Intraoperative Contrast-Enhanced Ultrasound for Brain Tumor Surgery

BACKGROUND: Contrast-enhanced ultrasound (CEUS) is a dynamic and continuous modality that offers a real-time, direct view of vascularization patterns and tissue resistance for many organs. Thanks to newer ultrasound contrast agents, CEUS has become a well-established, live-imaging technique in many contexts, but it has never been used extensively for brain imaging. The use of intraoperative CEUS (iCEUS) imaging in neurosurgery is limited.

OBJECTIVE: To provide the first dynamic and continuous iCEUS evaluation of a variety of brain lesions.

METHODS: We evaluated 71 patients undergoing iCEUS imaging in an off-label setting while being operated on for different brain lesions; iCEUS imaging was obtained before resecting each lesion, after intravenous injection of ultrasound contrast agent. A semiquantitative, offline interobserver analysis was performed to visualize each brain lesion and to characterize its perfusion features, correlated with histopathology.

RESULTS: In all cases, the brain lesion was visualized intraoperatively with iCEUS. The afferent and efferent blood vessels were identified, allowing evaluation of the time and features of the arterial and venous phases and facilitating the surgical strategy. iCEUS also proved to be useful in highlighting the lesion compared with standard B-mode imaging and showing its perfusion patterns. No adverse effects were observed.

CONCLUSION: Our study is the first large-scale implementation of iCEUS in neurosurgery as a dynamic and continuous real-time imaging tool for brain surgery and provides the first iCEUS characterization of different brain neoplasms. The ability of CEUS to highlight and characterize brain tumor will possibly provide the neurosurgeon with important information anytime during a surgical procedure.

KEY WORDS: Brain tumor, Contrast-enhanced ultrasound, Glioma, Intraoperative imaging, Tumor perfusion, Ultrasound

Imaging techniques play a pivotal role during surgical resection of brain lesions. They help when planning a surgical strategy before the operation, and during surgery, they indicate tumor boundaries and the relationships of the tumor with nearby vital structures, thus enhancing precision, accuracy, and safety for the patients, allowing maximal resection.1

The use of ultrasound (US) during neurosurgical procedures is becoming more widespread. Multiple studies have shown that US is a valuable tool in tumor detection during surgery.2-6 Although the quality of the gray-scale US image before tumor resection is excellent, little information is gained in terms of perfusion of the lesion, even with the aid of Doppler US.5,7-10

Contrast-enhanced ultrasound (CEUS) is a relatively new technique that has become progressively more common because it allows, among other things, highlighting of neoplastic lesions.
Intraoperative qualitative analysis was performed comparing iCEUS with B-mode US imaging and preoperative MRIs and correlated to histopathology. Tumor CE was then evaluated in an offline setting following the EFSUMB criteria on CEUS,12,18,32 performing an interobserver, semiquantitative analysis as described below.

**Equipment and Contrast Agent**

For US-guided neuronavigation, we used a last-generation US system with a multi-frequency (3-11 MHz) linear probe. The US system was equipped with Virtual Navigator software for Fusion Imaging, allowing real-time neuronavigation between preoperative MRI and real-time US. As a contrast agent, we used sulfur hexafluoride-filled lipidic microbubbles, a second-generation UCA (SonoVue, Bracco, Italy), injected intravenously as a bolus (2.4 mL [5 mg/mL]). iCEUS scanning was performed with the Contrast Tuned Imaging algorithm that allows real-time angiosonography.

**iCEUS Procedure and Data Analysis**

We performed preoperative, MRI-based surgical planning with neuronavigation coupled to US using the Virtual Navigator. After bone flap removal, a 3- to 11-MHz linear US navigated probe (LA 332; Esaote, Italy) was placed in a surgical sterile transparent plastic sheath (CIVCO), along with 5 mL US transducing gel. The probe was placed over the dura to acquire standard B-mode US imaging scans and after contrast agent bolus injection for 100 to 300 seconds (median, 120 seconds). A digital cine clip was registered during baseline US scanning and after contrast agent bolus injection for 100 to 300 seconds (median, 120 seconds).

A first online intraoperative qualitative analysis was performed to assess tumor/normal parenchyma echogenic characteristics, tumor boundaries, and specific anatomic landmarks. All lesions were initially evaluated with B-mode imaging, and a morphological qualitative online intraoperative correlation between US imaging and preoperative MRI was performed on the basis of a US real-time neuronavigation system that fused intraoperative cerebral US with preoperative MRI. Lesions on B-mode imaging were defined as highly hyperechoic, mildly hyperechoic, or iso/hypoechoic compared with the surrounding normal brain parenchyma. Other lesion characteristics were its appearance (diffuse or circumscribed), homogeneity vs heterogeneity, presence of calcification, and cystic/necrotic areas. Then, an online qualitative analysis of intratumor microbubbles distribution and its relationships to other anatomic landmarks was conducted. A semiquantitative offline interobserver analysis was then performed by the first author (F.P., a neurosurgeon/certified sonologist) and by 3 independent radiologists (A.M., L.A., and L.S.), with extensive experience in CEUS, to evaluate the visualization of each lesion with iCEUS following the EFSUMB guidelines12,13, volumetric (arterial and venous phase [time is given as range]), degree of CE (comparison with brain parenchyma), and contrast distribution (centripetal/centrifugal pattern, visibility of afferent/efferent vessels, intraslesion vessels, cystic/necrotic areas). All data obtained by both online and offline analyses were correlated with the histopathology of each lesion.

**Study Design and Patient Population**

We performed iCEUS in an off-label setting following the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines on CEUS.12,18,32 We evaluated patients undergoing craniotomy for brain tumor removal with image guidance using a last-generation US system equipped with Fusion Imaging for neuronavigation (Esaote MyLab with Virtual Navigator, Esaote, Italy). Patients were bearing tumorlike brain masses, which were deemed surgically resectable, in good general status (American Society of Anesthesiologists 1-III; Karnofsky Performance Scale > 70). All patients were thoroughly informed about the surgical procedure, and written consent was obtained.

Intraoperative qualitative analysis was performed comparing iCEUS with B-mode US imaging and preoperative MRIs and correlated to histopathology. Tumor CE was then evaluated in an offline setting following the EFSUMB criteria on CEUS,12,18,32 performing an interobserver, semiquantitative analysis as described below.
RESULTS

We evaluated 71 patients (age range, 10-76 years; mean, 50 years) harboring different intracranial lesions (53 gliomas [16 low grade, 9 anaplastic, 28 glioblastoma], 4 meningiomas, 6 metastases, 2 ependymomas, 1 pituitary adenoma, 1 hemangioblastoma, 1 ganglioglioma, 1 central neurocytoma, 1 abscess, 1 radiation necrosis; see Table 1 for further details).

We were able to visualize all lesions both on B-mode and then with the iCEUS technique, with a complete interobserver agreement on both intraoperative and postoperative analyses. Standard US B-mode and iCEUS imaging features for each case are summarized in Table 2 and Figure 1.

We did not observe any adverse event or side effect related to the administration of the contrast agent.

We performed a morphological qualitative interobserver online analysis using an US-based real-time neuronavigation system that fuses intraoperative cerebral US with preoperative MRI, simultaneously displaying and comparing US and MRI. In all cases, we had great accuracy of correlation between intraoperative US imaging and preoperative MRI, being able to visually identify, to compare the lesions, and to easily recognize fixed anatomic structure. We had a good morphological correspondence between the 2 imaging modalities with good correlation and superimposition between the 2 data sets, with an error <2 mm, as shown in Figure 2.

On standard US B-mode imaging, glioblastoma (n = 28) appeared all hypechoic with to brain parenchyma, with a heterogeneous appearance composed of multiple well-defined nodular areas and others with diffuse margins. Maximal diameter ranged from 3 to 7 cm. All but 3 lesions had cystic/necrotic areas (18 large and 3 with microcystic areas). Anaplastic astrocytoma (n = 9) ranged from 4 to 7 cm in diameter. All 3 appeared hypechoic with a diffuse, dense texture, with some areas more hypechoic compared with the rest of the lesion. No cystic/necrotic areas were noted. Low-grade gliomas (n = 16) appeared mildly hypechoic compared with brain parenchyma. Maximum diameter ranged from 3 to 6 cm. All lesions had a homogeneous texture with blurred margins at the brain/tumor interface except for 1 oligoastrocytoma that had a discrete appearance with clear border and the only case of ganglioglioma. Microcysts were visible in only 2 cases. For both high- and low-grade lesions, the tumor margins were blurred; the brain/tumor interface was not clearly visible everywhere and was indistinguishable from edematous brain parenchyma.

Meningiomas (n = 4), regardless of World Health Organization grade, appeared hypechoic, with fine granular aspects resulting from microcystic areas. Maximum diameter ranged from 3 to 9 cm. Grade I and II meningiomas were homogeneous, whereas anaplastic ones appeared more heterogeneous, with multiple, vast hypechoic areas caused by necrotic degeneration. All lesions were clearly well demarcated from surrounding brain tissue, even in the edematous areas.

All cerebral metastases (n = 6) were markedly hypechoic with a diffuse granular and heterogeneous aspect. Their diameters ranged from 3 to 6 cm. All lesions presented cystic areas, varying in size and calcifications. All lesions were clearly well demarcated from brain parenchyma.

Ependymomas (n = 2) appeared as discrete nodular masses with a diffuse, dense texture with some minute hypechoic areas compared with the rest of the lesion, probably resulting from microcalcification. One measured 5 cm and the other 3 cm in diameter. They both had multiple peripheral satellite cystic areas. One pituitary adenoma was homogeneously hypechoic and had a discrete multilobular appearance with clearly demarcated borders. Its maximum diameter was 5 cm.

One posterior fossa hemangioblastoma appeared as a nodular hypechoic mass surrounding a hypechoic, heterogeneous center with clear borders. One frontal ganglioglioma was a round mass, hypechoic compared with brain parenchyma, with well-demarcated borders and a hypo-echoic cyst in the context of the lesion.

One case of central neurocytoma was deeply located, mildly hypechoic, and heterogeneous with a fine multilobular aspect. Margins were, at times, diffused within the brain parenchyma. It measured 7 cm in diameter.

<table>
<thead>
<tr>
<th>TABLE 1. Study Population Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases, n</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Gliomas</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>Meningiomas</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Other central nervous systems primary tumors</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Secondary brain lesions/other</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Brain Lesion</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Low-grade glioma</td>
</tr>
<tr>
<td>Anaplastic glioma</td>
</tr>
<tr>
<td>Glioblastoma</td>
</tr>
<tr>
<td>Meningioma</td>
</tr>
<tr>
<td>Ganglioglioma</td>
</tr>
<tr>
<td>Ependymoma</td>
</tr>
<tr>
<td>Ctr. neurocytoma</td>
</tr>
<tr>
<td>Pituitary adenoma</td>
</tr>
<tr>
<td>Hemangioblastoma</td>
</tr>
</tbody>
</table>

(Continues)
One case of cerebral abscess was superficial, with a thin hyperechoic capsule surrounding a large hypoechoic center, measuring 5 cm in maximum diameter.

One case of radionecrosis had a homogeneous, diffuse, mildly hyperechoic texture with blurred margins at the brain/tumor interface.

Specific iCEUS patterns were observed in relation to the different pathological entities being tested. In our series, all neoplastic lesions showed CE, whereas 2 nonneoplastic lesions (1 abscess and 1 radionecrosis) did not.

Glioblastomas showed a rapid CE (20-30 seconds after UCA injection) marked by rapid arterial phase (2-3 seconds), very fast CE peak (3-5 seconds), and chaotic transit of microbubbles within the lesion. The arterial supply was clearly visible, showing many macrovessels within the lesion and a typical peripheral enhancement that moved toward the inner areas of the lesion. The venous phase was rapid (5-10 seconds), and the venous drainage system was diffuse, with multiple medullary veins aiming toward the periventricular zone. (See Figure 3 and Video, Supplemental Digital Content 1, http://links.lww.com/NEU/A615, which is an intraoperative video obtained before the resection of a right parietal glioblastoma. The screen displays dual ultrasound imaging of the same field of view with low-mechanical index US B-mode imaging on the left-hand side and iCEUS imaging on the right hand side of the screen. Standard B-mode US allows identification of the region of interest while iCEUS is performed. On the left inferior corner is also visible a timer, which is manually started after UCA injection and permits the evaluation of the different vascular phases. Note how iCEUS is able to show the dynamic perfusion of the lesion, highlighting major feeding vessels, intralesional arteries, tumor mass, cystic/necrotic areas, and draining veins. iCEUS degree of enhancement of the lesion is compared with normal brain parenchyma CE.) CE was intense, with a persistent parenchymal phase compared with normal brain parenchyma and a heterogeneous CE pattern characterized by peripheral enhancement surrounding either high-CE nodular areas or low/absent-CE, hypoperfused necrotic/cystic areas. Tumor borders were better defined after CE than in standard B-mode imaging.

Anaplastic astrocytoma appeared to have a slower arterial phase compared with glioblastomas (30-40 seconds after UCA injection; CE peak at 10-15 seconds after UCA arterial enhancement), with a venous phase at 20 to 25 seconds. Arterial supply was clearly visible with a centrifugal pattern and few macrovessels within the lesion. Venous drainage was not clearly identifiable. Anaplastic astrocytoma appeared to have a diffuse, progressive CE pattern, more homogeneous than the glioblastomas, reinforced during the parenchymal phase. Tumor borders are less visible after CE than in glioblastomas.

In the low-grade glioma group, the arterial phase had timing similar to that of anaplastic astrocytomas. Nevertheless, the CE peak was even more delayed (15-20 seconds) as well as the venous phase (>30 seconds). The direct arterial supply and the venous drainage were not always clear. The arterial supply was centrifugal, and major vessels were not visible within the lesion. Astrocytomas were mildly hyperechoic after UCA injection compared with the brain parenchyma, and the tumor
parenchymal phase was steady and uniform. The CE pattern was dotted and homogeneous, with only 2 cases with microcystic areas. In the 3 cases of oligodendroglioma, we observed features similar to those in anaplastic astrocytoma.

Meningiomas showed an intense and rapid CE (arterial phase, 20-30 seconds after UCA injection) with even higher CE peaks in higher grades. CE was centripetal with the major supply from the dural attachment. All grades displayed a dense and persistent parenchymal enhancement, being more homogeneous in grade I meningiomas. The venous phase was delayed (>30 seconds after UCA injection), and venous drainage was not clearly visible. Intralesional major vessels were visible only in grade II and III meningiomas, which also exhibited some hypodense/necrotic areas within the lesion. Tumor borders were clearly visible in all cases.

Cerebral metastasis showed a rapid CE (20-30 seconds after UCA injection), with a fast arterial phase (2-3 seconds) and CE peak (5-10 seconds). The arterial supply was centripetal, with many macrovessels within the lesion. CE was persistent with a delayed venous phase (>30 seconds). The venous drainage system was not clearly visible. CE in metastases was very strong and intense with an irregular and heterogeneous CE pattern composed of high-contrast dense areas, macrovessels, and hyperperfused necrotic or non-perfused cystic areas. Tumor borders were clearly defined after CE.

Both ependymoma cases were characterized by a rapid arterial phase (5 seconds) and a very fast CE peak (5-10 seconds after UCA arrival). The arterial supply was clearly visible and centripetal, with many macrovessels well distinguishable within the lesion. The venous phase was rapid (20-25 seconds), and the venous drainage system was diffuse around the lesion. Ependymomas displayed an irregular and heterogeneous CE pattern with homogeneous areas alternating with hyperperfused, cystic areas.

The pituitary adenoma had a slow arterial phase (40-45 seconds after UCA injection) and a delayed CE peak (20 seconds after UCA arrival). The arterial supply and venous drainage were not visible, and the CE pattern was quite regular and homogeneous. No vessels were visible. The parenchymal phase was persistent with a slow venous phase (>40 seconds).

One posterior fossa hemangioblastoma case displayed a rapid wash in phase (5-10 seconds after UCA arrival) and CE peak. Hemangioblastoma had an intense CE with a centripetal perfusion. The CE pattern showed a peripheral homogeneous parenchymal area surrounding a hyperperfused center (larger than what was visible on B-mode US only). No major vessels were visible within the lesion. The venous phase was delayed up to 30 seconds.

Ganglioglioma had a rapid arterial phase and CE peak (2-3 seconds after UCA arrival in arteries), with a homogeneous, bright CE pattern, few small vessels within the lesion, and a hypoechoic cystic area, superimposable to what was visible on B-mode imaging. The venous phase was rapid as well (10-15 seconds after arterial phase).

Our case of central neurocytoma showed a delayed arterial phase (30-40 seconds after UCA arrival) and CE peak. There was a mild CE with multiple homogeneous nodularity. No vessels were visible within the lesion, and the washout was delayed (>40 seconds).

Finally, 1 case of cerebral abscess and 1 radionecrosis had no CE. The abscess had a thin, peripheral rimlike CE area surrounding a large necrotic center, whereas the radionecrosis remained completely without CE (being homogeneously hypechoic on B-mode US).

**DISCUSSION**

In our study, we were able to directly visualize each of the 71 different brain lesions before resection with both the B-mode and iCEUS modalities and to surgically resect them under direct visualization with no adverse effects.

Our study shows that iCEUS is very useful in evaluating the location, defining the border, and depicting the vascularization and perfusion pattern of different brain tumors. Especially in tumors with ill-defined borders on B-mode US such as gliomas, iCEUS was very helpful in highlighting the lesion and its boundaries and possibly differentiating between tumor/edematous brain tissue.

We also demonstrate, although in a limited number of cases, the dynamic morphological and vascular pattern of cerebral tumor, which has only partially been shown before, demonstrating the ability of US and iCEUS to show rapid and dynamic events such as the arterial and venous phases of various lesions and their different pattern and degree of enhancement.

The evaluation of different parameters such as timing of the arterial and venous phases, peak, and intensity of CE and the presence of intralesional vessels or cystic/necrotic areas, will possibly lead, with its application in a higher number of cases, to the identification of specific iCEUS patterns for different cerebral lesions. This not only will contribute to enhancing our intraoperative knowledge in regard to tumor biology but also will lead to an iCEUS characterization of cerebral tumors, as it has been already established by the radiological community for other organs.12,16,18,35

The ability of iCEUS to highlight vascular structures made it easier for the surgeon to identify the vascular peduncles, giving further insight into the surgical strategy, facilitating vascular deafferentation of the lesion and then its surgical removal. After gross tumor removal, iCEUS might also be used to highlight tumor remnants, thus maximizing resection and avoiding neurological sequelae resulting from damaged healthy brain tissue.
Quite a few transcranial CEUS bedside studies have been performed on cerebrovascular patients to assess brain perfusion, extent of stroke, and response to stroke therapy\(^{24,36,37}\); on the other hand, only a few studies have investigated the role of iCEUS in highlighting cerebral tumors\(^{21,22,27}\). In these studies, the authors showed the possibility of visualizing brain lesions with CEUS. Transcranial US is a well-established technique, but because of the cranial vault, it has a major limitation for brain tumor detection. Even...
at the level of the temporal bone, despite its limited thickness, it is necessary to use a low-frequency insonation that does not allow high resolution and detailed evaluation of the brain parenchyma. Moreover, the use of a limited and fixed bone window does not allow the visualization of all kinds of lesions, and it is strongly dependent on the site of the lesion. Harrer et al. by using preoperative CEUS, were able to distinguish some brain lesions from the brain parenchyma and to partially characterize different cerebral lesions. In another study, Vicenzini et al. obtained time intensity/curves using dedicated software. However, in this series, the study population was small. In fact, time-intensity curves need very large cohorts to obtain a statistically significant result, as well as validation study for quantitative analysis. Nevertheless, these studies demonstrate the increasing interest in CEUS and brain tumors.

iCEUS has been undertaken in an intraoperative setting for brain tumor surgery only a few times, obtaining direct tumor visualization but with some limitations. Kanno et al. analyzed 40 brain tumors using a first-generation contrast agent, obtaining only frame-by-frame imaging. Engelhardt et al. made a step forward, performing iCEUS during brain tumor removal using a second-generation contrast agent with a specific algorithm and performing offline time-intensity curves, but on a very small and homogeneous cohort of patients (7 glioblastoma patients). Indeed, to provide statistically relevant results with time-intensity curves, they should be performed on a large sample size. He et al. intraoperatively evaluated 29 brain tumors (22 gliomas and 7 meningiomas) using iCEUS technique. They used a phased-array probe with low frequency and a vast view field (as used in transcranial Doppler), and the US imaging was performed in power Doppler modality instead of with a contrast-specific algorithm, dramatically reducing both US spatial resolution and definition.

Another study by Wang et al. (only the abstract is available) evaluated the feasibility and value of intraoperative contrast-enhanced US in different pathological grades of glioma apparently without obtaining iCEUS characterization for these lesions. Our findings also showed specific iCEUS features for each different kind of brain lesion, which might suggest a specific iCEUS pattern related to each different lesion. In glioblastomas, we found a heterogeneous CEUS pattern with rapid arterial and venous phases and high CE compared with brain parenchyma, and in all cases, it was always possible to visualize major arterial feeders. We also found almost invariably venous drainage through the periventricular medullary veins. The lesion was always well demarcated from brain parenchyma, and in some cases, iCEUS was able to show tumor remnants. Complete tumor demarcation was not always obtainable in anaplastic astrocytoma, even though a marked CE was clearly visible compared with brain parenchyma. Five anaplastic gliomas had been presurgically considered low-grade gliomas on the basis of MRI findings. In these cases, iCEUS showed a denser pattern with higher CE areas, probably expression of anaplastic foci within otherwise low-grade lesions.

Surprisingly, we found a subtle but clearly visible CE also in low-grade gliomas, which usually lack CE on MRI. In low-grade gliomas, iCEUS showed a scattered and dotted CE with slow vascular phases in all cases, even if borders were not always clearly distinguishable from healthy brain tissue. For meningeal and other extra-axial vascular lesions such as hemangioblastoma, iCEUS showed a clear delineation of the lesion. Visualization of the arterial feeders and venous drainage is very helpful in planning the surgical strategy to progressively devascularize the lesion, avoiding profuse bleeding. In meningoceles, however, complete lesion visualization could be impaired because of dural coagulation before CEUS scanning, thus reducing tumor perfusion. iCEUS confirmed the nonperfusion of avascular lesions such as abscess and radionecrosis, giving further assistance in differentiating these lesions from other lesions such as glioblastomas.
Furthermore, US is a readily repeatable, dynamic, inexpensive procedure that can be performed any time for a potentially unlimited number of times during surgery. Other intraoperative imaging techniques such as intraoperative MRI and 5-aminolevulinic acid (5-ALA) are also able to highlight brain lesions but with some limitations compared with iCEUS. Intraoperative MRI, in addition to being expensive, requires the surgical procedure to stop during the acquisition phase, making the procedure considerably time-consuming, whereas iCEUS imaging procedure takes a few minutes when properly conducted. For further accuracy and orientation, our US device is equipped with virtual navigation software that couples in real time the preoperative MRI with dynamic imaging provided with iCEUS. On the other hand, fluorescence-guided surgery such as that obtained with 5-ALA is an excellent method for intraoperative tumor visualization, but it can be adopted only in high-grade gliomas, whereas UCAs are, in our experience, able to visualize all kinds of brain lesions. Another major distinction depends on how tumor tissue is visualized. iCEUS shows on a screen a measurable section of the lesion before and at any given time during tumor resection, providing the surgeon with important information such as the on-site tumor morphology, the tumor relationships with anatomic landmark, and the thickness of tumor remnants during tissue resection. On the contrary, 5-ALA shows only the tumor surface. As a consequence, drawbacks in 5-ALA visualization might be due to neoplastic tissue hidden by healthy, nonfluorescent tissue. Furthermore, not all glioblastoma cells properly uptake 5-ALA, therefore reducing tumor visualization.

**Limitations**

One major limitation of the CEUS technique is that individual imaging sections are applied with US, analyzing 1 portion of the lesion at a time. It is therefore mandatory to accurately scan the lesion in B-mode and color Doppler imaging before performing iCEUS to evaluate the more significant portion of the lesion and to obtain as much information as possible in regard to the timing. Offline analysis during surgery could be performed, allowing a more accurate interobserver analysis, even though it is difficult to share and transmit the whole set of information between all performers. However, a correlation between iCEUS and preoperative MRI (T1-weighted gadolinium) presents some major obstacles when comparing the degree of CE between the 2 techniques. In fact, microbubbles are purely intravascular, whereas MRI contrast agent perfusion dynamic, which will possibly provide further insights into the pathology of brain tumors, especially if integrated with other US modalities such as color Doppler and elastosonography.

Performing iCEUS before tumor removal might help the surgeon tailor the approach to the lesion, highlighting the lesion, clarifying between tumor and edematous brain tissue, and showing afferenent and efferent vessels and hyperperfused areas, thus possibly modifying the intraoperative surgical strategy.

Further studies are needed to evaluate the role of iCEUS in highlighting tumor remnants after gross tumor removal, especially in high-grade lesions, thus maximizing resection and avoiding neurological sequelae.

In our experience, iCEUS has proven to be a simple and relatively inexpensive technique (especially compared with other intraoperative techniques such as 5-ALA and intraoperative MRI), and the expected results will potentially integrate scientific excellence and lead to better treatment for brain tumor patients, resulting in further understanding of and exploitation in the field of brain surgery.

**Disclosure**

The authors have no personal financial or institutional interest in any of the drugs, materials, or devices described in this article.

**REFERENCES**


**CONCLUSION**

Our study is the first implementation in neurosurgery of iCEUS in a relatively large-scale setting. We found that iCEUS is a safe and fast intraoperative technique that completes and integrates the information obtained with standard B-mode and color Doppler imaging, providing dynamic and continuous real-time imaging and characterization of several brain lesions. Moreover, defining the paradigm of iCEUS adds valuable anatomic and biological information such as vascularization, microcirculation, and tissue perfusion dynamic, which will possibly provide further insights into the pathology of brain tumors, especially if integrated with other US modalities such as color Doppler and elastosonography.

Performing iCEUS before tumor removal might help the surgeon tailor the approach to the lesion, highlighting the lesion, clarifying between tumor and edematous brain tissue, and showing afferenent and efferent vessels and hyperperfused areas, thus possibly modifying the intraoperative surgical strategy.

Further studies are needed to evaluate the role of iCEUS in highlighting tumor remnants after gross tumor removal, especially in high-grade lesions, thus maximizing resection and avoiding neurological sequelae.


Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s Web site (www.neurosurgery-online.com).

Acknowledgments

The authors would like to thank Mrs Caroline King, DipArch, for her kind advice in revising the manuscript, and Mr Luca Lodigiani for his technical support.

COMMENT

This is an important article dealing with contrast-enhanced ultrasound in brain tumor surgery. I believe that this technique should be further developed to offer neurosurgeons an extremely fast and rather cost-effective imaging technology.

It has to be investigated whether the combination with intraoperative magnetic resonance imaging at the end of surgery or the standalone application can detect tumor remnants.

Martin Scholz
Bochum, Germany