Effect of acylation on the antimicrobial activity of temporin B analogues

Concetta Avitabile\[b\], Luca Domenico D'Andrea\[b\], Elisabetta D'Aversa\[c\], Roberta Milani\[c\], Roberto Gambari\[c\], and Alessandra Romanelli *[a]

Abstract: New peptides derived from the natural antimicrobial temporin B were obtained. The design, the antimicrobial activity as well as the characterization of the secondary structure of peptides in the presence of bacterial cells is here described. We identified TB_KKG6K (KKLLPIVKNLLKSLL) as the most active analogue against Gram-positive and Gram-negative bacteria as compared to natural temporin B (LLPIVGNLLKSLL) and TB_KKG6A (KKLLPIVANLLLKSLL). Acylation with hydrophobic moieties led generally to reduced activity, however, acylation at position 6 of TB_KKG6K led to retained submicromolar activity against Staphylococcus epidermidis.

Introduction

Natural antimicrobial peptides are largely investigated due to their broad spectrum of activity and less pronounced propensity for inducing resistance in bacterial cells. They are interesting scaffolds for the development of new and more potent antibiotics. Conjugation of peptides to lipid chains has been demonstrated as a useful strategy to improve and expand the activity spectrum of these compounds. Many examples reported in literature show that conjugation to an acyl chain at the N- or C-terminus often results in a peptide with enhanced antibacterial activity. Conjugation at the C-terminus of the peptide lactoferricin with a C12 acyl chain enhances its antimicrobial activity as well as its affinity for lipid A.\[1\] Modification of the ultrashort peptide OOWW by lauric acid at the N-terminus results in an increased antimicrobial effect against planktonic and biofilm forms of Gram-positive microorganisms.\[2\] Recent studies carried out on \(\beta \) defensin analogues demonstrated that N-terminal acylation with C8-C10 chains positively affects the antimicrobial activity: modified peptides show rapid killing kinetics and synergism with conventional antibiotics.\[3\] Furthermore, it has been hypothesized that synthetic and natural lipidated peptides act by targeting the bacterial plasma membrane.\[4,5\]

With the aim to obtain potent antimicrobial peptides, we designed a series of peptides analogues of temporin B. We had previously demonstrated that addition of two extra lysines at the N-terminus and substitution of the glycine 6 residue by an alanine in temporin B results in a peptide, named TB_KKG6A,

showing increased potency against Gram-positive bacteria and, unlike temporin B, activity against Gram-negative bacteria.\[6\] The three-dimensional structure of the peptide TB_KKG6A obtained by NMR either in the presence of E. coli LPS and in the presence of E. coli cells shows that the peptide assumes an \(\alpha \)-helical conformation.\[7\] NMR paramagnetic relaxation experiments, carried out to detect the orientation of the peptide with respect to LPS revealed that side chains of Pro3, Ala 6, Asn 7, Leu12 and 13 penetrated the LPS. The side chain of Lys10 was found in two different orientations: either on the surface or inside the LPS. Saturation transfer difference experiments carried out on the peptide TB_KKG6A in the presence of E. coli cells confirmed that residues 3, 6 and 10 are in close contact with bacterial cells.\[8\]

We hypothesized that the replacement of amino acids in positions which seem to be involved in hydrophobic interactions with the LPS by acylated residues may result in increased antimicrobial activity of the analogues. For these reason we synthesized a number of temporin B analogues, and tested the effect of the position and length of the acyl chain on the antimicrobial activity of the peptides. Secondary structure of selected peptides in the presence of Gram-positive and Gram-negative bacterial cells was also investigated.

Results

Design and antimicrobial activity .

Based on the results of NMR experiments of the peptide TB_KKG6A in the presence of E. coli LPS and cells, we designed an initial set of molecules (1 to 6), in which Pro3, Gly6 and Asn7, found to penetrate LPS micelles, were replaced by acylated lysine residues (Table 1). These experiments were aimed at identifying the position in which the acylation produced beneficial effects on the antimicrobial activity. Residues in position 10, 12 and 13, involved in the penetration of LPS, were not modified as these were demonstrated to be crucial to maintain the activity of the temporin B peptide.\[7a\]
two different bacteria, bearing in positions 3 or 6 or 7 lysines with chains of two M. On the contrary, replacement of glycine concentration tested and fast killing. The palmitoylated peptide E. coli yielded against lysines yielded peptides with a very low antimicrobial activity Replacement of amino acids in position 3 and 7 by acylated To start, we investigated killing kinetics for peptides bearing in positions 3 or 6 or 7 lysines with chains of two different length, octanoyc acid and palmitic acid respectively on two different bacteria, E. coli and S. epidermidis (Figure 1).

Table 1. Peptide sequences, names and numbers

<table>
<thead>
<tr>
<th>Peptide number</th>
<th>Peptide sequence</th>
<th>Name[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KKLLK(Pal)VVNLKSLLL</td>
<td>TB_KKPK(Pal)G6A</td>
</tr>
<tr>
<td>2</td>
<td>KKLLK(Oct)VVNLKSLLL</td>
<td>TB_KKPK(Oct)G6A</td>
</tr>
<tr>
<td>3</td>
<td>KKLLPKV(Pal)NLKSLLL</td>
<td>TB_KKPK(Pal)</td>
</tr>
<tr>
<td>4</td>
<td>KKLLPKV(Oct)NLKSLLL</td>
<td>TB_KKPK(Oct)</td>
</tr>
<tr>
<td>5</td>
<td>KKLLPKVA(N)NLKSLLL</td>
<td>TB_KKPK(Ac)</td>
</tr>
<tr>
<td>6</td>
<td>KKLLPKV(Oct)NLKSLLL</td>
<td>TB_KKPK(Oct)</td>
</tr>
<tr>
<td>7</td>
<td>KKLLPKV(N)NLKSLLL</td>
<td>TB_KKPK(N)</td>
</tr>
<tr>
<td>8</td>
<td>KKLLPKV(Ac)NLKSLLL</td>
<td>TB_KKPK(Ac)</td>
</tr>
<tr>
<td>9</td>
<td>KKLLPKV(Ac)NLKSLLL</td>
<td>TB_KKPK(Ac)</td>
</tr>
<tr>
<td>10</td>
<td>KKLLPKV(Ac)NLKSLLL</td>
<td>TB_KKPK(Ac)</td>
</tr>
<tr>
<td>11</td>
<td>KKLLPKV(BrHx)NLKSLLL</td>
<td>TB_KKPK(BrHx)</td>
</tr>
<tr>
<td>12</td>
<td>KKLLPKV(Aund)NLKSLLL</td>
<td>TB_KKPK(Aund)</td>
</tr>
</tbody>
</table>

[a] BrHx: 6-bromo hexanoic acid; Aund: 11-amino undecanoic acid

To start, we investigated killing kinetics for peptides bearing in positions 3 or 6 or 7 lysines with chains of two different length, octanoyc acid and palmitic acid respectively on two different bacteria, E. coli and S. epidermidis (Figure 1). (3) was active against E. coli only at high concentration, while the activity against S. epidermidis was modest at both concentrations tested. Based on these results we decided to investigate the effect of introduction of acyl chains of different length in position 6. We synthesized new analogues, with lysine in position 6 (TB_KKG6K) and with lysine acetylated (TB_KKG6K(Ac)), acylated with 5-amino valeric acid (TB_KKG6K(DAVA)), 6-amino hexanoic acid (TB_KKG6K(Ahx)), 6-bromo hexanoic acid (TB_KKG6K(BrHx)) and 11-amino undecanoic acid (TB_KKG6K(Aund)) (Table 1). MICs for this new set of peptides were determined against E. coli, S. epidermidis and P. aeruginosa. Peptides with short acyl chains resulted more active than peptides with longer acyl chains, with TB_KKG6K being the most active peptide. All peptides show an increased antimicrobial activity as compared to the parent TB_KKG6A against P. aeruginosa, with the exception of TB_KKG6K(DAVA) (Table 2).

Table 2. Antimicrobial activity of selected peptides

<table>
<thead>
<tr>
<th>Peptide number</th>
<th>MIC / μM</th>
<th>S. epidermidis</th>
<th>P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.2 ± 0.03</td>
<td>0.025 ± 0.03</td>
<td>2.5 ± 0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.5 ± 0.06</td>
<td>0.1 ± 0.01</td>
<td>2.5 ± 0.35</td>
</tr>
<tr>
<td>9</td>
<td>1.25 ± 1.14</td>
<td>0.1 ± 0.02</td>
<td>15 ± 1.58</td>
</tr>
<tr>
<td>10</td>
<td>1.65 ± 0.28</td>
<td>0.25 ± 0.01</td>
<td>7 ± 0.75</td>
</tr>
<tr>
<td>11</td>
<td>1 ± 0.17</td>
<td>2.5 ± 0.12</td>
<td>5 ± 0.96</td>
</tr>
<tr>
<td>12</td>
<td>5 ± 0.85</td>
<td>2.5 ± 0.20</td>
<td>3 ± 0.28</td>
</tr>
<tr>
<td>TB_KKG6A</td>
<td>0.2³</td>
<td>3 ± 0.08</td>
<td>10 ± 0.25</td>
</tr>
</tbody>
</table>

Data represent the average ± S.D.; n = 3.

Figure 1. Antimicrobial activity of palmitoylated and octanoylated peptides. Effect of 24 hours treatment of bacterial cells with indicated peptides at two different concentrations. Relative growth of bacteria was calculated as the ratio of the OD600 after 24 hours incubation of peptides with cells and at time zero. C1: control cells, C2: gentamicin, used at 1.5 μg/ml for E. coli cells and at 1 μg/ml for S. epidermidis cells (data represent the average ± S.D.; n = 3).

Replacement of amino acids in position 3 and 7 by acylated lysines yielded peptides with a very low antimicrobial activity against E. coli. Replacement of proline 3 by octanoylated lysine yielded 2, antimicrobial activity against S. epidermidis required a concentration of 50 μM. On the contrary, replacement of glycine 6 by acylated lysines resulted in promising analogues (Figures 1 and 2): the octanoylated peptide (4) showed very strong activity either against E. coli and S. epidermidis at the lowest concentration tested and fast killing. The palmitoylated peptide CD studies The secondary structure of the most active peptide TB_KKG6K was investigated in phosphate buffer and in the presence of S. epidermidis and E. coli bacterial cells (Figure 3). TB_KKG6K is a random coil in phosphate buffer and in the presence of S. epidermidis cells. In the presence of E. coli cells, after 80 minutes of incubation of the peptide with the cells, the negative maximum appearing at 200 nm in buffer shifts to 205 nm and a weak band around 222 nm appears. CD spectra recorded afterwards show less intense signals. We also investigated the secondary structure of TB_KKG6K(Pal) and TB_KKG6K(Oct) in the same experimental conditions, with the aim to understand the effect of lipidation on the structure of the peptides (Figure 3). The peptide TB_KKG6K(Pal) is an α-helix in phosphate buffer; upon interaction with E. coli and S. epidermidis cells signals become less intense and noisy. TB_KKG6K(Oct) assumes an α-helical structure in phosphate buffer when the peptide is incubated with E. coli and S. epidermidis cells, CD spectra recorded at different time of incubation show one negative maximum around 200 nm.

Critical aggregation concentration The critical aggregation concentration was determined for the peptide TB_KKG6K(Pal) and TB_KKG6K by fluorescence experiments, using as a probe 8-amino naphtalen sulfonic acid. This probe emits between 460 and 480 nm if it is in a random coil in phosphate buffer; when the peptide is upon interaction with E. coli and S. epidermidis -helicity becomes less intense and noisy. TB_KKG6K(Oct) assumes an α-helical structure in phosphate buffer when the peptide is incubated with E. coli and S. epidermidis cells, CD spectra recorded at different time of incubation show one negative maximum around 200 nm.

TB_KKG6K does not aggregate up to 10 mM concentration..
Figure 2. Representative experiment describing the killing kinetics of peptides modified in position 6. Relative growth of bacteria was calculated as the ratio of the OD$_{600}$ after the indicated time of incubation of peptides with cells and at time zero. The data referring at 24 hour incubation are shown in Figure 1 (n = 3).

Figure 3. CD spectra of peptides in phosphate buffer pH 7 (green), in the presence of *E. coli* cells (grey) or *S. epidermidis* cells (magenta), after 80 minutes of incubation with cells.

Discussion

The antimicrobial activity of peptides is related to their ability to bind to and disrupt bacterial membranes. Electrostatic interactions between the positively charged residues of antimicrobial peptides and negatively charged lipopolysaccharide, in case of Gram-negative bacteria, or teichoic acids, in case of Gram-positive bacteria, are responsible for the initial interaction of peptides with bacterial cells. Hydrophobic residues instead seem to penetrate bacterial membrane, to interact with lipids.

Figure 4. Critical aggregation concentration plot for the peptide TB_KKG6K(Pal).
Some peptides assume an amphipathic structure, that grants a clear separation between the hydrophobic and hydrophilic patches,[10] maximizing the interactions between peptides and bacterial membranes. TB_KKG6A is not an amphipathic peptide; nevertheless it is highly active against Gram-positive and Gram-negative bacteria. It assumes an α-helical structure in the presence of E. coli cells, while it does not show a preferred secondary structure in the presence of S. epidermidis cells.[11] Binding of the peptide to E. coli cells causes aggregation and death of bacterial cells.[12] With the aim to increase the antimicrobial activity of this peptide by reinforcing the hydrophobic interactions of the peptide with the bacterial cell membrane, we investigated the effect of introduction of acyl chains of different length in different positions of the peptides, chosen between those hypothesized to penetrate the membrane and not essential for the activity of the peptides, i.e. positions 3, 6 and 7. The initial screening, carried out replacing Pro3, Ala 6 and Asn 7 of TB_KKG6A with either Lys(Pal) and Lys(Oct), revealed that mutations of Pro3 and Asn 7 result in a decrease in the activity of the peptide, while modifications in position 6 resulted in active peptides. These results are in accordance with those reported on TB analogues obtained by Ala scan experiments, showing that TB_P3A, and TB_N7A were less active than TB_G6A.[7a] Peptides modified by the long palmitic acid chain in position 6 are less active as compared to peptides modified with shorter acyl chains.

Based on the results of the initial screening we synthesized a new set of analogues modified in position 6 by a lysine or an acetylated lysine. The most active peptide is TB_KKG6K; introduction of a lysine residue with its short acyl side chain and its positive charge increases the antimicrobial activity against Gram-positive and Gram-negative bacteria, likely because interactions with negatively charged outer membranes are favored. The 4 carbon atom chain is likely able to destabilize bacterial membrane, and too short to promote aggregation of the peptide. Acetylation of the lysine residue in position 6 reduces the activity of the peptide against E. coli and S. epidermidis, the effect of acetylation is double: suppression of the positive charge and tiny increase of the side chain length. When the positive charge is kept fixed at 4 and the acyl chain length is increased, as in TB_KKG6K(DAVA), TB_KKG6K(Alx), TB_KKG6K(Aind) we observe a decrease of the antimicrobial activity of the peptides against E. coli and S. epidermidis, suggesting that the increase of the hydrophobicity of the peptide is detrimental to the antimicrobial activity. Effects of the hydrophobicity on the antimicrobial activity are remarkable for the Gram-positive bacterium S. epidermidis; the comparison of the activity of the analogs TB_KKG6K(Alx) and TB_KKG6K(BHx) is consistent with this observation. The activity of the peptides was also tested against P. aeruginosa, a Gram-negative bacterium. Results in this case are difficult to interpret as there is no apparent relationship between the hydrophobicity of the peptides and their activity. Importantly, with the exception of TB_KKG6K(DAVA), all peptides are more active than TB_KKG6A against P. aeruginosa.

The presence of acyl chains affects the structure of the peptides. CD reveals that TB_KKG6K(Pal) possess an α-helical structure in phosphate buffer, that disappears in the presence of bacterial cells. The palmitoylated peptide shows a strong tendency to aggregate; in fact, the critical aggregation concentration calculated for the peptide TB_KKG6K(Pal) is very low, 0.26 µM. As reported in the literature, loss of conformational freedom due to tethering and confinement leads to folding into defined secondary structure motifs.[13] This effect has been reported for other palmitoylated peptides and is likely what we are observing here for TB_KKG6K(Pal).[14] Interactions of TB_KKG6K(Pal) aggregates with bacterial cells, either E. coli and S. epidermidis, likely cause disaggregation of the aggregates that results in a decrease in the intensity of CD spectra in the presence of E. coli cells, and also in a change in shape of the spectra in the case of S. epidermidis cells. Indeed the free TB_KKG6K(Pal) peptide does not induce massive bacterial cell death. Similar results have been obtained also for the peptide TB_KKG6K(Oct), TB_KKG6K is unfolded either in buffer and in the presence of S. epidermidis bacterial cells, while some degree of secondary structure appears in the presence of E. coli cells. The ability to fold upon interaction with E. coli is associated in many cases with the antimicrobial activity of the peptide, and this is consistent with results reported for other natural peptides, such as temporin L, cecropin A and magainin 2 or obtained upon modification of temporin peptides such as TB_KKG6A and LG24.[8, 11, 15]

Conclusions

We obtained a new set of analogues of the peptide temporin B, showing activity either against Gram-positive and against Gram-negative bacteria. Introduction of short acyl chains in position 6 as well as of lysines at the N-terminus of temporin B positively affects the antimicrobial activity of the peptides against E. coli and S. epidermidis. Replacement of glycine 6 by a lysine results in the most active peptide. The length of the chain in position 6 seems to be crucial to determine the antimicrobial activity against S. epidermidis.

Experimental Section

Peptide synthesis

Peptides were obtained by solid phase synthesis using standard protocols.[7b, 16] Fmoc-Lys(Pal)-OH and Fmoc-Lys(Oct)-OH were used for the synthesis of palmitoylated and octanoylated peptides. For the synthesis of 8-12 we used the peptide KKLLP1VK(Mtt)NLLK5LL anchored to the resin, bearing in position 6 a lysine protected with Mtt on the side chain and protected at the N-terminus with the Fmoc group. The Mtt was removed by 8 consecutive 1 min treatments of the resin with a solution of TFA (0.1%)/TIS (5 %) in DCM;[17] the resin was washed in DCM and then treated with a solution of DMF/DIPEA 9:1 v/v for 5 minutes. This peptide was further derivatized to produce 8-12. 8 was obtained by acetylation using standard protocols for peptide solid phase acetylation, followed by Fmoc deprotection. 9-12 were obtained treating the peptide with the free lysine in position 6 with 10 eq. of Fmoc 5-amino valeric acid (or Fmoc 6-amino hexanoic acid or 6 bromo hexanoic acid or Fmoc 11-amino decanoic acid), dissolved in a solution containing 9.5 eq of HOBr/HBTU 0.45 M in dry DMF and 25 eq. of NMM for two hours. The Fmoc groups were then removed. Modified peptides were cleaved off the resin and deprotected by standard protocols. Peptides were purified by RP-HPLC on a Phenomenex Jupiter 10u Proteo 90 Å (250×10 mm) column using a gradient of acetonitrile (0.1% TFA) in water (0.1% TFA) from 30 to 80% in 20 minutes (the gradient starts after 3 minutes of equilibration in 30% acetonitrile) for 1-8, from 30 to 50% in 15 minutes for

FULL PAPER
9, 11 and 12, from 5 to 70% in 20 minutes for 10. LC-MS analysis was performed on a by LC-MS on a LC-MS Agilent Technologies 6230 ESI-TOF using a Phenomenex Jupiter 3μm C18 (150x2.0 mm) column with a flow rate of 0.2 mL/min. Peptides were obtained with a purity >95%, yields were calculated based on the amount of pure peptide obtained after purification.

n.1: TB_KKP3K(Pal)G6A. Sequence: KKKL(Pal)IVANLLKSLL. Calculated mass (Da): 1931.87 found: 1931.01 [M+2H]+ 2+= 966.50; [M+3H]+ 3+= 644.67; r.t.: 21.1 min; yield: 30%.

n.2: TB_KKP3K(Oct)G6A. Sequence: KKKL(Oct)IVANLLKSLL. Calculated mass (Da): 1819.64; found: 1820.15 [M+2H]+ 2+= 911.29; [M+3H]+ 3+= 607.83; r.t.: 14.7 min; yield: 25%.

n.3: TB_KKG6K(Pal) Sequence: KKKLPIVKNLLKSLL. Calculated mass (Da): 1958.23 [M+2H]+ 2+= 980.11; [M+3H]+ 3+= 653.74; r.t.: 22.3 min; yield: 32%.

n.4: TB_KKG6K(Oct) Sequence: KKKLPIVK(Oct)LLKSLL. Calculated mass (Da): 1846.62; found: 1847.01 [M+2H]+ 2+= 924.50; [M+3H]+ 3+= 616.67; r.t.: 16.7; yield 40%.

n.5: TB_KKG6AN7K(Pal) Sequence: KKKLPIVAK(Oct)LLKSLL. Calculated mass (Da): 1911.90; found: 1915.45 [M+2H]+ 2+= 958.72; [M+3H]+ 3+= 639.48; r.t.: 22.7 min; yield: 20%.

n.6: TB_KKG6AN7K(Oct) Sequence: KKKLPIVAK(Oct)LLKSLL. Calculated mass (Da): 1830.62; found: 1834.30 [M+2H]+ 2+= 902.67; [M+3H]+ 3+= 602.11; r.t.: 17.4 min; yield: 20%.

n.7: TB_KKG6K(Pal) Sequence: KKKLPIVKNLLKSLL. Calculated mass (Da): 1719.30; found: 1719.22 [M+2H]+ 2+= 860.62; [M+3H]+ 3+= 574.08; r.t.: 11.8 min; yield: 50%.

n.8: TB_KKG6K(Ac) Sequence: KKKLPIVAK(Oct)LLKSLL. Calculated mass (Da): 1761.30; found: 1761.26 [M+2H]+ 2+= 881.62; [M+3H]+ 3+= 588.08; r.t.: 12.1 min; yield: 50%.

n.9: TB_KKG6K(DAVA) Sequence: KKKLPIVAK(DAVA)LLKSLL. Calculated mass (Da): 1818.45; found: 1818.27 [M+2H]+ 2+= 910.14; [M+3H]+ 3+= 607.09; r.t.: 6.10 min; yield: 40%.

n.10: TB_KKG6K(Ahx) Sequence: KKKLPIVAK(Ahx)LLKSLL. Calculated mass (Da): 1832.15; found: 1832.44 [M+2H]+ 2+= 917.22; [M+3H]+ 3+= 616.12; r.t.: 10.9 min; yield: 45%.

n.11: TB_KKG6K(BrHx) Sequence: KKKLPIVAK(BrHx)LLKSLL. Calculated mass (Da): 1997.89; found: 1988.34 [M+2H]+ 2+= 995.17; [M+3H]+ 3+= 633.79; r.t.: 12.0 min; yield: 40%.

n.12: TB_KKG6K(Aund) Sequence: KKKLPIVAK(Aund)LLKSLL. Calculated mass (Da): 1901.54; found: 1902.37 [M+2H]+ 2+= 952.19; [M+3H]+ 3+= 635.13; r.t.: 9.2 min; yield: 30%.

Critical aggregation concentration

The critical aggregation concentration was determined for the peptide TB_KKG6K(Pal) and TB_KKG6K by fluorescence on a Jasco Cary eclipse instrument, setting up the excitation wavelength at 350 nm. Increasing concentrations of peptide were titrated into a 20 μM 8-amino naphthalene sulfonic acid solution in water. Emission at 470 nm was plotted against peptide concentration. The critical aggregation concentration was determined at the crossing point of the two lines at different slope obtained by a regression fluorescence intensity before and after aggregation versus the concentration of the peptide.

Killing kinetics determination

Killing kinetics were investigated for the peptides on two different bacteria strains: E. coli and S. epidermidis. Bacteria were grown on Tryptic Soy Agar Petri dishes at 37°C over-night before the treatment. The day of treatment a bacterial smear was added to 2 ml of LB (Luria-Bertani liquid medium) to obtain 0.5 McFarland units turbidity, corresponding to about 1x10^7 CFU/mL bacterial concentration. A 1.3 μl volume of this bacterial suspension was inoculated in 2 mL of LB medium for each test sample to obtain a final bacterial concentration of 6x10^6 CFU/mL. Gentamicin was used as a positive control at the concentration of 1 μg/mL for E. coli and 1 μg/mL for S. epidermidis. The treatment was carried out at two different concentrations (50 μM and 10 μM) of each peptide. The test tubes were incubated at 37°C in shake for 24 hours. The turbidity was measured every two hours as proposed by Sutton, using a Densitometer DEN-1B (Grant bio).

Minimum Inhibitory Concentration (MIC) determination

The MIC assays for the peptides were carried out in triplicate on three bacteria strains (E. coli, S. epidermidis and P. aeruginosa) by using the microdilution method. Bacteria were grown on Tryptic Soy Agar Petri dishes at 37°C overnight. The day of treatment a bacterial smear was added to 2 ml of LB or TSB (Tryptic Soy Broth) for E.coli and S. epidermidis or P. aeruginosa respectively, to obtain 0.5 McFarland units turbidity (about 1x10^7 CFU/mL). Different concentrations of each peptide were added to 2 ml of corresponding strain medium inoculated with 1.3 μl of bacterial suspension to obtain a final concentration of 6x10^6 CFU/mL, followed by incubation for up to 8 hours at 37°C in shaking. Gentamicin was used as positive control. Bacterial growth was detected by turbidity measurement using a Densitometer DEN-1B (Grant bio). MIC was defined as the lowest peptide concentration that inhibited bacterial growth.

Cell cultures for CD experiments

E. coli BL21 (DE3) and S. epidermidis (ATCC 12228) cells for CD experiments were grown in LB medium at 37°C, harvested while in exponential phase (OD600 nm: 0.6-0.8) and centrifuged (5000 rpm, 10 min, 4°C). S. epidermidis cells were suspended in Na2HPO4 10 mM, KH2PO4 2 mM, NaCl 20 mM, KCl 2.7 mM, pH 7, centrifuged three times and then resuspended in the same buffer at 0.1 OD600. E. coli cells were suspended in 10 mM phosphate buffer pH 7, centrifuged three times and then re-suspended in the same buffer at 0.1 OD600. MIC was defined as the lowest peptide concentration that inhibited bacterial growth.

CD studies

Spectra were recorded on a Jasco J715 spectrometer at 25°C using a 0.1 cm quartz cell in the range 260-195 nm setting the scanning speed at 200 nm/min, bandwidth 1 nm, response time 2 s, data pitch 1 nm. Peptides concentration for CD measurement was 60 μM; measurements were performed in 1) 10 mM sodium phosphate buffer pH 7.0 2) Na2HPO4 10 mM, KH2PO4 2 mM, NaCl 20 mM, KCl 2.7 mM at pH 7; 3) E. coli cells 0.1 OD600 in 10 mM sodium phosphate buffer pH 7.0 4) S. epidermidis cells 0.1 OD600 Na2HPO4 10 mM, KH2PO4 2 mM, NaCl 20 mM, KCl 2.7 mM at pH 7. Peptide concentration was determined measuring the absorbance at 205 nm as described by Prud’homme and Boquet.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Keywords: antimicrobial • acylation • circular dichroism • E. coli • S. epidermidis

References:

Entry for the Table of Contents

Exchangeable amino acid

Short acyl chains trigger antibacterial activity