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Abstract

The application of the Bowen ratio method to estimate evaporation is heavily

affected by uncertainties on the measured quantities. Time series collected

with a hydro-meteorological monitoring station often contain measurements

for which a reliable estimate of evaporation cannot be computed. Such

measurements can be identified with standard error propagation methods.

However, simply discarding some values might introduce a bias in the cumu-

lative evaporation for long time intervals, also depending on the threshold

of acceptance. In this paper, we propose the use of multiple-point statis-

tics simulation to integrate the time series of reliable evaporation estimates.

A test conducted on a two-year-long time series of data collected with a

hydro-meteorological station in the Po plain (Italy) shows that the usage of

a rejection criteria in conjunction with multiple-point statistics simulation is

a promising and useful tool for the reconstruction of reliable evaporation time

series. In particular, it is shown that if the rejected values are not replaced

by simulation, then the cumulative evaporation curves are estimated with a
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bias comparable with estimates of cumulative annual evaporation. Moreover,

the test gives some insights for the selection of the best rejection threshold.

Keywords: evaporation, Bowen ratio, multiple-point statistics, time series

reconstruction, direct sampling

1. Introduction1

Evaporation and transpiration are key factors in the water balance at any2

temporal and spatial scale and their estimate is of paramount importance in3

several disciplines, from hydrology to soil science, climatology, etc. (Allen4

et al., 1998; Eagleson, 2003). Unfortunately, means of direct measurement5

of evaporation are not available; therefore, the estimate of such a quantity6

always relies on models of variable complexity or on parameterization.7

Among physically-based methods, i.e., those which derive from basic8

physical principles, the Bowen ratio method (BRM, Bowen, 1926) uses quan-9

tities which can be measured with an hydro-meteorological monitoring sta-10

tion. However, the uncertainties on the measured quantities can affect the11

Bowen ratio (B), namely the ratio between sensible and latent heat fluxes,12

in such a way as to yield an unrealistic value of real evaporation (E).13

Very often, sensible and latent heat fluxes are computed from quantities14

measured at two heights only. Therefore, some authors proposed to improve15

the estimation of B by increasing the spatial resolution of the measurements16

required to compute the aforementioned fluxes (Euser et al., 2014).17

Another solution to cope with unrealistic E values is data rejection, and18

the literature contains a number of approaches to handle it. Some authors19

(Tanner et al., 1987; Ortega-Farias et al., 1996; Cellier and Olioso, 1993)20
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proposed to reject data on the basis of the value of B. Other authors, like21

for example Ohmura (1982) and Perez et al. (1999), proposed criteria for22

data rejection based on the analysis of the limits related to the instrument23

resolution and physical considerations. Many of the aforementioned works24

were summarized and integrated by Payero et al. (2003). A different approach25

was proposed by Romano and Giudici (2009), by taking into account the26

measurement errors and their propagation through the formula to estimate27

the evaporation with the BRM.28

No matter which method is used to select the unreliable samples from29

a data set, the simplest approach of excluding the physically inconsistent30

data from the time series of evaporation introduces a bias in the estimate31

of cumulative evaporation. In fact, this can alter the results for long time32

periods, e.g., if the BRM is used to perform climatological analyses. It is33

therefore important to develop an approach to integrate the rejected data34

samples.35

Some authors proposed to integrate the missing or rejected values of B36

using estimates based on an exchange coefficient, computed from quantities37

like wind speed or temperature-variance (Savage et al., 2009). Here an alter-38

native approach is proposed, where the rejected values of E are replaced by39

a stochastic simulation method.40

In this paper, the use of multiple-point statistic simulation (MPS) for the41

replacement of the rejected values of E is proposed and tested. Among the42

multiple-point simulation paradigms, the Direct Sampling (DS, Mariethoz43

et al., 2010) method is considered for its flexibility in handling the simu-44

lation of continuous variables and the possibility to incorporate secondary45

3



information. Moreover, the DS was already tested with success for the re-46

construction of incomplete flow rate time-series in a karstic network by Oriani47

et al. (2016). In the present work, the methodology is tested on a real case48

study with a two-year-long time series of hydro-meteorological data, whose49

length can help to evidence particular features, strengths and weaknesses of50

the method. To our knowledge, this is the first time that this algorithm51

is tested on the reconstruction of evaporation, and in conjunction with a52

rejection criteria.53

In particular, the following questions are addressed. As the method of54

Romano and Giudici (2009) requires to define a rejection threshold ε, what is55

the impact of the selection of ε on the cumulative evaporation? How much the56

estimates of cumulative evaporation are improved when the rejected values57

of E are replaced by the simulated ones? Is it possible to improve the DS58

simulation of the rejected values of E by including one or more measured59

quantities as covariates?60

The field data used to demonstrate the proposed approach, the method61

used to compute the evaporation E, and the two main steps of the approach62

(rejection and simulation) are described in Section 2. Section 3 briefly reports63

the results, which are then discussed in detail in Section 4. The conclusion64

are reported in Section 5.65

2. Materials and Methods66

This section illustrates first the field data used to demonstrate the pro-67

posed approach. Then, the Bowen ratio method used to compute the evap-68

oration E is briefly recalled. Finally, the two main steps of the proposed69
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approach are described: (1) the criterion used to reject the estimates of E70

that are not reliable, and (2) the direct sampling method, used to replace71

the rejected values of E.72

[Table 1 about here.]73

2.1. Field data74

The data set used to test the procedure proposed in this paper were75

acquired at an hydro-meteorological monitoring station installed in 2006 at76

Roncopascolo, in the valley of the Taro river, within the Po plain, at about77

6 km NW from the city of Parma (Italy).78

The position of the station was chosen on the basis of some constraints:79

the ground has not being subject to human activities for a long time, the area80

is far from buildings or other obstructing bodies, the installed instruments81

are protected against thieve or damages.82

The meteorological sensors of the monitoring station are installed on a83

five-meter-tall pole. Two couples of humidity and temperature sensors are84

installed at 2m (h1) and 4m (h2) from the ground surface, a pressure sensor85

is installed in the box containing the data logger, an anemometer is installed86

at the top of the pole, i.e. 5m above the ground, and a sensor of net radiation87

is installed at an height of about 2m. Moreover, a rain gauge is installed88

at a distance of 2m from the principal pole at an height of 1.5m from the89

ground and a sensor to measure the heat flux is immersed in the soil, at a90

depth of few centimeters, a couple of meters far from the pole. All the data91

have been collected with a sampling interval of 20 minutes.92

The data used in this work correspond to the period from June 2009 to93

July 2011, for which a rather complete series of data is available. Later, it94
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was not possible to perform a regular maintenance of the monitoring station,95

which has newly been working since spring 2016.96

A preliminary accurate analysis of the recorded data already shows some97

anomalous measurements. In winter, negative values of net radiation, with98

high absolute values, have been measured and interpreted as an effect of99

intense snow, as supported from meteorological bulletins of the surrounding100

area. In those cases snow could cover the upper part of the net radiation101

sensor and filter out the direct solar radiation, whereas the high albedo of102

snow on the ground could enhance the reflected radiation, thus producing103

values as low as −150W/m2. In summer and spring, some spikes appear in104

the time series of different quantities, but they seem to be due to interference105

of lighting with the instrumentation, again as confirmed by the inspection of106

meteorological bulletins of the surrounding area. These evident anomalous107

measurements were removed from the time series prior to the application of108

the proposed work-flow.109

2.2. Bowen ratio method110

Using the data collected at the hydro-meteorological station, evaporation111

E can be computed using the BRM. The latter is based on the computation112

of the Bowen ratio, i.e., the ratio between sensible and latent heat flux, which113

is estimated from measurements of temperature and vapor partial pressure114

at two different heights as115

B =
CaPa

0.622λv

T2 − T1
e2 − e1

(1)

where Ca is the specific heat of air at constant pressure per unit mass, Pa is116

the atmospheric pressure, λv is the latent heat of evaporation per unit mass,117

6



Ti and ei, with i = 1, 2, are, respectively, air temperature and vapor partial118

pressure at two different heights hi above the ground surface. Given the119

air temperatures, the vapor partial pressures can be converted, using some120

empirical relation (Dingman, 2015), into the corresponding relative humidity121

RH1 and RH2.122

The energy balance at the soil, by neglecting the advective contribution123

and energy storage, yields the following expression for the evaporation E,124

i.e., the volume of liquid water evaporating from the surface per unit time125

and unit surface:126

E =
Rn −G

ρwλv(1 +B)
(2)

where Rn is the net radiation, G is the geothermal heat flow and ρw is the127

water density.128

2.3. Rejection of unreliable estimates of evaporation129

Equations (1) and (2) show that (i) B can be computed only if e1 6= e2 and130

(ii) E can be computed with (2) only if B 6= −1. These conditions are not131

always met when dealing with field monitoring data. Moreover, even if they132

are satisfied, the propagation of measurement errors could yield unrealistic133

values of E. For example, if e2 − e1 → 0, i.e. the vapor partial pressure is134

constant along the vertical, and B 6= 1, then E → 0, namely the evaporation135

is negligible. Instead, if e2 6= e1, then B → −1 implies E → ±∞. In other136

words, when B is close to −1, the estimated evaporation rate would achieve137

unrealistic values.138

The criterion used to reject data is taken from Romano and Giudici (2009)139

and operates according to the following procedure. For every physical quan-140

tity appearing in equations (1) and (2) an estimate of its uncertainty is given,141
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based on the accuracy of the measurement instrument. From these estimates142

and the law of error propagation (Bevington and Robinson, 2003), the uncer-143

tainty on the estimate of the evaporation rate, δE, is computed. If δE/E > ε,144

where ε is a prescribed threshold, then the value of E is considered to be145

unreliable and it is discarded. Romano and Giudici (2009) tested values of146

ε ∈ [0.1, 50] for a data set collected in the suburbs of the city of Milan and147

suggest the value of 5 acceptable for relative errors of the cumulative evap-148

oration lower than 20%. In the following sections we report and discuss the149

results obtained with ε ∈ {0.5, 1, 5, 10}.150

2.4. Reconstruction of rejected estimates of evaporation with MPS151

Starting from a time series of meteorological data, the procedure de-152

scribed in Section 2.2 and Section 2.3 can be applied. The values of evap-153

oration that were rejected because considered not reliable according to the154

criterion described in Section 2.3 should be replaced by reliable estimates. If155

these values are not replaced, then the cumulative evaporation assessed for156

a long time period could be strongly underestimated.157

This problem can be limited with a proper simulation of the missing val-158

ues in the series of evaporation. In this paper, this is obtained with the159

application of MPS. In particular, a direct sampling (DS) algorithm (Mari-160

ethoz et al., 2010) is used. Our approach is similar to that applied by Oriani161

et al. (2014) to model rainfall time series and the flow rate of two karstic162

springs in the Jura Mountains, Swiss Alps (Oriani et al., 2016).163

For our application, a training image (TI) is given by the time series of164

the acceptable values of E (ETI). The simulation grid (SG) is the array165

which contains the whole time series of E, including both the acceptable166
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values estimated from (2) and the values simulated with the DS algorithm to167

replace the rejected ones. Hereinafter we briefly outline the working principle168

of the DS, as applied to our case study.169

1. Let t = {t1, t2, . . . , tn} be the array of the times for which the SG has170

to be built, let τ = {τ1, τ2, . . . , τm} be the array of the times for which171

acceptable values of E were found and let Ẽ be the evaporation rate,172

normalized with a linear scaling in such a way that it is comprised173

between −1 and 1. This step is required to homogenize the distance174

computations and the comparisons between variables and covariates.175

2. Randomly select an empty cell of the SG, i.e. a time ti. The set τi of176

times τj ∈ τ , such that |ti − τj| < R, where R is a prescribed search177

radius, and such that the cardinality of τi is smaller than a prescribed178

maximum number N , is used to define a data event, i.e., a set of couples179

of time lags and corresponding values of Ẽ such that180

di = {(ti, Ẽ(τj))with |τj − ti| < R, τj 6= ti, card (τj) ≤ N}. (3)

The number of values τj is limited by the user provided parameter N ,181

that is the maximum number of nodes in the search neighborhood. This182

parameter allows to dynamically define the radiusR by considering only183

the N values of τj closest to ti.184

3. The TI is scanned until a data event, for time tk ∈ τ , similar to di is185

found, i.e., when |di − dk| < σ, where σ is a prescribed threshold of186

acceptance.187

4. The time ti is added to τ and Ẽ(ti) = Ẽ(tk). The procedure continues188

from point 2 above, until the whole SG is filled with simulated values189

(Esim).190
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If, for the time series, measurements of other variables supposedly cor-191

related with the simulated variable are available, then the approach can be192

extended in a straightforward manner to include them in a co-simulation193

framework, where the training image becomes a multi-variate training image194

and different thresholds and search radius can be defined, one for each vari-195

able. For more details refer to Mariethoz et al. (2010) and to Oriani et al.196

(2014, 2016).197

When using the DS simulation technique, the choice of several simulation198

parameters can have an important impact on the final results. In this work,199

a number of preliminary tests were performed to select the suitable simula-200

tion parameters, also following the guidelines presented by Meerschman et al.201

(2013) and the parameterization adopted by Oriani et al. (2014, 2016). A202

good balance between CPU requirements (that anyhow remained below the203

order of few seconds per realization) and quality of the simulation were ob-204

tained with a search radius R of 28 days, a threshold σ = 0.001, and N = 20.205

To smooth the simulated values of E, the average over 10 equiprobable re-206

alization is considered. All the direct sampling simulations were performed207

with the deesse simulation code (Mariethoz et al., 2010; Straubhaar, 2017).208

An important remark has to be made here: in a standard MPS simula-209

tion setting, TI and SG are separated entities which can have, in general, a210

different size and represent different time (or space) windows. In the simu-211

lation setting presented here, TI and SG share the same grid and the same212

time window. In fact, the TI is incomplete (rejected values of E) and the213

simulation procedure aims at inserting the missing E values.214
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2.5. Validation215

A validation step was performed to support the results obtained by the216

reconstruction. In practice, a given percentage of the E values considered217

reliable according to the adopted rejection criterion is randomly selected and218

excluded both from the training and the conditioning data set, but is used for219

cross-validation (Eval). The validation is performed for different values of the220

rejection threshold ε in terms of Q-Q plots, and also in terms of a coefficient221

inspired by the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970)222

NSE = 1−
∑

ti∈τval(Eval(ti)− Esim(ti))
2∑

ti∈τval(Eval(ti)− Eval(ti))2
(4)

Here τval contains the time steps ti for which a validation value of E is se-223

lected, and Eval represents the average of these values over a given time win-224

dow. In brief, NSE ' 1 indicates that simulation has better performances if225

compared to simple approaches where the average value of E is considered;226

NSE ' 0 indicates that simulation and simple approaches are equivalent;227

NSE < 0 indicates that simple approaches outperform simulation.228

3. Results229

First of all the deleterious effect of B is analyzed. By looking at Figure 1230

it is clear that for values of B ' −1 |E| reaches completely unreliable values.231

[Figure 1 about here.]232

Then, in the two following section, the results obtained by investigating the233

impact of a different rejection threshold ε and the usage of one or more234

covariates in the DS simulation are briefly illustrated.235

11



To illustrate the impact of the rejection threshold, the criterion proposed236

by Romano and Giudici (2009) was applied using four different thresholds to237

the evaporation computed with the Bowen-ratio method. The values of E238

that were not rejected are used both as training image and as conditioning239

data in the DS simulation. For each value of ε, 10 DS realizations are per-240

formed and the rejected values of E are replaced by the arithmetic average241

of the 10 realizations. The results are compared in terms of Q-Q plots, visual242

inspection of time series, cumulative E curves, and also using diverse statis-243

tical indicators to average the realizations obtained for each ε. To further244

support the results, a validation test is performed by randomly selecting the245

25% of the non-rejected E. The validation values are then compared with246

values simulated for the same time steps using the 75% of the non-rejected247

data as training and conditioning data.248

Then, an intermediate value of ε = 5 was selected to illustrate the effect249

of adding a covariate in the simulation process. Seven different covariates250

were selected and used in the DS to simulate the rejected E values, including251

T1, RH1, Pa, precipitation, G, Rn, and v.252

3.1. The impact of the rejection threshold ε253

The basic problem to be solved when applying the method by Romano254

and Giudici (2009) is the choice of the threshold ε for the rejection criterion.255

Here we investigate the effects that four different thresholds have on the256

reconstructed time series of E and the corresponding cumulative time series.257

The main impact is evident on the number of rejected values of E, which258

are reported in Table 2. The percentage of rejected values is also listed on259

a seasonal basis to illustrate its variability, for each of the investigated years260
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and for the complete time series.261

[Table 2 about here.]262

Another tool useful to compare the results obtained by changing the re-263

jection threshold ε is the Q-Q plot. In Figure 2 are reported, for different264

values of ε, the quantiles of the time series completed with the simulated data265

on abscissa, and the quantiles of the time series containing only the reliable266

(non-rejected) values of E on ordinate. The orange line represents the case267

when the quantiles computed for the simulation coincide with the training268

data.269

[Figure 2 about here.]270

Q-Q are not sufficient to discern if the missing values were correctly re-271

placed by the simulated ones. A visual inspection of the time series can reveal272

some details which are not put in evidence by the Q-Q plot. In Figure 3, for273

example, we compare the E time series obtained with ε = 1 and ε = 10 for a274

time window with a high density of simulated data (second half of January275

2011)276

[Figure 3 about here.]277

It is also important to check the impact of applying different rejection thresh-278

olds ε on the cumulative E curves (Figure 4).279

[Figure 4 about here.]280

One of the main goals of this research was to estimate the impact of281

neglecting the contribution of the rejected values of E on the cumulative282
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curves. This aspect is illustrated in Figure 5 for ε = 1, a parameter that283

provides a good balance between the number of rejected values of E and the284

reliability of the time series. In Figure 5 the cumulative E curves obtained by285

replacing the rejected data with simulated values of E (continuous line) are286

compared against the curves obtained without replacing the rejected values287

of E (dashed lines). Comparable results were obtained with the other values288

of ε, which are not shown here for the sake of brevity. Nevertheless, the289

differences between the cumulated E are reported for each year and for each290

value of ε in Table 3.291

[Figure 5 about here.]292

[Table 3 about here.]293

As mentioned in Sect. 2.4, the simulated values of E are presented as294

the arithmetic mean over 10 DS realizations. Fig. 6 illustrates how the cu-295

mulative E curves behave when different statistical indicators are used to296

aggregate the 10 realizations. In particular, Fig. 6 reports, for year 2010297

and for the different values of the threshold ε, the cumulative E curves com-298

puted using the arithmetic mean (continuous blue line), the 1-st quartile (Q1,299

dashed orange line), the median (Q2, dash-dotted green line), and the 3-rd300

quartile (Q3, dashed red line).301

[Figure 6 about here.]302

Figure 7 illustrates the results of the validation step, where for the differ-303

ent values of ε considered in this work the 25% of the reliable E is randomly304
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selected and kept for validation purposes, and compared with the values sim-305

ulated for the same time step. The NSE for the corresponding value of ε is306

reported in the lower right corner of each sub-plot.307

[Figure 7 about here.]308

3.2. Simulating the rejected values of E using a covariate309

Another aspect explored by this research is the influence of considering a310

covariate in the simulation of the rejected values of E. Here the considered311

covariates are a number of quantities measured at the hydro-meteorological312

station of Roncopascolo including T1, RH1, Pa, precipitation, G, Rn, and313

the wind speed v. All the parameters already used in Equations (1) and (2)314

for the computation of E are correlated with E itself. Nevertheless, for the315

time step where E is rejected, the aforementioned parameters have reliable316

values and therefore they can potentially improve the simulation of E. Here317

the impact of considering one covariate in the DS simulations is illustrated318

via Q-Q plots in Figure 9. Figure 9a illustrates the reference case when no319

covariates are used, while the remainders sub-plots (Figure 9b-h) represent320

the results obtained considering one of the aforementioned covariates. Also,321

the same results are presented in terms of cumulative E (Figure 8).322

Only the results for the rejection threshold ε = 5 are shown here, because323

they provide a situation where many E values are rejected and there is room324

for improving the estimates of the missing E values obtained without the use325

of a covariate.326

[Figure 8 about here.]327

[Figure 9 about here.]328
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4. Discussion329

As anticipated in Section 2.3 and as expected from Equation (2), the re-330

sults show that when B is close to -1 the computed values of |E| become more331

and more high and unreliable (Figure 1). From Figure 1 it is evident that332

those E values can have a deleterious effect when considered in cumulative333

E curves. It becomes therefore crucial to reject unreliable values of E.334

With the rejection thresholds ε tested in this work, for the same time335

series the percentage of rejected values varies from 6.1% to 70.6% (Table 2).336

The percentages of rejected data regrouped by season (Table 2) suggest that337

spring is the season where most data are incorrectly determined, and this338

is thought to be related to the fact that this is the season with the highest339

atmospheric instability.340

Q-Q plots and visual inspection of the time series were used to evaluate341

the reconstructed time series (Figure 2). From the Q-Q plots, ε = 1 appears342

to provide the best results. At the same time, a restrictive value of ε (i.e.343

ε = 1 or ε = 0.5) reduces considerably the number of data and the number of344

extreme events in the incomplete data series that are used as training data in345

the DS. This has a clear impact on the reconstructed time series variability346

(Figure 2). A visual inspection of the time series integrates the results of347

the Q-Q plots, showing that a quite restrictive rejection threshold (ε = 1)348

provides a reliable temporal variability of E (Figure 3a) and filters out some349

spikes that instead appear for less restrictive ε (ε = 10, Figure 3b). Note350

that in Figure 3 we deliberately selected a time window where many values351

of E were rejected to illustrate the DS simulation capabilities.352

Figure 4 illustrates the impact of different rejection thresholds ε on the353
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cumulated E, when the rejected values of E are replaced with simulated354

values, for years 2009, 2010 and 2011. The features of the cumulated E355

curves are useful for the selection of the optimal ε. For example, for years356

2010 and 2011 (Figure 4b and Figure 4c), only with the values ε = 0.5357

or ε = 1 the anomalous features of the cumulative curves around March358

2010 and March-May 2011 are filtered out. Also, the difference between the359

growth rates of the curves for ε = 0.5 and ε = 1 show that the two rejection360

thresholds have a different impact depending on the sign of the rejected E361

values. As a consequence, the rejection procedure has a different impact362

depending on the season and on the prevailing physical process. However,363

if we exclude year 2011, the final plateau reached by using diverse values364

of ε has an impact of few tenths of millimeters on the yearly cumulated E.365

The values of the cumulated precipitation reported on the top of each figure366

(Fig. 4) are also useful to check the reliability of the cumulative E curves367

computed with different ε. Note also that while for year 2010 a more complete368

data set is available, years 2009 and 2011 are incomplete for a rather different369

time period. This justified the noticeable differences between the cumulative370

E curves (Fig. 4).371

Probably, the most important result is illustrated in Figure 5. When372

the rejected values of E are not replaced by simulation, the cumulative E373

obtained from instantaneous values which were not rejected is strongly un-374

derestimated (dashed lines, Figure 5). The cumulative E could be somehow375

corrected by considering the percentage of rejected values. However, here it376

is possible to provide a more precise estimate: the yearly cumulative E gen-377

erally is underestimated by an amount that has its same order of magnitude.378
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For example, in our case, for years 2009 and 2010 the yearly cumulative E379

is underestimated by more that 100mm (Figure 5a and Figure 5b), while380

(for the available period) of the 2011 by more than 300mm (Figure 5c). The381

numerical values of the differences are reported in Table 3. Here it is impor-382

tant to remark that for years 2009 and 2010 the differences decrease with the383

increase of ε, whereas for year 2011 the trend is quite peculiar, with a peak384

of difference for the value of ε = 1.385

Figure 6 illustrates the impact of the statistical indicator used to aggre-386

gate the results of the simulation over many realizations on the cumulative387

E. With a relative low rejection threshold (ε = 0.5, Fig. 6a), many values are388

rejected, many are simulated and few conditioning data are kept; this has a389

clear effect on the spreading of the cumulated E, and implies that arithmetic390

mean and median (Q2) at the end of the year accumulate more than 50mm391

of difference. Nevertheless, it is sufficient to rise the rejection threshold above392

1 to reduce the cumulated difference between mean and median to few mil-393

limeters per year (Fig. 6b, c, and d). In addition, the curves reported for Q1394

and Q3 show not only the uncertainty on the simulated cumulative E, but395

also the effectiveness of the arithmetic mean in smoothing extreme values for396

high values of ε, when the number of rejected and simulated values of E is397

small.398

To further support the results, one depletion test for each rejection thresh-399

old was performed (Fig. 7). When many values of E are rejected, the statis-400

tics of the simulated values are coherent with those of the validation data401

(Fig. 7a and b). Nevertheless, the slight deterioration of the statistics when402

many data are rejected (Fig. 7a) suggests that a too high fraction of rejected403
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data entails a pauperization of the training data. Differently, and in par-404

ticular when many unreliable values are kept, the statistics of the simulated405

values (Fig. 7d) depart from the validation data, for example for E < 0mm/h406

and E >0.6mm/h. The NSE indices reported in Fig. 7 illustrate the effi-407

ciency of the proposed work-flow against a naive approach where the missing408

values are reconstructed using the weekly averaged values of E. Also, its409

variability against ε provides a useful guide for the selection of this rejection410

threshold.411

Another interesting aspect investigated here is the influence of a covariate412

in the simulation of the rejected E values. The Q-Q plots (Figure 9) already413

reveal that the impact is much less evident than changes in the value of414

the rejection threshold ε (Figure 2). Nevertheless, some variables provide a415

better representation of the quantiles. This is for example the case of relative416

humidity (RH1, Figure 9c), atmospheric pressure (Pa, Figure 9d), and wind417

speed (v, Figure 9h), where the scattered quantiles (blue dots) are closer to418

the ideal case (orange line) than the results obtained without the use of any419

covariate in the DS simulation (Figure 9a). For the covariates that provide a420

better representation of the data in terms of Q-Q plots, the visual inspection421

of the E time series (not shown here) reveals a smoothed and spike-free trend422

if compared to the E time series simulated without a covariate. Clearly,423

taking into account a covariate in the simulation of the rejected E has an424

impact on the cumulative E curves (Figure 8). For the considered years,425

the difference between the reference black curve with markers (simulation426

without covariate) and the colored curves (simulation with one covariate),427

has a maximum of about 30mm. One interesting aspect is that the sign428
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of this impact depends, for the time period investigated, not only on the429

considered covariate but also on the time window considered. For year 2009,430

for example, all the cumulative curves obtained using a covariate are above431

the one obtained with no covariate (Figure 8a), while for years 2010 and 2011432

diverse covariates have a diverse impact on the cumulative curves (Figure 8b433

and Figure 8c).434

5. Conclusions435

In this technical note, a straightforward work-flow to improve the relia-436

bility of cumulative time series of evaporation E is presented. The work-flow437

is made of two main steps: firstly, the values of E that are deemed unre-438

liable according to a threshold defined by error propagation techniques are439

rejected; then, the rejected values are replaced by multiple-point statistics440

simulation using a direct sampling algorithm. The applicability of the work-441

flow is demonstrated on a data-set collected by a hydro-meteorological station442

located in the Po plain (Italy), from May 2009 to July 2011. This data-set443

allows to test the work-flow on values of E estimated with the Bowen ratio444

method. However, the proposed work-flow has a general validity and can445

be applied in different contexts, like for example where E is estimated from446

eddy covariance measurements.447

It is shown that the proposed work-flow can be used to integrate incom-448

plete time series in a straightforward way. In particular, when applied to449

the reconstruction of evaporation time series, the results demonstrate that450

if the rejected values of E are not replaced by simulated values, then the451

cumulative E can be underestimated by quantities comparable to its total452
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per annum. Focusing on the data set considered in this study, the annual453

underestimation of E can easily exceed 100mm/year.454

Unfortunately, direct measurements of E are not available for the same455

time period and region. However, although a direct comparison with ref-456

erence values cannot be performed, the cumulative E time series obtained457

integrating the rejected values with simulated values allows to quantify the458

approximation made when the missing values are not properly replaced.459

In addition, this study provides useful insights for the selection of ε, the460

threshold used to reject unreliable values of E based on the error propagation461

theory. Here, simple tools like Q-Q plots and visual inspection of time series462

allowed to select the value of ε that provided a good compromise between463

number of rejected samples and a reliable reconstruction of the E time series.464

Another aspect investigated in this research is the potential improvement465

of the simulation results provided by the usage of covariates. This study466

shows that including a covariate in the simulation process has an impact on467

the final results, which of course depends on the covariate considered, but468

also on the part of the considered year. Further research is required to in-469

vestigate the effects of taking into account, in the simulation process, of the470

combination of two or more covariates. Besides different parameterizations471

of the direct sampling algorithm, other covariates derived from the variables472

measured at the hydro-meteorological station can be considered, like for ex-473

ample a moving average of the temperature, that could provide a seasonal474

trend useful to improve the simulation.475
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Figure 1: Scatter plot of evaporation E vs Bowen ratio B
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Figure 2: Q-Q plots of simulated E vs training E for different values of rejection threshold
ε. For each value of ε it is also reported the percentage of rejected values (in brackets)
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Figure 4: Cumulative E computed with the BRM for years a) 2009, b) 2010 and c) 2011.
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Figure 6: Comparison of the cumulative E computed with the BRM for year 2010 obtained
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Figure 7: Q-Q plots of simulated E vs validation E for different values of rejection threshold
ε. For each value of ε it is also reported the percentage of rejected values (in brackets)
and on the lower right corner the NSE
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Figure 8: Q-Q plots of simulated E vs training E using different covariates. On the lower
right corner Pearson’s correlation coefficients
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Figure 9: Cumulative E computed with the BRM for years a) 2009, b) 2010 and c) 2011.
Unreliable values of E are rejected using a threshold ε = 5. The different colors represent
a different covariate used in the DS simulation of the rejected values of E; the black curve
with markers represents the time series simulated taking into account for the variable E
only
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Table 1: List of symbols and variables. i ∈ {1, 2}. For symbols related to the DS please
refer to the text
symbol units description
B − Bowen ratio (computed)
E mm/h evaporation rate (computed/simulated)
ε − rejection threshold (user defined)
hi m height above the ground of the sensor
Ti K temperature at hi (measured)
RHi % relative humidity at hi (measured)
Pa Pa atm. pressure (measured)
v m/s wind speed (measured)
Rn W/m2 net radiation (measured)
G W/m2 soil heat flux (measured)
Ca J/kgK specific heat of air at constant pressure per unit mass
λv J/kg latent heat of evaporation per unit mass
ei Pa vapor partial pressure at hi (derived from RHi)
ρw kg/m3 water density
δE mm/h uncertainty on E (computed)
Esim mm/h simulated values of E
ETI mm/h training values of E
Eval mm/h values of E kept for validation
NSE − Nash-Sutcliffe efficiency coefficient (computed)
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Table 2: Percentage of data rejected for each season of the time series

ε
0.5 1 5 10

Summer 2009 89.9% 52.8% 15.5% 8.7%
Autumn 2009 63.2% 31.2% 7.2% 3.5%
Winter 2009/2010 75.8% 54.4% 15.5% 7.6%
Spring 2010 74.7% 46.8% 14.0% 7.4%
Summer 2010 69.1% 26.4% 6.4% 3.2%
Autumn 2010 61.3% 33.9% 8.4% 3.9%
Winter 2010/2011 68.1% 48.6% 16.0% 7.5%
Spring 2011 70.4% 46.8% 15.8% 7.7%
Summer 2011 61.4% 38.5% 13.9% 6.8%

Total 2009 75.7% 42.7% 11.7% 6.0%
Total 2010 70.0% 40.5% 11.3% 5.8%
Total 2011 66.3% 43.4% 14.6% 7.0%

Total 2009, 2010, 2011 70.6% 41.8% 12.2% 6.1%
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Table 3: Differences between the cumulated E computed by replacing the rejected data
with the DS simulation and without replacing the rejected data. Units are in mm.

ε 2009 2010 2011
0.5 176 244 192
1.0 109 117 301
5.0 31 66 144
10.0 14 23 72
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