talbot-lau interferometer for highly polarizable molecules.

Nature Physics, 3, 2007.
[110] C. Hugenschmidt et al. The upgrade of the neutron induced positron source nepomuc.

Journal of Physics: Conference Series, 443(1):012079, 2013.
[111] V. W. Hughes, D. W. McColm, K. Ziock, and R. Prepost. Formation of muonium and obser-

vation of its larmor precession. Phys. Rev. Lett., 5:63–65, Jul 1960.
[112] K. Kirch et al. Testing antimatter gravity with muonium. Int. J. Mod. Phys: Conference Series,

30:1460258, 2014.
[113] A. C. L. Jones et al. Focusing of a rydberg positronium beam with an ellipsoidal electrostatic

mirror. Phys. Rev. Lett., 119:053201, Aug 2017.
[114] H. W. Lee. Theory and application of the quantum phase-space distribution functions. Phys.

Rep., 259(3):147 – 211, 1995.
[115] H. Batelaan et al. Classical and quantum atom fringes. In P. R. Berman, editor, Atom Inter-

ferometry, pages 85 – 120. Academic Press, San Diego, 1997. ISBN 978-0-12-092460-8.
[116] J. F. Schaff, T. Langen, and J. Schmeidmayer. Interferometry with atoms. In Atom Interfer-

ometry, number 188 in Proceedings of the international school of physics “Enrico Fermi”,
pages 1–87. SIF, 2014.

[117] M. K. Oberthaler. Inertial sensing with classical atomic beams. Phys. Rev. A, 54(4):3165–3172,
1996.

[118] M. Arndt B. Brezger and A. Zeilinger. Concepts for near-field interferometers with large
molecules. J. Opt. B: Quantum Semiclass. Opt., 5(2):S82, 2003.

[119] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference
and Diffraction of Light. Cambridge University Press, 1999. ISBN 0521642221.

[120] J. Jahns and A. W. Lohmann. The lau effect (a diffraction experiment with incoherent illu-



180 Bibliography

mination). Opt. Commun., 28(3):263 – 267, 1979.
[121] W. B. Case. Wigner functions and weyl transforms for pedestrians. Am. J. Phys, 76(10):

937–946, 2008.
[122] J. D. Perreault, T. A. Savas, and A. Cronin. Using atomic diffraction of na from material

gratings to measure atom-surface interactions. Phys. Rev. A, 71:053612, 2005.
[123] T. A. Savas, M. L. Schattenburg, J. M. Carter, and Henry I. Smith. Large-area achromatic

interferometric lithography for 100 nm period gratings and grids. J. Vac. Sci. Technol. B,
Microelectron. Nanometer. Struct. Process. Meas. Phenom., 14(6):4167–4170, 1996.

[124] J. F. Clauser and S. Li. Talbot-vonlau atom interferometry with cold slow potassium. Phys.
Rev. A, 49:R2213–R2216, 1994.

[125] M. K. Oberthaler. Anti-matter wave interferometry with positronium. Nucl. Instr. and Meth.
in Phys. Res. B, 192:129–134, 2002.

[126] M. Giammarchi. Quantum interferometry and gravity with positronium. Talk given at the
IUCSS Workshop on Signals for Nonminimal Lorentz and CPT Violation, Indiana Univer-
sity, Bloomington (IN), 2015. URL http://pcgiammarchi.mi.infn.it/giammarchi/
Giammarchi QUPLAS LVS2015.pdf.

[127] F. Gori. Mode propagation of the field generated by collett-wolf schell-model sources. Opt.
Commun., 46:149, 1983.

[128] F. Zernike. The concept of degree of coherence and its application to optical problems.
Physica, 5(8):785 – 795, 1938.

[129] A. T. Friberg and R. J. Sudol. Propagation parameters of gaussian schell-model beams. Optics
Communications, 41(6):383 – 387, 1982.

[130] B. McMorran. Electron Diffraction and Interferometry Using Nanostructures. PhD thesis, The
University of Arizona, 2009. URL http://hdl.handle.net/10150/194029.

[131] B. McMorran and A. Cronin. Gaussian Schell Source as Model for Slit-Collimated Atomic
and Molecular Beams. arXiv:0804.1162, 2008.

[132] A. D. Cronin and B. McMorran. Electron interferometry with nanogratings. Phys. Rev. A, 74,
2006.

[133] B. Crosignani, B. Daino, and P. Di Porto. Light scattering by a rotating disk. Journal of Applied
Physics, 42(1):399–403, 1971. doi: 10.1063/1.1659609.

[134] http://www.radiant-dyes.com/index.php. [Online; accessed 12-April-2018].
[135] http://www.micronixusa.com/motion/index.cfm. [Online; accessed 12-April-2018].
[136] https://www.thorlabs.com/index.cfm. [Online; accessed 12-April-2018].
[137] https://ecatalog.mitutoyo.com/Linear-Scales-ABS-AT715-Series-539-

Slim-Spar-Type-C1281.aspx. [Online; accessed 2-July-2018].
[138] http://www.lumarray.com/. [Online; accessed 16-January-2018].
[139] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
[140] C. Amsler et al. A new application of emulsions to measure the gravitational force on anti-

hydrogen. J. Instrum., 8(02):P02015, 2013.
[141] A Ereditato. The study of neutrino oscillations with emulsion detectors. Adv. High Energy

Phys., 2013:1, 2013.
[142] V. J. Ghosh, D. O. Welch, and K. G. Lynn. Monte carlo studies of positron implantation in

elemental metallic and multilayer systems. AIP Conference Proceedings, 303(1):37–47, 1994.
[143] G.C. Aers, P.A. Marshall, T.C. Leung, and R.D. Goldberg. Defect profiling in multilayered

systems using mean depth scaling. Applied Surface Science, 85:196 – 209, 1995. Proceedings
of the Sixth International Workshop on Slow-Positron Beam Techniques for Solids and Sur-
faces.
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