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Abstract With the growing interest in Big Data technologies, companies and orga-
nizations are devoting much effort to designing Big Data Analytics (BDA) applica-
tions that may increase their competitiveness or foster innovation. However, BDA
design requires expertise and economic resources that may not always available. To
overcome this limit, the TOREADOR project has proposed a model-based BDAaaS
(MBDAaaS) approach to guarantee the automation of BDA applications design, al-
lowing users to focus on business cases without having to deal with technical aspects
of data storage and management. Although many platforms providing BDA services
are available, most of them exploit ontologies only for data representation and not
for describing the BDA computation itself. This paper describes how the Semantic
technologies meet MBDAaaS in the TOREADOR project.
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1 Introduction

Big Data market is expected to substantially grow in the next years, and Big Data
technologies are introducing a Copernican revolution in the areas of data storage,
processing, and analytics. However, the impact and diffusion of Big Data technolo-
gies are lowered by the scarcity of professional profiles with the necessary back-
ground and competence to use them, especially in SMEs.

A recent trend has underlined the relevance of users’ requirements and developed
the idea that achieving the full potential of Big Data analytics needs to embrace
a model-based approach [2]. Traditional data modeling, which focused on resolv-
ing the complexity of relationships among schemata [7], has been neglected as no
longer applicable to Big Data scenarios. In TOREADOR [4], we take a different
view: in addition to data representation, Big Data models should provide a shared
specification of the process to manage data resources (including anonymization and
privacy-preservation procedures) and of the computations to be done over them.
These models also need to provide all the information to carry out Big Data ana-
lytics over commodity execution platforms. A practical goal for TOREADOR is to
provide solutions where end users define their expectations on goals to be achieved
with Big Data analytics, while smarter engines manage and compose solutions to
deploy Big Data architectures and carry out the expected analytics.

2 TOREADOR Methodology

Model-Driven Big Data Analitycs-as-a-service (MBDAaaS) is responsible for all
activities aimed to configure and execute the Big Data analytics involving the fol-
lowing roles: i) Big Data customer specifying the goals of its Big Data Campaign
(BDC), ii) Big Data consultant helping the Big Data customer in specifying all
customizations needed to execute her analytics, iii) MBDAaaS platform that is re-
sponsible for semi-automatically managing and executing a a BDC on a Big Data
platform. Figure 1 shows the process of the proposed MBDAaaS that is composed

Fig. 1 MBDAaaS Methodology: Execution steps
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of five main steps. In the first step (Declarative Model Definition), the Big Data
customer produces a declarative model specifying the goals of a BDC. Within the
TOREADOR framework the declarative model are grouped into five conceptual ar-
eas, namely Representation, Preparation, Analytics, Processing, and Display and
Reporting. In the second step (OWL-S Service selection), the OWL-S services com-
patible with the declarative model specification are selected. We note that service
selection is done on the basis of the annotations to the services in the OWL-S ontol-
ogy, mapping them to indicators/objectives in the declarative model. In the third step
(OWL-S Workflow Definition), the Big Data consultant uses the MBDAaaS platform
to define the abstract workflow of the Big Data campaign. It is generated by compos-
ing the selected OWL-S services and represents the procedural model. In the fourth
step (MBDAaaS Compiler), MBDAaaS platform transforms the OWL-S workflow
in a platform-dependent workflow. The latter represents the deployment model, cru-
cial to build a semi-automatic MBDAaaS and puts some strong constraints on the
generality of the compiler, which needs to adapt to the selected target Big Data plat-
form. Finally, in the fifth step (Workflow Execution), MBDAaaS platform executes
the analytics on the target Big Data platform. In order to allow users to refine and
tune the BDA applications obtained through the MBDAaaS approach, a Code-based
approach has been developed. Such an approach, which is completely independent
on yet integrated with the MBDAaaS, allows users to annotate their code with Par-
allelization Directives, based on Computational Patterns, which are interpreted by a
Compiler to fill Skeletons and provide multi-platform deployments. Section 3.2 re-
ports the semantic-based model behind the Directives’ and Patterns’ representation.

2.1 State of the Art

Several papers have tried to classify data analytics service. The work [13] proposes
to exploit three types of service-generated Big Data to enhance the quality of a
service-oriented system n order to provide the common functionality of Big Data
management and analysis.

The authors of [5] highlight the need to develop appropriate and efficient analyti-
cal methods to leverage massive volumes of heterogeneous data in unstructured text,
audio, and video formats as well as the need to devise new tools for predictive ana-
lytics for structured Big Data adopting statistical methods to devise inferences from
sample data. Authors also remark that the heterogeneity, noise, and the massive size
of structured Big Data calls for developing computationally efficient algorithms that
may avoid Big Data pitfalls, such as spurious correlation.

The book [3] proposes general Big Data principles and indications on how to
organize large volumes of complex data and how to achieve data permanence when
the content of the data is constantly changing are given. General methods for data
verification and validation, as specifically applied to Big Data resources as well as
to find relationships among data objects held in disparate Big Data resources, when
the data objects are endowed with semantic support.
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A further Big Data analytics platform was proposed in [10], the aim is exploring
and querying Big Data and developing algorithms through collaboration between
data owners, scientists, and developers. In [12], a BDAaaS platform combining hi-
erarchical and peer-to-peer data distribution techniques has been proposed to reduce
the data loading time.

Recently, in [9] the authors propose to use semantic technology in assisting data
analysts/data scientists when selecting the appropriate modeling techniques through
the Analytics Ontology that supports inference mechanism for semi-automated
model selection. Other works have been proposed for combining ontologies and Big
Data. For example, [6] focuses on the combination of ontology-based approaches
and Big Data as a solution for some problems related to extraction of meaningful
information from various data sources.

As seen, an added value of the approach proposed in TOREADOR project with
respect to those reported in this section is the systematization of the MBDAaaS into
a model-driven specification process that covers the different areas defined by the
TOREADOR Declarative Model [2, 1].

3 Semantic-based Representation Models

The steps of MBDAaaS presented in the section 2 have several points strictly related
with the semantic of the information needed to accomplish the different targets. In
particular, the semantic of this information can be useful to simplify some operations
where the interaction with users with different skill level is required.

As we have seen, MBDAaaS is characterized by the use of OWL-S. OWL-S pro-
poses a structure to represent the semantics of a service (atomic or compound) but
the semantics of the information that the service uses are represented through exist-
ing OWL ontologies or defined ad-hoc. In details, OWL-S enables semantic descrip-
tions of Web services using the Service Model ontology, which defines the OWL-S
process model. Each process is based on the IOPR (Inputs, Outputs, Preconditions,
and Results) model. Inputs represent the information required for the execution of
the process. Outputs represent the information the process returns to the requester.
Preconditions are conditions imposed on Inputs that have to hold in order to invoke
the process in a correct manner. Since an OWL-S process may have several results
with corresponding outputs, the Results provide a mean to specify this situation.
Each result can be associated with a result condition, called inCondition, which
specifies when that particular result can occur. When an inCondition is satisfied,
there are properties associated with this event that specify the corresponding output
and, possibly, the Effects produced by the execution of the process. The OWL-S
conditions (Preconditions, inConditions and Effects) are represented as logical for-
mulas. Since OWL-DL offers limited support to formulate constructs like property
compositions without becoming undecidable, a more powerful language is required
for the representation of OWL-S conditions. Furthermore, OWL-S Composite pro-
cesses (decomposable into other Atomic or Composite processes) can be specified
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by means of the following control constructs: Sequence, Split, Split + Join, Any-
Order, Choice, If-Then-Else, Iterate, Repeat-While and Repeat-Until, and As-
Process.

3.1 An OWL Ontology for TOREADOR concepts

In TOREADOR project we are developing an OWL ontology, named BDM On-
tology1 in order to model concepts coming from Declarative, Procedural and De-
ployment models [11]. At current stage, the Declarative Model ontology section is
the most mature since its definition has started from the begin of the project (see
Fig. 3,a)). The Procedural model section contains a set of concepts that are specific
for the services currently defined, while Deployment section will be developed in
accordance with the work being done on (Workflow Execution).

In these five different conceptual areas requirements have been defined using
the Concept maps (CMAP) tool2. CMAP are graphical tools for organizing and
representing knowledge by means of concepts and its relationships.

Firstly, we need to specify which are the Big Data Areas of the declarative model.
This can be made by introducing one of the high-level concepts bdmo:BigDataArea
and its children, whose name corresponds to the aforementioned areas. For do-
ing this, some subsumption axioms (one per area) are added to the ontology, e.g.

Fig. 2 Part of the CMAP declarative model describing the Data Preparation area

1 Big Data Model Ontology www.consorzio-cini.it/˜lab-bigdata/
BDMOntology.owl
2 Conceptual Maps, cmap.ihmc.us
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bdmo:DataPreparation rdfs:subClassOf bdmo:BigDataArea. For sake of space, we
will describe the details of the Declarative models focusing only on one of the ar-
eas reported above, i.e., Data Preparation, the other ones are been modeled in the
same way.

The FGs can be modeled similarly to the way we modeled Big Data areas. Again,
we need to introduce a high-level concept i.e. bdmo:Goal and the sub-hierarchy (see
Fig.3, b)). In the case of the area describing Data Preparation, there is two kind
of FGs: the Knowledge Base Elicitation and Govern And Steward FGs. Note
that, according to the declarative model, the satisfaction of these goals is evaluated
in terms of two disjoint sets of FIs: an FI cannot assess both the Knowledge Base
Elicitation and Govern and Steward goal. Thus it is reasonable to assume that
such indicators aim at evaluating two different goals which can be considered as
disjoint. Therefore, in the ontology, we added a disjointness axiom between the
concepts bdmo:KnowledgeBaseElicitation and bdmo:GovernAndSteward.

For avoiding cases where the same FG concerns two or more Big Data Area
at the same time, we defined the concept representing all the functional indicators
related a specific Big Data Area (see Fig. 3, c)). For the Data Preparation area, we
introduced the ontology concept bdmo:DataPreparationFunctionalIndicator sub-
sumed by bdmo:FunctionalIndicator. bdmo:DataPreparationFunctionalIndicator
is specialized through two concepts describing the FIs assessing the goals Knowl-
edge Base Elicitation and Govern and Steward, namely bdmo:KnowledgeBase-
ElicitationIndicator and bdmo:GovernAndStewardIndicator. On one hand, the bd-
mo:KnowledgeBaseElicitationIndicator groups those techniques that aims at ma-
nipulating a dataset to improve the quality of the data for subsequent analysis, such
as data cleaning, ordering and data selection techniques. The resulting concepts are
called bdmo:DataCleaningAndIntegration, bdmo:Ordering and bdmo:DataSelecti-
onAndTransformation. On the other hand, the concept bdmo:GovernAndSteward-
Indicator describes aspects related to anonymization techniques for encrypting or
removing personally identifiable information from data sets. This is made introduc-
ing the concepts bdmo:AnonymizationTechniques and bdmo:AnonymizationModels.
Similarly to the FI, the FOs are grouped by the Big Data Area (see Fig. 3, d), through
the concept bdmo:DataPreparationFO subsumed by bdmo:FunctionalObjective.
The FO objectives are further grouped by the FGs and then w.r.t. the FIs that are

Fig. 3 Fragments of the ontology derived from the declarative model
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satisfied. Note that, as in the the FIs and the FOs have been declared as disjoint in
order to prevent either cases of a FI assessing more FGs o FI satisfies more FOs.

In detail, the resulting ontology is composed of 636 axioms, 196 classes, 42
object properties and 11 data properties resulting in A L C H F (D) expressive-
ness. The ontology representation of the declarative model has several advantages.
Firstly, for a given Big data Area the ontology can be easily extended with new
FGs / FIs / FOs by adding new OWL concepts as sub-concepts (also for their prop-
erties) of the FGs / FIs / FOs related to that area. For instance, it is sufficient to add
the new concept as sub-concept of bdmo:DataPreparationFunctionalGoal to define
a new goal for Data Preparation area. Moreover, the ontology can be used to han-
dle incompatibilities between entities spread across different areas. Considering a
large number of entities, the use of the ontology in combination with a reasoner
has the clear advantage to dynamically detect and handle possible incompatibilities,
avoiding the need of writing from scratch the code to handle each incompatibility
at the application level. Furthermore, this ontology can be exploited to enhance the
selection and composition operations on a given set of annotated web services in
this domain.

3.2 Semantic Representation of Patterns and Directives

In the context of TOREADOR project, a mapping process useful to distribute the
computation of a set of algorithms, described in terms of parallelization directives
among computational nodes hosted by different platforms has been proposed. The
parallelization paradigms that will be used to distribute the computation will be
derived from the directives used to describe the algorithm to be parallelized and will
be implemented by filling skeletons according to suitable patterns. In this approach,
the analyzed Algorithm’s representation is annotated with suitable parallelization
directives, composed by semantically described micro-functions. Such directives
determine a subset of possible Patterns, selectable from a shared knowledge base,
which can be used to fill the Skeletons. Once one specific Pattern has been selected,
either via the information deriving from the Declarative Model or directly by the
user, an agnostic Skeleton (or set of Skeletons) is filled. Only after a specific target
platform has been chosen, Vendor Specific Skeletons are produced together with
deployment templates for that platform. The Procedural Model used to describe the
Algorithms and their realization via Patterns and Skeletons, consists in a multi-layer
representation, in which the top layer provides a high-level vision of the algorithm,
which is enriched with new details as we descend towards the bottom layer.
The representation reported in figure 4, can be divided into two main sections:

• The Semantic Description of the Procedural Model in which, thanks to semantic-
based technologies such as OWL and OWL-S, the Algorithm is internally rep-
resented in both its structural (needed computational nodes, data structures, and
their relationships) and behavioral (workflow, decision points, control structures)
aspects.
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• The Procedural Realization which, instead, provides practical implementations
of the modelled algorithm, through the refining of Skeletons and their mapping
to Web and Cloud Services for their execution.

The overall semantic model, derived from existing representations of Application
and Cloud Patterns as described in [8], is a graph-based representation, structured
into five conceptual layers. The five conceptual levels are the following: – The Pa-
rameters Level represents the description of the data type exchanged among services
as input and output of the operations. – The Operations Level represents the syntac-
tic description of the operations and functionalities exposed by the cloud services;
it provides a machine-readable description of how the service can be called, what
parameters it expects, and what data structures it returns, expressed through WSDL,
JSON strings or REST parameters, according to the supported technology. – The
Services Level represents the semantic annotation of the provider dependent ser-
vices (exposed through OWL-S) and the supporting ontologies needed to identify
the provider supported operation, input, and output parameters. This level presents
details of the provider platform architecture, the functionality exposed and the un-
derlining details. – The Computational Patterns Level represents the semantic de-
scription of Technologically Independent and Technologically Dependent Patterns,
realized through an OWL representation. – The Algorithmic Semantic Description
Level represents models describing the algorithms to be ported and implemented.
An Algorithmic Semantic Description is a composition of application components
embodying application domain functionalities, services, and micro-functions

3.2.1 Directives’ categorization via OWL

In order to make it possible for the TOREADOR user to discover the available
Skeletons along the services offered by the TOREADOR platform, the parallel di-
rectives will be semantically described and then integrated within the OWL-S based
definitions already produced for the description of services and micro-functions.
In particular, a simple categorization, based on the specific Parallel Computation

Fig. 4 The Procedural Model and its Components
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Paradigm implemented by the directives, has been described. A representation of
the classes composing such ontology-based categorization has been reported in fig-
ure 5. The ontology classifies the different directives which have been defined so
far and allows for the further classification of the parameters and functions which
represent their input. The three main classes are represented by:

• The Parallel Paradigm Directive defines all possible parallel directives. It
contains two subclasses, namely the Data Parallelism Directive and the
Task Parallelism Directive. For both classes, a generic and specific sub-class
has been defined. The directives appear as instances of these classes.

• The Skeleton class representing the available skeletons, which can be produced
by applying a set of rules.

• The Directive Input class, acting as a placeholder for the three different input
categories accepted by the directives: Function, Data and Parameters

The remainder of the sub-classes is not described here, as their names are self-
explicative.

4 Conclusions

In this paper an MBDAaaS approach to support the design of Big Data Analytics
applications has been proposed, to address the limitations encountered by small
companies which lack expertise and economic resources when it comes to Big Data.
In particular, the MBDAaaS has at its core OWL-S descriptions of services which
can be used to build-up BDA applications. However, while OWL-S can represent
the services, there is the need to also describe the applications’ characteristics, via a
semantic-based representation which can guide the composition of applications. To
serve this purpose semantic models, based on OWL ontologies, have been provided

Fig. 5 The ontology used to categorize the parallel directives and their inputs
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for both the Declarative and Procedural models describing an application. Also,
directives to annotate source code and automatize its parallelization according to a
set of Parallel Patterns have been provided and semantically categorized, to support
users in developing their own BDA solutions from scratch. Future works will focus
on a further integration between the semantic models behind the Declarative and
Procedural models, and the Deployment of applications on target platforms.
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