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Highlights 

The present review summarizes our current knowledge regarding organellar Ca2+ signaling and its 

consequences on plant physiology.  

 

Abstract 

Calcium (Ca2+) is among the most important intracellular messengers in living organisms. 

Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the 

molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present 

review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well 

as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. 

The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ 

signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field 

is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner 

to translate specific information into a Ca2+ signature. 
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Changes in Ca2+ levels within plant cells can be considered as hallmarks of a plethora of processes 

as growth, differentiation, regulation of stomata opening, induction of pathogen defense responses, 

establishment of plant-microbe symbioses and stress adaptation. Indeed, each of these processes are 

associated with specific “Ca2+ signatures”, arising from variations of Ca2+ concentration characterized by a 

unique amplitude, frequency and duration within the cytosol and, in some cases, in a given intracellular 

compartment (see e.g. Evans et al., 2001; Monshausen, 2012; Trewavas et al., 1996; Whalley and Knight, 

2013; Xiong et al., 2006). Thus, the concentration of free Ca2+ in the cytosol (Ca2+
cyt) is crucial for Ca2+-based 

signalling. Tight regulation of the [Ca2+]cyt is mandatory because above 10-4 M sustained increases can lead 

to protein and nucleic acid aggregation and to precipitation of phosphates, thus causing damages to 

membranes and organelles, ultimately leading to a generalized cytotoxicity. On the other hand, rapid and 

transient increase of cytosolic Ca2+ concentration via Ca2+ channels mediating either Ca2+ influx of the ion 

from the extracellular milieu or the temporary release of the ion from intracellular stores, have enabled 

Ca2+ to function as a versatile second messenger in basically all physiological systems (Dodd et al., 2010).  

Upon stimulation, [Ca2+]cyt increases from approximately 10-7 M to 10-6 M, relaying an external 

stimulus to the intracellular milieu and allowing to trigger specific biological responses. A set of proteins, 

that undergo Ca2+ binding-induced conformational changes help the cells to decode the signal by 

responding to the stimulus-induced increases in [Ca2+]cyt (McAinsh and Pittman, 2009). Intracellular 

organelles may contribute to the regulation of free Ca2+ homeostasis in the cytosol, since a fast response of 

Ca2+ levels to environmental cues is ensured by compartmentalization of this cation within the plant cell 

(Nomura and Shiina, 2014; Stael et al., 2012). In fact, in parallel with the actions of Ca2+ influx and Ca2+ 

efflux systems across the plasma membrane (PM), Ca2+ sequestration into and release from the intracellular 

compartments are equally important to maintain the transient nature of Ca2+ signals (Kudla et al., 2010; 

Trewavas et al., 1996). Ca2+ can be mobilized from storage compartments such as the cell wall/apoplast, 

vacuole and the endoplasmic reticulum (ER), whereas the nucleus, as well as chloroplasts and mitochondria 

can generate also intra-organellar Ca2+ signals (Stael et al., 2012). Changes in free [Ca2+] in a given organelle 

in turn may influence its function.  

Ca2+-based signalling systems have long been described as over-simplified linear pathways (with a 

stimulus generating transient [Ca2+]cyt elevation that in turn leads to a specific response). Since plants can 

be challenged by several stimuli at the same time – most of which involve changes in [Ca2+]cyt - the final 

response often implies a complex network of intersecting signal transduction pathways, each specific for a 

given stimulus. Thus, it is becoming increasingly evident that Ca2+ signalling systems are intrinsically 

complex networks comprising many interconnected nodes and hubs (Dodd et al., 2010).  

In the following sections an overview of the recently developed toolkit to measure time-resolved 

organellar Ca2+ signalling in intact plants as well as plant cell suspension cultures is provided, along with 

discussion of the possible Ca2+-permeable channels in the various organelles. We will give special emphasis 

to bioenergetic organelles mitochondria and chloroplasts as well as to peroxisomes and ER, whereas we 

advise the readers to consult the review on nuclear Ca2+ signalling that is published in the present special 

issue for information on the participation of the nucleus to the Ca2+ signalling network (Charpentier et al., 

2018, this issue).  

 

Introduction  
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General molecular players of plant Ca2+ signalling 

 

In plants, shaping of the Ca2+ signature with defined spatial and temporal characteristics and 

specificity in Ca2+-based signalling is achieved through the interplay of Ca2+ signatures together with Ca2+-

binding proteins that act to decode or interpret Ca2+ level increases (e.g. Tang and Luan, 2017).  

Ca2+ signatures are decoded by Ca2+ binding sensor proteins that act either as primary responders 

or signal relays (DeFalco et al., 2009; Tang and Luan, 2017; Zhu, 2016). Ca2+-dependent protein kinases 

(CPDK) are primary responders, while calmodulins (CaMs), calmodulin-like proteins (CMLs) and calcineurin 

B-like proteins (CBLs) are part of the latter group. These Ca2+ sensors trigger a downstream signalling 

cascade that culminates in changes in gene and protein expression, metabolic activity and developmental 

changes (see e.g. Lenzoni et al., 2017). Excellent, recent reviews underline the crucial role of the above 

protein families in global Ca2+ signalling (Kudla et al., 2018; Ranty et al., 2016; Simeunovic et al., 2016; Tang 

and Luan, 2017), therefore the present review mentions only briefly their contribution to Ca2+signalling.  

The other crucial proteins for Ca2+ signalling are those involved in the transport of this ion across 

biological membranes, namely transporters (active or passive) and channels, that mediate flux of ions 

against or down the electrochemical gradient, respectively. These proteins include Ca2+-ATPases, 

cation/proton exchangers (CAXs) and cation/Ca2+ exchangers (CCXs) that are emerging players in an 

increasing range of cellular and physiological functions (Bose et al., 2011; Corso et al., 2018; Costa et al., 

2017; Frei dit Frey et al., 2012; Pittman and Hirschi, 2016). Ca2+ permeable channels include members of 

the glutamate-like receptor family (Forde and Roberts, 2014; Steinhorst and Kudla, 2014; Swarbreck et al., 

2013), of cyclic nucleotide-gated channels (CNGCs) (DeFalco et al., 2016; Dietrich et al., 2010) and of 

mechanosensitive (MSC) channels (Hamilton et al., 2015). Unconventional Ca2+ transporting annexin1 is 

also a possible player (Davies, 2014).  In addition, organelle-specific channels such as the vacuolar two-pore 

cation (TPC) channel (Choi et al., 2017; Choi et al., 2014; Hedrich et al., 2018; Kiep et al., 2015; Peiter et al., 

2005; Vincent et al., 2017a) and the mitochondrial calcium uniporter (Teardo et al., 2017; Wagner et al., 

2015a; Wagner et al., 2016) contribute to shaping Ca2+ signalling.  

We will refer to the above-mentioned Ca2+-transporting molecules in the context of specific 

organellar Ca2+ signalling in the following sections.   

 

 

Overview of toolkits to measure plant organellar Ca2+ concentrations in vivo 

 

Analysis of Ca2+ dynamics in living plants was initially addressed by using Ca2+ sensitive dyes (e.g. 

Fura-2, Fura-2 dextran and Ca2+ Green Dextran) loaded in guard cells, pollen tubes and root hairs (Ehrhardt 

et al., 1996; Holdaway-Clarke et al., 1997; McAinsh et al., 1995). The use of these dyes allowed to make 

fundamental discoveries, but they present some limitations for their requirement to be loaded or manually 

injected and also because their use suffers from low throughput, variability and is prone to artifacts. Hence, 
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we feel comfortable to say that analysis of Ca2+ dynamics in living plants was revolutionized by the 

introduction of the Genetically Encoded Ca2+ Indicators (GECI) (Perez Koldenkova and Nagai, 2013) that 

permitted non-invasive monitoring of free Ca2+ levels, enabling real-time, spatially and temporally-resolved 

imaging of Ca2+ levels in different cell types and organisms and even in specific sub-cellular compartments 

by specific targeting of GECIs to organelles (Costa and Kudla, 2015; Stael et al., 2012). Furthermore, the 

possibility to calibrate GECIs may allow to obtain information on absolute concentrations for different ions 

(see e.g. Lanquar et al., 2014 for Zn2+ and Waadt et al., 2017 for Ca2+).  

The first subcompartmental (cytosolic) GECI, exploitable for in vivo measurements, was obtained 

for aequorin in plants (Knight et al., 1991). A year later, aequorin was specifically expressed in animal 

mitochondria via fusion with the signal sequence-encoding part of a mitochondria-located protein. This 

study revealed for the first time that mammalian mitochondria can accumulate high concentrations of Ca2+ 

upon stimulation of the cells with histamine, an agonist of the inositol triphosphate receptor located in the 

ER (Rizzuto et al., 1992). Following these studies, this methodology became widely accepted as a general 

tool to measure organellar Ca2+ changes in the animal field (Bagur and Hajnoczky, 2017; Brini et al., 1999; 

Ottolini et al., 2014; Rudolf et al., 2003) and to establish the presence of high Ca2+ concentration 

microdomains that are generated at the ER-mitochondria contact site level (Rizzuto et al., 1993; Rizzuto et 

al., 1998). 

In plants, thus far the two main Ca2+ indicators used are aequorin and Cameleon (Costa and Kudla, 

2015; Knight and Knight, 1995; Mithofer and Mazars, 2002) and importantly, both display a binding affinity 

for Ca2+ that renders them useful to detect changes in Ca2+ concentrations in the physiologically occurring 

ranges (Palmer and Tsien, 2006). As mentioned above, the first GECIs to be developed were the aequorin-

based probes, which allowed monitoring of Ca2+ dynamics by photon emission measurements in 

transformed plants after reconstitution of the aequorin holoenzyme with the exogenously applied 

prosthetic group coelenterazine (Knight et al., 1991; Knight et al., 1992; Logan and Knight, 2003; Sai and 

Johnson, 2002). It has been an extraordinary tool to determine the Ca2+ dynamics triggered by different 

stimuli at the level of cell populations or entire plants, forming the basis of our understanding of the in vivo 

dynamics of free Ca2+ in plants. Since aequorin is largely insensitive to variations of pH and Mg2+ (Brini, 

2008), it can be used as a reliable sensor to monitor [Ca2+] changes even in organelles or subcompartments 

with acidic pH. Furthermore, its bioluminescent properties, high signal-to-noise ratio and lack of damaging 

excitation light makes it an excellent tool to measure Ca2+ levels in chlorophyll-containing tissues even for 

long time intervals (Marti et al., 2013). Aequorin-based sensors are available for different plant organelles, 

such as the vacuole (Knight et al., 1996), the nucleus (van Der Luit et al., 1999), the Golgi apparatus 

(Ordenes et al., 2012), mitochondria (Logan and Knight, 2003) and plastids/chloroplasts (Johnson et al., 

1995; Mehlmer et al., 2012; Sello et al., 2016). Concerning these latter organelles, aequorin chimeras have 

been targeted to the different chloroplast subcompartments, i.e. the stroma (Johnson et al., 1995; Sai and 

Johnson, 2002), the outer and inner membranes of the envelope (Mehlmer et al., 2012) and the thylakoid 

lumen and membrane (Sello et al., 2018) (Table 1). Aequorin was also targeted to the apoplastic space (Gao 

et al., 2004). Moreover, the development of novel Bioluminescence Resonance Energy Transfer (BRET)-

based GFP-aequorin reporters, initially designed for Ca2+ imaging in animal cells (Baubet et al., 2000; Rogers 

et al., 2005) has overcome one of the major limitations of aequorin, i.e. its low amount of emitted light, 

thus allowing to visualize Ca2+ signals propagating over long distances in intact plants (Xiong et al., 2014).  
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The application of ratiometric Ca2+ reporter proteins that are based on combinations of green 

fluorescent protein (GFP)-related proteins (Cameleons) has greatly advanced the spatio-temporal 

resolution and sensitivity of Ca2+ signalling studies. Cameleons are Förster Resonance Energy Transfer 

(FRET)-based indicator proteins, which harbor cyan and yellow fluorescent proteins (CFP and YFP or 

spectral variants of them) linked together by the Ca2+-binding protein calmodulin (CaM) and the CaM-

binding peptide M13 (Costa and Kudla, 2015). Binding of Ca2+ to each of the four helix loop helix structures 

of the EF hand motifs present in CaM (one Ca2+ ion/EF hand motif) leads to a conformational change 

resulting in reduced distance between CFP and YFP and increase in FRET. FRET, and thus the [Ca2+] 

increases, can be conveniently measured by the increase in the ratio between the emission intensity of YFP 

and CFP upon CFP excitation (Miyawaki et al., 1997). Since the Ca2+ recordings with such ratiometric 

proteins completely rely on ratio shifts, these measurements are not influenced by the actual cellular 

expression level of the indicators and can also correct for focus changes. CaM-based sensors are available 

for different intracellular compartments and even for simultaneous measurement of Ca2+ dynamics in 

different subcellular compartments (Costa and Kudla, 2015; Kelner et al., 2018; Krebs et al., 2012).  

Other GFP-based Ca2+ biosensors, such as for example, Case12, GCaMP3, GCaMP6 (Liu et al., 2017; 

Vincent et al., 2017a; Vincent et al., 2017b; Zhu et al., 2014) as well-as the green and red variant of GECO1 

(G-Geco1 and R-Geco1), have also been successfully applied to measure real-time in vivo changes in the 

cytosol and nucleus (Keinath et al., 2015; Kelner et al., 2018; Ngo et al., 2014; Waadt et al., 2017). 

Furthermore, a strategy of novel, dual-FP (fluorescent protein) biosensor with large dynamic ranges based 

on employment of a single FP-cassette that nests a stable reference FP (large Stokes shift LSSmOrange) 

within a reporter FP (circularly permuted green FP) has been recently set up (Ast et al., 2017). This strategy 

has been applied to obtain a novel probe from GCaMP6 (Ast et al., 2017). The R-GECO1 and GCaMP 

biosensors were found to exhibit a significantly higher signal change compared to Cameleon YC3.6 in 

response to several stimuli (Keinath et al., 2015; Kleist et al., 2017) and the high fluorescent yield of 

GCaMPs renders these single-fluorescent protein Ca2+ sensors particularly suited to whole tissue imaging, 

which is often required in studies of plant biotic interactions (Vincent et al., 2017b). In addition, the use of 

red-shifted sensors opens the way to simultaneously apply distinct Ca2+ probes localised to different 

compartments, for example together with Cameleon or other GFP-based GECIs as recently reported by 

Kelner and colleagues who monitored the cytosolic and nuclear Ca2+ dynamics by simultaneously expressing 

the CG-Geco1 and NR-Geco1 sensors (Kelner et al., 2018). On the other hand, it has to be noted that single-

FP sensors cannot quantify absolute [Ca2+] as simply as FRET-based sensors. However, for example in the 

case of GCaMP6 it has been experimentally determined that exciting GCaMP6 at 410 nm leads to 

fluorescence emission, which is not Ca2+ dependent. As a consequence, the ratio between 474 nm and 410 

nm excitation wavelengths is proportional to [Ca2+] (Patron et al., 2014). In summary, in spite of the wide 

variety of currently available GECIs, for the moment aequorin-based probes still remain the method of 

election when accurate quantifications of Ca2+ levels are needed (Ottolini et al., 2014).  

As mentioned above, organelle-targeted, bioluminescent or fluorescent GECIs, summarized in 

Figure 1, have greatly advanced the field of organellar Ca2+ signalling in both animals and plants. In the 

following sections results obtained exploiting these various probes in different organelles will be reported 

and compared. Table 1 summarizes the measured affinities (expressed as KD values) of different, organelle-

targeted GECIs. 
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The main Ca2+ storage compartment: the vacuole 

 

Plant vacuoles are large organelles with a diameter of 20 to 40 µm, occupying 80-90% of the cell 

volume in mature plant cells. Rather than being just the plant counterparts of animal lysosomes, they 

actually fulfill many different roles, such as the temporary storage of primary metabolites, or the 

permanent accumulation of secondary metabolites, including potentially toxic compounds (Kruger and 

Schumacher, 2017; Shimada et al., 2018). Similarly to animal lysosomes, they store high concentrations of 

Ca2+ and Na+ (Peiter, 2011). In the central vacuole the concentration of Ca2+ can reach values as high as 50 

mM. Nevertheless, most of it is present in bound form (the free vacuolar Ca2+ concentration ranges from 

0.2 mM to 1-5 mM) (Table 2) (Felle, 1989) and therefore is not readily available for Ca2+ signalling (Conn 

and Gilliham, 2010). However, vacuolar Ca2+ might indirectly affect the signalling by influencing the activity 

of ion transporters localized on the vacuolar membrane (Peiter, 2011). In an early pioneering study, the 

targeting of an aequorin probe to the cytosolic face of the vacuolar membrane provided evidence for the 

participation of the vacuole in Ca2+ signalling activated by cold (Knight et al., 1996). More recently, a 

Cameleon-based tonoplast-targeted sensor has also been generated, but besides labelling the tonoplast, it 

was present also in the cytosol, restricting the actual usefulness of such sensor (Krebs et al., 2012). A Ca2+ 

sensor localized to the vacuolar lumen would be extremely useful for the understanding of those Ca2+ 

signalling events in which a contribution from the internal stores has been hypothesized (see also below). 

Unfortunately, the low pH and the high Ca2+ concentration of the vacuolar lumen makes it difficult to use 

the currently available GECIs to monitor efficiently Ca2+ dynamics inside this organelle. Nevertheless, in 

mammalian cells, a more acidic pH-resistant Ca2+ sensor, GEM-GECO1 (Horikawa, 2015) has been 

successfully targeted to the lysosomal lumen (Albrecht et al., 2015). making it possible to study in vivo 

lysosomal Ca2+ dynamics triggered by histamine treatment despite the acidic lumen pH. However, the 

probe was still pH sensitive making the analysis and interpretation of the data difficult and requiring a tricky 

pH calibration. An important breakthrough is probably the recent identification of a new pH resistant GFP 

(Shinoda et al., 2017) that will probably allow the development of new sensors suitable for acidic 

compartments.  

A plethora of transporters and channels are active in the tonoplast, as discovered by direct patch 

clamping of this organelle (Martinoia et al., 2012; Xu et al., 2015). Many of these transport systems have 

been molecularly identified during the last few decades (Martinoia et al., 2012; Neuhaus and Trentmann, 

2014). Ca2+ is taken up into the vacuole likely by two P-type Ca2+ pumps, such as calmodulin-regulated 

autoinhibited Ca2+-ATPases (ACAs), as well as by Ca2+-proton exchangers (CAXs) (Edel et al., 2017), which 

exhibit a high sequence homology to their yeast counterparts residing also on the vacuolar membrane 

(Hirschi et al., 1996). ACA pumps exist in at least 10 isoforms in Arabidopsis (Geisler et al., 2000). Activity of 

the two vacuolar ACA Ca2+ pumps AtACA4 and AtACA11 (Lee et al., 2007) has been linked to the control of a 

salicylic acid-dependent programmed cell death pathway in plants (Boursiac et al., 2010). Among the six 

CAX members in Arabidopsis, AtCAX1-4 have been shown to locate to vacuoles (Cheng et al., 2002; Pittman 

et al., 2005). Knock-out mutants of AtCAX1, that is highly expressed in leaf tissue, exhibited altered plant 

development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-

reporter gene fusion (Cheng et al., 2003), while indole-3-acetic acid (IAA) inhibition of abscisic acid (ABA)-

induced stomatal closure was found to be impaired in cax1, cax3, and cax1/cax3 mutants (Cho et al., 2012). 

Vacuolar CAX4, that shows low expression level, plays an important function in root growth under heavy 
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metal stress conditions (Mei et al., 2009). Interestingly, some of the CAXs transport not only Ca2+, but also 

heavy metals such as Mn2+ and Cd2+ (Manohar et al., 2011; Martinoia et al., 2012; Pittman and Hirschi, 

2016; Socha and Guerinot, 2014).   

The vacuole, together with the cell wall/apoplast, are the major Ca2+ store and it is generally 

assumed that Ca2+ released from the vacuole provides in several cases substantial contributions for the 

activation of signal transduction pathways. This assumption is made based on early experiments showing 

that inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ predominantly from the vacuole (Alexandre and 

Lassalles, 1990; Allen et al., 1995). However, later experiments indicated that in plants, inositol-

hexakisphosphate (InsP6) plays a prominent role with respect to InsP3 in intracellular signal transduction 

(Lemtiri-Chlieh et al., 2003; Munnik and Nielsen, 2011). Among the channels proposed to release Ca2+ from 

the vacuole, the Ca2+-activated two-pore non-selective, Ca2+ and K+-permeable cation channel TPC1 (e.g. 

Carpaneto and Gradogna, 2018; Peiter et al., 2005), whose structure has been solved (Guo et al., 2016b) 

acts as tonoplast channel. Since the physiological concentration of K+ both in the cytosol and inside the 

vacuole (about 100 mM) is much higher than the concentration of Ca2+ (Table 2), K+ permeation can be 

expected to be largely facilitated with respect to Ca2+ through the channel. Indeed, the ability of TPC1 to 

conduct Ca2+ has long been debated, but combination of the patch-clamp technique with Ca2+ detection by 

fluorescence finally led to the demonstration that Ca2+ is able to permeate through TPC1, even if its 

concentration (0.5 mM) is much lower than that of K+ (105 mM) in electrophysiological experiments 

(Carpaneto and Gradogna, 2018; Gradogna et al., 2009). Plants lacking TPC1 are defective in both abscisic 

acid-induced repression of germination and in the response of stomata to extracellular Ca2+, demonstrating 

a critical role of the vacuole Ca2+-release channel in various physiological processes of plants (Peiter et al., 

2005). Furthermore, the propagation of salt-stress induced long-distance Ca2+ waves as well as 

wounding/herbivory-triggered Ca2+ waves were found to be dependent on TPC1 in Arabidopsis (Choi et al., 

2014; Kiep et al., 2015). However, other reports dismiss a prominent role of TPC1 in vacuolar Ca2+-release, 

either assessed by aequorin or direct patch-clamp analyses. For example, unaltered cytosolic Ca2+ signals 

were recorded in intact plants either lacking or overexpressing TPC1 upon exposure to various biotic and 

abiotic stimuli (Ranf et al., 2008). At physiological pH and Ca2+-gradients, TPC1 was shown to conduct Ca2+ 

into the vacuole, suggesting thus to dissipate rather than to generate cytosolic Ca2+ signals (at least during 

external Ca2+ -induced stomatal closure) (Rienmuller et al., 2010). Likewise, the findings that the fou2 

mutant plants harboring a hyperactive TPC1 channel variant (D454N) show an increased vacuolar Ca2+ 

content (Beyhl et al., 2009) and a decreased resting cytosolic Ca2+ level compared to WT, argues against a 

Ca2+-release function of TPC1. The fou2 mutant has also a slightly lower resting cytosolic [Ca2+] compared to 

WT, and cytosolic Ca2+ increases after wounding were found to be similar in both plants (Lenglet et al., 

2017). On the other hand, a recent work, carried out by using the fluorescent Ca2+ biosensor GCaMP3, 

highlighted a functionally relevant interplay between the plant defense co-receptor Brassinosteroid 

insensitive-associated kinase1 (BAK1), the PM localized glutamate receptors GLR3.3 and GLR3.6, and TPC1 

to mediate cytosolic Ca2+ elevations following biotic stress such as aphid attack (Vincent et al., 2017a). 

Interestingly, another work highlighted the importance of endomembrane cation fluxes in controlling the 

basal level of wound-inducible defense mediator jasmonate acid, thanks to the use of the fou2 mutant of 

TPC1 (Lenglet et al., 2017). Thus, altogether TPC1 is emerging as a possible regulator of cytosolic Ca2+ 

signals, although many questions still remain open (Hedrich et al., 2018). The readers are advised to consult 

excellent reviews on the state of the art and hot topics in vacuolar transport research, including those 
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discussing the regulation of vacuolar channels by cytoplasmic/luminal factors (Edel et al., 2017; Francisco 

and Martinoia, 2018; Hedrich, 2012; Martinoia et al., 2012).   

 

A role for endoplasmic reticulum in plant intracellular Ca2+ signalling?  

 

Another main intracellular Ca2+ store is the ER. Not much is known about the Ca2+ storage 

properties of the plant ER in contrast to the animal field, where it is well explored (Raffaello et al., 2016; 

Sammels et al., 2010). In animal cells, the total Ca2+ concentration in the ER is supposed to be 2 mM, 

whereas the free Ca2+ concentration ranges between 50 μM and 500 μM (Rizzuto et al., 2009; Stael et al., 

2012).  

The involvement of the ER in Ca2+ homeostasis and signalling in plant cells has long been under-

appreciated, possibly overshadowed by the prominent role commonly ascribed to the vacuole, and because 

of the lack, for long time, of direct measurements of luminal [Ca2+] ([Ca2+]ER) and its potential variations 

during signal transduction. Functional conservation of calreticulin as the major high capacity (15-30 mol of 

Ca2+ per mol of protein), low affinity (Kd = 0.5 mM) Ca2+ binding protein in the lumen of plant ER (for 

reviews see e.g. Jia et al., 2009; Mariani et al., 2003) has provided circumstantial evidence for submillimolar 

[Ca2+]ER. In addition to ER Ca2+ storage and modulation of Ca2+ homeostasis, calreticulin has been shown to 

function, together with calnexin, as molecular chaperone for glycoprotein folding and quality control in the 

ER (Jin et al., 2009). Interestingly, overexpression of calreticulin was found to enhance the survival of plants 

grown in low Ca2+ medium (Persson et al., 2001) and to increase plant salinity tolerance (Xiang et al., 2015). 

The targeting of a Cameleon probe (YC4.6, with two KD of 58 nM and 14.4 µM) (Table 1) to the ER of pollen 

tubes has highlighted a potential involvement of the ER in the fine regulation of the tip-focused [Ca2+]cyt 

gradient required for pollen tube growth (Iwano et al., 2009).  

Arabidopsis contains four P(IIA)-type ATPase genes, AtECA1 to AtECA4, which are expressed in all 

major organs of Arabidopsis. ECA1 knock-out mutants grew poorly on medium with low Ca2+ or high Mn2+, 

indicating that ECA1-mediated uptake of these divalent cations into the ER is required for plant growth 

under conditions of Mn2+ toxicity or Ca2+ deficiency (Wu et al., 2002). The silencing of an ER-localized type 

IIB Ca2+-ATPase (ECA like) in tobacco has been found to alter intracellular Ca2+ signalling and accelerate 

programmed cell death (PCD) during plant innate immune response, indicating that the Ca2+ uptake 

pathway into the ER functions as regulator of PCD (Zhu et al., 2010). Ca2+ release from the ER has also been 

proposed to play an essential role in sieve tube occlusion via Ca2+-dependent forisome dispersion in 

legumes in response to burning stimuli (Furch et al., 2009; Tuteja et al., 2010). The recently reported 

targeting of another Cameleon variant, the CRT-D4ER (with a KD of 195 µM) (Table 1), allowed the dynamic, 

in vivo monitoring of ER luminal Ca2+, showing that the ER may also work as a capacitor/buffer of cytosolic 

Ca2+ transients (Bonza et al., 2013). In fact, cytosolic Ca2+ increases triggered by different stimuli (salt stress, 

external ATP and glutamate) were followed by Ca2+ accumulation into the ER lumen, but not by release. 

Moreover, dynamically, the ER Ca2+ rises followed temporally the cytosolic increases showing a slower rate 

of accumulation and release (Bonza et al., 2013; Corso et al., 2018). Another clue in favor of the ER role as 

cytosolic Ca2+ capacitor is confirmed by the effect of cyclopiazonic acid (CPA) (an inhibitor of IIB Ca2+-ATPase 

ECA) which reduced the luminal ER Ca2+ concentration and increased the cytosolic one (Bonza et al., 2013; 
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Zuppini et al., 2004), indicating the ECAs as fundamental players for the ER Ca2+ homeostasis. Nonetheless, 

our recent work has demonstrated that the Arabidopsis CCX2 is localized in the ER where it is directly 

involved in the control of Ca2+ fluxes between the ER and the cytosol, playing a key role in the ability of 

plants to cope with osmotic stresses (Corso et al., 2018). Concerning Ca2+-permeable channels located at 

higher plant ER, early biochemical studies have indicated the occurrence of ER Ca2+ mobilization pathways 

activated by voltage (Klusener et al., 1995) and two structurally related molecules, namely the pyridine 

nucleotides derivatives nicotinic acid adenine dinucleotide phosphate (NAADP) (Navazio et al., 2000) and 

cyclic ADP-ribose (cADPR) (Navazio et al., 2001). The molecular identity of the above voltage- and ligand-

gated Ca2+-permeable channels, however, has not been unraveled yet.   

The ER has a unique architecture that facilitates the spatial-temporal segregation of biochemical 

reactions and the establishment of inter-organellar communication networks. Spatially confined ER-PM 

microdomains are emerging as highly specialized signalling hubs both in animal systems (see e.g. Demaurex 

and Guido, 2017; Son et al., 2016) and in plants (Bayer et al., 2017). In addition, the continuity between ER 

membranes and the outer nuclear membrane suggests a potential role of the ER as Ca2+ store participating 

in the repetitive Ca2+ release/uptake from the nucleoplasm and perinuclear cytosol during legume 

symbioses (Capoen et al., 2011). Cyclic nucleotide-gated channels have recently been demonstrated to 

mediate these nuclear-associated Ca2+ oscillations induced in response to beneficial plant microbes during 

the nitrogen-fixing symbiosis and arbuscular mycorrhizal symbiosis (Charpentier et al., 2016). Structural and 

functional interactions have been demonstrated to occur between the ER membranes and stromules, 

dynamic stroma-filled tubules continuously extending and retracting from plastids (Schattat et al., 2011). 

The occurrence of specific contact sites through which ER and plastids may exchange not only lipids but 

also ions such as Ca2+, opens up the possibility of a complex and finely-tuned Ca2+ regulation, involving 

potential ER-plastid cross-talks (Mehrshahi et al., 2013) Instead, the role of ER-mitochondria contact sites in 

shaping the cytosolic Ca2+ signalling is well documented in mammals (e.g. Brini et al., 2017; Rizzuto et al., 

2012), but not in plants. We can envision such an intimate liason also in the case of plant cells, although 

direct proof is missing in this case.   

 

The plant Golgi apparatus: a rather unexplored Ca2+ store 

The Golgi apparatus in plant cells is made of discrete stacks (formerly indicated as dictyosomes) 

dispersed throughout the cytoplasm and rapidly moving (several m/s) along the surface of the ER 

(Robinson et al., 2015). In addition to essential roles in protein glycosylation and trafficking (Vitale and 

Galili, 2001), the plant Golgi apparatus serves as factory of polysaccharides (hemicellulose and pectins) for 

the cell wall matrix, whose architecture is known to be regulated by Ca2+ (Mravec et al., 2017). Moreover, 

the Golgi apparatus is the source for exocytotic vesicles, and it is known that exo- and endocytosis can be 

modulated by Ca2+ (Cucu et al., 2017). In view of the unique structural and functional features of the plant 

Golgi apparatus with respect to animal cells, we can expect that also Ca2+ handling by this compartment 

may exhibit some specificity in plant cells. Compared to the extensive information about Ca2+ handling by 

the Golgi in mammalian cells (see (Pizzo et al., 2011) for a review), knowledge about Ca2+ homeostasis and 

signalling in the plant Golgi is still scarce. Free Ca2+ levels in the Golgi ([Ca2+]Golgi) were estimated to be 

around 0.70 M (Table 2) (Ordenes et al., 2012), a value which is much lower than [Ca2+]Golgi measured in 

mammalian cells (ranging from 250 M in the cis-Golgi to 130 M in the trans-Golgi) (Pizzo et al., 2011). 

This suggests the existence of Ca2+-buffering systems inside the Golgi, and indeed calreticulin has been 
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reported to be localized at the plant Golgi, in addition to the ER (Nardi et al., 2006; Navazio et al., 2002). 

Interestingly, transient increases in Ca2+ dynamics were observed in response to several abiotic stimuli, 

such as cold shock, mechanical stimulation and hyperosmotic stress, whereas the administration of the 

synthetic auxin analogue 2,4-dichlorophenoxy acetic acid (2,4-D) induced a slow decrease of organellar Ca2+ 

(Ordenes et al., 2012). Concerning Ca2+ decoding mechanisms, two calmodulin-like proteins from A. 

thaliana, AtCML4 and AtCML5, were found to be localized in vesicular structures between the Golgi and the 

endosomal system. Nevertheless, their C-terminal CaM domain was found to be exposed to the cytosolic 

surface of the vesicles, suggesting that they may sense and decode cytosolic, rather than luminal Ca2+ 

signals (Ruge et al., 2016). The nature of Ca2+ transporting proteins still awaits clarification. Among the four 

P(IIA)-type ATPase genes in Arabidopsis, AtECA3 was proposed to function in the transport of Ca2+ and Mn2+ 

ions into the Golgi (Mills et al., 2008).  

From the data so far available it is clear that the information on the Ca2+ toolkit of the plant 

endomembrane system awaits further investigation on its precise molecular components and on the 

specific involvement of the different compartments of the plant secretory pathway as Ca2+-mobilizable 

stores in Ca2+-mediated signal transduction events.  

 

Chloroplasts as Ca2+ signal-shaping components in plant cells 

 

Recent studies have revealed that plant mitochondria and chloroplasts respond to biotic and 

abiotic stresses with specific Ca2+ signals (reviewed by (Kmiecik et al., 2016; McAinsh and Pittman, 2009; 

Nomura and Shiina, 2014; Rocha and Vothknecht, 2012)). Chloroplasts, that possess a high concentration of 

Ca2+, serve as important intracellular cytosolic “Ca2+ capacitors” in plant cells, and they may also influence 

the entire cellular Ca2+ network by modulating cytosolic Ca2+ transients. Thus, they can contribute to 

shaping cytoplasmic Ca2+ signatures (Loro et al., 2016; Nomura et al., 2012; Sello et al., 2016).  

The predominant portion of the chloroplastic Ca2+ (~15 mM) is bound to the negatively charged 

thylakoid membranes or to Ca2+-binding proteins, keeping the resting free [Ca2+]stroma as low as 150 nM 

(Table 2) to avoid the precipitation of phosphates (Hochmal et al., 2015). Importantly, this concentration 

can be actively regulated: light-dependent depletion of cytosolic Ca2+ in the vicinity of chloroplasts has been 

observed in green algae, suggesting that an active Ca2+ uptake machinery is present on the envelope 

membranes, which is regulated by light/dark transitions and/or photosynthesis (Sai and Johnson, 2002). 

Specific, high-resolution tools have been exploited to monitor and quantify plastid Ca2+ dynamics (Table 1). 

The bioluminescent Ca2+ reporter aequorin was targeted to the chloroplast stroma, highlighting induction 

of Ca2+ influx into the stroma upon light-to-dark transition (Sai and Johnson, 2002) as well as a role for 

stromal Ca2+ signals in the activation of plant innate immunity (Nomura et al., 2012; Stael et al., 2015). 

Constructs encoding YFP-aequorin chimeras targeted to the outer and inner membrane of the chloroplast 

envelope, in addition to the stroma, are also available to investigate Ca2+ dynamics in these compartments 

(Mehlmer et al., 2012). We have recently used these plastid-targeted aequorin probes to reveal differential 

stimulus-specific Ca2+ responses of amyloplasts versus chloroplasts (Sello et al., 2016), suggesting that Ca2+ 

signalling might have specific roles during plastid development. Interestingly, using chloroplast-targeted 

Cameleon probe, Ca2+ spikes could be detected in a large portion (>80%) of guard cell chloroplasts (Loro et 

al., 2016). The observed unique spiking pattern for each chloroplast strongly suggests that these Ca2+ 
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signals can be modulated at the level of the single organelle (Loro et al., 2016). The reported observations 

support the concept that Ca2+ plays a key role in integrating internal and external stimuli at the level of 

individual chloroplasts. Ca2+ spikes appeared under chloroplast-autonomous control, even though the 

source of the Ca2+ causing the spike may be the cytosol.  

It has been hypothesized that opening of individual Ca2+ channels following a stimulus from within 

the chloroplast itself may allow influx of Ca2+ from the cytosol along the negative electrochemical gradient 

across the chloroplast envelope. For the inner envelope membrane, a value of approximately -110 mV has 

been reported (Wu et al., 1991). However, the nature of such channel(s) remain elusive (for recent reviews 

see e.g. Carraretto et al., 2016; Finazzi et al., 2015; Pottosin and Shabala, 2015). Light-dependent uptake of 

Ca2+ into isolated chloroplast is thought to be mediated by a Ruthenium Red-sensitive uniport-type carrier 

in the envelope membrane and to be linked to photosynthetic electron transport via the membrane 

potential (Kreimer et al., 1985). Electrophysiological studies suggest the existence of voltage-dependent 

Ca2+ uptake activity (the fast-activating cation channel (FACC)) in the inner envelope membrane of pea 

chloroplasts (Pottosin et al., 2005). However, the molecular identity of FAAC remains elusive and sensitivity 

to Ruthenium Red has not been investigated. Presuming that the outer membrane is permeable to Ca2+ via 

porin-like molecules (Carraretto et al., 2016; Szabo and Zoratti, 2014), the most promising inner envelope-

located candidates include ion channels that may mediate the negative voltage-driven Ca2+ uptake across 

the inner envelope membrane (Heiber et al., 1995). These channel-forming proteins include the plastid-

located glutamate receptors GLR3.4 (Teardo et al., 2011; Teardo et al., 2010) and GLR3.5 (Teardo et al., 

2015) the mechanosensitive MSL2/3 channels (Haswell and Meyerowitz, 2006), a Ca2+-ATPase like protein 

(ACA1) (Huang et al., 1993), as well as HMA1 P-type ATPase (Ferro et al., 2010). The possible role, 

localization (for ACA1) and specificity of the latter two proteins is however highly debated (Hochmal et al., 

2015). The recently identified member of the UPF0016 family, the PHOTOSYNTHESIS AFFECTED MUTANT71 

(PAM71) located to the thylakoid membrane was reported to function in manganese transport in higher 

plants (Schneider et al., 2016). The closest homolog of PAM71, PAM71-HL is located to the chloroplast 

envelope and is likely to exert the same function (Schneider et al., 2016) as the homologs in cyanobacteria 

are also linked to manganese homeostasis (Gandini et al., 2017). On the other hand, the thylakoid-located 

PAM71 was proposed to encode a putative Ca2+/H+ antiporter with critical functions in the regulation of 

photosystem II and in chloroplast Ca2+ and pH homeostasis in Arabidopsis (Wang et al., 2016a). The 

possibility that this protein is able to transport manganese in a Ca2+-dependent way or to transport both 

cations, will have to be explored in a simplified, reconstituted system. A further candidate for Ca2+ transport 

across chloroplast membranes is represented by one of the six homologs of the Ruthenium Red-sensitive 

mammalian mitochondrial uniporter (MCU), which displays an ambiguous N-terminal sequence, possibly 

allowing targeting to both mitochondria and chloroplasts (Stael et al., 2012). However, the localization, 

channel activity, and the permeability for Ca2+ of this putative plastidial member of the AtMCU family has 

not been described up to now, in contrast to four other mitochondria-located AtMCU homologs (Carraretto 

et al., 2016; Teardo et al., 2017; Wagner et al., 2015a). At present, it is difficult to understand whether the 

FAAC channel might correspond to one of the above entities. In addition to Ca2+-permeable channels in 

chloroplasts, other, regulatory cation fluxes may shape the cytosolic Ca2+ signature during stress. Stephan 

and colleagues (Stephan et al., 2016) brought evidence for involvement of two, envelope-located K+/H+ 

antiporters, namely KEA1 and KEA2 in Ca2+-induced cytoplasmic responses during osmotic stress. In 

particular, the double kea1/kea2 mutant showed a reduced cytosolic Ca2+ level upon treatment with a 

hyperosmotic sorbitol solution, suggesting that the function of the two K+/H+ antiporters is intimately linked 
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to Ca2+ mobilization pathways at the chloroplast membranes under these conditions. However, the exact 

mode of action is still unclear.  

In addition to the above-mentioned ion channels and transporters, several candidate Ca2+ binding 

proteins and Ca2+ sensors have been identified in these organelles and shown to critically contribute to Ca2+ 

homeostasis  (Hochmal et al., 2015; Rocha and Vothknecht, 2012; Stael et al., 2012). The impact of 

impaired organellar Ca2+ handling for plant physiology has been convincingly illustrated in the cases of the 

chloroplast-localized Ca2+ sensor protein CAS, for the thylakoid-located Post-Floral-specific gene 1 PPF1 and 

for the glycosyltransferase QUASIMODO1 (QUA1) (Nomura et al., 2008; Petroutsos et al., 2011; Wang et al., 

2003; Zheng et al., 2017). In addition, another Ca2+ binding protein, CP12 was shown to play an important 

role in the regulation of the Calvin-Benson-Bassham cycle (Rocha and Vothknecht, 2013). Studies on the 

thylakoid-localized Ca2+-sensing receptor CAS showed that chloroplasts modulate intracellular Ca2+ signals 

by controlling external Ca2+-induced cytosolic Ca2+ transients during stomatal closure (Nomura et al., 2008; 

Weinl et al., 2008). Indeed, mutation of the putative chloroplastic Ca2+ sensor CAS led to impaired stomatal 

movement and impaired plant growth, although the detailed molecular mechanism underlying CAS-related 

effects under various conditions has not been fully elucidated yet (Fu et al., 2013; Wang et al., 2016b; 

Wang et al., 2012). Pathogen-associated molecular pattern (PAMP) signals evoked specific Ca2+ signatures 

in the stroma in chloroplasts and CAS was involved in stromal Ca2+ transients (Nomura et al., 2012). CAS, 

and thus Ca2+ was shown to regulate chloroplast salicylic acid (SA) biosynthesis and plants depleted of CAS 

failed to induce SA production in response to pathogen infection. Transcriptome analysis demonstrated 

that CAS allowed chloroplast-mediated transcriptional reprogramming during plant immune responses, as 

expression of several nuclear defense-related genes was shown to be dependent on CAS. Furthermore, 

activity of MAPK kinases was shown to be regulated in a CAS-dependent manner, suggesting that 

chloroplast-modulated Ca2+ signalling controls the MAPK pathway for the activation of critical components 

of the retrograde signalling chain (Guo et al., 2016a; Leister et al., 2017). Thus, it is expected that 

chloroplasts could play pivotal roles in the Ca2+ signalling in plant cells upon different stress stimuli, as 

indeed indicated by recent results linking the CAS protein to chloroplast-dependent Ca2+ signalling under 

salt and drought stresses as well (Zhao et al., 2015; Zheng et al., 2017). Finally, QUA1 was also recently 

identified as a regulator of [Ca2+]cyt in response to drought and salt stress (Zheng et al., 2017).  

In addition to the chloroplast stroma, Ca2+ is required for the function of thylakoid lumen-located 

proteins such as the oxygen evolving complex, suggesting that changes in free [Ca2+] are likely to occur also 

in the lumen. Recently, aequorin-based chimeras have been targeted to the thylakoid lumen and the 

stromal surface of the thylakoid membrane (Sello et al., 2018). The design of these thylakoid-specific Ca2+ 

indicators allowed to measure Ca2+ concentrations inside and around thylakoids (Table 2) and to monitor 

dynamic Ca2+ changes in the above sub-chloroplast locations in response to different environmental cues.  

The availability of this complex toolkit of chloroplast-targeted Ca2+ reporters will pave the way for 

future studies on chloroplast Ca2+ homeostasis and signalling, and rapidly advance our understanding of the 

still enigmatic integration of these organelles in the plant Ca2+ signalling network. In summary, a systematic 

study linking the possible players of chloroplast Ca2+ dynamics to specific plant stress responses using 

envelope, stroma, thylakoid membrane and thylakoid lumen-targeted Ca2+ sensors would be of great 

importance to further highlight the importance of this organelle in global Ca2+ signalling within plant cells. 

Moreover, a promising field of investigation concerns the analysis of Ca2+ handling by non-green plastids in 

non-photosynthetic tissues and organs, such as the root. Indeed, the cell-type specific cytosolic Ca2+ 
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responses of the root to environmental cues (Kiegle et al., 2000) may entail a differential contribution of 

root plastids. Moreover, it can be envisaged that root plastids may also play relevant roles in Ca2+ signalling 

during plant interactions with microorganisms of the rhizosphere, either pathogenic or beneficial. 

 

Mitochondrial Ca2+ signalling in plants 

 

Plant mitochondrial Ca2+ signalling has recently been reviewed (Stael et al., 2012; Nomura and 

Shiina, 2014; Carraretto et al., 2016; Wagner et al., 2016), therefore here we prevalently focus on the 

missing links to understand the role(s) played by mitochondria in Ca2+ signalling processes. The emerging 

idea is that, similarly to animal cells, plant mitochondria can play a role in the modulation of cytosolic Ca2+ 

signatures, hence participating in the general intracellular Ca2+ homeostasis. 

The complex series of redox reactions of the mitochondrial electron transport chain (ETC) coupled 

to proton movement against the electrochemical gradient across the inner mitochondrial membrane (IMM) 

generates a proton motive force (pmf) composed of a proton gradient (ΔpH) across the IMM of about 0.9 

pH units, and of an electric component (Δψ) reaching values of around -180 mV / -220 mV (Poburko et al., 

2011; Szabo and Zoratti, 2014). The generated pmf is exploited to synthetize ATP, and for the import of 

proteins as well as of several charged substrates and cofactors that are translocated into the matrix via 

specialized co-transporters (Lee and Millar, 2016). Moreover, the negative matrix-side Δψ drives the import 

of positively charged ions, like Ca2+, which flux into the matrix passively through channels reaching free Ca2+ 

concentrations with values ranging from 100 to 600 nM (Table 2) (depending on the plant species and cell 

type (Logan and Knight, 2003; Wagner et al., 2015b; Zottini and Zannoni, 1993)). In mammals, the free 

matrix Ca2+ has been shown to stimulate the activity of several enzymes of the Krebs cycle and the ATP 

synthase (Bagur and Hajnoczky, 2017). While in mammals mitochondria are essential players of Ca2+-based 

signalling processes, in plant cells a clear-cut, unambiguous evidence demonstrating the involvement of this 

organelle in Ca2+ signalling processes is still lacking.  

The recent use of Ca2+ sensors (Rhod-2; aequorin and Cameleon) targeted to the plant 

mitochondrial matrix (Table 1) have allowed to study in vivo the mitochondrial Ca2+ dynamics in both 

resting conditions, and after challenging the plant cells with different stimuli or drug treatments (Logan and 

Knight, 2003; Loro et al., 2012). A side by side use of transgenic plants stably expressing genetically 

encoded Ca2+ sensors targeted to cytosol or mitochondria have then enabled to define the relationship, in 

terms of Ca2+ handling, among these two different compartments. An important and fundamental finding 

resulting from these in vivo studies was the ability of mitochondria to accumulate and release Ca2+ 

following cytosolic Ca2+ transients, being essentially dependent on them (Logan and Knight, 2003; Loro et 

al., 2012; Manzoor et al., 2012; Teardo et al., 2015; Wagner et al., 2015a). Moreover, stimuli which induce 

different cytosolic Ca2+ increases, in terms of dynamics and magnitudes, were also able to generate 

different mitochondrial Ca2+ dynamics, again confirming the existence of a strict relationship between 

cytosol and mitochondria. Intriguingly, these works highlighted that mitochondria show slower dynamics of 

Ca2+accumulation and release with respect to the cytoplasmic variations, strongly pointing to the possibility 

that plant mitochondria operate as cytosolic Ca2+ capacitors, at least locally, playing a role in the shaping of 

cytosolic Ca2+ signals (McAinsh and Pittman, 2009).  
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In mammals, several reports demonstrated a role of mitochondria in cytosolic Ca2+ clearing and 

buffering, thus affecting and regulating Ca2+-based signalling responses (Rizzuto et al., 2012). However, 

indications that this way of regulation operates also in plant cells are still lacking - therefore new 

experimental strategies to demonstrate the existence, if any, of such a mechanism are needed. In this 

respect, the recent identification of some of the molecular components responsible for the mitochondrial 

Ca2+ transport across the IMM may be of help to test if the “mitochondria clearing hypothesis” is valid in 

plant. The molecular identification of the mitochondrial channel uniporter (MCU) (Baughman, 2011; De 

Stefani et al., 2011) allowed to achieve important steps also in the plant field. In Arabidopsis, AtMCU1 and 

AtMCU2, homologues of the mammalian MCU were shown to localize to mitochondria and to transport 

Ca2+ when expressed in cell-free or heterologous systems (Teardo et al., 2017; Tsai et al., 2016). However, 

root mitochondria of the mcu1 knock-out (KO) Arabidopsis plants showed just a small reduction in the Ca2+ 

uptake rate compared to the wild type in vivo (Teardo et al., 2017), pointing to a functional redundancy, in 

line with the prediction of mitochondrial localization of at least five out the six MCU homologs in 

Arabidopsis (Stael et al., 2012). Interestingly, these isoforms appear to display tissue-specific distribution 

(Selles et al., 2018), possibly allowing to clarify the role of MCUs in a certain tissue using double/triple KO 

plants.  

Besides the MCUs, other possible routes for mitochondrial Ca2+ accumulation also exist in planta. 

Some members of the ionotropic glutamate-like receptor (GLR) family have been shown to transport Ca2+ 

(Ortiz-Ramirez et al., 2017; Tapken et al., 2013; Vincill et al., 2012). In addition to the predominant 

localization of the Arabidopsis GLR3.5 to plastids, a splicing variant is localized to mitochondria and a glr3.5 

KO mutant showed a reduction of the mitochondrial Ca2+ accumulation rate compared to the wild type 

(Teardo et al., 2015). A priori, GLR3.5 might work agonistically with the MCU for the accumulation of Ca2+. 

Although in Arabidopsis there are no reports showing mitochondrial Ca2+ dynamics in transgenic lines that 

overexpress MCUs, the recently described mutant lacking the mitochondrial Ca2+ uptake regulator protein 

(MICU) that inhibits channel activity, showed an overaccumulation of mitochondrial Ca2+ (even in resting 

conditions) when compared to the wild type (Wagner et al., 2015a), therefore potentially mimicking the 

effects of MCU overexpression. Moreover, the lack of MICU accelerated the speed of mitochondrial Ca2+ 

accumulation in root tip cells in response to external stimuli. However, cytosolic Ca2+ dynamics assayed in 

the micu mutant background did not show significant differences if compared to the wild type, indicating 

that an increase of mitochondrial Ca2+ accumulation does not necessarily boost the cytosolic Ca2+ clearing.      

In summary, the study of both mitochondrial and cytosolic Ca2+ dynamics would be fundamental in 

plants lacking simultaneously MCU isoforms and GLR3.5 (possibly with an inducible system) to define the 

role of mitochondria in clearing of cytosolic Ca2+ and therefore their role for the regulation of Ca2+ 

signalling. In addition to MCUs and GLR3.5, plant mitochondria may have other routes for Ca2+ uptake. 

Three-mitochondrial adenine nucleotide/phosphate carriers (AtAPC1-3) can transport ATP-Ca in 

reconstituted liposomes (Lorenz et al., 2015). However, evidence that the ATP-Ca transport in mitochondria 

occurs in vivo is lacking. Thus, it would be extremely interesting to study Ca2+ dynamics in mitochondria and 

cytosol of apcs mutants carrying mitochondria- and cytosol-targeted Ca2+ probes. Pollen tubes or root hairs, 

where both Ca2+ and ATP are fundamental players for a proper growth (Winship et al., 2016), might 

represent and especially useful systems for these studies. Indeed, a recent work highlighted the importance 

for MCU2 in pollen tube development even if it was not clear whether the observed phenotype was 

dependent or not on an altered mitochondrial or cytosolic Ca2+ homeostasis (Selles et al., 2018).  
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It must be mentioned that the experiments presented so far were mainly carried out in Arabidopsis 

root tip cells and essentially designed to study fast Ca2+ dynamics in mitochondria and cytosol. The mcu1, 

mcu2, micu and glr3.5 plants showed mild phenotypes like altered mitochondrial morphology, reduced 

pollen tube germination and growth in vitro, accelerated senescence or reduced seedling root lengths that 

can be somewhat difficult to directly correlate with short-term signalling events. The lack of a strong 

phenotype in terms of mitochondrial and cytosolic Ca2+ dynamics and Ca2+-related signalling events can be 

explained by the lack of a true null mutant (unable to accumulate Ca2+ into mitochondria). Nevertheless, 

studies at specific developmental stages and in specific organs/tissues or cell types may be of help. In 

support of this idea, it has previously been demonstrated that the concentration of free Ca2+ in 

mitochondria is higher in the tip of the root hairs (500 nM) than in the shanks (200 nM), hence essentially 

following the cytosolic Ca2+ gradient (Wang et al., 2010). As mentioned above, growing pollen tubes and 

root hairs, that have both a high demand of metabolic energy and require the establishment of a defined 

cytosolic tip Ca2+ gradient, may represent the most suitable system (Michard et al., 2017). Indeed, the 

recent demonstration that the mcu2 shows a phenotype in pollen tubes supports this idea (Selles et al., 

2018). It might be also interesting to understand if and how mitochondrial Ca2+ release can regulate 

cytosolic Ca2+ recovery. In a simplified way, we may hypothesize that the slow decrease of mitochondrial 

Ca2+ might delay the cytosolic Ca2+ recovery phase. The Arabidopsis genome contains two genes with 

homology to the mammalian LETM1, an EF-hand protein proposed to be involved in the export of Ca2+ from 

the mitochondria (Austin et al., 2017; Shao et al., 2016). Both Arabidopsis homologs, LETM1 and LETM2, 

reside in the IMM and the double knockout mutant is not viable (Zhang et al., 2012). To date there are no 

data showing Ca2+ dynamics in the mitochondria or cytosol (of at least single LETM mutants) and the ion 

species transported by this protein are a matter of debate even in the mammalian system. Hence, it would 

be important to analyze the cytosol/mitochondria Ca2+ handling relationships in an Arabidopsis mutant 

lacking both LETMs, possibly by using an inducible silencing system to avoid embryonic lethality. 

In order to systematically study the role of mitochondria in the regulation of Ca2+ signalling, a 

forward genetic strategy for the isolation of mutants impaired in the mitochondrial Ca2+ homeostasis could 

be of relevance. In this case the use of molecular imaging coupled with high-throughput screenings and 

possibly with a relatively simple genetic system (e.g. Physcomitrella patens or Marchantia polymorpha, 

Chlamydomonas reinhardtii) could provide a series of potential new candidate genes that could help to 

elucidate the role of mitochondria in Ca2+ signalling processes. A similar approach was pursued by Zhao and 

co-workers (Zhao et al., 2013) that screened an Arabidopsis thaliana T-DNA insertion pool to identify 

mutants defective in salt stress-induced increases in cytosolic Ca2+. This screening pointed to Actin-Related 

Protein2 (Arp2) which affected not only the salt-induced cytosolic Ca2+ increases, but also mitochondria 

movement, mitochondrial membrane potential and opening of the cell-death triggering permeability 

transition pore (PTP). An interesting observation was that the pharmacological block of the mitochondrial 

PTP opening prevented the cytosolic Ca2+ increase, but unfortunately the authors did not provide any direct 

evidence on altered mitochondrial Ca2+ dynamics. Another recent work identified the WRKY15 transcription 

factor as negative regulator of salt and osmotic stress-tolerance in Arabidopsis (Vanderauwera et al., 2012). 

Importantly, the authors revealed that the WRKY15 overexpression induced an unfolded protein response 

which impaired the cytosolic Ca2+ homeostasis and affected the mitochondrial retrograde regulation 

mechanism, de facto triggering a stress hypersensitivity. Treatment with CPA that affects the activity of 

ECAs (see above), promoted mitochondrial responses, placing this organelle at the crossroad of ER stress 

and general cellular responses. A detailed description of Ca2+ dynamics in the mitochondria, ER and cytosol 
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has not been provided, making it difficult to assign a specific role of mitochondria in the regulation of 

cytosolic Ca2+ under these experimental conditions. In summary, suggested role of mitochondrial Ca2+ 

regulation in the salt and osmotic stress response in these latter works is of high interest and deserves 

further investigation.  

 

Peroxisomal Ca2+ signalling 

 

When discussing the role of organelles in Ca2+ signalling, peroxisomes have to be taken into account 

as well, even if as to date, only few studies addressed this question during the last few years. Peroxisomes 

are ubiquitous single-membrane-bounded organelles that fulfill essential roles in the cellular metabolism. 

Differentially from mitochondria, peroxisomes do not have any electron transport chain and, to the best of 

our knowledge, existence of a membrane potential has not been reported. However, the peroxisomal 

membrane is impermeable to high molecular weight molecules (>1,000 Da) and specific carriers are 

expressed in the organelles for the transport of different metabolites (Linka and Esser, 2012; Linka and 

Weber, 2010). Both mammalian and plant peroxisomes accumulate Ca2+ into the lumen in response to 

stimuli that trigger cytosolic Ca2+ increases (Costa et al., 2010; Costa et al., 2013; Lasorsa et al., 2008). The 

resting intra-peroxisomal luminal Ca2+ concentration has been estimated to range between 150 nM and 2 

µM (Table 2) (Drago et al., 2008). In mammals, stimuli which induce cytosolic Ca2+ increases are followed by 

slow rises in intraperoxisomal Ca2+ that do not require either ATP, membrane potential and H+ gradient 

(Drago et al., 2008). In plant cells only two reports showed stimulus-induced peroxisomal Ca2+ increase in 

guard cells and root tip cells (Costa et al., 2010). In both cases, the peroxisomal Ca2+ dynamics were like the 

cytosolic ones, reminescent to what is reported in mammalian cells. From the available results, we can 

summarize that peroxisomes essentially show an equilibration of the peroxisomal luminal Ca2+ with that of 

the cytosol and only potentially work as an additional cytosolic Ca2+ buffer. On the other hand, the catalase 

3 (CAT3) controls the H2O2 levels in guard cells (Zou et al., 2015), and this regulation is dependent on Ca2+ in 

two different ways - one mediated by calmodulin (Yang and Poovaiah, 2002) that operates in peroxisomes, 

and one mediated by CPK8 operating in the cytosol (Zhou et al., 2015). Hence, a stimulus that induces both 

a cytosolic and peroxisomal Ca2+ increase can activate the same enzyme in different locations, via different 

mechanisms. Another recent observation reports that the peroxisomal Ca2+ is required, via a CaM-

dependent mechanism, for protein import and for the normal functionality of peroxisomal enzymes, 

including antioxidant and photorespiratory enzymes, as well as for nitric oxide production (Corpas and 

Barroso, 2017). In conclusion, the property of peroxisome to accumulate and release Ca2+ into and from the 

lumen has a functional role in plant cell, however currently we lack information about the identity of 

possible transporters/channels involved in these fluxes.  

 

The apoplast as a main source of Ca2+ in signalling 

 

The apoplast is obviously not an intracellular organelle, however together with the vacuole, the cell 

wall represents the main Ca2+ store in plants cells with an estimated concentration of free Ca2+ ranging from 
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0.33 to 1 mM (Table 2) (Conn and Gilliham, 2010; Stael et al., 2012). Remarkably, the apoplast is considered 

the first plant compartment encountering environmental signals (Gao et al., 2004)  and in support of this 

there are several evidences which demonstrate that the apoplast represents the primary source for the 

entry of Ca2+ in the cell upon the perception of a given stimulus. In fact, by chelating extracellular Ca2+, 

using EGTA, BAPTA, or by blocking the plasma membrane non-selective cation channels with La3+ or Gd3+, 

stimuli-induced cytosolic Ca2+ increases are strongly reduced if not completely abolished (Ali et al., 2007; 

Knight et al., 1996; Lamotte et al., 2004; Navazio et al., 2007). Despite of the importance of apoplast in the 

generation of cytosolic Ca2+ increases, a limited number of works have reported in vivo direct 

measurements of apoplastic Ca2+. This is mainly due to the high Ca2+ concentration and the low pH of the 

apoplast which make Ca2+ measurements challenging, similarly to what we underlined for the vacuole. 

However, Gao and colleagues were able to target aequorin to the extracellular space and measure 

apoplastic Ca2+ dynamics in response to cold stress revealing that they were different from the cytosolic 

ones. Remarkably, the authors also showed that the permanent washout of apoplastic Ca2+ determined a 

continuing aequorin signal decay hence confirming the probe’s functionality (Gao et al., 2004). More 

recently Wang and colleagues have instead used the Oregon Green BAPTA 488 5N dye to demonstrate that 

leaf cells of the cngc2 and cax1cax3 mutants overaccumulate apoplastic Ca2+ compared to the wild type, 

when grown in presence of high external Ca2+ in the medium (Wang et al., 2017). Interestingly, the 

overaccumulation of apoplastic Ca2+ in the cax1/cax3 mutant was previously reported by Conn and co-

workers performing X-ray microanalysis (Conn et al., 2011). The fact that CAX1 and CAX3 are tonoplast 

localised Ca2+/H+ exchangers, makes this latter observation of a primary importance since it supports the 

existence of a potential communication between apoplast and vacuole, which will probably deserve more 

attention.  

 

Conclusion and perspectives 

 

Although there are common elements in Ca2+-based signal transduction networks in all eukaryotes, 

unique traits of plant Ca2+ signalling derive from both structural features of the plant cell and from 

differences in the lifestyle and developmental programs of plants. Genetic approaches using mutant plants 

defective in specific Ca2+ transporters/channels, together with pharmacological approaches using Ca2+ 

chelators and/or inhibitors of Ca2+ channels differentially distributed across cellular membranes, have 

elucidated how the different stimulus-specific cytosolic Ca2+ signatures often derive from the joint 

contribution of more than one source of Ca2+. Figure 2. summarizes the different channels/transporters 

possibly involved in Ca2+ fluxes in different intracellular membranes. Cross-talks among cellular 

compartments, possibly due to structurally close contacts may also affect the ensuing global cytoplasmic 

Ca2+ signal. In this respect, the possible use of optical molecular tweezers (Sparkes, 2016) might be of 

relevance.  

In summary, it is clear that the combination of an increasing understanding of the molecular players 

and elements underlying plant Ca2+ signalling in organelles, together with newly generated detection 

systems for measuring organellar Ca2+ concentrations in intact plants, should provide fruitful grounds for 

ground-breaking discoveries. The view is emerging, that beside transporters, also intracellular ion channels 

contribute to fine-tuning of cytoplasmic Ca2+ dynamics. In this respect, existing proteomic data for different 
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organelles (e.g. Prime et al., 2000) might allow the identification of further, new (putative) Ca2+-transport 

modules and decoders that might play a role in shaping Ca2+ homeostasis within the plant cell. One of the 

greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are 

regulated in a concerted manner to translate specific information into a Ca2+ signature. 
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Figure legends:  

Figure 1. Overview of organelle-targeted genetically encoded Ca2+ indicators. Available probes based on 

aequorin (Knight et al., 1991; Johnson et al., 1995; Knight et al., 1996; van Der Luit et al., 1999; Logan & 

Knight, 2003; Mehlmer et al., 2012; Ordenes et al., 2012; Sello et al., 2018), on Cameleon (Mori et al., 2006; 

Costa et al., 2010; Krebs et al., 2012; Loro et al., 2012; 2013; 2016; Bonza et al., 2013), on R-Geco1 (Ngo et 

al., 2014; Keinath et al., 2015; Waadt et al., 2017) and on GCaMP3 or 6 (Ast et al; 2017; Liu et al., 2017; 

Vincent  et al., 2017a; 2017b; Waadt et al., 2017) used in different cell compartments are summarized. See 

text and Table 2 for details regarding the Ca2+ concentration values within the organelles and Table 1 for 

the affinities of the above probes for Ca2+.  
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Figure 2. Organelle-located Ca2+ permeable channels and transporters possibly involved in Ca2+ 

transport across intracellular membranes. Different channels/transporters putatively involved in Ca2+ 

uptake/release into/from organelles and endomembranes are listed. The proteins involved are cyclic 

nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), two-pore channels (TPCs), 

mechanosensitive channels (MSLs), autoinhibited Ca2+-ATPases (ACAs), ER-type Ca2+-ATPases (ECAs), P1-

ATPases (HMA1), mitochondrial Ca2+ uniporter complex (MCUC), Ca2+/H+ exchangers (CAX) and 

cation/Ca2+ exchangers (CCX2). See text for further details.  

 

 

 

 

 

 

Table 1. Summary of available genetically encoded Ca2+indicators used in plants. The in vitro KD for Ca2+ of 

the different sensors are those reported in the original works. For the bioluminescent aequorin sensors the 

reported in vitro KD values are 13 μM (Kendall et al., 1992) and 7.2 μM (Brini et al., 1995). Other available 

recently generated Arabidopsis lines expressing GECO variants of Ca2+ sensors are reported in Waadt et al., 

2017. 

 

 

 

Name Version Type  Peaks of  

Excitation/

Emission 

(mn) 

In vitro KD  

for Ca2+* 

Subcellular 

localisation 

References 

Cameleo

n 
YC3.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM 

cytosol and 

nucleus 

Nagai et al., 2004; 

Mori et al., 2006  

  
NES-YC3.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM cytosol Krebs et al., 2012 

  
NLS-YC3.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM nucleus Krebs et al., 2012 

  
NUP-YC3.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM nucleus Costa et al., 2017 

  4mt-YC3.6 Ratiometric Ex 440/Em 250 nM mitochondria Loro et al., 2012 
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CFP/cpVenus 480/530 

  
PM-YC3.6-LTI6b 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM 

plasma 

membrane 

Krebs et al., 2012; 

Iwano et al., 2015 

  
2Bam4-YC3.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
250 nM 

chloroplasts 

and plastids 
Loro et al., 2016 

              

  
Nano65 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
65 nM 

cytosol and 

nucleus 

Horikawa et al., 2010; 

Choi et al., 2014 

              

  

SP-YC4.6-ER 
Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 

58 nM / 

14.4 μM 

endoplasmic 

reticulum 

Nagai et al., 2004; 

Iwano et al., 2009;  

Tian et al., 2014 

  
2Bam4-YC4.6 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 

58 nM / 

14.4 μM 

chloroplasts 

and plastids 
Loro et al., 2016 

              

  
4mt-D3cpv 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
600 nM mitochondria Loro et al., 2013 

  
D3cpv-KVK-SKL 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
600 nM peroxisomes 

Palmer et al., 2006; 

Costa et al., 2010 

  
TP-D3cpv 

Ratiometric 

CFP/cpVenus 

Ex 440/Em 

480/530 
600 nM tonoplast Krebs et al., 2012 

              

  
CRT-D4ER 

Ratiometric 

CFP/Citrine 

Ex 440/Em 

480/530 
195 μM 

endoplasmic 

reticulum 

Palmer et al., 2006; 

Bonza et al., 2013 

              

Twitch 
Twitch 3 

Ratiometric 

CFP/cpCit174 

Ex 440/Em 

480/530 
250 nM 

cytosol and 

nucleus 

Thestrup et al., 2014;  

Waadt et al., 2017 

              

Geco 

R-Geco1 
Intensiometric 

mApple 

Ex 561/Em 

600 
482 nM 

cytosol and 

nucleus 

Zhao et al., 2011; Ngo 

et al., 2014;  

Keinath et al., 2015 

  
NR-Geco1 

Intensiometric 

mApple 

Ex 561/Em 

600 
482 nM nuclear 

Zhao et al., 2011; 

Kelner et al., 2018 
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NR-Geco1.2 

Intensiometric 

mApple 

Ex 561/Em 

600 
1.2 μM nuclear 

Wu et al., 2013; 

Kelner et al., 2018 

  
CG-Geco1 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
749 nM cytosol 

Zhao et al., 2011; 

Kelner et al., 2018 

  
CG-Geco1.2 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
1.15 μM cytosol 

Zhao et al., 2011; 

Kelner et al., 2018 

  

R-Geco1-

mTurquoise 

Ratiometric 

mApple/mTurqouise 

Ex 

405/561/E

m 480/600 

NA 
cytosol and 

nucleus 
Waadt et al., 2017 

              

GCaMP 
GCaMP3 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
542 nM 

cytosol and 

nucleus 

Vincent et al., 2017a; 

2017b 

  
GCaMP6f 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
375 nM 

cytosol and 

nucleus 
Waadt et al., 2017 

  
GCaMP6s 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
144 nM 

cytosol and 

nucleus 
Liu et al., 2017 

  
MatryoshCaMP6s 

Ratiometric 

cpGFP/LSSmOrange 

Ex 440/Em 

515/600 
197 nM 

cytosol and 

nucleus 
Ast et al., 2017 

              

Case 
Case12 

Intensiometric 

cpGFP 

Ex 488/Em 

515 
1 μM 

cytosol and 

nucleus 

Souslova et al., 2007; 

Zhu et al., 2013 

              

Aequorin Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

cytosol and 

nucleus 
Knight et al., 1991 

  Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM nucleus 

van Der Luit et al., 

1999 

  Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast 

stroma 
Johnson et al., 1995 

  Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM mitochondria 

Logan and Knight, 

2003 

  Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM Golgi Ordenes et al., 2012 

  Aequorin Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

vacuole/tono

plast 
Knight et al., 1996 
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YFP-

aequorin 
CYA Bioluminescence  

No Ex -/Em 

465 
7.2-13 μM cytosol Mehlmer et al., 2012 

  NYA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM nucleus Mehlmer et al., 2012 

  YA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

plasma 

membrane 
Mehlmer et al., 2012 

  CHYA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast/p

lastid stroma 

Mehlmer et al., 2012; 

Sello et al., 2016 

  MYA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM mitochondria Mehlmer et al., 2012 

  OEYA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast 

outer 

envelope  

Mehlmer et al., 2012; 

Sello et al., 2016 

  IEYA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast 

inner 

envelope  

Mehlmer et al., 2012  

  TL-YA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast 

thylakoid 

lumen 

Sello et al., 2018 

  TM-YA Bioluminescence  
No Ex -/Em 

465 
7.2-13 μM 

chloroplast 

thylakoid 

membrane 

Sello et al., 2018 

              

GFP5-

aequorin 
pchitGFP5:AQ Bioluminescence  

No Ex -/Em 

465 
NA apoplast Gao et al., 2004 

              

GFP-

aequorin 
G5A 

Bioluminescence 

resonance  

energy transfer 

 

 

No Ex -/Em 

515 
NA 

cytosol and 

nucleus 

Baubet et al., 2000; 

Xiong et al., 2014 
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Subcellular compartment Range/estimation 

of resting free Ca2+  

Method of measurement References 

Apoplast 330 µM - 1 mM X-ray microanalysis Conn et al., 2011  

Cytosol 50 - 100 nM 

Aequorin, Cameleon 

(YC3.6), R-Geco1 

Knight and Knight, 1995, 

Logan and Knight, 2003; 

Wagner et al., 2015a; 

Waadt et al., 2017 

Nucleus 100 nM Aequorin 

Van der Luit et al., 1999; 

Mithöfer and Mazars, 2002 

Mitochondria matrix 100 - 600 nM 

Aequorin, Cameleon 

(YC3.6), Fura-2 

Zottni and Zannoni, 1993; 

Logan and Knight, 2003; 

Wagner et al., 2015a;  

Chloroplast stroma 100 - 200 nM 

Aequorin, Cameleon 

(YC3.6) 

Mehlmer et al., 2012; 

Nomura et al., 2012; Sello et 

al., 2016; Loro et al., 2016 

Thylakoid lumen 500 nM Aequorin Sello et al., 2018 

Amyloplast/Plastid stroma 80 - 100 nM 

Aequorin, Cameleon 

(YC3.6) 

Sello et al., 2016; Loro et al., 

2016 

Vacuolar lumen 200 µM  - 50 mM X-ray microanalysis 

Conn and Gilliham, 2010; 

Conn et al., 2011 

Endoplasmic reticulum 

lumen 50 - 500 µM  Cameleon (CRT-D4ER) 

Iwano et al., 2009; Bonza et 

al., 2013 

Golgi lumen 700 nM Aequorin Ordenes et al., 2012 

Peroxisome lumen 150 nM - 2 µM  

Cameleon (D3cpv-KVK-

SKL) Costa et al., 2010 

 

 

 

 

Table 2. Summary of measured and estimated Ca2+ concentrations at resting conditions in the different 

subcellular compartments of plant cells. The reported values are an estimation of Ca2+ concentrations in 

the different compartments based on direct measurements or deducted from the in vitro KD of the Ca2+ 

sensors reported in Table 1.  
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CaM

Ca2+

Yellow Cameleon

CaM

Ca2+

R-Geco1

Aequorin

Nucleus

MT
PX

PM
ER

Golgi

CaM

Ca2+

GCaMP3, GCaMP6 or G-Geco1

CHL

Vacuole

CHL
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Chloroplast

Vacuole
Uptake: ACA11/
ACA4 (prevacuole)

and CAX1-4
      Release: 
      TPC1 

Cell wall

Plasma
membrane

Endoplasmatic 
reticulum 

Golgi
apparatus

Nucleus

Mitochondrion

Uptake: ECA1
CCX2
Release ?  

Uptake: GLR3.4/3.5 and
MSL2/3 and ACA1 and 
HMA1  and PAM71HL
Release ? 

Uptake: MCU1/MCU2
and GLR3.5 
          Release ?

CNGC15 

Peroxisome
      ?  

Uptake:
ECA3
Release:
?
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