TP53, P14ARF, P16INK4A AND H-RAS GENE MOLECULAR ANALYSIS IN INTESTINAL-TYPE ADENOCARCINOMA OF THE NASAL CAVITY AND PARANASAL SINUSES

Federica Perrone1, Maria Oggoni1, Sarah Brindelli2, Simona Suardi1, Silvia Tabano1, Roberta Romano1, Maria Luisa Moretti1, Gabriella Bini1, Pasquale Quattrone1, Giulio Cantu1, Marco A. Pierotti1, Lisa Licitra1 and Silvana Pilotti1

1Unit of Experimental Molecular Pathology, Department of Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
2Department of Head and Neck Surgery, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
3Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
4Department of Head and Neck, Medical Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
5International Center for Pesticides and Health Risk Prevention, Milan, Italy

Intestinal-type adenocarcinoma (ITAC) of the nasal cavity and paranasal sinuses is an uncommon tumor associated with occupational exposure to dusts of different origin. Few investigations addressed molecular alterations in ITAC mainly focused on TP53, K-ras and H-ras gene mutations. The occurrence of TP53, p14ARF and p16INK4A deregulation and H-ras mutations was investigated in 21 consecutive and untreated ITACs cases, 17 with known professional exposure. No H-ras mutations were found. In patients with known exposure, cumulative evidence of TP53 or p14ARF alterations accounted for 88% and the evidence of p16INK4A alterations for 65%, respectively. TP53 mutations were present in 44% of the ITACs, consisted of G:C→A:T transitions in 86%, and involved the CpG dinucleotides in 50% of the cases. LOH at the locus 17p13 and an uncommon high rate of p53 stabilization were detected in 58% and 59% of the cases, respectively. p14ARF and p16INK4A promoter methylation accounted for 80% and 67% respectively, and LOH at the locus 9p21 occurred in 45% of the cases. Interestingly, all dust-exposed tumors with p16INK4A alterations shared TP53 or p14ARF deregulation. The present results show a close association of this occupational tumor with TP53, p14ARF and p16INK4A gene deregulation. Given the important role that these genes play in cell growth control and apoptosis, the knowledge of ITAC genetic profile may be helpful in selecting more tailored treatments.

Key words: LOH; TP53 mutation; p14ARF; p16INK4A; methylation; occupational exposure

Intestinal-type adenocarcinoma (ITAC) of the nasal cavity and paranasal sinuses is an uncommon, professional-related tumor characterized by high local aggressiveness and ominous outcome. ITAC encompasses a neoplasm group showing a range of microscopic features spanning from tumors indistinguishable from typical colonic adenocarcinoma to colloid or signet-ring cell carcinoma of the colon. Surgery is, and still remains, the treatment of choice for this tumor although it has been complemented recently by primary chemotherapy.

ITAC clearly predominates among males and exhibits an extreme gender distribution likely to be related to an occupational exposure. Several epidemiologic studies pointed out the association of ITAC with professional exposure primarily to wood or leather dust. Duts of different origin are other potential risk factors for sinonasal adenocarcinomas, including textile, cereal or cement dust. The close relationship between professional exposure and ITAC strongly suggests that dusts and chemical elements may be implicated as etiological agents in the tumorigenesis of this tumor. Investigations into the genotoxic action of several substances present in the wood or used by wood- and leather-workers showed the combined genotoxic effects of dusts and chemicals. A variety of chemical carcinogens cause mutations in human tumors by forming covalent adducts that increase the probability of errors during DNA replication. Some carcinogenic agents may target oncogenes and tumor suppressor genes producing specific types and locations of DNA alterations. These carcinogen-induced mutational spectra are influenced by the specific DNA sequence. Previous studies showed that methylated CpG dinucleotides may represent preferential targets for mutagens. A strong and selective formation of both adducts and mutations involving CpG islands of the TP53 gene is frequent in human tumors and an association between DNA methylation and exposure to carcinogens, as tobacco and vinyl chloride has been reported recently.

In addition, loss of heterozygosity (LOH) at chromosomal loci encoding the TP53, p14ARF and p16INK4A genes represents a further molecular event related to carcinogenic exposure, as found in tobacco smoke-associated larynx cancer. Moreover, TP53 mutations and p16INK4A deletion or hypermethylation correlate with early genetic changes in malignancy development of the Barrett’s esophagus and are frequently occurs as late events in colorectal adenocarcinomas.

Few investigators addressed molecular alterations in ITACs. In the assumption that morphological resemblance with colorectal cancer might reflect equivalent genetic alterations, Wu et al. carried out TP53 gene analysis in 12 ITAC with unknown professional exposure showing p53 immunoreactivity and TP53 mutations in 58% and 18% of the cases, respectively. Mutational analysis restricted to ras oncogenes was also carried out and evidence of K-ras27 and H-ras28 activation was found in 1 of 12 (8%) and in 5 of 31 (16%) ITACs, respectively.

We investigated the occurrence of TP53, p14ARF and p16INK4A deregulation and H-ras mutations in 21 consecutive untreated ITAC cases, 17 of which with known professional exposure. No H-ras mutations were found. By contrast, in patients with known exposure, the results suggest a close relationship between dust exposure and TP53 and INK4a-ARF alterations, represented by the high percentage of TP53 mutations (44%). In all but 1 case the

Grant sponsor: AIRC/FIRIC (Associazione e Fondazione Italiana per la Ricerca sul Cancro).

*Correspondence to: Unit of Experimental Molecular Pathology, Department of Pathology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via G. Venezian, 1, 20133 Milano, Italy. Fax: +39-2-23902756. E-mail: silvana.pilotti@istitutotumori.mi.it

Received 3 September 2002; Revised 2 December 2002; Accepted 10 January 2003

DOI 10.1002/jic.11062
mutations were of transition type (86%) and involved CpG dinucleotides in 50% of the cases. p14ARF and p16INK4a promoter methylation accounted for 80% and 67% of the cases, respectively.

MATERIAL AND METHODS

Patients and samples

Twenty-eight patients suffering from an intestinal-type adenocarcinoma (ITAC) of the nasal cavity and paranasal cavities untreated previously, operated on at the National Cancer Institute of Milan from 1988-98, were retrieved from the institutional database. Seven patients were excluded since the relative samples were unsuitable for molecular analysis being Boulin-fixed. Twenty-one patients were entered into the study. All but 1 patient (Case 8) was male and presented a disease onset mean age of 61 years (range: 43-79 years) (Table I). Clinical stages included T1, T2, T3 and T4 in 4, 1, 6 and 10 cases, respectively (Table I). Ten patients experienced a professional exposure to wood dust; 4 to leather dust; 1 to marble dust; 1 to carbon monoxide (CO) and particulates and 1 to asbestosis (Table III). Three patients showed a non-specific exposure (Cases 8, 17, 21) being a housewife, a nurse and a trader, respectively. For Case 14 no exposure was identified (Table III).

According to the updated AFIP classification,29 the tumors analyzed encompassed 13 moderately differentiated papillary-tubular gland (PTCC, II); 4 alveolar-goblet cell (AGE), 3 mixed PTCC II + AGE, and 1 signet-ring cell (SRC) carcinomas (Table I).

Microdissection and DNA extraction

Methylene-blue stained sections from formalin-fixed, paraffin-embedded tissues were subjected to a careful microdissection under the microscope to obtain malignant and normal tissues with minimal reciprocal contamination. In 17 cases normal tissue was used as a source of DNA control for microsatellite analysis. Genomic DNA extraction was carried out as described previously.30

H-ras sequencing

PCR reaction was carried out with 200 ng of genomic DNA in 100 µl of a mixture containing 50 µM of each dNTP, 0.2 µM of each primer, 0.75 mM MgCl2, 1× PCR buffer (Boo Nova, Cambridge, UK) and 1.5 U of KlenTaq polymerase (Boo Nova). Primer sequence for H-ras exons 1 and 2 PCR analysis have been described previously.28 PCR conditions: denaturation temperature of 97.5°C (30 sec), annealing of 58°C and 56°C (35 sec) for exon 1 and 2 respectively and elongation of 72°C (55 sec). PCR amplified exons were subjected to automated DNA sequencing (ABI Prism 377, Applied Biosystems, Foster City, CA). Each sequencing reaction was carried out at least twice from separate reactions. Results obtained were confirmed on both sense and antisense strands.

Immunocytochemistry

The antibodies applied for immunophenotyping study of p53 and mdm2 proteins were a monoclonal antibody (MAB) to p53 diluted 1:1,000 (DO7; Novocastra, Newcastle upon Tyne, UK) and a MAB to mdm2 diluted 1:1000 (IP2; Oncogene Science, Cambridge, MA). Immunocytochemistry was carried out by the peroxidase–streptavidin method and antigen retrieval was applied as described previously.30

Microsatellite analysis

We studied the incidence of LOH or MSI into and near to the TP53 gene in ITAC by using of 2 markers: p53, a (CA)n repeat located at chromosome 17p1330 and p53-II, a (AAAAT)n repeat that mapped into intron 1 of TP53 gene (W.S. 4-56b). 3 microsatellite markers mapped at chromosome 9p21: 1 mononucleotide repeat located into intron 1 of p16INK4a gene (hMP16loc-I)32 and 2 dinucleotide repeat markers: D9S942 and IFNA of which sequence was obtained from the Genome Data Base. Two hundred nanograms of genomic DNA were used as template in each PCR reaction in a final volume of 25 µl with the same conditions described in H-ras sequencing. For markers D9S942, hMP16loc-I and p53-II we carried out a radiolabeled PCR as described previously.33 For the other 2 markers we carried out a fluorochrome PCR (5′ ABI-Hex IFNA and p53)30. LOH and MSI were defined as described previously.30

DD-DGGE and TP53 sequencing

All samples were screened by DD-DGGE (double gradient-denaturing gradient gel electrophoresis) analysis for the presence of TP53 mutations in the most frequently affected exons (5-8) of the gene. The analysis was carried out in a 2-step PCR protocol. The first amplification step used 50–100 ng genomic DNA in a 25 µl reaction volume containing 50 mM KCl, 10 mM Tris-HCl (pH 8.4), 1.5 mM MgCl2, buffer (Roche, Branchburg, NJ) 80 µM of each dNTP, 0.4 µM final concentration of each primer and 0.65 U of AmpliTaq polymerase (Roche). The PCR profile: 3 min at 95°C, 35 cycles of 15 sec at 95°C, 15 sec at specific annealing temperature 1 min at 72°C, finally 5 min at 72°C.34 One µl of the diluted amplification product was used as DNA template for the second amplification step. During this PCR step a 40 by GC-rich sequence (GC-clamp) was attached to the fragments at 5’-end.35 The reaction buffer and cycling conditions were identical to those described above except for an additional final cycle of 5 min at 95°C and 1 hr at 56°C. Primer sequences for the second step of DD-DGGE PCR analysis have been described previously (Table II). The final products of each PCR were electrophoresed on a 3% agarose gel to verify amplification.

DD-DGGE was carried out as described by Gelfi et al.38 The denaturant gradient slope was determined according to the melting profile of DNA fragments calculated by utilizing the Macmel program (Bio-Rad, Hercules, CA). Gels containing a denaturant gradient (40-80%) and a porosity gradient (6.5–12%) were run at 4 V/cm for 16 hr in 1× Tris-acetate/EDTA (TAE) buffer kept at a constant temperature of 60°C. Two types of control for loading were used: a cell line carrying a wild-type TP53 and samples with well-known mutations. After electrophoresis the gels were stained with ethidium bromide. Samples with mutations were identified by the presence 1 or more new bands or a shift in position compared to the control wild-type cell line and control mutated samples. These cases were subjected to automated DNA sequencing (ABI Prism 377, Applied Biosystems) and each sequence reaction was carried out at least twice, analyzing separate amplifications as described previously.39 In each case, the detected

<table>
<thead>
<tr>
<th>Case</th>
<th>Age/gender1</th>
<th>Histotype2</th>
<th>UCC stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>2</td>
<td>56/m</td>
<td>PTCC II</td>
<td>T1</td>
</tr>
<tr>
<td>3</td>
<td>75/m</td>
<td>PTCC II</td>
<td>T1</td>
</tr>
<tr>
<td>4</td>
<td>67/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>5</td>
<td>63/m</td>
<td>AGE</td>
<td>T4</td>
</tr>
<tr>
<td>6</td>
<td>67/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>7</td>
<td>53/m</td>
<td>PTCC II</td>
<td>T3</td>
</tr>
<tr>
<td>8</td>
<td>46/f</td>
<td>AGE</td>
<td>T3</td>
</tr>
<tr>
<td>9</td>
<td>62/m</td>
<td>PTCC II + AGE</td>
<td>T4</td>
</tr>
<tr>
<td>10</td>
<td>50/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>11</td>
<td>55/m</td>
<td>AGE</td>
<td>T3</td>
</tr>
<tr>
<td>12</td>
<td>51/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>13</td>
<td>43/m</td>
<td>PTCC II</td>
<td>T2</td>
</tr>
<tr>
<td>14</td>
<td>78/m</td>
<td>PTCC II + AGE</td>
<td>T4</td>
</tr>
<tr>
<td>15</td>
<td>79/m</td>
<td>AGE</td>
<td>T3</td>
</tr>
<tr>
<td>16</td>
<td>63/m</td>
<td>PTCC II</td>
<td>T1</td>
</tr>
<tr>
<td>17</td>
<td>49/m</td>
<td>PTCC II</td>
<td>T1</td>
</tr>
<tr>
<td>18</td>
<td>63/m</td>
<td>PTCC II</td>
<td>T4</td>
</tr>
<tr>
<td>19</td>
<td>64/m</td>
<td>SRC</td>
<td>T4</td>
</tr>
<tr>
<td>20</td>
<td>58/m</td>
<td>PTCC II + AGE</td>
<td>T4</td>
</tr>
<tr>
<td>21</td>
<td>77/m</td>
<td>T3</td>
<td>T4</td>
</tr>
</tbody>
</table>

1/m, male; f, female; 2, PTCC, papillary-tubular cylinder cell; AGE, alveolar-goblet cell; SRC, signet-ring cell.
TABLE I—PRIMER SEQUENCES AND CONDITIONS OF DG-DOGE

<table>
<thead>
<tr>
<th>Exon</th>
<th>Primer sequences</th>
<th>Size (bp)</th>
<th>Annealing temperature (°C)</th>
<th>DOGE condition (% gradient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>5'-GC clamp TCTCTCTACTACGTAAGCCT-3'</td>
<td>158</td>
<td>56</td>
<td>40–70</td>
</tr>
<tr>
<td></td>
<td>5'-GGACCCCGCCTGCTCCGC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>5'-GC clamp TCTTACCTTCTCAGTACGC-3'</td>
<td>208</td>
<td>56</td>
<td>50–80</td>
</tr>
<tr>
<td></td>
<td>5'-GGACCCCGCCTGCTCCGC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5'-GC clamp GACAGACGCTGGGTTCAGT-3'</td>
<td>270</td>
<td>64</td>
<td>40–70</td>
</tr>
<tr>
<td></td>
<td>5'-AGGGTTGTGGTTTCAGTGC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5'-GC clamp CAAAGCGCATTGCG-3'</td>
<td>222</td>
<td>64</td>
<td>40–70</td>
</tr>
<tr>
<td>8</td>
<td>5'-GC clamp TCTTACTTCTCAGCTTGCTT-3'</td>
<td>271</td>
<td>62</td>
<td>40–75</td>
</tr>
<tr>
<td></td>
<td>5'-GCGCCCGCCGCGCCGCGCCGCGCCG-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Size including the 40-bp GC-clamp.

mutation was confirmed in the sequence as sense and antisense strands.

Homologous deletion of p14ARF and p16INK4a

Homologous deletion assay was carried out by a comparative multiplex PCR as described previously.30 The primers used to amplify a 160 bp fragment of p14ARF exon 1β were published by Kourea et al.40 For the NK4a locus the following primers were used: exon 1α, 1108Rβ and 165Fβ (5'-AGC AGG CAG CAT GGA GCC-3'), exon 2, 246R-305Fβ,2, 2A (5'-CTG GCT CTG ACC ATT CTG T-3') and 2B (5'-GAA TTT CCT CCA CAT GAG TGG TCC T-3'). Exon 3, X3.90Fβ, 3C (5'-GCA CTT GTG GTT CTG TAG GA-3'). B-globin gene primers were used: KM38, GH20, PC04, KM29.63

Analysis of p14ARF and p16INK4a promoter methylation status

DNA methylation patterns in the CpG islands of the p14ARF and p16INK4a genes were determined by methylation-specific PCR (MSP). Bisulfite modification of DNA (Methylquick) was carried out as described by Herman et al.64 One microgram of salmon sperm DNA was added as carrier before modification. We carried out a nested PCR. The bisulfite-modified template was subjected to a Stage-I amplification with primers specific for p14ARF (p14-Forward, 5'-GAC TCT GAC TTA AGG GGG TA-3') and p14-Reverse, 5'-ACT CCT CAA TAC ATC AAC A-3') and p16INK4a genes. Taq Gold polymerase (Applied Biosystems) was used in 50 μl PCR reaction and the annealing temperature was 58°C and 60°C for p14ARF and p16INK4a genes, respectively. The Stage-I PCR products were diluted 10-fold and 4 μl was subjected to a Stage-II PCR in which primers specific to methylated or unmethylated templates were used. Primer sequences of p14ARF and p16INK4a genes were published by Esteller et al.64 and the annealing temperature was 58.5°C and 68°C for the methylated and unmethylated reaction, respectively. Primer sequences of p16INK4a for the methylated and unmethylated reaction were described previously64 and the annealing temperature for both reactions was 68°C. Five micrograms of each PCR reaction was loaded into non-denaturating 6% polyacrylamide gels, stained with ethidium bromide and visualized under UV illumination. We used the cell lines LoVo and Raji as positive control for methylation reaction for p14ARF and p16INK4a genes, respectively.

RESULTS

H ras sequencing

Molecular analysis of the first 2 exons of H ras gene was carried out successfully in all cases under study with the exception of Cases 11 and 21 (not evaluable for the exon 1). Using specific primers, no mutations were found in the mostly affected codons 12, 13 and 61 of the H ras gene (Table III). Nevertheless, a high percentage of cases (62%) presented a base change in 1 or both alleles that gave rise to polymorphisms already described by Capon et al.67 The H ras polymorphism frequency of ITAC is similar to the one of the healthy population. In detail, 12 of 19 (63%) ITACs revealed a H ras polymorphism at exon 1, codon 27T4 and 1 ITAC (5%) showed a polymorphism at exon 2, codon 53 (Case 11) (Table III). In addition, Cases 14 and 17 presented a base change at the first intron of the gene (Table III).

Immunocytochemistry

Cumulatively p53 immunoreactivity was observed in 11 of 21 (52%) cases (Table III). Considering the cases with known occupational exposure, 10 of 17 (59%) showed p53 immunoreactivity. A strong immunodetection involved over 90% of the nuclei in 5 cases (Cases 5, 6, 15, 16 and 21) (Fig. 1.a,c) and ranged from 50–80% in the remaining (Fig. 1b) (average 78%). The percentage of nuclear immunostaining in each case is detailed in Table III. No case showed mdm 2 overexpression (Table III).

Microsatellite analysis

The microsatellite analysis at the 9p21 and 17p13 loci through 5 polymorphic markers turned out to be suitable in 16 of 21 ITACs. Overall LOH and MSI were found in 12 of 16 (75%) and 3 of 16 (19%) informative cases, respectively. Considering the ITAC related to a professional exposure we observed LOH in 83% (10 of 12) of the cases. The microsatellite analysis at the locus 9p21 resulted suitable in 15 of 21 cases and overall accounted for 33% of the cases (Table III). All ITACs involved were associated to a professional exposure (5 of 11 = 45%). In Case 2 the LOH occurred at the marker hMpl.60-11 located into intron 1 of p16INK4a gene. The microsatellite analysis at the 17p13 locus through 2 polymorphic markers turned out to be suitable in 14 of 21 ITACs. Nine of 14 (64%) informative cases revealed LOH in at least 1 of the 2 analyzed microsatellites (Table III). Among the cases related to a professional exposure, 7 (6 to wood dust; 1 to leather dust) of 12 (58%) showed LOH at 17p13 locus (Fig. 2b). In Cases 6, 12, 13 and 14 the LOH occurred at the marker p53-II located into intron 1 of TP53 gene.

Immunocytochemistry correlation

LOH at the locus 17p13 coupled with p53 immunoreactivity was present in 6 of 9 (67%) informative cases. The percentage of nuclear immunostaining intensity and number of involved nuclei ranged from 50–90% (average 77%).

TP53 mutational analysis

TP53 mutational analysis at exons 5–8 was successfully carried out in 20 of 21 cases. PCR-amplified fragments with a different DG-DOGE migration compared with the wild-type control were subjected to automated DNA sequencing. We identified 2 of 20 (10%) cases (Cases 2 and 15) carrying a TP53 polymorphism at exon 6, codon 213,69 which does not result in a change in the aminoacid sequence. Mutations were observed in 8 of 20 (40%) cases (Table III). Considering only cases with known professional exposure, however, mutations were observed in 7 of 16 (44%)
<table>
<thead>
<tr>
<th>Case</th>
<th>Professional exposure</th>
<th>H-ras mutation</th>
<th>p53/TP53</th>
<th>TP53 mutation</th>
<th>p16/mut</th>
<th>p16/mut 9p21 locus</th>
<th>Homozygous deletion</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leather dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh Neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>Wood dust</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Dom neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>Leather dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>Marble dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>6</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>7</td>
<td>Asbestos</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>8</td>
<td>Aspecific</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>9</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>Wood dust</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>11</td>
<td>Leather dust</td>
<td>WT polym ex2</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>12</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>13</td>
<td>Wood dust</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>14</td>
<td>Unknown</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>Leather dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>16</td>
<td>Wood dust</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>17</td>
<td>Aspecific</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>18</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>19</td>
<td>CO particulates</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>20</td>
<td>Wood dust</td>
<td>WT polym ex1</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
<tr>
<td>21</td>
<td>Aspecific</td>
<td>WT</td>
<td>—</td>
<td>70%</td>
<td>WT</td>
<td>Loh neg</td>
<td>N N N N</td>
<td>M</td>
</tr>
</tbody>
</table>

1 polym, polymorphism; wt, wild-type; polym ex1, His277His CAT > CAC; polym ex2, Leu531Leu TGG > TTA; base change intron 1, G > A; Mut, mutation; sMut, silent mutation; ex, exon; Pos, positive; Neg, negative; MSI, microsatellite instability; LOH, loss of heterozygosity; NE, not evaluable; NI, non informative; N, normal; M, methylated; U, unmethylated.
cases. One mutation was located in exon 5, 2 in exon 6, 3 in exon 7 and 2 in exon 8. Missense mutations causing an aminoacid substitution were 4 (Cases 4, 10, 16 and 19) and occurred in TP53 mutational hot spots codons (codons 248, 245, 216 and 249, respectively);13 1 was a silent mutation in exon 5 codon 172 (Case 8) and the remaining 3 mutated ITACs (Cases 7, 9 and 13) (Fig. 2a) carried a nonsense mutation that leads to the appearance of a premature stop codon and results in an early chain termination during translation (Table III). Except the transversion found in Case 13, all mutations were of the transition type and cumulatively the transitions were 7 of 8 (87%), but accounted for 6 of 7 (86%) if only exposed cases were considered. Three of 7 (43%) and 3 of 6 (50%) transition mutations occurred at CpG dinucleotides in all and exposed cases, respectively.

On the basis of a strong (over 90%) and diffuse p53 immunostaining throughout the tumor, the molecular analysis in Cases 5 and 21 was extended to exons 9 and 10 without finding any alteration. In Case 15 the analysis of exons 9 and 10 was not possible owing to the exiguity of the material.

Immunocytochemistry correlation

The expression of p53 protein well correlated with TP53 mutation analysis. In all cases carrying missense mutations, a positive p53 immunophenotype was observed and, by contrast, a p53 null immunophenotype was detected in all cases with nonsense mutations and in the case with a silent mutation (Table III).

LOH correlation

LOH at the loci 17p13 and 9p21 was found in 2 of 4 (50%) and 2 of 5 (40%) TP53 mutated cases, respectively. The remaining TP53 mutated ITACs were not evaluable or not informative for microsatellite analysis. The percentage of TP53 mutations or LOH at the 17p13 locus was 71%.

Homzygous deletion of p14ARF and p16INK4a

Homzygous deletion analysis was successfully carried out in 20 of 21 ITACs (Case 11 was not evaluable for any exon). No homozygous deletion occurred in any p14ARF and p16INK4a exons (Table III).

MSP

Overall methylation of p14ARF or p16INK4a promoters was detected in 13 of 18 (72%) cases and, considering the exposed ITACs, in 12 of 16 (75%) cases (Fig. 3). Overall p14ARF promoter methylation was observed in 8 of 12 (67%) cases (Table III) and only the cases with known occupational exposure were considered in 8 of 10 (80%). Overall p16INK4a promoter methylation was found in 11 of 16 (69%) cases (Table III). In cases with known occupational exposure, 10 of 15 (67%) showed p16INK4a promoter methylation. Concomitant p14ARF and p16INK4a promoter methylation was present in Cases 1, 7, 9, 15, 16 and 18.

Evidence of TP53 or p14ARF gene deregulation

Overall this accounted for 86% of the cases (18 of 21) and consisted of 8 mutations, 3 of which also carrying LOH at the loci 17p13 or 9p21 and 4 cases also showing p14ARF methylation; 3 LOH at the marker p53-21 located into intron 1 of TP53 gene associated with a p53 positive immunophenotype in 2 cases; 4 p14ARF promoter methylation coupled with p53 stabilization or LOH at the locus 17p13 (marker p53) in 3 cases; and 3 p53 overexpressing cases, 2 of which with over 90% of the immunostained nuclei, all associated to LOH at the 17p13 or 9p21 loci. Considering only the cases with known occupational exposure, a TP53 or p14ARF gene deregulation was present in 15 of 17 (88%) cases.

Cumulative evidence of p16INK4a alterations

Overall evidence of p16INK4a alterations was found in 60% of cases (12 of 20) and consisted of 11 p16INK4a promoter methylation (2 were also carrying a LOH at the locus 9p21 [marker IPNA]) and 1 LOH at the marker hMpl16x-11 located into intron 1 of p16INK4a gene. Considering only cases with known occupational exposure, the cumulative evidence of p16INK4a alterations accounted for 65% (11 of 17).

Cumulative evidence of TP53 or p14ARF and p16INK4a alterations

Results indicate an alteration of TP53 or p14ARF and p16INK4a genes in 11 of 20 (55%) cases. All ITACs showing concomitant deregulation of these tumor suppressor genes were related to a professional exposure (11 of 16 = 69%).

DISCUSSION

H-ras mutations and the TP53, p14ARF and p16INK4a gene deregulation were investigated in 21 consecutive, untreated cases of ITAC suitable for molecular analyses. The series, in keeping
with previous epidemiological studies. It was found to be associated strongly with male gender (95%), professional exposure, (85%), as well as prolonged professional exposure. Assuming as reasonable exposure to occupational carcinogens a period exceeding 20 years and a latency period ranging between 0–40 years, the mean age of disease onset in our series was 61 years.

The mutations of H-ras gene reported by Petz et al. in ITAC prompted us to verify this occurrence in our cases. The association between ITAC and environmental mutagens along with the demonstration that chemical carcinogens may cause mutations in the ras gene were in fact both consistent with a possible involvement of ras family genes. In our research, however, codons 12 and 61 of H-ras gene were never found affected by mutations. We cannot rule out that this discrepancy might be ascribed to differences in the genetic background of the target population.

By contrast, we found a high percentage of TP53 mutations or LOH at the 17p13 locus (71%) as well as p53 overexpression (52%) emphasizing the involvement of this tumor suppressor gene in ITAC. TP53 mutations accounted for 8 of 20 cases (40%), and were coupled with LOH at the locus 17p13 in 2 cases. Considering the type of exposure, mutations were found in 7 of 16 (44%) patients exposed to wood/leather/asbestos dusts and in 1 of 3 patients without specific exposure. Interestingly, the latter case carried a silent mutation. In patients with known exposure, all but 1 TP53 mutations, i.e., 6 of 7 (86%), were transitions G:C→A:T, a type of mutation typically related to carcinogen exposure and already reported in 2 cases of ITAC with unknown exposure history. The high proportion of this type of mutation strongly suggests a causal relationship between the presence of genotoxic agents, shared by the various professional dusts, and p53 loss of function. Moreover, 3 of 6 transitions (50%) were at CpG dinucleotide, mutational hot spots that are involved in different types of human cancer being cytosine a target for chemical mutagens inducing enzymatic methylation and guanine a target for a variety of carcinogens. Our results seem to support the idea that CpG sites represent a preferred target of the dust carcinogens and that the properties of carcinogen agents to generate specific type of base substitutions may be influenced by the specific nucleotides sequence.

The percentage of LOH at the 17p13 locus accounted for 58% in ITACs with known exposure. This type of LOH occurrence seems quite peculiar for ITAC and showed that in a similar percentage of TP53 mutations (43%) LOH at the 17p13 locus reached only 15% (2 of 13) in a series of sporadic malignant peripheral nerve sheath tumors that we examined recently. A high rate of LOH at this locus is reported in tumors strongly related to carcinogen exposure such as tobacco smoke-associated larynx cancer and in particular, colorectal adenocarcinomas (75%).

In favor of a TP53 deregulation is the uncommon marked and diffuse p53 overexpression found in 10 exposed ITACs (59%) that, besides the 4 TP53 mutated cases, was coupled with LOH at the 17p13 locus in 4 cases. For the remaining 2 cases, where the null mdm2 immunophenotype did not support a p53-mdm2 complex related stabilization, we can not rule out the presence of an aberrant mdm2 protein unable to target a correct ubiquitinization, but still able to bind a wild p53.

Methylation of p16INK4a promoter was found in 80% of ITACs with known professional exposure and this aberration paralleled TP53 mutation in 50% of the cases analyzed (4 of 8). This apparent redundant suppressor gene pathway inactivation is likely to be related to the presence of CpG islands, known to be preferred targets of the dust carcinogens in both p14ARF promoter and TP53 gene.

Regarding p16INK4a, the present results demonstrate a relevant involvement of this tumor suppressor gene in ITACs with known exposure (65%), mainly achieved through an aberrant methylation (67%). The high occurrence of methylation of p14ARF and p16INK4a promoters further underlines the close correlation between dust related genotoxic agents and CpG dinucleotides changes.

p14ARF silencing by promoter methylation is assumed to play a deregulating role into TP53 pathway because the lack of p14ARF, mdm2 binding may negatively affect the p53 function. Interestingly, TP53 or p14ARF alteration was present in all dust-exposed tumors carrying p16INK4a alterations (69%), suggesting that simultaneous deregulation of these tumors suppressor genes are important in ITAC tumorigenesis.

Moreover, the TP53 and p16INK4a alteration patterns we observed were similar to that reported in colorectal tumors, where the
majority of the TP53 mutations are G—C→A/T transitions and involve the CpG dinucleotides (54%),23,24 and the most of p16INK4a alterations are methylation (35%).25 This implies that the morphologic resemblance of ITAC with colorectal adenocarcinoma parallels a similar TP53 and p16INK4a molecular deregulation in contrast to previous observations.26 As for p14ARF we found a greater aberrant methylation in our exposed ITACs (80%) compared to that reported in colon carcinomas (28—32%).26 TP53 or p16INK4a alterations occur frequently in other lesions of the digestive tract, however, such as the rare small bowel adenocarcinomas27 and Barrett’s esophagus.21,22

In conclusion, our present study represents the first demonstration, to our knowledge, of TP53, p14ARF and p16INK4a deregulation in ITAC in patients surgically treated and professionally exposed to different sources. Our results indicate a high occurrence of TP53 or p14ARF (88%) and p16INK4a (65%) gene alterations in these tumors, possibly mediated by dioxin toxicants through a selective action on CpG dinucleotides.15,18,22 This interaction is supported by the TP53 G—C→A/T transition mutations (80%) and the high occurrence of p16INK4a or p14ARF methylation. Further arguments in favor of this conclusion are provided by the OHLO at chromosomal loci encoding the TP53, p14ARF and p16INK4a genes, a molecular event already reported as being associated closely with carcinogenic exposure.20

Because there is mounting evidence that puts forth the knowledge that both tumor genotype and mechanisms of drug action are determinants for selecting effective treatments using current chemotherapy regimens, our insights may be helpful in planning more tailored treatments. Alterations found in ITAC are likely to carry relevant biological implications given the important role that both TP53 and p16INK4a play in cell growth control and apoptosis. Most of DNA-damaging drug-based regimes applied currently utilize an intact apoptotic pathway that is disabled by INK4a/TP53 gene alterations making the drug apoptosis-mediated cell killing mechanism ineffective.24,25 In our series, this is expected for TP53 hepatitis-carcinomas. In p16INK4a methylation—carrying cases a complete loss of function of the encoded protein may only be assumed because the MSP approach does not provide information about silencing of both the alleles. We are evaluating gene profile v. response to therapy in a biopsy-based series of ITACs treated by conventional primary chemotherapy followed by surgery.

ACKNOWLEDGMENTS

We thank M. Prattini, Ph.D. and D. Balestra, Ph.D. for kindly providing the p16INK4a MSP protocol and Mrs. M. Azzini and G. Roncato for photographic assistance.

REFERENCES

31. Yamamoto Y, Kishimoto Y, Wusttia II, Virmani AK, Vuitct F, Gaudar AF, Alborell-Sauvedra J. DNA analysis at p53 locus in carcinomas arising from pleomorphic adenomas of salivary glands: com-
33. Birindelli S, Tragul G, Bartoli C, Rananzi GN, Rilke F, Pierotti MA, Pilotti S. Detection of microsatellite alterations in the spectrum of
34. D’Onghia R, Longoni A, Pilotti S, Michielu P, Della Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and
35. Renaudt B, van den Broek M, Fedde R, Wijnen J, Pellegata N, Amadori D, Khan PM, Rananzi GN. Base transitions are the most
38. Gell C, Righetti S, Zunino F, Della Torre G, Pilotti PA, Ricetti PG. Detection of p53 point mutations by double-gradient denaturing gra-
nm23/p53 expression patterns in liposarcoma subgroups: implications for different pathogenic mechanisms. J Pathol 1997;181:14–
21.
40. Kourou HP, Orlow I, Scheithauer BW, Cordon-Cardo C, Woodruff JM. Deletions of the INK4A gene occur in malignant peripheral nerve
63.
42. Hussussian CJ, Strewing JP, Goldstein AM, Higgin PAT, Ally DS, Sheahan MD, Clark Jr WH, Tucker MA, Dracoeeoli NC, Gerner PM, p16
43. Law R, Efratiadis A, O’Connell C, and Maniatis T. The nucleo-
45. Palmasino WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA. Predicting lung cancer by detecting abber-
47. Capon DJ, Cren EY, Levinson AD, Seeburg PH, Goeddel DV. Complete nucleotide sequences of the T24 human bladder carcinoma
48. Hoban FR, Santibanez-Koref MP, Kelsey AM. Polymorphism in crom
50. Chen B, Liu L, Castonguay A, Marenpot R, Andersson M, You M. Dose-dependent ras mutation spectra in N-nitrosodimethylamine in-
duced mouse liver tumors and 4-(methyl)imidazoline-1-(3-pyridyl)-
55. Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and
73.