
Article
Smarcal1-Mediated Fork R
eversal Triggers Mre11-
Dependent Degradation of Nascent DNA in the
Absence of Brca2 and Stable Rad51 Nucleofilaments
Graphical Abstract
Highlights
d Brca2 promotes Rad51 binding to replicating DNA,

preventing fork gaps

d Stable Rad51 nucleofilaments directly protect DNA from

Mre11-dependent degradation

d Smarcal1-dependent fork reversal triggers extensive Mre11-

dependent DNA degradation

d Rad51 directly interacts with Pol a, promoting its function at

stalled forks
Kolinjivadi et al., 2017, Molecular Cell 67, 867–881
September 7, 2017 ª 2017 The Author(s). Published by Elsevier
http://dx.doi.org/10.1016/j.molcel.2017.07.001
Authors

Arun Mouli Kolinjivadi,

Vincenzo Sannino, Anna De Antoni, ...,

Luca Pellegrini, Lumir Krejci,

Vincenzo Costanzo

Correspondence
lp212@cam.ac.uk (L.P.),
lkrejci@chemi.muni.cz (L.K.),
vincenzo.costanzo@ifom.eu (V.C.)

In Brief

Kolinjivadi et al. show that Brca2 protects

replication forks by promoting Rad51

binding to replicating DNA. Rad51 then

directly interacts with Pol a, suppressing

the occurrence of ssDNA gaps during

replication. When forks stall, Brca2-

dependent Rad51 nucleofilament

formation prevents extensive Mre11-

dependent nascent DNA degradation

triggered by Smarcal1-mediated fork

reversal.
Inc.

mailto:lp212@cam.ac.�uk
mailto:lkrejci@chemi.muni.�cz
mailto:vincenzo.costanzo@ifom.�eu
http://dx.doi.org/10.1016/j.molcel.2017.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2017.07.001&domain=pdf


Molecular Cell

Article
Smarcal1-Mediated Fork Reversal Triggers
Mre11-Dependent Degradation of Nascent DNA in the
Absence of Brca2 and Stable Rad51 Nucleofilaments
Arun Mouli Kolinjivadi,1,7 Vincenzo Sannino,1,7 Anna De Antoni,1,7 Karina Zadorozhny,2 Mairi Kilkenny,3 Hervé Técher,1
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SUMMARY

Brca2 deficiency causes Mre11-dependent degrada-
tion of nascent DNA at stalled forks, leading to cell
lethality. To understand the molecular mechanisms
underlying this process, we isolated Xenopus laevis
Brca2. We demonstrated that Brca2 protein prevents
single-stranded DNA gap accumulation at replication
fork junctions and behind them by promoting Rad51
binding to replicating DNA. Without Brca2, forks with
persistent gaps are converted by Smarcal1 into
reversed forks, triggering extensive Mre11-depen-
dent nascent DNAdegradation. Stable Rad51 nucleo-
filaments, but not RPAorRad51T131Pmutant proteins,
directly prevent Mre11-dependent DNA degradation.
Mre11 inhibition instead promotes reversed fork
accumulation in the absence of Brca2. Rad51 directly
interactswith the Pol aN-terminal domain, promoting
Pol a and d binding to stalled replication forks.
This interaction likely promotes replication fork
restart and gap avoidance. These results indicate
that Brca2 and Rad51 prevent formation of abnormal
DNA replication intermediates, whose processing
by Smarcal1 and Mre11 predisposes to genome
instability.

INTRODUCTION

Maintenance of genome integrity during DNA replication relies

on the ability to respond to DNA lesions and structures impairing

replication fork progression (Flynn and Zou, 2011; Nam and

Cortez, 2011; Toledo et al., 2011). A central role in preventing

genome instability commonly associated with human cancer is

provided by the homologous recombination (HR) Brca1 and
Molecular Cell 67, 867–881, Septe
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Brca2 genes, which are often mutated in sporadic and familial

cases of cancers (Holloman, 2011; Jackson et al., 2011).

HR proteins’ roles in chromosome breakage repair are well es-

tablished (Kowalczykowski, 2015; Thorslund and West, 2007).

However, their functions in DNA replication are poorly under-

stood. This is in part due to the essential role of many HR genes

in higher eukaryotes (Jasin, 2002; Thompson and Schild, 2001).

Cell-free systems based on vertebrate Xenopus laevis egg

extract have been helpful to study essential proteins in DNA

repair, cell-cycle checkpoints, and DNA replication (Byun et al.,

2005; Hashimoto and Costanzo, 2011; Hashimoto et al., 2010,

2011; R€aschle et al., 2008; Sannino et al., 2016). Using electron

microscopy (EM) to visualize replication intermediates (RIs) iso-

lated from egg extracts, we uncovered a role for Rad51 in pre-

venting Mre11-dependent degradation of nascent DNA during

DNA replication (Hashimoto et al., 2010). Consistent with this,

Brca2, which loads Rad51 onto DNA breaks and gaps, and

Rad51 itself were shown to prevent extensive Mre11-dependent

nascent DNA degradation at stalled forks in mammalian cells

(Schlacher et al., 2011; Spies et al., 2016). Extensive DNA degra-

dationwasalso observed after loss of theRad51 stabilizing factor

BOD1L (Higgs et al., 2015). More recently, inhibition of Mre11

recruitment to stalled forksby lossof theMLL3/4 complexprotein

PTIP and PARP1 has been shown to bypass the Brca2 require-

ment for survival (Ding et al., 2016; Ray Chaudhuri et al., 2016).

A crucial role in replication fork metabolism is played by

Smarcal1 (SWI/SNF-related, matrix-associated, actin-depen-

dent regulator of chromatin, subfamily A-like1), which travels

with the elongating replication fork and is regulated by ATR

(Bétous et al., 2012; Couch et al., 2013). In vitro, Smarcal1 pro-

motes branch migration and fork reversal on artificial DNA sub-

strates (Bétous et al., 2012; Ciccia et al., 2012). Smarcal1 trans-

locase-dependent fork remodeling could promote reversed fork

(RVF) formation in vivo, triggering nascent DNA degradation in

Brca2-defective cells.

RVFs are induced by replication fork-stalling agents (Zell-

weger et al., 2015) under DNA damage checkpoint-deficient
mber 7, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 867
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Figure 1. Brca2 and Rad51 Function in DNA Replication

(A) The Xenopus Brca2 protein. See also Figures S1 and S2.

(B) Brca2 and Rad51 immunoprecipitations (IPs) and western blots (WBs).

(C) Brca2 and Rad51 depletion from egg extract.

(D) Chromatin binding time course with or without recombinant geminin. NS, no sperm nuclei.

(E) Brca2 and Rad51 chromatin binding normalized to histone H2B. Mean optical density ± SD of three experiments (n = 3) is shown.

(F) Chromatin binding time course in mock and Brca2-depleted extracts.

(legend continued on next page)
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conditions (Couch et al., 2013; Lopes et al., 2001). RVFs can also

form when polymerase alpha (Pol a) function is compromised in

primase mutants (Fumasoni et al., 2015) and in the absence of

Tipin-Tim1, which promotes Pol a chromatin binding (Errico

et al., 2014), suggesting the existence of a critical link between

RVFs and defects in Pol a-dependent DNA polymerization.

Here we isolated Xenopus laevis Brca2 and investigated its

molecular role at unperturbed and stalled replication forks using

egg extract. We show that Brca2 licenses Rad51 binding to repli-

cation forks. Its absence leads to the accumulation of gapped

RIs remodeled by Smarcal1 into RVFs, which act as entry

points for extensive Mre11-dependent degradation of nascent

DNA. Stable Rad51 nucleofilaments protect DNA from Mre11-

dependent degradation, whereas Rad51 interaction with Pol a

contributes to ensure continuous ungapped DNA replication.

These results uncover the molecular mechanisms underlying

Brca2-mediated replication fork protection.

RESULTS

Brca2 and Rad51 Binding to Replicating Chromatin
To understand the role of Brca2 in DNA replication, we cloned

full-length Xenopus Brca2 cDNA. Brca2 protein revealed

significant homology to human Brca2, with all major domains

conserved except for BRC5 (Figures 1A, S1, and S2). We then

raised antibodies recognizing XenopusBrca2 in egg extract (Fig-

ures S3A and S3B). In co-immunoprecipitations (coIP), Rad51

antibodies pulled down Brca2 protein. Reciprocal coIP with

anti Brca2 antibodies confirmed Rad51 binding and revealed

that only a fraction of total Rad51 in the cytoplasm was bound

to Brca2 (Figure 1B). Furthermore, depletion of more than 99%

of Brca2 reduced Rad51 levels in extract only slightly (Figure 1C).

These results suggested that Brca2 and Rad51 exist as separate

protein pools in egg cytoplasm, although a small fraction of

total Brca2 forms protein complexes with Rad51. Consistently,

depletion of Rad51 did not significantly reduce Brca2 levels in

egg extract (Figure 1C).

Under unperturbed conditions, Brca2 was loaded onto chro-

matin together with major replication factors, and its loading per-

sisted after their dissociation (Figure 1D). Notably, Brca2 loading

onto chromatin preceded and accompanied loading of Rad51,

suggesting that, similar to Rad51 (Hashimoto et al., 2010),

Brca2 binds to DNA during unperturbed replication. To verify

whether Brca2 chromatin binding was dependent on active

DNA replication, we used geminin to inhibit pre-replication com-

plex assembly (Hashimoto et al., 2010). Geminin induced signif-

icant but incomplete inhibition of Brca2 chromatin binding,

accompanied by a Rad51 chromatin loading decrease (Figures

1D and 1E). In contrast, the DNA polymerase inhibitor aphidicolin

(M-APH, 20 mM), which induces stalled forks, increased Brca2

binding to chromatin (Figure S3C). Consistent with previous re-
(G) Relative incorporation of a-32P-dCTP over time in mock and Brca2-deplet

considered as 100%.

(H) DNA replication in extracts depleted as indicated and reconstituted with 50 n

nuclease (0.1 U/mL) was added at the start where indicated. Nuclei were pre-treat

mock-treated extracts at 150 min were considered as 100%. Mean values ± SD

See also Figures S1–S3.
sults (Jeyasekharan et al., 2010; Reuter et al., 2014) and under

conditions in which DNA replication was inhibited, as shown by

lack of DNA-boundCdc45 because of activation of the ataxia tel-

angiectasia mutated (ATM) checkpoint (Costanzo et al., 2000),

induction of DNA double-strand breaks (DSBs) onto otherwise

DSB-free sperm chromatin also triggered prolonged Brca2 chro-

matin binding (Figure S3D). These results indicated the existence

of at least three binding modes of Brca2 to chromatin, one

dependent on DNA replication and stimulated by stalled forks,

a second independent of DNA replication, and a third induced

by DSBs.

To understand the role of Brca2 during DNA replication and

to elucidate its links with Rad51, we depleted endogenous

Brca2 from egg extract. Depletion of Brca2 did not significantly

affect chromatin binding of major replication factors. However,

it almost completely prevented Rad51 assembly onto chromatin

(Figures 1F and S3E), indicating that Brca2 was required for

active loading of Rad51 onto replicating DNA, except for a small

fraction of Rad51 associating with chromatin independently

of Brca2.

Similar to Rad51 (Hashimoto et al., 2011), Brca2 depletion did

not significantly affect chromosomal DNA replication under un-

challenged conditions (Figure 1G). However, Brca2 was required

to support restart of forks uncoupled by low amounts of aphidi-

colin (L-APH, 3 mM) and collapsed by S1 nuclease-induced DNA

breakage (Figure 1H). These conditions do not activate the

checkpoint and, in contrast to UV and methyl methanesulfonate

(MMS) treatment, do not affect replication initiation (Hashimoto

et al., 2011), allowing the analysis of Brca2 function during

ongoing DNA replication.

To verify whether Brca2’s role in fork restart was linked to

Rad51 chromatin binding stability, we cloned and expressed

the Xenopus Brca2 C terminus (Brca2c; Figures S3F and S3G),

which has been shown to stabilize Rad51 nucleofilaments

through the Rad51 binding domain (Davies and Pellegrini,

2007; Esashi et al., 2007) and promote DNA strand exchange

(Yang et al., 2002). Notably, addition of Brca2c to Brca2-

depleted extracts rescued DNA replication in the presence of

S1 nuclease and L-APH (Figure 1H) by stabilizing RAD51 binding

to chromatin (Figure S3H). On the contrary, a Rad51 binding

domain-deficient Brca2c protein (Brca2d; Figures S3F and

S3G), was unable to restore DNA replication (Figure 1H) and

Rad51 chromatin binding under similar conditions (Figure S3H).

These experiments indicated that stabilization of Rad51 binding

to chromatin was required for collapsed fork restart.

Brca2 and ssDNA Gap Formation during DNA
Replication
Because bulk incorporation of labeled nucleotide could not

detect replication impairment, we employed EM analysis of RIs

to identify more subtle defects in the absence of Brca2, using
ed extracts. Counts per minute for mock-treated extracts at 150 min were

g/mL recombinant Brca2c or Brca2d proteins. L-APH (3 mM) or L-APH plus S1

ed with MMS (1% v/v) or UV (1,000 J/m2) where indicated. Counts per minute in

(n = 3) are shown.
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methods established previously (Hashimoto and Costanzo,

2011; Hashimoto et al., 2010). This approach provided snapshot

images of RIs stabilized by DNA-psoralen crosslinking prior to

their isolation. For the analysis, we considered replication bub-

bles and Y-shaped RIs, obtained by restriction digestion, which

helped to distinguish parental strands from the replicated ones

(Lopes, 2009). We observed 70- to 500-nt-long ssDNA gaps on

the replicated strands of replication fork junctions isolated from

Brca2-depleted, but not from mock-treated extracts (Figures

2A and 2B). Similar fork junction gaps were found in Rad51-

depleted extracts (Figures 2A and 2B; Hashimoto et al., 2010).

Fork junction gaps were mostly asymmetric, with only one arm

being affected (Figure 2A), and only rarely symmetric (Figure 2C).

Fork junction gaps formed in Brca2- or Rad51-depleted

extracts were not suppressed byMre11 inhibition with mirin (Fig-

ure S4A), which has been shown to inhibit Mre11 activity during

DNA replication in extracts (Hashimoto et al., 2010). This sug-

gested that fork junction gaps were due to lack of DNA polymer-

ization on one or both strands and not due to Mre11-dependent

DNA degradation. In Brca2-depleted extracts, we also observed

internal ssDNA gaps, situated at a distance from fork junctions

(Figures 2C and 2D). Internal gaps were similar to the ones

observed in Rad51-depleted extracts (Figure 2D), which were

suppressed by mirin (Hashimoto et al., 2010). Because no major

differences were observed in bulk nucleotide incorporation be-

tween mock- and Brca2-depleted extracts (Figure 1G), it was

likely that internal and fork junction gapswere subsequently filled

in by post-replicative repair.

Regulation of Nascent DNA Stability
Collectively, these observations revealed the presence of

abnormal RIs formed in the absence of Brca2 during unchal-

lenged replication. Because Brca2 protects nascent DNA from

Mre11-dependent DNA degradation at stalled forks (Schlacher

et al., 2011), we aimed to reproduce this process in Brca2-

depleted egg extract to understand whether abnormal RIs

were linked to this phenomenon. To induce fork stalling, we

supplemented egg extract with high doses of aphidicolin

(H-APH, 1.5 mM) 60 min after DNA addition (Figure 2E) to

completely inhibit DNA elongation, as shown previously (Byun

et al., 2005). Following 60 min of incubation with H-APH, large

asymmetric fork junction gaps could be observed in Y-shaped

RIs (Figure 2E) and in replication bubbles (Figure 2F, top).

H-APH-induced fork junction gaps were present in more than

70% of RIs in both mock- and Brca2-depleted extracts (Figures

S4B and S4C). Similar to spontaneous fork junction gaps found

in Brca2- or Rad51-depleted extracts (Figure S4A), mirin did

not affect H-APH-induced fork junction gap frequency and size

(Figures S4B and S4C). H-APH-induced fork gaps isolated

from mid S phase were on average z750 nt long, with some

gaps reaching z1,600 nt in length (Figure S4C).

Significantly, in Brca2-depleted extracts treated with H-APH,

we detected numerous replication bubbles in which nascent

DNA was no longer present (Figure 2F, bottom; Figure S4D).

Complete loss of nascent DNA resulting in extended regions of

ssDNA on both replicated strands could be observed only in

replication bubbles and not in Y-shaped RIs because single-

stranded DNA bubbles were resistant to restriction digestion.
870 Molecular Cell 67, 867–881, September 7, 2017
To verify whether the absence of nascent DNA in Brca2-

depleted extracts was due to degradation of stalled nascent

DNA, we monitored the stability of nascent DNA at stalled forks

over time. To this end, nascent DNA was labeled with a short

pulse of biotin-dUTP (deoxyuridine triphosphate) (Figure 3A),

and biotin-dUTP remaining in nascent DNA after fork stalling

was then quantified. In Brca2-depleted samples, we detected

nascent DNA loss, which was inhibited by mirin or recombinant

Brca2c, but not Brca2d proteins (Figure 3A), suggesting a

critical role for Rad51 nucleofilament stabilization in nascent

DNA protection against Mre11. Consistent with this, depletion

of Rad51 also induced extensive Mre11-dependent degradation

of nascent DNA (Figure S4E).

To verify whether formation of Rad51 nucleofilaments directly

prevented Mre11-mediated DNA degradation, we reconstituted

DNA protection in vitro using recombinant yeast Mre11, human

Rad51, and heterotrimeric replication protein A (RPA) (Fig-

ure S4F). We observed extensive Mre11-mediated degradation

of linear DNA containing a 35-nt-long 50 ssDNA overhang

(Figure 3B). As expected, no Mre11-dependent degradation

was observed on substrates containing 30 overhangs (Fig-

ure S4G). Strikingly, Rad51 pre-assembled on 50 overhangs

completely protected DNA from Mre11-mediated degradation

of the 30 end in the 30 to 50 direction (Figure 3B). Similar Rad51-

mediated protection was also observed against human Mre11

protein (Figures S4F and S4H).

Interestingly, the Rad51T131P mutant protein identified in Fan-

coni anemia (FA) patient cells, which has a reduced ability to form

stable Rad51 nucleofilaments (Wang et al., 2015), wasmuch less

efficient in protecting DNA from Mre11 nuclease at identical

concentrations (Figure 3B). To confirm the specific effect of

Rad51, we also tested ssDNA binding protein complex RPA. In

contrast to Rad51, DNA-saturating concentrations of RPA

were unable to protect DNA from Mre11-mediated degradation

(Figure 3C). Relative quantification of undegraded DNA sub-

strate at increasing protein concentrations further validated

these observations (Figure 3D). Of note, higher concentrations

of Rad51 (1,000 nM) were needed to saturate all binding sites

on the DNA substrate (Figure 3E) compared with RPA, which

could bind all available sites at 200 nM, as shown by the disap-

pearance of free DNA into a higher protein-DNA complex in a

mobility shift assay (Figure 3E). This reflected the smaller ssDNA

binding site of Rad51, which occupies 3 nt (Qiu et al., 2013)

compared with 30 nt occupied by RPA (Kim et al., 1994). Signif-

icantly, in contrast to Rad51, although RPA was able to saturate

the DNA substrate at 200 nM, it was unable to protect it from

degradation (Figure 3C). DNA protection by RPA was not seen

even at RPA concentrations ranging from 400–800 nM and

when using human Mre11 (Figures 3C and S4I). These results

were largely confirmed by the observation of similar protection

and DNA binding patterns when using substrates containing

single-stranded DNA (ssDNA) gaps (Figures S5A–S5D).

Smarcal1-Dependent Fork Reversal
Because fork junction gaps were not directly susceptible

to Mre11-dependent degradation in vivo (Figures S4A–S4C),

we looked for other abnormal RIs that could trigger extensive

nascent DNA degradation. We noticed the presence of
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Figure 2. ssDNA Gaps and Nascent DNA Degradation in the Absence of Brca2

(A) EM micrographs showing RIs isolated from mock-treated (left) and Brca2- (center) and Rad51-depleted extracts (right). Empty arrows indicate newly

replicated strands. Arrowheads indicate ssDNA gaps at fork junctions.

(B) Graph showing the distribution of fork gaps with different lengths. Bars indicate the percentage of RIs with different gap lengths in mock-treated and Brca2- or

Rad51-depleted extracts. Mean values ± SEM relative to 150 RIs counted in three experiments (n = 3) are shown.

(C) EM micrograph showing RIs isolated from Brca2-depleted extract. The full black arrow indicates an internal ssDNA fork gap.

(D) Distribution of RIs with the indicated number of internal gaps in mock-treated and Brca2- or Rad51-depleted extracts. Mean values ± SEM (n = 3) are shown.

(E) EM micrograph showing an RI isolated from an undepleted extract incubated with H-APH (1.5 mM) as shown.

(F) EM micrograph showing RIs isolated from mock-treated (top) or Brca2-depleted (bottom) extracts treated with H-APH as in (E). Insets show a higher

magnification of replication bubbles. Empty arrows indicate double-stranded DNA. Arrowheads show ssDNA.

See also Figure S4.
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Figure 3. Brca2- and Rad51-Mediated Protection from Mre11

(A) Top: experimental scheme. Bottom: relative percentage of residual biotin-dUTP in sperm nuclei quantified using a fluorescence method. The fluorescence

intensity of mock at 0 min was considered as 100%. Extracts were treated as indicated and supplemented with 100 mMmirin or recombinant Brca2c or Brca2d.

Mean values ± SD (n = 3) are shown.

(B and C) Gel showing the effect of Rad51WT and Rad51T131P (B) or RPA complex (C) pre-incubation with 50 fluorescently labeled DNA substrate (20 nM), shown in

the scheme containing phosphorothioate bonds (s), and subsequent incubation with Mre11 (30 nM). Reactions were resolved on denaturing 30% poly-

acrylamide gel.

(D) Mre11-dependent DNA degradation rates in the presence of Rad51WT, Rad51T131P, or RPA relative to the amount of substrate shown in (B), lane (�), which

was considered as 100%. Mean values ± SD (n = 3) are shown.

(E) Electrophoretic mobility shift assay showing binding of Rad51WT, Rad51T131P, or RPA to the same fluorescently labeled DNA substrate (20 nM) resolved on

0.8% agarose gel.

See also Figures S4 and S5.
numerous RVFs containing classical four-way junctions (Fig-

ure 4A) in RIs isolated from extracts treated with H-APH. RVF

reversed branches were 1,250 ± 200 nt long, and most of them
872 Molecular Cell 67, 867–881, September 7, 2017
contained long ssDNA tails (Figure 4A), suggesting that they

originated from remodeling of forks containing asymmetric

gaps (Figure 2E).



Figure 4. Smarcal1-Dependent Regulation

of RVFs

(A) EM micrograph showing RVF intermediate

isolated from extracts treated with H-APH

(1.5 mM). The arrow indicates a double-stranded

reversed branch. The arrowhead indicates

the single-stranded tail of the reversed branch.

The inset shows a high magnification of the RVF

junction.

(B) Chromatin binding of the indicated factors at

the indicated times following buffer or H-APH

supplementation. Buffer and H-APH were added

to egg extract 45 min after sperm nuclei. NS,

absence of sperm nuclei.

(C) RVF frequency in extracts treated as indicated.

Mean values ± SEM (n = 3) are shown. *,**,***p <

0.01, obtained by unpaired t test between the

marked couples.

(D) Scheme showing the assay to quantify RVFs

with ssDNA tails (STAR Methods).

(E) ELISA detection of BrdU in nascent ssDNA in

nuclei incubated in extracts treated as shown.

Where indicated, extracts were supplemented

with 5 ng/mL recombinant human Smarcal1WT or

catalytically dead Smarcal1HD. Mean intensity

values ± SD (n = 3) are shown.

See also Figure S6.
To identify RVFs formation mechanism, we produced anti-

bodies against the Xenopus ortholog of the Smarcal1 translo-

case, which has been shown to promote fork reversal in vitro

on synthetic gapped substrates (Bétous et al., 2012; Ciccia

et al., 2012). Anti-Smarcal1 antibodies could completely deplete

egg extract of the endogenous protein (Figure S6A). Depletion of

Smarcal1 did not affect the cytoplasm levels of other proteins

involved in DNA replication and resection (Figures S6A and

S6B) or DNA replication efficiency (Figure S6C). Similar to

Rad51, high levels of Smarcal1 accumulated onto chromatin

following H-APH treatment (Figure 4B). Strikingly, depletion

of Smarcal1 significantly impaired fork reversal induced by

H-APH (Figure 4C) and moderately increased H-APH-induced

fork gaps (Figures S6D and S6E). Although depletion of Rad51

also mildly impaired RVF formation, consistent with previous

findings (Zellweger et al., 2015), co-depletion of both Smarcal1

and Rad51 further suppressed RVFs, indicating that the two pro-

teins act additively to sustain RVF levels (Figure 4C).
Molecula
We then tested whether Smarcal1 was

sufficient to promote conversion of gap-

ped forks into RVFs. To this end, we

added increasing amounts of recombi-

nant Smarcal1 protein to un-depleted

egg extract treated with H-APH, which

could stimulate RVF formation (Fig-

ure S6F). Interestingly, high amounts of

Smarcal1 (25 ng/mL) induced RVFs in

which reversed branches were present

at both junctions of the replication bub-

ble (Figure S6G). This intermediate was

found only at high doses of recombinant
Smarcal1 and likely reflected the higher frequency of RVFs

induced by hyperaccumulation of recombinant Smarcal1 onto

chromatin.

To quantify RVFs independently of EM analysis, we exploited

the presence of a high number of RIs with ssDNA tails in RVF

branches that could be isolated from egg extract. To this end,

we adapted an assay based on the ability of anti-bromodeoxyur-

idine (BrdU) antibodies to recognize incorporated BrdU only in

the context of ssDNA (Couch et al., 2013) and used it to quantify

RVFs because EM detected no other major source of extended

unpaired nascent ssDNA on RIs (Figure 4A). We confirmed the

existence of a linear relationship between the BrdU signal and

the number of RVFs visualized by EM because the signal was

strongly induced by H-APH and was significantly inhibited by

Smarcal1 depletion (Figure 4E). The BrdU signal strength in

Smarcal1-depleted extracts was restored by Smarcal1WT, but

not by its previously characterized catalytically inactive version

Smarcal1HD (Ciccia et al., 2012; Figure 4E), although both
r Cell 67, 867–881, September 7, 2017 873



proteins were able to bind DNA (Figure S6H). These experiments

indicated that Smarcal1 translocase activity was required to

promote the formation of RVFs. The BrdU assay also confirmed

a Rad51 and Smarcal1 additive role on RVFs observed by EM

(Figure 4E).

Fork Reversal and Nascent DNA Degradation
To determine whether RVFs were responsible for the extensive

nascent degradation observed in Brca2-depleted extracts,

we co-depleted Smarcal1 and determined nascent DNA stabil-

ity. Strikingly, Smarcal1 depletion significantly prevented the

nascent DNA degradation observed in Brca2-depleted extracts

treatedwith H-APH (Figure 5A). Supplementation of depleted ex-

tracts with recombinant Smarcal1WT, but not with Smarcal1HD

partially restored nascent DNA degradation (Figure 5A). These

experiments suggested that RVFs induced by active Smarcal1

triggered nascent DNA degradation in the absence of Rad51

bound to DNA.

To test whether Brca2 was also required for the stability of

RVFs formed by Smarcal1, we quantified RVFs induced by

H-APH in the absence of Brca2 with the method shown in Fig-

ure 4D. This experiment revealed a significant reduction in the

BrdU signal in extracts depleted of Brca2, suggesting that

RVFs were decreased in the absence of Brca2 (Figure 5B).

Significantly, the BrdU signal could be restored by addition of

mirin (Figure 5B), indicating that Brca2 was required for the

protection of RVFs from Mre11-mediated degradation but was

dispensable for RVF formation.

Importantly, Smarcal1 depletion reduced the BrdU signal in

Brca2-depleted extracts, and this inhibition was only partially

rescued by mirin (Figure 5B), consistent with a role for Smarcal1

in promoting RVF formation.

Interestingly, low levels of BrdU signal were also detected in

Brca2-depleted extracts treated with mirin in the absence of

H-APH. This signal possibly reflected spontaneous RVFs arising

in the absence of Brca2 and degraded by Mre11 (Figure S6I).

To test whether Brca2’s role in preventing RVFs degradation

was directly related to its ability to stabilize Rad51 binding

to these structures, we performed Mre11 nuclease protection

assays using synthetic RVF substrates. Rad51WT, but not

RAD51T131P protein, was able to protect synthetic RVFs from

Mre11 nuclease-mediated degradation, whereas RPA was un-

able to protect RVFs (Figures 5C–5E), despite the fact that it

could fully saturate all binding sites on synthetic RVFs in mobility

shift assays, similar to Rad51 (Figure 5F). These observations

confirmed the critical role of stable Rad51 nucleofilaments in

protecting RVFs.

Rad51-Pol a Interaction
Our results indicated that forks with persistent gaps induced by

DNA polymerization inhibition obtained with H-APH could be

converted by Smarcal1 into RVFs that were susceptible to

Mre11-dependent degradation in the absence of Rad51 bound

to DNA. However, spontaneous fork junction gaps because of

lack of DNA polymerization were also present in Rad51- or

Brca2-depleted extracts under unchallenged conditions (Figures

2A, 2B, and S4A–S4C), potentially predisposing to RVF forma-

tion (Figure S6I). Given their relevance, we tested how Rad51
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prevented spontaneous fork gap formation. We hypothesized

that Rad51 directly influenced replicative polymerases function.

To verify this hypothesis, we immunoprecipitated Rad51 from

egg extracts and performed western blot experiments, which

highlighted the presence of Pol a, but not Pol d, in Rad51 immu-

noprecipitates (Figure 6A). To determine the presence of a direct

interaction between Rad51 and Pol a, we produced a recombi-

nant human Pol a-primase complex, which is made of four sub-

units: the catalytic a and non-catalytic B subunits and the large

(PriL) and small subunits (PriS) of the primase (Pellegrini, 2012).

We also produced a version of the Pol a-primase complex in

which the a and B subunits lacked their N-terminal domains

(DNTD). The Pol a-primase complex, containing a His10 tag pre-

sent at the N terminus of Pri-S, was able to pull down recombi-

nant Rad51 (Figure 6B). Conversely, the version of the complex

missing the NTDswas not able to bind Rad51 protein (Figure 6B).

The NTD of the catalytic a subunit containing the first 109 amino

acidswas instead able to directly interact with Rad51 (Figure 6C).

This NTD region of the Pol a catalytic subunit contains a pattern

of negatively charged and aromatic amino acids that is highly

conserved in eukaryotes (Figure S7A) and might play a role in

binding Rad51. Importantly, this interaction was inhibited by

stoichiometric amounts of Brca2 BRC4 peptide (Figure 6D),

which prevents Rad51 polymerization (Thorslund and West,

2007). This observation suggested that the interaction with Pol

a required an oligomeric form of Rad51.

To assess the functional relevance of this interaction in the

context of replication forks, we adopted a previously established

approach based on the displacement of endogenous replication

factors by their recombinant versions, which are preferentially

incorporated into replicating DNA (Simon et al., 2016). Wild-

type (WT) and DNTD Pol a-primase complexes were added to

egg extract and shown to bind chromatin under unchallenged

and challenged conditions induced by intermediate doses of

aphidicolin (M-APH, 20 mM), which produced stalled forks but

still allowed partial DNA polymerization (Figure 6E). However,

in contrast to the WT, the DNTD Pol a-primase complex was

unable to efficiently displace endogenous Pol a bound to chro-

matin. These findings suggested that the NTD was involved in

the localization of the Pol a-primase complex to replication forks,

possibly through its interaction with Rad51 bound to forks,

although participation of other replisome components in this

process could not be excluded.

To verify the role of Rad51 in promoting stable DNA binding of

replicative polymerases, we tested the effect of Rad51 depletion

using an assay based on isolation of proteins on nascent DNA

(IPOND), in which biotin-dUTP pulses were used to label and

pull down nascent chromatin (Sirbu et al., 2013), omitting the

formaldehyde crosslinking step to isolate high-affinity nascent

DNA binding proteins present at replication forks. Depletion of

Rad51 did not affect DNA binding of replication factors such

as Cdc45 or Psf3 to stalled forks (Figure 6F) or Pol a concentra-

tion in egg extract (Figure S7B). However, it strongly inhibited

Pol a association with nascent DNA in the presence of stalled

forks induced by M-APH, and it mildly inhibited its DNA binding

under unchallenged conditions (Figures 6F and S7C). Rad51

depletion also impaired Pol d binding to stalled replication forks

(Figures 6F and S7D), although no interaction was observed with



Figure 5. RVFs and Nascent DNA Degradation

(A) Residual biotin-dUTP in nuclei replicated in extracts treated as shown. Where indicated, extracts were Smarcal1-depleted and supplemented with buffer or

5 ng/mL recombinant Smarcal1WT or Smarcal1HD proteins. The fluorescence intensity of mock at 0 min was considered as 100%.

(B) ELISA detection of BrdU in nascent ssDNA in nuclei incubated in extracts treated as shown. Mean intensity values ± SD (n = 3) are shown.

(C and D) Gel showing the effect of Rad51WT and Rad51T131P (C) or RPA (D) pre-incubation with 50 fluorescently labeled RVF, shown in the scheme, and sub-

sequent incubation with Mre11. Reactions were resolved on denaturing 30% polyacrylamide gel.

(E) Mre11-dependent DNA degradation rates in the presence of Rad51WT, Rad51T131P, or RPA relative to the amount of substrate (20 nM) shown in (C), lane (�),

which was considered as 100%. Mean values ± SD (n = 3) are shown.

(F) DNA binding of Rad51 WT or RPA to the same fluorescently labeled RVF DNA substrate (20 nM) resolved on 0.8% agarose gel.

See also Figure S6.
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Figure 6. Rad51-Pol a Interaction at Stalled Forks

(A) WB of egg extract IPs using the indicated antibodies. Flowthrough (FT) and extract input (XE) are also shown.

(B) Top: Coomassie-stained gel showing pull-down experiments using Rad51 and hPol a complexes made of the Pol a catalytic subunit, B subunit, Pri-S, and

Pri-L. The Pol a catalytic and B subunits were either full-length or missing the first 333 and 148 amino acids, respectively (DNTD). His-tagged Pri-S was used for

the pull-down. Bottom: WB with anti-Rad51 antibodies of samples shown at the top.

(C) Top: Coomassie-stained gel showing pull-down experiments using Rad51 and the first 109 amino acids of Pol a (MBP-Pol a NTD) bound to amylose resin.

Bottom: WB with anti-Rad51 antibodies of the samples shown at the top.

(D) Coomassie-stained gel showing pull-down experiments using Rad51 and the first 109 amino acids of Pol a (MBP-Pol a NTD) bound to amylose resin in the

presence of increasing amounts of BRC4 peptide.

(E) Chromatin binding time course following addition of recombinant human full-length (hPol a) andNTD truncated (DNTD) complexes shown in (B) in the presence

of DMSO or M-APH. Anti-Xenopus Pol a p180 and anti-human Pol a p180 were used for the WB shown at the top and center, respectively.

(F) IPOND showing proteins bound to chromatin containing nascent DNA following biotin pull- down with streptavidin beads. Extracts were supplemented with

M-APH 45 min after nuclei addition and pulse-labeled for 10 min with biotin-dUTP as indicated. Pol a, d, and ε inputs are also shown.

(G) DNA replication in mock-treated or Rad51-depleted restarting extracts (Figure S7F). Values in mock-treated stalling extracts transferred to mock-treated

restarting extracts were considered as 100%. Mean values ± SD (n = 3) are shown. See also Figure S7.
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Pol d (Figure 6A). Because Pol d binds to and elongates the

primers synthesized by Pol a-primase, reduced Pol a levels

could indirectly prevent optimal Pol d loading onto DNA (Pelle-

grini and Costa, 2016). In contrast to Pol a/d, Pol ε binding to

replication forks in the presence of M-APH was not significantly

affected by Rad51 depletion, although it was partially inhibited

compared with un-depleted, untreated extracts (Figures 6F

and S7E). Rad51-mediated Pol aDNA binding stabilizationmight

also indirectly facilitate Pol ε association with DNA. However, this

hypothesis will need further investigation.

We then studied Rad51 involvement in DNA replication restart

at stalled forks. To this end, replication forks were stalled by

M-APH in Rad51-proficient and -deficient extracts (stalling ex-

tracts) and allowed to restart in Rad51-proficient and -deficient

extracts (restarting extracts) (Figure S7F) treated with geminin

and roscovitine, a CDK2 inhibitor, to prevent de novo origin as-

sembly and firing (Figure S7F; Errico et al., 2007; Trenz et al.,

2006). Replication could efficiently resume only in the presence

of Rad51 because depletion of Rad51 from both stalling and re-

starting extracts severely impaired fork restart (Figure 6G). These

findings confirmed that Rad51-mediated DNA binding stabiliza-

tion of replicative polymerases and nascent DNA was critical to

ensure efficient resumption of DNA replication at stalled forks.

DISCUSSION

Brca2 and Rad51 at Replication Forks
Here, using Xenopus egg extract and EM-based approaches to

analyze replication intermediates, we provided an extensive

characterization of the Brca2 and Rad51 role in DNA replication.

We showed the following: Brca2 is loaded onto chromatin during

DNA replication; Rad51 replicative function requires Brca2,

which loads most of Rad51 onto replicating chromatin; the

Brca2 C-terminal segment promotes replication fork restart

following template breakage; Brca2, like Rad51, prevents the

formation of ssDNA gaps at fork junctions and behind them un-

der unchallenged conditions; persistent fork gaps are remodeled

into RVFs by Smarcal1; Smarcal1-mediated RVFs trigger exten-

siveMre11-dependent nascent DNA degradation in the absence

of Brca2; stable Rad51 nucleofilaments directly protect DNA

from Mre11-dependent degradation; Brca2 protects RVFs

from Mre11-mediated degradation and prevents their sponta-

neous formation; and Rad51 interacts with the Pol a NTD

domain. These results provide molecular insights into the

Brca2- and Rad51-dependent fork protection mechanisms,

revealing surprising links between the HR and DNA replication

proteins.

The unexpected interaction between Rad51 and Pol a could

explain the spontaneous accumulation of fork junction gaps

in the absence of Brca2/Rad51. ssDNA gaps might occur on

DNA sequences, lesions, or structures prone to create transient

blocks to DNA polymerization (Figure 7A). Compatibly with its

ability to load Rad51 onto gapped DNA in vitro (Jensen et al.,

2010), Brca2 might promote Rad51 nucleofilament formation

ahead of stalled polymerases, facilitating their progression

through DNA segments difficult to replicate (Figure 7B).

Rad51-dependent modification of the DNA template structure

and stabilization of replicative polymerase binding to forks could
facilitate nascent DNA synthesis (Figure 7C), avoiding gap for-

mation. Rad51 polymerization is likely required for the interaction

with Pol a because this is prevented by the BRC4 peptide. Pol a

progression on the DNA could then displace the nucleofilament

with its NTD domain, which, being negatively charged, might

weaken Rad51 binding to DNA as it progresses.

This process might happen on lagging strands given the pres-

ence of extended ssDNA regions that might fold into secondary

structures obstructing DNA polymerization, although Brca2/

Rad51 action on stalled leading strands cannot be excluded.

These findings might also explain the Rad51 requirement for

stalled fork restart (Figure 6F; Petermann et al., 2010).

In the absence of Brca2/Rad51, fork gaps transiently accumu-

late during replication (Figure 7D). DNA synthesis resuming

downstream of the stalled polymerase could partially fill the

fork junction gap, leading to the formation of internal gaps behind

forks (Figure 7E), which could be further enlarged by the action of

Mre11 in the absence of Rad51-mediated protection (Figure 7F;

Hashimoto et al., 2010). If unrepaired, fork junction gaps might

give rise to spontaneous RVFs in the absence of active Mre11.

Lower-fidelity non-replicative polymerases (McVey et al.,

2016) might participate in ssDNA gap filling (Figure 7E). This

process could contribute to developing the base substitution

signature typical of Brca2-defective cancer cells (Nik-Zainal

et al., 2016).

Smarcal1-Dependent Fork Remodeling
When left unrepaired, persistent fork junction gaps, such as the

ones induced by aphidicolin (Figure 7G), become a substrate of

Smarcal1, which promotes the formation of RVFs (Figure 7H).

Smarcal1 has been linked to RVF formation in vitro and to fork

restart in vivo (Bétous et al., 2012; Ciccia et al., 2009, 2012).

We showed that Smarcal1 plays a major role in promoting

RVFs following replication fork arrest in vivo because RVFs are

severely decreased in the absence of Smarcal1 and stimulated

by its overexpression. Smarcal1 might be recruited by fork

gaps formed on the leading strand in the presence of RPA or

on the lagging strand when RPA molecules become limiting

(Bétous et al., 2013).

Unfilled fork junction gaps likely play a major role in promoting

RVFs as also shown by the increased formation of RVFs caused

by the absence of a functional primase gene (Fumasoni et al.,

2015) or Pol a-stabilizing factors such as Tipin-Timeless (Errico

et al., 2014).

Similar to previous findings (Zellweger et al., 2015), Rad51

depletion decreased RVFs. Interestingly, depletion of both

Smarcal1 and Rad51 further suppressed RVFs, suggesting

that both proteins act additively to promote them. Other translo-

cases, such as FBH1, ZRANB3, HLTF, or FANCM, might also

contribute to this process (Ciccia and Symington, 2016) because

depletion of both Rad51 and Smarcal1 did not completely pre-

vent fork regression (Figures 4C and 4E).

The RVFs observed here were induced by high doses of aphi-

dicolin, which compromise ATR activation by suppressing DNA

primer synthesis (Byun et al., 2005; Van et al., 2010); lower doses

trigger robust ATR activation that prevents Smarcal1-mediated

fork remodeling (Couch et al., 2013). Because the ATR phos-

phorylation site responsible for human Smarcal1 inhibition is
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Figure 7. General Model

See Discussion for an explanation.
conserved, a similar mechanism is likely to regulate Xenopus

Smarcal1.

Given the inhibitory effect of ATR on Smarcal1, RVFs might

occur more frequently in genomic regions in which ATR activa-

tion is suppressed, such as centromeres (Aze et al., 2016), or

in any other situation in which the ATR checkpoint is compro-

mised (Lopes et al., 2001).
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Rad51-, Brca2-, and Mre11-Dependent Regulation of
Nascent DNA Stability
So far, Rad51 has only been indirectly linked to nascent DNA

protection. Here we provide biochemical evidence that Rad51

nucleofilaments directly protect ssDNA from Mre11-mediated

resection. The formation of a stable Rad51 nucleofilament is crit-

ical for this function because Rad51T131P, which cannot form



stable Rad51 nucleofilaments (Wang et al., 2015), is unable to

protect DNA. The Rad51T131P mutation was identified in FA cells

(Wang et al., 2015), suggesting that protection of nascent DNA is

important to prevent genome instability associated with FA. This

is in agreement with the role of other FA proteins at replication

forks (Schlacher et al., 2012).

Brca2-dependent Rad51 DNA binding is important to protect

RVFs from Mre11-mediated degradation (Figures 7H and 7I).

Without Brca2, RVFs formed by Smarcal1-dependent remodel-

ing of persistent fork gaps induced by aphidicolin (Figure 7J)

function as entry points for Mre11 and, possibly, other nucleases

(Figure 7K), triggering extensive degradation of both leading and

lagging strands (Figure 7L). RVF formationmightmakeDNAends

available for nuclease action by locally displacing replisome

components or disrupting local chromatin organization, which

could normally prevent nascent DNA degradation at fork gaps.

Because nascent DNA degradation is not completely sup-

pressed by Smarcal1 depletion in Brca2-depleted extracts, it

is likely that degradation at gaps behind forks continues inde-

pendent of Smarcal1. This could be due to Smarcal1-indepen-

dent RVFs and Mre11-dependent resection of internal gaps

behind forks.

Because of its limited processivity (Cejka, 2015) Mre11 might

only initiate DNA degradation at RVFs, which could then be

completed by nucleases such as ExoI, DNA2, and others in com-

bination with WRN or BLM helicases (Berti and Vindigni, 2016;

Cejka, 2015). The presence of 50 or 30 ssDNA tails of different

lengths, modified bases, or proteins bound to the end of the

reversed branch, such as Ku70/80, might influence the rate of

resection and the type of nuclease recruited. In these cases,

similar to the processing of DSBs with blocked ends (Anand

et al., 2016), endonuclease activity of Mre11 stimulated by

CtIP phosphorylated by cyclin dependent kinases (CDKs) might

be particularly useful to initiate RVF degradation.

Restoration of RVFs by suppression of Mre11 activity in

Brca2-depleted extracts indicates that Brca2 is mainly required

for protection of RVFs but dispensable for their formation.

Residual chromatin binding of Rad51 in the absence of Brca2,

although insufficient to protect DNA, might contribute to RVF

formation together with Smarcal1. Alternatively, Rad51 function

could be limited to RVF protection. Rad51 involvement in RVF

formation or protection would be compatible with the observed

Smarcal1 and Rad51 additive roles in sustaining RVF levels.

Nevertheless, Smarcal1-dependent RVFs, which can still be

observed in the absence of Rad51 (Figures 4C and 4E), are

sufficient to the trigger extensive nascent DNA degradation

that occurs when Rad51 is completely depleted (Figure S4E) or

prevented from binding DNA (Figures 3A and 5A; Schlacher

et al., 2011).

Overall, these findings are consistent with a major role for

Brca2 and Rad51 in preventing deregulated nascent DNA degra-

dation and promoting continuous and accurate DNA replication

across replication blocks. Because the Rad51 ortholog RecA in

prokaryotes protects nascent DNA from nuclease-mediated

degradation in the presence of DNA damage and promotes

loading of DNA polymerases to restart replication forks (Cour-

celle and Hanawalt, 2003), it is possible that both of these func-

tions have been conserved in eukaryotes.
The characterization of the biochemical mechanisms underly-

ing Brca2/Rad51-mediated fork protection described here could

be useful to identify novel strategies to target Brca2-defective

cancer cells.
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Anti-Rad51 (Rabbit polyclonal); peptide antigen

used: CAEAMFAINADGVGDAKD

This study N/A

Anti Xenopus Smarcal1 (Xenopus full length

protein used as antigen)

This study N/A

Anti Xenopus Brca2 (Rabbit polyclonal); peptide

antigen used: KPHIKEDQNEPESNSEYCS

This study N/A

Anti-Histone H2B Millipore clone 07-371; RRID: AB_310561

Anti-Mcm7 Santa Cruz clone sc-9966; RRID: AB_627235

Anti-Rad51 goat antibodies Santa Cruz sc6862; RRID: AB_2177096

Anti-Flag Cogentech N/A

Anti-Histone H3 Abcam clone ab1791; RRID: AB_302613

Anti-Rad51 mouse antibodies Abcam clone ab123

Bacterial and Virus Strains

WT and catalytic dead (HD, D549A E550A) mutant

Smarcal1 baculovirus vectors

(Ciccia et al., 2012) N/A

Mre11-6xHis baculovirus vector Peter Cejka, University of Zurich N/A

Biological Samples

Xenopus egg extract This study N/A

Chemicals, Peptides, and Recombinant Proteins

Xenopus Brca2 protein This study N/A

Xenopus and human Smarcal1WT and

Smarcal1HD proteins

This study N/A

Rad51 protein This study N/A

Yeast Mre11 protein This study N/A

Human Mre11-6xHis protein Peter Cejka, University of Zurich N/A

Human Polymerase a1-1462 and B1-598 subunit proteins This study N/A

Human Primase His10-tagged human

Primase PriS and PriL subunit proteins

This study N/A

RPA protein complex This study N/A

MBP tagged human Polymerase a1-109 NTD This study N/A

Geminin (Aze et al., 2016) N/A

BRC4 peptide: LLGFHTASGKKVKIAKESLDKVKNLFDE Sigma N/A

Xenopus 6xHis-TEV-SMARCAL1(FL) This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

3,5,8-Trimethylpsoralen TMP Sigma T6137

Biotin-16-dUTP Roche 11093070910

Mirin Sigma M9948

BrdU Sigma B5002

Dynabeads-ProteinA Thermo Fisher 10002D

Roscovitine Calbiochem 557360

Aphidicolin Sigma A0781

Corionic Ganadotropin Sigma CL10

Spermine Sigma S3256

Methyl Methanesulfonate (MMS) Sigma 129925

Spermidine Sigma S2626

Lysolecithin Sigma L1381

Maltose Sigma M5885

Imidazole Sigma I5513

BSA Sigma A2058

Calcium ionophore Sigma A23187

Proteinase K Sigma 3115887001

RNase A Thermo Fisher EN0531

Benzonase Sigma E1014

Critical Commercial Assays

ECL Amerhasm d RPN2232

pCRBluntIITOPO vector Thermo Fisher K28002

SuperscriptIII reverse transcriptase Thermo Fisher 18080093

QuickChange Site-Directed Mutagenesis kit Agilent Genomics 200515

SensoLyte Biotin Quantitation Kit Anaspec AS-72163

Terminal Transferase and 10X buffer NEB M0315

Phusion High-Fidelity DNA Polymerase New England Biolabs M0530

Deposited Data

Xenopus Brca2 cDNA This study GenBank: KY024483

Raw images This study http://dx.doi.org/10.17632/

xf5bvrr7gh.1

Experimental Models: Cell Lines

High Five insect cells Invitrogen B85502

Experimental Models: Organisms/Strains

Xenopus laevis females Nasco LM00535MX

Xenopus laevis males Nasco LM00715MX

Oligonucleotides

xBrca2-N1 GAGACATGGCTACATCTCAACTTGG Sigma N/A

xBrca2-C2 TCACTTTACCTGCCATTCTGCTGG Sigma N/A

xBrca2-Xho-rev(3177) CCGCTCGAGTCACTTTACCT

GCCATTCTGCTGG

Sigma N/A

Brca2-Bgl-forw(2295) GGAAGATCTACCCAAATGAC

TTCAAATCTTCGCTGTAGC

Sigma N/A

Brca2-Xho-rev(3020) CCGCTCGAGTCAGTTCTTAC

TGCACCCAGTTGTTC

Sigma N/A

Rad51T131P _for GATCTGGGTCTTCCCAGGTCGGA

ATTCTCCAAACA

Sigma N/A

Rad51T131P _rev TGTTTGGAGAATTCCGACCTGGG

AAGACCCAGATC

Sigma N/A

(Continued on next page)

Molecular Cell 67, 867–881.e1–e7, September 7, 2017 e2

http://dx.doi.org/10.17632/xf5bvrr7gh.1
http://dx.doi.org/10.17632/xf5bvrr7gh.1


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pFastbac-HTb Xenopus laevis Smarcal1 GenScript GenBank: NM_001096199

ADA400-Xenopus laevis BRCA2 This study N/A

ADA411-GST-Brca22295-3177 (Brca2c) This study N/A

ADA417-GST-Brca22295-3020 (Brca2d) This study N/A

pET11d-human RPA protein complex This study N/A

pET-11c-human Rad51 (Sigurdsson et al., 2001) N/A

pET-11c-human Rad51T131P This study N/A

pFBDM-StrepII-tagged human Polymerase

a1-1462 and B1-598 subunit

This study N/A

pFBDM-His10-tagged full length human Primase

subunits PriL and PriS

This study N/A

pMAT11-MBP- human Polymerase a1-109 NTD N/A N/A

Software and Algorithms

Prism GraphPad N/A

ImageJ Freeware N/A

Gatan Micrograph software Gatan N/A

Multi Gauge V3.2 software Fuji N/A

Other

FEI Tecnai 12 EM microscope FEI N/A

GATAN high-resolution camera Gatan N/A

Cary Eclipse fluorescence spectrophotometer Varian N/A

Bioruptor Diagenode N/A

Stratalinker equipped with 254 and 365 nm ultraviolet

light bulbs

Stratagene N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Resource and reagent requests should be directed to and will be fulfilled by the Lead Contact, Vincenzo Costanzo (vincenzo.

costanzo@ifom.eu).

EXPERIMENTAL MODEL

Eggs derived from Xenopus laevis frogs were used as experimental model system. Collection of eggs from the female frogs was per-

formed in a non-invasive way following chorionic gonadotropin (Sigma, CG10) injections. Occasional surgical procedures were per-

formed on themale frogs to harvest sperm nuclei. Experimental protocols were approved by IFOMAnimalWelfare committee and the

Italian Ministry of Health. The number of animals used was kept to a minimum and was calculated taking into account the number

eggs required to obtain the cytoplasmic extract needed for the experiments described.

The animals were kept in highly regulated and monitored conditions with room and water temperature at 19 C. Basic husbandry

requirements were provided by the IFOM Xenopus facility.

METHOD DETAILS

Protein expression and purification
6xHis-TEV-SMARCAL1(FL) from Xenopus was expressed in High Five insect cells (Invitrogen, B85502) infected with the respective

recombinant baculoviruses by Silvia Monzani and Sebastiano Pasqualato, Cogentech, Milan Proteins were isolated according to

standard procedures. Briefly, cell pellets were resuspended in lysis buffer-1 (50 mM HEPES pH7.6, 300 mM NaCl, 10% glycerol,

2 mM 2-mercaptoethanol) supplemented with protease inhibitors cocktail setIII (Calbiochem), lysed by sonication and cleared by

centrifugation. The cleared lysate was incubatedwith Talonmetal affinity resin (Clontech) for 2 hr at 4�C. The resinswere thenwashed

with 30 vol. of lysis buffer-1 and the bound proteins were eluted with either 10 mM maltose (Sigma, M5885) or 250 mM imidazole

(Sigma, I5513). The eluate was further purified by SEC on Superdex-200 column (GE Healthcare) pre-equilibrated in SEC buffer

(50 mM HEPES, 150 mM NaCl, 10% glycerol). Relevant fractions were concentrated in 50 kDa molecular mass cut-off Amicon ultra
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centrifugal filters (Millipore). GST-Brca22295-3177 (Brca2c) and GST-Brca22295-3020 (Brca2d) were expressed in E. coli BL21(C41)

transformed with the respective expressing plasmids. Protein expression was induced by the addition of 0.2 mM IPTG at 20�C
and cells were incubated overnight. Cell pellets were resuspended in lysis buffer-2 (50 mM Tris pH 8.0, 150 mM NaCl, 10% glycerol,

1 mM EDTA and 1 mM DTT) supplemented with protease inhibitors cocktail setIII (Calbiochem), lysed by sonication and cleared by

centrifugation. The cleared lysate was incubated with glutathione Sepharose 4B (GE Healthcare) for 2 hr at 4�C. The resin was then

washed with 30 vol. lysis buffer-2 and the bound proteins were eluted with 10mM reduced Glutathione in (50mMTris pH 8.0 150mM

NaCl). To cleave the GST-tag the beads were instead washedwith PreScission buffer (50mMTris pH 8.0, 150mMNaCl, 5% glycerol,

1 mM DTT, 1 mM EDTA), resuspend in an equal volume of PreScission buffer, and incubated overnight at 4�C with 0.1 mg/ml

PreScission protease (produced in Cogentech, Milan). The eluate was further purified by SEC on Superdex-200 column (GE Health-

care) pre-equilibrated in SEC buffer (50 mM HEPES, 150 mM NaCl, 10% glycerol). Relevant fractions were concentrated in 30 kDa

molecular mass cut-off Amicon ultra centrifugal filters (Millipore). Double StrepII-tagged human Polymerase a (1-1462) and B

subunit (1-598) were cloned into the pFBDM vector, which was subsequently used to generate recombinant baculovirus using

the MultiBac system. The same procedure was followed to produce a baculovirus for the expression of full-length human Primase

(His10-tagged PriS and PriL). Protein expression was performed by co-infecting Sf9 insect cells at a density of 2x106 cells/ml

with baculoviruses encoding Pol a – B and Primase, and shaking the cells at 120 rpm for 72 hr at 27�C. An N-terminally truncated

version of the complex, comprising double StrepII-tagged Polymerase a (334-1462) and B subunit (149-598), was also cloned

into pFBDM and expressed with full-length Primase in the same way. Pol a complexes were purified using Strep-Tactin Superflow

resin (IBA). The N-terminal region of human Polymerase a (1-109) was cloned into the pMAT11 vector (http://camelot.bioc.cam.ac.

uk/�marko/vector/data/pmat.pdf), which encodes an N-terminal, TEV-cleavable His6-MBP tag. The protein was expressed in

Rosetta2 (DE3) cells, and purified by Ni-NTA affinity chromatography and size exclusion chromatography (25 mM Na-HEPES pH

7.2, 160 mM KCl).

Human Rad51 was overexpressed in bacterial cells from pET-11c plasmid. Rad51T131P was generated by site-directed mutagen-

esis (QuickChange, Agilent genomics) using primers listed in the Key Resources Table. The correct sequence was verified by

sequencing. All purification steps were carried out at 4�C. Cells were lysed by sonication in cell-breakage buffer (50 mM Tris

pH 7.5, 10% sucrose, 10 mM EDTA, 1 mM DTT and 0.01% NP40) containing 1M KCl and protease inhibitors (2 mg/ml aprotinin,

5 mg/ml benzamidine, 10 mM chymostatin, 10 mM leupeptin and 1 mM pepstatin A). The crude extract was clarified by ultracentrifu-

gation (100 000 x g, 1 h) and the supernatant was subjected to ammonium sulfate precipitation at 0.242 g/ml. The precipitate was

resuspended in buffer K (20 mM K2HPO4, 10% glycerol, 0.5 mM EDTA) supplemented with protease inhibitors and loaded on

35 mL Q-Sepharose column. Proteins were eluted with a 350 mL gradient of 100–700 mM KCl in buffer K and then loaded onto a

5 mL hydroxyapatite (HAP, Bio-Rad) column and eluted with a 50 mL gradient of 0–600 mM KH2PO4 in buffer T (20 mM Tris-HCl

(pH 7.5), 10% glycerol, 1 mM EDTA). Fractions containing Rad51 were dialyzed for 1 hr against buffer T supplemented with

50 mM KCl and then loaded on 1 mL MonoQ column (GE Healthcare) and eluted with 10 mL gradient of 100-600 mL KCl in

buffer T. Fractions containing Rad51 were diluted in buffer T, loaded on 1 mL MonoS column (GE Healthcare) and eluted with

10 mL gradient of 100-500 mL KCl in buffer T. The peak fractions were pooled, concentrated and stored at �80�C in small aliquots.

Human RPA was overexpressed in bacterial cells from pET11d plasmid and purified by the same protocol described previously for

yeast RPA (Sigurdsson et al., 2001). Briefly, soluble cell extract was loaded on 20 mL Affi-Gel Blue agarose column and the protein

was eluted with 120mL gradient of 0.5-2.5MNaSCN in buffer T. Fractions containing RPAwere dialyzed against 2 l of buffer T for 3 hr

and loaded on 5mLHAP column. RPAwas elutedwith 50mL gradient of 10-140mMKH2PO4 in buffer T. Eluate fractionswere loaded

on 1 mL MonoQ column and eluted with 10 mL gradient of 50-300 mM KCl in buffer T. Fractions containing RPA were pooled,

concentrated and stored at �80�C.
Yeast Mre11 purification was performed as previously shown (Chavdarova et al., 2015). Briefly, Saccaromyces cerevisiae cells

expressing Mre11 were lysed and subjected to ammonium sulfate precipitation at 0.28 g/ml. The precipitate was dissolved in

buffer K supplemented with protease inhibitors and loaded on 7 mL Q-Sepharose column. Mre11 was eluted with a 200 mL gradient

of 100–1000 mM KCl in buffer K and loaded onto a 1 mL HAP column. Proteins were eluted with a 10 mL gradient of 0–400 mM

KH2PO4 in buffer K. Fractions containing Mre11 were loaded on a 1 mL MonoS column and eluted with a 10 mL gradient of 100–

1000 mM KCl in buffer K. Peak fractions containing Mre11 were pooled, concentrated and stored at �80�C.
Human Mre11-6xHis protein was produced by overexpression in Sf9 insect cells infected by recombinant Mre11-6xHis baculovi-

rus provided by Peter Cejka (University of Zurich, Switzerland). Cell pellet was resuspended in buffer P (50 mM Tris-HCl (pH 7.5),

300 mM NaCl, 1 mM b-mercaptoethanol, 1 mM EDTA) supplemented with protease inhibitors, stirred for 30 min and clarified by

ultracentrifugation (1 hr at 100 000 x g). Soluble extract was incubated with pre-equilibrated Ni-NTA agarose resin (QIAGEN) for

1 hr with continuous mixing. Resin was washed with buffer P and bound proteins were eluted with buffer P supplemented with

250 mM imidazole. The fractions containing MRE11 were diluted in buffer T, loaded on 1 mL MonoQ column and the protein was

eluted with 10 mL of 100-1000 mM KCl in buffer T. The peak fractions were stored at �80�C in small aliquots.

Egg extract and chromatin binding
Xenopus interphase egg extracts and sperm nuclei were prepared as previously described (Aze et al., 2016). Briefly, Xenopus eggs

were collected inMMRbuffer (5mMK-HEPES pH7.5, 100mMNaCl, 0.5mMKCl, 0.25mMMgSO4, 0.5mMCaCl2, 25 mMEDTA) from

chorionic gonadotropin injected female frogs. The eggs were de-jellied in 10 mM Tris pH8.0, 110mMNaCl and 5mMDTT and rinsed
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three times in MMR. De-jellied eggs were released in interphase in presence of 5 mMCalcium Ionophore (Sigma) for 5-6 min, washed

three times with MMR and rinsed twice in ice cold S-buffer (50 mM K-HEPES pH 7.5, 50 mM KCl, 2.5 mMMgCl2, 250 mM sucrose,

2 mM b-mercaptoethanol). Activated eggs were then packed by centrifugation at 1200 x rpm for one minute and the excess of buffer

was discarded. Eggs were crushed at 13000 x rpm for twelve minutes at 4�C. The crude extract was collected and centrifuged at

70.000 x rpm for 12min at 4�C in a TLA100 rotor (Beckman). The interphase extract was obtained by collecting andmixing the cleared

cytoplasmic fraction together with the nuclear membranes. For sperm nuclei preparation 4 testis were removed from 2 male frogs

and placed in petri dishes containing 10 mL EB buffer (50 mM KCl, 50 mM HEPES KOH pH7.6, 5 mM MgCl2, 2 mM DTT). Testis

were finely chopped with razor blade. The material was then transferred to 15 mL Falcon tube and spun at 2,000 x g, in a swinging

bucket rotor for 5 min at 4�C. The pellet was resuspended in a total volume of 2 mL of room temperature SuNaSp buffer (0.25 M su-

crose, 75 mM NaCl, 0.5 mM spermidine, 0.15 mM spermine). To remove membranes 100 mL of 2 mg/ml lysolecithin (Sigma) were

added and incubated for 10 min at room temperature. Reaction was stopped by adding 3% BSA (Sigma). The pellet was resus-

pended again in 2 mL EB and spun at 2,000 x g for 5 min at 4�C. The final pellet was resuspended in 400 mL of EB + 30% glycerol.

Sperm nuclei were tested for absence of DNA breaks with TUNEL assay as previously described (Aze et al., 2016). Briefly, 20 mL of

different sperm nuclei preparations (4000 n/ml) were incubated at 37�C for 4 hr in 170 mL H2O supplementedwith 20 mL 10 x TdT buffer

(NEB), 90 U Terminal transferase (NEB) and 1 mL 32P-dCTP. Aliquots of the reaction were then precipitated with 5% TCA, 2% pyro-

phosphate solution and spotted on Whatman GF-C glass fiber filter. After ethanol washes, filters were dried and the incorporated

TCA precipitable radioactivity was counted in scintillation counter. Sperm nuclei preparations with the lowest counts were used

for all the experiments. For DNA replication assays sperm nuclei (4000 n/ml) were added to interphase egg extract treated as shown

in Figure legend. Extracts were supplemented with 32P-dCTP, incubated at 23�C for the times indicated in figure legend and then

stopped with Stop buffer (1% SDS, 8 mM EDTA, 80 mM Tris-HCl pH 8 and 1 mg/ml proteinase K). The mixture was then incubated

at 50�C for 2 hr. Aliquots of replication reactions precipitated with 5% TCA, 2% pyrophosphate solution and spotted on Whatman

GF-C glass fiber filter. After ethanol washes, filters were dried and the incorporated TCA precipitable radioactivity was counted in

scintillation counter and quantified as previously shown (Aze et al., 2016).

For replication fork restart sperm DNA (4000 n/ml) were incubated in 50 mL mock-treated or Rad51-depleted extracts. After nuclei

addition (60 min) extracts were supplemented with H-APH and incubated for additional 60 min. Chromatin was then isolated and

transferred to mock-treated or Rad51-depleted restarting extracts supplemented with geminin and roscovitine. DNA replication

was quantified by a-32P-dCTP DNA incorporation for 120 as described above.

For chromatin binding 40 mL egg extract containing sperm DNA were isolated from master reactions treated as shown in

Figure legends at the indicated time points. For immunoblotting, samples were diluted with 10 volumes of EB (100 mM KCl,

2.5 mM MgCl2, and 50 mM HEPES–KOH pH 7.5) containing 0.25% NP-40 and centrifuged through a 0.5 M sucrose layer at

10000 x g at 4�C for 5 min. Pellets were washed once with EB and suspended in Laemmli loading buffer. Proteins were then resolved

on a SDS-PAGE and monitored by WB.

Nuclease protection
Fluorescently labeled DNA substrates were prepared by annealing as described elsewhere (Marini and Krejci, 2012). Briefly, equi-

molar amounts of the corresponding oligonucleotides were mixed in hybridizing buffer (50 mM Tris, 100 mM NaCl, and 10 mM

MgCl2), heated to 75�C for 3 min and cooled slowly to room temperature for annealing. The substrates were then purified by

HPLC using a 1 mL Mono Q column (GE Healthcare Life Sciences) and a 20 mL gradient in 10 mM Tris buffer containing 1 M

NaCl. The purity was checked on native PAGE. The corresponding fractions were then concentrated on a concentrator (Vivaspin)

and washed with buffer W (25 mM Tris and 3 mM MgCl2). The concentrations were determined using the absorbance at 260 nm

and the corresponding molar extinction coefficients. For the nuclease protection assays, DNA substrate (20 nM) was incubated

with Rad51WT, Rad51T131P or RPA in the P buffer (80 mM KCl, 10 mM Tris-HCl pH 7.5, 1 mM DTT, 10 mg/ml BSA, 2 mM MnCl2,

2 mMMgCl2 and 2mMATP) for 5 min at 37�C followed by incubation with 30-50 nM recombinant yeast or humanMre11 as indicated

in figure legend for 30min at 30�C. Reactionswere deproteinized by incubation with 0.1%SDS and 500 mg/ml of proteinase K at 37�C
for 5 min, heat-denatured, analyzed on 30% denaturing PAGE gels (acrylamide:bisacrylamide, 19:1) and scanned using a Fuji FLA

9000 imager. Where indicated, gels were quantified using Multi Gauge V3.2 software (Fuji).

Mobility shift
Fluorescently labeled DNA substrate (20 nM) was incubated with the amounts of Rad51WT, Rad51T131P or RPA indicated in figure

legend in the P buffer for 5 min at 37�C. Reactions were resolved on 0.8% agarose gel and scanned using a Fuji FLA 9000 imager.

Electron microscopy
DNA for electron microscopy analysis was processed as previously described with some modifications (Hashimoto et al., 2010).

Briefly, for replication intermediate visualization sperm nuclei (4000 n/ml) were incubated at 23�C in 200 ml egg extract for 60 min,

diluted with 400 mL of EB buffer, layered onto 800 mL EB-EDTA (EB buffer + 1 mM EDTA) + 30% (w/v) sucrose and centrifuged at

3,000xg for 10 min at 4�C. Pellets were resuspended in 100 ml EB-EDTA and transferred to a 96-well plate. 4,50,8-Trimethylpsoralen

(TMP) was added at 10 mg/ml to each well. Samples were incubated on ice for 5 min in the dark and irradiated with 365 nm ultraviolet

light for 7 min on a precooled metal block. The procedure from TMP addition to irradiation with ultraviolet light was repeated three
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more times. Samples were then supplemented with 0.1% (w/v) SDS to lysate nuclei and treated with 100 mg/ml RNase A for 1h at

37�C. For complete protein digestion, psoralen-crosslinked chromatin was incubated with proteinase K (1 mg/ml) for 2 h at 50�C.
Genomic DNA was extracted by adding one volume of 1:1 (v/v) phenol–chloroform mixture, precipitated with isopropanol, washed

with 70% ethanol and processed for electron microscopy as previously shown (Hashimoto et al., 2010). Electron microscopy grid

shadowing was done with a Leica MED20, and image acquisition with an FEI Tecnai 20 EM microscope equipped with a GATAN

high-resolution camera at the IFOM electron microscopy facility. Blind analysis of EM images was performed by EM specialists.

Reagents
Aphidicolin was used at a concentration of 1.5 mM (H-APH), 20 mM (M-APH) or 3 mM (L-APH) as indicated in Figure legends. Rosco-

vitin and geminin were used as previously described (Hashimoto et al., 2010). Briefly, interphase egg extracts were supplemented

with 0.5 mM Roscovitine and 60 nM recombinant geminin to obtain restarting egg extracts, which were used to test the ability of

partially replicated chromatin to resume replication as described above. Recombinant geminin was previously described (Aze

et al., 2016). Brca2c and Brac2d were used at 50 ng/ml. Smarcal1 WT and HD protein were used at doses indicated in Figure legend.

Mirin was used at 100 mM. MMS and UV pre-treatment of sperm nuclei has been previously described (Hashimoto et al., 2010).

Briefly, sperm nuclei (40000 n/ml) were incubated with 1% (v/v) methyl methane sulfonate (MMS, Sigma) at 4�C for 2 hr or irradiated

with 1,000 J/m2 ultraviolet (UV) light using a Stratalinker UV irradiator equipped with 254 nm UV light bulbs.

Nascent ssDNA detection
Nascent unpaired ssDNA in replicating egg extract was detected as previously shown with some modifications (Couch et al., 2013).

Briefly, for each sample 40 mMBrdU (Sigma) and 10 mMbiotin-16-dUTP (Roche) were added to 200 mL interphase egg extracts 10min

after addition of sperm nuclei (4000 n/ml). Extracts were mock-treated, Brca2- depleted, Rad51- or Smarcal1- depleted and supple-

mented with recombinant proteins, APH or mirin as described in Figure legends. To isolate nuclei reactions were stopped by dilution

with 900 mL ice cold EB, layered onto 500 ml of EB plus 30% (w/v) sucrose and centrifuged at 3,000 x g for 10 min at 4�C. To stabilize

replication structures and prevent branch migration DNA was psoralen-crosslinked. To this end pellets were resuspended in 100 ml

EB and transferred to a 96-well plate (100 ml per well). 4,5,8-Trimethylpsoralen (TMP) was added at 10 mg/ml to each well. Samples

were incubated for 5 min at 4�C in the dark and irradiated with 365 nm UV light for 7 min on a precooled metal block using a Stra-

talinker UV irradiator equipped with 365 nm light bulbs. The procedure from TMP addition to irradiation with ultraviolet light was

repeated three more times. For complete protein digestion, psoralen-crosslinked chromatin was incubated with proteinase K

(1 mg/ml) and RNase A (167 mg/ml1) for 2 h at 37�C in EB. Genomic DNA was extracted with one volume of 1:1 (v/v) phenol–chloro-

form mixture, precipitated with isopropanol and partially digested with restriction enzyme StuI, which generates genomic

fragments with blunt ends in the context of AGG’CCT sequence. DNA was plated into 96 well streptavidin coated plates (Thermo

Fisher, 15500), which were incubated with mouse monoclonal antibodies against BrdU (1:500) (Anti BrdU B44 BD Bioscience) in

PBS-Triton 0.05% for 2 hr at 23�C to selectively detect nascent-strand ssDNA. Plates were washed three times with PBS-Triton

0.05% and probed with HRP labeled anti mouse IgGs (Dako). After washing chemoluminescence was detected by standard ECL

using a plate reader.

Nascent DNA degradation
Sperm nuclei (4000 n/ml) were incubated in 250 ml egg extracts at 23�C. Extracts were mock-treated, Smarcal1-, Brca2-, Rad51- or

Smarcal1 and Rad51 depleted as described in Figure legends. 45 min after nuclei addition extracts were supplemented with 40 mM

biotin dUTP. 15min after dUTP addition 1.5mM aphidicolin was added. 50 mL samples were taken immediately after APH addition (0)

and at 60, 120, 180 and 240 min after aphidicolin addition and supplemented with 250 mL Stop buffer. Samples were incubated with

proteinase K (1 mg/ml) and RNase A (167 mg/ml) for 2 h at 37�C. Genomic DNA was extracted with phenol–chloroform, ethanol

precipitated and further separated from free nucleotides by gel filtration on G50 columns (Amersham). DNA was fragmented by

sonication, heat denatured, digested with 50 U Benzonase (Sigma) and processed for SensoLyte fluorescence biotin quantification

assay (AnaSpec) according to the manufacturer’s instructions. Fluorescence was monitored using a Cary Eclipse fluorescence

spectrophotometer.

Depletions and pull downs
To immuno-deplete Brca2, Rad51 and Smarcal1 0.5-1 mL egg extract were incubated with affinity purified IgGs (35-50 mg) at RT for

1 hr with 250 ml Dynabeads-ProteinA (Thermo Fisher, 10002D) for one to three subsequent depletion rounds lasting about 1 hr each.

For Brca2 four rounds of depletion were required. For co-immunoprecipitations beads used for depletions were extensively washed

and probed with antibodies as indicated in Figure legends.

To obtain mock-treated extract a parallel depletion was carried out using the same protocol with Dynabeads-ProteinA conjugated

with affinity purified rabbit pre-immune IgGs.

For Pol a co-precipitation experiments shown in Figure 6B saturating quantities of full-length and truncated Polymerase a com-

plexes were added to 30 mL Dynabeads-ProteinA pre-equilibrated in PD buffer (1xPBS, 5% glycerol, 0.5 mM TCEP, 0.2% Igepal).

23 1mLwashes in PD buffer supplemented with 350mMNaCl, followed by 13 1mLwash in PD buffer, were performed, after which

50 U Benzonase (EMDMillipore) was added. 400 mL 20 mMpurified Rad51 in PD buffer was added, along with BSA (Sigma Aldrich) to
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a final concentration of 2.5 mg/ml. Samples were incubated at 4�C for 90 min with rolling, after which 4 3 1 mL washes were per-

formed, followed by elution with 100 mL PD buffer supplemented with 300 mM imidazole. Samples were analyzed by SDS-PAGE

with Coomassie blue staining. Western blotting was performed using the goat polyclonal anti-Rad51 antibody sc-6862 (Santa

Cruz Biotechnology). For experiments in Figure 6C saturating quantities of purified, DNA-free His6-MBP-Polymerase a (1-109), or

His6-MBP, were added to 100 mL Amylose resin (NEB) pre-equilibrated in PD buffer, and incubated at 4�C for 20 min. 2 3 1 mL

washes in PD buffer were performed, after which 400 mL 20 mM purified Rad51 in PD buffer was added, along with BSA (Sigma

Aldrich) to a final concentration of 2.5 mg/ml. Samples were incubated at 4�C for 90 min with rolling, after which 4 3 1 mL washes

were performed, followed by elution with 100 mL PD buffer supplemented with 20 mM maltose. Samples were analyzed by SDS-

PAGE with Coomassie blue staining.

For experiments in Figure 6D 2, 5, 10, 20 and 40 mM BRC4 peptide (Sigma), whose sequence has been described in the Key

Resources Table, and 10 mM Rad51 were incubated at 37�C for 15 min in PBS, 0.2% Igepal, 1mM TCEP and 5% glycerol (Pull

down buffer). Amylose resin was washed with PDB and incubated with 500 mL of 40 mM His-MBP-Pola NTD for an hour at 4�C.
The resin was washed with pull down buffer and BRC4-Rad51 complex was added for another hour of incubation at 4�C. The resin

was then washed and eluted in 100 mL of 50mM maltose in pull down buffer. Samples were then analyzed by SDS-PAGE with

Coomassie blue staining.

Ipond
100 ml extracts were used for each sample. Sperm nuclei were then added to reach a final concentration of 4000 nuclei/ml. 45min after

sperm nuclei addition 10 min DNA labeling pulses were carried out supplementing the extracts with 40 mM Biotin-16-dUTP (Roche)

and either 20 mM aphidicolin or DMSO as control. DNA replication was stopped by diluting 100 mL reactions with 200 mL cold EB-

EDTA buffer (50 mM HEPES-KOH pH 7.5, 100 mM KCl, 2.5 mM MgCl2, 1 mM EDTA). Samples were homogenized by using a cut

p1000 tip and overlaid on 600 mL EB-EDTA-Sucrose buffer (EB-EDTA buffer + 30% w/v sucrose). Nuclei were collected by centrifu-

gation at 8300 x g at 4�C for 10 min in a swinging-bucket rotor (TLA 100.3, Beckman). The supernatant and the dense sucrose layer

were carefully removed and the nuclear pellet resuspended with 400 mL EB-NP40 buffer (50 mM HEPES-KOH pH 7.5, 100 mM KCl,

2.5 mM MgCl2, 0.25% NP40) to lysate nuclei. Samples were then subjected twice to a 10 min sonication step (30 s ON / 40 s OFF

cycle and Max Power with a Bioruptor device, Diagenode). After the sonication step 20 mL from each sample were kept apart (5%

Input to be loaded as control for SDS-PAGE). Biotinylated DNA fragments were then pulled-down by incubation with 40 mL

Dynabeads M-280 Streptavidin (Thermo Fisher, 11205D) for 30 min at 4�C. Dynabeads M-280 Streptavidin + the pull-down fractions

were then washed three times with 200 mL EB-EDTA buffer and eventually resuspended with 30 mL of 1X denaturing loading buffer.

The entire volume was eventually loaded on for SDS-PAGE and WB analysis.

Cloning
The cDNA sequences encoding Xenopus laevis Brca2 was obtained by RT-PCR, from RNA derived from Xenopus eggs with Trizol

reagent (ThermoFisher). SuperscriptIII reverse transcriptase (Thermo Fisher) and an oligo(dT)20 was used for the first strand DNA

synthesis. The full-length Brca2 sequence was amplified by PCR using a Phusion High-Fidelity DNA Polymerase (New England

Biolabs) and Brca2-N1 and Brca2-C2 reverse primers (Key Resources Table) derived from full-length oocyte cDNA next generation

sequence (unpublished data). The PCR product was cloned into pCRBluntIITOPO vector (Invitrogen) obtaining the ADA400

plasmid. Xenopus Brca2 cDNA was sequenced and the sequence was deposited in GenBank: KY024483. The sequences encoding

the C-terminal Brca2 fragments Brca22295-3177 (Brca2c) and Brca22295-3020 (Brca2d) were amplified by PCR using the primers

Brca2-Bgl-forw(2295), Brca2-Xho-rev(3177), Brca2-Xho-rev(3020) and sub-cloned in the first cassette of the dicistronic vector

pGEX6p-2rbs (GenBank: KM817768), obtaining the plasmids ADA411 (for the expression of GST-Brca22295-3177) and ADA417 (for

the expression of GST-Brca22295-3020). The cDNA encoding for Xenopus laevis Smarcal1 (GenBank: NM_001096199) cloned into

pFastbac-HTb, was obtained from GenScript. WT and catalytic dead (HD, D549A E550A) mutant SMARCAL1 baculovirus vectors

to express human Smarcal1 and expression protocols were previously described (Ciccia et al., 2012). All sequences were checked

by DNA sequencing. All primers were purchased from Sigma.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed with PRISM software and indicated in figure legend. Images shown represent typical results of

experiments repeated at least three times.

DATA AND SOFTWARE AVAILABILITY

The accession number for the Xenopus BRCA2 sequence reported in this paper is NCBI GenBank: KY024483.

Raw images have been deposited to Mendeley Data and are available at http://dx.doi.org/10.17632/xf5bvrr7gh.1.
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