MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca$^{2+}$ signal essential for root water tracking in Arabidopsis

Doron Shkolnika, Roye Nurielb, Maria Cristina Bonzab, Alex Costab,c, and Hillel Fromma,1

aSchool of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; bDepartment of Biosciences, University of Milan, 20133 Milan, Italy; and cInstitute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy

Edited by Jian-Kang Zhu, Purdue University, West Lafayette, IN, and approved April 23. 2018 (received for review March 9, 2018)

Ever since Darwin postulated that the tip of the root is sensitive to moisture differences and that it "transmits an influence to the upper adjoining part, which bends towards the source of moisture" [Darwin C, Darwin F (1880) The Power of Movement in Plants, pp 572–574], the signal underlying this tropic response has remained elusive. Using the FRET-based Cameleon Ca$^{2+}$ sensor in planta, we show that a water potential gradient applied across the root tip generates a slow, long-distance asymmetric cytosolic Ca$^{2+}$ signal in the phloem, which peaks at the elongation zone, where it is dispersed laterally and asymmetrically to peripheral cells, where cell elongation occurs. In addition, the MIZ1 protein, whose biochemical function is unknown but is required for root curvature toward water, is indispensable for generating the slow, long-distance Ca$^{2+}$ signal. Furthermore, biochemical and genetic manipulations that elevate cytosolic Ca$^{2+}$ levels, including mutants of the endoplasmic reticulum (ER) Ca$^{2+}$-ATPase (SERCA). This study elucidates the mechanism underlying systemic Ca$^{2+}$ signaling in plant roots, which is essential for water tracking.

MIZ1 | ECA1 | hydrotropism | calcium | Arabidopsis

Plant adaptation to environmental changes requires continuous foraging for water to survive. Roots have evolved a yet-unexplained mechanism that directs their growth toward high water potential, a task that requires overcoming their default growth pattern along the gravity vector (gravitropism) (1–3). Landmark experiments demonstrated the importance of the root cap in sensing moisture and directing growth toward the water source (1, 4). If this is indeed the case, then numerous questions need to be addressed to elucidate the mechanism underlying hydrotropism: First, how is the water gradient detected; second, following the sensing, how does the detector transduce the sense to a signal, which is transmitted from the root cap to the elongation zone (EZ); third, which asymmetric cross-root signal underlies differential growth across the root, resulting in root bending toward the water source? Although it has been shown that the osmotic stress hormone abscisic acid (ABA) is required for hydrotropism (5, 6), there is no evidence for ABA signaling from the root cap to the EZ, nor is there evidence for the asymmetric distribution of ABA across the root in response to moisture gradients (6). The requirement of the hormone auxin, a regulator of some tropic responses (7–9), was revealed in relation to hydrotropism because it is not asymmetrically distributed following hydrostimulation (10, 11). Moreover, blocking of auxin polar transport, or TIR-dependent auxin signaling, enhanced hydrotropism (10, 11). Interestingly, reactive oxygen species (ROS) play an important role in tuning root tropic responses by acting positively in gravitropism and negatively in hydrostimulation (12, 13). In recent years, accumulating evidence has suggested that Ca$^{2+}$ plays a key role in long-distance, systemic signaling in response to various stress stimuli (14, 15), for example, mediating the occlusion of phloem sieve tube elements in response to wounding (16), evoking electric signaling (15), and mediating rapid Ca$^{2+}$ waves in roots responding to salt stress (14). Moreover, since both ABA and ROS signaling interact with Ca$^{2+}$ signaling in plants, and since Ca$^{2+}$ was suggested to be involved both in hydrotropic and gravitropic responses (17–20) and in cell elongation in different plant tissues (21, 22), we sought to assess the possible role of Ca$^{2+}$ as a signal from the root cap to the EZ for root bending upon hydrostimulation.

Results

An MIZ1-Dependent Slow Shootward Cytosolic Ca$^{2+}$ Signal Is Required for Root Hydrotropism. To analyze cytosolic Ca$^{2+}$ ([Ca$^{2+}]_{cyt}$) levels in the roots of wild-type (WT) Arabidopsis (Col-0), transgenic plants that express the cytosol-targeted, FRET-based Ca$^{2+}$ sensor Cameleon (NES-YC3.6) (23) were studied by confocal microscopy. Confocal visualization of the NES-YC3.6 ratio intensity in Col-0 roots under control conditions revealed high levels of [Ca$^{2+}]_{cyt}$ at the columella, meristematic zone, lateral root cap, and the EZ vasculature (Fig. L4). Strikingly, following 1 h of hydrostimulation in a split-agar/sorbitol system (Materials and Methods), [Ca$^{2+}]_{cyt}$ levels were elevated at the root tip (Fig. L4 and SI Appendix, Fig. SlA) and at the vasculature of the meristem and elongation zones, with an apparent asymmetric distribution at the EZ, where higher [Ca$^{2+}]_{cyt}$ levels were observed at the side that becomes

Significance

Plant roots grow toward water, a phenomenon termed hydrotropism. The nature of the root signal that governs hydrotropism is elusive and remains to be elucidated. Here, we show that, in response to water potential differences across the root tip, a slow, asymmetric long-distance Ca$^{2+}$ signal is transmitted via the phloem to the elongation zone, where it is asymmetrically distributed across the root to promote root curvature. Furthermore, we demonstrate that the hydrotropism-associated protein MIZ1 plays a role in generating the Ca$^{2+}$ signal by its direct binding to and inhibition of ECA1, an endoplasmic reticulum Ca$^{2+}$ pump, which resembles the animal sarco/endoplasmic reticulum Ca$^{2+}$-ATPases (SERCA). This study elucidates the mechanism underlying systemic Ca$^{2+}$ signaling in plant roots, which is essential for water tracking.

Author contributions: D.S., M.C.B., A.C., and H.F. designed research; D.S., R.N., M.C.B., and C. performed research; R.N. contributed new reagents/analytic tools; D.S., M.C.B., A.C., and H.F. analyzed data; and D.S., M.C.B., A.C., and H.F. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: hillef@post.tau.ac.il.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804130115/-/DCSupplemental.

Published online July 16, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1804130115

PNAS | July 31, 2018 | vol. 115 | no. 31 | 8031–8036
convex upon bending (Fig. 1A and Movies S1 and S2). This result was also reproduced using a split-agar/manntisol system (SI Appendix, Fig. S2), indicating that the [Ca$^{2+}$]$_{cyt}$ elevation is not a specific response to sorbitol. To further assess the relationship between the long-distance Ca$^{2+}$ signal and the cellular pathways mediating root curvature to moisture, we visualized [Ca$^{2+}$]$_{cyt}$ in mutants of the Mizu-Kussey 1 (MIZ1) gene, which encodes an ER membrane-associated protein (24, 25), whose biochemical or cellular functions are unknown but is indispensable for root curvature in response to moisture gradients (24). Analysis of the [Ca$^{2+}$]$_{cyt}$ distribution along the root tip of control and hydrosimulated miz1 mutants harboring the Cameleon Ca$^{2+}$ sensor revealed lower basal [Ca$^{2+}$]$_{cyt}$ levels under control conditions, which were not elevated nor asymmetrically distributed at the EZ following hydrostimulation (Fig. 1A, SI Appendix, Fig. S3, and Movie S3), suggesting that a functional MIZ1 is required for generating the long-distance Ca$^{2+}$ signal in response to hydrostimulation. Indeed, the expression of an active MIZ1 (under the transcriptional regulation of the native MIZ1 promoter) in the miz1/NESYC3.6 plants fully restored the [Ca$^{2+}$]$_{cyt}$ signal and root bending (Fig. 1A and B). These results identified MIZ1 as a cellular component in mediating Ca$^{2+}$ signaling in response to hydrostimulation. Since MIZ1 is associated with the ER membrane (25), we also examined whether Ca$^{2+}$ levels in the ER ([Ca$^{2+}$]$_{ER}$) might be altered in hydrostimulated root tips by analyzing Arabidopsis plants expressing the ER localized CRT-D4ER Cameleon sensor (26). Interestingly, [Ca$^{2+}$]$_{ER}$ significantly decreases in hydrostimulated root tips in parallel with the elevation in [Ca$^{2+}$]$_{cyt}$ (SI Appendix, Fig. S1). These data strongly suggest that, in root tip cells, the ER serves as a Ca$^{2+}$ reservoir that functions in generating the hydrotropic [Ca$^{2+}$]$_{cyt}$ signal.

Cameleon ratiometric analysis from the meristem to the EZ (50–500 μm above apex) in two sides of control and hydrostimulated Col-0 and miz1 roots revealed the formation of a statistically significant asymmetric [Ca$^{2+}$]$_{cyt}$ distribution at ~250- to 400-μm segment above the root apex of the EZ of hydrostimulated Col-0, which was not observed in control Col-0 roots nor in control or hydrostimulated miz1 roots (Fig. 1C, SI Appendix, Fig. S3A, and Movies S1–S3). This relatively slow, long-distance signaling pattern, occurring in the range of an hour, is distinct in its kinetics and tissue specificity from previously reported Ca$^{2+}$ waves or propagations in response to abiotic or biotic stimuli that occur in seconds to minutes (14, 27, 28).

Next, we determined whether the kinetics of the asymmetric distribution of [Ca$^{2+}$]$_{cyt}$ coincides with the root bending time course by measuring the NES-YC3.6 signal at the EZ and the root bending every 10 min, 0–120 min from the start of hydrostimulation. In Col-0, the results show a maximum difference of [Ca$^{2+}$]$_{cyt}$ across the root EZ at about 50–80 min from the onset of hydrostimulation, with an estimated [Ca$^{2+}$]$_{cyt}$ peak of 244.5 ± 22 nM (conversion of the FRET/CFP ratio value to molar concentration was performed as in ref. 20) at the forming convex side following 70 min, whereas significant curvature toward higher water potential was observed after about 60–70 min (Fig. 1D). No asymmetric signal was apparent in miz1 roots in which [Ca$^{2+}$]$_{cyt}$ levels did not rise above ∼102.9 ± 15 nM in either root side at any time point during 120 min of hydrostimulation (SI Appendix, Fig. S3B). These data clearly show that [Ca$^{2+}$]$_{cyt}$ elevation and its asymmetric distribution at the EZ of the root precede root bending and thus most likely regulate it in a mechanism requiring the activity of MIZ1.

To determine whether the asymmetric [Ca$^{2+}$]$_{cyt}$ signal across the root indeed results from an asymmetric water potential distribution at the root tip, rather than a general, or predisposed response to osmotic stress, we compared the kinetics of the distribution of [Ca$^{2+}$]$_{cyt}$ across the root in a diagonal split-agar/sorbitol system, with that caused by a horizontal split-agar/sorbitol system (Fig. 2A). After 30 min of stimulation, an asymmetric Ca$^{2+}$ signal was observed in the diagonal split-agar/sorbitol assay. In contrast, no asymmetric [Ca$^{2+}$]$_{cyt}$ signal was observed in Col-0 roots even after 1 h of hydrostimulation in the horizontal split-agar/sorbitol system (Fig. 2A). Moreover, the direction of root bending in the diagonal system was unified toward high water potential, whereas following stimulation in the
horizontal system, nonunified root growth direction was observed (Fig. 2C). These data indicate that the formation of the asymmetric $[\text{Ca}^{2+}]_{\text{cyt}}$ signal directly results from root tip exposure to asymmetric water potential. In contrast, examination of the $[\text{Ca}^{2+}]_{\text{cyt}}$ in gravistimulated roots revealed no generation of a Ca^{2+} signal along the root, before or after an observed root curvature (SI Appendix, Fig. 3A), in agreement with previous findings (17). Thus, the slow, asymmetric Ca^{2+} signal from the root tip to the EZ is a specific response to water potential distribution across the root. Collectively, these data, obtained in intact roots, strongly support the importance of the root cap and meristem in perceiving changes in water potential pressure and in generating a Ca^{2+} signal transmitted to the EZ to promote bending, as also suggested in previous studies (1, 4).

The Shootward Asymmetric Ca^{2+} Signal Is Transmitted Through the Root Phloem to the EZ Where It Is Laterally and Asymmetrically Distributed Across the Root. To pinpoint the specific vascular tissue in which the slow, long-distance Ca^{2+} signal is transmitted, we visualized the NES-YC3.6 fluorescence ratio (signal intensity) in the background of the bright-field images of root segments from two perspective angles relative to the phloem and xylem poles (Fig. 3A). To optimize the resolution of our visual inspection, we adjusted the maximum and minimum ratio values such that the cells with the highest signal intensity could be identified. Clearly, when the ratio signal in the protophloem was found to be below the intensity cutoff, a prominent continuous longitudinal $[\text{Ca}^{2+}]_{\text{cyt}}$ signal was visualized in the phloem tissue (Fig. 3A), a result that is in agreement with previous reports of Ca^{2+} transport and function in phloem sieve tubes in response to osmotic or biotic stresses (16, 29).

If indeed the asymmetric Ca^{2+} increase in the EZ vasculature (phloem) regulates root bending, it should either reach the cells of the peripheral layers (e.g., cortex) by lateral mobilization, where differential elongation takes place, or it should be conveyed to the peripheral cells by a different signal. To address this issue, we used light-sheet fluorescence microscopy to visualize the radial root EZ of NES-YC3.6-expressing seedlings upon hydrostimulation (30). For this purpose, we designed a special “in-tube” hydrostimulation system (Fig. 3B). Under control conditions, we found the highest $[\text{Ca}^{2+}]_{\text{cyt}}$ level in phloem cells and much less in peripheral tissue layers (Fig. 4A, B). In the phloem pole outer layers, with no apparent asymmetry (Fig. 3C and D). Strikingly, in hydrostimulated roots, $[\text{Ca}^{2+}]_{\text{cyt}}$ levels were elevated in the peripheral tissues, with substantially higher levels in the phloem and cortex of the evolving convex root side (Fig. 3C and D). Interestingly, lateral Ca^{2+} mobilization, possibly through plasmodesmata (31, 32), from phloem sieve tubes to peripheral tissues, was previously proposed (16). Collectively, these data strongly suggest that, in response to asymmetric water potential distribution across the root tip, an asymmetric long-distance Ca^{2+} signal spreads via the phloem, followed by lateral Ca^{2+} mobilization to peripheral cells at the EZ, required for differential root elongation and bending. Nevertheless, how Ca^{2+} at the EZ affects differential cell elongation remains an open question.

Elevation of $[\text{Ca}^{2+}]_{\text{cyt}}$ in the Root Is Essential for Hydrotropic Bending. To test the effect of Ca^{2+} on the root’s tropic response to moisture distribution, we treated wild-type (Col-0) plants with the highly selective, cell-permeant Ca^{2+} chelator 1,2-bis(2-aminoophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) before hydrostimulation using the split-agar/sorbitol system. Control plants (without BAPTA-AM) displayed normal root bending, as described in a similar published experimental setup (13, 33, 34), whereas BAPTA-AM–treated roots displayed arrested bending in response to the change in water potential in their microenvironment even after 12 h, while continuing their growth toward the sorbitol-containing media (Fig. 4A and B). In contrast, pretreatment of seedlings with the Ca^{2+} ionophore, Br-A23187, significantly enhanced root curvature by up to ~50% more than in control roots (Fig. 4 C and D). The effectiveness of BAPTA-AM and Br-A23187 treatments on $[\text{Ca}^{2+}]_{\text{cyt}}$ levels before hydrostimulation was monitored in roots of NES-YC3.6-expressing seedlings, and it was found to reduce and elevate $[\text{Ca}^{2+}]_{\text{cyt}}$ levels, respectively (SI Appendix, Fig. S5 A and B), as expected. In addition, these treatments were not found to significantly affect root growth under normal conditions (SI Appendix, Fig. S5B). These data suggest that the tropic response of Arabidopsis roots to a water potential gradient requires the elevation of $[\text{Ca}^{2+}]_{\text{cyt}}$ levels.

To corroborate the effect of $[\text{Ca}^{2+}]_{\text{cyt}}$ in roots responding to water potential gradients, mutants with aberrations in type 2B Ca^{2+} pumps, including ACA2 (AT4G37640), ACA8 (AT5G57110), and ACA10 (AT4G29900), were subjected to hydrostimulation in the

Fig. 3. $[\text{Ca}^{2+}]_{\text{cyt}}$ signal is transmitted via the root phloem to form an asymmetric lateral Ca^{2+} gradient in response to hydrostimulation. (A) Confocal microscope visualization of NES-YC3.6 EZ of Col-0 roots from two perspective angles relative to the xylem and phloem poles. The maximum and minimum FRET/CFP ratio values were adjusted so that the cells with the highest signal could be identified. (B) Schematic presentation of the in-tube hydrostimulation assay designed for root imaging using light-sheet fluorescence microscopy. (C) Visualization of radial EZ root sections of control and hydrostimulated NES-YC3.6-expressing Col-0 seedlings treated as in B. (Scale bar, 50 μm.) Images were created based on FRET/CFP ratio and pseudocolored when red indicates higher $[\text{Ca}^{2+}]_{\text{cyt}}$. (D) Quantification of the FRET/CFP intensity ratio of control and hydrostimulated roots radial halves that were obtained as in B. Error bars represent mean ± SD (three biological experiments; five seedlings each). Bars with different letters represent statistically different values by Tukey’s HSD post hoc test ($P < 0.01$).
split-agar/sorbitol system. None of the tested mutants exhibited appreciable differences from WT in root bending in response to hydrostimulation. On the other hand, mutant seedlings of the type 2A Ca2+ ATPase ECA1, a pump that imports Ca2+ into the ER lumen (35), and which is related to the mammalian sarco/ER Ca2+ ATPase (SERCA Ca2+ pump) (36), displayed enhanced bending toward higher water potential (Fig. 4 E and F). The growth rate of eca1 roots was similar to that of the WT roots (SI Appendix, Fig. S5D).

In view of the known association of MIZ1 with the ER membrane (25), we pursued investigating ECA1 and MIZ1 regarding Ca2+ signaling, water tracking, and their possible interaction. Visualization of [Ca2+]\textsubscript{cyt} in NES-YC3.6–expressing Col-0 and eca1-3 roots under control and hydrostimulation conditions revealed higher concentrations of [Ca2+]\textsubscript{cyt} in eca1-3 than in Col-0 under both conditions (Fig. 4G) and an enhanced [Ca2+]\textsubscript{cyt} signal following 1 h of hydrostimulation (SI Appendix, Fig. S6), which most likely explains the rapid response of eca1 to hydrostimulation. Interestingly, examining the expression pattern of ECA1 in ECA1\textsubscript{pro}:ECA1-GFP (in the genetic background of eca1-1) revealed ECA1 expression in all root tip tissues, with a higher abundance in the region between the apex and the EZ, and particularly high expression in the phloem (SI Appendix, Fig. S7 A and B). Measuring the hydroptic root bending of ECA1\textsubscript{pro}:ECA1-GFP-harboring eca1-1 seedlings indicated full restoration of the normal tropic response (SI Appendix, Fig. S7C). These data suggest that inhibition of ECA1 may be required for generating the phloem-transmitted long-distance [Ca2+]\textsubscript{cyt} signal in response to hydrostimulation.

MIZ1 Directly Interacts with ECA1 and Regulates Its Activity. To further study the possible involvement of ECA1 and MIZ1 in generating the [Ca2+]\textsubscript{cyt} signal, we visualized the NES-YC3.6 ratios in Col-0 and miz1 roots following treatment with cyclopiazonic acid (CPA), which was previously found to inhibit the Arabidopsis ECA1 (35). CPA treatment for 1 h elevated the [Ca2+]\textsubscript{cyt} levels in Col-0 (in accordance with ref. 26) but not in miz1 roots. This indicates that MIZ1 is required for CPA-mediated inhibition of ECA1 (Fig. 5A), possibly by direct interaction of MIZ1 with ECA1 or with an ECA1-associated protein complex. To further explore this possibility, we performed immunoprecipitation assays to isolate MIZ1-interacting proteins by using a GFP isolation kit to trap MIZ1–citrine or miz1–citrine from extracts of the corresponding transgenic plants. Interestingly, Western blot analysis of MIZ1–associated proteins indicated that ECA1 was indeed precipitated with MIZ1–citrine, but to a significantly lesser extent with miz1–citrine (Fig. 5 B and C), suggesting that ECA1 interacts with active MIZ1 in vivo (either directly or within a protein complex). To determine whether ECA1 and MIZ1 interact directly, we expressed ECA1 fused to the C terminus of ubiquitin (Cub) and MIZ1 or miz1 fused to the N terminus (Nub) to perform split-ubiquitin yeast two-hybrid assays. Remarkably, direct interaction of ECA1 with MIZ1, but not with miz1, was observed in this system (Fig. 5D). Expression of ECA1, MIZ1, and miz1 in yeast was confirmed using Western blot analysis (SI Appendix, Fig. S8A). In addition, to study the possible effect of MIZ1 on ECA1 function, we performed complementation analysis in which ECA1 was expressed alone or was coexpressed with MIZ1 or miz1 in the yeast K616 triple mutant, which lacks functional endogenous Ca2+-dependent ATPases and is thus unable to grow on a Ca2+-depleted medium (37). All transformants grew similarly on nonselective medium (10 mM Ca2+) (Fig. 5E). Functional complementation assays on selective media (100 μM Ca2+ or even 20 mM EGTA, which reduces the free Ca2+ concentration in the medium to the nanomolar range), showed that expression of the Arabidopsis ECA1 alone completely restored yeast growth and complemented the K616 phenotype (Fig. 5E), as previously described (35, 38). Remarkably, coexpression of ECA1 with MIZ1 substantially reduced yeast growth under these selective conditions, suggesting an inhibitory effect of MIZ1 on ECA1. To assess the specificity of ECA1 inhibition by MIZ1, ECA1 was coexpressed with the miz1 mutant (Fig. 5E), which binds weakly to ECA1 both in yeast and in plant-derived microsomes (Fig. 5 B–D). Indeed, the growth of yeast coexpressing ECA1 with the miz1 mutant was much less inhibited compared with yeast coexpressing ECA1 with MIZ1. Western blot analysis confirmed the expression of ECA1, MIZ1, and the miz1 mutant in the relevant yeast transformants (SI Appendix, Fig. S8B). These results suggest that MIZ1 has an inhibitory effect on ECA1 function, consistent with the in planta interaction of the two proteins (Fig. 5 B and C). Finally, to determine whether the MIZ1/ECA1 mechanism functions in the root tip, we quantified the [Ca2+]\textsubscript{cyt} in root tips (the specific examined root tip part is indicated in SI Appendix, Fig. S1C) of Col-0, miz1, and eca1-3 under control conditions and following 1 h of hydrostimulation. The levels of [Ca2+]\textsubscript{cyt} in the root tips of miz1 did not change appreciably in response to hydrostimulation and did not exceed the levels in Col-0 under control conditions (SI Appendix, Fig. S9). On the other hand, the [Ca2+]\textsubscript{cyt} levels in the root tips of eca1-3 were found to be higher than those of Col-0 under control conditions and to be slightly elevated in response to hydrostimulation (SI Appendix, Fig. S9). Collectively, these data suggest that both MIZ1 and ECA1 are required for generating the Ca2+ signal in the root tip in response to hydrostimulation.

Discussion

In this work, we revisited Darwin’s assumption that a signal is transmitted from the root cap to the EZ in response to moisture differences across the root tip (1). Previously, forward genetics approaches revealed only two genes (MIZ1 and MIZ2) mediating hydrotropism (24, 39); however, how the encoded proteins are involved in hydrotropism is not yet understood. We demonstrate that MIZ1 and ECA1 directly interact and that MIZ1 inhibits ECA1 function.
that root curvature in response to hydromobilization requires long-distance [Ca\(^{2+}\)]\(_{\text{cyt}}\) mobilization from the root cap to the EZ (Figs. 1 and 3 and SI Appendix, Figs. S1 and S9) that is mediated by the interaction of MIZ1 with the type 2A Ca\(^{2+}\)-ATPase isoform ECA1, an ER-localized Ca\(^{2+}\) efflux carrier. Furthermore, we provide evidence for the importance of the root tip in generating the hydromobilized long-distance Ca\(^{2+}\) signal through the interaction of these proteins (SI Appendix, Fig. S1). The expression pattern of ECA1 and MIZ1 in the root tip, stele, and peripheral tissues of the EZ (SI Appendix, Fig. S7) (25, 40, 41) raises the possibility of an active MIZ1/ECA1 mechanism in different root tissues. However, the mechanism that underlies the propagation of the long-distance hydrotropic-driven [Ca\(^{2+}\)]\(_{\text{cyt}}\) signal remains unknown. [Ca\(^{2+}\)]\(_{\text{cyt}}\) propagation may involve other intermediate signals such as ROS or electric signals, as described for long-distance [Ca\(^{2+}\)]\(_{\text{cyt}}\) signals associated with different physiological responses (27, 42, 43). We show that such Ca\(^{2+}\) signals do not occur in the miz1 mutant (Fig. 1 A and B and SI Appendix, Fig. S3). Importantly, we found that in response to cross-root water potential differences, the long-distance Ca\(^{2+}\) signal is transmitted asymmetrically through the phloem to the EZ where it is laterally distributed asymmetrically to peripheral cells (Figs. 1 A, C, and D), and where it most likely promotes differential cell elongation underlying curvature. Furthermore, manipulations of [Ca\(^{2+}\)]\(_{\text{cyt}}\) confirmed that transient elevation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) is required for root curvature toward water. Specifically, in the absence of the functional ER-localized Ca\(^{2+}\)-ATPase pump ECA1, [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels are elevated (Fig. 4 G and SI Appendix, Fig. S6) and root curvature toward water is enhanced (Fig. 4 E and F). The role of the ER in regulation of homeostasis of [Ca\(^{2+}\)]\(_{\text{cyt}}\) is reminiscent of the previously reported elevation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels in tobacco plants in which the type 2B ER-localized Ca\(^{2+}\)-ATPase Nbc1A was silenced, resulting in an enhanced hypersensitive immune response (44). Recently, the lack or overexpression of the ER-localized Ccx2 (a Ca\(^{2+}\)-cation exchanger) was found to affect both cytokine and ER Ca\(^{2+}\) dynamics and tolerance to salt and osmotic stress, demonstrating a role for the ER Ca\(^{2+}\) reservoir in the regulation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) homeostasis (45). Furthermore, our study provides several lines of evidence for the regulation of ECA1 by MIZ1. First, CPA, a known inhibitor of ECA1, was unable to inhibit ECA1 in a miz1 mutant (Fig. 5 A), suggesting that MIZ1 is associated with ECA1. Indeed, immunoprecipitation experiments confirmed this association (Fig. 5 B and C). Furthermore, protein–protein interaction assays in yeast revealed the direct interaction of ECA1 with MIZ1 but not with the miz1 mutant protein (Fig. 5 D), which in planta abrogates hydrotropism (24). However, although ECA1 appears to function as a major player in the mechanism of root hydrotropism, the involvement of other Ca\(^{2+}\) transporters and/or channels, which function in maintaining [Ca\(^{2+}\)]\(_{\text{cyt}}\) homeostasis or in generating a change from homeostasis in response to a signal, could not be ruled out. Collectively, these results raised the possibility that MIZ1 is a negative regulator of ECA1 and that the interaction of MIZ1 with ECA1 is essential for elevating [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels, which underlies root hydrotropic curvature. To test this, we employed a previously described functional complementation assay of yeast strain K616 by expression of ECA1 (35, 38). The results confirmed the ability of MIZ1, and to a much lesser extent miz1, to attenuate the complementation of yeast strain K616 by ECA1 (Fig. 5 E), consistent with the proposed inhibitory effect of MIZ1 on ECA1 function. The experimental evidence demonstrating a mechanism underlying the elevation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels by inhibition of an ER type 2A Ca\(^{2+}\)-ATPase is unique, yet is consistent with the previously reported elevation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels resulting from artificially silencing a tobacco ER-localized type 2B Ca\(^{2+}\)-ATPase (44). The simultaneous decline of [Ca\(^{2+}\)]\(_{\text{ER}}\) and the elevation of [Ca\(^{2+}\)]\(_{\text{cyt}}\) levels in the root tip upon hydromobilization (SI Appendix, Fig. S1) further support this scenario. Hence, our study offers an example of a long-distance Ca\(^{2+}\) signal that is generated by inhibiting a Ca\(^{2+}\) efflux carrier, in agreement with previous theoretical considerations of the essential role of Ca\(^{2+}\) efflux carriers in stress signaling (46).

Another important question that we addressed is the spatial distribution of [Ca\(^{2+}\)]\(_{\text{cyt}}\) reaching the EZ. We used light-sheet fluorescence microscopy to obtain an image of [Ca\(^{2+}\)]\(_{\text{cyt}}\) distribution across the root in response to hydromobilization. Remarkably, in response to hydromobilization, [Ca\(^{2+}\)]\(_{\text{cyt}}\) was...
distributed asymmetrically across the root at the EZ, suggesting that this asymmetric distribution may facilitate asymmetric root cell elongation that results in root curvature. However, the mechanism downstream of this \(Ca^{2+} \) signal remains to be identified. The possible involvement of ABA in this \(Ca^{2+} \) effect cannot be ruled out (6).

However, several open questions regarding hydrotropism still remain unanswered. How is a water potential gradient across the root detected? How does the detector transduce the sensed water potential gradient to MIZ1 to generate an asymmetric \(Ca^{2+} \) signal? How does \([Ca^{2+}]_{cyt} \) propagate from the root tip to the EZ? How is the \(Ca^{2+} \) signal mobilized across the root at the EZ? Finally, how does asymmetric \([Ca^{2+}]_{cyt} \), which is distributed across the root, mediate asymmetric cell elongation and root curvature? Further interdisciplinary investigations are required to answer these open questions.

Materials and Methods

Plant materials, methodologies of microscopy work, yeast two-hybrid system, yeast functional complementation assays, and biochemical procedures are described in SI Appendix.

ACKNOWLEDGMENTS. We thank Prof. Heven Sze (University of Maryland) for kindly providing anti-eca1 antibodies, Dr. Yoseph Addadi (Life Sciences Core Facilities, Weizmann Institute of Science) for help with light-sheet fluorescence microscopy, and Dr. Laura Luoni (Department of Biosciences, University of Milan) for generating the eca1-3/NES-YC3.6 lines. This research was supported by the Israel Centers for Research Excellence Program of the Planning and Budgeting Committee, Israel Science Foundation Grant 757/12 (to H.F.), and the Avigdor Graduate School Program (to A.-C.).