Diagnostic performances of manual and automated reticulocyte parameters in anemic cats

Objectives: To evaluate the diagnostic performances of manual and instrumental measurement of reticulocyte percentage (Ret%), reticulocyte number (Ret#), and reticulocyte production index (RPI) to differentiate regenerative anemia (RA) from non regenerative anemia (NRA) in cats.

Methods: Data from 106 blood samples from anemic cats with manual counts (n=74; 68 NRA, 6 RA) or instrumental counts of reticulocytes (n=32; 25 NRA, 7 RA) collected between 1995 and 2013 were retrospectively analyzed. Sensitivity, specificity, and positive likelihood ratio (LR+) were calculated using either cut-offs reported in literature or cut-offs determined from receiver operating characteristic (ROC) curves.

Results: All the reticulocyte parameters were significantly higher in cats with RA than in cats with NRA. All the ROC curves were significantly different (P<0.001) from the line of no discrimination, without significant differences between the three parameters. Using the cut-offs published in literature, the Ret% (cut-off: 0.5%) was sensitive (100%) but not specific (<75%), the RPI (cut-off: 1.0) was specific (>92%) but not sensitive (<15%), and the Ret# (cut-off: 50 x 10³/µL) had sensitivity and specificity >80% and the highest LR+ (manual count: 14; instrumental count: 6). For all the parameters, sensitivity and specificity approached 100% using the cut-offs determined by the ROC curves. These cut-offs were higher than those reported in the literature for Ret% (manual: 1.70%; instrumental: 3.06%), lower for RPI (manual: 0.39; instrumental: 0.59), and variably different, depending on the method (manual: 41 x 10³/µL; instrumental: 57 x 10³/µL) for Ret#. Using these cut-offs, the RPI had the highest LR+ (manual: 22.7; instrumental: 12.5).

Conclusions and Relevance This study indicated that all the reticulocyte parameters may confirm regeneration when the pre-test probability is high, while when this probability is moderate, RA should be identified using the RPI providing that cut-offs lower than 1.0 are used.
Diagnostic performances of manual and automated reticulocyte parameters in anemic cats

Paltrinieri S., Dept. of Veterinary Medicine, University of Milan, 20133, Milan, Italy
Fossati M., Veterinary Clinic Artemedica, Valmadrera, 23868, Italy
Menaballi V., Dept. of Veterinary Medicine, University of Milan, 20133, Milan, Italy, and Veterinary Clinic Artemedica, Valmadrera, 23868, Italy

Corresponding Author:
Prof. Saverio Paltrinieri, DVM, PhD, Dipl ECVCP
Dipartimento di Medicina Veterinaria,
Università degli Studi di Milano
Via Celoria 10, 10133, Milano
Tel. 0250318103,
Fax: 0250318095
saverio.paltrinieri@unimi.it

Keywords:

Anemia; Diagnostic accuracy; Feline; Reticulocyte number; Reticulocyte percentage;
Reticulocyte production index;
Abstract

Objectives: To evaluate the diagnostic performances of manual and instrumental measurement of reticulocyte percentage (Ret%), reticulocyte number (Ret#), and reticulocyte production index (RPI) to differentiate regenerative anemia (RA) from non-regenerative anemia (NRA) in cats.

Methods: Data from 106 blood samples from anemic cats with manual counts (n=74; 68 NRA, 6 RA) or instrumental counts of reticulocytes (n=32; 25 NRA, 7 RA) collected between 1995 and 2013 were retrospectively analyzed. Sensitivity, specificity, and positive likelihood ratio (LR+) were calculated using either cut-offs reported in literature or cut-offs determined from receiver operating characteristic (ROC) curves.

Results: All the reticulocyte parameters were significantly higher in cats with RA than in cats with NRA. All the ROC curves were significantly different (P<0.001) from the line of no discrimination, without significant differences between the three parameters. Using the cut-offs published in literature, the Ret% (cut-off: 0.5%) was sensitive (100%) but not specific (<75%), the RPI (cut-off: 1.0) was specific (>92%) but not sensitive (<15%), and the Ret# (cut-off: 50 x 10^3/µL) had sensitivity and specificity >80% and the highest LR+ (manual count: 14; instrumental count: 6). For all the parameters, sensitivity and specificity approached 100% using the cut-offs determined by the ROC curves. These cut-offs were...
higher than those reported in the literature for Ret\% (manual: 1.70%; instrumental: 3.06%), lower for RPI (manual: 0.39; instrumental: 0.59), and variably different, depending on the method (manual: $41 \times 10^3/\mu L$; instrumental: $57 \times 10^3/\mu L$) for Ret#. Using these cut-offs, the RPI had the highest LR+ (manual: 22.7; instrumental: 12.5).

Conclusions and Relevance This study indicated that all the reticulocyte parameters may confirm regeneration when the pre-test probability is high, while when this probability is moderate, RA should be identified using the RPI providing that cut-offs lower than 1.0 are used.
Introduction

The differentiation between regenerative anemia (RA) and non regenerative anemia (NRA) may drive further diagnostic or therapeutic procedures. The identification of RA relies on the quantification of reticulocyte responses. To this aim, the current literature recommends to use the absolute number of reticulocytes (Ret#) rather than the reticulocyte percentage (Ret%) or the reticulocyte production index (RPI). However, the cut-offs reported in the literature for feline Ret# are variable (e.g. 40-60 x 10⁶/µL) and have been determined using different methods, including laser-based counters, that have a higher analytical sensitivity and provide higher Ret# compared with manual counts. Moreover, the Ret# and the Ret% are higher in some feline breeds than in others (the Ret% may be as high as 0.8% in Norwegian Forest cats, 1.2% in Holy Birman cats, 1.9% in Siberian cats and 3.3% in Maine Coon cats, and the Ret# may be as high as 250.00 in Main Coon cats). Additionally, the magnitude of reticulocytosis should inversely correlate with the severity of anemia. In human medicine the RPI has been proposed as a tool to correct the Ret% for the severity of anemia. The calculation of RPI is based on the maturation time of human circulating reticulocytes, that is higher in RA, when reticulocytes released in blood are younger than in healthy individuals. The maturation time of feline reticulocyte is unknown but it is likely different from other species, since feline erythroid cells have some peculiarities such as a
For Peer Review

shorter erythrocyte lifespan, a prolonged maturation time of punctate reticulocytes and a weaker maximal response of aggregate reticulocytes. Independent of the correctness of the formula we recently demonstrated that the Ret% and the RPI may be used to diagnose canine RA. However, no studies on the utility of the three reticulocyte parameters in cats are available.

Hence, this study was aimed to assess the diagnostic performances of Ret%, Ret# and RPI counted manually or by a laser-based analyzer, for the diagnosis of RA in cats.

Materials and methods

Case selection criteria

The laboratory information system was analyzed to retrieve data recorded between January 1995 and January 2013 from anemic cats. The database included data generated using an impedance counter (SEAC Hemat 8) followed by reticulocyte counts on brilliant cresyl blue stained smears, or using a laser counter validated in cats (Sysmex XT2000EiV). Only aggregate reticulocytes were counted manually, since punctate reticulocytes do not indicate active or recent regeneration in cats. Moreover, a moderate to high correlation between aggregate reticulocyte counts and automated reticulocyte counts with Sysmex has previously been reported.
The inclusion criteria were the following: presence of anemia based on the comparison with
the reference intervals in use at our institution for cats (RBC <5.0 x 10³/µL, Ht <27%, Hb <10 g/dL); availability of manual or instrumental reticulocyte counts; availability of stored
glass slides to review the original classification; diagnosis of RA or NRA based on history,
diagnostic tests (necropsy, cytology; serum biochemistry, bone marrow cytology;
erosergy/PCR for infectious diseases) or follow up (recovery within one month for RA; no
improvement during one year follow up for NRA). Post-hemorrhagic acute anemia was
classified in the RA group when sampling were done at least 5 days after the hemorrhage,
or within the NRA group when sampling were done 1-2 days after the hemorrhage (pre-
regenerative phase of acute anemia).

Samples from cats treated with drugs that influence bone marrow activity, or belonging to
breeds known to have high reticulocyte counts were excluded from the study.

Calculation of reticulocyte parameters

Based on RBC numbers and on the Ret% generated by manual or instrumental counts, the
following parameters were calculated using the formula reported in literature:

- Ret# = number of erythrocytes x (Ret%/100)
- Corrected Ret% = Ret% x (Hct/37)
The maturation time of feline reticulocytes is unknown, the RPI was calculated using the formula used in people, assuming that also in cats the maturation time is longer if younger reticulocytes are released in blood. Moreover, as a further support to this assumption, the application of this formula in dogs, provided useful information for patient’s management.

Statistical analysis

Data from manual and instrumental counts were analyzed separately. The Ret%, Ret# and RPI for each group (RA, NRA) were compared with the Friedman test with the Bonferroni correction using a commercial software (Analyse-it Ltd).

For each parameter, the number of true positives and false negative (samples with RA with values higher and lower, respectively, than each operating point), true negative and false positive (samples with NRA with values lower and higher, respectively, than each operating point), were calculated. Sensitivity, specificity and positive likelihood ratio (LR+) were calculated using standard formulae either at the cut-offs determined with the receiver operating characteristic (ROC) curves, or using the upper reference limits reported in the literature (Ret% = 0.5%; Ret# = 50 x 10³/µL; RPI = 1.0). ROC curves were designed.
to determine the ability of each parameter to identify cats with RA and to identify which cut-off best differentiates RA from NRA. The level of significance in all the statistics above was set at $P < 0.05$.

Results

Composition of groups

The retrospective search in the database according to the selection criteria (figure 1) allowed us to include 106 cases in the study (table 1). The RA group (table 1) included cats with hemoplasma infection or with acute hemorrhage occurred at least 5 days before sampling. The NRA group included either recent hemorrhage or infectious, metabolic or neoplastic conditions that depress the bone marrow activity.

Reticulocyte parameters

With both methods, results for all the reticulocyte parameters were significantly higher in cats with RA than in cats with NRA (figure 2). In cats with RA, the Ret%, Ret# and RPI were higher than the upper reference limit reported in literature in 6/6, 4/6 and 0/6 cases after manual counts and in 6/6, 0/7 and 6/7 cases after instrumental count. In the NRA...
group, the Ret%, Ret# and RPI were abnormal in 13/68, 4/68 and 0/68 cats after manual
counts and in 7/25, 4/25 cats and 2/68 cats after instrumental counts.

Hence, using both methods, the Ret% was more sensitive than specific, the RPI was very
specific but not sensitive, and the Ret# had sensitivity and specificity >80.0% and the
highest LR+ (table 2). However, for all the parameters, sensitivity and specificity
approached 100.0% if cut-offs determined by the ROC curves were used. These cut-offs
were higher than those reported in the literature for Ret%, lower for RPI, and variably
different, depending on the method used to enumerate the reticulocytes, for Ret#. Using
these cut-offs, the RPI had the highest LR+ using both methods. However, the
discriminating power of all the parameters, as defined by the ROC curves (figure 3) was
always close to 100% and significantly higher (P<0.001) than the line of no discrimination,
without significant differences between the three parameters.

Discussion

This study indicated that all the reticulocyte parameters may identify cats with regenerative
anemia. Moreover, the different counting methods provided similar results, contrary to
what occurred in dogs. This was likely due to the fact that instrumental counts mostly
detect aggregate reticulocytes (i.e. the only cells that are counted manually in cats) and not
punctate reticulocytes that are included in manual counts in dogs. However, all the reticulocyte parameters had better performances if cut-offs different from those reported in the literature are used. This is particularly true for the RPI, that corrects the magnitude of reticulocytosis for the severity of anemia.2,3 The RPI is based on the maturation time of human reticulocytes, which is likely different than in cats, due to the peculiarities of feline erythroid cells.12 However, it is very likely that also in cats the maturation times of circulating reticulocytes increases if these cells are released earlier than in normal conditions. Hence, we assessed whether RPI, as well as the other reticulocyte parameters, may provide useful diagnostic information at the cut-off reported in the literature or at a different cut-off, identified through a ROC curve analysis. This approach revealed that the cut-off reported in the literature for humans is very specific but not sensitive. This is not surprisingly, based on the peculiarities of feline reticulocytes described in the introduction.12 Hence, further studies on the maturation time of feline reticulocytes are needed in order to increase the accuracy of the formula used to calculate the RPI in cats. However, using lower cut-offs, the RPI had the highest LR+. A similar finding was recorded in dogs,13 which also have different maturation times compared with humans. Although the ROC curves did not detect significant differences between the discriminating power of the three parameters, the RPI, at cut-offs lower than those of humans, is preferred.
if the pre-test probability of regeneration is unknown, since in this case a test with high LR+ increases the post-test probability of disease. Conversely, if the pre-test probability of regeneration is high (evident blood loss or hemolysis) a test with high specificity, that avoids false positive results, may be appropriate as a confirmatory test. Based on our results, any reticulocyte parameter, except the Ret% at the cut-off reported in literature, may play this confirmatory role.

The main limitation of this study is the low number of cats, especially in the RA group. However, the performance of each parameter was expressed in terms of LR+, that, differently from predictive values, is not affected the prevalence of the diseases, thus minimizing the effect of the low number of cats with RA. The prevalence of RA in our caseload ranged from 8% (manual counts) to approximately 20% (instrumental counts). This is in agreement with the opinion that hemolytic anemia is uncommon in cats, although recent reports suggest that hematologic patterns consistent with RA or pathogenic mechanisms responsible for RA are present in more than 40% of anemic cats. However, the latter studies were based on cut-offs that, according to the current study are poorly specific and may have overestimated RA. The low prevalence of RA in our study, and the lack of cases of immune-mediated hemolytic anemia, were likely due to the application of strict exclusion criteria, which excluded the cases with unknown etiology or biased by...
multiple pathogenic mechanisms or by inaccurate classification of RA. This is important since the bone marrow cytology, that is considered the most accurate marker to assess the presence of regeneration, is not recommended in routine practice when blood loss or hemolysis are suspected based on clinical or hematological findings. Hence, cats were classified based on the final diagnosis and on the restoration of the RBC mass during the follow up, as in a similar study in dogs. To this aim, we established a long time limit to assess whether restoration of the RBC mass occurred or not (one year), to not misclassify cases of regenerative anemia in the NRA group. Independent of the time of recovery, acute post-hemorrhagic anemia was included in the NRA group when samples were obtained in the first days after the hemorrhage, since during pre-regenerative anemia reticulocytosis is not fully detectable in peripheral blood. Conversely, in the similar study in dogs, the ability of reticulocyte parameters to detect regeneration was assessed either including pre-regenerative anemia in the NRA group, to detect full regeneration, or in the RA group, to detect early regeneration. However, in the current study this approach was hampered by the low number of cases with pre-regenerative anemia. Future studies including higher number of cases and especially a higher number of cats with pre-regenerative anemia are needed to confirm that Ret#, Ret% or RPI may be early indicators of regeneration in cats.

Comment [a58]: Removed: (the presence of erythroid hyperplasia in bone marrow)
Comment [a59]: Removed: is diagnosed
Comment [a60]: Removed: 12
Comment [a61]: Removed: The only exception to this rule regarded post-hemorrhagic anemia, that was included in the NRA group when sampling was performed in the first days after the hemorrhage event
Comment [a62]: Removed: It would be interesting, in the future, to extend this study to a higher number of cases of pre-regenerative anemia in order to assess if Ret#, Ret% or RPI may be early indicators of regeneration as it was the case in dogs.
In conclusion, this study indicated that all the reticulocyte parameters confirm regeneration when the pre-test probability is high, while when this probability is moderate, RA should be identified using the RPI at cut-offs lower than 1.0.

Acknowledgment

Part of this study was presented at the 15th Conference of the European Society of Veterinary Clinical Pathology and the European College of Veterinary Clinical Pathology, Berlin, Germany, October 2013.

Funding

The authors received no specific grant from any funding agency in the public, commercial or not-for-profit sectors for the preparation of this article.

Conflict of interest

The authors do not have any potential conflicts of interest to declare.
References

14. Bauer N, Nakagawa J, Dunker C et al. Evaluation of the automated hematology analyzer Sysmex XT-2000iV™ compared to the ADVIA® 2120 for its use in dogs,

Figure legends

Figure 1. Flow diagram illustrating the selection procedure employed in this study.

Figure 2. Distribution of Ret%, Ret# and RPI in cats with regenerative anemia (RA) and with non-regenerative anemia (NRA), after manual (row A) or automated counts (row B). The boxes indicate the I-III interquartile range (IQR), the horizontal line the median value, and the whiskers extend to further observation within quartile 1 minus 1.5 x IQR or to further observation within quartile 3 plus 1.5 x IQR. The grey area represents the reference interval of the laboratory. For each parameter and method, results of the RA group were significantly higher (P < 0.001) than results of the NRA group.

Figure 3. Comparison of ROC curves of the Ret% (gray circle), Ret# (black circle), and RPI (open circle) obtained after manual count (A) or instrumental count (B). The gray line indicates the line of no discrimination.
Table 1: final diagnosis in the 106 cats with regenerative anemia (RA) or non regenerative anemia (NRA) included in this study

<table>
<thead>
<tr>
<th>Number</th>
<th>Breed</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual counts</td>
<td>RA 6</td>
<td>Domestic Shorthair</td>
</tr>
<tr>
<td></td>
<td>Persian 2</td>
<td>Mycoplasma hemofelis</td>
</tr>
<tr>
<td></td>
<td>Exotic Shorthair 1</td>
<td></td>
</tr>
<tr>
<td>NRA 68</td>
<td>Domestic Shorthair 56</td>
<td>Tumors 20</td>
</tr>
<tr>
<td></td>
<td>Persian 8</td>
<td>FIP 19</td>
</tr>
<tr>
<td></td>
<td>Abyssinian 2</td>
<td>CKD 14</td>
</tr>
<tr>
<td></td>
<td>Siamese 2</td>
<td>FIV/FeLV 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inflammation 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recent hemorrhage 2</td>
</tr>
<tr>
<td>Instrumental counts</td>
<td>RA 7</td>
<td>Domestic Shorthair 4</td>
</tr>
<tr>
<td></td>
<td>Persian 2</td>
<td>Mycoplasma 4</td>
</tr>
</tbody>
</table>

Comment [a67]: Removed: Hemorrhage

Comment [a68]: Removed: Hemorrhage
<table>
<thead>
<tr>
<th>Breed</th>
<th>Affixed Trait</th>
<th>Case Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scottish Fold</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Domestic Shorthair</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Abyssinian</td>
<td>FIP</td>
<td>3</td>
</tr>
<tr>
<td>Persian</td>
<td>CKD</td>
<td>3</td>
</tr>
<tr>
<td>Siamese</td>
<td>FIV/FeLV</td>
<td>2</td>
</tr>
<tr>
<td>Chartreux</td>
<td>Inflammation</td>
<td>1</td>
</tr>
<tr>
<td>Devon Rex</td>
<td>Recent hemorrhage</td>
<td>1</td>
</tr>
<tr>
<td>Exotic shorthair</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

The table represents the distribution of cats with various traits.
Table 2. Sensitivity (Sens), specificity (Spec), and positive likelihood ratio (LR+) of Ret% and Ret# using pre-determined cut-offs (i.e. the cut-off corresponding to the upper reference limit reported in literature for humans) or using the cut-offs determined by the ROC curve.

<table>
<thead>
<tr>
<th></th>
<th>Manual counting (n=74)</th>
<th>Automated counting (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cut-off</td>
<td>Sens %</td>
</tr>
<tr>
<td>Pre-defined cut-off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ret%</td>
<td>0.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>(54.1/100.0)</td>
<td></td>
</tr>
<tr>
<td>Ret#</td>
<td>50.0</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>(36.9/99.6)</td>
<td></td>
</tr>
<tr>
<td>RPI</td>
<td>1.00</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.0/45.9)</td>
<td></td>
</tr>
<tr>
<td>Cut-off determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ret%</td>
<td>1.7</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>(54.1/100.0)</td>
<td></td>
</tr>
</tbody>
</table>
by the ROC curve

<table>
<thead>
<tr>
<th>Ret#</th>
<th>41.4</th>
<th>100.0</th>
<th>92.6</th>
<th>13.60</th>
<th>57.7</th>
<th>100.0</th>
<th>88.8</th>
<th>8.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>(54.1/100.0)</td>
<td>(83.7/97.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPI</td>
<td>0.35</td>
<td>100.0</td>
<td>95.6</td>
<td>22.67</td>
<td>0.59</td>
<td>100.0</td>
<td>92.0</td>
<td>12.50</td>
</tr>
<tr>
<td>(54.1/100.0)</td>
<td>(87.6/99.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUC = area under the ROC curve. Values in parentheses are 95% confidence intervals.
Figure 1. Flow diagram illustrating the selection procedure employed in this study.

80x44mm (300 x 300 DPI)
Figure 2. Distribution of Ret%, Ret# and RPI in cats with regenerative anemia (RA) and with non-regenerative anemia (NRA), after manual (row A) or automated counts (row B). The boxes indicate the I-III interquartile range (IQR), the horizontal line the median value, and the whiskers extend to further observation within quartile 1 minus 1.5 x IQR or to further observation within quartile 3 plus 1.5 x IQR. The grey area represents the reference interval of the laboratory. For each parameter and method, results of the RA group were significantly higher (P < 0.001) than results of the NRA group.
Figure 3. Comparison of ROC curves of the Ret% (gray circle), Ret# (black circle), and RPI (open circle) obtained after manual count (A) or instrumental count (B). The gray line indicates the line of no discrimination.

80x145mm (300 x 300 DPI)