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1. Introduction

Obesity has become a pandemic disease with an significant increase in children (Swinburn et al 2011), but 
the relevance of genetic background is still debated. Well-established cases of Mendelian forms of obesity 
approximately account for only 5% of the severely obese cases (Blakemore and Froguel 2010). In the case of 
common obesity, recent genome wide association studies (GWAS) have investigated possible relations between 
single nucleotide polymorphism (SNP) and body mass index (BMI) (Locke et al 2015). Despite the sheer 
amount of data and the effort devoted to this task, none of the resulting genetic loci have real predictive power. In 
particular, genetic contributions do not account for most BMI variations between subjects, which are thus likely 
to be due to lifestyle and environmental factors (Locke et al 2015). In a recent paper, an investigation of the gene 
expression profile in subcutaneous adipose tissue of BMI-discordant monozygotic twin pairs could not detect 
any molecular or clinical changes associated with subtypes of obesity (Muniandy et al 2017).

Here we tackle the fundamental question related to a possible involvement of the genetic background in the 
development of obesity by investigating if our gene expression signature of obesity recently identified has a Men-
delian contribution (Font-Clos et al 2017). The genes strongly associated with obese subjects comprise genes 
involved in the interaction between cells and the extracellular matrix, inflammation and central nervous system 
(Font-Clos et al 2017). Moreover, this signature is able to capture the complexity of the pathology identifying 
features linked not only to inflammation and cancer but also to mood and reproductive disorders (Font-Clos 
et al 2017). This approach appears to be the best to capture a real snapshot of the obese subject and to identify 
underlying pathways that are usually impossible to find if few samples are studied. In this paper, we used the same 
framework described in Font-Clos et al (2017), analysing the gene expression data from a large cohort of twins 
(Buil et al 2015), including pairs of monozygotic twins. In particular, for this kind of study, where the samples 
available are few in number, the possibility to use an approach based on big data offers the advantage of reducing 
the noise by collecting and analysing a large set of data coming from different sources. However, since the dataset 
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Abstract
Objective: Observational studies suggest that obesity might have a Mendelian origin, but it is not 
clear if gene expression patterns observed in obese subjects are secondary to genetic traits or not. 
Approach: Here we test a transcriptomic signature of obesity previously identified by our group on a 
large cohort of twin subjects (TwinsUK). Main results: The results show that the signature correlates 
strongly both with body mass index (BMI) and fat mass. Moreover, in paired transcriptomes of 
monozygotic twins, changes in signature correlate with changes in BMI and fat mass. We also identify 
a set of deregulated pathways involved in obesity, from inflammation to metabolism, and show that 
their pathway deregulation score is strongly correlated with BMI variations in pairs of identical 
twins. Significance: Taken together, our results strongly indicate that alterations in gene expression 
observed in obese subjects are not due to their genetic background, and should therefore primarily be 
associated with environment and lifestyle.
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is nonhomogeneous the first well-known problem to solve is the batch effect. In fact, in the worse case, if batch 
effects are not detected and removed in the right way, they can lead to flawed results. According to Font-Clos et al 
(2017), we removed the batch effect by singular value decomposition, then we reduced the dimensionality using 
a pathway deregulation score; finally, we ranked the pathways more differentially expressed between paired twins 
with different BMI.

Our approach offers the possibility to use a pipeline to study biological problems tackling the complexity 
and interactions between organs and tissues. Interdisciplinary studies and the rapid development of complex 
network theory are the foundation of new and promising disciplines, such as network physiology and network 
medicine. Both these disciplines try to integrate and introduce new concepts and methods coming from modern 
statistical physics and network theory to biology and medicine, as discussed recently by Ivanov et al (2016). Our 
results cast serious doubt on the importance of a genetic background of gene expression patterns in obesity, while 
the role of the environment and lifestyle appears particularly critical. This result would have been impossible to 
achieve with a traditional approach, so that our findings show a general method that can be used to implement 
the principles of network medicine and physiology to a variety of cases.

2. Methods

2.1. Transcriptomic data
Transcriptomic data was obtained from TwinsUK (www.twinsuk.ac.uk/, (Buil et al 2015)). Samples without BMI 
information or with fat mass below 1% were discarded from the analysis, as well as those without a matching 
co-twin sample. A total of 626 paired samples were analyzed, including 256 samples from MZ twins. Expression 
values are given in terms of log2(RPKM + 1). No further normalization was applied. We used MyGene.Info API 
(Wu et al 2013, Xin et al 2016) via the MyGene.py Python wrapper to convert between gene symbol and Entrez 
gene names.

2.2. Obesity score
The obesity score Sj for sample j is calculated as a linear combination of the log2 expression of 38 genes:

Sj ≡
n∑

r=1

αrXjr (1)

where αr  is the coefficient of the rank r gene in table 1 and Xjr is its log2 expression in sample j. The set of 38 genes 
and their coefficients shown in table 1 were determined in Font-Clos et al (2017) using a dataset unrelated to the 
one analyzed in this manuscript.

Table 1. The 38 genes in the transcriptomic signature of obesity and their associated coefficients. Genes are ranked by the absolute 
value of their coefficient. Details of how these genes and coefficients were computed can be found in Font-Clos et al (2017).

Rank Entrez ID Gene symbol Coefficient Rank Entrez ID Gene symbol Coefficient

1 1278 COL1A2 0.131 20 7045 TGFBI 0.0569

2 80763 SPX −0.126 21 25878 MXRA5 0.0558

3 761 CA3 −0.0889 22 2982 GUCY1A3 0.0556

4 219 348 PLAC9 0.0742 23 2335 FN1 0.0555

5 25975 EGFL6 0.0731 24 7076 TIMP1 0.0553

6 2014 EMP3 0.0701 25 5396 PRRX1 0.0548

7 6696 SPP1 0.0690 26 4069 LYZ 0.0529

8 1397 CRIP2 0.0679 27 8076 MFAP5 0.0510

9 1490 CTGF 0.0674 28 3512 JCHAIN 0.0486

10 22822 PHLDA1 0.0667 29 10402 ST3GAL6 −0.0466

11 1880 GPR183 0.0659 30 3429 IFI27 0.0458

12 171 024 SYNPO2 0.0655 31 83442 SH3BGRL3 0.0457

13 1520 CTSS 0.0646 32 712 C1QA 0.0442

14 80114 BICC1 0.0638 33 474 344 GIMAP6 0.0441

15 115 207 KCTD12 0.0622 34 9457 FHL5 0.0438

16 151 887 CCDC80 0.0599 35 8470 SORBS2 0.0437

17 22918 CD93 0.0591 36 7037 TFRC 0.0431

18 389 136 VGLL3 0.0588 37 1291 COL6A1 0.0430

19 8542 APOL1 0.0581 38 57863 CADM3 0.0429
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2.3. Statistical analysis
We used Python for all data processing and statistical analysis. Correlation coefficients and associated p-values 
were computed using the scipy.stats.pearsonr function. The linear regressions in figures 1–3 were 
computed using the seaborn.regplot function. p-values in table 2 were corrected for multiple testing, 
using the whole set of 626 tests performed, one for each pathway. We used a Benjamini–Yekutieli correction as the 
correlation structure of the pathways set is not known.

Table 2. KEGG pathways with PDS highly correlated with BMI. The top nine pathways that have the highest correlation of the PDS with 
BMI, as measured by Pearson’s R coefficient, and as shown in figures 3 and 4. The reported number of genes includes only genes found in 
the TwinsUK (Buil et al 2015) dataset. p-values are corrected for multiple testing; see Methods for details.

PDS  ×  BMI ΔPDS  ×  ΔBMI

KEGG pathway #Genes Pearson R p-value Pearson R p-value

Tyrosine metabolism 33 0.64 7.0 × 10−71 0.48 4.1 × 10−6

Arginine biosynthesis 21 0.61 1.2 × 10−61 0.53 1.8 × 10−7

Glyoxylate and dicarboxylate metabolism 28 0.60 1.9 × 10−58 0.47 7.3 × 10−6

Alanine, aspartate and glutamate metabolism 35 0.59 5.6 × 10−57 0.39 4.0 × 10−4

Vitamin digestion and absorption 24 0.59 9.8 × 10−57 0.53 1.8 × 10−7

Glycine, serine and threonine metabolism 39 0.58 6.6 × 10−54 0.46 1.1 × 10−5

Phenylalanine metabolism 16 0.57 1.3 × 10−53 0.43 5.4 × 10−5

Antifolate resistance 30 0.57 5.5 × 10−53 0.42 8.7 × 10−5

Porphyrin and chlorophyll metabolism 41 0.55 3.1 × 10−49 0.47 5.2 × 10−6

Figure 1. The obesity score correlates with BMI and fat mass. (a) and (c): Scatter plots (gray dots) and linear regressions (colored 
lines) between the obesity score and BMI or fat mass. Each point represents a sample from a single twin. (b) and (d): Scatter plots 
(gray dots) and linear regressions (colored lines) between the change in obesity score and change in BMI or change in fat mass. Each 
point represents a MZ twin pair. Shaded regions show 95% confidence intervals for the regression line, computed by bootstrapping. 
Colored dots are obtained binning the data into evenly sized bins and taking averages. The 95% confidence intervals of such averages 
are shown as colored vertical lines.

Physiol. Meas. 00 (2018) 000000 (7pp)
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2.4. Pathway deregulation scores
Pathway deregulation scores (PDSs) were first introduced by Drier et al (2013) as a tool to quantify the 
deregulation of each pathway with respect to a reference sample. They are computed by fitting a non-parametric, 
non-linear one-dimensional curve through the ‘middle’ of the transcriptomic data, in the subspace generated 
by the genes of that pathway, usually through the principal curve algorithm (Hastie and Stuetzle 1989). We follow 
the algorithm presented in Drier et al (2013) with a small modification introduced in Font-Clos et al (2017): the 
value of 0 is placed at the mean value of the reference sample, instead of at the extremal point of the curve.

3. Results

3.1. The transcriptomic signature of obesity
In a recent publication (Font-Clos et al 2017) we found a robust transcriptomic signature (5σ) of obesity composed 
of 38 genes. Here we give a brief overview of that work, inviting the interested reader to see Font-Clos et al (2017) 
for further details. Our analysis revolved around SVDmerge (https://github.com/ComplexityBiosystems/
SVDmerge), an algorithm to remove batch effects, and pathway deregulation scores (PDSs), a pathway-based 
dimensionality reduction technique. Combining these two methodologies allowed us to (i) merge several 
publicly available datasets, increasing the number of samples in the analysis, and (ii) transition from a gene-based 
to a pathway-based perspective, decreasing the number of variables from  ∼20 000 genes to  ∼1000 pathways. In 
this way we substantially improved the samples-to-variables ratio and were able to identify pathways related to 
adhesion molecules, inflammation, salivary secretion and digestive problems. We also proposed a simple obesity 
score, computed as a linear combination of the expression of the 38 genes, and showed that it correlates well with 
BMI in several independent validation datasets. We verified that such correlations are gender independent and 
tissue specific. Finally, we pointed out that some of the deregulation patterns found in obesity are also seen in 
breast tumor samples.

It is interesting to compare our transcriptomic signature with existing results on obesity based on GWAS 
(Locke et al 2015). These studies have revealed a set of genetic loci that are associated with BMI variations. We 

Figure 2. Pathway deregulation scores for all KEGG pathways. (a) The top nine pathways with the highest correlation of PDS with 
BMI. The plots show the first three PCA components of the raw data, and its projection onto the principal curve. Projection lines are 
colored according to BMI. (b) Heatmap of PDSs for all KEGG pathways. Rows represent pathways and are sorted by their correlation 
with BMI. Columns represent samples and are sorted by BMI, as illustrated by the filled colored curve on top. The heatmap coloring 
represents PDSs. Horizontal bars in the right-most area indicate the average PDS among obese subjects (BMI  >  30).

Physiol. Meas. 00 (2018) 000000 (7pp)
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have compared the list of genes in our signature with the list of genes reported in Locke et al (2015) as signifi-
cantly associated with BMI. The two lists have no intersection. Similarly, the list of significant pathways revealed 
in Locke et al (2015) has no intersection with the list reported in Font-Clos et al (2017). Therefore, our approach 
allows to identify genes that normally are not highlighted because we are able to analyze more datasets due to 
the removal of the batch effect using SVDmerge (https://github.com/ComplexityBiosystems/SVDmerge) (Font-
Clos et al 2017). The power of big-data analysis is actually to uncover things that are not easy to see, in this case 
genes and pathways at the roots of the problem.

4. Transcriptomic signature correlates with obesity

We applied the strategy described in the previous section to study transcriptomic data from a large cohort of 
monozygotic (MZ) pair twins (256 samples) and from a set of heterozygous twins (370 samples); see Methods for 
details. Figure 1(a) shows that the obesity score correlates with BMI (R = 0.63, p = 2.87 × 10−71) considering 
all the 626 samples of the batch. The TwinsUK dataset is particularly interesting because it contains samples from 
128 MZ twin pairs whose BMI can be discordant. Because MZ twins are genetically identical, BMI variations 
between a subject and its co-twin should be due exclusively to environmental factors and lifestyle. Figure 1(b) 
shows indeed that the variations in BMI correlate strongly with variations in score (R = 0.59, p = 2.55 × 10−13) 
when considering only pairing between co-twins. Hence, the signature in co-twins reflects merely the BMI, rather 
than the genetic background that should be identical in co-twins and different in randomly paired subjects. This 
suggests that our transcriptomic signature is associated with obesity rather than any underlying genetic differences 
in the subjects. To corroborate this finding, we considered also the percentage of fat mass and show that it correlates 
again very strongly with the obesity score considering all 626 samples in TwinsUK (R = 0.61, p = 6.46 × 10−66; 
figure 1(c)). Furthermore, changes in fat mass between siblings in MZ twin pairs correlate strongly with changes 
in score (R = 0.66, p = 1.42 × 10−17; figure 1(d)).

Figure 3. PDS correlate with BMI. Scatter plots (Gray dots) and linear regressions (colored lines) between PDS and BMI, for the top 
9 pathways that have the highest correlation of the PDS with BMI. Each dot represents a single sample. Shaded regions show 95% 
confidence intervals for the regression line, computed by bootstrapping. Colored dots are obtained binning the data into evenly-
sized bins and taking averages. 95% confidence intervals of such averages are shown as colored vertical lines.

Physiol. Meas. 00 (2018) 000000 (7pp)
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4.1. Pathway deregulation in obesity
To understand which pathways are most affected by obesity, we computed PDSs (see Methods (Drier et al 2013)) 
for all the samples in the TwinsUK database, among all KEGG pathways; see figure 2(b). We then computed the 
correlation between PDS and BMI and sorted the pathways accordingly. Figure 2(a) shows a 3-component PCA 
view of the raw data and its projection onto the principal curves defining the PDSs for the top nine pathways 
reported in table 2. The most significant pathways are all related with metabolic activities and play a clear role in 
metabolic misfunction. It is remarkable that samples tend to cluster by BMI, forming a colored, elongated cloud 
from green (lean) to orange (overweight) to red (obese). An alternative representation is given in figure 3, where 
we show scatter plots and linear regressions between PDS and BMI for these same pathways. R coefficients and p-
values are given in table 2. Finally, we restricted the scope to paired MZ twins and inspected the relation between 
changes in BMI and changes in PDS. Figure 4 shows scatter plots and linear regressions for these nine pathways. 
Notice that each point represents an MZ twin couple, so that changes in BMI/PDS are always computed between 
subjects with identical genetic material.

5. Discussion

Rare genetic mutations in the leptin gene and elsewhere in the genome can cause extreme obesity (Ahima 
2008), but the importance of genetics with respect to epigenetic and environmental factors in the current 
obesity pandemia is still debated. An approach that tries to combine and analyze all the available transcriptomes 
published in the public repositories has the clear advantage of having more data, making it easier to discriminate 
the real signal from the noise. This is the same approach used to analyze collective data on Google or to follow the 
connections between people, or for fish schools or birds. The problem in biology is that the amount of data is not 
so big and therefore the noise could be relevant. We previously resolved the problem of batch effects due to the 

AQ4

AQ3

Figure 4. Changes in PDS correlate with changes in BMI in paired MZ twins samples Scatter plots (gray dots) and linear regressions 
(colored lines) between changes in PDS and changes in BMI, for the top nine pathways that have the highest correlation of the PDS 
with BMI. Each dot represents a MZ twin pair. Shaded regions show 95% confidence intervals for the regression line, computed by 
bootstrapping. Colored dots are obtained binning the data into evenly sized bins and taking averages. 95% confidence intervals of 
such averages are shown as colored vertical lines.
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fact that nonhomogeneous data are put together in a recent paper, wherein we analyzed the transcriptomes of 
obese and lean subjects (Font-Clos et al 2017). Thanks to this methodological approach, we could report a robust 
signature of 38 genes that is able to identify all the complex features of obesity, from inflammation to cancer to 
mood and reproductive disorders (Font-Clos et al 2017).

Here, we used the same robust signature to analyze a large cohort of heterozygotic twins (370 subjects) with 
respect to homozygotic pair twins (256 subjects) in dependence of BMI and fat mass (TwinsUK database (Buil 
et al 2015)). The analysis of twin pairs with different BMI offers, of course, a very good opportunity to shed some 
light in the debate of the role of genetic background in obesity. The most important barrier to overcome in order 
to answer this simple question is the number of subjects analyzed for each study and therefore the possibility to 
find a significant signal out of the noise. For example, a recent paper reported the gene expression profile in 23 
subcutaneous adipose tissue samples of BMI-discordant monozygotic twin Finnish pairs without finding any 
molecular or clinical changes associated with subtypes of obesity (Muniandy et al 2017). Since we have identi-
fied a robust signature of the obesity phenotype using a big data approach in our previous paper (Font-Clos et al 
2017), we used this signature to analyze a much larger cohort of twin pairs (TwinsUK (Buil et al 2015)), including 
twins with the same genetic background. Our results clearly show that in these subjects obesity is correlated with 
a 38-gene transcriptomic signature in a BMI-dependent manner. Therefore, our results highlight the important 
role of the environment instead of the genetic background. A direct consequence is that since obesity is linked 
to issues of behavior and lifestyle, the only way to fight this disease is to return to these aspects. The other conse-
quence is that since obesity is not due to the ‘bad luck’ of the subject due to the hereditary of unlucky genes, each 
subject can reverse his/her condition.

In light of our results, we need to study obesity in a broader context where many external and internal factors 
cooperate. The broad patterns of deregulated pathways observed in obese subjects provide a striking indication 
of the interconnected and multi-scale nature of human physiology. Ideas and tools coming from the emerging 
field of network physiology and network medicine, as recently outlined (Ivanov et al 2016), could thus contribute 

to build a new perspective to tackle the obesity pandemic.
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