
A Taxonomy of Errors for Information Systems

Giuseppe Primiero
Centre for Logic and Philosophy of Science

Ghent University

Preprint. In Minds & Machines. DOI: 10.1007/s11023-013-9307-5.

Abstract

We provide a full characterization of computational error states for
information systems. The class of errors considered is general enough to
include human rational processes, logical reasoning, scientific progress and
data processing in some functional programming languages. The aim is
to reach a full taxonomy of error states by analysing the recovery and
processing of data. We conclude by presenting machine-readable checking
and resolve algorithms.

1 Introduction

The topic of error detection and resolution has been of crucial importance in
epistemology at least since the Popperian doctrine of science as a process of con-
jectures formation, hypothesis refutation and theory change, see [21]. Neither
Popperian falsificationism nor the large debate that followed, including Lakatos
and Kuhn, were interested in establishing sources and typologies of errors and to
design appropriate resolution strategies. Since then, the identification of errors
with hypothesis refutation in the context of scientific progress has undergone
a significant shift in background and application domain. A great deal of such
research is devoted nowadays to the treatment of uncertainty by statistical or
Bayesian methods, see e.g. [17]. We shall in the following be concerned with a
more general approach to uncertainty and error and will not be engaged with
a statistical, rather with a purely logical approach. If the present investigation
is different in methodology, we share the view that correctness in rational pro-
cesses can be approached as a system of probing, manipulating and simulating
errors.

In the past few decades, logical approaches to agent-based, defeasible and
bounded knowledge have identified errors against a principle of correctness as
idealized rationality. This approach is evident for semantic theories that de-
fine truth on evidence and establish relevant criteria for correctness. We shall
in the following define a computational semantics that appeals largely to the
understanding of true contents in a procedural, quasi-verificationist way. But

1



our task is also dictated by a further generalization: the massive presence of
– and interaction with – mechanical computation in data and processes anal-
ysis suggests that natural and artificial reasoning have similar methodologies,
including the case of error-handling. A conceptual and formal identity existing
between proofs and programs, falling under the so-called Curry-Howard isomor-
phism for verificationist semantics,1 allows us to use a computational approach
typical of programming for human knowledge processing. In a similar vein, the
understanding and control of errors is crucial in both human and mechanical
systems to establish correctness. Using this analogy, we shall formulate a com-
mon semantic analysis for human and mechanical systems to study information
processing under uncertainty and to define correctness as a process of error
reduction. This requires:

• a full characterization of error states for informational systems;

• a formal model of logical processes with error states.

We focus here on the first of these problems. Starting from an informational
semantics, we formulate a taxonomy of errors: these will include phenomena
typically treated by literature in psychology (see e.g. [24]); fallacies considered
in epistemic logic and in real-life cognitive agency ([31]); inexact knowledge
and its limits ([28], [29], [30], [8]); presupposition failures ([7]). The semantics
is also meant to cover error cases as represented in data compiling for some
functional programming languages, and in particular we will show this feature
by an implementation.

In the following we proceed as follows. In section 2 we characterize the
systems of interest in view of an informational semantics that uses a quasi-
verificational, procedural basis to couple instructional and semantic information.
In section 3 we define the scope of errors for the epistemology of such systems
as the space between knowledge and ignorance, where uncertainty occurs. Here
a first categorization of errors is provided. In section 4 the proper taxonomy
is given in view of two main levels of analysis and three grouping categories.
In section 5 we provide a probing method for the families of errors defined by
designing error check and resolve algorithms in a type-checked language.

2 Characterizing Information Systems

In this section we formally introduce an information system. By this term we
intend a system that performs either an epistemic or a computational process
based on an informational semantics.2 A reason to formulate our system in
view of such a semantics is that it offers a neutral interpretation broad enough to
include both an operational and a denotational interpretation of validity. On the

1The isomorphism originates in observations by Curry [10], [9] and Howard [14]. For a
systematic formal treatment of the issue, see [25].

2For a full treatment of the notion of informational semantics and of the operations it
defines, see [4].

2



one hand, the system is structured around states at which a given informational
content is declared to hold, thus offering a denotational interpretation of validity.
On the other hand, it sets this static approach within a procedural setting
(typical e.g. of Abstract State Machines), by allowing two main operations on
such informational contents: access and use. In this way, the local validity
of contents is explained back in terms of the instructions needed to reach a
given state; global validity is given by the set of states the system goes through
to reach a given goal. Moving to reach a goal is explained by: accessing the
information at a given starting state; using that information by performing
syntactic transformations on it; obtaining the next state. The structural and
the functional aspects of the system offer together a descriptive and normative
structure. In the following we shall consider a language with: countably many
types; terms as objects in types; a formula of the language is then the expression
that an object is of a given type; a finite number of operations is included that
work on terms to define non-atomic formulas; we shall allow sets of formulas;
finally, states corresponds to models of the language where types are declared
valid.

Definition 1 (Syntax) The syntax is defined by the following alphabet:

Σ(Types/Props) := {A,B, . . .}

Π(Processes) := {a1, a2, a3, . . .}

C(Data Stacks) := {Γi,Γj , . . .}

S(States) := {S, S′, . . .}

Φ(Operations) := {ri, . . . , rn}

Types of our system express propositions true by terms (proofs): for example,
the construction of type N will be generated by the proposition that term 0 is
in N and the operation that says that S(0) is a term in N. Similarly, When the
term is defined in the form of a program accessed and executed at some state
(e.g. the program that generates natural numbers according to the successor
operation), its type corresponds to the specification declaring validity of a con-
tent by that program (i.e., the list of elements in the set N). Under this view, an
information system includes computational systems as a proper subclass, by of-
fering a reading of valid types as specifications and of terms as programs. In this
setting, a specification is not based on a stipulative but rather on a functional
interpretation of the system, see [27].

Definition 2 (Specification α) A specification α = (A valid) is the content
made valid by accessing and using a program ai ∈ Π of type A ∈ Σ at state
S ∈ S.

When a sequence of processes or programs is accessed and executed at states
S1 up to state Si to reach a specification α at state Si+1, this (possibly empty)

3



collection of processes is referred to as data stack (or context) Γi. To every
non-terminal state S in Γi, a finite set of rules applies to reach content valid at
S′:

Definition 3 (Operational Model) In a state S = (Γi, α) a process ai is
executed instantiating a specification α under a (possibly empty) set of other
states collected in Γi. A model for our system evaluates every S by transition
to some S′. A transition system is a triple 〈S, φ, 7→〉 with S ⊆ S, φ ⊆ Φ and 7→
a ternary relation over states (S × φ× S). If S, S′ ∈ S, then φ(S 7→ S′) means
that there is a transition 7→ from state S to state S′ according to the set of rules
in φ.

Example for such commands in Φ would be: execution, local compound exe-
cution, functional composition, mobility rules, etc. We abstract from making
them epxlicit as our system is intended at a very high level of abstraction.

Definition 4 (Goal) We say that a state S = (Γi, α) is the goal G for the
system if α is its intended specification, i.e. the processes in Γi are supposed to
make the type A in α valid.

Definition 5 (Strategy) We call strategy φ ⊆ Φ the collection of rules or
instructions that, given a certain initial state, are used by the system to reach
a goal G by accessing and using the information valid at intermediate states.
When applied to a goal, a strategy replaces this goal with its sub-goal(s).

Definition 6 (Procedure) We call procedure the pair P = 〈φ,S〉 defined by
a set of states and a strategy by which a given goal G is correctly reached.

A procedure offers instructions on how to use the information at a given state to
access information contained at the next state.3 At each (sub-)goal, G = (Si ∈
S), accessed data Π are attributed a semantic value; the system is in an epistemic
state with respect to each such content in that it uses it to access data at the
next state. The rule that allows to reach a final state is usually a deductive
rule, of the form: “If information A1 is accessed at S1, up to information An

accessed at Sn, then information A is validly accessed at S′. To reach a goal
corresponds to be informed about the content of the goal-expression, IS(α):4

P is a procedure for A

A valid

The internal structure of a procedure P offers by definition the set of states
and their computational contents {a1, . . . , an} to obtain the final content A:

3For the logic of becoming informed that applies at the instructional level of states, see
[22] and [23].

4For the logic of being informed that applies at the level of goals, see [11].

4



a1 . . . an are processes for A1, . . . , An

A valid

By this rule-based construction, the system instantiates the required state-
transition from functional to semantic information5:

Information A1 holds Use A1 to access A2, . . . Use An−1 to access An

Information A holds

When the previous inference schema is fixed at states 1, . . . , n, it means that
there is no further process that can falsify A, which therefore becomes a knowl-
edge content:6

Information A1 holds Use A1 to access A2 . . . Use An−1 to access An

A is known to be valid at states 1, . . . , n

Correspondingly, information inaccessibility generates a state of ignorance:

Information A1, . . . , An−1 holds Information A cannot be accessed at n

A is not known to be valid at states 1, . . . , n

In the next section, we will explore the epistemic and semantic space included
between knowledge and ignorance and characterize it as the scope where errors
occur.

3 Scope and Categorization of Errors

A procedure P formulating validity of content A is also said to resolve uncer-
tainty with respect to A. There is a range of epistemic states that goes from
knowing A to being ignorant about A:

1. information access and use induce correctness of content A and knowledge
of its validity at all accessed states;

2. inaccessibility induces full uncertainty about A and corresponds to igno-
rance;

5The two notions of semantic and functional information are complementary and non-
exclusive. See respectively [12] and [23].

6In [23] the upgrade from functional information to knowledge is explained by interpret-
ing information use in terms of a verification function to make data semantically qualified.
Knowledge requires the network in which those contents are accessed to be no greater than
the set of states where such information cannot be turned into misinformation (a localized
consistency requirement). A content of semantic information becomes a knowledge content
if it is accessible and usable from every other state of the same network without consistency
being lost.

5



3. between knowledge and ignorance graded uncertainty is possible.

Establishing the semantic value of contents is to be understood as moving from
an uncertainty state to a knowledge state: for every correctly executed pro-
cess ai of content Ai, the informational system is said to transit from state
(Ai valid) unknown to state (Ai valid) known. An explanation of the notion
of error is given therefore in terms of wrong resolution of uncertainty.7 This
task is commonly understood in view of Peircean qualitative and quantitative
induction, which provides the theoretical model for Bayesian statistical error
detection and correction, with the addition of errors of first and second kind
in the correction of hypothesis procedure formation.8 Notoriously, by induc-
tive methods one refers usually to both numerical statistical approximation and
deductive (qualitative) inferences. In the present context, we are not consid-
ering statistical errors and their resolution forms. We are instead looking for
a qualitative analysis to formulate a descriptive taxonomy of error types. Our
model is non-probabilistic and uncertainty does not correspond to a variable
degree of trustworthiness attached to the method, nor is bound to its degree of
approximation to truth. Our understanding of uncertainty refers instead to pos-
sible restrictions or limitations on the execution of valid and correct processes,
due to limited accessibility or incompleteness of data required for the problem
resolution. This notion of uncertainty fits with the informational semantics en-
dorsed in the previous section. Validity of a procedure P, on which access to
and validation of content A is based, requires:

1. full data availability;

2. full reconstruction of dependency relations internal to P;

3. explicit competence in their use.

In [26] an analysis of errors for a proof-theoretical semantics provides a first
basic distinction between errors and mistakes. On the one hand, a mistake is
understood as a wrong act which is immediately recognized and can be easily
fixed within the paradigm in which it is generated, as the latter establishes
the conceptual and technical tools to define what is right and what is wrong.
On the other hand, an error is considered as a more basic and ground failure,
something that prevents knowledge to be attained, without an evident and
clearly recognizable cause. Our task is to offer a more precise and detailed
description. We start by referring to an error as a non-realizable process ai to
access an information content A, based on the pair 〈P,G〉. In the following,
given the procedural understanding of our semantics, correctness corresponds
to correct execution of a process; validity corresponds instead to the selection
of the appropriate process for the selected goal. This allows us to design two
cases of things going wrong:9

7For the relation here explored between error and negative knowledge, see also [2], [3].
8See [20], [17], [18].
9The pair 〈P,G〉 by definition corresponds to a triple 〈φ,S1→i, α〉, where φ contains the

set of required strategies and S1→i the set of states/processes the system goes through from
1 to i to reach the goal α = (A valid) at state Si.

6



• wrong informational coupling : an error in building the pair 〈P,G〉, where
P is inappropriate, though possibly well-executed and therefore correct,
procedure to validate content A in G;

• informational malfunctioning :10 an execution error which makes P an
incorrect procedure for G, but when executed correctly, P is indeed a
valid procedure for content A in G.

In both cases, uncertainty with respect to goal obtains:

• a missing procedure P for A corresponds to total uncertainty with respect
to G;

• a malfunctioning procedure P for A corresponds to partial uncertainty
with respect to G;

• a wrong informational coupling of P with A corresponds to wrong cer-
tainty with respect to G.

An error generated from a wrong coupling of process and goal corresponds
to the selection of a (possibly correct) but inappropriate procedure to validate
a content which is thus inaccessible:

Definition 7 (Error by inappropriate procedure) A procedure P is exe-
cuted to access G, but G requires a different procedure P ′.

This case has multiple instances. In the most relevant case, it refers to the
selection of an old process for a new content, which in its strongest form suggests
a categorical or paradigmatic change. This typically happens when one tries to
solve a (conceptually novel) problem using known methods, whereas resolution
is possible only by moving to a novel conceptual schema. We shall refer to
these cases below as mistakes, the family of errors happening at the conceptual
level.11 This family will also include errors in strategy or rule design. Typically,
such cases have no correction procedure immediately available: if one designs a
specification or the corresponding algorithm wrongly, it will not be enough to
reinitialize the procedure to realize where one goes wrong, as the error occurs
at the level of definition and requires a major redesign.

In a more simple case, an error by inappropriate procedure refers to the
selection of bad rules: to access content A, one applies rule ri which allows to
reach a state S, whereas one should have used rule rj to reach state S′. In turn
the accessed content is wrongly declared valid. This error involves therefore the
procedural aspect of transit from state to state, rather than the static relation

10This notion lies at the very basis of the recent philosophical analysis of logical and technical
malfunction for engineering and semantic systems. See e.g. [6], [13], [16], [15].

11Discussion with B.G. Sundholm has clarified the relation with paradigm changes. Notice,
however, that we depart here from the terminology used in [26], where mistakes are explained
as simple acts gone wrong. This is due to our more general use of the term ‘error’, and it also
agrees with a similar use of the term ‘mistake’ from literature in psychology, see [24].

7



between a given process and the related content. For this reason, the selection of
bad rules will be identified as a form of failure, a family that collects errors at the
procedural level. Typical examples would be errors performed by insufficient
data encoding : the way one (wrongly) specifies the use for the (right) rule;
and strategy selection: the (faulty) selection of data on which the (right) rule
is applied. Also in this case, a correction procedure is not necessarily easily
available: if one applies correctly designed rules in the context of wrong data,
or with a wrong interpretation, or equipped with correct but inaccessible data
(e.g. in the case of large distributed databases), a major structural correction
will be required. Failures as conceptual errors of a procedural kind fall under a
second typology, referring to the invalid formulation of a process:12

Definition 8 (Error by invalid procedure) An invalid procedure P is used
to access G with specification α = (A valid), where in fact a valid procedure P ′
for content (¬A valid) holds.

Finally, the third main typology of error is one of pure analytic malfunctioning
due to the faulty execution of an appropriate procedure:13

Definition 9 (Error by appropriate but incorrectly executed procedure)
An appropriate procedure P is used to access G, but P is not correctly executed.

It is based on an incorrectly executed process which has a correction mechanism
available within a given paradigm. In fact, error correction in this case is seen
as a reinforcing process for the given conceptual schema in which the process
occurs. Usually, this kind of errors are due to wrong execution of rules appropri-
ate to the required goal and they include cases of failures (namely those falling
under the flag of inaccurate data encoding) and the family of slips.

Notice that none of the cases above should be confused with the state ob-
tained by a correct process for a negative content (as already shown by the
correctness of the procedure referred to in Definition 9):

Definition 10 (Negative Content) A procedure P allows to access (¬A valid)
(alternatively, P is a procedure to establish that A is misinformation).

Hence contents might be wrongly accessed in two senses: either because the
correct procedure is wrongly formulated, or because the wrong procedure is
selected (though possibly correctly executed). This indicates that access alone
is not a guarantee for an error-free system and error detection proceeds on the
selection and execution of functional information. Information access and use
with an error probe method guarantees an error-free information system.

12A counterpart of this case in simple propositional terms is an ‘incorrectly justified, false
claim’.

13The content A in this case is propositionally treated as a ‘faulty justified true claim’.

8



4 The basic taxonomy

Despite the semantics of sentences of the form ‘P is a procedure for (A valid)’
offers a clear distinction between conceptual and material errors, some overlap-
ping in the previous section can been noticed: when considering errors caused
by an inappropriate procedure, we refer to both mistakes and conceptual failures
of process execution; material failures fall under the flag of errors by invalid pro-
cedure; finally, errors by a malfunctioning procedure include a specific group of
material failures and slips. To provide a better explanation of system correct-
ness, we enhance the analysis of errors by formulating three general categories:14

1. Conceptual Validity : it is related to the conceptual description and design
of the specification or goal;

2. Procedural Correctness: it is related to the purely functional or procedural
aspect of the specification or goal;

3. Contextual Admissibility : it is related to both conceptual and procedural
aspects of the environment in which the specification or goal is designed
and executed.

The order in which correctness of the procedural/contextual level and validity
of the conceptual level are considered is relevant. We shall consider both the
definitional order according to which a valid content is accessed by a correct
procedure, and the reverse relation that considers a procedure correct if it allows
to access a valid content. To further analyse the two aspects, we apply some
additional structure:

Conceptual Procedural Contextual

Internal Level Specification Process Dependency
Description Construction Recursion

External Level Problem Data Dependency
design retrieval accessibility

14A basic taxonomy for human reasoning given in [24] categorizes errors primarily according
to a specular threefold structure of conceptual, behavioural, and contextual levels. Whereas
certain sorts of behavioural errors will be excluded from the present taxonomy as they do not
fall under the level of abstraction we are considering, we aim at maintaining our taxonomy
as general as possible and claim that our notion of procedural error levels for information
systems include various cases of epistemic errors common in the behavioural family for human
reasoning. Typical cases of such errors that we will not consider are those induced by attention
problems, memory problems, voluntary and involuntary deceptions, and the like. Nonetheless,
some further reductions might be possible, as for example of memory problems in terms of
the later introduced family of storage errors.

9



At the internal level, one starts with the specification or problem description,
consisting in the choice of the goal G = (A valid) for which a procedure is to be
formulated. This consists in the purely semantic task of laying down conditions
and definitions required for A to be a valid specification with a corresponding
procedure in terms of correct processes and strategies. An error in the target
formulation will inevitably induce an error state in terms of a conceptual mis-
take. The following step consists in the procedure or process construction P for
the content A. Depending on the kind of error, this case generates either an
incorrect procedure or an informational malfunctioning. The additional cate-
gory offered by the contextual formulation of procedures refers to the definition
of dependency recursion relations in P among processes a1, . . . , an, which have
to be called upon in the specification and procedure design in order a to be a
correct process for A valid.

Where the internal level looks at the semantics of the system from the point
of view of resources description, the external level will look at resources access
and execution, i.e. from a practical perspective. At the conceptual level, one
requires the most appropriate specification design for the implementation to be
obtained. At the procedural level, procedure P invokes data retrieval for the
main process a as required for the chosen design of A. Finally, the contextual
category refers to the effective accessibility (at location, in terms of computabil-
ity problems) for routines a1, . . . , an required by the selected data a.

There is a formal correspondence of this schema with the steps that a type-
checker would execute in verifying the correctness of a formal system: the in-
ternal cases refer to decidability from the viewpoint of type-reconstruction or
type-inhabitation; correctness refers to the source of error with respect to sub-
calls and recursion processes. Errors of data retrieval address the correctness
problem referring to the contents of the computational process, while errors
affecting the dependency relations refer to the structure of the computational
system. This basic categorization can be generalized by organizing types of er-
rors in view of two ground categories (conceptual vs. material) and three main
families:15

15This classification agrees with the one for errors in science from [2]. In the following, we
shall not consider the observational and discursive kinds that are included in that analysis.

10



Type of Error Conceptual Material

Mistakes Problem Description: Problem design:
Categorization Category Structuring

Failures Procedure Definition: Procedure Construction:
Form of main process Accessibility of

dependent processes

Slips Algorithm Design: Algorithm execution:
Efficiency Performance

This enhanced schema provides now a more detailed description of the problems
occurring in the validation procedure, distinguishing clearly between conceptual
errors and their material occurrence. For the purposes of the inter-disciplinary
use of our taxonomy, it is appropriate to stress the correspondence of this cat-
egorization with the usual terminology in software engineering (SE) and the
related error-handling methodology. We have chosen to use the term error as a
general category, while this term is used in SE typically to refer to inappropriate
decisions at the development stage. An error occurs then at system requirements
analysis or at system design, resulting from a gap in requirements which then
propagates to the coding stage as an error in the program code. These ‘errors’
are more precisely defined by our family of mistakes as categorization errors.
An error of this form is usually bound to induce a defect. In SE a defect refers
to the difference between expected and actual result in the context of software
testing. It corresponds typically to any flaw possibly induced by a mistake, e.g.
in scalability, occurring at program execution (runtime), which is why we con-
sider it as the occurrence of a faulty procedure and have included it in our family
of failures. An example of defect induced by a designer/developer mistake is a
piece of code leaving an undefined procedure generating an infinite loop, which
in turn induces consumption of all available memory. If the latter further pro-
duces a system crash, we are moving down to a failure in SE terminology. In
SE a failure is any unacceptable behaviour of the system, with the main case
of system crash. This terminological practice in SE is slightly confusing, as it
takes a failure as an event (i.e. the non-expected behaviour) rather than as
its cause (in this case, exhausted memory). Nonetheless, we can still consider
failures in SE as the results of any case of errors from our taxonomy, including
slips, when e.g. efficiency is so reduced that it causes system halting.16 To sum
up: though the terminology in software engineering is somewhat less precise,
our categorization remains largely valid for it as well:

16For a treatment of error-handling in software engineering see e.g. [1].

11



• breach of validity conditions at system requirements design and algorithm
design will fall naturally in our class of conceptual errors, thus being clas-
sified as mistakes;

• breach of correctness conditions at algorithm implementation and exe-
cution will fall in our class of material errors, thus being classified as
(procedural) failures;

• any further case of error, e.g. at user interaction level will occupy the
remaining class of slips.

In the following we analyse in detail each of the error kinds introduced in
this section.

4.1 Mistakes

Mistakes are errors involving the description and the design of the problem
to be solved, or the specification to be implemented. We refer to them as
categorization or planning errors. Mistakes involve the norm of correctness that
the task at hand requires, resulting from a faulty or incorrect explanation and
presentation of the object for which a validation procedure is required. To list
cases of mistakes or planning errors, we consider in which form the invalidity of
a content A for which a term a is sought can occur:

1. conceptual mistake: the analysed pair 〈P,G〉 contains or refers to a ill-
defined category A in the environment. The conceptual aspect of mistakes
refers explicitly to the categorization and semantics of concepts needed to
formulate correctly the problem that one wishes to solve, or the function
one wishes to execute. This corresponds formally to wrong categorization,
in the form of presuppositions failure required by the target A valid. As
an example, consider the formulation of a specification that requires as its
subroutine an algorithm for quotient by 3, including the post-condition
that no reminder be allowed. To define the domain of such function as
containing anything besides multiples of 3 would represent a conceptual
mistake. A more extreme case would be that of a goal including contra-
dictory or circular definitions;17

2. material mistake: it refers to the structural design of the strategy, where
a pair 〈P,G〉 is given that includes elements ri ∈ Φ, ai ∈ Π that do not
constitute a strategical (sub-)goal to G. The material aspect of mistakes
refers therefore to the design of the specification or problem, in terms of
the choice of elements, functions and definitions selected to resolve a prob-
lem. The example above can be easily adapted to its material counterpart
when considering the design of an algorithm implemented by the follow-
ing pseudo-code: var isMultipleOfThree = function (x) return x

% 2 === 0;. Notice how in software engineering jargon this would be a

17Notice, however, that mutual or co-recursive definitions do not need to be circular.

12



logical error, as code syntax is correct and the algorithm would execute
correctly, so that only at run-time it would be discovered that the output
does not match the required specification. This means that at the de-
sign level an error has occurred in implementing the system requirements
specification, hence we categorize this as a material case of mistake.

4.2 Failures

Failures are errors explicitly referring to the rules used in the evaluation and
resolution of the problem (respectively, the validation of the specification) or
related to the resources these rules have to access. Hence failures occur internally
in P and they are typical of real implementations, where bounded resources and
incomplete information are the standard. Also in this case, we analyse both the
conceptual and the material levels.

1. Conceptual failures reflect problems in the selection and formulation of
rules or strategies, therefore we refer to them also as execution errors:

• selection of bad rules: it corresponds to the (possibly correct) ex-
ecution of the wrong process a within the given procedure for the
problem/specification A at hand; it generates an illegal application
such that the wrong rule ri ∈ φ is selected for the current (ai, A)
pair. A simple example is the selection (and correct execution) of a
conjunction elimination rule for the resolution of A ∨B;

• mis-formulation of good rules: it corresponds to the faulty formula-
tion of a validly selected rule in a process; it happens at the level
of form-designing of a rule, where the rule or strategy is correctly
chosen but is later wrongly defined.18 A simple example is inferring
(A ∧B) ∨ C by application of conjunction introduction from A ∧B;

• insufficient data encoding : failures of this kind are particularly im-
portant for the study of reasoning processes with bounded resources.
They can be listed as follows:

– selection of wrong goals;

– selection of rule or procedure with insufficient computational
depth;

– selection of construction or context with wrong sub-typing;

– selection of strategy or language with insufficient rules-set.

The first case (wrong goal) refers to a limited perception of possi-
ble tasks to be performed: this might induce selective and possibly
excessive exploration of some goals and exclusion of other relevant
ones. The second case (rule or strategy selection) reflects the wrong
selection of a solving model (deductive, inductive, analogical) or rules
(connectives and quantifiers introduction and elimination; validity of

18For the corresponding case of faulty algorithm execution see below the category of slips.

13



structural rules such as premise exchange) based on the problem pre-
sentation. For natural reasoning, it might refer to a cognitive strain
that induces a certain inappropriate choice; in the case of mechani-
cal reasoning it can be induced by data presentation suggesting the
selection of a wrong solving strategy. The third case (construction se-
lection) has also different possible applications: task selection might
go wrong so that relevant information (either in the process or in its
context) is not formulated; it might refer to the structure of contexts
itself, by a wrong ordering of relevant data or by applying a confir-
mation bias that dismisses the contextual relevance in following uses
of the same process. Finally, a ground form of failure in this group is
the selection of an incomplete set of data or strategy procedures to
solve the task at hand.

2. Material failures reflect problems related to the accessibility of the re-
sources required for the correct execution of a procedure for the problem
or specification at hand. We refer to them also as storage errors:

• misaddressed resources: the required resources, possibly available in
the current environment, are addressed by incorrect or insufficient
instructions; typical examples are wrong indexing preservation on
contexts for logical expressions or wrong addressing of databases;

• non-reachable resources: the resources are well-defined but beyond
the scope of the procedure, i.e. not available in the current environ-
ment; typical examples are the use of constants or variables that miss
appropriate declaration, or databases protected by user-privileges;

• inaccurate data encoding : processes are wrongly categorized or de-
pendencies are wrongly formulated. The first reduces to a case of
mistake, inducing a failure in the context of a dependent process
(possibly well-categorized); the second refers to the order of execu-
tion of the routines required by the process, their locations, or nested
requirements that are not made explicit. Inaccurate data encoding
happens in the following forms:

– by inattention: omitting checks, including selection of the wrong
path of a branching tree, under-use of rule (e.g. missing to go
through any branch of a disjunctive rule), missing search for
(sub-)goals space; missing novel variable declaration and wrong
(sub-)typing by accident;

– by over-attention: inappropriate checks, including unnecessarily
repeated novel variable declaration, establish a wrong level of
abstraction and the overuse of rule (e.g. acting on both branches
of a disjunctive rule).

14



4.3 Slips

Slips are material errors generated by the applications of rules that are appro-
priate to the given goal, but that do not match some formal criteria. Though
it still refers to the internal structure of the procedure P, this group of errors
is different from the previous one because it does not necessarily induce a non-
evaluated state of system or does not falsify a transition rule from state to state.
Slips include also use of inadvisable rules (which might also lead to a valid –
though non-required state) or inelegant applications thereof. The distinction
between the conceptual and the material levels is blurred, as slips occur by rule
application by an agent performing a task, but at the same time they implicitly
refer to the rule as it was given at design level (in these cases they will most of
the time induce a corresponding mistake). However, also in this case a ground
distinction can be formulated:

1. conceptual slips: these are practical errors related to algorithm design, i.e.
where the selection of range and domain, the order of rules applied and
sub-recursion definitions are chosen for an efficient algorithm; a typical
example is that of an algorithm designed for testing properties on inputs
(e.g. the property of being even on integers) and submitting some inappro-
priate (though not invalid) input (e.g. the whole domain of the naturals,
instead of the output of the function n × 2 − 1 thus elegantly producing
the new required range by concatenation with an identity function); in
the case of invalid input, a mistake occurs;

2. material slips: these refer instead to a performance problem, in terms of
redundant steps or rule strength. These are some typical cases:

• Exceptions: the rule is applied within a category that accommodates
it, but with respect to a construction/individual that represents an
exception;19 also in this case, if the exception is not accounted for
because of a bad description or understanding of the problem then,
most likely, this is a case of mistake;

• Rule strength: the rule is applied in a strong setting, admitting its
global validity, whereas the current context allows only a local vali-
dation of the rule; an example of such error case is the formulation of
restricted versions of structural rules like weakening, whose validity
might depend from structure or complexity issues;

• Rigidity : a fixed set of data or rules is selected for different tasks
that can be more easily resolved by different kinds of strategies. As
an example, consider proving all theorems by contradiction, while a
proof by induction might generate a more elegant presentation of the
valid theorem.

19Exceptions are largely used in knowledge representation problems by means of description
logics, where default rules are used to state and infer relations that are true only in ‘normal
cases’. See e.g. [5].

15



Notice that the procedural basis of our information system allows for a first-
person based perspective, what one could call here the designer-compiler per-
spective. Under this reading, rule and knowledge-based errors that subsequently
induce attempts to find solutions can be further categorized as failure in exper-
tise. This would be the case of slips. On the other hand, mistakes and failures
indicate cases of lack of expertise, ground errors that do not necessarily have
immediate solutions.

4.4 Triggering Errors from Errors

An error can also be triggered by the occurrence of another error. Some relevant
cases are explored in the following:

• from mistakes to failures: a specification design error induces an error in
rule execution; as a very trivial example, consider the case of designing
a division function for a programming language, where the designer does
not throw an appropriate exception on the value zero as divisor; the
algorithm execution will not be constrained in the appropriate way and will
eventually search for a valid output value on division(n,zero), which
mis-formulates the rule of division;

• from failures to mistakes: a resource based failure, e.g. in devising as ap-
propriate a wrong goal or strategy, induces a design error in re-assessing
the specification design; as an example, consider the process of designing
a logical proof, where rules selection determines at each stage the appro-
priate sub-goals; the use of a wrongly selected rule can lead the prover to
a wrong sub-goal and in turn to a wrong design of the strategy for the
final goal state;

• from slips to mistakes: a processing error induces an error in the intended
(sub-)goal state; as an example, consider the case of an user that is re-
quired to input a password of a certain complexity strength; by a slip
(either of attention or of mechanical processing on the keyboard), the
user inputs a no-digits, no-symbol six-letters password; the algorithm will
correctly reject this input, outputting an error state; but while the algo-
rithm execution is correct, hence no failure occurs, the resulting final state
of the human-machine interaction does not correspond with the intended
goal (i.e. validate a password of a certain complexity), hence presenting a
typical case of error by inappropriate procedure.

5 Error probing for information systems

We design now a method of error detection and resolution. The given taxon-
omy of errors for information systems induces a hypothesis testing strategy that
amounts to an error probing method. Testing data happens in the construc-
tion of a new system, whose procedure consists of the following steps: first,

16



establish the goal formula (specification); second, select the strategies within
the procedure according to which the formula can be validated (process); third,
formulate the appropriate context of resources for validating the specification
(environment). At each of these steps an error might occur.

A severe testing method has to satisfy two conditions:20

• the test procedure must validate processes on a large account of the envi-
ronment, i.e. the environment has to be sufficiently large for the validity
conditions to be considered robust;

• the test procedure must be well-defined to establish valid processes; more-
over, the test procedure must be itself independent from resources or con-
ditions of the environment it checks.

The method that follows offers at once both the required properties: it validates
a large environment by the formal, content-independent language used; and it
is tested independently from the taxonomy that it defines, by mechanical type-
checking of the algorithms involved in the error-probing method.

Our error probing method consists of two combined strategies. The first
relies on the translation of the notion of information system and its components
into a machine-readable syntax, which can be checked by a program. For this
first step, we choose to formalize our method through the Coq proof assistant,
based on the calculus of inductive constructions.21 The task of a proof-assistant
is typically to check proofs, in order to testify their correctness. By the for-
mal identity underlying proofs and programs, one can use a proof assistant to
test the correctness of a program that has the same logical structure of a given
derivation. In Coq, elements of the language are types, inhabited by either
propositions (with proofs as terms) or specifications (with programs as terms).
The underlying logic for terms is the intuitionistic fragment {∧,→,∨}, extended
to quantifiers and equality. Goals are reached by derivation of appropriate sub-
goals by applying tactics that use assumptions and provide rules to introduce or
eliminate auxiliary propositions (different for each logical form available). Stan-
dard libraries include basic logical notations and properties, basic data types
(boolean and natural numbers), operations (+,×,min) and relations (<,≤).
The logic can be axiomatically extended to a classical setting by introducing
excluded middle. Additional libraries include e.g. the rules for algebraic laws or
properties of orders, lists, basic functions and properties of lists. Programs use
the definition of inductive types, predicates and families, structurally recursive
programs, pattern matching.

The second step of our method consists in going beyond the pure proof of
program-correctness by enhancing the type-checking algorithm with additional
algorithms for detecting and resolving the error cases defined by our taxonomy.
These algorithms are checked for formal correctness by the Coq proof-assistant.
Besides plainly invalid statements, we consider here three distinct kinds of data
that are treated as hypotheses and can be run for an error test in this process:

20These conditions present a strict analogy to the self-correcting thesis in Peirce.
21coq.inria.fr

17



1. assumption of a term for a new sub-goal generating no direct conflict in
the current environment;

2. formulation of a valid process:

of the same type of an already given process (redundant data);

of the same type of an already given process, but generating a new
sub-goal by rules (qualitatively different data);

3. formulation of a valid process generating an environment that is quanti-
tatively stronger than the one without it and which allows to characterize
how much of the older environment is falsified by the new data.

The error probing method consists in analysing the value of the (possibly newly
generated) data, according to the typology given above. Once an error is de-
tected, one defines an error type and returns an appropriate error object.22

For computational systems, a type-checking apparatus is appropriate to find
errors at compile-time, but entirely insufficient to discover errors at run-time.
Our task is therefore not to provide an error-probing method by type-checking;
we rather present an algorithmic error-testing method that is verified correct by
type-checking. While the check and resolve algorithms run over states of the
system to discover and resolve any of the categories of errors introduce above,
the type-checking algorithm is used to check their correctness by defining them
as Coq-valid expressions.

We provide here few explanations needed for understanding the preamble of
the code in light of the formal apparatus introduced in Section 2. Corresponding
to elements of Σ (specifications), we introduce the expression type, a category
of terms; as its element we define the category of expressions Prop, explicitly
declared for the category of valid propositions, with metavariables A,B, . . .. In
the following code, elements of Prop are contents valid at corresponding states
of the system (the set S is not transparently translated into the syntax). Ele-
ments in Π correspond to tm in Prop: terms are the domain of functions with
boolean values as range, depending on a term being or not being an element
of the given type. The expression value refers to a normalized object and pre-
supposes standard inductive definition on boolean values given by bvalue. A
full evaluation function full eval is defined as reduction from terms to terms
in Prop. Notice also that the machinery underlying our proof-checking method
(tactics and rules) is hidden at a lower level of abstraction (machine language):
hence, the set Φ of strategies to derive contents is not transparent in the follow-
ing definitions, but it is interpreted by the rules and derivation methods allowed
by the proof-checker.

Coq <

Coq < Check Prop : Type.

22This strategy is extracted from the typing of errors in functional programming. See e.g.
[19, ch.5]. Notice, however, that the analysis is here fully expanded in view of the error types
generated by the previously given taxonomy.

18



Prop:Type

: Type

Coq < Variable A B C : Prop.

A is assumed

Warning: A is declared as a parameter because it is at a global level

B is assumed

Warning: B is declared as a parameter because it is at a global level

C is assumed

Warning: C is declared as a parameter because it is at a global level

Coq <

Coq < Inductive tm : Prop :=

Coq < | tm true : tm

Coq < | tm false : tm

Coq < | tm if : tm -> tm -> tm -> tm.

tm is defined

tm ind is defined

Coq <

Coq <

Coq < Inductive bvalue : tm -> Prop :=

Coq < | b true : bvalue tm true

Coq < | b false : bvalue tm false.

bvalue is defined

bvalue ind is defined

Coq <

Coq < Definition value (t : tm) : Prop :=

Coq < bvalue t.

value is defined

Coq <

Coq < Inductive full eval : tm -> tm -> Prop :=

Coq < | f value : forall t,

Coq < value t ->

Coq < full eval t t

Coq < | f iftrue : forall t1 t2 t3 t,

Coq < full eval t1 tm true ->

Coq < full eval t2 t ->

Coq < full eval (tm if t1 t2 t3) t

Coq < | f iffalse : forall t1 t2 t3 t,

Coq < full eval t1 tm false ->

Coq < full eval t3 t ->

Coq < full eval (tm if t1 t2 t3) t.

full eval is defined

full eval ind is defined

Coq <

19



Coq < Require Import Bool.

Coq <

A procedure P (abstracting on states) is expressed in the following by proc

as element of type Prop: it is defined by the characteristic function that takes a
boolean term (i.e. a content of a state) and returns a procedure that construct
that term. This way, a procedure is parametrized as a function from a term to a
proposition, namely the proposition corresponding to the specification which is
validated by the procedure. We also define extensionality properties on specifi-
cations in terms of their procedure: equality of specifications is given by identity
of procedures; subset relation by procedural inclusion; an empty specification
corresponds to no procedure available. Finally, given the implicit definition of a
goal as the last state of a procedure (see Definition 4), we also define the term
to which no proper procedure terminates as a non-goal.

Coq <

Coq < Set Implicit Arguments.

Coq <

Coq < Inductive proc : Type :=

Coq < Charac : (A -> bool) -> proc.

proc is defined

proc rect is defined

proc ind is defined

proc rec is defined

Coq <

Coq < Definition charac (s:proc) (a:A) : bool := let (f) := s in f a.

charac is defined

Coq <

Coq < Parameter In : proc -> tm -> Prop.

In is assumed

Coq <

Coq < Definition Equal A A’ := forall t:proc, In t A <-> In t A’.

Equal is defined

Coq <

Coq < Definition Subset A A’ := forall t:proc, In t A -> In t A’.

Subset is defined

Coq <

Coq < Definition Empty A := forall t:proc, ~ In t A.

Empty is defined

Coq <

Coq < Definition no goal := exists t, forall t1, value t -> full eval t1 tm false.

no goal is defined

20



Coq <

Coq <

We now proceed with giving inductive definitions for our error categories.
The inductive definition of mistake includes three cases:

1. a missing type, defined as the function that, given a type, returns as value
that no process exists for that type;

2. an ill-defined type, defined as the function that, given any valid process,
returns as value a non-validly terminating term (i.e. no goal is in turn
definable);

3. and a retyping term function, which given a process and a specification,
expresses that the latter has a non-valid process description.

Coq <

Coq < Inductive mistake : Type -> Type :=

Coq < | missing type : mistake (exists A, Empty A)

Coq < | type illdefined : mistake (forall t:proc, no goal)

Coq < | term retype : mistake (exists A, exists t:proc,

Coq < In t A <-> ~ In t A).

mistake is defined

mistake rect is defined

mistake ind is defined

mistake rec is defined

Coq <

The inductive definition of failure includes four cases:

1. application of a wrong rule, defined as the function that matching a rule
to a type, invalidates it;

2. bad application of a correct rule, defined as the function that matching a
rule in a valid context for a type, invalidates it;

3. bad addressing, defined as the matching of a type with another type, which
returns an invalid value for the latter;

4. and failing to reach appropriate resources, defined as the matching of a
type with a process, which returns an invalid value for the corresponding
process term.

Coq <

Coq < Inductive failure : Type -> Type :=

Coq < | wrong rule : failure (match A with match rule => ~ A end)

Coq < | bad rule : failure (match A with context rule => ~ A end)

Coq < | bad address : failure (match A with B => ~ B end)

21



Coq < | no resources : failure (match A with t => ~ t end).

Warning: pattern B is understood as a pattern variable

failure is defined

failure rect is defined

failure ind is defined

failure rec is defined

Coq <

The inductive definition of slip includes four cases:

1. the exception rule, which says that it is not the case that for any two
process terms, given an evaluation of the first, it reduces safely to the
second;

2. the case of bad location, which says that it is not the case for multiple
distinct dependent process terms, that they each safely evaluate to another
final term;

3. the case of redundant processes, which says that it is not the case that the
same rule matches safely to any type;

4. and the case of recurrent data, which says that it is not the case that the
same process term matches safely to any type.

Coq <

Coq < Inductive slip : Type -> Type :=

Coq < | exception rule : slip (~forall t t’, value t -> full eval t t’)

Coq < | bad location : slip (~forall t1 t2 t3 t,

Coq < full eval t1 tm true ->

Coq < full eval t2 t ->

Coq < full eval (tm if t1 t2 t3) t)

Coq < | redundant process : slip (forall A, match A with match rule => ~A end)

Coq < | recurrent data : slip (forall A, match A with t => ~t end).

slip is defined

slip rect is defined

slip ind is defined

slip rec is defined

Coq <

We now define the algorithm check, which requires inductive recursions over
types, terms and locations to address the right type of error. This checking will
have cases corresponding to error definitions and will ideally proceed backwards
from the simplest to the most complex error case.

For slips:

• if a case of exception rule occurs, then search for the right process term
that is safely evaluated by an appropriate rule;

22



• if a case of bad location occurs over multiple dependently evaluated terms,
check recursively for slips on the local evaluation on each of the dependent
processes;

• if a case of redundant process occurs, check for the type that matches with
the given rule;

• if a case of recurrent data occurs, check for the process term that matches
with the given type.

Coq <

Coq < Inductive Check slip: Type -> Type :=

Coq < | check exception rule : ~ full eval t t’ ->

Coq < Check slip (full eval t t’’)

Coq < | check bad location : ~ full eval (tm if t1 t2 t3) t ->

Coq < Check slip (bvalue t1) ->

Coq < Check slip (bvalue t2) ->

Coq < Check slip (bvalue t3)

Coq < | check redundant process : forall A, match A with match rule => ~A end ->

Coq < Check slip (match A1 with match rule => A1 end)

Coq < | check recurrent data : forall A, match A with t => ~A end ->

Coq < Check slip (match A with t1 => A end).

Warning: pattern t1 is understood as a pattern variable

Warning: pattern t is understood as a pattern variable

Check slip is defined

Check slip rect is defined

Check slip ind is defined

Check slip rec is defined

Coq <

For failures:

• if a case of application of wrong rule occurs, check for a rule returning a
valid value;

• if a bad application of rule occurs, check recursively for the valid context
rule returning a valid value;

• if bad addressing occurs, check for the type value that returns an appro-
priate value for the defined type;

• if fail on resources occur, check for the process value that returns an
appropriate value for the defined type.

Coq <

Coq < Inductive Check failure: Type -> Type :=

Coq < | check wrong rule : match A with match rule => ~ A end ->

23



Coq < Check failure (match A with match rule => A1 end)

Coq < | bad rule : match A with context rule => ~ A end ->

Coq < Check failure (match A with context rule => A1 end)

Coq < | bad address : match A with B => ~ B end ->

Coq < Check failure (match A with B1 => B1 end)

Coq < | no resources : match A with t => ~ t end ->

Coq < Check failure (match A with t1 => t1 end).

Warning: pattern t1 is understood as a pattern variable

Warning: pattern t is understood as a pattern variable

Check failure is defined

Check failure rect is defined

Check failure ind is defined

Check failure rec is defined

Coq <

For mistakes:

• if a missing type case occurs, check for a process value that returns a valid
type;

• if ill-definition on type occurs, check for a process value that returns a new
valid type;

• if term retyping is needed, check for a process value that be valid.

Coq <

Coq <

Coq < Inductive Check mistake: Type -> Type :=

Coq < | check missing type : forall A, Empty A ->

Coq < Check mistake (match A1 with t1 => ~ Empty A end)

Coq < | type illdefined : forall t:proc, no goal->

Coq < Check mistake (match A with t => A1 end)

Coq < | term retype : (exists A, exists t:proc, In t A <-> ~ In t A) ->

Coq < Check mistake (match A with t1 => A end).

Warning: pattern t1 is understood as a pattern variable

Warning: pattern t is understood as a pattern variable

Warning: pattern t1 is understood as a pattern variable

Check mistake is defined

Check mistake rect is defined

Check mistake ind is defined

Check mistake rec is defined

Coq <

We now define the algorithm resolve, that after an error recognition pro-
ceeds with the resolution of ill-typed expressions to well-typed ones. To resolve
mistakes:

24



• on a case of missing type, produce the valid process on a new type;

• on a case of ill-defined type, produce two new process terms that are new
states for the system (one of them possibly final);

• on a term retyping case, search for the new process that is not invalid in
view of a given type.

Coq <

Coq <

Coq < Inductive resolve mistake : Type -> Type :=

Coq < | resolve missing type : resolve mistake (forall A, Empty A ->

Coq < exists t’, exists A’, In t’ A’)

Coq < | resolve type illdefined : resolve mistake (forall t:proc, no goal ->

Coq < exists t’, exists t’’, full eval t’ t’’)

Coq < | resolve term retype : resolve mistake (exists A, exists t:proc,

Coq < In t A <-> ~ In t A -> exists A’, exists t’:proc,

Coq < In t A <-> In t’ A’).

resolve mistake is defined

resolve mistake rect is defined

resolve mistake ind is defined

resolve mistake rec is defined

Coq <

To resolve failures:

• on a case of reciprocally invalid types in view of the wrong rule application,
match the first with a new type that invalidates the second;

• on a case of bad application of a rule, match the first type (on which
the rule is applied) with a new type (as the result of the correct rule
application) that invalidates the result of the faulty application;

• on a case of reciprocally invalid types in view of bad addressing, match
the first with a new context rule that invalidates the second type;

• on a case of reciprocally invalid types in view of failing resources, match
the first with a new process term that invalidates the second type.

Coq <

Coq < Inductive resolve failure : (Prop*Prop) -> Type :=

Coq < | resolve wrong rule : resolve failure (A, ~A ->

Coq < match A with A’ => ~~A end)

Coq < | resolve bad rule : resolve failure (A, ~B ->

Coq < match A with A’ => ~~B end)

Coq < | resolve bad address : resolve failure (A, ~A ->

Coq < match A with context rule

25



Coq < => ~~A end)

Coq < | resolve no resources : resolve failure (A, ~A ->

Coq < match A with t’ => ~~A end).

resolve failure is defined

resolve failure rect is defined

resolve failure ind is defined

resolve failure rec is defined

Coq <

To resolve slips:

• on a case of an application of rule on process terms that are exceptions,
match the starting process with a new terminating process that is safely
evaluated;

• on a case of bad locations, run the (re-evaluated) dependent process terms
to the appropriate evaluation process;

• on a case of reciprocally invalid types by case of redundant process, match
with the new rule that invalidates the previously faulty evaluated type;

• on a case of reciprocally invalid types by case of recurrent data, match with
the new process that invalidates the previously faulty evaluated type.

Coq <

Coq < Inductive resolve slip : Prop -> Type :=

Coq < | resolve exception rule : resolve slip (~forall t t’, value t ->

Coq < full eval t t’ -> match t with t’’ =>

Coq < full eval t’’ t’ end)

Coq < | resolve bad location : resolve slip (~forall t1 t2 t3 t,

Coq < full eval (tm if t1 t2 t3) t ->

Coq < match t with t’ =>

Coq < full eval (tm if t1 t2 t3) t’ end)

Coq < | resolve redundant process : resolve slip (forall A,

Coq < match A with match rule => ~A end ->

Coq < match A with match rule => ~~A end)

Coq < | resolve recurrent data : resolve slip (forall A,

Coq < match A with t => ~A end ->

Coq < match A with t’ => ~~A end).

resolve slip is defined

resolve slip rect is defined

resolve slip ind is defined

resolve slip rec is defined

Coq <

Coq <

26



6 Conclusion

We have introduced an extended taxonomy of error states for computational
systems based on an informational semantics. The latter allows for an un-
derstanding of processes that generalizes with respect to both procedural and
denotational semantics. The next stage of this research is the formulation of a
proper formal language for error-handling based on the coded definitions and
algorithms introduced above. Long-term objectives are the design of resolu-
tion strategies for multi-agent information processing systems and of consensus
reaching models.

7 Acknowledgements

Drafts of this paper were discussed at the Fourth Workshop in the Philosophy of
Information, University of Hertfordshire and at the Conference on Judgement
and Justification, University of Tampere. I wish to thank the participants for
helpful discussions. Two anonymous referees have offered criticisms and remarks
that have helped clarifying various passages of this work. My personal thanks
to Patrick Allo for his comments and observations.

References

[1] B.B. Agarwal, M. Gupta, and S.P. Tayal. Software engineering and testing:
an introduction. Jones & Bartlett Learning, 2009.

[2] D. Allchin. The epistemology of errors. In Philosophy of Science Associa-
tion, 2000.

[3] D. Allchin. Error types. Perspectives on Science, 9:38–59, 2001.

[4] P. Allo and E. Mares. Informational semantics as a third alternative?
Erkenntnis, 2011.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider
(eds.). The Description Logic Handbook. Theory, Implementation and Ap-
plications. Cambridge University Press, 2003.

[6] L.R. Baker. The metaphysics of malfunction. Techne, forthcoming.

[7] D. Beaver. Presupposition and Assertion in Dynamic Semantics. Stanford:
CSLI Publications., 2001.

[8] D. Bonnay and P. Egre’. Knowing One’s Limits - An analysis in Centered
Dynamic Epistemic Logic. Synthese, Springer., 2011.

[9] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland,
1958. Second printing 1968.

27



[10] H.B. Curry. Functionality in combinatory logic. In Proceedings of the
National Academy of Science USA, volume 20, pages 584–590, 1934.

[11] L. Floridi. The logic of being informed. Logique & Analyse, 196:433–460,
2006.

[12] L. Floridi. Philosophical Conceptions of Information. In G. Sommaruga,
editor, Formal Theories of Information, volume 5363 of Lectures Notes in
Computer Science, pages 13–53. Springer Verlag, 2009.

[13] M. Franssen. Design, use, and the physical and intentional aspects of tech-
nical artifacts. In A. Light P. E. Vermaas, P. Kroes and S. A. Moore,
editors, Philosophy and Design: From Engineering to Architecture, pages
21–35. Springer, 2008.

[14] W. Howard. The formulae-as-types notion of construction. In J. Seldin
and J. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

[15] B. Jespersen. A new logic of technical malfunction. Studia Logica, forth-
coming.

[16] B. Jespersen and M. Carrara. Two conceptions of technical malfunction.
Theoria, 77:117–138, 2011.

[17] D.G. Mayo. Error and the Growth of Experimental Knowledge. Chicago
University Press, 1996.

[18] D.G. Mayo. Learning from error, severe testing, and the growth of theo-
retical knowledge. In D. Mayo and Spanos, editors, Error and Inference.
Cambridge University Press, 2010.

[19] G. Michaelson. Functional programming through λ-calculus. Dover, 1989.

[20] C.S. Peirce. Illustrations of the logic of science vi: Deduction, induction,
and hypothesis. Popular Science Monthly, 13, 1878.

[21] K. R. Popper. Conjectures and Refutations. Routledge & Keagan, London,
1963.

[22] G. Primiero. An epistemic logic for becoming informed. Synthese (KRA),
167(2):363–389, 2009.

[23] G. Primiero. Offline and online data: on upgrading functional information
to knowledge. Philosophical Studies, 2012. DOI:10.1007/s11098-012-9860-
4.

[24] J. Reason. Human Error. Cambridge University Press, 1990.

[25] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry–Howard Isomor-
phism, volume 149 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006.

28



[26] B.G. Sundholm. Error. Topoi, 2012.

[27] R. Turner. Specification. Minds & Machines, 21(2).:135–152, 2011.

[28] T. Williamson. Inexact knowledge. Mind, 101(402).:217–241, 1992.

[29] T. Williamson. Vagueness. Routledge, 1994.

[30] T. Williamson. Knowledge and its Limits. Oxford University Press, 2002.

[31] H. Woods. The Death of Argument: Fallacies in Agent-based Reasoning.
luwer Academic Publishers., 2004.

29

View publication statsView publication stats

https://www.researchgate.net/publication/235917206

