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Introduction

This thesis is devoted to the study of the dynamics of small perturbations of the
spatial central motion.

In particular, we are interested in proving a Nekhoroshev type theorem for it.
The point is that Nekhoroshev's theorem applies to perturbations of integrable

systems whose Hamiltonian when written in the action angle coordinates is steep.
Now such a property, in its original form, is always violated in the spatial central
motion since it is a superintegrable system and its Hamiltonian turns out to be
always independent of one of the actions.

For degenerate systems, stability results have been obtained by Nekhoroshev
in the papers ([Nek77, Nek79]) and, subsequently, by Niedermann (see [Nie96]),
Guzzo and Morbidelli, see [GM96, Guz99] in which the authors apply exponential
stability results in order to study the stability of the planetary problem.

A general Nekhoroshev theory for superintegrable systems has been developed
also by Fassò [Fas95], [Fas05] (see also Blaom in [Bla01]), and the main known
result is that a weaker version of Nekhoroshev's theorem ensuring almost conser-
vation of the two actions on which the Hamiltonian depends holds provided the
Hamiltonian is a convex function of these two actions. We remark that it is quite
clear how to extend Fassò's theory to the case of steep dependence on the two
actions.

The �rst goal of the thesis is to write a complete proof of Nekhoroshev's the-
orem for superintegrable systems under the assumption that the Hamiltonian is
quasiconvex in the actions on which it actually depends. This is done by gener-
alizing the proof by Lochak (see [Loc92]) which is much simpler then the original
one by Nekhoroshev (see [Nek77, Nek79]) (the one extended by Fassò ).

Then, we tackle the problem of proving that the Hamiltonian in action angle
variables is quasiconvex. This is far from trivial since the expression of the Hamilto-
nian depends on the form of the potential and one expects that quasiconvexity
holds under some conditions on the potential. The main technical result of the
thesis is that actually there are only two central potentials corresponding to which
the Hamiltonian is not quasiconvex, namely, the Harmonic and the Keplerian one.

We are now going to state in a precise way the main result of the thesis.

iii



INTRODUCTION iv

In Cartesian coordinates, the Hamiltonian of the spatial central motion is given
by

H(x,p) =
|p|2

2
+ V (|x|) , (1)

p ≡ (px, py, pz) , x ≡ (x, y, z) , |x| :=
√
x2 + y2 + z2 ,

where V is the potential that we assume to be analytic. Furthermore, we assume
that it ful�lls the following assumptions

(H0) V : (0,+∞)→ R is a real analytic function.

(H1) −`∗ :=
1

2
lim
r→0+

r2V (r) > −∞

(H2) ∃r > 0 : r3V ′(r) > max {0, `∗},

(H3) ∀` > max {0, `∗} the equation (in r) r3V ′(r) = ` has at most a �nite number
of solutions.

Remark 0.0.1. (H1) ensures that there are no collision orbits provided the angular
momentum is large enough; (H2) ensures that the e�ective potential has at least
one strict minimum so that the domain of the actions is not empty; �nally (H3)
ensures that the domain of the actions is not too complicated.

Remark 0.0.2. For example any analytic potential of Schwartz class such that
bounded orbits exist ful�lls the assumptions.

De�ne the total angular momentum (L1, L2, L3) ≡ L := x × p and denote by
L :=

√
L2

1 + L2
2 + L2

3 its modulus.

Let P(3)
A ⊂ R6 be a compact subset of the phase space invariant under the

dynamics of H,

Theorem 0.0.1. Assume that V is neither Harmonic nor Keplerian; then there
exists a set K(3) ⊂ P(3)

A , which is the union of �nitely many analytic hypersurfaces,

with the following property: let P : P(3)
A → R be a real analytic function. Let

C(3) ⊂ P(3)
A \K(3) be compact and invariant for the dynamics of H; then there exist

positive ε∗, C1, C2, C3, C4 with the following property: for |ε| < ε∗, consider the
dynamics of the Hamiltonian system

Hε := H + εP

then, for any initial datum in C(3) one has

|L(t)− L(0)| ≤ C1ε
1/4 , |H(t)−H(0)| ≤ C2ε

1/4 , (2)

for
|t| ≤ C3 exp(C4ε

−1/4) . (3)
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An immediate consequence of the above theorem is that the particle's orbits
are con�ned between two spherical shells centered at the origin.

We now discuss the proof of the result. As anticipated above, the Hamiltonian
system associated to the spatial central motion problem belongs to the class of
superintegrable systems, namely, systems which admit a number of independent
integrals of motion larger than the number of degrees of freedom. The main
property of such systems is that, under some technical conditions, they admit
generalized action angle coordinates and the Hamiltonian turns out to depend on
a number of actions strictly smaller than the number of degrees of freedom.

Furthermore, in general, the level set of the actions is a nontrivial manifold
which cannot be covered by only one system of coordinates. As pointed out by
Fassò, this poses nontrivial problems for the development of the proof of Nek-
horoshev's theorem. The geometrical idea introduced by Fassò in order to prove
Nekhoroshev's theorem is that, even if normal form theory is classically developed
using coordinates, in the framework of superintegrable systems, the expressions
obtained in the chart, as well as the normalizing transformation, glue together
and give a function and a normal form which are de�ned "semilocally". By this
we mean on the manifold obtained by considering the union for I in a small open
set of the level sets of I, where I are the actions of the system.

In Chapter 1 of this thesis, we show how to use these ideas in order to adapt
Lochak's proof of Nekhoroshev's theorem to superintegrable systems. We also
detail the proof for the case of quasiconvex systems, which, as far as we know, was
not treated explicitly in literature. We remark that in order to get the proof only
some of the ideas by Fassò are needed.

Then (Chapter 2), we come to a detailed study of the central motion problem.
First, we apply the general geometric theory of superintegrable systems to the
spatial central motion. To do so, we �rst analyze the planar central motion and
show that we can reduce our analysis to this case. Thus, it turns out that the
general Nekhoroshev's theorem proved in Chapter 1 applies if the Hamiltonian of
the planar central motion is quasiconvex. Thus we study it.

In polar coordinates, the Hamiltonian of the planar central motion problem
has the well known form

H(r, pr, pθ) =
p2
r

2
+

p2
θ

2r2
+ V (r) . (4)

The main remark is that, in the case of systems with 2 degrees of freedom, the
quasiconvexity condition turns out to be equivalent to the nonvanishing of the so
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called Arnol'd determinant, namely,

D = det


∂2h

∂I2

(
∂h

∂I

)T
∂h

∂I
0

 ,

where h is the unperturbed Hamiltonian written in the action variables. Moreover,
in the analytic case, the Arnol'd determinant is an analytic function, thus only two
possibilities occur: either it is a trivial analytic function, or it is always di�erent
from zero except on an analytic hypersurface.

Recall now that the two actions of the planar system are the angular momentum
vector I2 := pθ and the action I1 of the reduced system, that is, the system with
Hamiltonian (4) where pθ plays the role of a parameter. The action I1 depends on
the form of the e�ective potential, namely,

Veff (r, p
2
θ) :=

p2
θ

2r2
+ V (r) .

We use the assumptions (H0)− (H3) in order to study quite precisely the domain
of I1, I2.

More precisely, we start by proving that, correspondingly to almost every value
of I2, the e�ective potential has only nondegenerate critical points. Then, we �x a
value of the angular momentum I2 and we proceed with the standard construction
of the action I1.

A simple analysis shows that the domain of de�nition of the action I1 is the
union of some open connected regions Ej of the phase-space. The regions Ej can
be classi�ed into two categories according to the nature of the critical points of
Veff contained in their closure. Precisely, we will distinguish between the regions

E (1)
j whose closure contains a minimum of the e�ective potential and the regions

E (2)
j whose closure, instead, does not contain a minimum but contains necessarily
a maximum of the e�ective potential.

Then, the heart of the proof is based on the study of the asymptotic behavior
of the Arnol'd determinant at circular orbits corresponding to the critical points
of Veff and goes di�erently in the two kinds of regions.

Speci�cally, we �rst consider the regions E (1)
j and we compute the �rst terms of

the expansion of the Hamiltonian at the minima by computing the �rst terms of
the Birkho� normal form of the e�ective system in terms of the derivatives of the
potential. This has been done extending the procedure used by Féjoz in [FK04]
who actually did the computation at order 4. Here we go at order 6. Then, we use
such an expansion in order to compute the �rst terms of the Arnol'd determinant
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and to show that it is a nontrivial function, except in the Harmonic and Keplerian
cases.

Precisely, we get that the �rst two terms of the expansion of the Arnol'd de-
terminant vanish identically if the potential V (r) ful�lls a couple of di�erential
equations. Then, we search for the common solutions of these two equations
and we obtain that they are the Keplerian and the Harmonic potentials. This
is a quite heavy computation and is done by the help of a symbolic manipulator
(MathematicaTM). The corresponding computation is reported in Appendix E.

Then, we consider the second regions E (2)
j . We prove that if such a region exists

then, the Arnol'd determinant diverges at its boundary and thus it is a nontrivial
function of the actions.

The result is obtained by exploiting the fact that the action I1 at the maximum
admits an asymptotic expansion of the form

I1 = −Λ(E − V0, I2) ln(E − V0) +G1(E − V0, I2) , (5)

where we denote by V0 the value of the e�ective potential at the maximum, by E
the energy level while G1 and Λ are two analytic functions. Moreover, Λ has a
zero of order 1 in (0, I2). Secondly, from this expansion, we derive the asymptotic
behavior of the Arnol'd determinant at the maximum and prove that it diverges
at such a point. In the thesis we prove formula (5) exploiting a normal form
result by Giorgilli [Gio01]. This formula also appears in [BC17]. In this work the
authors apply a KAM type theorem to a nearly-integrable Hamiltonian system
under suitable conditions. Previously, such a formula also appeared in the work
by Neishtadt [Nei87].

To conclude we remark that our result, showing some peculiarities of the Har-
monic and the Keplerian potentials, of course reminds Bertrand's theorem. Ac-
tually our analysis of the minima of the e�ective potential is a re�nement of that
used in the proof of Bertrand's theorem and can be used to get a new proof of
such a theorem (see Section 2.7). In Appendix A, we also added a proof of such a
result.

The results discussed here have been the object for two papers: [BF17] and
[BFS17].



Chapter 1

Superintegrable Hamiltonian

systems

The aim of this section is the development of a Hamiltonian perturbation theory
for superintegrable sytems, that we are now going to de�ne

De�nition 1.0.1. Let (H,M,ω) a Hamiltonian system, where H : M 7→ R is
the Hamiltonian function, M a 2d-dimensional symplectic manifold and ω the
symplectic form.

Let us consider k functions F1, . . . , Fk : M 7→ R. De�ne a map F := (F1, . . . , Fk) :
M 7→ Rk and consider the function F : M 7→ F (M) :=M⊂ Rk.

We say that the functions Fj constitute a maximal set of independent integrals
of motion if the following conditions are satis�ed

1. {H,Fj} = 0 , ∀j = 1, . . . , k ,

2. dF1, . . . , dFk are linearly independent at every point of M ,

3. for any other function G such that {H,G}, the di�erentials dG, dF1, . . . , dFk
are linearly dependent .

Remark 1.0.3. In a superintegrable system, the Fj's are the elements of a maximal
set of independent integrals of motion, F is a surjective submersion since the rank
of the Jacobian matrix associated is constant at every point of M∗ and equal to
2d − n. Furthermore, the �bers are the level sets F−1(c) := {x ∈ M : Fl(x) =
cl, l = 1, . . . , k} , cl ∈ R .

De�nition 1.0.2. Let F1, . . . , Fk be a maximal set of independent integrals of
motion and suppose that there exists real analytic functions Pi,j : M 7→ R such
that

{Fi, Fj} = Pi,j ◦ F, i, j = 1, . . . , k .

The k × k matrix whose entries are the functions Pi,j is the Poisson matrix.

1



CHAPTER 1. SUPERINTEGRABLE HAMILTONIAN SYSTEMS 2

De�nition 1.0.3. Let us consider a Hamiltonian system and let F1, . . . , Fk be a
maximal set of independent integrals of motion admitting a Poisson matrix. The
system is said to be superintegrable if k > d and the Poisson matrix has constant
rank equal to 2k − 2d at every point ofM.

De�nition 1.0.4. If k = d, the Hamiltonian system is completely integrable.

Superintegrable systems are characterized by the fact that the number of in-
dependent integrals of motion is greater than the number of degrees of freedom.
They are also known as degenerate systems due to the fact that the corresponding
Hamiltonian, when written in generalized action angle coordinates, does not de-
pend on all the actions. A property that we will describe in detail below. Systems
of that kind are frequent in literature: the Euler-Poinsot problem for the rigid
body motion and the spatial central motion problem are two important examples.

Example 1. The central motion problem.
Let us consider the spatial central motion problem, that is, a particle in R3

moving under a central potential. The Hamiltonian describing the system written
in Cartesian coordinates is

H(x,p) =
|p|2

2
+ V (|x|) ,

p ≡ (px, py, pz) , x ≡ (x, y, z) , |x| :=
√
x2 + y2 + z2 .

De�ne the total angular momentum (L1, L2, L3) ≡ L := x × p and denote by
L :=

√
L2

1 + L2
2 + L2

3 its modulus.
This system admits four integrals of motion, namely, the energy E of the system

and the three components (L1, L2, L3) of the angular momentum vector. Provided
we restrict to a subset M∗ of the phase-space in which the modulus of the angular
momentum vector is non zero and the motion is bounded, they constitute a maximal
set of independent integrals of motion.

Furthermore, if we compute the Poisson matrix associated, we obtain

P =


0 0 0 0
0 0 L3 −L2

0 −L3 0 L1

0 L2 −L1 0

 ,

which has rank 2 at every point of F (M∗).

The main feature of these systems is that the variables corresponding to the
degenerate directions do not contribute to the dynamics. Thus, the dimension of
the tori �lled by the �ow is smaller than the number of degrees of freedom and it
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implies that the structure of the phase space is �ner than the one which arises in
the case of a complete integrable system.

In detail, in the �rst part of the current section, we introduce the double �bra-
tion structure of the phase-space by presenting �rst the locally trivial �bration in
n-dimensional tori given by the adaptation of the Liouville-Arnol'd construction
to the superintegrable case and, then, we will deal with a second �bration arising
from a particular choice of a symplectic atlas adapted to the �rst �bration. The
structure of the double �bration has been studied in detail in the works [Nek72],
[KM12], [MF78], [Fas95] and [Fas05].

Secondly, we will present a stability result, a general Nekhoroshev type the-
orem for superintegrable Hamiltonian systems whose corresponding Hamiltonian
is quasiconvex when written in the action angle variables.

1.1 The local geometry of a superintegrable system

We begin with a couple of de�nitions which are useful in the description of the
phase space of a superintegrable system.

De�nition 1.1.1. Let M be a smooth manifold of dimension 2d. A foliation of
dimension n on M is an atlas {Uj, φj}j∈J on M with the following properties

1. ∀p ∈ M there exists a local chart {Uj, φj} such that φ(Uj) = V ′ × V ′′, with
V ′ ⊂ Rn and V ′′ ⊂ R2d−n open subsets.

2. if {Uj, φj} and {Uk, φk} are such that Uj∩Uk 6= 0 then the transition functions
φk ◦ φ−1

j : φj(Uj ∩ Uk) 7→ φk(Uj ∩ Uk) are of the form

φk ◦ φ−1
j (x, y) = (f1(x, y), f2(y)) , (x, y) ∈ Rn × R2d−n .

The leaves of the foliation are locally described by sets of the form

{yn+1 = cn+1, . . . , ym = cm} ,

with ck ∈ R which are n-dimensional submanifolds of M .

De�nition 1.1.2. Let S be a manifold. A �bration (or �ber bundle) with �ber S
on a manifold N is a C∞ surjective map f : M 7→ N between a manifold M (the
total space of the �bration) and the manifold N (the base space of the �bration)
such that the following conditions are satis�ed

1. ∀p ∈ N f−1(p) := Mp
∼= S
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2. every �ber of f admits local trivializations, that is, ∀p ∈ N there exist a
neighborhood U of p ∈ N and a di�eomorphism ψ : f−1(U) 7→ U × S such
that the following diagram commutes

f−1(U)
ψ //

f
%%

U × S

π1

��
U

Let (H,M,ω) be a superintegrable Hamiltonian system whereM is a 2d-dimensional
symplectic manifold. Let us consider a maximal set of independent integrals of
motion

F1, . . . , F2d−n : M∗ ⊂M → R ,

with n < d, de�ned on an open subset M∗ ⊂ M . We remind the reader that we
are considering a superintegrable system, thus, the number of constants of motion
is greater than the number of degrees of freedom.
Let us consider the map F := (F1, . . . , F2d−n) : M∗ 7→ F (M∗) ⊂ R2d−n. From
Remark 1.0.3 we deduce that the map F is a surjective submersion whose �bers
are the level sets F−1(c) = {x ∈M∗ : Fk(x) = ck , k = 1, . . . , 2d− n}, ck ∈ R.

Thus, if we suppose that the �bers are compact and connected than it follows
from Ehresmann �bration lemma1 that the map F is a �bration in the sense of
de�nition 1.1.2.

The main result which describes the local geometry of a superintegrable Hamilto-
nian system is a generalization of the Liouville-Arnol'd Theorem for complete in-
tegrable systems. Di�erent versions of this theorem can be found in the works
[Nek72], [MF78], [Fas95] and [Fas05]. The version we refer to in this work is the
one given by Fassò in [Fas05] (or [Fas95]). The result is the following

Theorem 1.1.1. Let (H,M,ω) be a 2d-dimensional superintegrable Hamiltonian
system. Let F := (F1, . . . , F2d−n) : M∗ ⊂ M 7→ F (M∗) :=M⊂ R2d−n with n < d
be a map whose components belong to a maximal set of independent integrals of
motion with the property that the rank of the Poisson matrix P is everywhere
constant and equal to 2d− 2n.
Moreover, assume that the level sets, that is, the �bers of the map F are compact
and connected.
Then,

1. Every �ber of F is di�eomorphic to a n-dimensional torus Tn

1For details, see Appendix C
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2. Every �ber of F has a neighborhood U ⊂M∗ endowed with a di�eomorphism

b× α : U→ B × Tn, B = b(U) ⊂ R2d−n (1.1)

such that the level sets of F coincide with the level sets of b and, writing b =
(I1, · · · , In, p1, · · · , pd−n, q1, · · · , qd−n), the symplectic form ω can be written
as

ω|U =
n∑
j=1

dIj ∧ dαj +
d−n∑
k=1

dpk ∧ dqk .

This result states that the submanifold M∗ presents a structure of a �bration
whose �bers are di�eomorphic to n-dimensional invariant tori Tn. Moreover, in a
neighborhood of each torus, thus locally, there exists a set of generalized action-
angle coordinates adapted to the �bration.

De�nition 1.1.3. The coordinates b× α = (I, p, q, α) are called a set of general-
ized action-angle coordinates since the variables (p, q) are not a couple of action
angle coordinates.

Lemma 1.1.1. Let H|U be a local representative of the Hamiltonian H in a local
system of generalized action angle coordinates

b× α = (I1, · · · , In, p1, · · · , pd−n, q1, · · · , qd−n, α1, . . . , αn) .

Then, H|U depends on the actions (I1, . . . , In) only.

Proof. Let us consider the 2d−n integrals of motion Fj: they constitute a system
of coordinates in U which is independent of the variables α.

Thus, since Fj depend only on (I, p, q) and, moreover, are in involution with
the Hamiltonian, being integrals of motion, it follows

{H|U , Fj} = 0 ⇒ {H|U , I} = {H|U , p} = {H|U , q} = 0 ,

and, in particular,
∂H|U
∂α

=
∂H|U
∂q

=
∂H|U
∂p

= 0 .

It implies that
H|U= H|U(I) .

The following lemma gives the connection between di�erent sets of generalized
action-angle coordinates.
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Lemma 1.1.2. Let us consider a symplectic atlas formed by generalized action
angle coordinates and let {U, b × α} and {U ′, b′ × α′} be two charts such that
U ∩ U ′ 6= 0.
Then, the transition functions de�ned in each connected component of the inter-
section of the two chart domains have the following form,

I ′ = ZI + z (1.2)

(p′, q′) = G(I, p, q) (1.3)

α′ = Z−Tα + F(I, p, q) (1.4)

with F ,G analytic functions, z ∈ Rn and Z ∈ SL±(Z, n).

For the proof see for instance [Fas05].

1.2 The structure of the base space and the bi-

�bration

As we have already underlined before, the di�erence between integrable and su-
perintegrable system consists mainly of the fact that the tori on which we have
quasi-periodic motion have dimension smaller than the dimension of the base space
of the �bration.

We now describe this structure more in detail.
Let us consider the �bration F : M∗ 7→ M and a symplectic atlas {Uj, bj ×

αj}j∈J of generalized action angle coordinates. We can notice that this atlas
induces an atlas for the base space manifoldM with chart domains Bj =: F (Uj)

and coordinates given by b̂j = (Îj, p̂j, q̂j) = π1 ◦ (bj × α) ◦ F−1 = bj ◦ F−1 where
we have denoted as π1 the projection onto the �rst coordinate, as showed in the
diagram below

Uj

F
��

bj×αj //

bj

((

Bj × Tn

π1

��
Mj

b̂j

// Bj

Thus, the family {Bj, b̂j}j represents an atlas for the base spaceM. Let us now
study this manifold in detail.

From Lemma 1.1.2, we notice that the transition functions for the actions involve
only themselves meaning that we have a subset of the coordinate system which
transforms independently from the other coordinates.
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Due to the structure ofM one can de�ne a manifold A as follows: the range
of its charts are given by the projection on the �rst factor of Bj and the transition
functions are de�ned by (1.2). A is called the action space.

Then, of course, one can de�ne a map

F̃ :M→A

which is a foliation (Def. 1.1.1) whose leaves are the set F̃−1(a) with a ∈ A.

Remark 1.2.1. Since the frequency of the quasi-periodic motion on the tori de-
pends on the value of the actions, it follows that the tori based on the same leaf
support motions with the same frequency.

Hypothesis 1. We assume that the map F̃ :M→A de�nes a �bration.

Thus, we have that M∗ has the structure of a bi�bration

M∗ F−→M F̃−→ A ,

and, furthermore, every �ber F̃−1(a) is isomorphic to a given manifold Q. For
example, in the situation of the spatial central motion problem, we will see that
Q ∼= S2.

We conclude this section with the following lemma which tell us that the trans-
ition functions can be given an easier form if we make a smart choice of the atlas
of the �bration.

Lemma 1.2.1. If the action space A is simply connected, then there exists an
atlas with transition functions of the form

I ′ = I

(p′, q′) = G(I, p, q)

α′ = α + F(I, p, q)

For details see [Fas95].
In particular, we remark that, for any small enough open set V ⊂ A one has

F̃−1(V) ∼= V ×Q .

1.3 A Nekhoroshev type Theorem for superinteg-

rable systems

The aim of this section is to develop a Nekhoroshev type theorem for a perturbation
of a superintegrable Hamiltonian system with quasiconvex Hamiltonian. Precisely,
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we will show that the actions of such a system are approximately conserved for
times which are exponentially long with the inverse of the perturbation parameter.

The main problem we have to tackle in order to get this result is related to
the fact that, as we have seen in the previous sections, each system of action-angle
coordinates is in general not globally de�ned. This is particularly evident when Q
is compact.

This di�culty was solved by Fassò who adapted Nekhoroshev's proof of Nek-
horoshev Theorem to this situation. Here we adapt Lochak's proof to this context:
in particular, it simpli�es considerably the result. A proof based on Lochak's
method was already given in Blaom. In this work, the author produces an ab-
stract version of the Nekhoroshev Theorem for perturbations of non-commutative
integrable Hamiltonian systems. The result follows under the hypothesis that the
unperturbed Hamiltonian satis�es certain properties of analyticity and convexity.

In particular, our proof is given for the case of quasiconvex systems in the sense
that we will explain in a while.

Before stating the main result, we recall a couple of de�nitions.

De�nition 1.3.1. Let M∗ be a 2d-dimensional real manifold. An analytic struc-
ture on M∗ is an atlas with the property that all the transition functions are real
analytic. The pair (M∗, {Uj, φj})j∈J is called a real analytic manifold.

Let M∗ F−→ M F̃−→ A be the bi�bration described previously with M∗ a 2d-
dimensional real analytic manifold endowed with an atlas whose transition func-
tions satisfy the hypothesis of Lemma 1.2.1 and let H : M∗ 7→ R be the unper-
turbed Hamiltonian of the corresponding superintegrable system.

Let us introduce a function h : A 7→ R de�ned on the action space such that
H = h ◦ F1, where F1 = F̃ ◦ F .

Lemma 1.3.1. The function h : A 7→ R is a real analytic function on the whole
A.

Proof. The result follows from the fact that the map which introduces the set of
generalized action angle coordinates is an analytic di�eomorphism.

Finally, we will make use of the following property of quasiconvexity.

De�nition 1.3.2. A function h : A 7→ R is said to be quasiconvex at a point I∗ if
the inequality

〈η, ∂
2h

∂I2
(I∗)η〉 ≥ c ‖η‖2

holds for any η such that 〈∂h
∂I

(I∗), η〉 = 0.

Our main result is stated in the following theorem
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Theorem 1.3.1. Let us consider a bi�bration M∗ F−→ M F̃−→ A endowed with an
atlas of generalized action-angle coordinates {Uj, φj}j∈J of the form speci�ed in
Lemma 1.2.1. Let h : A 7→ R and f : M∗ 7→ R be two real analytic functions,
de�ne H := h ◦ F1, where F1 = F̃ ◦ F , and assume that h is quasiconvex in A.
Let C ⊂ M∗ be compact and invariant for the dynamics of H; then, there exist
positive constants ε∗, C1, C2, C3 with the following property: for |ε| < ε∗ consider
the dynamics of the Hamiltonian system

Hε := H + εf

then, for any initial datum in C one has

‖I(t)− I(0)‖ ≤ C1ε
1

2n ,

for all times t satisfying
| t |≤ C2exp(C3ε

− 1
2n ) .

1.4 Proof of the Theorem

1.4.1 Normal form Theorem

The �rst part of the proof concerns the construction of a semilocal normal form.
We start by choosing an appropriate norm with which we measure the size of
the functions and of their vector �elds. Then, we will de�ne and complexify the
domain on which we will construct our normal form.

The methods used in the construction of the normal form are a slight modi�c-
ation of the ones of [Loc92]. The main point is that the normal form we provide
here is semilocal, meaning that it is well de�ned on a neighborhood of a �ber of
the action space, namely, using the notation of the previous sections, in

F−1(F̃−1(V)) ,

with V ⊂ A a small open subset.
The result follows from the fact that the time averaging of a function and the

function which generates the transformation which puts the Hamiltonian in normal
form are de�ned semilocally.

However, the quantitative estimates have to be constructed locally by consid-
ering in each chart the local representative of the semilocal normal form.

Preliminaries and notations

Let us consider the bi�bration M∗ F−→ M F̃−→ A where (M∗, {Uj, φj}j) is the 2d-
dimensional analytic manifold with the atlas chosen as in Lemma 1.2.1 with

φj : Uj 7→ Bj × Tn
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given by φ(z) = (Ij, pj, qj, αj) , z ∈M∗.
We choose to work semilocally in the sense that we work close to a single value

of the action. Thus, let us �x a value I∗ ∈ A. To be more precise, for ρ > 0, we
de�ne the ball

Bρ(I∗) = {I ∈ Rn : ‖I − I∗‖ < ρ} .
Then, we de�ne

MI∗,ρ := F−1(F̃−1(Bρ(I∗))) ,
and we will construct a normal form in such a submanifold. Remark that MI∗,ρ

∼=
Bρ(I∗)× P where P is a suitable manifold.

At the end of the procedure, we will get a result valid over the whole of M∗ by
choosing a suitable collection of I∗j and ρj such that

M∗ = ∪jMI∗j ,ρj
.

We �x an atlas of generalized action angle coordinates (I, p, q, α) in MI∗,ρ. Denote
by Uj ⊂ R2d the range of the jth chart and remark that the I's coincide for all the
charts while (p, q, α) are coordinates on P . In order to measure distances on Uj,
we will introduce two parameters R > 0 and σ > 0 and we introduce the norm

‖(I, p, q, α)‖ :=
1

R

n∑
i=1

|Ii|+ sup
j

R|αj|
σ

+

√√√√d−n∑
l=1

(|pl|2 + |ql|2) . (1.5)

Let f : MI∗,ρ 7→ R be a function. We will say that f ∈ Cω(ρ) if its local repres-
entative fj in any chart is a real analytic function which extends to a bounded
complex analytic function on

Uρj := ∪z∈UjBρ(z) ,

where z = (I, p, q, α).

De�nition 1.4.1. Let fj be the local representative of a function f ∈ Cω(ρ), we
de�ne its norm as follows

‖fj‖∗ρ := sup
z∈Uρj
|fj(z)| . (1.6)

We will use the same notations for functionsX taking values in Rn, in particular
for the Hamiltonian vector �eld Xf of a function f .

De�nition 1.4.2. Let f ∈ Cω(ρ) with the further property that also its Hamilto-
nian vector �eld de�nes a complex analytic function (valued in C2d) on Cω(ρ). We
de�ne

‖f‖∗ρ := sup
j
‖fj‖∗ρ ,

‖Xf‖∗ρ := sup
j
‖Xfj‖∗ρ .
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The normal form lemma close to a resonant torus

Take I∗ ∈ A such that

ω∗ := ω(I∗) =
∂h(I∗)

∂I

is periodic of period T , that is, let us suppose that

∃l such that
ω∗i
ωl
∈ Q, ∀i = 1, . . . , n .

By the assumptions of the main theorem, there exists R > 0 such that

(i) h ∈ Cω(2R), that is, there exists a positive constant c1 such that

‖h‖∗2R ≤ c1 .

(ii) h is quasiconvex at every point of the action space A, that is, for every I ∈ A
the following inequality

〈η, ∂
2h

∂I2
(I)η〉 ≥ c‖η‖2

holds for any η such that 〈∂h
∂I

(I), η〉 = 0.

(iii) there exists a positive constant C such that the following inequality,

〈η, ∂
2h

∂I2
(I)ξ〉 ≤ C ‖η‖ ‖ξ‖ ,

holds for any ξ, η ∈ Rn where C ≥ c is the upper bound of the spectrum of
the Hessian matrix.

We are now going to put the system in normal form in MI∗,ρ with ρ su�ciently
small. First we Taylor expand at the third order h(I) obtaining

h(I) = h(I∗)+〈ω∗, (I − I∗)〉+ĥ(I−I∗)+hr(I−I∗) = h(I∗)+hω∗(J)+ĥ(J)+hr(J)
(1.7)

with J := I − I∗.
We underline that

(1) h(I∗) is an unimportant constant

(2) hω∗ is the linear part of the Hamiltonian and generates a periodic �ow with
frequency ω∗ and period T , that is,

hω∗ = 〈ω∗, J〉 .
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(3) ĥ is the quadratic part of the unperturbed Hamiltonian, that is,

ĥ(J) =
1

2
〈J, ∂

2h

∂I2
(I∗)J〉 .

It is already in normal form with hω∗ , namely, {ĥ, hω∗} = 0.

(4) hr is the remainder of the Taylor formula. It can be expressed as

hr(J) =
1

2

∫ 1

0

(1− t)2

n∑
i,j,k=1

∂3h

∂Ii∂Ij∂Ik
JiJjJkdt .

Remark that the quadratic term ĥ and the remainder hr are de�ned in the whole
of MI∗,R and that they satisfy some estimates as stated in the lemmas below

Lemma 1.4.1. Let ĥ as above. The following estimates

‖ĥ‖∗R ≤ c̃1R
4 , (1.8)

‖Xĥ‖
∗
R ≤ c̃2

R3

σ
(1.9)

hold.

Proof. To prove this lemma we use the Cauchy estimates (cf. Lemma C.2.2, Ap-
pendix C) to control the partial derivatives of the unperturbed Hamiltonian on
the complex neighborhood URj . Indeed, for i, j = 1, . . . , n, 0 < δ < R, we have∥∥∥∥∂2h

∂I2

∥∥∥∥∗
R+δ

≤ 2!

δ2
‖h‖∗2R ≤

2!

δ2
c1 (1.10)

Thus, from the de�nition of ĥ, we have that∣∣∣ĥ(J)
∣∣∣ =

1

2
〈J, ∂

2h

∂I2
(I∗)J〉 ≤ 1

2

n∑
i,j=1

∣∣∣∣ ∂2h

∂Ii∂Ij
(I∗)

∣∣∣∣|Ji||Jj| .
Then, passing to the supremum on the complex domain URj and using the estimates
(1.10), we obtain∥∥∥ĥ∥∥∥∗

R
:= sup

J∈BR(I∗)

∣∣∣ĥ(J)
∣∣∣ ≤ 1

2

2!

δ2
c1 sup
‖J‖<R

n∑
i=1

∣∣J i∣∣︸ ︷︷ ︸
<R2

sup
‖J‖<R

n∑
j=1

∣∣J j∣∣︸ ︷︷ ︸
<R2

≤ 1

δ2
c1R

4 := c̃1R
4 ,
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where c̃1 = c1
δ2 .

Analogously, we can estimate the vector �eld Xĥ and obtain

‖Xĥ‖
∗
R
≤ c̃2

R3

σ
.

Indeed, from the de�nition of the Hamiltonian vector �eld we have Xĥ = J∇ĥ =
(0, 0, 0, (Xĥ)α) where

(Xĥ)αk =
1

2

(
n∑

i,j=1

∂2h(I∗)

∂Ii∂Ij
Ji +

n∑
i,j=1

∂2h(I∗)

∂Ii∂Ij
Jj

)
.

Thus,

|(Xĥ)αk | ≤
1

2

(
n∑

i,j=1

∣∣∣∣∂2h(I∗)

∂Ii∂Ij

∣∣∣∣|Ji|+ n∑
i,j=1

∣∣∣∣∂2h(I∗)

∂Ii∂Ij

∣∣∣∣|Jj|
)

.

In URj , we have

|(Xĥ)αk | ≤
1

2

(
2!

δ2
c1

n∑
i=1

|Ji|dt+
2!

δ2
c1

n∑
j=1

|Jj|

)

≤ 2

δ2
c1R

2 := c̃2R
2 ,

where c̃2 = 2
δ2 c1. So, we have that

|(Xĥ)αk | ≤ c̃2R
2 ,∀k .

And, from the de�nition of the norm, we obtain

‖Xĥ‖
∗
R

:= sup
k

R|(Xĥ)αk |
σ

≤ c̃2
R3

σ
.

Lemma 1.4.2. Let hr as above. Then, the following estimates

‖hr‖∗R ≤ c1R
6 , (1.11)

‖Xhr‖∗R ≤ c2
R5

σ
(1.12)

hold.



CHAPTER 1. SUPERINTEGRABLE HAMILTONIAN SYSTEMS 14

Proof. By using the same strategy as in Lemma 1.4.1, we can prove similar estim-
ates for the remainder hr and its vector �eld. Indeed, from the de�nition of hr, we
have

|hr(J)| ≤ 1

2

∫ 1

0

(1− t)2
∑
i,j,k

∣∣∣∣ ∂3h

∂Ii∂Ij∂Ik
(I∗ + tJ)

∣∣∣∣|Ji||Jj||Jk|dt ,
and, passing to the supremum on the complex domain URj , thanks to the Cauchy
estimates, one can �nd

‖hr‖∗R ≤
1

2

∫ 1

0

6

δ3
c1(1− t)2 sup

‖J‖<R

n∑
i=1

∣∣J i∣∣︸ ︷︷ ︸
<R2

sup
‖J‖<R

n∑
j=1

∣∣J j∣∣︸ ︷︷ ︸
<R2

sup
‖J‖<R

n∑
i=1

∣∣Jk∣∣︸ ︷︷ ︸
<R2

dt ,

that is,

‖hr‖∗R ≤
3

δ3
c1R

6

∫ 1

0

(1− t)2dt =
1

δ3
c1R

6 := c1R
6 ,

where c1 := c1
δ3 .

Analogously, one can �nd an estimate for the vector �eld of the remainder hr.
Precisely, it is easy to prove that the following bound,

‖Xhr‖∗R ≤ c2
R5

σ
,

holds, where c2 is a positive constant.

We go back now to the Hamiltonian (1.7) which, up to irrelevant constants,
takes the form

hε = hω∗ + ĥ+ hr + εf . (1.13)

Let us assume that R is so small that the perturbation f ∈ Cω(R) and therefore
there exists a positive constant c̃ such that

‖f‖∗R ≤ c̃ .

By rede�ning ε, we can put this constant equal to 1, namely,

‖εf‖∗R ≤ ε . (1.14)

In the norm (1.5) one can estimate Xεf by

Lemma 1.4.3. Let f ∈ Cω(R) which satis�es (1.14). Then, the following estimate

‖Xεf‖∗R ≤ C3
ε

R
(1.15)

holds.
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Proof. Let fj be the local representative of the function f . Let us compute the
vector �eld of fj at a point z. We have

Xfj :=
(
(Xfj)I , (Xfj)p, (Xfj)q, (Xfj)α

)
=

(
∂fj
∂α

,
∂fj
∂q

,
∂fj
∂p

,
∂fj
∂I

)
.

We compute the norm and obtain

wwXfj

ww∗
R
≤ ε

R

n∑
i=1

∣∣∣∣∂fj∂αi

∣∣∣∣+ sup
j

R

σ

∣∣∣∣∂fj∂Ij

∣∣∣∣+

√√√√d−n∑
l=1

(∣∣∣∣∂fj∂ql

∣∣∣∣2 +

∣∣∣∣∂fj∂pl

∣∣∣∣2
)
.

From Lemma C.2.2 of Appendix C and from the fact that R << 1, we deducewwXfj

ww∗
R
≤ C3

ε

R
.

Passing to the supremum over j, we obtain (1.15).

First, we study the kind of average needed to solve the homological equation.
The main point is that the domain on which the functions are constructed isMI∗,ρ,
on which everything is well de�ned and can be estimated there. Indeed,

Lemma 1.4.4. Let fj be the local representative of the function f in the chart
domain Uρj and let

< fj > (I, pj, qj, αj) :=
1

T

∫ T

0

fj(I, pj, qj, αj + ω∗t)dt

be its time averaging where αj 7→ αj + ω∗t is the periodic �ow over the family of
resonant tori I = I∗; then, < fj > are the local representatives of a function 〈f〉.
Moreover, let us consider the functions χj de�ned on each chart domain by

χj(I, pj, qj, αj) =
1

T

∫ T

0

t[fj− < fj >](I, pj, qj, αj + ω∗t)dt .

The functions χj are the local representatives of a function χ which is de�ned on
the whole MI∗,ρ.

Proof. Let us consider the local representative fk of the map f in an other chart
domain Uρk such that Uρj ∩ U

ρ
k 6= 0. Let z ∈ Uρj ∩ U

ρ
k and let us consider the time

averaging of fk. Using the transition functions as speci�ed in Lemma 1.2.1, we
have

< f >k (I, pk, qk, αk) : =< fj > (I,G1,G2, αk + F)

=
1

T

∫ T

0

fj(I,G1,G2, αk + F + ω∗t)dt .
(1.16)
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If we construct directly the time averaging of the local representative fk, then we
obtain

< fk > (I, pk, qk, αk) =
1

T

∫ T

0

fk(I, pk, qk, αk + ω∗t)dt

=
1

T

∫ T

0

fj(I,G1,G2, αk + ω∗t+ F)dt

(1.17)

that is completely equivalent to the expression (1.16).
We have proved that the time averaging < f > of the function f is an intrinsic

function on the subspace MI∗,ρ and < f >j are its local representatives.
At this point, let us consider the function χj de�ned in the chart domain Uρj ,

that is

χj(I, pj, qj, αj) :=
1

T

∫ T

0

t[fj− < fj >](I, pj, qj, αj + ω∗t)dt .

Let us now apply the transition functions as in Lemma 1.2.1 in order to pass from
the chart Uρj to the chart Uρk . We have

χj(I,G1,G2, αk + F) =
1

T

∫ T

0

t[fj− < fj >](I,G1,G2, αk + F + ω∗t)dt

=
1

T

∫ T

0

t[fk− < f >k](I, pk, qk, αk + ω∗t)dt .

(1.18)

Note that in the second equivalence we have used the results proved in the �rst
part of this lemma.

Now, proceeding as before, we consider the function χk de�ned on a second
chart, that is

χk(I, pk, qk, αk) =
1

T

∫ T

0

t[fk− < fk >](I, pk, qk, αk + ω∗t)dt

=
1

T

∫ T

0

t[fk− < f >k](I, pk, qk, αk + ω∗t)dt

(1.19)

Thus, from the equivalence of the expressions (1.18) and (1.19), it follows that we
can construct globally a function χ on the subspace MI∗,ρ whose local represent-
atives are the functions χj.

Thus, we have the following lemma

Lemma 1.4.5. Let f and hω∗ as above. Then, the homological equation

{χ, hω∗}+ f = 〈f〉 (1.20)
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can be solved by

χ =
1

T

∫ T

0

t(f − 〈f〉)(Φt
ω∗)dt . (1.21)

Moreover, 〈f〉 , χ and their symplectic gradient belong to Cω(ρ) and satisfy the
following estimates

1. ‖〈f〉‖∗ρ ≤ ‖f‖∗ρ , ‖χ‖∗ρ ≤ T‖f‖∗ρ

2.
∥∥X〈f〉∥∥∗ρ ≤ ‖Xf‖∗ρ , ‖Xχ‖∗ρ ≤ T ‖Xf‖∗ρ

Proof. Let us denote by Φt
ω∗ the �ow of the Hamiltonian hω∗ at time t. It is

continuous and di�erentiable on the whole domain MI∗,ρ. Since the following
equality holds,

{hω∗ , χ} =
d

dt

∣∣∣∣
t=0

χ(Φt
ω∗) ,

we have only to prove that the time derivative of the function χ satis�es the
following identity

d

dt

∣∣∣∣
t=0

χ(Φt
ω∗) = f − 〈f〉 .

Thus, let us compute

d

dt

∣∣∣∣
t=0

χ(Φt
ω∗) =

d

dt

∣∣∣∣
t=0

1

T

∫ T

0

sg(Φt+s
ω∗ )ds

=

[
1

T
(sg(Φt+s

ω∗ )
∣∣
t=0

]T
0

− 1

T

∫ T

0

g(Φt+s
ω∗ )ds

∣∣∣∣
t=0

= g(ΦT
ω∗)−

1

T

∫ T

0

g(Φs
ω∗)ds ,

where g = f − 〈f〉. At this point, noticing that g is a function of zero average, we
conclude

d

dt

∣∣∣∣
t=0

χ(Φt
ω∗) = g(ΦT

ω∗) = g(Φ0
ω∗) = g = f − 〈f〉 .

Now, it remains to prove the estimates. To do so, we have to pass to the local
representatives of the functions. Remark that in any canonical coordinate system
one has Φt

ω∗(I, p, q, α) = (I, p, q, α + ω∗t) and, furthermore, the domain of the
coordinate system is invariant under Φt

ω∗ . Thus,∣∣∣〈f〉j (I, p, q, α)
∣∣∣ ≤ 1

T

∫ T

0

|fj(I, p, q, α + ω∗t)|dt ,
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that is, ∥∥∥〈f〉j∥∥∥∗
ρ
≤ ‖fj‖∗ρ ,

and, from the de�nition of the norm, it follows that

‖〈f〉‖∗ρ ≤ ‖f‖
∗
ρ .

Similarly, one has

|χj(z)| ≤ 1

T

∫ T

0

t
∣∣∣(fj − 〈f〉j)(Φt

ω∗(z))
∣∣∣dt ,

and passing to the supremum, from the previous estimate, we obtain

‖χj‖∗ρ ≤
2

T

∫ T

0

t ‖fj‖∗ρ dt ≤ T ‖fj‖∗ρ ,

and,
‖χ‖∗ρ ≤ T ‖f‖∗ρ .

We conclude by proving the estimates on the vector �elds. To do so, remark �rst
that, for any canonical transformation T and any function g, one has

Xg◦T = T ∗Xg ,

where T ∗Xg is the pull back of the vector �eld, so that, in any coordinate system
one has (

Xgj◦Tj
)

(z) = dT −1
j (Tj(z))Xgj(Tj(z)) , (1.22)

from which
Xgj◦Φtω∗

= Xgj ◦ Φt
ω∗ ,

where we used that, in any system of generalized action angle coordinates, dΦt
ω∗ =

I. In particular, the Hamiltonian vector �eld becomes

X〈f〉j(z) =
1

T

∫ T

0

Xfj◦Φtω∗
(z)dt =

1

T

∫ T

0

Xfj(I, p, q, α + ω∗t)dt ,

from which∥∥∥X〈f〉j∥∥∥∗ρ := sup
z∈Uρj

∣∣∣X〈f〉j(z)
∣∣∣ ≤ 1

T

∫ T

0

sup
z∈Uρj

∣∣Xfj(z)
∣∣dt ≤ ∥∥Xfj

∥∥∗
ρ
,

and, ∥∥X〈f〉∥∥∗ρ ≤ ‖Xf‖∗ρ .
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Similarly, one gets the estimate of Xχ. One has

Xχj(z) =
1

T

∫ T

0

tXgj◦Φtω∗
(z)dt =

1

T

∫ T

0

tXgj(I, p, q, α + ω∗t)dt ,

where gj(z) := (fj − 〈f〉j)(z) . Now, passing to the supremum over Uρj , we have

sup
z∈Uρj

∣∣Xχj(z)
∣∣ ≤ 1

T

∫ T

0

t sup
z∈Uρj

∣∣Xgj(I, p, q, α + ω∗t)
∣∣dt

≤ 1

T

∫ T

0

t sup
z∈Uρj

∣∣Xgj(z)
∣∣dt

≤ T

2

∥∥Xgj

∥∥∗
ρ
,

Thus, since wwXgj

ww∗
ρ
≤ 2

wwXfj

ww∗
ρ
,

we conclude that wwXχj

ww∗
ρ
≤ T

wwXfj

ww∗
ρ
,

and,
‖Xχ‖∗ρ ≤ T‖Xf‖∗ρ .

Thus, the generating function and the averages are de�ned semilocally and it is not
necessary to work locally in each chart. Precisely, let us consider the Hamiltonian
(1.13). In what follows we shall consider the term ĥ and the remainder hr together.
Thus, let ĥr := ĥ+ hr. We can notice that, since R << 1, the following estimatewwwĥrwww∗

R
≤
wwwĥwww∗

R
+ ‖hr‖∗R ≤ c̃1R

4 + c1R
6 ≤ C1R

4 ,

with C1 := max{c̃1, c1}, holds. Analogously,wwXĥr

ww∗
R
≤ ‖Xĥ‖

∗
R

+ ‖Xhr‖
∗
R ≤ c̃2

R3

σ
+ c2

R5

σ
≤ C2

R3

σ
,

where C2 := max{c̃2, c2}. Thus, we are now going to work with the following
Hamiltonian

h = hω∗ + ĥr + εf ,

where ĥr satis�es the estimates above.
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Lemma 1.4.6. For k ≥ 0, consider the Hamiltonian

hk = hω∗ + ĥr + Zk +Rk . (1.23)

Let δ < R
k+1

and let us assume that the functions Zk and Rk belong to Cω(R− kδ)
together with their vector �elds and that they satisfy the following estimates

(i)

∥∥∥Zk∥∥∥∗
R−kδ

≤


0 if k = 0

ε if k = 1

C4ε
k−1∑
i=0

µi if k ≥ 2

, ‖XZk‖
∗
R−kδ ≤


0 if k = 0

C3
ε

R

k−1∑
i=0

µi if k ≥ 1

(1.24)

(ii) ∥∥∥Rk∥∥∥∗
R−kδ

≤

{
ε if k = 0

C4εµ
k if k ≥ 1

, ‖XRk‖∗R−kδ ≤ C3
εµk

R
(1.25)

where µ := T
δ
(18εC3

R
+5C2R3

σ
) and C4 is a positive constant given by C4 = max{c4, 1},

where

c4 =
2C3 max{3,C1}

min{10C3, 5C2/σ}
.

If µ < 1
2
, then there exists a canonical transformation T k which is close to the

identity, that is, ∥∥T k − I
∥∥∗
R−(k+1)δ

≤ C3
Tεµk

R

such that the function hk ◦ T k has the form (1.23) where Zk+1 = Zk +
〈
Rk
〉
and

satis�es the above estimates with k + 1 in place of k.

Proof. This is essentially Lemma 7.1. of [Bam99]. The proof can be divided into
two parts. In the �rst part, we will describe the successive-transformation scheme
which permits us to normalize formally the Hamiltonian up to a certain order k
while the second part concerns the quantitative estimates which make rigorous the
procedures used in the �rst part.

The iterative procedure

As in the classical scheme, our aim is to choose as the canonical transformation
normalizing the Hamiltonian hk the time one �ow of a generating function, which
shall be the solution of the homological equation.

Precisely, let χk be the solution of the homological equation

{χk, hω∗}+Rk =
〈
Rk
〉
, (1.26)
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which exists by Lemma 1.4.5, that is,

χk =
1

T

∫ T

0

t
(
Rk −

〈
Rk
〉)

(Φt
ω∗)dt .

Then one has

‖Xχk‖∗R−kδ ≤ T‖XRk‖∗R−kδ ≤ C3
Tεµk

R
. (1.27)

Let us denote by T k := Φχk the corresponding time one �ow. From Lemma C.2.3
of Appendix C for t = 1, we obtainwwT k − I

ww∗
R−(k+1)δ

≤
wwXχk

ww∗
R−kδ .

At this point, using (1.27), we have

∥∥T k − I
∥∥∗
R−(k+1)δ

≤ C3
Tεµk

R
.

Thus, the map T k : MI∗,R−(k+1)δ 7→MI∗,R−kδ is well de�ned and, moreover, it is a
close to the identity canonical transformation.

By the composition with hk, we obtain the new Hamiltonian

hk+1 = hk ◦ T k

= hω∗ + ĥr + Zk +
〈
Rk
〉

+Rk+1

= hω∗ + ĥr + Zk+1 +Rk+1 ,

where Zk+1 = Zk +
〈
Rk
〉
is the term which is already in involution with hω∗ while

Rk+1 is the remainder which is composed by the following terms

Rk+1 = hω∗ ◦ T k − hω∗ − {χk, hω∗}
+ ĥr ◦ T k − ĥr
+Rk ◦ T k −Rk

+ Zk ◦ T k −Zk .

(1.28)

The quantitative estimates

It remains now to compute the estimates of the terms of the new Hamiltonian
to make rigorous the procedure. The main point is that we will �rst produce
estimates in a single chart and, then, thanks to the de�nition of the norm we have
given on the whole space, we will construct semilocal estimates.

We compute the estimates for Zk+1 and the remainder Rk+1 as well as for their
vector �elds.
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Thus, from the de�nition of Zk+1, we have

‖Zk+1‖∗R−(k+1)δ ≤ ‖Zk‖∗R−kδ + ‖Rk‖∗R−kδ ,

where we have used (1) of Lemma 1.4.5. For k = 0, we obtain

‖Z1‖∗R−δ ≤ ‖Z0‖∗R + ‖R0‖∗R ≤ ‖εfj‖∗R ≤ ε ,

since the term Z0 is equal to zero.
Analogously, for k ≥ 1, from the estimates (1.24) and (1.25), we obtain

‖Zk+1‖∗R−(k+1)δ ≤ C4ε
k∑
i=0

µi .

We have also
‖XZk+1‖∗R−(k+1)δ ≤ ‖XZk‖∗R−kδ + ‖XRk‖∗R−kδ .

For k = 0, we can compute the estimate

‖XZ1‖∗R−δ ≤ ‖XZ0‖∗R + ‖XR0‖∗R ≤ ‖Xεf‖∗R ≤ C3
ε

R
.

Analogously, for k ≥ 1, from the estimates (1.24) and (1.25), we obtain

‖XZk+1‖∗R−(k+1)δ ≤ C3
ε

R

k−1∑
i=0

µi + C3µ
k ε

R
= C3

ε

R

k∑
i=0

µi .

At this point, it remains to compute the estimates for the remainder Rk+1 and
its vector �led. To do so, we �rst compute the norm of the fourth term which
composes the remainder, that is,

r4 := Zk ◦ T k −Zk .

From Lemma C.2.4 of Appendix C, we obtain the following estimatewwr4
ww∗
R−(k+1)δ

≤ 2

δ

wwXχk

ww∗
R−kδ

wwZkww∗
R−kδ .

Analogously, we can compute the estimates for the second and the third term in
(1.28), namely,

r2 := ĥr ◦ T k − ĥr ,

and
r3 := Rk ◦ T k −Rk .
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We have ∥∥r2
∥∥∗
R−(k+1)δ

≤ 2

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥∥ĥr∥∥∥∗
R−kδ

,∥∥r3
∥∥∗
R−(k+1)δ

≤ 2

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥Rk
∥∥∗
R−kδ .

Now, it remains to estimate the �rst term of (1.28), that is,

r1
j := (hω∗ ◦ T k − hω∗ − {χk, hω∗}) .

From Lemma C.2.5 of Appendix C, we have∥∥r1
∥∥∗
R−(k+1)δ

≤ 4

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥Rk
∥∥∗
R−kδ .

At this point, we can put together all the previous estimates and �nd out that the
remainder (1.28) can be estimated as follows

∥∥Rk+1
∥∥∗
R−(k+1)δ

≤
4∑
l=1

∥∥rl∥∥∗
R−(k+1)δ

≤ 4

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥Rk
∥∥∗
R−kδ +

2

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥∥ĥr∥∥∥∗
R−kδ

+
2

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥Rk
∥∥∗
R−kδ +

2

δ

∥∥Xχk

∥∥∗
R−kδ

∥∥Zk∥∥∗
R−kδ .

Thus,

∥∥Rk+1
∥∥∗
R−(k+1)δ

≤
(

6

δ

∥∥Rk
∥∥∗
R−kδ +

2

δ

∥∥∥ĥr∥∥∥∗
R−kδ

+
2

δ

∥∥Zk∥∥∗
R−kδ

)∥∥Xχk

∥∥∗
R−kδ .

Now, for k = 0, we have

∥∥R1
∥∥∗
R−δ ≤

(
6

δ

∥∥R0
∥∥∗
R

+
2

δ

wwwĥrwww∗
R

+
2

δ

wwZ0
ww∗
R

)
‖Xχ0‖∗

R

≤ 2

δ

(
3ε+ C1R

4
)
C3

Tε

R
:= c̃1εµ ,

where

c̃1 =
2C3 (3ε+ C1R

4)

18C3ε+ 5C2R4/σ
≤ 2C3 max{3,C1}(ε+R4)

min{10C3, 5C2/σ}(ε+R4)
≤ 2C3 max{3,C1}

min{10C3, 5C2/σ}
:= c4 .

In particular, we have c4 ≤ C4 and, thus,∥∥R1
∥∥∗
R−δ ≤ C4εµ .
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We can proceed analogously in order to �nd out the estimate for the remainder
for k ≥ 1. Indeed, from the estimates (1.24),(1.25) and (1.27) we obtain

∥∥Rk+1
∥∥∗
R−(k+1)δ

≤ 2

δ

(
3C4εµ

k + C1R
4 + C4ε

k−1∑
i=0

µi

)
C3Tεµ

k

R
. (1.29)

At this point, if we choose µ small enough such that µ < 1
2
, then it is easy to

see that the quantity between the round brackets in (1.34) satis�es the following
inequality

3C4εµ
k + C1R

4 + C4ε

k−1∑
i=0

µi ≤ 3C4ε

2
+ C1R

4 + 2C4ε ≤ 4C4ε+ C1R
4 .

Thus, ∥∥Rk+1
∥∥∗
R−(k+1)δ

≤ 2

δ

(
4C4ε+ C1R

4
) C3Tεµ

k

R
:= c̃2εµ

k+1 ,

where

c̃2 =
2(4C4ε+ C1R

4)

18C3ε+ 5C2R4/σ
≤ C4 .

Thus, ∥∥Rk+1
∥∥∗
R−(k+1)δ

≤ C4εµ
k+1 .

Let us conclude by computing the norm of the vector �eld of the remainder
Rk+1, that is,

XRk+1 := J∇Rk+1 = Xhω∗◦T k−hω∗−{χk,hω∗}

+Xĥr◦T k−ĥr

+XRk◦T k−Rk

+XZk◦T k−Zk .

We proceed as in the previous computation. Thus, we estimate each term which
appears in the de�nition of XRk+1 . Let us begin with the fourth term

r̃4 := XZk◦T k−Zk .

From Lemma C.2.4 of Appendix C, we obtain

‖r̃4‖∗R−(k+1)δ ≤
5

δ
‖Xχk‖∗R−kδ‖XZk‖∗R−kδ .

Analogously, we can estimate the second and the third term, obtaining

‖r̃2‖∗R−(k+1)δ ≤
5

δ
‖Xχk‖∗R−kδ‖Xĥr

‖∗R−kδ ,

‖r̃3‖∗R−(k+1)δ ≤
5

δ
‖Xχk‖∗R−kδ‖XRk‖∗R−kδ .
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Let us now conclude with the �rst term, that is,

r̃1 := Xhω∗◦T k−hω∗−{χk,hω∗} .

From Lemma C.2.5 of Appendix C, we obtain the following estimate

‖r̃1‖∗R−(k+1)δ ≤
10

δ
‖Xχk‖∗R−kδ‖XRk‖∗R−kδ .

At this point, we can put together all the estimates and �nd out that the vector
�eld can be estimated as follows

‖XRk+1‖∗R−(k+1)δ ≤
4∑
i=1

‖r̃i‖

≤ 10

δ
‖Xχk‖∗R−kδ‖XRk‖∗R−kδ +

5

δ
‖Xχk‖∗R−kδ‖Xĥr

‖∗R−kδ

+
5

δ
‖Xχk‖∗R−kδ‖XRk‖∗R−kδ +

5

δ
‖Xχk‖∗R−kδ‖XZk‖∗R−kδ ,

that is,

‖XRk+1‖∗R−(k+1)δ ≤
(

15

δ
‖XRk‖∗R−kδ +

5

δ
‖Xĥr

‖∗R−kδ +
5

δ
‖XZk‖∗R−kδ

)
‖Xχk‖∗R−kδ .

For k = 0, we obtain

‖XR1‖∗R−δ ≤
(

15

δ
‖XR0‖∗R +

5

δ
‖Xĥr

‖∗R +
5

δ
‖XZ0‖∗R

)
‖Xχ0‖∗R

≤
(

15

δ

C3ε

R
+

5

δ

C2R
3

σ

)
TεC3

R

=
C3ε

R

T

δ

(
15C3ε

R
+

5C2R
3

σ

)
≤ C3ε

R
µ ,

since
T

δ

(
15C3ε

R
+

5C2R
3

σ

)
≤ µ .

Analogously, for k ≥ 1, we obtain

‖XRk+1‖∗R−(k+1)δ ≤
(

15

δ
‖XRk‖∗R−kδ +

5

δ
‖Xĥr

‖∗R−kδ +
5

δ
‖XZk‖∗R−kδ

)
‖Xχk‖∗R−kδ

≤

(
15

δ

εC3µ
k

R
+

5

δ

C2R
3

σ
+

5

δ

εC3

R

k−1∑
i=0

µi

)
TεC3µ

k

R
,
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where we have exploited the estimates (1.24),(1.25) and (1.27).
For µ < 1

2
, the quantity between the round brackets becomes

15

δ

εC3µ
k

R
+

5

δ

C2R
3

σ
+

5

δ

εC3

R

k−1∑
i=0

µi ≤ 15

2δ

εC3

R
+

5

δ

C2R
3

σ
+

10

δ

εC3

R
=

35

2δ

εC3

R
+

5

δ

C2R
3

σ
.

Thus, from the de�nition of µ,

‖XRk+1‖∗R−(k+1)δ ≤
(

18

δ

εC3

R
+

5

δ

C2R
3

σ

)
TεC3µ

k

R

≤ T

δ

(
18εC3

R
+

5C2R
3

σ

)
εC3µ

k

R

≤ C3
εµk+1

R
.

This concludes the proof.

From the iterative Lemma 1.4.6, the following theorem follows directly

Theorem 1.4.1. Consider a Hamiltonian of the form

hε = hω∗ + ĥr + εf , (1.30)

satisfying wwwĥrwww∗
R
≤ C1R

4 , ‖Xĥr
‖∗R ≤ C2

R3

σ
,

‖εf‖∗R ≤ ε , ‖Xεf‖∗R ≤ C3
ε

R
.

De�ne µ̄

µ̄ := 57e

(
εC3T

R2
+

C2TR
2

σ

)
,

and assume that µ̄ < 1
2
; then, there exists an analytic canonical transformation

T : MI∗,R/2 7→MI∗,R with the following properties

(1) T is close to the identity, namely, it satis�es

‖T − I‖∗R/2 ≤ C5
εµ̄T

R
. (1.31)

(2) T puts the Hamiltonian in resonant normal form up to an exponentially
small remainder, namely, one has

h ◦ T = hω∗ + ĥr + ε 〈f〉+ Z +R , (1.32)

where
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(i) Z is in normal form, namely, {Z, hω∗} = 0, and of order higher than
〈f〉, namely, it is estimated by

‖Z‖∗R/2 ≤ 2C6ε , ‖XZ‖∗R/2 ≤ 2C3
εµ̄

R
. (1.33)

(ii) R is an exponentially small remainder estimated by

‖R‖∗R/2 ≤ C6εe
− 1
µ̄ , ‖XR‖∗R/2 ≤ C3

εµ̄

R
e−

1
µ̄ , (1.34)

where C6 is a positive constant.

Proof. Firstly, we notice that the Hamiltonian (1.30) satis�es the hypothesis of
the iterative lemma with k = 0 considering Z0 = 0 and R0 = εf . Indeed, we have
that R0 is analytic in the domain MI∗,R together with its vector �eld and that the
following estimates are satis�edwwR0

ww∗
R

= ‖εf‖∗R ≤ ε , ‖XR0‖∗R = ‖Xεf‖∗R ≤ C3
ε

R
.

Moreover, if we us choose δ = R
4
< R, then

µ =
4T

R

(
18εC3

R
+

5C2R
3

σ

)
=

(
72εC3T

R2
+

20C2TR
2

σ

)
≤ 57e

(
εC3T

R2
+

C2TR
2

σ

)
:= µ̄ <

1

2
.

Thus, since µ is su�ciently small, we can apply the iterative lemma: there exists
a canonical transformation close to the identity, we denote it by T 0 : MI∗, 3R

4
7→

MI∗,R, such that wwT 0 − I
ww∗

3R
4

≤ εC3T

R
,

which puts the Hamiltonian in normal form

h1
ε := hω∗ + ĥr + Z1 +R1 , (1.35)

with Z1 = ε 〈f〉. Moreover, as proved in Lemma 1.4.6, we have the following
estimates wwZ1

ww∗
3R
4

≤ ε , ‖XZ1‖∗3R
4
≤ C3

ε

R
,wwR1

ww∗
3R
4

≤ C4εµ , ‖XR1‖∗3R
4
≤ C3

εµ

R
,
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with C4 a positive constant. Precisely, exploiting the fact that µ ≤ µ̄, the last two
estimates can be rewritten aswwR1

ww∗
3R
4

≤ C4εµ̄ , ‖XR1‖∗3R
4
≤ C3

εµ̄

R
.

At this point, if we rename Ĥ = ĥr + Z1, R0 := R1, then we have that the
Hamiltonian

h1
ε = hω∗ + Ĥ + R0 (1.36)

satis�es again the hypothesis of the iterative lemma for k = 0 on the domain
MI∗, 3R

4
. Indeed, we have the following estimateswwwĤwww∗

3R
4

≤
wwwĥrwww∗

3R
4

+
wwZ1

ww∗
3R
4

≤ C1R
4 + ε ,

‖XĤ‖
∗
3R
4

=
wwXĥr

ww∗
3R
4

+ ‖XZ1‖∗3R
4
≤ C2

R3

σ
+ C3

ε

R

and wwR0
ww∗

3R
4

=
wwR1

ww∗
3R
4

≤ C4εµ̄ ,

‖XR0‖∗3R
4

= ‖XR1‖∗3R
4
≤ C3

εµ̄

R
.

Now, let us �x δ = R
4k

and let us apply the lemma k times with 3
4
R in place of R.

After k steps, we obtain that there exists a canonical transformation T close to
the identity which puts the Hamiltonian (1.36) in normal form

h ◦ T = hω∗ + Ĥ + Z +R = hω∗ + ĥr + ε 〈f〉+ Z +R .

Moreover, we have that Z and R satisfy the following estimates

‖Z‖∗R/2 ≤ C6ε
k−1∑
i=0

mi ,

‖R‖∗R/2 ≤ C6εm
k

with

m =
4kT

R

(
C3

18εµ̄

R
+ C2

5R3

σ
+ C3

5ε

R

)
=

[
e

4T

R

(
C3

18εµ̄

R
+ C2

5R3

σ
+ C3

5ε

R

)]
k

e
.

(1.37)

Moreover, we can prove that the vector �elds XZ and XR satisfy the following
estimates

‖XZ‖∗R/2 ≤ C3µ̄
ε

R

k−1∑
i=0

mi
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and
‖XR‖∗R/2 ≤ C3µ̄

ε

R
mk ,

while the canonical transformation T is close to the identity since from the estim-
ates for the remainder it follows that

‖T − I‖∗R/2 ≤ C3
εµ̄T

R
mk−1 .

Furthermore, since we have that m ≤ µ̄,

m ≤ 4T

R

(
C3

9ε

R
+ C2

5R3

σ
+ C3

5ε

R

)
≤ 4T

R

(
C3

14ε

R
+ C2

5R3

σ

)
≤ 56

(
εC3T

R2
+

C2TR
2

σ

)
≤ 27e

(
εC3T

R2
+

C2TR
2

σ

)
:= µ̄ ≤ 1

2
,

we can rewrite
‖Z‖∗R/2 ≤ 2C6ε ,

‖XZ‖∗R/2 ≤ 2C3
εµ̄

R

and

‖T − I‖∗R/2 ≤ C5
εµ̄T

R
.

At this point, we would like to determine the number k of steps in order to minimize
the reminder. For this purpose, let us denote byM the term in the square brackets

in (1.37) and let us minimize the function F (k) :=
(
M k

e

)k
.

The minimum is assumed for k =
[

1
m

]
. Indeed,

F ′(k) =

(
M
k

e

)k [
ln

(
M
k

e

)
+ 1

]
≥ 0 ⇒ ln

(
M
k

e

)
≥ −1 .

Thus,

M
k

e
≥ 1

e
⇒ k ≥ 1

M
.

Therefore, the minimum is assumed for k equal to the integer part of 1
M
. Moreover,

since
mk = e−

1
M ,
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the norm of the remainderR and of its vector �eld are exponentially small. Indeed,

‖R‖∗R/2 ≤ C6εm
k = C6εe

− 1
M ≤ C6εe

− 1
µ̄ ,

‖XR‖∗R
2
≤ C3µ̄

ε

R
mk = C3µ̄

ε

R
e−

1
M ≤ C3

εµ̄

R
e−

1
µ̄

where the last inequality follows from the fact that M ≤ µ̄. Indeed,

M = e
4T

R

(
C3

18εµ̄

R
+ C2

5R3

σ
+ C3

5ε

R

)
≤ 56e

(
εC3T

R2
+

C2TR
2

σ

)
≤ µ̄ .

This concludes the proof.

1.4.2 Semilocal stability estimates in the neighborhood of a

resonant torus

At this point, we have at our disposal a normal form theorem which permits us to
prove a result of semilocal stability in the neighborhood of a resonant torus by ex-
ploiting the conservation of the energy and the quasiconvexity of the unperturbed
Hamiltonian. Precisely, in this subsection, we will construct semilocal estimates
near periodic solutions.

By means of Theorem 1.4.1, we can make use of a Hamiltonian in normal form
of the kind

h̃ := h ◦ T = hω∗ + ĥr + ε 〈f〉+ Z +R , (1.38)

where T : MI∗,R/2 7→ MI∗,R is the canonical transformation used for the normal-
ization. Let us choose the initial datum z(0) ∈ MI∗,R/4 and let us denote by
z = T (z′) the new variables introduced with the normalization procedure. We will
prove the following result

Lemma 1.4.7. Assume that J ′(t) ∈ B∗R/4(0) and let ε < R4. Then there exists
positive constants C1, C2 such that

|hω∗(J ′(t))| ≤ C1R
2 , (1.39)

and, ∣∣∣ĥ(J ′(t))
∣∣∣ ≤ C2R

4 (1.40)

hold
∀t : |t| ≤ Re

1
µ̄ .
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Proof. We begin by considering the term

h1(J ′) := hω∗(J
′) + ĥr(J

′) .

From the de�nition of ĥr = ĥ+ hr, we want to estimate∣∣∣ĥ(J ′(t))− ĥ(J ′(0))
∣∣∣ ≤|h1(J ′(t))− h1(J ′(0))|+ |hω∗(J ′(t))− hω∗(J ′(0))|

+ |hr(J ′(t))− hr(J ′(0))| .
(1.41)

We start with the estimate of the �rst term by exploiting the conservation of the
energy, that is, from h̃(z′(t)) = h̃(z′(0)), we deduce

|h1(J ′(t))− h1(J ′(0))| ≤
∣∣∣Z̃(z′(t))− Z̃(z′(0))

∣∣∣+ |R(z′(t))−R(z′(0))|

≤ 2
wwwZ̃www∗

R/2
+ 2 ‖R‖∗R/2 ,

where we have denoted by Z̃(z′) = ε 〈f〉 (z′) + Z(z′). Thus,

|h1(J ′(t))− h1(J ′(0))| ≤ 2(‖εf‖∗R/2 + ‖Z‖∗R/2) + 2 ‖R‖∗R/2
≤ 2(ε+ 2C6ε) + 2C6εe

− 1
µ̄

≤ (2 + 4C6 + 2C6e
− 1
µ̄ )ε

≤ (2 + 5C6)ε := C7ε ≤ C7R
4 ,

(1.42)

where we used ε < R4, the estimates (1.24) and (1.34) and the fact that e−
1
µ̄ ≤

µ̄ ≤ 1
2
.

We pass now to estimate the second term on the right-hand side of (1.41). Let
us consider

|hω∗(J ′(t))− hω∗(J ′(0))| ≤
∫ t

0

∣∣∣∣dhω∗(J ′(s))ds

∣∣∣∣ds .
We use now the fact that ĥ, ε 〈f〉 and Z are already in normal form and, thus,
they commute with the Hamiltonian hω∗ : we obtain

dhω∗(J
′(s))

ds
= {hω∗ , h̃}(J ′(s)) = {hω∗ ,R}(J ′(s)) .

Therefore, by means of Lemma C.2.1 of Appendix C, we can �nd the following
estimate

|hω∗(J ′(t))− hω∗(J ′(0))| ≤ |t|
wwwwdhω∗

ds

wwww∗
R/4

≤ |t| ‖ω∗‖ ‖XR‖∗R/2 , (1.43)
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and, by means of the estimates (1.34), we �nd out that

|hω∗(J ′(t))− hω∗(J ′(0))| ≤ C3|t| ‖ω∗‖
εµ̄

R
e−

1
µ̄ .

Let us denote by Ω∗ := ‖ω∗‖ the norm of the frequency vector ω∗, then

|hω∗(J ′(t))− hω∗(J ′(0))| ≤ C3|t|Ω∗
εµ̄

R
e−

1
µ̄ ≤ C3

2
Ω∗|t| ε

R
e−

1
µ̄ .

If we assume
|t| ≤ Re

1
µ̄ ,

then,
|hω∗(J ′(t))− hω∗(J ′(0))| ≤ c2ε , (1.44)

with c2 := C3

2
Ω∗. Furthermore, since

|hω∗(J ′(0))| ≤ Ω∗|J ′(0)| ≤ c̃2R
2 ,

we deduce

|hω∗(J ′(t))| ≤ c̃2R
2 + c2ε ≤ max{c̃2, c2}(ε+R2) ≤ C1R

2 ,

where we have assumed that ε < R4.
We conclude with the estimate of the third and last term on the right-hand

side of (1.41). Thus,

|hr(J ′(t))− hr(J ′(0))| ≤ 2 ‖hr‖∗R ≤ 2
wwwĥwww∗

R
≤ 2C1R

4 . (1.45)

Finally, putting together the estimates (1.42), (1.44) and (1.45), we obtain an
estimate for (1.41)∣∣∣ĥ(J ′(t))− ĥ(J ′(0))

∣∣∣ ≤ C7R
4 + C1R

4 + 2C1R
4 ≤ (C7 + C1 + 2C1)R4 := C8R

4 ,

where we have assumed ε < R4. Thus,∣∣∣ĥ(J ′(t))
∣∣∣ ≤ ∣∣∣ĥ(J ′(0))

∣∣∣+ C8R
4 .

We compute now the estimate for ĥ(J ′(0)) by exploiting the de�nition of ĥ, namely,

ĥ(J ′(0)) =
1

2
〈J ′(0),

∂2h

∂I2
(I∗)J ′(0)〉 .
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Thus, from the Cauchy estimates (cf. Lemma C.2.2, Appendix C), we obtain∣∣∣ĥ(J ′(0))
∣∣∣ ≤ C9R

4 ,

and, �nally, ∣∣∣ĥ(J ′(t))
∣∣∣ ≤ C9R

4 + C8R
4 ≤ (C9 + C8)R4 := C2R

4 .

This concludes the proof.

At this point, we have to exploit the quasiconvexity condition to prove

Lemma 1.4.8. Let J ′ such that

|hω∗(J ′)| ≤ C1R
2 , (1.46)

and, ∣∣∣ĥ(J ′)
∣∣∣ ≤ C2R

4 . (1.47)

Then, there exists a constant C3 such that J ′ ∈ B∗C3R(0).

Proof. Let us �rst rewrite the term on the left-hand side of (1.47) by using the
de�nition of ĥ, that is, ∣∣∣ĥ(J ′)

∣∣∣ =
1

2
〈J ′, ∂

2h(I∗)

∂I2
J ′〉 ,

and, then, we decompose the vector v := J ′ into the sum of two components by
means of the projector operator Π∗ onto ω

∗. Thus, we consider

v = Π∗v + Π⊥∗ v

and we pull this decomposition into the quadratic form

Q(v) := 〈v, ∂
2h

∂I2
(I∗)v〉 .

We obtain

〈v, ∂
2h

∂I2
(I∗)(v)〉 = 〈Π∗v,

∂2h

∂I2
(I∗)Π∗v〉+〈Π⊥∗ v,

∂2h

∂I2
(I∗)Π⊥∗ v〉+2〈Π∗v,

∂2h

∂I2
(I∗)Π⊥∗ v〉 .

(1.48)
We use now the quasiconvexity condition (cf. Def. 1.3.2) in (1.48), thus, there
exists a positive constant c such that the following inequality,

〈Π⊥∗ v,
∂2h

∂I2
(I∗)Π⊥∗ v〉 ≥ c

wwΠ⊥∗ v
ww2

,
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holds. Furthermore, we have the following estimates on the other two terms in the
right-hand side of (1.48)

〈Π∗v,
∂2h

∂I2
(I∗)Π∗v〉 ≥ −C ‖Π∗v‖2 ,

〈Π∗v,
∂2h

∂I2
(I∗)Π⊥∗ v〉 ≥ −C ‖Π∗v‖

wwΠ⊥∗ v
ww .

At this point, we put all the estimates in (1.48) and obtain

〈v, ∂
2h

∂I2
(I∗)(v)〉 ≥ c

wwΠ⊥∗ v
ww2 − C ‖Π∗v‖2 − 2C ‖Π∗v‖

wwΠ⊥∗ v
ww ,

that is,

c
wwΠ⊥∗ v

ww2 ≤ 〈v, ∂
2h

∂I2
(I∗)(v)〉+ C ‖Π∗v‖2 + 2C ‖Π∗v‖

wwΠ⊥∗ v
ww . (1.49)

The size of the component Π∗v can be estimated by using(1.46). Indeed, from the
de�nition of hω∗ and of the orthogonal component Π⊥∗ v, we have

hω∗(J
′(t)) = 〈ω∗, v〉 = 〈ω∗, Π∗v〉 .

Thus, by using (1.46), we obtain the following estimate

‖Π∗v‖ ≤ C10R
2 .

At this point, we can rewrite (1.49) as follows

c
wwΠ⊥∗ v

ww2 ≤ 〈v, ∂
2h

∂I2
(I∗)(v)〉+ CC2

10R
4 + 2CC10R

2
wwΠ⊥∗ v

ww .

Moreover, from the de�nition of ĥ, we have that

〈v, ∂
2h

∂I2
(I∗)(v)〉 = 2

∣∣∣ĥ(J ′)
∣∣∣ ,

and, thus, by exploiting the estimate (1.47), we obtain

c
wwΠ⊥∗ v

ww2 ≤ 2
∣∣∣ĥ(J ′)

∣∣∣+ CC2
10R

4 + 2CC10R
2
wwΠ⊥∗ v

ww
≤ 2C2R

4 + CC2
10R

4 + 2CC10R
2
wwΠ⊥∗ v

ww .

Thus, the inequality we have to solve takes the form

c
wwΠ⊥∗ v

ww2 − 2CC10R
2
wwΠ⊥∗ v

ww− (2C2 + CC2
10

)
R4 ≤ 0 .
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We solve this inequality and �nd out that there exists a positive constant C11 such
that wwΠ⊥∗ v

ww ≤ C11R
2 .

Therefore,

‖v‖ = ‖Π∗v‖+
wwΠ⊥∗ v

ww ≤ C10R
2 + C11R

2 := C3R
2 ,

where C3 = C10 + C11 > 0.

Corollary 1.4.1. Assume that J ′(0) ∈ B∗R/4C3(0), then one has

J ′(t) ∈ B∗R/4(0) , ∀t : |t| ≤ Re−
1
µ̄ .

We go back now to the old variables. By exploiting the estimate on the de-
formation of the action variables, we have

Corollary 1.4.2. (Stability of resonant tori)
There exists a constant C4 such that J(0) ∈ B∗R/C4(0) implies

J(t) ∈ B∗R(0) , ∀t : |t| ≤ Re−
1
µ̄ .

Proof. Let us compute

‖J‖ ≤ ‖J − J ′‖+ ‖J ′‖ ≤ εC3T

R2
+ C3R

2 := C4R
2 .

Thus, if we assume that J(0) ∈ B∗R/C4 , then one has

J(t) ∈ B∗R(0) , ∀t : |t| ≤ Re−
1
µ̄ .

1.4.3 Dirichlet Theorem and semilocal stability

In this subsection we present a useful tool for the proof of the semilocal stabil-
ity which concludes Nekhoroshev's theorem: the so called Dirichlet theorem for
simultaneous approximations.

Theorem 1.4.2. (Dirichlet theorem for simultaneous approximations)
Let α1, . . . , αn ∈ R+. For any Q > 1 there exists an integer q : 1 ≤ q < Q and a
vector p = (p1, . . . , pn) ∈ Nn such that

|αiq − pi| ≤
1

Q
1
n

, i = 1, . . . , n .
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The proof follows directly from an application of the Minkowski's convex body
theorem that we report in Appendix B for the sake of completeness. As we have
anticipated before, this theorem shall be applied in order to produce semilocal
stability estimates.

Let I0 be the initial value of the actions, denote ω = (ω1, . . . , ωn) = ∂h
∂I

(I0) ⊂
Rn. The Dirichlet Theorem applies: ∀Q > 1 there exists a resonant frequency
vector ω∗ of period T = q such that 1 ≤ T < Q, whose components are rational
numbers of the form pi

q
such that

|ωi − ω∗i | ≤
1

TQ
1

n−1

, i = 1, . . . , n . (1.50)

If Q is large enough, the frequency map ω : I → ω(I) is invertible, then we can
invert the relation (1.50) and �nd out that the following inequality,

|Ii − I∗i | ≤ C̃
1

TQ
1

n−1

, i = 1, . . . , n

holds.
Now, we would like to apply the stability estimates in a neighborhood of I∗

which corresponds to a resonant torus of frequency ω∗. To do so, we have to choose
R such that ‖I − I∗‖ ≤ R

4
. Namely,

C̃
1

TQ
1

n−1

=
R2

4
. (1.51)

At this point, we can compute the parameter µ̄ and verify that it is su�ciently
small. Thus, let us begin by the de�nition of µ̄, that is,

µ̄ = 57e

(
εC3T

R2
+

C2TR
2

σ

)
≤ C5

(
εQ

2n−1
n−1 +

1

Q
1

n−1

)
.

Choosing Q = ε−
n−1
2n , one gets

µ̄ ≤ 2C5ε
1

2n .

Inserting in the other estimates one gets the thesis.



Chapter 2

The spatial central motion problem

In this section, we apply the theory of Chapter 1 to the spatial central motion
problem, in particular we show that, when written in action angle coordinates, its
Hamiltonian is quasiconvex for any potential but the Keplerian and the Harmonic
ones.

2.1 Statement of the structure theorem

As in the Introduction, we consider the Hamiltonian of a particle of unitary mass
moving in space under the action of a central potential. In Cartesian coordinates,
it is given by

H(x,p) =
|p|2

2
+ V (|x|) (2.1)

and we de�ne the total angular momentum (L1, L2, L3) ≡ L := x× p and denote
by L :=

√
L2

1 + L2
2 + L2

3 its modulus.

Let P(3)
A be a compact subset of R6 invariant under the dynamics ofH. Consider

the e�ective Hamiltonian, namely,

Heff (r, pr, L
2) :=

p2
r

2
+ Veff (r, L

2) ,

where

Veff (r, L
2) :=

L2

2r2
+ V (r) , (2.2)

which will be considered as a function of (r, pr) only and, thus, L plays the role of
a parameter. Assume now that the central potential V satis�es the assumptions
(H0)-(H3). We have the following result

37



CHAPTER 2. THE SPATIAL CENTRAL MOTION PROBLEM 38

Theorem 2.1.1. There exists a �nite number of open disjoint sets O(3)
j ⊂ P

(3)
A ,

j = 1, ..., N , and a compact subset S(3) ⊂ P(3)
A which is the union of a �nite number

of analytic hypersurfaces1, with the following properties:

(1) S(3) ∩ O(3)
j = ∅, ∀j

(2) S(3)
⋃(⋃

j

O(3)
j

)
= P(3)

A

(3) Each of the domains O(3)
j has the structure of a bi�bration

O(3)
j

F→Mj
F̃→Aj ⊂ R2 , (2.3)

with the following properties

(i) Every �ber of O(3)
j

F→Mj is di�eomorphic to T2

(ii) Every �ber ofMj
F̃→Aj is di�eomorphic to S2

(iii) the bi�bration is symplectic: precisely, every �ber of O(3)
j

F→Mj has a
neighborhood U endowed with an analytic di�eomorphism

U → b(U)×Aj × T2 (2.4)

such that the level sets of F−1 coincide with the level sets of b× I and,
writing b = (p, q), the symplectic form becomes

dp ∧ dq + dI1 ∧ dα1 + dI2 ∧ dα2 . (2.5)

(iv) In each of the domains O(3)
j , L ≡ I2 varies in an open interval, say Ij

and (r, pr) vary in some level sets of Heff . The in�mum of the energy
Heff is either a nondegenerate maximum or a nondegenerate minimum
of the e�ective potential.

The proof consists essentially of two steps: �rst we give a detailed construction
of the action angle coordinates in the planar case, and then we analyze the geo-
metry of the three dimensional case and show how to use the result of the planar
case for the construction of the generalized action angle coordinates.

1namely level surfaces of analytic functions
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2.2 Action angle coordinates for the planar case

In the planar case, the Hamiltonian in polar coordinates is given by

H(r, pr, pθ) :=
p2
r

2
+ Veff (r, p

2
θ) , (2.6)

where the e�ective potential Veff (r, p
2
θ) was de�ned in (2.2).

Remark 2.2.1. Due to assumption (H2) there do not exist constants k1, k2 s.t.
the potential has the form

V (r) =
k1

2r2
+ k2 . (2.7)

To �x ideas, one example of a possible e�ective potential (for �xed value of pθ)
is the one in Figure 2.1.

Figure 2.1: A possible shape for the e�ective potential for a �xed value of pθ.

We now describe the domain in which the action angle variables can be intro-
duced.

We begin with the set where the angular momentum varies. De�ne

• L2
m := min {[Range(r3V ′(r))] ∩ [0,+∞] ∩ [`∗,+∞]} ,

• and

� LM to be an arbitrary (large) positive number, if sup r3V ′(r) = +∞,
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� LM := sup
√
r3V ′(r), if sup r3V ′(r) < +∞.

Then, the angular momentum will be assumed to vary in

I := (Lm, LM) . (2.8)

We de�ne now the domain for (r, pr). We �x pθ ∈ I and E ∈ R and consider the
sublevels

Spθ(E) := {(r, pr) : H(r, pr, pθ) < E} . (2.9)

As E ∈ R and pθ ∈ I vary, the sets Spθ(E) can be empty or can have one or
more connected components. We denote by Scomppθ

(E) the union of the connected
components of Spθ(E) whose closure is compact. We underline that we take the
union over the components whose closure is compact since we want to exclude the
unbounded domains which cannot be covered by action angle variables.

In conclusion, collecting all the information together, we can state that the set
of the phase space which will be covered using action angle systems of coordinates
is essentially the following one

PA :=

{
(r, pr, θ, pθ) : θ ∈ T , pθ ∈ I , (r, pr) ∈

⋃
E∈R

Scomppθ
(E)

}
. (2.10)

Of course, for �xed values of pθ, the critical points of Veff correspond to singular
values of action angle variables, so in order to have well de�ned action angle
variables, we have to eliminate some singular sets. Furthermore, in order to proceed
in the veri�cation of quasiconvexity, we will exclude values of pθ corresponding to
which Veff has degenerate critical points. Precisely, we have the following theorem

Theorem 2.2.1. There exists a �nite number of open disjoint sets Oj ⊂ PA,
j = 1, ..., N , and a compact subset S ⊂ PA which is the union of a �nite number
of analytic hypersurfaces, with the following properties:

(1) S ∩ Oj = ∅, ∀j

(2) S
⋃(⋃

j

Oj

)
= PA

(3) On each of the domains Oj there exists an analytic di�eomorphism

Φj : Oj → Aj × T2 , Aj ⊂ R2 (2.11)

(r, pr, θ, pθ) 7→ (I1, I2, α1, α2) (2.12)

which introduces action angle variables.
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(4) For every j, the Hamiltonian in action angle variables is a real analytic
function over the whole of Aj

hj : Aj 7→ R .

(5) Each of the domains Oj is the union for I2 in an open interval, say Ij of
level sets of H considered as a function of (r, pr) only. The in�mum of the
energy H is either a nondegenerate maximum or a nondegenerate minimum
of the e�ective potential.

The main point in the proof of this result consists in showing that, except
for at most a �nite number of values of pθ ∈ I, the e�ective potential has only
nondegenerate critical points. We will also eliminate some values of pθ in order
to get that the critical levels of Veff are distinct (see Lemma 2.2.3). This allows
to classify completely the domains of the action I1 for �xed value of the angular
momentum.

Precisely, the construction of the sets Oj will be done by �rst eliminating from
I a �nite set Is in such a way that, for pθ ∈ I \ Is the e�ective potential has only
nondegenerate extrema at di�erent levels. So one gets that I \ Is turns out to be
the union of �nitely many intervals Il. Then having �xed pθ ∈ Il one considers the
level sets of the e�ective Hamiltonian and takes the union of one of its compact
connected components as E varies in an interval not containing critical levels.
The set Oj is obtained by taking also the union over pθ ∈ Il. The construction is
explained in detail in the next subsection.

2.2.1 The construction of the action angle variables

We begin the construction with two useful lemmas

Lemma 2.2.1. Let (r̄, ¯̀) be such that r̄ is an extremum of Veff (., ¯̀). Then there
exists an odd n, a neighborhood R ⊃ U of 0 and a function r0 = r0((` − ¯̀)1/n)
analytic in U , s.t. r0((`− ¯̀)1/n) is an extremum of Veff (.; `). Furthermore r0(0) =
r̄, and for any ` 6= ¯̀ the extremum is nondegenerate.

Proof. The proof is standard, but we give it for the sake of completeness. To �x
ideas assume that r̄ is a maximum. Of course the theorem holds with n = 1 if
the maximum is nondegenerate. So, assume it is degenerate. Then, since by the
assumptions the function Veff (., ¯̀) is nontrivial, there exists an odd n > 2, s.t.
∂n+1
r Veff (r̄, ¯̀) = a 6= 0. Thus we look for δ = δ(ξ) solving

F (δ, ξ) := ∂rVeff (r̄ + δ, ¯̀+ ξn) =

[
V ′(r̄ + δ)−

¯̀

(r̄ + δ)3

]
− ξn

(r̄ + δ)3
= 0 . (2.13)
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It is convenient to rewrite the square bracket as

a

n!
δn +R0(δ) ,

where R0 is an analytic function with a zero of order at least n + 1 at the origin.
A short computation shows that we can rewrite (2.13) in the form

δ

[(
a

n!
+
R0(δ)

δn

)
(r̄ + δ)3

]1/n

= ξ , (2.14)

which is in a form suitable for the application of the implicit function theorem.
Thus it admits a solution δ(ξ) which is analytic and which has the form

δ(ξ) =
( a
n!
r̄3
)−1/n

ξ +O(ξ2) . (2.15)

It remains to show that for ξ di�erent from zero (small) the critical point just
constructed is nondegenerate. To this end we compute the derivative with respect
to δ of F (cf. eq. (2.13)); we get

∂δF (δ(ξ), ξ) =
a

(n− 1)!
[δ(ξ)]n−1 +R′0(δ(ξ)) +

3ξn

(r̄ + δ)4
(2.16)

=
a

(n− 1)!

(
n!

ar̄3

)n−1
n

ξn−1 +O(ξn) , (2.17)

which for small ξ is nonvanishing.

Lemma 2.2.2. Let r̄ be a degenerate critical point of Veff (.; ¯̀) which is neither
a maximum nor a minimum. Then for ` in a neighborhood of ¯̀, the e�ective
potential Veff (.; `) either has no critical points in a neighborhood of r̄, or it has
a nondegenerate maximum and a nondegenerate minimum which depend smoothly
on `.

Proof. A procedure similar to that used to deduce the equation (2.14) leads to the
equation

δn
(
a

n!
+
R0(δ)

δn

)
(r̄ + δ)3 = `− ¯̀ , (2.18)

where n is now even and the sign of a is arbitrary. It is thus clear that for (`− ¯̀)/a
negative the critical point disappears. When this quantity is positive then it is
easy to see that two new critical points bifurcate from r̄. Using a computation
similar to that of eqs. (2.16), (2.17) one sees that they are a maximum and a
minimum which are nondegenerate.
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Corollary 2.2.1. There exists a �nite set Is1 ⊂ I such that, ∀L ∈ I \ Is1 the
e�ective potential Veff (.;L

2) has only critical points which are nondegenerate ex-
trema.

Proof. Just remark that the values of L for which Veff (.;L
2) has at least one

degenerate critical point are isolated. Thus, due to the compactness of I their
number is �nite.

Remark 2.2.2. The set I \ Is1 is the union of �nitely many open intervals. The
critical points of Veff are analytic functions of L2 in such intervals; furthermore
they do not cross (at crossing points their multiplicity would be greater then one,
against nondegeneracy). Therefore the number, the order and the nature of the
critical points is constant in each of the subintervals.

The main structural result we need for the e�ective potential is the following
lemma.

Lemma 2.2.3. There exists a �nite set Is ⊂ I such that, ∀L ∈ I \Is the e�ective
potential Veff (.;L

2) has only critical points which are nondegenerate extrema and
the critical levels are all di�erent. Furthermore each critical level does not coincide
with

V ∞ := lim
r→∞

V (r) . (2.19)

Proof. First we restrict to I\Is1 (de�ned in Corollary 2.2.1), so that all the critical
points of Veff are nondegenerate. We concentrate on one of the open subintervals
of I \ Is1 (cf. Remark 2.2.2). Let ` := L2, and let r(`) be a critical point of
Veff (.; `). Consider the corresponding critical level Veff (r(`), `) and compute

d

d`
Veff (r(`), `) =

∂r

∂`

∂Veff
∂r

(r(`), `) +
∂Veff
∂`

=
1

2r2
, (2.20)

where we used the fact that r(`) is critical, so that
∂Veff
∂r

(r(`), `) = 0 and the
explicit expression of Veff as a function of `. Thus the derivative (2.20) depends
on r only. It follows that if two critical levels coincide, then their derivatives with
respect to ` are di�erent, and therefore they become di�erent when ` is changed.
It follows that also the set of the values of ` for which some critical levels coincide
is formed by isolated points, and therefore it is composed by at most a �nite
number of points in each subinterval. Of course a similar argument applies to the
comparison with V ∞.

Remark 2.2.3. As L varies in one of the connected subintervals of I \ Is the
critical levels and V ∞ remain ordered in the same way, in the sense that they do
not cross.
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We are now ready for the construction of action angle variables (and the proof
of Theorem 2.2.1).

Consider one of the connected subintervals of I \ Is and denote it by Ĩ. We

distinguish two cases: (1) the e�ective potential has no local maxima for pθ ∈ Ĩ
but it must present one local minimum; (2) the e�ective potential has at least one

local maximum for pθ ∈ Ĩ.
We start by the case (1) and denote by r0 the minimum of Veff (·, p2

θ). The
second action is I2 := pθ, while the �rst one is the action of the one dimensional
e�ective system with Hamiltonian H(r, pr, pθ) which is given by

I1 = G(E, I2) :=
1

π

∫ rmax

rmin

√
2(E − Veff (r; I2

2 ))dr (2.21)

E ∈ (Veff (r0; I2
2 ), V ∞) , (2.22)

where rmin and rmax are the solutions of the equation E = Veff (r; I
2
2 ) and r0 is the

minimum of the potential.
We can notice that the set Spθ(V ∞) in the phase-space (r, pr) is compact.

Correspondingly the action I1 varies in (0, G(V ∞, I2)). Thus, we �rst construct

the domain Õ as

Õ :=
{

(r, pr, θ, pθ) : pθ ∈ Ĩ , (r, pr) ∈ Spθ(V ∞)
}
, (2.23)

The actions vary in

Ã :=
{

(I1, I2) : I2 ∈ Ĩ , I1 ∈ (0, G(V ∞, I2))
}
. (2.24)

In this domain the Hamiltonian is obtained by computing E as a function of I1, I2

by inverting the function G de�ned in (2.21).
Consider now the case (2) where the e�ective potential has at least one local

maximum. In this case there are in general several di�erent domains which are de-
scribed by action angle coordinates. To �x ideas consider the case where Veff (.; p

2
θ)

has exactly two minima r1 > r2 and one maximum R1 ful�lling Veff (R1; p2
θ) < V ∞.

Then, the sublevel Spθ(Veff (R1; p2
θ)) has two connected components, in each of

which one can construct the action variables exactly by the formula (2.21) (with
a suitable rede�nition of rmin and rmax). The two corresponding domains are

Ãi :=
{

(I1, I2) : I2 ∈ Ĩ , I1 ∈ (0, Gi(Veff (R1; I2
2 ), I2))

}
, i = 1, 2 , (2.25)

with an obvious de�nition of Gi.
Then there is further domain in which the action I1 can be de�ned; such a

domain is above the local maximum of Veff and is Spθ(V ∞) \ Spθ(Veff (R1; p2
θ). In
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this domain the action is still given by the formula (2.21), and the corresponding
domain of the actions is given by

Ã3 :=
{
(I1, I2) : I2 ∈ Ĩ, I1 ∈ (G1(Veff (R1; I

2
2 ), I2) +G2(Veff (R1; I

2
2 ), I2), G3(V

∞, I2))
}
.

(2.26)

In this case, the domains Õi can be thought of as the regions in which the phase-
space (r, pr) is divided by the separatrix.

It is clear that in more general situations only one more kind of domains of the
phase space can exists: namely domains in which both the minimal energy and
the maximal energy correspond to the energies of local maxima of the e�ective
potential.

In order to conclude the construction of the domains, in both the situations
(1) and (2) described previously, we take the union over pθ ∈ Ĩ and obtain the
domains Oj as well as the action spaces Aj exploiting the de�nition of the action
as the area under a curve in the phase-space.

Remark 2.2.4. We make the reader notice that all the domains Oj are bounded
below by critical points of the e�ective potential Veff . In what follows, we are going
to di�erentiate the techniques used in order to prove our result of quasiconvexity
according to the di�erent nature of the critical point considered.

Summarizing we have that the following Lemma holds.

Lemma 2.2.4. Each of the domains Oj in which a system of action angle vari-
ables is de�ned is the union for I2 in an open interval, say Ij of level sets of H
considered as a function of (r, pr) only. The in�mum of the energy H is either a
nondegenerate maximum or a nondegenerate minimum of the e�ective potential.
The corresponding value of the radius will be denoted by r0j = r0j(I

2
2 ) and depends

analytically on I2 ∈ Ij.

In the following we will denote by

V0j(I2) := Veff (r0j(I
2
2 ), I2

2 ) = V (r0j) +
r0jV

′(r0j)

2
(2.27)

the corresponding critical level.
Proof of Theorem 2.2.1. In order to prove this result, it remains only to construct
the subset S. Thus, simply de�ne S to be the union of the following analytic
hypersurfaces:

(1) {(r, pr, θ, pθ) : pθ = 0}

(2) {(r, pr, θ, pθ) : pθ ∈ Is}

(3) {(r, pr, θ, pθ) : V0j(pθ) = H(r, pr, pθ)}.
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Having said so, the Arnol'd-Liouville theorem can be applied in each domain Oj
and, thus, a system of action angle coordinates can be introduced in each Oj.
Moreover, since the maps Φj are analytic di�eomorphisms, then for every j, the
Hamiltonian hj : AJ 7→ R written in action variables is a real analytic function all
over AJ .

This concludes the proof.

2.3 From the planar to the spatial case

We come to the proof of Theorem 2.1.1. To do so, as we have anticipated, we can
reduce our analysis to the planar motion.

First, we remark that the whole phase-space can be covered using two systems
of polar coordinates with z-axis (θ = 0) not coinciding. Using any one of the
two systems, one can introduce explicitly by the classical procedure action angle
variables which turn out to be I2 = L and I1 which is the action of the Hamiltonian
system with 1 degree of freedom and Hamiltonian Heff (r, pr, L

2). Thus, I1 has
exactly the same expression as in the planar case, but with p2

θ replaced by L2 =
|x ∧ p|2.

Furthermore, the Hamiltonian as a function of I1, I2 has the same functional
form as in the planar case.

We come to the construction of the set O(3)
j and the description of the phase-

space and of the �bration related to the superintegrable structure of the spatial
case.

Then, we remark that any compact subset of the phase-space invariant under
the dynamics can be constructed as follows.

For L ∈ I (cf. (2.8)), de�ne

S(3)
L (E) :=

{
(x,p) : L2(x,p) = L2 and H(x,p) < E

}
, (2.28)

then the sets S(3)
L (E) can be empty or can have one or more connected components.

Denote again by ScompL (E) the union of the connected components of S(3)
L (E) whose

closure is compact. De�ne

P(3)
A :=

⋃
L∈I

⋃
E∈R

ScompL (E) , (2.29)

so that the reference domain introduced at the beginning of Chapter 2 can be
rede�ned according to (2.29).

We construct now the subsets O(3)
j as follows. Let Ĩ be one of the intervals of

Remark 2.2.3. For L ∈ Ĩ, the structure of Veff (·, L2) and the construction of I1

have been described after Remark 2.2.3.
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To �x ideas, let us concentrate on the situation (1) in which Veff (·, L2) has
only one nondegenerate minimum, r0(L). De�ne

IE := (Veff (r0(L), L2), V ∞)

and consider the set

R4 ⊃M :=

{
(E,L1, L2, L3) :

√
L2

1 + L2
2 + L2

3 =: L ∈ Ĩ , E ∈ IE
}
,

and denote by F the map
F : P(3)

A 7→ M .

Then, in the previous section we constructed a domain O for the action angle
variables of the planar case by

O := ∪pθ∈I ∪E∈IE {(r, pr, θ, pθ) : pθ ∈ Ĩ , H(r, pr, θ, pθ) = E} .

Correspondingly, one has the set for the spatial case constructed as follows.

O(3) := F−1(M) = ∪L∈I ∪E∈IE {(x,p) : L2(x,p) = L2 , H(x,p) = E} .

In situation (2), we are considering an e�ective potential that admits at least a
nondegenerate maximum, thus, in this case di�erent domains can be covered by the
action angle variables. However, we can proceed analogously in order to construct
the domain O(3).

The map F restricted to the subset O(3) is a surjective submersion since the
components are a maximal set of independent integrals of motion. Furthermore,
in Chapter 1, we have proved that their Poisson matrix satis�es the property of
having constant rank equal to 2 at every point ofM.

Moreover, the setM is di�eomorphic to

M∼= S2 × Ĩ × IE

and the subset O(3) is a �ber bundle overM whose �bers are compact and connec-
ted, thus, Liouville-Arnol'd theorem assures that the �bers are di�eomorphic to
2-dimensional tori T2. Furthermore, every �ber of F posses a system of generalized
action angle coordinates.

To conclude, we de�ne the map

F̃ :M 7→ Ĩ × IE := Aj

which is a �bration whose �bers are di�eomorphic to 2-dimensional spheres S2.
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2.4 A Nekhoroshev type theorem

Our aim is to apply the abstract version of the Nekhoroshev type theorem (cf.
Theorem 1.3.1, Chapter 1) to the spatial central motion problem. Precisely, we
have the following result

Theorem 2.4.1. Assume that V is neither Harmonic nor Keplerian; then there
exists a set K(3) ⊂ P(3)

A , which is the union of �nitely many analytic hypersurfaces,

with the following property: let P : P(3)
A → R be a real analytic function. Let

C(3) ⊂ P(3)
A \K(3) be compact and invariant for the dynamics of H; then there exist

positive ε∗, C1, C2, C3, C4 with the following property: for |ε| < ε∗, consider the
dynamics of the Hamiltonian system

Hε := H + εP

then, for any initial datum in C(3) one has

|L(t)− L(0)| ≤ C1ε
1/4 , |H(t)−H(0)| ≤ C2ε

1/4 , (2.30)

for
|t| ≤ C3 exp(C4ε

−1/4) . (2.31)

Remark 2.4.1. In the case of the Harmonic and the Keplerian potentials the
Hamiltonian depends only on one action, therefore neither the steep Nekhoroshev
theorem applies (see e.g. [GCB16]).

The main point in the proof of this result is the remark that the Hamiltonian of
the spatial central motion problem, when written in the action variables, has the
same functional form as the planar case due to degeneracy. Thus, we can reduce
our analysis to the planar case.

Our main result for the planar case is the following theorem.

Theorem 2.4.2. Consider the planar central motion problem. Assume (H0)-(H3),
then one of the following two alternatives hold:

(1) For every j = 1, ..., N there exists at most one analytic hypersurface Kj ⊂ Aj,
s.t. hj is quasiconvex for all (I1, I2) ∈ Aj \ Kj.

(2) there exists k > 0 s.t. V (r) = kr2 or V (r) = −k/r.

Corollary 2.4.1. Assume that V is neither Harmonic nor Keplerian; then there
exists a set K ⊂ PA, which is the union of a �nite number of analytic hypersurfaces
s.t. a system of analytic action angle coordinates exists in an open neighborhood
of any point of PA \ K. Furthermore, the Hamiltonian H written in action angle
coordinates is quasiconvex at all points of PA \ K.
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Proof. (Theorem 2.4.1)
We apply the abstract Nekhoroshev's theorem for degenerate systems (Theorem
1.3.1, Chapter 1). First we describe the set K(3). The �rst set it contains is the set

S(3). Then consider one of the sets O(3)
j and the corresponding set Aj. We consider

the hypersurface Kj ⊂ Aj on which the Hamiltonian hj is not quasiconvex; when

pulled back to O(3)
j this is still an analytic hypersurface (it is the zero locus of the

Arnol'd determinant, which is an analytic function which is de�ned on the whole
of O(3)

j , since the actions are analytic on the whole of O(3)
j ). We de�ne K(3) to be

the union of such analytic hypersurfaces and of S(3).
Then, it follows that the action angle coordinates exist, are analytic and the

Hamiltonian is quasiconvex in P(3)
A \ K(3). However, the action angle coordinates

can have singularities at the boundary of such a set or the Hamiltonian can fail to
be quasiconvex at such a boundary. Any compact invariant subset of P(3)

A \ K(3)

is the preimage in the phase space of
⋃
j C

(3)
j , where C(3)

j ⊂ Aj \ Kj is compact.
It follows that the maps introducing action angle coordinates extend to bounded
analytic maps in a complex neighborhood of C(3)

j for any j and furthermore the

Hamiltonians hj are quasiconvex on a neighborhood of C(3)
j with uniform constants.

Thus Theorem 2.4.1 follows.

The proof of Theorem 2.4.2 will cover the next two sections: the strategy consists in
studying the asymptotic behavior of the Arnol'd determinant at circular orbits and
it goes di�erently according to the domains Oj. Indeed, we will di�erentiate the
techniques according to the nature of the critical point contained into the domains.
Precisely, in the �rst part of the proof (see Section 2.6), we will concentrate on the
domains which are bounded below by a minimum of the e�ective potential: we will
�rst expand the Hamiltonian at the minimum by computing the Birkho� normal
form and, secondly, we will use this expansion to compute the �rst terms in the
expansion of the Arnol'd determinant. We will show that the Arnol'd determinant
is a non trivial function except for the Harmonic and the Keplerian potentials.

In Section 2.8, we will discuss the domains bounded below by a maximum: we
will prove that the Arnol'd determinant diverges at the maximum and, thus, it is
a non trivial function of the actions.

2.5 The condition of quasiconvexity

First we remark that the notion of quasiconvexity can be expressed in a couple of
equivalent forms in the case of a Hamiltonian with two degrees of freedom.

Let us begin with the �rst one: let us �x one Hamiltonian h : A → R in two
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degrees of freedom in action variables and denote

ω1 =
∂h

∂I1

, ω2 =
∂h

∂I2

.

Let us de�ne by

D = det


∂2h

∂I2

(
∂h

∂I

)T
∂h

∂I
0

 , (2.32)

the well known Arnol'd determinant. We are now going to show that, for systems
with two degrees of freedom, quasiconvexity is equivalent to the nonvanishing of
the Arnol'd determinant (cf. Proposition 2.5.1 ).

De�nition 2.5.1. Let h be a complete integrable Hamiltonian with n degrees of
freedom and frequency ω. Then, h is said to satisfy the Arnol'd condition at I∗ if
the following map

(I, λ)→ (λω(I), h(I))

has maximal rank at (I∗, 1).

Explicitly, this condition can be written in the form

D(I∗) = det


∂ω(I∗)

∂I

(
∂h(I∗)

∂I

)T
∂h(I∗)

∂I
0

 6= 0 .

Proposition 2.5.1. Let h : A → R with A ⊂ R2 be a Hamiltonian with two
degrees of freedom in action variables. Then, h is quasiconvex at I∗ ∈ A if and
only if D(I∗) 6= 0.

Proof. In the two dimensional case, D 6= 0 takes the form

ω1

(
∂2h

∂I1∂I2

ω2 −
∂2h

∂I2
2

ω1

)
− ω2

(
∂2h

∂I2
1

ω2 −
∂2h

∂I1∂I2

ω1

)
6= 0 ,

namely,
∂2h

∂I2
1

ω2
2 − 2

∂2h

∂I1∂I2

ω1ω2 +
∂2h

∂I2
2

ω2
1 6= 0 ,

where all the quantities are evaluated at the point I∗.
Moreover, this condition can be explicitly written as

Q(η)(I∗) := 〈η, ∂
2h

∂I2
(I∗)η〉 6= 0 ,
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where we denoted by η = (ω2,−ω1).
Thus, we conclude that, in the case n = 2, the Arnol'd condition is equivalent

to the request that the quadratic form Q is di�erent from zero on the hyperplane
generated by the vector η normal to the gradient ∇h(I∗), namely, quasiconvexity.

Finally, we show that the condition of quasiconvexity can be written in a second
form by means of the Burgers equation. Indeed, let us rewrite explicitly the
condition D = 0: we have

D = −∂
2h

∂I2
1

ω2
2 + 2

∂2h

∂I1∂I2

ω1ω2 −
∂2h

∂I2
2

ω2
1 . (2.33)

Thus, rearranging the terms appearing in D, it is straightforward to see that, if
ω2 does not vanish, the condition D = 0 can be written as a Burgers equation,
precisely

∂ν

∂I1

= ν
∂ν

∂I2

, with ν =
ω1

ω2

. (2.34)

The two forms in which we have expressed the quasiconvexity condition are ab-
solutely equivalent and our main result can be obtained using both these forms.
However, for simplicity, for the study of D close to a minimum of the e�ective
potential, we will choose the latter one.

2.6 Domains bounded below by a minimum

In this section we concentrate on the domains Oj s.t. the in�mum of the energy H
at �xed I2 is a minimum of the e�ective potential. Thus the point r0j, of Lemma
2.2.4 is a nondegenerate minimum of the e�ective potential. In this section, since
the domain is �xed we omit the index j from the various quantities. Thus A will
be the domain of the actions, h the Hamiltonian written in action variables, r0 the
minimum of the e�ective potential and V0 the corresponding value.

The main result of this section is the following Lemma.

Lemma 2.6.1. Let Oj be a domain s.t. the in�mum of the e�ective Hamiltonian
at �xed I2 is a nondegenerate minimum of the e�ective potential. Assume that the
Arnol'd determinant vanishes in an open subset of Oj, then the potential is either
Keplerian or Harmonic.

The rest of the section is devoted to the proof of such a lemma.
We exploit the remark that in one dimensional analytic systems Birkho� normal

form converges in a (complex) neighborhood of a nondegenerate minimum. This,
together with the uniqueness of the action variables in one dimensional systems,
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implies that, for any I2, the Hamiltonian h, as a function of I1, extends to a complex
analytic function in a neighborhood of I1 = 0 and that the expansion constructed
through the one dimensional Birkho� normal form is actually the expansion of
h(I1, I2) at I1 = 0. It follows that also D extends to a complex analytic function
of I1 in a neighborhood of 0. Thus one has an expansion

h(I1, I2) = h0(I2) + h1(I2)I1 + . . .+ hr(I2)Ir1 + . . . , (2.35)

where the quantities hr can be in principle computed as functions of the derivatives
of V at r0(I2) and of I2.

Here we will proceed by an explicit construction using a symbolic manipulator.

Remark 2.6.1. In Oj there is a 1-1 correspondence between I2 and r0, so each of
the functions hr can be considered just a function of r0 and of the derivatives of
V at r0. Correspondingly the derivatives with respect to I2 can be converted into
derivatives with respect to r0 through the rule

∂

∂I2

=
2

(3 + g(r0))
√
r0V ′(r0)

∂

∂r0

(2.36)

where we have de�ned

g(r0) :=
r0V

′′(r0)

V ′(r0)
. (2.37)

Furthermore, it is convenient to de�ne

R(r0, V
′(r0), g(r0)) :=

2

(3 + g(r0))
√
r0V ′(r0)

. (2.38)

Remark 2.6.2. g constant is equivalent to the fact that the potential is homogen-
eous or logarithmic , precisely, one has

g(r0) = c ⇐⇒

 V (r) =
k

c+ 1
rc+1 , k ∈ R , for c ≥ 3 , c 6= −1

V (r) = k ln(r) , k ∈ R .
(2.39)

Thus, starting from the Birkho� normal form, we compute the frequencies ω1

and ω2, expanded in power series of I1, namely,

ω1(I2) = ω1,0(I2) + ω1,1(I2)I1 + ω1,2(I2)I2
1 + . . . ,

ω2(I2) = ω2,0(I2) + ω2,1(I2)I1 + ω2,2(I2)I2
1 + . . . ,

and we use it to compute an expansion of ν ≡ ω1/ω2 at the minimum

ν(I1, I2) = ν0(I2) + ν1(I2)I1 + . . .+ νr(I2)Ir1 + . . . . (2.40)
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Indeed, we have

ν =
ω1

ω2

=
ω1,0 + ω1,1I1 + . . .

ω2,0

(
1 + ω2,1

ω2,0
I1 + . . .

) =
1

ω2,0

(ω1,0 + ω1,1I1 + . . . )

(
1 +

1

2

ω2,1

ω2,0

I1 + . . .

)

=
ω1,0

ω2,0

+

(
ω1,1

ω2,0

+
1

2

ω1,0ω2,1

ω2
2,0

)
I1 + . . .

:= ν0 + ν1I1 + . . . .

The idea is now to impose that the Burgers equation (2.34) is satis�ed up to
the �rst order in I1 identically as function of I2. Thus, let us consider the Burgers
equation (2.34) and let us pull into it the expansion (2.40). We obtain

∂

∂I1
(ν0(I2)+ν1(I2)I1+ν2(I2)I

2
1+. . . ) = (ν0(I2)+ν1(I2)I1+. . . )

∂

∂I2
(ν0(I2)+ν1(I2)I1+. . . ) ,

that is

ν1(I2) + 2ν2(I2)I1 + · · · = ν0(I2)
∂ν0(I2)

∂I2
+

(
ν0(I2)

∂ν1(I2)

∂I2
+ ν1(I2)

∂ν0(I2)

∂I2

)
I1 + . . . .

At this point, we impose that the equation is satis�ed up to the �rst order in I1,
that is, we impose

ν1 = ν0
∂ν0

∂I2

,

ν2 =
1

2

(
ν0
∂ν1

∂I2

+ ν1
∂ν0

∂I2

)
,

(2.41)

and we consider such equations as equations that determine the degenerate poten-
tials. We will show that such equations admit the only common solutions given
by the Harmonic and the Keplerian potentials.

According to Remark 2.6.1, we will consider all the functions νj as functions of
r0 instead of I2 and convert all the derivatives with respect to I2 into derivatives
with respect to r0 using (2.36).

Finally, it is convenient to use, as much as possible, g as an independent variable
(see eq. (2.37)) instead of V . We remark that V ′′(r0) = g(r0)V ′(r0)

r0
, which implies

that ∀r ≥ 2 the r-th derivative of the potential can be expressed as a function of
r0, V

′(r0), g(r0), g′(r0), . . . , g(r−2)(r0). We will systematically do this.
There is a remarkable fact: writing explicitly the equations (2.41), it turns out

that they are independent of V ′, so that they are only di�erential equations for g.
For a proof of this fact see Appendix D.

We report below the outline of the computations and the key formulæ. The
complete calculations have been implemented in MathematicaTMand are collected
in Appendix E.
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First we computed explicitly ν0, ν1, ν2, (de�ned by (2.40)) getting formulæ of
the form

ν0 =
√

3 + g(r0) , (2.42)

and
ν1 = ν1(r0, V

′(r0), g(r0), g′(r0), g′′(r0)) ,

ν2 = ν2(r0, V
′(r0), g(r0), g′(r0), g′′(r0), g(3)(r0), g(4)(r0)) .

The explicit forms of ν1 and ν2 are rather long and are reported in Appendix E.
Then one can use the explicit forms of the functions ν0 and ν1 to compute the

r.h.s. of eq. (2.41), which will have the form

Rν0
∂ν0

∂r0

=: G1(r0, V
′(r0), g(r0), g′(r0)) ,

1

2
R

(
ν1
∂ν0

∂r0

+ ν0
∂ν1

∂r0

)
=: G2(r0, V

′(r0), g(r0), g′(r0), g′′(r0), g(3)(r0)) ,

where R is the expression de�ned in eq. (2.38).
Then we have imposed ν1 = G1 and ν2 = G2, which are the couple of di�erential

equations for g that we solved.
The strategy in order to �nd the common solutions is standard: it consists in

taking derivatives of the equation of lower order until one gets two equations of the
same order (fourth order in g, in our case), then one solves one of the equations
for the higher order derivative and substitutes it in the other one, thus getting
an equation of order smaller then the previous one. Then one iterates. In our
case the �nal equation will be an algebraic equation for g, whose solutions are just
constants. The value of such constants correspond to the Kepler and the Harmonic
potentials, so the conclusion will hold.

So, we solve ν1 = G1 for g′′(r0) and ν2 = G2 for g(4)(r0), getting

g′′(r0) = f2(r0, g(r0), g′(r0)) ,

g(4)(r0) = f4(r0, g(r0), g′(r0), g(3)(r0)) ,
(2.43)

where we have used the fact that the powers of V ′(r0) can be factor out and, in
the second one, we have also used f2(r0, g(r0), g′(r0)) to remove the dependence of
g(4) on g′′(r0). A similar procedure will be done systematically.

Starting from (2.43), we compute

d2f2

dr2
0

= F4(r0, g(r0), g′(r0), g(3)(r0)) ,

and solve the equation F4(r0, g(r0), g′(r0), g(3)(r0)) = f4(r0, g(r0), g′(r0), g(3)(r0))
for g(3), getting

g(3) = f3(r0, g(r0), g′(r0)) .
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Starting again from (2.43), we compute

df2

dr0

= F3(r0, g(r0), g′(r0)) ,

and solve the equation F3(r0, g(r0), g′(r0)) = f3(r0, g(r0), g′(r0)) for g′ getting

g′ = f1(r0, g(r0)) .

Finally we compute
df1

dr0

= F2(r0, g(r0)) ,

and solve F2(r0, g(r0)) = f2(r0, g(r0)) for g. It is remarkable that such an equation
turns out to be independent of r0, so that the solutions for g(r0) are just isolated
points, namely constants. In particular, it turns out that the only real constants
solutions are g = −3, g = −2 and g = 1. The value −3 is excluded according
to Remark 2.2.1, so that the only remaining potentials are the Keplerian and the
Harmonic ones. This concludes the proof of Lemma 2.6.1.

2.7 A new proof of Bertrand's Theorem

Bertrand's Theorem. Among all the central force potentials giving rise to
bounded orbits, the are only two types for which all bounded orbits are closed:
the Keplerian potential and the Harmonic potential.

Proof. By the previous section, the ratio ν(I1, I2) ≡ ω1

ω2
is a trivial function of the

actions only in the Harmonic and the Keplerian case. Thus, in all the other cases,
there exist I1, I2 such that ν is irrational and thus on the corresponding torus the
motion is not periodic, against the assumption.

2.8 Domains bounded below by a maximum

Consider now domains the Oj s.t. the in�mum of the energy H at a �xed I2 ∈ Ĩ is
a nondegenerate maximum of the e�ective potential Veff . Denote by V0 = V0(I2)
the value of the e�ective potential at such a maximum delimiting from below the
range of the energy in Oj. The main result of this section is the following

Lemma 2.8.1. Let Oj be a domain s.t. the in�mum of the e�ective Hamiltonian
at �xed I2 is a nondegenerate maximum of the e�ective potential, then the Arnol'd
determinant vanishes in Oj at most on an analytic hypersurface.
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The rest of the section is devoted to the proof of such a lemma. The main
tool for studying the limiting behavior of the action close to the maximum V0 is
the following normal form theorem, which is a slight reformulation of a simpli�ed
version of the main result of [Gio01].

Theorem 2.8.1. Let

W (r) = W0 −
λ2

2
r2 +O(r3)

be an analytic potential having a nondegenerate maximum at r = 0; consider the
Hamiltonian system with Hamiltonian

H(r, pr) =
p2
r

2
+W (r)

then, there exists an open neighborhood V0 of 0 and a near to identity canonical
transformation Φ : V0 3 (x, y) 7→ (r, pr) ∈ U0 := Φ(V0) of the form r =

x√
λ

+ f1(x, y)

pr =
√
λy + f2(x, y)

(2.44)

with f1, f2 analytic functions which are at least quadratic in x, y and such that in
the variables x, y, the Hamiltonian takes the form

h(x, y) = W0 + λJ +
∑
i≥1

λiJ
i+1 (2.45)

where

J :=
y2 − x2

2
. (2.46)

Furthermore, the series is convergent in V0.

The behavior of the action variable close to the maximum of the e�ective
potential is described by the following theorem.

Theorem 2.8.2. There exist analytic functions Λ(Ē, I2), G1

(
Ē, I2

)
, where

Ē = E − V0(I2) ,

analytic and bounded in the domain{
(Ē, I2) : I2 ∈ Ĩ , Ē ∈ [0, VM(I2)− V0(I2))

}
, (2.47)

where VM(I2) is the maximal value of the energy at �xed I2 in Oj and s.t. the �rst
action I1 is given by

I1 = G(Ē, I2) := −Λ(Ē, I2) ln Ē +G1

(
Ē, I2

)
(2.48)
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Furthermore

Λ(Ē, I2) :=
Ē + F(Ē, I2)

πλ(I2)
(2.49)

with F having a zero of order 2 in (0, I2) and λ2 = λ2(I2) := −d2Veff
dr2 (r0) > 0.

Remark 2.8.1. The main point is that the lower bound of the interval (2.47) for
Ē is included, so that equation (2.48) describes the actions until the maximum.
Furthermore, by (2.48) the following limit exists

I1 0 := lim
Ē→0+

G(Ē, I2) = G1(0, I2)

and is �nite.

Remark 2.8.2. Since E 7→ G(E − V0(I2), I2) is a monotonically increasing func-
tion for E ∈ (V0(I2), VM(I2)), there exists a function h(I1, I2) such that

G(h(I1, I2)− V0(I2), I2) ≡ I1.

Furthermore, by the implicit function theorem, h is analytic in I1, I2 for I2 ∈ Ĩ
and I1 > I1 0.

Proof of Theorem 2.8.2. Let I2 ∈ Ĩ and consider the Hamiltonian

H(r, pr, pθ) =
p2
r

2
+ Veff (r, p

2
θ) ,

with pθ = I2. In the whole construction I2 will play the role of a parameter, so,
until the end of the proof, we work in the space (r, pr) and we omit the dependence
on I2.

We �rst make an expansion at r0 and obtain

H(r, pr) =
p2
r

2
+ V0 −

λ2

2
(r − r0)2 +O

(
(r − r0)3

)
.

Secondly, we make a change of variable to r′ := r − r0; omitting the primes, we
obtain

H(r, pr) =
p2
r

2
+ V0 −

λ2

2
r2 +O(r3) . (2.50)

Fix a value of the energy E > V0, close enough to V0 and denote by γ(E) the
level curve of H at level E. Then, γ(E) is a closed curve in the phase-space whose
normalized enclosed area is the action I1 that we want to compute.

Thus, by de�nition, we have

I1 =
1

2π

∫
γ(E)

prdr =
1

π

∫
γ+(E)

prdr , (2.51)
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where γ+(E) is the upper part of the level curve, namely, the intersection of γ
with pr > 0.

We split the domain of integration into two regions, namely,

I1 =
1

π

[∫
γ+(E)∩U

prdr +

∫
γ+(E)∩Uc

prdr

]
. (2.52)

where U is a neighborhood of the nondegenerate maximum that will be �xed in a
while. First, we remark that the second integral does not see the critical point, so
it is an analytic function of E until V0. To analyze the �rst integral, we exploit
Theorem 2.8.1.

Let us �x a small positive x1 and let us consider the neighborhood V of 0

R2 ⊃ V := (−x1, x1)×

(
−
√

4Ē

λ
+ x2

1,

√
4Ē

λ
+ x2

1

)
.

Provided Ē and x1 are small enough, one has V ⊂ V0 (c.f. Theorem 2.8.1). Let us
de�ne U := Φ(V).

We now write γ+(E) ∩ U in the variables (x, y) and parametrize it with x ∈
(−x1, x1). To this end remark that, since the Hamiltonian H is a function of J
only, namely

H = V0 + λJ + G(J) ,

where G(J) =
∑

i≥1 λiJ
i+1, by the implicit function theorem, there exists an ana-

lytic function F(Ē) having a zero of order 2 at 0 and such that

J =
Ē + F(Ē)

λ

and, therefore, γ+(E) can be written in the form (x, y(x)) with

y(x) :=

√
2(Ē + F(Ē))

λ
+ x2 . (2.53)

To compute the �rst integral in (2.52), we remark that since Φ is canonical and
analytic in a neighborhood of the origin, there exists a function S(x, y) analytic in
a neighborhood of the origin s.t.

prdr = ydx+ dS ,

so, we have,∫
γ+(E)∩U

prdr =

∫ x1

−x1

ydx+ S(x1, y(x1))− S(−x1, y(−x1)) .
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Since x1 is �xed, the terms involving S are analytic functions of Ē. Thus, we only
compute the �rst integral, namely,∫ x1

−x1

ydx =

∫ x1

−x1

√
2(Ē + F(Ē, I2))

λ
+ x2 dx

which takes the form∫ x1

−x1

ydx =
2(Ē + F(Ē))

λ
ln

(
x1 +

√
x2

1 +
2(Ē + F(Ē))

λ

)
+ x1

√
x2

1 +
2(Ē + F(Ē))

λ

− Ē + F(Ē)

λ
ln

(
2(Ē + F(Ē))

λ

)
.

(2.54)
It is easy to see that the �rst two terms are analytic in a neighborhood of 0.
Rewriting the third term as

−Ē + F(Ē)

λ
ln Ē − ln

(
2

λ
+

2F(Ē)

Ē

)
and remarking that the second function is analytic in a neighborhood of 0, we get
the result. All the computations needed are collected in Appendix D.

The formula (2.48) is obtained by reinserting the dependence on I2.

We come to the Arnol'd determinant. We will work in the region Ē > 0 so that
the function G is regular and the implicit function theorem applies and allows to
compute h and its derivatives. Then, we will study the limit Ē → 0+.

By the implicit function theorem, the frequency ω1 is given by

ω1 =
∂h

∂I1

=

(
∂G

∂Ē

)−1

=:W1(Ē, I2) . (2.55)

Lemma 2.8.2. Let f be an analytic function of the form

f = f(Ē, I2) = f(h(I1, I2)− V0(I2), I2) ,

then,
df

dI2

:=
∂f

∂Ē

∂Ē

∂I2

+
∂f

∂I2

=
∂f

∂Ē

(
ω2 −

∂V0

∂I2

)
+
∂f

∂I2

.

Proof. It follows directly from the de�nition of the function Ē.

It follows from Lemma 2.8.2 and the implicit function theorem that the frequency
ω2 is given by

ω2 =
∂h

∂I2

= −∂G
∂I2

W1 +
∂V0

∂I2

.
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Indeed, we have

0 =
dG

dI2

=
∂G

∂Ē

(
ω2 −

∂V0

∂I2

)
+
∂G

∂I2

,

that is,

ω2 = −∂G1

∂I2

(
∂G

∂Ē

)−1

+
∂V0

∂I2

.

Thus, it is worth introducing a function W2 de�ned by

W2(Ē, I2) := −∂G
∂I2

W1 +
∂V0

∂I2

. (2.56)

Proposition 2.8.1. Let h : A → R be the Hamiltonian in two degrees of freedom
written in action angle coordinates, then the Arnol'd determinant can be rewritten
in terms of G and W1 as

D = −W1
∂W1

∂Ē

(
∂V0

∂I2

)2

+ 2W1
∂W1

∂I2

∂V0

∂I2

+W3
1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

. (2.57)

Proof. By exploiting the formulæ (2.55), (2.56) and Remark 2.8.2, we compute the
second derivatives of the Hamiltonian h. We have

∂2h

∂I2
1

=
∂W1(Ē, I2)

∂I1

=
∂W1

∂Ē

∂h

∂I1

=W1
∂W1

∂Ē
,

∂2h

∂I1∂I2

=
dW1(Ē, I2)

dI2

,

∂2h

∂I2
2

=
dW2(Ē, I2)

dI2

=
d

dI2

(
−W1

∂G

∂I2

+
∂V0

∂I2

)
= −dW1

dI2

∂G

∂I2

−W1
d

dI2

(
∂G

∂I2

)
+
∂2V0

∂I2
2

.

We report here the expression of the Arnol'd determinant, that is,

D = −∂
2h

∂I2
1

ω2
2 + 2

∂2h

∂I1∂I2

ω1ω2 −
∂2h

∂I2
2

ω2
1 . (2.58)

We can rewrite the three terms of the Arnol'd determinant (2.58) separately as

D1 = −W1W2
2

∂W1

∂Ē
, (2.59)

D2 = 2W1W2
dW1

dI2

, (2.60)



CHAPTER 2. THE SPATIAL CENTRAL MOTION PROBLEM 61

D3 =W2
1

∂G

∂I2

dW1

dI2

+W3
1

d

dI2

(
∂G

∂I2

)
−W2

1

∂2V0

∂I2
2

. (2.61)

And, gathering together the expressions (2.59), (2.60) and (2.61), after simple
computation (for details see Appendix D), we obtain

D = −W1
∂W1

∂Ē

(
∂V0

∂I2

)2

+ 2W1
∂W1

∂I2

∂V0

∂I2

+W3
1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

This concludes the proof.

Proposition 2.8.2. The Arnol'd determinant diverges as Ē tends to zero.

Proof. Due to the structure (2.48) of G, it is easy to see that ∂2G
∂I2

2
is bounded as

Ē → 0+ (remark that ∂G
∂I2

means derivative with respect to the second argument).

Therefore, since ∂2V0

∂I2
2
is a regular function of I2 and W1 → 0 as Ē approaches

zero, we have that

lim
Ē→0+

(
W3

1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

)
= 0.

Let us now concentrate on the analysis of the remaining terms of (2.57). The
asymptotic behavior of the function W1 is given by

W1 ∼ −
πλ

ln Ē
.

Concerning the derivatives, we have

∂W1

∂I2

= −
(
∂G

∂Ē

)−2
∂2G

∂I2∂Ē

Ē→0+

→ 0 =⇒ lim
Ē→0+

(
2W1

∂W1

∂I2

∂V0

∂I2

)
= 0 .

Concerning the �rst term, using

∂W1

∂Ē
∼ πλ

Ē ln2 Ē
,

we have that it behaves as
π2λ2

Ē ln3 Ē

(
∂V0

∂I2

)2

which diverges to in�nity as Ē → 0+. This concludes the proof.

Lemma 2.8.1 is a consequence of the fact that D is a nontrivial analytic function
in Aj.



Appendix A

The Bertrand's Theorem

An interesting result concerning central force potentials is the following theorem
due to Bertrand

Bertrand's Theorem. Among all the central force potentials giving rise to
bounded orbits, the are only two types for which all bounded orbits are closed:
the Keplerian potential and the Harmonic potential.

A.1 Classical proof of Bertrand's Theorem

We will present here a revisited version of the original proof given by Bertrand in
[Ber73]. Precisely, we will follow the proof given by Arnol'd in [Arn91].

Consider the e�ective potential Veff , �x a value L of the angular momentum
and assume that it has a strict minimum at r0. We impose this condition in order
to consider only the family of central potentials which give rise to bounded orbits.
Denote

ω1(r0) :=
∂2Veff
∂r2

(r0;L2(r0)) ,

and ω2(r0) the frequency associated to the radial motion. Then, we have the
following

Lemma A.1.1. The only central potentials for which ν0(r0) := ω1

ω2
is independent

of r0 are V (r) =
k

α
rα for α > −2 , α 6= 0 ,

V (r) = k ln r ,
(A.1)

where k is a positive constant.

62
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Proof. Just remark that the ratio ν0 has been computed in Chapter 2 (cf. eq.(2.42))
and is given by

ν0(r0) =
√

3 + g(r0) ,

so that this is independent of r0 only if g is equal to a constant and, thus, according
to the de�nition of g

g(r0) =
r0V

′′(r0)

V ′(r0)
,

we have that (A.1) holds.

Lemma A.1.2. Let V (r) be a central potential of the form (A.1). Then,

lim
E 7→+∞

1

2π

∫ rM

rm

L

r2
√

2(E − Veff (r))
dr =

1

4
, (A.2)

for α > 0 and for the logarithmic potential and

lim
E 7→+∞

1

2π

∫ rM

rm

L

r2
√

2(E − Veff (r))
dr =

1

2(2 + α)
, (A.3)

for −2 < α < 0.

Proof. Consider a potential of the form (A.1). Let us consider the integral

1

2π

∫ rM

rm

L

r2
√

2(E − Veff (r))
dr , (A.4)

where rm and rM are the two solutions of E = Veff (r).
Making the change of variable

s =
rm
r
,

the integral is reduced to

1

2π

∫ 1

rm
rM

L√
2
(
r2
mE − L2s2

2
− r2

mV
(
rm
s

))ds . (A.5)

We distinguish now the two cases in (A.1). In the case of the logarithmic potential
(the associated e�ective potential is depicted in Figure A.1 for di�erent values of
the positive constant k), the integral becomes

1

2π

∫ 1

rm
rM

L√
2
(
r2
mE − L2s2

2
− r2

mk ln
(
rm
s

))ds , (A.6)
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Figure A.1: The e�ective potential for the logarithmic potential V (r) = k ln(r) for
di�erent values of the positive constant k .

and the maximal value of the energy EM for which we have bounded orbits can
be taken as EM = +∞.
Let us now take the limit of the integral (A.6) for E 7→ EM . In this case, the
extrema rm and rM tends to 0+ and +∞ respectively and the integral tends to

1

2π

∫ 1

0

L√
2
(
L2

2
− L2s2

2

)ds =
1

2π

∫ 1

0

1√
1− s2

ds =
1

2π

π

2
=

1

4
.

Let us now pass to consider the case of the power law potential. Following the
reasoning above, the integral in this case becomes

1

2π

∫ 1

rm
rM

L√
2
(
r2
mE − L2s2

2
− krα+2

m

αsα

)ds . (A.7)

For α > 0, the corresponding e�ective potential is depicted in Figure A.2.
We can notice that also in this case, the maximal energy EM for which we have
bounded orbits is EM = +∞. Thus, we can take the limit of the integral above
for E 7→ +∞. Also in this limit, the extrema rm and rM tends to 0+ and +∞
respectively. Thus, the computation is the same as in the previous case and the
integrals tends to 1

4
.

We analyze the last case. For −2 < α < 0, as we can see from Figure A.3, the
maximal energy in this case is equal to EM = 0− while the extrema rα+2

m = − 2k
αL2

and rM 7→ +∞ .
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Figure A.2: The e�ective potential for the power law potential V (r) = k
α
rα, α > 0

for di�erent values of the positive constant k .

Figure A.3: The e�ective potential for the power law potential V (r) = k
α
rα, −2 <

α < 0 for di�erent values of the positive constant k .

Substituting this into the formula (A.7) and taking the limit as E 7→ 0− we obtain

1

2π

∫ 1

0

L√
2
(
−L2s2

2
+ L2

2sα

)ds =
1

2π

∫ 1

0

1√
s−α − s2

ds =
1

2π

π

α + 2
=

1

2(α + 2)
.
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This concludes the proof.

The proof of Bertrand's Theorem follows from these two lemmas.

Proof. (Bertrand's Theorem)
It is well known that the orbit is closed if and only if the integral (A.4) belongs to
Q. In general, this integral will depend continuously on the initial values. Thus,
let us compute the value of this integral when we are approaching the minimum
of the e�ective potential, namely,

lim
E 7→Emin

1

2π

∫ rM

rm

L

r2
√

2(E − Veff (r))
dr = ν0(r0) .

where we denoted Emin the energy associated to the minimum. For continuity, we
have to impose that ν0 is constant when L varies.

Furthermore, by comparing the two integrals when E 7→ Emin and when E 7→
EM , we deduce that α = −1, 2 which correspond precisely to the Keplerian and
the Harmonic potentials.



Appendix B

Dirichlet Theorem

We start by presenting the one-dimensional version whose proof is much easier.
For details on the results collected in this appendix see for instance [Sch96].

Theorem B.0.1. (Dirichlet Theorem: one-dimensional version)
Let α and Q be real numbers with Q > 1. Then, there exist integers p, q such that
1 ≤ q < Q and |αq − p| ≤ 1

Q
.

Proof. Firstly, we prove the case for Q ∈ N. Let us denote by {α} the fractional
part of α, that is {α} = α − [α], where we have used [α] to indicate the integer
part of α, and we observe that {α} ∈ [0, 1). Let us consider the following real
numbers

0, 1, {α}, {2α}, {3α}, . . . , {(Q− 1)α} .
They are (Q + 1) real numbers in the unit interval [0, 1]. Therefore, let us divide
the unit interval [0, 1] into Q sub-intervals of the same length 1

Q
. Since we have

(Q + 1) real numbers in the unit interval which has been divided into Q parts,
at least two real numbers {r1α} and {r2α} belong to the same sub-interval with
r1, r2 ∈ N such that 0 ≤ ri ≤ Q− 1, i = 1, 2 and r1 6= r2. Moreover, we have that

|{r1α} − {r2α}| ≤
1

Q
.

And, if we indicate by s1 and s2 the integer part of r1α and r2α respectively, that
is, {r1α} = r1α− s1 and {r2α} = r2α− s2, then we have

|r1α− s1 − (r2α− s2)| ≤ 1

Q
.

Let us suppose that r1 > r2, then

|qα− p| ≤ 1

Q
,

67
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where we denoted q = r1− r2 ∈ N with 1 ≤ q ≤ Q− 1 and p = s1− s2 ∈ N. Let us
consider now the case Q ∈ R. If Q is not an integer, we can construct an integer
by Q′ = [Q] + 1. Then, we can apply the result above and we obtain that there
exist two integers q, p ∈ N such that 1 ≤ q ≤ Q′ − 1 and

|qα− p| ≤ 1

Q′
.

Since Q′−1 = [Q], then the inequality above is satis�ed for 1 ≤ q ≤ [Q] < Q, that
is, the following inequality

|qα− p| ≤ 1

Q

is satis�ed for q ∈ N such that 1 ≤ q < Q.

The theorem above has an obvious generalisation to the multi-dimensional case
whose proof follows directly from the one-dimensional one which we report here
for the sake of completeness.

Theorem B.0.2. Suppose that α1, . . . , αn are n real numbers and that Q > 1 is an
integer. Then, there exist integers q, p1, . . . , pn with 1 ≤ q < Qn and |qαi − pi| ≤ 1

Q

with i = 1, . . . , n.

Theorem B.0.3. (Minkowski's convex body theorem)
Let Ω ⊂ Rd be a non empty, bounded, centrally symmetric, convex subset of Rd

with volume V ol(Ω) =
∫
Rd IΩ > 2d.

Then, there exist a vector of integers x = (x1, . . . , xd) ∈ Ω such that xi are not all
equal to zero.

Proof. Let Ω be as above and let us consider the dilate subset 1
2
Ω. It is easy to

see that the dilate is a convex body too. Moreover, it follows from the hypothesis

that its volume is V ol
(

1
2
Ω
)

= V ol(Ω) ·
(

1
2

)d
> 1. We say that Ω contains a non

zero vector of integers, namely x ∈ Zd, if and only if the dilate subset 1
2
Ω contains

a non zero vector y such that 2y ∈ Zd.
Therefore, it is su�cient to prove that a convex body Ω with V ol(Ω) > 1 contains
a non zero vector x s.t. 2x ∈ Zd.
For this reason, let us consider two vectors p and q in Ω. Since Ω is centrally
symmetric, −q ∈ Ω and for convexity we deduce that any convex combination of
the form λ1p− λ2q is contained in Ω. In particular, if we take λ1 = λ2 = 1

2
, then

we have 1
2
p− 1

2
q ∈ Ω.

At this point, let us de�ne by N(r) the number of non zero vectors p ∈ Ω such
that rp ∈ Zd. We notice that as r → +∞, N(r) will be asymptotically equal to

rdV ol(Ω), that is, limr→+∞
N(r)
rd

= V ol(Ω).
However, since V ol(Ω) > 1, then N(r) > rd when r tends to in�nity. Therefore,
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there exist two unique integer points p and q such that 1
r
p and 1

r
q are contained

in Ω and, if we denote by p = (x1, . . . , xd) and q = (y1, . . . , yd) their components,
then we have xi = yi(mod r) for all i = 1, . . . , d.
Thus, the convex combination of these two vectors, that is, z = 1

2

(
1
r
p
)
− 1

2

(
1
r
q
)
is

contained in Ω. We can rewrite the above combination and we obtain that z ∈ Ω
with 2z = 1

r
(p− q) =

(
x1−y1

r
, . . . , xd−yd

r

)
.

However, from the de�nition of the vectors p and q, we obtain that the di�erence
between each of their coordinates is an integer multiple of r. Thus, the components
of the new vector 2z belong to Z. Thus, the theorem is proved.

Theorem B.0.4. (Dirichlet theorem for simultaneous approximations)
Let α1, . . . , αn ∈ R+. For any Q > 1 there exists an integer q : 1 ≤ q < Q and a
vector p = (p1, . . . , pn) ∈ Nn such that

|αiq − pi| ≤
1

Q
1
n

, i = 1, . . . , n .

Proof. We consider the subset Ω ⊂ Rn+1 given by

Ω =

{
(q, p1, . . . , pn) ∈ Rn+1 : −Q− 1

2
≤ q ≤ Q+

1

2
, |αiq − pi| ≤

1

Q1/n

}
.

We can easily compute its volume and we obtain

V ol(Ω) = (2Q+ 1) ·
n∏
i=1

2

Q1/n
= (2Q+ 1) ·

(
2

Q1/n

)n
= (2Q+ 1) · 2n

Q
> 2n+1 .

Therefore, since all the hypothesis are satis�ed, we can apply Minkowski's theorem
and we obtain that there exists a vector of integers (q, p1, . . . , pn) ∈ Nn+1 which is
contained in Ω. It means that there exists an integer q such that |q| ≤ Q+ 1

2
and

a vector (p1, . . . , pn) ∈ Nn such that

|αiq − pi| ≤
1

Q1/n
.

Thus, the theorem is proved.
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Technical lemmas and results

C.1 Ehresmann �bration lemma

A useful criterion which is needed in order to establish when a map is a �bration
is the following lemma due to Ehresmann [Ehr48]

Lemma C.1.1. Let F : M 7→ B be a surjective submersion between two di�er-
entiable manifolds. If ∀x ∈ B ,F−1(x) is compact and connected, then the sets
F−1(x) are the �bers of a �bration.

C.2 Some useful lemmas

We report here some technical lemmas that will be used in the proof of the main
theorem

Lemma C.2.1. Given two functions f and g of class Cω(ρ), one has for every
δ > 0 that {f, g} ∈ Cω(ρ− δ) and

‖{f, g}‖∗ρ−δ ≤
1

δ
‖Xf‖∗ρ‖g‖∗ρ , (C.1)

‖X{f,g}‖∗ρ−δ ≤
2

δ
‖Xf‖∗ρ‖Xg‖∗ρ . (C.2)

To prove this result, we need the following lemma about the Cauchy estimates

Lemma C.2.2. Let us consider a function f ∈ Cω(ρ). Then, for every chart and
∀δ > 0 the k-th partial derivative of fj is bounded by∥∥∥∥∥ ∂|k|fj

∂zk1
1 . . . ∂zk2d

2d

∥∥∥∥∥
∗

ρ−δ

≤ |k|!
δk
‖f‖∗ρ

where k is a multi-index and |k| = k1 + · · ·+ k2d.
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Proof of Lemma C.2.1. Let us begin with the �rst estimate. Let z ∈ Uρj and let us
denote by fj and gj the local representatives of the functions f and g respectively.
We compute the norm on a smaller domain. Indeed, let 0 < δ < ρ and consider

‖{fj, gj}‖∗ρ−δ = sup
z∈Uρ−δj

|{fj, gj}(z)| = sup
z∈Uρ−δj

∣∣dgj(z)Xfj(z)
∣∣

≤ sup
z∈Uρ−δj

∣∣Xfj(z)
∣∣ sup
z∈Uρ−δj

|dgj(z)| ,

where we have used the de�nition of the Poisson brackets to obtain the second
identity. From Lemma C.2.2, we obtain

‖{fj, gj}‖∗ρ−δ ≤
1

δ
sup

z∈Uρ−δj

∣∣Xfj(z)
∣∣ sup
z∈Uρj
|gj(z)| .

And, since Uρ−δj ⊂ Uρj , we have

‖{fj, gj}‖∗ρ−δ ≤
1

δ

wwXfj

ww∗
ρ
‖gj‖∗ρ .

Passing to the supremum over j, we obtain (C.1).
Let us now conclude with the second estimate. Let z ∈ Uρj and fj and gj as

above. From the de�nition of the Poisson brackets the following identity

X{fj ,gj} = [Xfj , Xgj ] = (dXfj)Xgj − (dXgj)Xfj (C.3)

holds. Thus, if we compute the norm on a smaller region as before, we havewwX{fj ,gj}ww∗ρ−δ ≤ ww(dXfj)Xgj

ww∗
ρ−δ +

ww(dXgj)Xfj

ww∗
ρ−δ

≤ 1

δ

wwXfj

ww∗
ρ

wwXgj

ww∗
ρ−δ +

1

δ

wwXgj

ww∗
ρ

wwXfj

ww∗
ρ−δ ,

where we have used the Cauchy estimates of Lemma C.2.2. Proceeding as before,
we have wwX{fj ,gj}ww∗ρ−δ ≤ 2

δ

wwXfj

ww∗
ρ

wwXgj

ww∗
ρ
,

and, passing to the supremum over j, we obtain (C.2).

Lemma C.2.3. Let χ ∈ Cω(ρ) together with its vector �eld and �x 0 < δ <
ρ. Assume that ‖Xχ‖∗ρ < δ and consider the time �ow T t of the corresponding
Hamiltonian vector �eld. Then, for |t| ≤ 1, one haswwT t − I

ww
ρ−δ ≤ ‖Xχ‖∗ρ .
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Proof. Let us consider z ∈ Uρj and denote by T tj the local representative of the
time �ow T . We compute∣∣T tj (z)− z

∣∣ =
∣∣T tj (z)− T 0

j (z)
∣∣ ≤ ∫ t

0

∣∣∣∣dT sj (z)

ds

∣∣∣∣ds ≤ ∫ t

0

Xχj(T sj (z))ds .

Passing to the supremum on the chart domain Uρ−δj , we obtain

sup
z∈Uρ−δj

∣∣T tj (z)− z
∣∣ ≤ ∫ t

0

sup
z∈Uρ−δj

∣∣Xχj(T sj (z))
∣∣ds

≤
∫ t

0

sup
z∈Uρj

∣∣Xχj(z)
∣∣ds

≤ t sup
z∈Uρj

∣∣Xχj(z)
∣∣ .

Thus, since |t| ≤ 1, we havewwT t − I
ww∗
ρ−δ ≤ t ‖Xχ‖∗ρ .

This concludes the proof.

Lemma C.2.4. Let χ ∈ Cω(ρ) and T t as in the lemma above and consider a
function f ∈ Cω(ρ) together with its vector �eld. Let 0 < δ < ρ. Assume that
‖Xχ‖∗ρ ≤

δ
3
. Then, for |t| ≤ 1, one haswwf ◦ T t − fww∗

ρ−δ ≤
2

δ
‖Xf‖∗ρ ‖Xχ‖∗ρ , (C.4)

and

‖Xf◦T t−f‖∗ρ−δ ≤
5

δ
‖Xf‖∗ρ ‖Xχ‖∗ρ . (C.5)

Proof. Let us denote by δ̄ := δ
2
. Let z ∈ Uρj and let us denote by T tj and fj the

local representatives of the functions T t and f respectively. We compute∣∣fj(T tj (z))− fj(z)
∣∣ ≤ ∫ t

0

∣∣∣∣ d

ds
fj(T sj (z))

∣∣∣∣ds =

∫ t

0

∣∣{χj, fj}(T sj (z))
∣∣ds .

At this point, we compute the norm on a smaller region, that is,

sup
z∈Uρ−2δ̄

j

∣∣fj(T tj (z))− fj(z)
∣∣ ≤ ∫ t

0

sup
z∈Uρ−2δ

j

∣∣{χj, fj}(T sj (z))
∣∣ds

≤
∫ t

0

sup
z∈Uρ−δ̄j

|{χj, fj}(z)|ds

≤ t ‖{χj, fj}‖∗ρ−δ̄ .
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Thus, since |t| ≤ 1 and Uρ−δ̄j ⊂ Uρj , we havewwfj ◦ T t − fjww∗ρ−2δ̄
≤ ‖{χj, fj}‖∗ρ ,

and, passing to the supremum over j, one haswwf ◦ T t − fww∗
ρ−2δ̄
≤ ‖{χ, f}‖∗ρ ≤

1

δ
‖Xχ‖∗ρ ‖f‖

∗
ρ ,

where we have used the estimates (C.1). Going back to δ, we obtain (C.4).

We come now to the second estimate. Let z ∈ Uρj . From (1.22) of Chapter 1, we
can write

Xfj◦T tj (z) = d(T tj )−1(T tj (z))Xgj(T tj (z)) .

Therefore,wwwXfj◦T tj −fj

www∗
ρ−δ
≤
ww(d(T tj )−1 ◦ T tj − I)(Xfj ◦ T tj )

ww∗
ρ−δ +

wwXfj ◦ T tj −Xfj

ww∗
ρ−δ .

(C.6)
Let us consider the �rst term in (C.6). Let δ̃ := δ

3
and considerww(d(T tj )−1 ◦ T tj − I)(Xfj ◦ T tj )

ww∗
ρ−3δ̃
≤
wwd(T tj )−1 − I

ww∗
ρ−2δ̃

wwXfj

ww∗
ρ−2δ̃

≤ 1

δ̃

ww(T tj )−1 − I
ww∗
ρ−δ̃

wwXfj

ww∗
ρ−2δ̃

,

where we have used Lemma C.2.2. Furthermore, from Lemma C.2.3 we haveww(d(T tj )−1 ◦ T tj − I)(Xfj ◦ T tj )
ww∗
ρ−3δ̃
≤ 1

δ̃

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
.

Going back to δ, one hasww(d(T tj )−1 ◦ T tj − I)(Xfj ◦ T tj )
ww∗
ρ−δ ≤

3

δ

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
. (C.7)

We consider now the second term. Let δ̄ := δ
2
and consider

wwXfj ◦ T tj −Xfj

ww∗
ρ−2δ̄
≤
wwT tj − I

ww∗
ρ−2δ̄

wwdXfj

ww∗
ρ−δ̄ ≤

1

δ̄

wwT tj − I
ww∗
ρ−2δ̄

wwXfj

ww∗
ρ

≤ 1

δ̄

wwXχj

ww∗
ρ−2δ̄

wwXfj

ww∗
ρ
,

that is, wwXfj ◦ T tj −Xfj

ww∗
ρ−2δ̄
≤ 1

δ̄

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
.
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If we express δ̄ in terms of δ, we obtainwwXfj ◦ T tj −Xfj

ww∗
ρ−δ ≤

2

δ

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
. (C.8)

Let us now pull this estimates into expression (C.6). We havewwwXfj◦T tj −fj

www∗
ρ−δ
≤ 5

δ

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
.

Passing to the supremum over j we obtain the estimate (C.5).
This concludes the proof.

Lemma C.2.5. Let χ ∈ Cω(ρ) be the solution of the homological equation

{χ, hω∗}+ f = 〈f〉 , (C.9)

and consider the time one �ow T of the corresponding vector �eld. Let 0 < δ < ρ.
Then, one has

‖hω∗ ◦ T − hω∗ − {χ, hω∗}‖∗ρ−δ ≤
4

δ
‖Xχ‖∗ρ ‖f‖

∗
ρ , (C.10)

and, wwXhω∗◦T −hω∗−{χ,hω∗}
ww∗
ρ−δ ≤

10

δ
‖Xχ‖∗ρ ‖Xf‖∗ρ . (C.11)

Proof. Let us begin with the �rst estimate. Let z ∈ Uρj . We can write

(hω∗,j ◦ Tj − hω∗,j − {χj, hω∗,j})(z) =

∫ 1

0

{χj, hω∗,j}(T tj (z))dt−
∫ 1

0

{χj, hω∗,j}(z)dt

=

∫ 1

0

(gj(T tj (z))− gj(z))dt ,

(C.12)
where we denoted gj(z) := {χj, hω∗,j}(z).

Let us denote δ̄ := δ
2
and consider

sup
z∈Uρ−2δ̄

j

|(hω∗,j ◦ Tj − hω∗,j − {χj, hω∗,j})(z)| ≤
∫ 1

0

sup
z∈Uρ−2δ̄

j

∣∣gj(T tj (z))− gj(z)
∣∣dt .

Passing to the supremum over j and exploiting the estimate (C.4) of the previous
lemma, we obtain

‖hω∗ ◦ T − hω∗ − {χ, hω∗}‖∗ρ−2δ̄ ≤
1

δ
‖χj‖∗ρ ‖gj‖

∗
ρ .
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and, from the de�nition of gj and the homological equation (C.9), we have

gj = {χj, hω∗,j} = 〈f〉j − fj ,

and
‖gj‖∗ρ ≤ 2 ‖fj‖∗ρ .

Finally, expressing δ̄ in terms of δ, we have

‖hω∗,j ◦ Tj − hω∗,j − {χj, hω∗,j}‖∗ρ−δ ≤
2

δ
‖χj‖∗ρ ‖gj‖

∗
ρ ≤

4

δ
‖χj‖∗ρ ‖fj‖

∗
ρ .

And, passing to the supremum over j, we obtain (C.10).
We now pass to the second estimate. From (C.12), we obtain thatwwXhω∗,j◦Tj−hω∗,j−{χj ,hω∗,j}

ww∗
ρ−δ ≤

wwwXgj◦T tj −gj

www∗
ρ−δ

.

By exploiting the previous estimate (C.5), we obtainwwXhω∗,j◦Tj−hω∗,j−{χj ,hω∗,j}
ww∗
ρ−δ ≤

5

δ

wwXgj

ww∗
ρ

wwXχj

ww∗
ρ
,

and, since wwXgj

ww∗
ρ
≤ 2

wwXfj

ww∗
ρ
,

we conclude wwXhω∗,j◦Tj−hω∗,j−{χj ,hω∗,j}
ww∗
ρ−δ ≤

10

δ

wwXχj

ww∗
ρ

wwXfj

ww∗
ρ
.

The estimate (C.11) is obtained passing to the supremum over j.
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Normal forms and other results

D.1 Birkho� normal form

In Chapter 2, we have made use of a Birkho� normal form for the Hamiltonian
of the planar central motion problem in a neighborhood of a circular orbit and
we have constructed this by means of a symbolic manipulator ( MathematicaTM).
Here we report the �rst steps of the Birkho� normal form procedure to get an idea
of how the scheme goes.

Let us begin by considering the Hamiltonian of the planar central motion in
polar coordinates, namely,

H(r, pr, pθ) :=
p2
r

2
+

p2
θ

2r2
+ V (r) =

p2
r

2
+ Veff (r, p

2
θ) . (D.1)

We assume that there exists a minimum r0 of the e�ective potential, that is,

∃r0 > 0 : V ′eff (r0, p
2
θ) = −p

2
θ

r3
0

+ V ′(r0) = 0 ⇒ p2
θ = r3

0V
′(r0) . (D.2)

By restricting our analysis to the region where pθ is positive, we can notice a 1-1
correspondence between pθ and r0 so that we can just deal with r0.

We begin by Taylor expanding the Hamiltonian (D.1) in a neighborhood of the
circular orbit: we obtain

H(r, pr) = Veff (r0) +
p2
r

2
+
∑
l≥2

V
(l)
eff (r0)

l!
(r − r0)l ,

where we have used the fact that the �rst derivative of the e�ective potential
vanishes at the minimum.
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For the sake of clarity, we report here the explicit formulæ for the derivatives
of Veff . Thus, we �rst compute the derivatives

V ′eff = −p
2
θ

r3
0

+ V ′(r0) ,

V
(2)
eff =

3p2
θ

r4
0

+ V (2)(r0) ,

V
(3)
eff = −12p2

θ

r5
0

+ V (3)(r0) ,

· · ·

V
(l)
eff = (−1)l

(l + 1)!

2

p2
θ

rl+2
0

+ V (l)(r0) .

Secondly, we use the equality (D.2) and obtain the explicit formulæ for the deriv-
atives of the e�ective potentials

V
(l)
eff = (−1)l

(l + 1)!

2

V ′(r0)

rl−1
0

+ V (l)(r0) . (D.3)

These formulæ will be used later in order to highlight a key property of the Taylor
expansion.

Now, we go back to the expanded Hamiltonian where we denote by ρ := r− r0

the displacement and where we isolate the quadratic part, that is,

H(r, pr) = Veff (r0) +
p2
r

2
+

(
3V ′(r0)

r0

+ V (2)(r0)

)
ρ2 +

∑
l≥3

V
(l)
eff (r0)

l!
ρl .

The coe�cient of the second order term in ρ, namely,

A(r0) :=
3V ′(r0)

r0

+ V ′′(r0) > 0 ,

is positive since it is computed at the minimum of the e�ective potential, thus, we
use it to make a canonical change of variables (ρ, pr) 7→ (x, y) with

x = 4
√
A(r0)ρ

y =
pr

4
√
A(r0)

,

in order to diagonalize the quadratic part of the Hamiltonian. The rescaled
Hamiltonian becomes

H(x, y) = Veff (r0) +
√
A(r0)

y2 + x2

2
+
∑
l≥3

V
(l)
eff (r0)

l!
(A(r0))−

l
4xl . (D.4)
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The Hamiltonian above is the classical form of the Hamiltonian in a neighborhood
of an elliptic equilibrium and, therefore, we can introduce the action angle variables
by performing a Birkho� normal form. In Chapter 2, we have constructed the
Birkho� normal form at the sixth order by means of a symbolic manipulator.
Here, we outline the general scheme, thus, to get some ideas of the computations
needed, we perform only the �rst steps obtaining the normal form arrested at the
fourth order.

To do so, let us consider the Hamiltonian expansion (D.4) arrested at the fourth
order, namely,

H(x, y) = Veff (r0) +
√
A(r0)

y2 + x2

2
+

√
A(r0)

2

(
α(r0)x

3 + β(r0)x
4
)
+ o(x4) ,

where we have denoted by α, β the coe�cients of the higher order terms of the
Hamiltonian. Precisely,

α(r0) :=
V

(3)
eff (r0)

3
(A(r0))−

5
4 =
B(r0)

3
(A(r0))−

5
4 ,

β(r0) :=
V

(4)
eff (r0)

12
(A(r0))−

3
2 =
C(r0)

12
(A(r0))−

3
2 ,

where we have denoted B(r0) := V
(3)
eff (r0) and C(r0) := V

(4)
eff (r0).

At this point, we consider the complex variables
ξ =

1√
2

(y + ix)

η =
1√
2

(y − ix)
,

in which the symplectic form turns out to be dx∧dy = idξ∧dη. By exploiting this
change of variables and considering that a homogeneous polynomial of degree l in
the (y, x) variables does not change degree when expressed in the new variables
(η, ξ), the new Hamiltonian becomes

H(ξ, η) = Veff (r0) +
√
Aξη +

α
√

2A
8

(ξ3 − 3ξ2η + 3ξη2 − η3)i

+
β
√
A

8
(ξ4 − 4ξ3η + 6ξ2η2 − 4ξη3 + η4) + o((ξ + η)4) ,

where we have omitted the dependence on r0.
Let us now consider the Hamiltonian

H̃(ξ, η) =
√
Aξη +

α
√

2A
8

(ξ3 − 3ξ2η + 3ξη2 − η3)i

+
β
√
A

8
(ξ4 − 4ξ3η + 6ξ2η2 − 4ξη3 + η4) .
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We proceed with the normalization at the third order: let us rewrite the expression
above in a more concise way, that is,

H̃(ξ, η) = h(2)(ξ, η) + P (3)(ξ, η) + P (4)(ξ, η) , (D.5)

underlining the degree of the homogeneous polynomials. We make the reader
notice that we have omitted the terms of order higher than four since they do not
contribute to the construction of the fourth order Birkho� normal form.

Having said this, we begin the construction by searching for the coe�cients
PJ,L with (J, L) such that |J | + |L| = 3, J 6= L in order to construct the third
order term of the generating function χ, that is

χ(3)(ξ, η) =
∑
J 6=L

|J |+|L|=3

P
(3)
J,L√

A(J − L)i
ξJηL .

To do so, let us consider the third order homogeneous polynomial P (3), that is,

P (3)(ξ, η) =
α
√

2A
8

iξ3 − 3α
√

2A
8

iξ2η +
3α
√

2A
8

iξη2 − α
√

2A
8

iη3

:= P
(3)
3,0 ξ

3 + P
(3)
2,1 ξ

2η + P
(3)
1,2 ξη

2 + P
(3)
0,3 η

3 .

(D.6)

The third order term of the generating function is

χ(3)(ξ, η) =
α
√

2

24
ξ3 − 3α

√
2

8
ξ2η − 3α

√
2

8
ξη2 +

α
√

2

24
η3 . (D.7)

Then, using the Lie transform method, we can apply the time one Hamiltonian
�ow generated by χ(3) to the Hamiltonian (D.5) in order to normalize it at the
third order. Indeed, let T (3) := Φχ(3) and compute

H̃1(ξ, η) := H̃ ◦ Φχ(3)(ξ, η) = h(2)(ξ, η) +
(
P (3)(ξ, η) + {χ(3), h(2)}(ξ, η)

)
+
(
h(2) ◦ T (3) − h(2) − {χ(3), h(2)}

)
(ξ, η)

+
(
P (3) ◦ T (3) − P (3)

)
(ξ, η)

+ (P (4) ◦ T (3))(ξ, η) ,

that is,
H̃1(ξ, η) = h(2)(ξ, η) + Z(3)

1 (ξ, η) +R1(ξ, η) , (D.8)

with Z(3)
1 (ξ, η) being the solution of the homological equation. Precisely,

Z
(3)
1 (ξ, η) =

∑
|J |+|L|=3, J=L

P
(3)
J,Lξ

JηL = 0 ,
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and it turns out to be identically zero. The remaining terms are collected into the
remainder R1, that is,

R1(ξ, η) =
(
h(2) ◦ T (3) − h(2) − {χ(3), h(2)}

)
(ξ, η)

+
(
P (3) ◦ T (3) − P (3)

)
(ξ, η)

+ (P (4) ◦ T (3))(ξ, η) .

Remark D.1.1. From the properties of the Lie transform, it is known that the
composition between an homogeneous polynomial g of degree i and the time one
Hamiltonian �ow generated by a function χ of degree j is given by

g ◦ Φχ =
∑
l≥0

gl ,

with  gl =
1

l!
{χ, gl−1}, l > 0

g0 = g
.

Moreover, gl is an homogeneous polynomial of degree i+ l(j − 2).

At this point, we develop the terms of the remainder R1 by exploiting the
properties contained in Remark D.1.1. We obtain(
h(2) ◦ T (3) − h(2) − {χ(3), h(2)}

)
(ξ, η) =h(2)(ξ, η) + h

(2)
1 (ξ, η) + h

(2)
2 (ξ, η) + h.o.t.

− h(2)(ξ, η)− h(2)
1 (ξ, η) ,

where we have use the fact that

h
(2)
1 (ξ, η) = {χ(3), h(2)} .

Thus, (
h(2) ◦ T (3) − h(2) − {χ(3), h(2)}

)
(ξ, η) = h

(2)
2 (ξ, η) + h.o.t. .

Analogously, we have(
P (3) ◦ T (3) − P (3)

)
(ξ, η) = P

(3)
1 (ξ, η) + h.o.t. ,

and
(P (4) ◦ T (3))(ξ, η) = P (4)(ξ, η) + h.o.t. .

Therefore, we can rewrite the remainder by collecting together the polynomials
having the same degree, that is

R1(ξ, η) = R(4)
1 (ξ, η) + h.o.t. ,
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where
R(4)

1 (ξ, η) = h
(2)
2 (ξ, η) + P

(3)
1 (ξ, η) + P (4)(ξ, η) .

Thus, the Hamiltonian (D.8) becomes

H̃1(ξ, η) = h(2)(ξ, η) +R
(4)
1 (ξ, η) + h.o.t. . (D.9)

At this point, we notice that we have three terms that contribute to the fourth
order homogeneous polynomial of the remainder. We can adjust them so that we
can express R(4)

1 in an explicit way. We start by noticing that we can rewrite the

term h
(2)
2 as

h
(2)
2 (ξ, η) =

1

2
{χ(3), {χ(3), h(2)}}(ξ, η) = −1

2
{χ(3), P (3)}(ξ, η) = −1

2
P

(3)
1 (ξ, η) ,

where the second identity comes from the homological equation exploiting the fact
that the normal term Z(3) is equal to zero. Thus, the remainder R(4)

1 can be
simpli�ed as

R(4)
1 (ξ, η) =

1

2
P

(3)
1 (ξ, η) + P (4)(ξ, η) . (D.10)

Let us now compute the term P
(3)
1 : inserting the expressions (D.6) and (D.7) in

the de�nition of P
(3)
1 (ξ, η) = {χ(3), P (3)}(ξ, η), after some computations, we obtain

P
(3)
1 (ξ, η) =

3α2
√
A

16
ξ4 +

3α2
√
A

4
ξ3η − 15α2

√
A

8
ξ2η2

+
3α2
√
A

4
ξη3 +

3α2
√
A

16
η4 .

(D.11)

We remind the expression of P (4), that is,

P (4)(ξ, η) =
β
√
A

8
(ξ4 − 4ξ3η + 6ξ2η2 − 4ξη3 + η4) . (D.12)

We substitute (D.11) and (D.12) in the expression (D.10) for the remainder and
obtain

R
(4)
1 (ξ, η) =

(
3α2

32
+
β

8

)√
Aξ4 +

(
3α2

8
− β

2

)√
Aξ3η +

(
−15α2

16
+

3β

4

)√
Aξ2η2

+

(
3α2

8
− β

2

)√
Aξη3 +

(
3α2

32
+
β

8

)√
Aη4

:= R
(4)
14,0
ξ4 +R

(4)
13,1
ξ3η +R

(4)
12,2
ξ2η2 +R

(4)
11,3
ξη3 +R

(4)
10,4
η4 .

(D.13)
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One can compute also the higher order terms of the remainder. However, for what
concerns our work we stop at the fourth order.

We go back now to the Hamiltonian (D.9) and we search now for another
canonical transformation in order to normalize the Hamiltonian at the fourth or-
der. Thus, following the steps we have done previously to obtain the third order
normalization, let us search for the generating function χ(4) having the form

χ(4)(ξ, η) =
∑

|J |+|L|=4, J 6=L

R
(4)
1J,L√

A(J − L)i
ξJηL .

By exploiting the coe�cients of (D.13), we can construct the generating function
χ(4) which takes the form

χ(4)(ξ, η) =

(
−3α2

128
− β

32

)
iξ4+

(
−3α2

16
+
β

4

)
iξ3η+

(
3α2

16
− β

4

)
iξη3+

(
3α2

128
+
β

32

)
iη4 .

At last, applying the canonical transformation to the Hamiltonian (D.9), we obtain
the Hamiltonian below, normalized at the fourth order

H̃2(ξ, η) = h(2)(ξ, η) + Z
(4)
2 (ξ, η) +R2(ξ, η) ,

where

Z
(4)
2 (ξ, η) =

∑
|J |+|L|=4, J=L

R
(4)
1J,L

ξJηL =

(
−15α2

16
+

3β

4

)√
Aξ2η2 .

At this point, substituting the coe�cients α = 1
3
B(A)−

5
4 and β = 1

12
C(A)−

3
2 in the

Hamiltonian above, we obtain

H̃2(ξ, η) =
√
Aξη +

(
−5B2 + 3CA

48A2

)
ξ2η2 + o

(
(ξη)2

)
.

Finally, we can introduce the action angle variables. To do so, let us �rst consider
the normalized Hamiltonian

H2(ξ, η) = Veff (r0) +
√
Aξη +

(
−5B2 + 3CA

48A2

)
ξ2η2 + o

(
(ξη)2

)
,

and the new variables (I1, φ1) introduced by (ξ, η) 7→ (I1, φ1), where{
ξ =
√
I1e

iφ1

η =
√
I1e
−iφ1

.
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Then, the Hamiltonian (D.1) normalized at the fourth order becomes

H = Veff (r0) +
√
AI1 +

(
−5B2 + 3CA

48A2

)
I2

1 + o(I3
1 ) .

Let us denote by I2 := pθ the second action and by φ2 the corresponding angle,
then, by exploiting the 1-1 correspondence between r0 and pθ (and, thus, I2), we
conclude with the following expression for the Hamiltonian (D.1) normalized at
the fourth order

h(I1, I2) = Veff (I2) +
√
A(I2)I1 +

(
−5B2(I2) + 3C(I2)A(I2)

48A(I2)2

)
I2

1 + o(I3
1 )

:= h0(I2) + h1(I2)I1 + h2(I2)I2
1 + o(I3

1 ) .

D.2 Burgers equation

We report here the proof of a useful property satis�ed by the coe�cients of the
Birkho� normal form which turns out to be powerful when writing the expansion
of the Burgers equation.

Thus, let us consider the Hamiltonian (D.4), that is,

H(x, y) = Veff (r0) +
√
A(r0)

y2 + x2

2
+
∑
l≥3

V
(l)
eff (r0)

l!
(A(r0))−

l
4xl , (D.14)

and, before the normalization procedure by means of the Birkho� normal form,
let us focus on the �rst order approximation of the Hamiltonian, that is,

H(x, y) ∼ Veff (r0) +
√
A(r0)

y2 + x2

2
.

Before introducing the action angle variables, we can notice that the �rst order
approximation of the action I1 is given by

I1 =
y2 + x2

2
,

thus, we can compute the frequencies ω1 and ω2 at order zero in I1, namely,

ω1,0 =

√
3V ′(r0)

r0

+ V ′′(r0) , ω2,0 =

√
V ′(r0)

r0

.

The key quantity that we can compute now is the ratio of the frequency which at
order zero can be expressed as

ν0 =
ω1,0

ω2,0

=

√
3 +

V ′′(r0)r0

V ′(r0)
.
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We make the reader notice that if we introduce the function

g(r0) =
V ′′(r0)r0

V ′(r0)
,

then, the ratio can be expressed as ν0 =
√

3 + g(r0) and all the computations
hugely simplify: it follows that the derivatives of the potential can be rewritten as

V (l)(r0) = Fl(r0, g(r0), . . . , g(l−2)(r0))V ′(r0), l ≥ 3 .

Let us prove this fact by induction. For l = 3, we have

V (3)(r0) =
d

dr0

(
g(r0)V ′(r0)

r0

)
=
g′(r0)V ′(r0)

r0

− g(r0)V ′(r0)

r2
0

+
g(r0)V ′′(r0)

r0

.

Let us now pull the de�nition of V ′′ in the last term. We obtain

V (3)(r0) =

(
g′(r0)

r0

− g(r0)

r2
0

+
g2(r0)

r0

)
V ′(r0) := F3(r0, g(r0), g′(r0))V ′(r0) .

Now, let us suppose that the thesis is veri�ed for l − 1 and let us prove it for l.
Thus, we consider

V (l)(r0) =
d

dr0

(
Fl−1(r0, g(r0), g′(r0), . . . , g(l−3)(r0))V ′(r0)

)
=

d

dr0

(Fl−1(r0, g(r0), g′(r0), . . . , g(l−3)(r0)))V ′(r0)

+ Fl−1(r0, g(r0), g′(r0), . . . , g(l−3)(r0))V ′′(r0) ,

and, from the de�nition of V ′′, we obtain the thesis

V (l)(r0) = Fl(r0, g(r0), g′(r0), . . . , g(l−2)(r0))V ′(r0), l ≥ 3 . (D.15)

We can use this fact to rewrite the derivatives of the e�ective potential. Indeed,
by inserting (D.15) in (D.3), we obtain

V
(l)
eff (r0) = Gl(r0, g(r0), g′(r0), . . . , g(l−2)(r0))V ′(r0), l ≥ 3 .

It follows that the Hamiltonian (D.14) takes the form

H(x, y) = Veff (r0) + G2(r0, g(r0)) (V ′(r0))
1
2
y2 + x2

2

+
∑
l≥3

Gl(r0, g(r0), g′(r0), . . . , g(l−2)(r0))V ′(r0)1− l
4 xl .
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We are now ready to perform a Birkho� normal form in order to get a normalized
Hamiltonian h(I1, I2) which will depend only on the actions I1 and I2 of the form

h(I1, I2) = h0(I2) + h1(I2)I1 + h2(I2)I2
1 + . . . .

The main point is that the Birkho� normal form procedure does not change the
form of the coe�cients h0, h1, . . . : it contributes only to shift the index in the
powers of V ′(r0). Thus, we have

h0 = Veff (r0)

h1 = H1(r0, g(r0))V ′(r0)
1
2

hl = Hl(r0, g(r0), g′(r0), . . . , g2(l−1)(r0))V ′(r0)1− l
2 , l ≥ 2 .

Starting from the Birkho� normal form, one can compute the expansion of the
frequencies ω1 and ω2 in I1 as a function of the radius r0. Therefore, we have

ω1 =
∂h

∂I1
= H1(r0, g(r0))V

′(r0)
1
2+
∑
l≥2

lHl(r0, g(r0), g
′(r0), . . . , g

2(l−1)(r0))V
′(r0)

1− l
2 I l−1

1 ,

thus,

ω1 =
∑
l≥1

W1
l (r0, g(r0), g′(r0), . . . , g2(l−1)(r0))V ′(r0)1− l

2 I l−1
1 .

Analogously, we can prove

ω2 =
∂h

∂I2

=

√
V ′(r0)

r0

+
∑
l≥2

W2
l (r0, g(r0), g′(r0), . . . , g2l−3(r0))V ′(r0)1− l

2 I l−1
1 .

Then, one can check that the ratio of the frequency ν = ω1

ω2
can be expressed as

ν =
√

3 + g(r0) +
∑
l≥1

Vl(r0, g(r0), g′(r0), . . . , g2l(r0))V ′(r0)−
l
2 I l1 .

By putting this expansion into the Burgers equation, after some trivial computa-
tions, one can check that at each order the powers of V ′(r0) can be factor out so
that the Burgers equation turns out to be independent from V ′(r0) and it can be
solved order-by-order for g(r0) and its derivatives.

D.3 Domains bounded below by a maximum of the

e�ective potential

We report here some standard computation needed in order to prove Theorem
2.8.2 of Chapter 2.

Let us begin with the following lemma
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Lemma D.3.1. Let us �x x1 > 0 and Ē > 0 small enough and consider the curve
γ : [−x1, x1] 7→ R2 given by

γ = (x, y(x)) ,

with y(x) =
√

2(Ē+F(Ē))
λ

+ x2 , where F(Ē) is an analytic function having a zero
of order 2 at the origin and λ > 0 is a positive parameter.
Then, ∫ x1

−x1

ydx = −Ē + F(Ē)

λ
ln Ē +G1(Ē) ,

where G1 is a bounded analytic function for Ē > 0.

Proof. Let us rewrite the integral as

I :=

∫ x1

−x1

√
2(Ē + F(Ē))

λ
+ x2dx =

∫ x1

−x1

√
F (Ē)2 + x2 dx , (D.16)

where we denote by F the function

F (Ē) :=

√
2(Ē + F(Ē))

λ
.

In order to compute the integral (D.16), we �rst change the variable of integration
to s := x

F (Ē)
such that the integral takes now the form

I = F (Ē)

∫ x1

x1

√
1 +

(
x

F (Ē)

)2

dx = F (Ē)2

∫ s1

−s1

√
1 + s2 ds ,

where we denote s1 = x1

F (Ē)
.

At this point, we perform standard computation. Indeed, let us begin by
considering the integral

I0 :=

∫ s1

−s1

√
1 + s2 ds .

We perform a new change of variables, that is, we introduce a variable ϑ such that
s = sinhϑ. The integral becomes

I0 =

∫ s1

−s1

√
1 + s2 ds =

∫ ϑ1

−ϑ1

cosh2 ϑ dϑ =

∫ ϑ1

−ϑ1

cosh(2ϑ) + 1

2
dϑ ,

where we used the formula cosh(2ϑ) = cosh2 ϑ− 1 and we denoted ϑ1 = arcsinhs1.
Thus,

I0 =
sinhϑ1 coshϑ1

2
− sinh(−ϑ1) cosh(−ϑ1)

2
+ ϑ1 = sinhϑ1 coshϑ1 + ϑ1 ,
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where we used the relations sinh(−ϑ) = sinhϑ and cosh(−ϑ) = − coshϑ. We go
back to the original variables and obtain

I0 = s1

√
1 + s2

1 + arcsinhs1 .

Thus, we have

I = F (Ē)2

 x1

F (Ē)

√
1 +

(
x1

F (Ē)

)2

+ arcsinh

(
x1

F (Ē)

)
= x1

√
F (Ē)2 + x2

1 + F (Ē)2 ln

 x1

F (Ē)
+

√
1 +

(
x1

F (Ē)

)2


= x1

√
F (Ē)2 + x2

1 + F (Ē)2 ln

(
x1 +

√
F (Ē)2 + x2

1

)
− F (Ē)2 ln(F (Ē)) ,

where we used the identity arcsinhx = ln(x+
√

1 + x2).
Finally, from the de�nition of the function F (Ē), we obtain

I =x1

√
x2

1 +
2(Ē + F(Ē))

λ
+

2(Ē + F(Ē))

λ
ln

(
x1 +

√
x2

1 +
2(Ē + F(Ē))

λ

)

− (Ē + F(Ē))

λ
ln

(
2(Ē + F(Ē))

λ

)
.

(D.17)
We begin to analyze the �rst term of (D.17).

I1 := x1

√
x2

1 +
2(Ē + F(Ē))

λ
= x2

1

√
1 +

2(Ē + F(Ē))

λx2
1

= x2
1

√
1 + f̃(Ē) ,

where we denoted f̃(Ē) = 2(Ē+F(Ē))

λx2
1

. At this point, since f̃(Ē) 7→ 0 for Ē 7→ 0

and x1 is �xed, we can develop this term obtaining

I1 = x2
1

∑
n≥0

(
1/2

n

)
f̃(Ē)n = x2

1

∑
n≥0

cn(Ē + F(Ē))n ,

where cn :=
(

1/2
n

)
2n

λnx2n
1
.

Furthermore, since F(Ē) is an analytic function having a zero of order 2 at
the origin, we can exploit its expansion and obtain that the integral I1 can be
expressed as

I1 = x2
1

∑
n≥0

bnĒ
n ,
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with suitable coe�cients bn.
Analogously, we analyze the second term of (D.17), that is,

I2 =
2(Ē + F(Ē))

λ
ln

(
x1 +

√
x2

1 +
2(Ē + F(Ē))

λ

)

=
2(Ē + F(Ē))

λ
ln

(
2x1 +

∑
n≥1

bnĒ
n

)

=
2(Ē + F(Ē))

λ
ln(2x1) +

2(Ē + F(Ē))

λ
ln

(
1 +

∑
n≥1

bnĒ
n

)
.

By exploiting the analyticity of F(Ē), we can rewrite it as

I2 =
∑
n≥2

anĒ
n ,

where an are suitable coe�cients. Thus,

I1 + I2 = x2
1 +

∑
n≥1

CnĒ
n .

We conclude by analyzing the third term. Let us begin by rewriting it as follows

I3 = −(Ē + F(Ē))

λ
ln

(
Ē

(
2

λ
+
F(Ē)

λĒ

))
,

that is,

I3 = −(Ē + F(Ē))

λ
ln Ē − (Ē + F(Ē))

λ
ln

(
2

λ
+
F(Ē)

λĒ

)
.

We analyze the second term

I3,2 = −(Ē + F(Ē))

λ
ln

(
2

λ

)
− (Ē + F(Ē))

λ
ln

(
1 +
F(Ē)

2Ē

)
.

The �rst term is an analytic function of Ē, thus it can be expanded at the origin

I3,2 =
∑
n≥1

dnĒ
n − (Ē + F(Ē))

λ

∑
n≥0

(−1)n−1

n

(
F(Ē)

2Ē

)n
.

Since F(Ē)

2Ē
is an analytic function having a zero of order 1 at the origin, then it

can be expanded at zero in order to obtain

I3,2 =
∑
n≥1

dnĒ
n − (Ē + F(Ē))

λ

∑
n≥1

d̃nĒ
n ,
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that is,

I3,2 =
∑
n≥1

DnĒ
n .

Finally we have that the integral I takes the form

I = −(Ē + F(Ē))

λ
ln Ē + x2

1 +
∑
n≥1

c̃nĒ
n

:= −(Ē + F(Ē))

λ
ln(Ē) +G1(Ē) ,

where G1(Ē) := x2
1 +

∑
n≥1 c̃nĒ

n, with c̃n := Cn + Dn, is a bounded analytic

function for Ē > 0.
This concludes the proof.

Proof of formula (2.57) of Chapter 2. We remind the reader the expression for the
Arnol'd determinant, that is,

D = −∂
2h

∂I2
1

ω2
2 + 2

∂2h

∂I1∂I2

ω1ω2 −
∂2h

∂I2
2

ω2
1 . (D.18)

After having rewritten the three terms of the Arnol'd determinant as functions of

W1 =
(
∂G
∂Ē

)−1
, W2 = − ∂G

∂I2
W1 + ∂V0

∂I2
, Ē and I2, namely, after having computed

D1 = −W1W2
2

∂W1

∂Ē
, (D.19)

D2 = 2W1W2
dW1

dI2

, (D.20)

D3 =W2
1

∂G

∂I2

dW1

dI2

+W3
1

d

dI2

(
∂G

∂I2

)
−W2

1

∂2V0

∂I2
2

, (D.21)

we can collect them together in (D.18): we obtain

D = −W1W2
2

∂W1

∂Ē
+W1

(
2W2 +W1

∂G

∂I2

)
dW1

dI2

+W3
1

d

dI2

(
∂G

∂I2

)
−W2

1

∂2V0

∂I2
2

.

Furthermore, from Lemma 2.8.2 of Chapter 2, we obtain

d

dI2

(
∂G

∂I2

)
=

∂2G

∂I2∂Ē

(
W2 −

∂V0

∂I2

)
+
∂2G

∂I2
2

,

and, from the de�nition of W1, we have

d

dI2

(
∂G

∂I2

)
= − 1

W2
1

∂W1

∂I2

(
W2 −

∂V0

∂I2

)
+
∂2G

∂I2
2

.
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Thus, the determinant can be rewritten as

D =−W1W2
2

∂W1

∂Ē
+W1

(
W2 +

∂V0

∂I2

)
dW1

dI2

−W1
∂W1

∂I2

(
W2 −

∂V0

∂I2

)
+W3

1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

.

Moreover, by exploiting again Lemma 2.8.2 of Chapter 2, we have

dW1

dI2

=
∂W1

∂Ē

(
W2 −

∂V0

∂I2

)
+
∂W1

∂I2

,

and,

D = −W1W2
2

∂W1

∂Ē
+W1

(
W2 +

∂V0

∂I2

)(
∂W1

∂Ē

(
W2 −

∂V0

∂I2

)
+
∂W1

∂I2

)
+

−W1
∂W1

∂I2

(
W2 −

∂V0

∂I2

)
+W3

1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

,

that is,

D = −W1W2
2

∂W1

∂Ē
+W1

∂W1

∂Ē

(
W2

2 −
(
∂V0

∂I2

)2
)

+W1
∂W1

∂I2

(
W2 +

∂V0

∂I2

)
−W1

∂W1

∂I2

(
W2 −

∂V0

∂I2

)
+W3

1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

.

We conclude that the Arnol'd determinant takes the form

D = −W1
∂W1

∂Ē

(
∂V0

∂I2

)2

+ 2W1
∂W1

∂I2

∂V0

∂I2

+W3
1

∂2G

∂I2
2

−W2
1

∂2V0

∂I2
2

.



Some useful functions
mySeries@f_, r0_, Nord_D := Module@8htmp, i, Β<,

htmp = Expand@Normal@Series@f, 8r, r0, Nord<DD �. r - r0 ® r �.

8r ® r Β, pr ® pr Β< �. Β^k ¦ 0 �; k > NordD;

For@i = 0, i £ Nord, i++,

H@0, iD = Coefficient@htmp, Β, iD
D;

For@i = 0, i £ Nord, i++,

Print@"H@0,", i, "D = ", H@0, iDD;

D
D

myPoissonBracket@f_, g_D :=

Module@8<, Expand@Factor@D@f, ΖD D@g, ΗD - D@f, ΗD D@g, ΖDDDD
myKernelRange@f_D :=

Module@8Zf, Rf, htmp, listamonomi, ntermini, i, C, den, m, n <,

htmp = Expand@Factor@fDD;

listamonomi = CoefficientRules@htmp, 8Ζ, Η<D;

ntermini = Length@listamonomiD;

Zf = 0;

Rf = 0;

For@i = 1, i £ ntermini, i++,

m = listamonomi@@iDD@@1DD@@1DD;

n = listamonomi@@iDD@@1DD@@2DD;

den = m - n;

If@den � 0,

Zf += FromCoefficientRules@8listamonomi@@iDD<, 8Ζ, Η<D,

Rf += FromCoefficientRules@8listamonomi@@iDD<, 8Ζ, Η<D,

Print@"Houston, we've had a problem here!"D
DD;

8Expand@Factor@ZfDD, Expand@Factor@RfDD<
D;
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myHomologicalEquation@Ω_, f_D :=

Module@8htmp, listamonomi, ntermini, i, C, den, m, n<,

htmp = Expand@Factor@fDD;

listamonomi = CoefficientRules@htmp, 8Ζ, Η<D;

ntermini = Length@listamonomiD;

C = 0;

For@i = 1, i £ ntermini, i++,

m = listamonomi@@iDD@@1DD@@1DD;

n = listamonomi@@iDD@@1DD@@2DD;

den = m - n;

If@den � 0,

Print@"Houston, we've had a problem here!"D,

C += H1 � HI den ΩLL FromCoefficientRules@8listamonomi@@iDD<, 8Ζ, Η<D,

Print@"Houston, we've had a problem here!"D
DD;

Expand@Factor@CDD
D;

Birkhoff normal form for the Hamiltonian of the planar central 
motion at a minimum

ORDMAX = 6;

ORDBIRK = ORDMAX;

Hiniz = 1 � 2 Hpr^2 + pΘ^2 � r^2L + V@rD
1

2
pr2 +

pΘ2

r2
+ V@rD

� Expansion of the Hamiltonian Hiniz at the minimum r0

htmp = mySeries@Hiniz, r0, ORDMAXD;

H@0,0D =
pΘ2

2 r02
+ V@r0D

H@0,1D = -
pΘ2 r

r03
+ r V¢@r0D

H@0,2D =
pr2

2
+

3 pΘ2 r2

2 r04
+

1

2
r2 V¢¢@r0D

H@0,3D = -
2 pΘ2 r3

r05
+

1

6
r3 VH3L@r0D

H@0,4D =
5 pΘ2 r4

2 r06
+

1

24
r4 VH4L@r0D

H@0,5D = -
3 pΘ2 r5

r07
+

1

120
r5 VH5L@r0D

H@0,6D =
7 pΘ2 r6

2 r08
+

1

720
r6 VH6L@r0D
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Hsvil =

Sum@1 � i! * Simplify@Coefficient@i! * H@0, iD, r, iDD * r^i, 8 i, 0, 6<D +
pr2

2

pr2

2
+

pΘ2

2 r02
+ V@r0D + r -

pΘ2

r03
+ V¢@r0D +

1

2
r2

3 pΘ2

r04
+ V¢¢@r0D +

1

6
r3 -

12 pΘ2

r05
+ VH3L@r0D +

1

24
r4

60 pΘ2

r06
+ VH4L@r0D +

1

120
r5 -

360 pΘ2

r07
+ VH5L@r0D +

1

720
r6

2520 pΘ2

r08
+ VH6L@r0D

� Assumptions on the central potential

H@0, 1D = 0;

Veff2 = Simplify@2 * Coefficient@H@0, 2D, r, 2DD;

$Assumptions = 8Veff2 > 0, r0 > 0, pΘ � Sqrt@r0^3 V'@r0DD, pΘ > 0, 3 + g@r0D > 0<;

� Introduction of the complex variables Ξ, Η

cfdiag = Power@Veff2, 1 � 4D;

rulediag = 8pr ® cfdiag PR, r ® R � cfdiag<;

For@i = 0, i £ ORDMAX, i++,

HD@0, iD = Factor@H@0, iD �. rulediagD;

D
rulecomplex = 8PR ® 1 � Sqrt@2D HΖ + I ΗL, R ® I � Sqrt@2D HΖ - I ΗL<;

For@i = 0, i £ ORDMAX, i++,

HC@0, iD = Expand@Factor@HD@0, iD �. rulecomplexDD
D
Ω = CoefficientRules@HC@0, 2D, 8Ζ, Η<D@@1DD@@2DD � I;

� Birkhoff normal form algorithm

For@i = ORDMAX + 1, i £ ORDBIRK, i++, HC@0, iD = 0D;

APPENDIX E. MATHEMATICATM COMPUTATION 93



For@i = 3, i £ ORDBIRK, i++,

8ZHC@i - 2, iD, RHC@i - 2, iD< = myKernelRange@HC@i - 3, iDD;

C@iD = myHomologicalEquation@Ω, RHC@i - 2, iDD;

For@j = 0, j £ ORDBIRK, j++,

HC@i - 2, jD = Expand@Factor@HC@i - 3, jDDD
D;

For@j = 0, j £ ORDBIRK, j++,

tmp = HC@i - 3, jD;

For@l = 1, l £ IntegerPart@HORDBIRK - jL � Hi - 2LD, l++,

tmp = myPoissonBracket@tmp, C@iDD;

HC@i - 2, j + l Hi - 2LD += tmp;

HC@i - 2, j + l Hi - 2LD = Expand@Factor@HC@i - 2, j + l H i - 2LDDD;

tmp = Expand@Factor@tmp � Hl + 1LDD;

D
D

D
pteta = Sqrt@r0^3 V'@r0DD;

d1 = 1 � D@pteta, r0D;

rulact = 8Ζ ® Sqrt@I1D, Η ® -I Sqrt@I1D<;

Haz@0D = HC@ORDBIRK - 2, 0D;

Haz@1D = HC@ORDBIRK - 2, 2D �. rulact;

Haz@2D = HC@ORDBIRK - 2, 4D �. rulact;

Haz@3D = HC@ORDBIRK - 2, 6D �. rulact;

Ham = Haz@0D + Haz@1D + Haz@2D + Haz@3D;

F@r0_D := r0 V''@r0D � V'@r0D
g0 = F@r0D;

g1 = D@F@r0D, 8r0, 1<D;

g2 = D@F@r0D, 8r0, 2<D;

g3 = D@F@r0D, 8r0, 3<D;

g4 = D@F@r0D, 8r0, 4<D;

We express the function V[r0] and its derivatives in terms of g and its derivatives

s0 = Flatten@Solve@g@r0D � g0, D@V@r0D, 8r0, 2<DDD

:V¢¢@r0D ®
g@r0D V¢@r0D

r0
>

s1 = Flatten@Solve@D@g@r0D, 8r0, 1<D � g1, D@V@r0D, 8r0, 3<DDD;

S1 = Flatten@Simplify@s1 �. s0DD

:VH3L@r0D ®
I-g@r0D + g@r0D2 + r0 g¢@r0DM V¢@r0D

r02
>

APPENDIX E. MATHEMATICATM COMPUTATION 94



s2 = Flatten@Solve@D@g@r0D, 8r0, 2<D � g2, D@V@r0D, 8r0, 4<DDD;

S2 = Flatten@Simplify@s2 �. s1 �. s0DD

:VH4L@r0D ®
1

r03

V¢@r0D I-3 g@r0D2 + g@r0D3 + g@r0D H2 + 3 r0 g¢@r0DL + r0 H-2 g¢@r0D + r0 g¢¢@r0DLM>
s3 = Flatten@Solve@D@g@r0D, 8r0, 3<D � g3, D@V@r0D, 8r0, 5<DDD;

S3 = Flatten@Simplify@s3 �. s2 �. s1 �. s0DD

:VH5L@r0D ®
1

r04
V¢@r0D I-6 g@r0D3 + g@r0D4 +

g@r0D2 H11 + 6 r0 g¢@r0DL + 2 g@r0D I-3 - 7 r0 g¢@r0D + 2 r02 g¢¢@r0DM +

r0 I6 g¢@r0D + 3 r0 g¢@r0D2 + r0 I-3 g¢¢@r0D + r0 gH3L@r0DMMM>
s4 = Flatten@Solve@D@g@r0D, 8r0, 4<D � g4, D@V@r0D, 8r0, 6<DDD;

S4 = Flatten@Simplify@s4 �. s3 �. s2 �. s1 �. s0DD

:VH6L@r0D ®
1

r05
V¢@r0D I-10 g@r0D4 + g@r0D5 +

5 g@r0D3 H7 + 2 r0 g¢@r0DL + 10 g@r0D2 I-5 - 5 r0 g¢@r0D + r02 g¢¢@r0DM +

g@r0D I24 + 70 r0 g¢@r0D + 15 r02 g¢@r0D2 - 25 r02 g¢¢@r0D + 5 r03 gH3L@r0DM +

r0 I-20 r0 g¢@r0D2 + 2 g¢@r0D I-12 + 5 r02 g¢¢@r0DM +

r0 I12 g¢¢@r0D - 4 r0 gH3L@r0D + r02 gH4L@r0DMMM>
d2 = Simplify@d1 �. s0D;

We rewrite the Hamiltonian in BNF in terms of V¢@r0D, g[r0] and its derivatives

Hbirk = Factor@Expand@Ham �. S4 �. S3 �. S2 �. S1 �. s0 �. pΘ ® ptetaDD;

CoeffHbirk = CoefficientList@Hbirk, I1D;

Hbirk0 = Simplify@CoeffHbirk@@1DDD

V@r0D +
1

2
r0 V¢@r0D

Hbirk1 = Simplify@CoeffHbirk@@2DDD

H3 + g@r0DL V¢@r0D
r0

Hbirk2 = Simplify@CoeffHbirk@@3DDD

I-180 + 10 g@r0D3 - 2 g@r0D4 + 102 r0 g¢@r0D - 5 r02 g¢@r0D2 + g@r0D2 H94 - r0 g¢@r0DL +

9 r02 g¢¢@r0D + g@r0D I78 + 31 r0 g¢@r0D + 3 r02 g¢¢@r0DMM � I48 r02 H3 + g@r0DL2M
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Hbirk3 = Simplify@CoeffHbirk@@4DDD
1

6912 r07�2 H3 + g@r0DL9�2 V¢@r0DI184 g@r0D7 + 20 g@r0D8 + 4044 r03 g¢@r0D3 - 235 r04 g¢@r0D4 +

4 g@r0D6 H279 + 17 r0 g¢@r0DL + g@r0D5 I4000 - 72 r0 g¢@r0D - 84 r02 g¢¢@r0DM +

54 r02 g¢@r0D2 I-494 + 25 r02 g¢¢@r0DM -

108 r0 g¢@r0D I-364 + 181 r02 g¢¢@r0D + 14 r03 gH3L@r0DM -

g@r0D4 I6820 + 3504 r0 g¢@r0D - 129 r02 g¢@r0D2 + 1152 r02 g¢¢@r0D + 48 r03 gH3L@r0DM +

27 I8880 + 3432 r02 g¢¢@r0D - 17 r04 g¢¢@r0D2 + 576 r03 gH3L@r0D + 24 r04 gH4L@r0DM -

g@r0D2 I1515 r02 g¢@r0D2 + 94 r03 g¢@r0D3 +

12 r0 g¢@r0D I-1389 + 100 r02 g¢¢@r0D + 14 r03 gH3L@r0DM + 3 I58 356 -

5976 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 - 1296 r03 gH3L@r0D - 72 r04 gH4L@r0DMM +

2 g@r0D3 I411 r02 g¢@r0D2 + r0 g¢@r0D I-3916 + 81 r02 g¢¢@r0DM +

12 I-3695 - 100 r02 g¢¢@r0D + 6 r03 gH3L@r0D + r04 gH4L@r0DMM +

2 g@r0D I533 r03 g¢@r0D3 + 9 r02 g¢@r0D2 I-964 + 25 r02 g¢¢@r0DM -

9 r0 g¢@r0D I-3408 + 643 r02 g¢¢@r0D + 56 r03 gH3L@r0DM +

9 I1416 + 4554 r02 g¢¢@r0D - 17 r04 g¢¢@r0D2 + 792 r03 gH3L@r0D + 36 r04 gH4L@r0DMMM
HBIRK = Hbirk0 + Hbirk1 * I1 + Hbirk2 * I1^2 + Hbirk3 * I1^3;

The Burgers equation

� The expansion of the two frequencies Ω1 and Ω2

$Assumptions = 8V'@r0D > 0, r0 > 0<;

The frequency Ω1

Ω1 = D@HBIRK, I1D;

CoeffΩ1 = CoefficientList@Ω1, I1D;

Ω10 = Simplify@CoeffΩ1@@1DDD

H3 + g@r0DL V¢@r0D
r0

Ω11 = Simplify@CoeffΩ1@@2DDD

I-180 + 10 g@r0D3 - 2 g@r0D4 + 102 r0 g¢@r0D - 5 r02 g¢@r0D2 + g@r0D2 H94 - r0 g¢@r0DL +

9 r02 g¢¢@r0D + g@r0D I78 + 31 r0 g¢@r0D + 3 r02 g¢¢@r0DMM � I24 r02 H3 + g@r0DL2M
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Ω12 = Simplify@CoeffΩ1@@3DDD
1

2304 r07�2 H3 + g@r0DL9�2 V¢@r0DI184 g@r0D7 + 20 g@r0D8 + 4044 r03 g¢@r0D3 - 235 r04 g¢@r0D4 +

4 g@r0D6 H279 + 17 r0 g¢@r0DL + g@r0D5 I4000 - 72 r0 g¢@r0D - 84 r02 g¢¢@r0DM +

54 r02 g¢@r0D2 I-494 + 25 r02 g¢¢@r0DM -

108 r0 g¢@r0D I-364 + 181 r02 g¢¢@r0D + 14 r03 gH3L@r0DM -

g@r0D4 I6820 + 3504 r0 g¢@r0D - 129 r02 g¢@r0D2 + 1152 r02 g¢¢@r0D + 48 r03 gH3L@r0DM +

27 I8880 + 3432 r02 g¢¢@r0D - 17 r04 g¢¢@r0D2 + 576 r03 gH3L@r0D + 24 r04 gH4L@r0DM -

g@r0D2 I1515 r02 g¢@r0D2 + 94 r03 g¢@r0D3 +

12 r0 g¢@r0D I-1389 + 100 r02 g¢¢@r0D + 14 r03 gH3L@r0DM + 3 I58 356 -

5976 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 - 1296 r03 gH3L@r0D - 72 r04 gH4L@r0DMM +

2 g@r0D3 I411 r02 g¢@r0D2 + r0 g¢@r0D I-3916 + 81 r02 g¢¢@r0DM +

12 I-3695 - 100 r02 g¢¢@r0D + 6 r03 gH3L@r0D + r04 gH4L@r0DMM +

2 g@r0D I533 r03 g¢@r0D3 + 9 r02 g¢@r0D2 I-964 + 25 r02 g¢¢@r0DM -

9 r0 g¢@r0D I-3408 + 643 r02 g¢¢@r0D + 56 r03 gH3L@r0DM +

9 I1416 + 4554 r02 g¢¢@r0D - 17 r04 g¢¢@r0D2 + 792 r03 gH3L@r0D + 36 r04 gH4L@r0DMMM
The frequency Ω2

D2 = FullSimplify@d2D
2

H3 + g@r0DL r0 V¢@r0D
Ω2 = Simplify@D@HBIRK, r0D * D2 �. s0D;

CoeffΩ2 = CoefficientList@Ω2, I1D;

Ω20 = Simplify@CoeffΩ2@@1DDD

V¢@r0D
r0

Ω21 = Simplify@CoeffΩ2@@2DDD
-3 + 2 g@r0D + g@r0D2 + r0 g¢@r0D

r02 H3 + g@r0DL3�2

Ω22 = Simplify@CoeffΩ2@@3DDD
1

24 r07�2 H3 + g@r0DL4 V¢@r0DI4 g@r0D5 - 111 r02 g¢@r0D2 + 10 r03 g¢@r0D3 - 4 g@r0D4 H2 + r0 g¢@r0DL -

g@r0D3 I248 + 13 r0 g¢@r0D + r02 g¢¢@r0DM + g¢@r0D I288 r0 - 39 r03 g¢¢@r0DM +

g@r0D2 I-720 + 62 r0 g¢@r0D + 28 r02 g¢¢@r0D + 3 r03 gH3L@r0DM +

9 I120 + 34 r02 g¢¢@r0D + 3 r03 gH3L@r0DM + g@r0D I-37 r02 g¢@r0D2 +

g¢@r0D I291 r0 - 13 r03 g¢¢@r0DM + 3 I-36 + 65 r02 g¢¢@r0D + 6 r03 gH3L@r0DMMM
Ω23 = Simplify@CoeffΩ2@@4DDD;
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� The expansion of the ratio of the frequencies Ν=Ω1/Ω2

InvΩ20 = Simplify@1 � Ω20D;

W1 = Simplify@Ω1 * InvΩ20D;

w20 = 1;

w21 = Simplify@Ω21 * InvΩ20D;

w21

-3 + 2 g@r0D + g@r0D2 + r0 g¢@r0D
Hr0 H3 + g@r0DLL3�2 V¢@r0D

w22 = Simplify@Ω22 * InvΩ20D;

w22

1

24 r03 H3 + g@r0DL4 V¢@r0DI4 g@r0D5 - 111 r02 g¢@r0D2 + 10 r03 g¢@r0D3 - 4 g@r0D4 H2 + r0 g¢@r0DL -

g@r0D3 I248 + 13 r0 g¢@r0D + r02 g¢¢@r0DM + g¢@r0D I288 r0 - 39 r03 g¢¢@r0DM +

g@r0D2 I-720 + 62 r0 g¢@r0D + 28 r02 g¢¢@r0D + 3 r03 gH3L@r0DM +

9 I120 + 34 r02 g¢¢@r0D + 3 r03 gH3L@r0DM + g@r0D I-37 r02 g¢@r0D2 +

g¢@r0D I291 r0 - 13 r03 g¢¢@r0DM + 3 I-36 + 65 r02 g¢¢@r0D + 6 r03 gH3L@r0DMMM
w23 = Simplify@Ω23 * InvΩ20D;

Omega2 = SimplifyAw20 + w21 * I11
+ w22 * I12

+ w23 * I13E;

W2 = Series@1 � Omega2, 8I1, 0, 3<D;

Ν = Simplify@W1 * W2D;

� The Burgers equation

ΝSecon = Simplify@Ν * D@Ν, r0D * D2D;

ΝPrim = Simplify@D@Ν, I1DD;

Burg = ΝPrim - ΝSecon;

We extract the order 0 (burg0) and the order 1 (burg1) of the Burgers equation

CoeffBurg = CoefficientList@Burg, I1D;

burg0 = Simplify@Expand@CoeffBurg@@1DDDD

-I14 g@r0D3 + 2 g@r0D4 + 42 r0 g¢@r0D + 5 r02 g¢@r0D2 + g@r0D2 H26 + r0 g¢@r0DL +

g@r0D I-6 + 17 r0 g¢@r0D - 3 r02 g¢¢@r0DM - 9 I4 + r02 g¢¢@r0DMM �
J24 r03�2 H3 + g@r0DL2 V¢@r0D N
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burg1 = Simplify@CoeffBurg@@2DDD �. s0

1

1152 r03 H3 + g@r0DL9�2 V¢@r0D2
I-48 g@r0D H3 + g@r0DL2 V¢@r0D

I14 g@r0D3 + 2 g@r0D4 - 30 r0 g¢@r0D + 5 r02 g¢@r0D2 + g@r0D2 H26 + r0 g¢@r0DL -

9 I4 + r02 g¢¢@r0DM - g@r0D I6 + 7 r0 g¢@r0D + 3 r02 g¢¢@r0DMM +

V¢@r0D I376 g@r0D7 + 20 g@r0D8 + 444 r03 g¢@r0D3 - 235 r04 g¢@r0D4 +

4 g@r0D6 H687 + 17 r0 g¢@r0DL + g@r0D5 I9664 + 1080 r0 g¢@r0D - 84 r02 g¢¢@r0DM +

54 r02 g¢@r0D2 I26 + 25 r02 g¢¢@r0DM + g@r0D4

I15 068 + 6336 r0 g¢@r0D + 129 r02 g¢@r0D2 - 1248 r02 g¢¢@r0D - 48 r03 gH3L@r0DM -

108 r0 g¢@r0D I44 + 9 r02 g¢¢@r0D + 14 r03 gH3L@r0DM -

27 I-240 + 648 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 - 24 r04 gH4L@r0DM -

g@r0D2 I-5349 r02 g¢@r0D2 + 94 r03 g¢@r0D3 +

12 r0 g¢@r0D I-1569 - 72 r02 g¢¢@r0D + 14 r03 gH3L@r0DM + 3 I7380 +

7128 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 432 r03 gH3L@r0D - 72 r04 gH4L@r0DMM +

2 g@r0D I-67 r03 g¢@r0D3 + 9 r02 g¢@r0D2 I388 + 25 r02 g¢¢@r0DM -

9 r0 g¢@r0D I-168 - 45 r02 g¢¢@r0D + 56 r03 gH3L@r0DM -

9 I744 + 1710 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 72 r03 gH3L@r0D - 36 r04 gH4L@r0DMM +

2 g@r0D3 I723 r02 g¢@r0D2 + r0 g¢@r0D I8444 + 81 r02 g¢¢@r0DM +

12 I49 - 306 r02 g¢¢@r0D - 18 r03 gH3L@r0D + r04 gH4L@r0DMMMM
� The iterative procedure

We put burg0 and burg1 equal to 0 and solve with respect to g¢¢@r0D and gH4L@r0D respectively

equa1 = Flatten@Simplify@Solve@burg0 � 0, D@g@r0D, 8r0, 2<DDDD

9g¢¢@r0D ® I-36 + 14 g@r0D3 + 2 g@r0D4 + 42 r0 g¢@r0D + 5 r02 g¢@r0D2 +

g@r0D2 H26 + r0 g¢@r0DL + g@r0D H-6 + 17 r0 g¢@r0DLM � I3 r02 H3 + g@r0DLM=
equazione2 = Simplify@equa1@@1DD@@2DDD

I-36 + 14 g@r0D3 + 2 g@r0D4 + 42 r0 g¢@r0D + 5 r02 g¢@r0D2 +

g@r0D2 H26 + r0 g¢@r0DL + g@r0D H-6 + 17 r0 g¢@r0DLM � I3 r02 H3 + g@r0DLM
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equa2 = Flatten@Simplify@Solve@burg1 � 0, D@g@r0D, 8r0, 4<DDDD

:gH4L@r0D ®

1

24 r04 H3 + g@r0DL3
I-280 g@r0D7 - 20 g@r0D8 - 444 r03 g¢@r0D3 + 235 r04 g¢@r0D4 -

4 g@r0D6 H375 + 17 r0 g¢@r0DL + 4 g@r0D5 I-880 - 258 r0 g¢@r0D + 21 r02 g¢¢@r0DM -

54 r02 g¢@r0D2 I26 + 25 r02 g¢¢@r0DM + 27 I-240 + 648 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2M +

108 r0 g¢@r0D I44 + 9 r02 g¢¢@r0D + 14 r03 gH3L@r0DM + g@r0D4

I-1820 - 6384 r0 g¢@r0D - 129 r02 g¢@r0D2 + 1104 r02 g¢¢@r0D + 48 r03 gH3L@r0DM -

2 g@r0D3 I603 r02 g¢@r0D2 + r0 g¢@r0D I9956 + 81 r02 g¢¢@r0DM -

12 I275 + 252 r02 g¢¢@r0D + 18 r03 gH3L@r0DMM -

2 g@r0D I-67 r03 g¢@r0D3 + 9 r02 g¢@r0D2 I268 + 25 r02 g¢¢@r0DM -

9 r0 g¢@r0D I-888 - 45 r02 g¢¢@r0D + 56 r03 gH3L@r0DM -

9 I-120 + 1494 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 72 r03 gH3L@r0DMM +

g@r0D2 I-3909 r02 g¢@r0D2 + 94 r03 g¢@r0D3 +

12 r0 g¢@r0D I-2541 - 72 r02 g¢¢@r0D + 14 r03 gH3L@r0DM +

3 I3060 + 5832 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 432 r03 gH3L@r0DMMM>
equazione4 = Simplify@equa2@@1DD@@2DDD

1

24 r04 H3 + g@r0DL3
I-280 g@r0D7 - 20 g@r0D8 - 444 r03 g¢@r0D3 + 235 r04 g¢@r0D4 -

4 g@r0D6 H375 + 17 r0 g¢@r0DL + 4 g@r0D5 I-880 - 258 r0 g¢@r0D + 21 r02 g¢¢@r0DM -

54 r02 g¢@r0D2 I26 + 25 r02 g¢¢@r0DM + 27 I-240 + 648 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2M +

108 r0 g¢@r0D I44 + 9 r02 g¢¢@r0D + 14 r03 gH3L@r0DM +

g@r0D4 I-1820 - 6384 r0 g¢@r0D - 129 r02 g¢@r0D2 + 1104 r02 g¢¢@r0D + 48 r03 gH3L@r0DM -

2 g@r0D3 I603 r02 g¢@r0D2 + r0 g¢@r0D I9956 + 81 r02 g¢¢@r0DM -

12 I275 + 252 r02 g¢¢@r0D + 18 r03 gH3L@r0DMM -

2 g@r0D I-67 r03 g¢@r0D3 + 9 r02 g¢@r0D2 I268 + 25 r02 g¢¢@r0DM -

9 r0 g¢@r0D I-888 - 45 r02 g¢¢@r0D + 56 r03 gH3L@r0DM -

9 I-120 + 1494 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 72 r03 gH3L@r0DMM +

g@r0D2 I-3909 r02 g¢@r0D2 + 94 r03 g¢@r0D3 +

12 r0 g¢@r0D I-2541 - 72 r02 g¢¢@r0D + 14 r03 gH3L@r0DM +

3 I3060 + 5832 r02 g¢¢@r0D + 17 r04 g¢¢@r0D2 + 432 r03 gH3L@r0DMMM
We insert g¢¢@r0D in equazione4
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equazione4new = Simplify@equazione4 �. equa1D
1

9 r04 H3 + g@r0DL3I-25 920 + 374 g@r0D7 + 22 g@r0D8 + 9828 r02 g¢@r0D2 - 1434 r03 g¢@r0D3 -

140 r04 g¢@r0D4 + g@r0D6 H2712 - 47 r0 g¢@r0DL - 4 g@r0D5 H-2687 + 69 r0 g¢@r0DL +

2 g@r0D4 I12 083 + 333 r0 g¢@r0D - 42 r02 g¢@r0D2 + 9 r03 gH3L@r0DM +

27 r0 g¢@r0D I908 + 21 r03 gH3L@r0DM +

g@r0D3 I26 238 + 9116 r0 g¢@r0D - 729 r02 g¢@r0D2 + 162 r03 gH3L@r0DM +

g@r0D I4527 r02 g¢@r0D2 - 781 r03 g¢@r0D3 + 54 r0 g¢@r0D I760 + 7 r03 gH3L@r0DM +

54 I-664 + 9 r03 gH3L@r0DMM + g@r0D2 I-1014 r02 g¢@r0D2 - 101 r03 g¢@r0D3 +

63 r0 g¢@r0D I455 + r03 gH3L@r0DM + 54 I-46 + 9 r03 gH3L@r0DMMM
We compute the second order derivative of equazione2 , we solve for gH4L@r0D and we equal this new expression to

equazione4new. We solve for gH3L@r0D
equazione2Der2 = Simplify@D@equazione2, 8r0, 2<DD

1

3 r04 H3 + g@r0DL3
I12 g@r0D6 + 10 r04 g¢@r0D4 +

6 g@r0D5 I26 - 4 r0 g¢@r0D + r02 g¢¢@r0DM + g¢@r0D2 I378 r02 - 75 r04 g¢¢@r0DM +

g@r0D4 I768 - 278 r0 g¢@r0D + 12 r02 g¢@r0D2 + 68 r02 g¢¢@r0D + r03 gH3L@r0DM +

9 r0 g¢@r0D I60 + 9 r02 g¢¢@r0D + 10 r03 gH3L@r0DM +

18 I-108 - 39 r02 g¢¢@r0D + 5 r04 g¢¢@r0D2 + 21 r03 gH3L@r0DM + g@r0D3 I122 r02 g¢@r0D2 +

262 r02 g¢¢@r0D + r0 g¢@r0D I-1186 + 3 r02 g¢¢@r0DM + 23 I72 + r03 gH3L@r0DMM +

g@r0D2 I972 + 450 r02 g¢@r0D2 + 306 r02 g¢¢@r0D + 10 r04 g¢¢@r0D2 +

153 r03 gH3L@r0D + r0 g¢@r0D I-2142 + 27 r02 g¢¢@r0D + 10 r03 gH3L@r0DMM +

g@r0D I-324 r02 g¢¢@r0D + 60 r04 g¢¢@r0D2 + g¢@r0D2 I702 r02 - 25 r04 g¢¢@r0DM +

405 I-4 + r03 gH3L@r0DM + 3 r0 g¢@r0D I-378 + 27 r02 g¢¢@r0D + 20 r03 gH3L@r0DMMM
equa3 = Flatten@Simplify@

Solve@equazione2Der2 - equazione4new � 0, D@g@r0D, 8r0, 3<DD �. equa1DD
9gH3L@r0D ® I98 496 - 10 g@r0D7 + 10 g@r0D8 - 131 328 r0 g¢@r0D - 9450 r02 g¢@r0D2 +

5757 r03 g¢@r0D3 + 385 r04 g¢@r0D4 + g@r0D6 H-1788 + 217 r0 g¢@r0DL + 2 g@r0D5H-7742 + 1131 r0 g¢@r0DL + g@r0D4 I-57 422 + 7254 r0 g¢@r0D + 519 r02 g¢@r0D2M +

g@r0D3 I-96 594 - 3136 r0 g¢@r0D + 4932 r02 g¢@r0D2M +

g@r0D2 I-31 968 - 72 855 r0 g¢@r0D + 14 529 r02 g¢@r0D2 + 373 r03 g¢@r0D3M +

2 g@r0D I52 380 - 84 375 r0 g¢@r0D + 5031 r02 g¢@r0D2 + 1519 r03 g¢@r0D3MM �I9 r03 H3 + g@r0DL2 I-42 + g@r0D + 5 g@r0D2 + 11 r0 g¢@r0DMM=
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equazione3 = Simplify@equa3@@1DD@@2DDD

I98 496 - 10 g@r0D7 + 10 g@r0D8 - 131 328 r0 g¢@r0D - 9450 r02 g¢@r0D2 + 5757 r03 g¢@r0D3 +

385 r04 g¢@r0D4 + g@r0D6 H-1788 + 217 r0 g¢@r0DL + 2 g@r0D5 H-7742 + 1131 r0 g¢@r0DL +

g@r0D4 I-57 422 + 7254 r0 g¢@r0D + 519 r02 g¢@r0D2M +

g@r0D3 I-96 594 - 3136 r0 g¢@r0D + 4932 r02 g¢@r0D2M +

g@r0D2 I-31 968 - 72 855 r0 g¢@r0D + 14 529 r02 g¢@r0D2 + 373 r03 g¢@r0D3M +

2 g@r0D I52 380 - 84 375 r0 g¢@r0D + 5031 r02 g¢@r0D2 + 1519 r03 g¢@r0D3MM �I9 r03 H3 + g@r0DL2 I-42 + g@r0D + 5 g@r0D2 + 11 r0 g¢@r0DMM
We compute the first order derivative of the equazione2 and we solve for gH3L@r0D

equazione2Der1 = Simplify@D@equazione2, 8r0, 1<D �. equa1D
1

9 r03 H3 + g@r0DL2I-864 + 36 g@r0D5 + 2 g@r0D6 + 1080 r0 g¢@r0D + 657 r02 g¢@r0D2 + 35 r03 g¢@r0D3 +

3 g@r0D4 H76 + 13 r0 g¢@r0DL + g@r0D3 H616 + 327 r0 g¢@r0DL +

3 g@r0D2 I174 + 343 r0 g¢@r0D + 6 r02 g¢@r0D2M +

3 g@r0D I-180 + 519 r0 g¢@r0D + 91 r02 g¢@r0D2MM
We equal the two expressions for gH3L@r0D obtaining two equations for g¢@r0D

Eq1 = Simplify@equazione2Der1 - equazione3D;

equa1New = Simplify@Solve@Eq1 � 0, D@g@r0D, 8r0, 1<DDD

99g¢@r0D ® I177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 +

3 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMM �H29 r0 - 2 r0 g@r0DL=, 9g¢@r0D ® I177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 -

3 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMM � H29 r0 -

2 r0 g@r0DL==
equazione11 = equa1New@@1DD@@1DD@@2DD

K177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 +

3 H3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3M O � H29 r0 - 2 r0 g@r0DL
equazione12 = Simplify@equa1New@@2DD@@1DD@@2DDD

K177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 -

3 H3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3M O � H29 r0 - 2 r0 g@r0DL
We consider the first one, compute the first oder derivative, susbtitute the expression for g¢@r0D and solve for g¢¢@r0D

equa1New@@1DD@@1DD@@2DD

K177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 +

3 H3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3M O � H29 r0 - 2 r0 g@r0DL
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Eq1Der = Simplify@D@equazione11, 8r0, 1<D �. equa1New@@1DD@@1DDD

-II177 + 110 g@r0D + 5 g@r0D2 - 4 g@r0D3 +

3 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMMI179 400 3 + 200 686 3 g@r0D + 626 3 g@r0D4 - 48 3 g@r0D5 +

2703 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MM +

406 g@r0D ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MM +

2 g@r0D2 I40 455 3 -

181 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMM + 2 g@r0D3

I6813 3 + 8 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMMMM �
Kr02 H-29 + 2 g@r0DL3 H3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3M O

equazione2New = Simplify@equazione2 �. equa1New@@1DDD
1

r02 H29 - 2 g@r0DL2
K50 760 - 249 g@r0D3 - 138 g@r0D4 + 32 g@r0D5 +

332 3 H3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3M -

2 g@r0D2 I-5594 + 7 3 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMM +

3 g@r0D I15 469 + 19 3 ,IH3 + g@r0DL2 I851 + 690 g@r0D + 171 g@r0D2 + 16 g@r0D3MMMO
We equal the two expressions for g¢¢@r0Dand obtain that the solutions are g@r0D = constant. Precisely,

Num = Numerator@Simplify@Eq1Der - equazione2NewDD;

Soluzioni1 = Flatten@Simplify@Solve@Num � 0DDD

:g@r0D ® -3, g@r0D ®
29

2
, g@r0D ® RootA

179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 1E,

g@r0D ® RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 +

35 862 ð14 + 4140 ð15 + 200 ð16 &, 5E, g@r0D ® RootA
179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 6E>

NSolve@Num � 0D88g@r0D ® -3.85584 + 2.12369 ä<, 8g@r0D ® -3.85584 - 2.12369 ä<,8g@r0D ® -3.<, 8g@r0D ® -3.<, 8g@r0D ® -3.<, 8g@r0D ® -2.14151<<
88g@r0D ® -3.85584 + 2.12369 ä<, 8g@r0D ® -3.85584 - 2.12369 ä<,8g@r0D ® -3.<, 8g@r0D ® -3.<, 8g@r0D ® -3.<, 8g@r0D ® -2.14151<<

Analogously, we consider the second equation for g¢@r0D and we do the same

Eq2Der = Simplify@D@equazione12, 8r0, 1<D �. equa1New@@2DDD;

equazione2New2 = Simplify@equazione2 �. equa1New@@2DDD;

Num2 = Numerator@Simplify@Eq2Der - equazione2New2DD;
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Soluzioni2 = Flatten@Simplify@Solve@Num2 � 0DDD
9g@r0D ® -3, g@r0D ® -2, g@r0D ® 1, g@r0D ® RootA

179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 2E,

g@r0D ® RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 +

35 862 ð14 + 4140 ð15 + 200 ð16 &, 3E, g@r0D ® RootA
179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 4E=

NSolve@Num2 � 0D88g@r0D ® -3.<, 8g@r0D ® -3.<, 8g@r0D ® -3.<,8g@r0D ® -2.<, 8g@r0D ® 1.<, 8g@r0D ® -0.743563<<
� Check of the solutions

eq = Numerator@equazione2 �. g'@r0D ® 0D

-36 - 6 g@r0D + 26 g@r0D2 + 14 g@r0D3 + 2 g@r0D4

Check for the first group of solutions

For@i = 1, i £ 5, i++,

Solut1@iD = FullSimplify@eq �. Soluzioni1@@iDDD
D;

For@i = 1, i £ 5, i++,

If@Simplify@Solut1@iD � 0D,

Print@"g@r0D=", Soluzioni1@@iDD@@2DD, " is a solution" D,

Print@"g@r0D=", Soluzioni1@@iDD@@2DD, " is not a solution" D
DD

g@r0D=-3 is a solution

g@r0D=
29

2
is not a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 1E
is not a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 5E
is not a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 6E
is not a solution

Check for the second group of solutions

For@i = 1, i £ 6, i++,

Solut2@iD = FullSimplify@eq �. Soluzioni2@@iDDD
D;
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For@i = 1, i £ 6, i++,

If@Simplify@Solut2@iD � 0D,

Print@"g@r0D=", Soluzioni2@@iDD@@2DD, " is a solution" D,

Print@"g@r0D=", Soluzioni2@@iDD@@2DD, " is not a solution" D
DD

g@r0D=-3 is a solution

g@r0D=-2 is a solution

g@r0D=1 is a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 2E
is not a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 3E
is not a solution

g@r0D=

RootA179 147 + 458 229 ð1 + 394 875 ð12 + 162 491 ð13 + 35 862 ð14 + 4140 ð15 + 200 ð16 &, 4E
is not a solution

We obtain that g[r0]=-3, g[r0]=-2 and g[r0]=1 are solutions. We exclude the case g[r0]=-3 since it does not satisfy the
hypothesis on the effective potential
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