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Abstract

Wolter in [38] proved that the Craig interpolation property transfers to fu-
sion of normal modal logics. It is well-known [21] that for such logics Craig
interpolation corresponds to an algebraic property called superamalgamabil-
ity. In this paper, we develop model-theoretic techniques at the level of
first-order theories in order to obtain general combination results transfer-
ring quantifier-free interpolation to unions of theories over non-disjoint sig-
natures. Such results, once applied to equational theories sharing a common
Boolean reduct, can be used to prove that superamalgamability is modular
also in the non-normal case. We also state that, in such non-normal context,
superamalgamability corresponds to a strong form of interpolation that we
call “comprehensive interpolation property” (which consequently transfers to
fusions).

Keywords: Interpolation, Fusion, Modal Logic, Superamalgamability

1. Introduction

Craig’s interpolation theorem [7] is a model-theoretic result which applies
to first order formulae and states that whenever a formula φ entails a for-
mula ψ, then it is possible to find a third formula θ which can be interpolated
beetwen φ and ψ, and which is defined over their common symbols. Inter-
polation theory has been recently introduced in verification, after the work
of McMillan (see, e.g., [23]), and it has also a long tradition in non-classical
logics (see for instance the seminal papers by L.L. Maksimova [20],[21]). In
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particular, the specific form of interpolation for modal logic is the follow-
ing: a modal logic L is said to enjoy the (local) interpolation property iff,
whenever we consider two modal formulae t1 and t2 such that `L t1 → t2
holds, it is possible to find a modal formula u such that (i) `L t1 → u, (ii)
`L u→ t2, and (iii) the variables of u are in common with both t1 and t2. In
this context, of great importance is the study of combination of logics, focus-
ing on the transfer of significant properties like interpolation. The simplest
way of combining modal logics is given by the well-known notion of fusion:
considering two modal logics L1 and L2 over the modal signatures Σ1

M and
Σ2
M such that Σ1

M ∩Σ2
M = ∅, the fusion L1⊕L2 is the least modal logic, over

the modal signature Σ1
M ∪ Σ2

M , that contains L1 ∪ L2.
In [38] Wolter proved that the fusion of two interpolating normal modal

logics is also interpolating. However, the non-normal case remained open and
in this paper we try to attack it: we show that superamalgamability transfers
to fusions in the general non-normal context. It is well-known that supera-
malgamability (which is an algebraic condition) is equivalent to interpolation
in the normal case [21]. Thus, our result implies Wolter’s result and we prove
that in the general non-normal case our result gives a fusion transfer theo-
rem for a new strong form of interpolation (covering both local and global
interpolation) which we call “comprehensive interpolation property”.

The above result is obtained as a corollary of combination techniques for
first-order theories : in fact, we specialize to the modal context modular con-
ditions of combinability that generalize various previous works. The study
of the modularity property of quantifier-free interpolation in first-order the-
ories was first started in [40], where the disjoint signatures convex case was
solved; in [5] - the journal version of [4] - the non-convex (still disjoint) case
was also thoroughly investigated. In attacking combination problems for
non-disjoint signatures, we follow the model-theoretic approach successfully
employed in [11], [2], [14], [29], [26], [27], [28] for combined satisfiability; this
approach relies on model-theoretic notions like T0-compatibility.

The paper is organized in five sections. In Section 2, we introduce no-
tations and basic ingredients concerning first order logic. In Section 3 we
obtain a first general result (Theorem 3.1) which gives sufficient conditions
for the transfer of quantifier-free interpolation in the non-disjoint signatures
case; Theorem 3.1 has all known results for disjoint signatures case [5], [40] as
an immediate consequence. In Section 4 we focus our attention on universal
Horn theories, in order to obtain a modular condition (Theorem 4.1) referring
to “minimal” amalgams. In Section 5, we apply Theorem 4.1 to modal logic:

2



we prove that superamalgamability is a modular condition (Corollary 5.2),
since it is equivalent to the combination condition of Theorem 4.1 in case the
background theory is the theory of Boolean Algebras. Then, we syntactically
characterize superamalgamability, by defining the notion of “comprehensive
interpolation”. Comprehensive interpolation, in the normal case, is noth-
ing but standard interpolation, but in the non-normal case it looks like a
stronger property, which transfers to fusions as a consequence of our results
(Theorem 5.1).

2. Formal Preliminaries in First Order Logic

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, sentence, and so on. Let Σ be a first-order signature; we
assume the binary equality predicate symbol ‘=’ to be added to any signa-
ture (so, if Σ = ∅, then Σ just contains equality). The signature obtained
from Σ by adding to it a set a of new constants (i.e., 0-ary function sym-
bols) is denoted by Σa. A literal is an atomic formula or the negation of an
atomic formula; a clause is a disjunction of literals and a positive clause is
a disjunction of atoms. A formula is quantifier-free (or open) iff it does not
contain quantifiers. A Σ-theory T is a set of sentences (called the axioms of
T ) in the signature Σ and it is universal iff it has universal closures of open
formulae as axioms.

We also assume the usual first-order notion of interpretation and truth of a
formula, with the proviso that the equality predicate = is always interpreted
as the identity relation. A formula ϕ is satisfiable in M iff its existential
closure is true in M. A Σ-structure M is a model of a Σ-theory T (in
symbols M |= T ) iff all the sentences of T are true in M. If ϕ is a formula,
T |= ϕ (‘ϕ is a logical consequence of T ’) means that the universal closure
of ϕ is true in all the models of T ; T is consistent iff it has a model. A
sentence ϕ is T -consistent iff T ∪{ϕ} is consistent. A Σ-theory T is complete
iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical consequence of T . T
admits quantifier elimination iff for every formula ϕ(x) there is a quantifier-
free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x) (notations like ϕ(x) mean
that ϕ has free variables only among the tuple x).

If Σ0 ⊆ Σ is a subsignature of Σ and ifM is a Σ-structure, the Σ0-reduct
ofM is the Σ0-structureM|Σ0 obtained fromM by forgetting the interpre-
tation of function and predicate symbols from Σ \ Σ0. A Σ-homomorphism
(or, simply, a homomorphism) between two Σ-structures M and N is any
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mapping µ : |M| −→ |N | among the support sets |M| of M and |N | of N
satisfying the condition

M |= ϕ ⇒ N |= ϕ (1)

for all Σ|M|-atoms ϕ (hereM is regarded as a Σ|M|-structure, by interpreting
each additional constant a ∈ |M| into itself and N is regarded as a Σ|M|-
structure by interpreting each additional constant a ∈ |M| into µ(a)). In
case condition (1) holds for all Σ|M|-literals, the homomorphism µ is said to
be an embedding and if it holds for all first order formulae, the embedding
µ is said to be elementary. If µ : M −→ N is an embedding which is just
the identity inclusion |M| ⊆ |N |, we say that M is a substructure of N or
that N is an extension of M. A Σ-structure M is said to be generated by
a set X included in its support |M| iff there are no proper substructures of
M including X.

Given a signature Σ and a Σ-structure A, we indicate with ∆Σ(A) the
diagram of A: this is the set of sentences obtained by first expanding Σ
with a fresh constant ā for every element a from |A| and then taking the
set of ground Σ|A|-literals which are true in A (under the natural expanded
interpretation mapping ā to a).

2.1. Model completion and T0-compatibility

We recall a standard notion in Model Theory, namely the notion of a
model completion of a first order theory [6] (we limit the definition to uni-
versal theories, because we shall use only this case):

Definition 2.1. Let T0 be a universal Σ0-theory and let T ?0 ⊇ T0 be a further
Σ0-theory; we say that T ?0 is a model completion of T0 iff: (i) every model
of T0 can be embedded into a model of T ?0 ; (ii) for every modelM of T0, we

have that T ?0 ∪∆Σ0(M) is a complete theory in the signature Σ
|M|
0 .

Since T0 is universal, condition (ii) is equivalent to the fact that T ?0 has
quantifier elimination; we recall also that the model completion T ?0 of a
theory T0 is unique, if it exists (see [6] for these results and for examples).

We also recall the concept of T0-compatibility [11, 14], which is crucial
for our combination technique.

Definition 2.2. Let T be a theory in the signature Σ and let T0 be a universal
theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-compatible iff T0 ⊆ T
and there is a Σ0-theory T ?0 such that:
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(i) T ?0 is a model completion of T0;

(ii) every model of T can be embedded, as a Σ-structure, into a model of
T ∪ T ?0 .

Notice that if T0 is the empty theory over the empty signature, then T ?0
is the theory axiomatizing an infinite domain, and the requirement of T0-
compatibility is equivalent to the stably infinite requirement of the Nelson-
Oppen schema [25, 36] (in the sense that T is T0-compatible iff it is stably
infinite). We remind that a theory T is stably infinite iff every T -satisfiable
quantifier-free formula (from the signature of T ) is satisfiable in an infinite
model of T . By compactness, it is possible to show that T is stably infinite
iff every model of T embeds into an infinite one.

We underline that T0-compatibility is a modular condition. The following
result is proved in [11] (as Proposition 4.4):

Proposition 2.1. Let T1 be a Σ1-theory and let T2 be a Σ2-theory; suppose
they are both compatible with respect to a Σ0-theory T0 (where Σ0 := Σ1∩Σ2).
Then T1 ∪ T2 is T0-compatible too.

2.2. Interpolation and Amalgamation

We say that a theory T has quantifier-free interpolation iff the follow-
ing hold, for every pair of quantifier free formulae ϕ(x, y), ψ(y, z): if T |=
ϕ(x, y) → ψ(y, z), then there exists a quantifier-free formula θ(y) such that
T |= ϕ(x, y) → θ(y) and T |= θ(y) → ψ(y, z). We underline that the re-
quirement that θ is quantifier-free is essential: in general such a θ(y) exists
by the Craig interpolation theorem, but it is not quantifier-free even if ϕ, ψ
are such.

Quantifier-free interpolation property can be semantically characterized
using the following notions, introduced in [3, 5] (see [18] for several examples):

Definition 2.3. A theory T has the sub-amalgamation property iff, for given
models M1 and M2 of T sharing a common substructure A, there exists a
further model M of T endowed with embeddings µ1 : M1 −→ M and
µ2 : M2 −→ M whose restrictions to the support of A coincide. The
triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -sub-amalgam of
M1,M2,A.

Definition 2.4. A theory T has the strong sub-amalgamation property if the
T -sub-amalgam (M, µ1, µ2) ofM1,M2,A can be chosen so as to satisfy the
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following additional condition: if for some m1,m2 we have µ1(m1) = µ2(m2),
then there exists an element a in |A| such that m1 = a = m2.

If T is universal, then every substructure of a model of T is itself a model
of T : in these cases, we shall drop the prefix sub- and directly speak of
‘amalgamability’, ‘strong amalgamability’ and ‘T -amalgam’. The following
fact is proved in [5], as Theorem 3.3:

Theorem 2.1. A theory T has the sub-amalgamation property iff it admits
quantifier-free interpolants.

3. Conditions for Combination

The main result from [5] says that if T1, T2 have disjoint signatures, are
both stably infinite and both enjoy the strong sub-amalgamation property,
then the combined theory T1 ∪ T2 also has the strong sub-amalgamation
property1 (and so it has quantifier-free interpolation).

In this paper, we try to extend the above results to the non-disjoint signa-
tures case. The idea, already shown to be fruitful for combined satisfiability
problems in [11], is to use T0-compatibility as the proper generalization of
stable infiniteness.

We shall first obtain a rather abstract sufficient condition for the transfer
of quantifier-free interpolation property to combined theories; nevertheless,
we show that such a sufficient condition generalizes the disjoint signatures
result from [5]. Then we move to the case in which the shared theory T0 is
Horn and obtain as a corollary a specialized result which is quite effective in
modal logic applications.

3.1. Sub-amalgamation schemata

Let T0, T be theories in their respective signatures Σ0,Σ such that Σ0 ⊆ Σ,
T0 is universal and T0 ⊆ T . IfM1 andM2 are Σ-models of T with a common
substructure A, we call the triple (M1,M2,A) a T -fork (or, simply, a fork).

1It is possible to characterize syntactically strong sub-amalgamability in terms of a suit-
able ‘equality interpolating’ condition [5]. That sub-amalgamability needs to be strenght-
ened to strong sub-amalgamability in order to get positive combination results is demon-
strated by converse facts also proved in [5].
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The sub-amalgamation schema σTT0 (of T over T0) is the following function,
associating sets of T0-amalgams with T -forks: 2

σTT0 [(M1,M2,A)] :=



the set of all (B, ν1, ν2) s.t.

(i) (B, ν1, ν2) is a T0-amalgam of the Σ0-reducts of

M1 and M2 over the Σ0-reduct of A;

(ii) B is generated, as a Σ0-structure, by the union

of the images of ν1 and ν2;

(iii) (B, ν1, ν2) is embeddable in the Σ0-reduct of a

T -sub-amalgam of the fork (M1,M2,A).


Condition (iii) means that there is a T -sub-amalgam (M, µ1, µ2) such that
B is a Σ0-substructure of M and that µ1, µ2 coincide with ν1, ν2 on their
domains.

Condition (ii) ensures that, disregarding isomorphic copies, σTT0 [(M1,M2,A)]
is a set and not a proper class. Recall that T0 is universal, so that substruc-
tures of models of T0 are also models of T0. This ensures that the following
Proposition trivially holds:

2It is not difficult to realize (using well-known Löwenheim-Skolem theorems [6]) that
one can get all the results in the paper by limiting this definition to forks among structures
whose cardinality is bounded by the cardinality of the set of the formulae in our signatures
(signatures are finite or countable in all practical cases).
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Proposition 3.1. T is sub-amalgamable iff σTT0 is not empty (i.e. iff we have
that σTT0 [(M1,M2,A)] 6= ∅, for all forks (M1,M2,A)).

We are ready to formulate the main combination result, which is the
following Theorem: one side of the inclusion of the statement is immediate,
whereas, for the other one, T0-compatibility is needed.

Theorem 3.1 (Combination Theorem). Let T1 and T2 be two theories in
their respective signatures Σ1,Σ2; assume that they are both T0-compatible
where T0 is a further universal theory in the signature Σ0 := Σ1 ∩ Σ2. The
following holds for the sub-amalgamation schema of T1 ∪ T2 over T0:

σT1∪T2T0
[(M1,M2,A)] = σT1T0 [(M1,M2,A)|Σ1 ] ∩ σ

T2
T0

[(M1,M2,A)|Σ2 ]

for every (T1∪T2)-fork (M1,M2,A) (here, with (M1,M2,A)|Σi
we indicate

the Ti-fork obtained by taking reducts to the signature Σi).

Proof of Combination Theorem. The proof of Theorem 3.1 splits into a few
steps. We begin by recalling some standard results from model theory and
by introducing some preliminary lemmata. The following easy fact is proved
in [5], as Lemma 3.7:

Lemma 3.1. Let Σ1,Σ2 be two signatures and A be a Σ1∪Σ2-structure; then
∆Σ1∪Σ2(A) is logically equivalent to ∆Σ1(A) ∪∆Σ2(A).

Proof. As a general fact, let us first observe that every diagram is equivalent
to its flat subdiagram, in the following sense. Let B be a Σ-structure; the
flat Σ-subdiagram of B is the set ∆f

Σ(B) of literals of the kind

f(a1, . . . , an) = b, a1 6= a2, P (a1, . . . , an), ¬P (a1, . . . , an)

that are true in B (here a1, . . . , an, b are free constants naming elements from
|B|). That every diagram is equivalent to its flat subdiagram can be easily
proved from the fact (to be shown by induction) that for every Σ∪|B|-ground
term t there is a ∈ |B| such that ∆f

Σ(B) ` t = a.
Now we have that ∆Σ1∪Σ2(A) is logically equivalent to ∆f

Σ1∪Σ2
(A) and the

latter is ∆f
Σ1

(A)∪∆f
Σ2

(A) which in turn is equivalent to ∆Σ1(A)∪∆Σ2(A).

An easy but nevertheless important basic result, called the Robinson
Diagram Lemma [6], says that, given any Σ-structure B, the embeddings
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µ : A −→ B are in bijective correspondence with expansions of B to Σ|A|-
structures which are models of ∆Σ(A). The expansions and the embeddings
are related in the obvious way: ā is interpreted as µ(a).

The following Lemma is proved using this property of diagrams:

Lemma 3.2. Let T0, T be theories in their respective signatures Σ0,Σ such
that Σ0 ⊆ Σ and T0 ⊆ T ; let (M1,M2,A) be a T -fork. For a T0-amalgam
(B, ν1, ν2) the following conditions are equivalent (we suppose that the support
of B is disjoint from the supports of M1,M2):

(i) (B, ν1, ν2) ∈ σTT0 [(M1,M2,A)];

(ii) the following theory (∗) is consistent

T ∪∆Σ(M1) ∪∆Σ(M2) ∪∆Σ0(B) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
∪ {ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

Furthermore, in case T is T0-compatible, we can equivalently replace T by
T ∪ T ?0 in the theory (∗) mentioned in (ii) above.

Proof. By the above mentioned property of diagrams, the consistency of (∗)
means that there is a model N |= T and there are three embeddings

µ1 :M1 −→ N , µ2 :M2 −→ N , ν : B −→ N

(the last one is a Σ0-embedding, the first two are Σ-embeddings) such that
ν ◦ ν1 = µ1 and ν ◦ ν2 = µ2. Since µ1, µ2 agree on the support of A, the
triple (N , µ1, µ2) is a T -sub-amalgam of the fork. To make B a substructure
of N , it is sufficient to make a renaming of the elements in the image of ν
(so that ν becomes an inclusion). Thus consistency of (∗) means precisely
that (B, ν1, ν2) ∈ σTT0 [(M1,M2,A)].

Since, by T0-compatibility, every model of T can be embedded into a
model of T ∪ T ?0 , the consistency of (∗) is the same of the consistency of
T ?0 ∪ (∗).

We need a further result from model theory to be found in textbooks
like [6]; it can be seen as a combination result ‘ante litteram’:
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Lemma 3.3 (Joint Consistency). Let Θ1,Θ2 be two signatures and let Θ0 :=
Θ1 ∩ Θ2; suppose that the Θ1-theory U1 and the Θ2-theory U2 are both con-
sistent and that there is a Θ0-theory U0 which is complete and included both
in U1 and in U2. Then, U1 ∪ U2 is also consistent.

Proof. There are basically two proofs of this result, one by Craig’s interpola-
tion Theorem and another one by a double chain argument. The interested
reader is referred to [6].

We can now prove Theorem 3.1; the Theorem concerns theories T1, T2 (in
their respective signatures Σ1,Σ2) which are both T0-compatible with respect
to a universal theory T0 in the shared signature Σ0 := Σ1 ∩ Σ2.

Fix a T1∪T2-fork (M1,M2,A). On one side, it is evident that if (B, ν1, ν2)
belongs to σT1∪T2T0

[(M1,M2,A)], then it also belongs to σT1T0 [(M1,M2,A)|Σ1 ]∩
σT2T0 [(M1,M2,A)|Σ2 ].

Vice versa, suppose that (B, ν1, ν2) belongs to σT1T0 [(M1,M2,A)|Σ1 ] and to

σT2T0 [(M1,M2,A)|Σ2 ]; in order to show that it belongs to σT1∪T2T0
[(M1,M2,A)],

in view of Lemmas 3.1 and 3.2 (recall also Proposition 2.1), we need to show
that the following theory (let us call it U) is consistent:

T1 ∪ T2 ∪ T ?0 ∪∆Σ1(M1) ∪∆Σ1(M2) ∪∆Σ0(B) ∪
∪∆Σ2(M1) ∪∆Σ2(M2) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
∪ {ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

The idea is to use Robinson Joint Consistency Lemma 3.3 and split U as
U1∪U2. Now U is a theory in the signature Σ1∪Σ2∪|M1|∪|M2|∪|B|; we let
(for i = 1, 2) Ui be the following theory in the signature Σi∪|M1|∪|M2|∪|B|:

Ti ∪ T ?0 ∪∆Σi
(M1) ∪∆Σi

(M2) ∪∆Σ0(B) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
∪ {ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

Notice that Ui is consistent by Lemma 3.2 because our assumption is that
(B, ν1, ν2) belongs to σTiT0 [(M1,M2,A)|Σi

]. We now only have to identify a
complete theory U0 included in U1 ∩ U2. The shared signature of U1 and U2
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is Σ0 ∪ |M1| ∪ |M2| ∪ |B| and we take as U0 the theory

T ?0 ∪∆Σ0(M1) ∪∆Σ0(M2) ∪∆Σ0(B) ∪
∪ {ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
∪ {ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

By the definition of a model-completion (T ?0 is a model-completion of T0),
we know that T ?0 ∪ ∆Σ0(B) is a complete theory in the signature Σ0 ∪ |B|.
Now it is sufficient to observe that every Σ0 ∪ |M1| ∪ |M2| ∪ |B|-sentence is
equivalent, modulo U0 ⊇ T ?0 ∪ ∆Σ0(B), to a Σ0 ∪ |B|-sentence: this is clear
because U0 contains the sentences

{ā1 = b̄ ‖ b ∈ |B|, a1 ∈ |M1|, ν1(a1) = b} ∪
∪ {ā2 = b̄ ‖ b ∈ |B|, a2 ∈ |M2|, ν2(a2) = b}.

which can be used to eliminate the constants from |M1| ∪ |M2|.

Despite its abstract formulation, Theorem 3.1 is powerful enough to im-
ply the main disjoint signatures result of [5] and also to work out interesting
examples arising from software verification: in [12] it is shown how to use
Theorem 3.1 to prove that suitable unions of theories describing data struc-
tures (like lists and binary trees) are quantifier-free interpolating. We explain
in more detail how to derive the disjoint signatures result of [5] from Theo-
rem 3.1:

Example 3.1 (The disjoint signatures case). Let S0, S1, S2 be sets such that
S0 ⊆ S1, S0 ⊆ S2; the amalgamated sum S1 +S0S2 of S1, S2 over S0 is just the
set-theoretic union S1 ∪S2 in which elements from S1 \S0 are renamed away
so as to be different from the elements of S2 \ S0. With this terminology,
a theory T is strongly sub-amalgamable iff its sub-amalgamation schema
over the empty theory T0 is such that σTT0 [(M1,M2,A)] always contains
the amalgamated sum of the supports of M1,M2 over the support of A.
Thus, Theorem 3.1 says in particular that if T1, T2 are both stably infinite
and strongly sub-amalgamable, then so is T1 ∪ T2 (and the last theory is in
particular quantifier-free interpolating).

4. When the shared theory is Horn

Theorem 3.1 gives modular information to determine the combined sub-
amalgamation schema, but it is not a modular result itself. In fact, a modular
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result should identify a condition C on a single (standing alone) theory such
that whenever T1, T2 satisfy C, then T1∪T2 also satisfies C. To get a modular
sufficient condition for quantifier-free interpolation, we need to specialize our
framework. In doing that, we are still guided by what happens in the disjoint
signatures case. Although satisfactory results could be obtained without
Horn hypotheses (see for a reference [15]), we prefer to assume here that the
shared theory is universal Horn, on one side in order to simplify the statement
of the results below, on the other side because universal Horn theories are
sufficient for our applications to Modal Logic. Recall that a Σ-theory T is
universal Horn iff it can be axiomatized via Horn clauses (i.e. via formulae of
the form A1∧· · ·∧An → B, where the Ai are atoms and B is either an atom
or ⊥). For simplicity (and because our applications to modal logic do not
require more), in this section we shall consider only universal Horn theories
axiomatized by clauses containing exactly one positive literal. We fix such a
T for the remaining part of this section (we let also Σ be the signature of T ).

4.1. Minimal amalgam and presentations

In universal Horn theories, it is possible to show that if amalgamation
holds, then there is always a (unique up to isomorphisms) minimal amalgam
this fact is basically due to the universal property of pushouts. We introduce
the relevant notions:

Definition 4.1. Let (M1,M2,A) be a T -fork; a pushout of the fork is a
triple (M, µ1, µ2), whereM is a T -model and µ1 :M1 −→M, µ2 :M2 −→
M are Σ-homomorphisms whose restrictions to the support of A coincide,
such that for every other triple (M′, µ′1, µ

′
2) with the same properties, there is

a unique homomorphism (called the comparison homomorphism) θ :M−→
M′ such that θ ◦ µi = µ′i (i = 1, 2).

M′

M1 M

A M2

µ′2

µ1

µ′1

µ2

θ

Definition 4.2. If the pushout (M, µ1, µ2) of the T -fork (M1,M2,A) is
an amalgam (i.e. if µ1, µ2 are monomorphisms), it is called the minimal
T -amalgam of the T -fork.
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Notice that, even when the pushout is an amalgam, comparison mor-
phisms need not be injective.

Pushouts of T -forks (more generally, of T -spans) always exist: this is
essentially a consequence of well-known co-completeness results for our cate-
gories of models [1], nevertheless we shall use an explicit construction in the
sequel (it will be useful in our application to modal logic).

The key feature of T is that it admits presentations, in the following sense.
A T -presentation is a pair (X,Γ), where X is a set of fresh constants and Γ is
a set of ΣX-atoms. To a T -presentation we associate the T -model FT (X,Γ)
built as follows:

(i) the support |FT (X,Γ)| of FT (X,Γ) is formed by the equivalence classes of
ΣX-ground terms with respect to the equivalence relation ∼Γ defined
by: t ∼Γ u iff T ∪ Γ |= t = u;

(ii) function and relation symbols are interpreted so as to have that FT (X,Γ) |=
A holds iff T ∪Γ |= A, for every ΣX-atom A (clearly FT (X,Γ) is a ΣX-
structure, with constants from X interpreted as their own equivalence
classes).3

Thanks to the current assumption on T (i.e. that the axioms of T are all Horn
clauses with exactly one positive literal), we can easily check that FT (X,Γ) |=
T .

The fundamental property of FT (X,Γ) |= T is the following (this is very
similar to the diagrams property): for every T -model M, there is a bijective
correspondence between Σ-homomorphisms FT (X,Γ) −→M and expansions
of M to ΣX-structures which are models of Γ.

Every modelM of T is isomorphic to a model of the kind FT (X,Γ): this is
because it is easily seen thatM' FT (|M|,∆+

Σ(M)), where ∆+
Σ(M) (the pos-

itive diagram ofM) is given by {A | A is an atomic formula of Σ|M| s.t. M |=
A}. We call FT (|M|,∆+

Σ(M)) the canonical presentation of M.
Existence of minimal amalgam for any universal Horn theory T having

the amalgamation property is an immediate consequence of the following:

3In more detail, in FT (X,Γ) an n-ary function symbol f is interpreted as the function
mapping the tuple of equivalence classes [t1], . . . , [tn] to the equivalence class [f(t1, . . . , tn)];
an n-ary relation symbol R is interpreted as the set of tuples of equivalence classes
[t1], . . . , [tn] such that T ∪ Γ |= R(t1, . . . , tn).

13



Proposition 4.1. Every T -fork (M1,M2,A) has a pushout (M, µ1, µ2); if
T has the amalgamation property, the pushout is the minimal T -amalgam of
the T -fork.

Proof. Up to renamings, we can freely suppose that |M1| ∩ |M2| = |A|. Let
us take

M := FT (|M1| ∪ |M2|,∆+
Σ(M1) ∪∆+

Σ(M2)) (2)

and let µ1 (resp. µ2) be the map associating an element from |M1| (resp.
|M2|) to its own equivalence class in M. The fact that this is a pushout
is guaranteed by the fundamental property of the presentations: indeed,
given a T -model M′, the Σ-homomorphisms M −→ M′ are in bijective
correspondence with expansions of M′ to a Σ|M1|∪|M2|-structure modeling
∆+

Σ(M1)∪∆+
Σ(M2) and the latter are in bijective correspondence with pairs

of Σ-homomorphisms M1 −→ M′ and M2 −→ M′, agreeing on |M1| ∩
|M2| = |A|.4

If T has the amalgamation property, then there exists a T -amalgam N ,
with embeddings νi : Mi −→ N (i = 1, 2); by the above property of the
pushout, there is θ : M −→ N with νi = θ ◦ µi (i = 1, 2). Since the
νi are injective and νi = θ ◦ µi, then also the µi are injective; the same
argument shows that the µi reflect relations and hence they are embeddings:
if a relation R holds in M (when applied to some parameters from Mi),
then it holds in N because θ is a homomorphism, hence it holds also inMi,
since the νi are embeddings. Thus, if T has the amalgamation property, the
pushout (2) is an amalgam (minimal by the definition of pushout) of the fork
(M1,M2,A).

It is useful to have a formula like (2) operating in the case where we are
given T -presentations ofM1,M2 which might not be the canonical ones. We
first introduce T -presentations of embeddings and of T -forks.

Suppose that we are given an embedding among T -models; up to an
isomorphism, we can assume that it is a substructure inclusion M1 ⊆ M2.
Passing to canonical presentations, again up to isomorphisms, we have an
embedding

FT (|M1|,∆+
Σ(M1)) −→ FT (|M2|,∆+

Σ(M2)) (3)

4A slight modification of this construction shows the existence of pushouts also when
the maps of A into Mi are Σ-homomorphisms (not just substructure inclusions).
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which is also ‘canonical’, in the sense that for every a ∈ |M1|, the embed-
ding (3) maps the equivalence class of a in F (|M1|,∆+

Σ(M1)) into the equiv-
alence class of a in F (|M2|,∆+

Σ(M2)). Notice that the reason why we have
an embedding here is that ∆+

Σ(M2) is conservative over ∆+
Σ(M1), meaning

that for every Σ|M1|-atom A we have T ∪∆+
Σ(M2) |= A iff T ∪∆+

Σ(M1) |= A
(it is so, because (3) is obtained from the substructure inclusionM1 ⊆M2).

Vice versa, a T -presentation of an embedding is a pair of T -presentations
(X1,Γ1), (X2,Γ2) with X1 ⊆ X2 and with Γ2 conservative over Γ1; to this
presentation corresponds the embedding (which we also call canonical)
FT (X1,Γ1) −→ FT (X2,Γ2) given by the map associating, for every a ∈ X1,
the equivalence class of a in FT (X1,Γ1) with the equivalence class of a in
FT (X2,Γ2).

Similar considerations apply to T -forks: given a T -fork (M1,M2,A),
we can associate with it a pair of canonical embeddings among canonical
presentations

FT (|M1|,∆+
Σ(M1))←− FT (|A|,∆+

Σ(A)) −→ FT (|M2|,∆+
Σ(M2))

A T -presentation of a fork is a triple of T -presentations (X0,Γ0), (X1,Γ1), (X2,Γ2)
with X1 ∩X2 = X0, X0 ⊆ Xi, and Γi conservative over Γ0 (i = 1, 2). To this
T -presentation it corresponds a pair of canonical embeddings

FT (X1,Γ1)←− FT (X0,Γ0) −→ FT (X2,Γ2) (4)

(which is a T -fork, up to renamings). An argument analogous to that used
in the proof of Proposition 4.1 shows that the pushout of (4) is given by

FT (X1,Γ1)
µ1−→ FT (X1 ∪X2,Γ1 ∪ Γ2)

µ2←− FT (X2,Γ2) (5)

Notice that (for i = 1, 2) the map µi still associates, for every a ∈ Xi,
the equivalence class of a in FT (Xi,Γi) with the equivalence class of a in
FT (X1∪X2,Γ1∪Γ2), but this map does not need to be an embedding, because
one cannot in general infer that Γ1 ∪ Γ2 is conservative over Γi from the
fact that Γi is conservative over Γ0: this is indeed the key property leading
to amalgamability (in the case of our Horn theories, if the property fails,
amalgamability fails and vice versa).

4.2. Modularity of Combination Theorem

In this subsection we will show that Theorem 3.1 allows us to obtain a
modular condition of combination.
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Let now T be a Σ-theory and let T0 ⊆ T be a universal Horn Σ0-theory
having the amalgamation property (with Σ0 ⊆ Σ).

We say that T is T0-strongly sub-amalgamable if the sub-amalgamation
schema σTT0 always contains the minimal T0-amalgam (meaning that for every
T -fork (M1,M2,A), we have that the minimal T0-amalgam of (M1,M2,A)
belongs to σTT0 [(M1,M2,A)]). Notice that, whenever T0 is the empty theory
in the empty signature, being T0-strongly sub-amalgamable is the same as
being strongly sub-amalgamable.

Theorem 3.1 immediately implies the following:

Theorem 4.1. If T1, T2 are both T0-compatible and T0-strongly sub-amal-
gamable (over an amalgamable universal Horn theory T0 in their common
subsignature Σ0), then so is T1 ∪ T2.

Proof. Since T1 and T2 are T0-strongly sub-amalgamable, their sub-amalga-
mation schemata σTiT0 (i = 1, 2) always contain minimal T0-amalgams. By
Theorem 3.1 (T1 and T2 are also T0-compatible), this implies that for every
T1∪T2-fork (M1,M2,A), the minimal amalgam B of (M1,M2,A)|Σ0 belongs

to the set σT1∪T2T0
[(M1,M2,A)]. Using Proposition 2.1, we conclude that also

T1 ∪ T2 is T0-compatible and T0-strongly sub-amalgamable.

Theorem 4.1 has surprising applications to modal logic. As a first step in
this direction, we show that it applies to equational theories with a Boolean
reduct.

In the following, we let BA be the theory of Boolean algebras (which is
well-known to be amalgamable); we use as signature for Boolean algebras
the signature ΣBA comprising two unary operations ∩ and ∪ (for meet and
join), the 0-ary operations 0, 1 (for zero and one) and a unary operation ∼
for complement. We abbreviate (∼ u) ∪ t as u ⇒ t; u1 ⇔ u2 is defined as
(u1 ⇒ u2) ∩ (u2 ⇒ u1). The atom u ≤ t is defined as u ∩ t = u and u < t
stands for u ≤ t ∧ u 6= t.

A BAO-equational theory5 is any theory T whose signature extends the
signature of Boolean algebras and whose axioms are all equations and include
the Boolean algebra axioms. In Subsection 5.2 below, we shall recall in detail
how BAO-equational theories are related to modal propositional logics via
Lindenbaum constructions. The fusion of two BAO-equational theories T1

5BAO stands for ‘Boolean algebras with operations’. Notice that we do not assume
any normality conditions.
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and T2 is just their combination T1 ∪ T2 (when speaking of the fusion of T1

and T2, we assume that T1 and T2 share only the Boolean algebra operations
and no other symbol).

The following Proposition is proved in [11]:

Proposition 4.2. Every BAO-equational theory is BA-compatible.

Proof. Let T be a BAO-equational theory;6 the theory of Boolean algebras
has as model completion the theory of atomless Boolean algebras [6],7 so
it is sufficient to show how to embed a model M of T into a model M′

of T which is based on an atomless Boolean algebra. Define a sequence of
models of T by: M0 := M, Mk+1 := Mk×Mk; define also embeddings
δk : Mk −→ Mk+1 by δk(a) := 〈a, a〉. Now take as M′ the union (more
precisely, the inductive limit) of this chain: clearly M′ is atomless as a
Boolean algebra (no non-zero element is minimal in it, as any a ∈ Mk gets
identified with 〈a, a〉 = 〈a, 0〉 ∪ 〈0, a〉 in Mk+1).

As an immediate consequence, from Theorem 4.1, we get:

Corollary 4.1. If two BAO-equational theories T1 and T2 are both BA-
strongly amalgamable, so is their fusion.

The next section is devoted to the interpretation of the meaning of the
above Corollary in the context of propositional modal logic.

5. Applications to modal logic

5.1. Interpolation in propositional modal logic

For simplicity, we deal only with unary modalities (and, consequently, we
shall consider only BAO-theories whose non-Boolean symbols are unary func-
tion symbols), however we point out that the extension to n-ary modalities
is straightforward.

A modal signature ΣM is a set of unary operation symbols; from ΣM ,
propositional modal formulae are built using countably many propositional
variables, the operation symbols in ΣM , the Boolean connectives ∩,∪,∼ and

6The argument works also for universal Horn theories extending the theory of Boolean
algebras.

7Recall that a Boolean algebra is atomless iff for every non-zero element a from its
support there is a non-zero b such that b < a.
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the constants 1 for truth and 0 for falsity. We use the letters x, x1, . . . , y, y1, . . .
to denote propositional variables and the letters t, t1, . . . , u, u1, . . . to denote
propositional formulae; t⇒ u and t⇔ u are abbreviations for (∼ t) ∪ u and
for (t⇒ u)∩ (u⇒ t), respectively. We use notations like t(x) (resp. Γ(x)) to
say that the modal formula t (the set of modal formulae Γ) is built up from
a set of propositional variables included in the tuple x.

The following definition is taken from [33], pp. 8–9:

Definition 5.1. A classical modal logic L based on a modal signature ΣM

is a set of modal formulae that

(i) contains all classical propositional tautologies;

(ii) is closed under uniform substitution of propositional variables by propo-
sitional formulae;

(iii) is closed under the modus ponens rule (‘from t and t⇒ u infer u’);

(iv) is closed under the replacement rules, which are specified as follows. We
have one such rule for each o ∈ ΣM , namely:

t⇔ u
o(t)⇔ o(u)

A classical modal logic L is said to be normal iff for every modal operator
o ∈ ΣM , L contains the modal formulae o(1) and o(y ⇒ z)⇒ (o(y)⇒ o(z)).

Since classical modal logics (based on a given modal signature) are closed
under intersections, it makes sense to speak of the least classical modal logic
[S] containing a certain set of propositional formulae S. If L = [S], we say
that S is a set of axiom schemata for L.

If L1 is a classical modal logic over the modal signature Σ1
M and L2 is a

classical modal logic over the modal signature Σ2
M and Σ1

M ∩ Σ2
M = ∅, the

fusion L1⊕L2 is the modal logic [L1∪L2] over the modal signature Σ1
M∪Σ2

M .
Given a modal logic L, a set of modal formulae Γ and a modal formula t,

the global consequence relation Γ `L t holds iff there is a finite list of modal
formulae t0, . . . , tn such that: (i) tn is t; (ii) each ti is either a member of L or
a member of Γ or is obtained from previous members of the list by applying
one of the two inference rules from Definition 5.1 (i.e. modus ponens and
replacement).
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Global consequence relation should be contrasted with local consequence
relation, to be indicated with `L Γ⇒ t: this holds iff there are g1, . . . , gn ∈ Γ
such that

⋂n
i=1 gi ⇒ t belongs to L. If Γ consists of a single modal formula g,

below we write g `L t and `L g ⇒ t instead of {g} `L t and of `L {g} ⇒ t.
In case L is normal, one can reduce the global consequence relation to

the local one: in fact, it is not difficult to see by induction that the following
fact (’deduction theorem’) holds:

Γ `L t iff `L oΓ⇒ t

where oΓ is some finite set of modal formulae (depending on t) obtained from
Γ by prefixing a string of modal operators (i.e. elements of oΓ are modal
formulae of the kind o1(o2 · · · on(g) · · · ), for g ∈ Γ and n ≥ 0, o1, . . . , on ∈
ΣM).

Due to the presence of local and global consequence relations, we can
formulate two different versions of the Craig’s interpolation theorem:

Definition 5.2. Let L be a classical modal logic in a modal signature ΣM .

(i) We say that L enjoys the local interpolation property iff whenever we
have `L t1(x, y) ⇒ t2(x, z) for two modal formulae t1, t2, then there is
a modal formula u(x) such that `L t1 ⇒ u and `L u ⇒ t2. This is a
“implication-based” interpolation property.

(ii) We say that L enjoys the global interpolation property iff whenever we
have t1(x, y) `L t2(x, z) for two modal formulae t1, t2, then there is
a modal formula u(x) such that t1 `L u and u `L t2. This is a
“consequence-based” interpolation property.

Related forms of “consequence-based” interpolation (like “deductive in-
terpolation”) have been studied in detail in several works [17, 31, 8, 39, 30,
10, 9, 24, 16] (see in particular [24] for proofs and references for the connec-
tions between deductive interpolation and amalgamation through congruence
extension property). For normal modal logics, in view of the above deduc-
tion theorem, it is easy to see that the local interpolation property implies
the global one (but it is not equivalent to it, see [21]). In the non-normal
case, there is no deduction theorem available, so that in order to have an
interpolation property encompassing both the local and the global versions,
it seems that a different notion needs to be introduced. This is what we are
doing now.
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Given a modal logic L and two sets of modal formulae Γ1(x, y),Γ2(x, z),
let us call an x-residue chain a tuple of modal formulae C(x) = g1(x), . . . , gn(x)
such that we have Γ1 ∪ {g1, . . . , g2i} `L g2i+1 and Γ2 ∪ {g1, . . . , g2j−1} `L g2j,
for all i such that 0 ≤ 2i < n and for all j such that 0 < 2j ≤ n.

Definition 5.3. Let L be a classical modal logic in a modal signature ΣM .

(iii) We say that L enjoys the comprehensive interpolation property iff when-
ever we have Γ1(x, y),Γ2(x, z) `L t1(x, y)⇒ t2(x, z) for two modal for-
mulae t1, t2 and for two finite sets of modal formulae Γ1,Γ2, there are
an x-residue chain C(x) and a modal formula u(x) such that we have
Γ1, C `L t1 ⇒ u and Γ2, C `L u⇒ t2.

Notice that the comprehensive interpolation property implies both the
local and the global interpolation properties: the first fact is shown in the
proof of Corollary 5.1; the second is stated in the following Proposition:

Proposition 5.1. Let L be a classical modal logic which admits the com-
prehensive interpolation property. Then, L enjoys the global interpolation
property.

Proof. Suppose that L admits the comprehensive interpolation property. In
order to show that L is globally interpolating, we consider two modal for-
mulas α(x, y) and β(x, z) such that α `L β. By definition of comprehensive
interpolation (defining Γ1 := α, Γ2 := >, t1 := > and t2 := β), there exist an
x-residue chain C(x) := g1(x), ..., gn(x) and a modal formula u(x) such that:

• Γ1 ∪ {g1, . . . , g2i} `L g2i+1 and Γ2 ∪ {g1, . . . , g2j−1} `L g2j, for all i such
that 0 ≤ 2i < n and for all j such that 0 < 2j ≤ n, which implies that
α `L

∧
C.

• Γ1, C `L t1 → u and Γ2, C `L u→ t2, which means that α,C `L u and
C `L u→ β.

Then, it is clear that α `L (
∧
C) ∧ u and also (

∧
C) ∧ u `L β. If we define

θ(x) := (
∧
C)(x) ∧ u(x), we get that α `L θ and θ `L β , as required.

In the normal case, via deduction theorem, it can be easily seen that the
comprehensive interpolation property is equivalent to the local interpolation
property (Corollary 5.1).
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Remark. The formulation we used for the comprehensive interpolation
property is reminiscent of intuitions coming from automated reasoning prac-
tice (we suppose we are given reasoners who cooperate by exchanging in-
formation over the common sublanguage). It is however possible to give a
(trivially) equivalent formulation which is easier to compare with some defi-
nitions known from the literature. The equivalent definition is as follows: say
that L has the comprehensive interpolation property iff whenever we are given
Γ1(x, y),Γ2(x, z) - having the property that for every v(x) we have Γ1 `L v iff
Γ2 `L v - if it happens that Γ1(x, y),Γ2(x, z) `L t1(x, y) ⇒ t2(x, z) for some
t1, t2, then there is a modal formula u(x) such that we have Γ1 `L t1 ⇒ u
and Γ2 `L u⇒ t2. This formulation should be compared e.g. with the (OIP)
(‘ordinary interpolation property’) in [10], Def. 3.3: the comparison clearly
shows that our ‘comprehensive interpolation property’ is a stronger form of
(OIP) that includes both local and global aspects (i.e. in the terminology
of [10], both ‘conditional’ and ‘deductive’ aspects).

Remark. As a further remark, we underline that (as it is not difficult to
show), in case the congruence extension property holds, one can assume
that all residue chains in the definition of the comprehensive interpolation
property have length 1; in this case, again comparing with [10] Def.3.1(iii),
our comprehensive interpolation property becomes just a stronger form of the
(MIP) (‘Maehara interpolation property’) comprising both local and global
aspects.

Our final result, giving an extension of Wolter’s result [38] to non-normal
case, is the following:

Theorem 5.1. If the modal logics L1 and L2 both have the comprehensive
interpolation property, so does their fusion L1 ⊕ L2.

The proof of the above Theorem is reported in the final Subsection 5.3;
actually, it requires some algebraic logic background which will be introduced
in the following subsection.

5.2. Algebraic logic background

We now revisit key notions from algebraic logic and recall the bijective
correspondence between modal logics and BAO-equational theories [32]. The
correspondence works as follows.

Given a logic L with modal signature ΣM , we define the BAO-equational
theory TL as the theory having as signature ΣL := ΣM ∪ ΣBA and as set of
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axioms the set
BA ∪ {t = 1 | t ∈ L}.

Notice that, from our notational conventions, it follows that ΣM -modal for-
mulae are the same as ΣL-terms. Models of TL will be called L-algebras in
the following.

Vice versa, given an equational extension T of BA over the signature Σ,
we define LT as the classical modal logic over the modal signature Σ \ ΣBA

axiomatized by the formulae

{t | T |= t = 1} .

Notice that under the above bijection, we have TL1⊕L2 = TL1 ∪ TL2 , i.e.
the fusion of BAO’s (as defined in Subsection 4.2) corresponds to the fusion
of modal logics (as defined in Subsection 5.1).

Classical modal logics (in our sense) and equational extensions of BA
are equivalent formalisms. For our purposes, it is important to revisit pre-
sentations, as introduced in Subsection 4.1, in terms of Lindenbaum-Tarski
algebras.

Recall that a TL-presentation (we fix a logic L) is pair (X,Γ) given by a
set of fresh constants X and a set of ΣX

L -atoms. Now, in the current situation,
we can view the X as propositional variables and notice that every atom is
equivalent to an atom of the kind t = 1, where t is a ΣX

L -term (alias modal
formula in which at most the X occur). This is so because there are no
predicate symbols other than equality in ΣL and because we can transform
an atom t1 = t2 into the atom t1 ⇔ t2 = 1, modulo TL equivalence. Thus,
from now on, a presentation will be just a pair (X,Γ) where the elements of Γ
are ΣX

L -terms. We recall that the L-algebra FTL(X,Γ) corresponding to the
presentation (X,Γ) is built up from equivalence classes of ΣX

L -terms under
the equivalence relation u1 ∼Γ u2 given by TL ∪ {t = 1 | t ∈ Γ} |= u1 = u2,
by defining all operations on representative elements of equivalence classes.

Now, it is well-known that it is possible to build FTL(X,Γ) in another
equivalent way (the Lindenbaum-Tarski construction), directly via the global
consequence relation `L of the logic L. We recall how to do it and show the
equivalence with the old construction of FTL(X,Γ).

Given a presentation (X,Γ), the Lindenbaum-Tarski algebra LT (X,Γ)
is built as follows: we take the set of the modal formulae containing at
most the propositional variables X and introduce the equivalence relation
defined by u1 ∼LTΓ u2 iff Γ `L u1 ⇔ u2. The last equivalence relation is
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a congruence because, for istance, if u1 ∼LTΓ u2 (i.e. Γ `L u1 ⇔ u2), then,
applying the replacement rule, we also have Γ `L o(u1)⇔ o(u2), which means
o(u1) ∼LTΓ o(u2). The boolean cases are analogous. Defining each operation
on representatives of equivalence classes, we obtain our algebra LT (X,Γ); by
construction, LT (X,Γ) is a model of TL and (under the natural evaluation
of each variable in X as its own equivalence class) we have that all u ∈ Γ
evaluates to 1.

Proposition 5.2. We have LT (X,Γ) ' FTL(X,Γ), for every presentation
(X,Γ).

Proof. It is sufficient to observe that (by straightforward arguments) we have

Γ `L t iff TL ∪ {u = 1 | u ∈ Γ} |= t = 1

for every t.

Due to the above Proposition, we shall feel free to use the constructions
of LT (X,Γ) and of FTL(X,Γ) interchangeably.

We dedicate the left subsection of this section to the proof of Theorem 5.1.

5.3. Proof of Theorem 5.1

We finally report the proof of our main result from Section 5, namely The-
orem 5.1. The claim is to show that the model-theoretic condition of Theo-
rem 4.1, i.e. T0-strong sub-amalgamability, in case T0 is the theory of Boolean
algebras, is nothing but the superamalgamation property known from alge-
braic logic. Further, we will prove that superamalgamability is equivalent to
comprehensive interpolation. By Corollary 4.1, we derive fusion modularity
of comprehensive interpolation (and also of local interpolation in the normal
case). Before doing that, we recall the definition of superamalgamation.

Definition 5.4. We say that a BAO-equational theory T has the supera-
malgamation property iff for every T -fork (M1,M2,A) there exists a T -
amalgam (M, µ1, µ2) such that for every a1 ∈ |M1|, a2 ∈ |M2| such that
µ1(a1) ≤ µ2(a2) there exists a0 ∈ |A| such that a1 ≤ a0 holds in M1 and
a0 ≤ a2 holds in M2.

We also state the following definition (related to superamalgamation),
which involves commutative squares of algebras:
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Definition 5.5. Let L be a classical modal logic. A commutative square of
TL-algebras

A1 A

A0 A2

ε1

ε2η1

η2

is said to have the interpolation property iff the following holds:

∀a1 ∈ |A1|,∀a2 ∈ |A2| (ε1(a1) ≤ ε2(a2)⇒ ∃b ∈ |A0| (a1 ≤ η1(b)∧η2(b) ≤ a2))

Lemma 5.1. In a commutative square having the interpolation property as
above, if η1 is injective (i.e. an embedding), so is ε2.

Proof. Recall that a morphism µ among Boolean algebras is injective iff
1 ≤ µ(a) implies 1 ≤ a for all a. Suppose that η1 is injective and 1 ≤ ε2(a);
then ε1(1) ≤ ε2(a), so there is b ∈ |A0| such that 1 ≤ η1(b) and η2(b) ≤ a;
this implies b = 1 and 1 ≤ a, as required.

Definition 5.6. Let L be a classical modal logic. Given three algebras A0,
A1 and A2 endowed with homomorphisms η1 : A0 → A1 and η2 : A0 → A2,
we say that they are superamalgamable if there exists another algebra A with
homomorphisms ε1 : A1 → A and ε2 : A2 → A such that the square

A1 A

A0 A2

ε1

ε2η1

η2

is commutative and has the interpolation property.

Next Proposition slightly restates the superamalgamation property (ba-
sically, it shows that in order to check superamalgamation property, we only
need to fill a TL-fork into a square having the interpolation property, without
caring about the fact that the square is formed by embeddings):

Proposition 5.3. The following conditions are equivalent for a modal logic
L:

(i) TL has the superamalgamation property;
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(ii) every TL-fork is superamalgamable;

(iii) the pushout of every TL-fork has the interpolation property.

Proof. The implication (i) ⇒ (ii) is trivial, whereas the implication (ii) ⇒
(iii) is immediate by the universal property of pushouts. To show that (iii)
⇒ (i), assume (iii) and take a TL-fork (A1,A2,A0); the related pushout

A1 A

A0 A2

ε1

ε2

has the interpolation property and by Lemma 5.1, it follows that ε2 is injec-
tive. ExchangingA1 andA2 (i.e. considering the fork (A2,A1,A0)), it follows
that ε1 is also injective (the pushout construction is symmetric). Thus, we
have found a T -amalgam of the fork having the interpolation property.

Notice that, up to a renaming isomorphism, every triple A0, A1 and A2

of L-algebras endowed with embeddings η1 : A0 � A1 and η2 : A0 � A2 is
a TL-fork; as a consequence, TL is superamalgamable iff every such a triple
of L-algebras connected by embeddings is superamalgamable.

The following proposition relates the comprehensive interpolation prop-
erty (which is a linguistic notion for propositional modal logics) to supera-
malgamability (which is an algebraic condition):

Proposition 5.4. Let L be a modal logic. Then, TL has the superamalgam-
ability property iff L satisfies the comprehensive interpolation property.

Proof. Suppose that L has the comprehensive interpolation property. Con-
sider a TL-fork; using presentations, we can suppose that the fork is given
by a triple of TL-presentations (X0,Γ0), (X0 ∪ X1,Γ1), (X0 ∪ X2,Γ2) with
(X0 ∪ X1) ∩ (X0 ∪ X2) = X0, and with Γi conservative over Γ0 (i = 1, 2).
To this TL-presentation corresponds a pair of canonical embeddings (let us
write X0, Xi instead of X0 ∪Xi for simplicity):

FTL(X0, X1,Γ1)
η1←− FTL(X0,Γ0)

η2−→ FTL(X0, X2,Γ2) (6)

(we recall that we use the word ‘canonical’ to mean that ηi associates the
equivalence class of t in FTL(X0,Γ0) with the equivalence class of the same
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t in FTL(X0, Xi,Γi)).
8 We are using the Lindenbaum-Tarski construction for

presentations, hence conservativity of Γi means that we have

Γi `L t(x0) iff Γ0 `L t(x0) (7)

for every modal formula (alias ΣL-term) containing at most propositional
variables x0 ⊆ X0.

From (5), we know that the pushout of (6) is given by

FTL(X0, X1,Γ1)
ε1−→ FTL(X0, X1, X2,Γ1 ∪ Γ2)

ε2←− FTL(X0, X2,Γ2) (8)

with canonical maps ε1, ε2.
We use Proposition 5.3 and just show that the square formed by the

quadruple (η1, η2, ε1, ε2) has the interpolation property. To this aim, let us
suppose that for modal formulae t1, t2 (where t1 is built up from the variables
in X0 ∪X1 and t2 is built up from the variables in X0 ∪X2) we have

ε1([t1]) = [t1] ≤ [t2] = ε2([t2])

in FTL(X0, X1, X2,Γ1 ∪ Γ2); the last means that Γ1 ∪ Γ2 `L t1 ⇒ t2 by the
construction of the Lindenbaum-Tarski algebra. Since only finitely many
formulae are used in a derivation, there exist two finite subsets Γ′1 ⊆ Γ1 and
Γ′2 ⊆ Γ2 such that

Γ′1(x0, x1),Γ′2(x0, x2) `L t1(x0, x1)⇒ t2(x0, x2)

(here x0 is a tuple including all the variables fromX0 occurring in Γ′1,Γ
′
2, t1, t2,

x1 is a tuple including all the variables from X1 occurring in Γ′1, t1 and x2

is a tuple including all the variables from X2 occurring in Γ′2, t2). By the
comprehensive interpolation property, there exist a formula u(x0) and a finite
set of formulae g1(x0), ..., gn(x0) such that:

Γ′1(x0, x1) `L g1

Γ′2(x0, x2), g1 `L g2

8Notationally, the fact that ηi is canonical allows us to write equations like ηi([t]) = [t];
there is a bit of abuse in this notation, because we do not indicate where the equivalence
class [t] of t is taken from, but such missed information can be easily deduced from the
context.
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· · ·
Γ′1(x0, x1), g1, ..., g2j−1 `L g2j

Γ′2(x0, x2), g1, ..., g2k `L g2k+1

· · ·
and also such that:

Γ′1(x0, x1), g1, ..., gn `L t1 ⇒ u

Γ′2(x0, x2), g1, ..., gn `L u⇒ t2

But, for i = 1, 2, by conservativity of Γi over Γ0, we obtain that Γi `L gj
(all j = 1, . . . , n), hence Γ1 `L t1 ⇒ u and Γ2 `L u ⇒ t2. The last two
facts yield [t1] ≤ [u] = η1([u]) in FTL(X0, X1,Γ1) and [u] = η2([u]) ≤ [t2]
in FTL(X0, X2,Γ2), as required for the interpolation property to hold for the
square (η1, η2, ε1, ε2).

Conversely, suppose that L has the superamalgamability property. Let
Γ1(x, y), Γ2(x, z) be finite sets of modal formulae and let t1(x, y), t2(x, z) be
such that Γ1(x, y),Γ2(x, z) `L t1(x, y) ⇒ t2(x, z). We construct three alge-
bras in TL connected with (canonical) monomorphisms in order to apply the
superamalgamability property. Let Γ0(x) be the set of the modal formulae
g(x) such that there is an x-residue chain from Γ1(x, y), Γ2(x, z) ending up
in g(x). Then, we put ∆1 := Γ1 ∪ Γ0 and ∆2 := Γ2 ∪ Γ0; clearly ∆1 and ∆2

are conservative over Γ0 by construction. Now, we are ready to take:

A1 := FTL(x, y,∆1)

A2 := FTL(x, z,∆2)

A0 := FTL(x,Γ0)

This is a triple of L-agebras connected by canonical embeddings. Then,
by the superamalgamability property and by Proposition 5.3, the related
pushout has the interpolation property. From (5), we know that such pushout
is

FTL(x, y,∆1)
ε1−→ FTL(x, y, z,∆1 ∪∆2)

ε2←− FTL(x, z,∆2)

with canonical maps ε1, ε2.
From Γ1(x, y),Γ2(x, z) `L t1(x, y)⇒ t2(x, z), it follows that we have

ε1([t1(x, y)]) = [t1(x, y)] ≤ [t2(x, z)] = ε2([t2(x, z)])
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in FTL(x, y, z,∆1 ∪ ∆2). By the interpolation property of the square, there
exists a formula u(x) such that we have [t1] ≤ [u] = η1[u] in FTL(x, y,∆1) and
η2([u]) = [u] ≤ [t2] in FTL(x, z,∆2). This means that we get Γ1,Γ0 `L t1 ⇒ u
and Γ2,Γ0 `L u ⇒ t2. Since only finitely many modal formulae from Γ0 are
involved in these derivations and since all modal formulae in Γ0 are obtained
via x-residue chains, the claim follows (we can obviously glue finitely many
x-residue chains into a single one).

The last statement of the following Corollary is well-known ([21],[13],[19]):

Corollary 5.1. If L is normal, then L has the comprehensive interpolation
property iff it has the local interpolation property. Consequently TL has the
superamalgamability property iff L satisfies the local interpolation property.

Proof. Suppose first that L has the local interpolation property. Consider the
deduction relation Γ1(x, y),Γ2(x, z) `L t1(x, y)⇒ t2(x, z). Since L is normal,
applying the ’deduction theorem’ it is clear that the last fact is equivalent to9

`L (oΓ1 ∩ oΓ2) ⇒ (t1 ⇒ t2), which implies (using propositional tautologies)
that `L (oΓ1 ∩ t1) ⇒ (oΓ2 ⇒ t2) holds. By the local interpolation property,
there exists a formula u(x) such that `L (oΓ1 ∩ t1)⇒ u and `L u⇒ (oΓ2 ⇒
t2). Applying again propositional tautologies and the ’deduction theorem’,
the previous statement is equivalent to Γ1 `L t1 ⇒ u and Γ2 `L u ⇒ t2,
which means that L has the comprehensive interpolation property (here, the
x-residue chain is empty).

For the other implication10, suppose that L has the comprehensive inter-
polation property and that t2(x, z) is locally deducible from t1(x, y), i.e. that
`L t1(x, y) ⇒ t2(x, z) holds. This fact implies, by comprehensive interpo-
lation property, that there exist a x-residue chain C = {g1, . . . , gn} and a
formula u(x) such that C `L t1 ⇒ u and C `L u ⇒ t2. Hence, in order to
achieve the aim it is sufficient to show that `L C holds. In fact, since Γi = ∅,
we have `L g1; moreover, reasoning by induction, `L g1, . . . ,`L gn−1 and
g1, ..., gn−1 `L gn imply, replacing the gi (i = 1, ..., n − 1) with their proofs,
that `L gn. Therefore, we conclude `L C, as wanted.

9Recall from Subsection 5.1, that we use the notation oΓ to indicate the conjunction
of a finite set of modal formulae of the kind o1(o2 · · · on(g) · · · ), for g ∈ Γ and n ≥ 0,
o1, . . . , on ∈ ΣM .

10Notice that the following argument does not require the normality of L. Thus, the
comprehensive interpolation property implies the local interpolation property even in the
non-normal case.
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Classical propositional logic can be seen as the modal logic over the empty
signature (as such, it is clearly also normal and Corollary 5.1 applies to it).
From ordinary Craig interpolation theorem for classical propositional logic
and Corollary 5.1, we can get the following very well-known fact:

Lemma 5.2. BA has the superamalgamation property.

Pushouts in BA can be better described:

Lemma 5.3. Let (A1,A2,A0) be a BA-fork and let

A1 A

A0 A2

ε1

ε2

be the Boolean pushout of the fork; then all elements of |A| can be written
as finite meets of elements of the kind ε1(a1) ⇒ ε2(a2), for a1 ∈ |A1| and
a2 ∈ |A2|.

Proof. We replace our BA-fork with a canonical presentation

FBA(X0, X1,Γ1)
η1←− FBA(X0,Γ0)

η2−→ FBA(X0, X2,Γ2)

of it; then the pushout can be presented as

FBA(X0, X1,Γ1)
ε1−→ FBA(X0, X1, X2,Γ1 ∪ Γ2)

ε2←− FBA(X0, X2,Γ2) (9)

Elements of FBA(X0, X1, X2,Γ1∪Γ2) are equivalence classes of classical propo-
sitional formulae built up from the variables X0, X1, X2. By conjunctive nor-
mal forms, they are conjunctions of clauses l11 ∨ · · · ∨ l1n ∨ l21 ∨ · · · ∨ l2m, where
the literals l1j are built from X0 ∪ X1 and the literals l2k are built up from
X0 ∪X2 (this representation is of course not unique). These clauses in turn
can be written as

(¬l11 ∧ · · · ∧ ¬l1n)⇒ (l21 ∨ · · · ∨ l2m) (10)

and the equivalence class of (10) in FBA(X0, X1, X2,Γ1∪Γ2) is of the desired
shape.

We can now state the second main result of this paper:
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Theorem 5.2. A BAO-equational theory T has the superamalgamation prop-
erty iff it is BA-strongly amalgamable.

Proof. Let T be equal to TL for a modal logic L.
Suppose first that TL has the superamalgamation property and consider a

TL-fork (A1,A2,A0). Since TL is superamalgamable, we can fill the inclusions
A0 ⊆ A1 and A0 ⊆ A2 into a commutative square

A1 A

A0 A2

ε1

ε2

having the interpolation property. Considering the BA-reducts, we can build
the Boolean pushout square and the Boolean comparison morphism θ as in
the following diagram:

A

A1 B

A0 A2

ε2

ε̄1

ε1

ε̄2

θ

We show that θ is injective (i.e. a Boolean embedding): this is precisely
what it is required by BA-strong amalgamability. Using Lemma 5.3 (and
recalling that in a Boolean algebra the meet of a finite set is equal to 1
iff all elements from the set are equal to 1), it is sufficient to prove that if
θ(ε̄1(a1)⇒ ε̄2(a2)) = 1, then ε̄1(a1) ≤ ε̄2(a2) (i.e. ε̄1(a1)⇒ ε̄2(a2) = 1). But

1 = θ(ε̄1(a1)⇒ ε̄2(a2)) = θ(ε̄1(a1))⇒ θ(ε̄2(a2)) = ε1(a1)⇒ ε2(a2)

and in a Boolean algebra, this is equivalent to ε1(a1) ≤ ε2(a2). Since the
outer square has the interpolation property, we conclude that there exists an
element a ∈ |A0| such that a1 ≤ η1(a) and η2(a) ≤ a2, where η1, η2 are the
inclusions of A0 into A1,A2. Therefore, we compute ε̄1(a1) ≤ ε̄1(η1(a)) =
ε̄2(η2(a)) ≤ ε̄2(a2), as wanted.

Conversely, suppose that TL is BA-strongly amalgamable. Thus, by Propo-
sition 5.3, it is sufficient to show that every TL-fork (A1,A2,A0) is su-
peramalgamable. By BA-strong amalgamability, the minimal BA-amalgam
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(B, ε̄1, ε̄2), which is the pushout in BA, can be embedded via a θ (unique by
the universal property of the pushout) into a TL-amalgam (A, ε1, ε2).

A

A1 B

A0 A2

ε2

ε̄1

ε1

ε̄2

θ

Now Lemma 5.2 states that BA has the superamalgamation property; so,
by Proposition 5.3, the Boolean pushout

A1 B

A0 A2

ε̄1

ε̄2

has the interpolation property. We show that, since θ is injective, the com-
mutative square

A1 A

A0 A2

ε1

ε2

has the interpolation property too. In fact, if, for a1 ∈ |A1| and a2 ∈ |A2|,
we have ε1(a1) ≤ ε2(a2) in A, then we get θ(ε̄1(a1)) ≤ θ(ε̄2(a2)), and also
ε̄1(a1) ≤ ε̄2(a2), because θ is injective. Thus, by the fact that the Boolean
pushout has the interpolation property, we conclude that:

∃a0 ∈ |A0| (a1 ≤ η1(a0) ∧ η2(a0) ≤ a2)

where η1, η2 are the inclusions of A0 into A1,A2, as wanted.

As an immediate consequence, from Corollary 4.1, we get fusion modu-
larity of superamalgamation:

Corollary 5.2. If two BAO-equational theories T1 and T2 both have the
superamalgamability property, so does their fusion.
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Now, we are ready for our final main result:

Theorem 5.1 If the modal logics L1 and L2 both have the comprehensive
interpolation property, so does their fusion L1 ⊕ L2.

Proof. Immediate, from Proposition 5.4 and Corollary 5.2.

Finally, we state Wolter’s theorem [38], which is an immediate conse-
quence of Theorem 5.1 and of Corollary 5.1:

Theorem 5.3. If the normal modal logics L1 and L2 both have the local
interpolation property, so does their fusion L1 ⊕ L2.

6. Conclusions and future work

In this paper we considered the problem of transferring interpolation
properties to fusions of (non normal) modal logics. We attacked the prob-
lem not via specific modal logic techniques, but via general tools applying to
combined first-order theories.

Our approach is characterized by the attempt of employing concepts of
general scope in several different areas of mathematical logic: in this paper,
in particular, model-theoretic notions are shown to be powerful enough to
solve seemingly unrelated problems coming from non-classical propositional
logics. Algebraic logic, in this way, becomes the powerful tool revealing an
unexpected connection to the first-order framework.

We first obtained a sufficient condition (Theorem 3.1) in terms of sub-
amalgamation schemata, allowing to transfer quantifier-free interpolation
property from two theories to their union, in the case where the two theo-
ries share symbols other than pure equality. We are not aware of previous
papers attacking this problem (one should however mention a series of pa-
pers [34, 35, 37] analyzing the somewhat related - but different - problem of
transferring, in a hierarchical way, interpolation properties to theory exten-
sions under ‘locality’ assumptions). The sufficient condition of Theorem 3.1
was used to get a modular condition in case the shared theory is universal
Horn (Theorem 4.1). For equational theories extending the theory of Boolean
algebras, this modular condition turns out to be equivalent to the supera-
malgamability condition known from algebraic logic [22]. Thus, our results
immediately imply the fusion transfer of local interpolation property [38] for
classical normal modal logics. In the general non-normal case, the modu-
larity of superamalgamability can be translated into a fusion transfer result
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for a new kind of interpolation property (which we called ‘comprehensive
interpolation property’).

Still, many problems need to be faced by future research. Our combinabi-
lity conditions should be characterizable from a syntactic point of view and,
from such syntactic characterizations, we expect to be able to design concrete
combined interpolation algorithms. Concerning modal logic, besides the old
question about modularity of local interpolation property in the non-normal
case, new questions arise concerning the status of the new comprehensive
interpolation property: is it really stronger than other forms of interpolation
property (e.g. than the local one)? Are there different ways of specifying it?
Is it modular also for modal logics on a non-classical basis?
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