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Introduction

This thesis is devoted to the study of the dynamics of small perturbations of the
spatial central motion.

In particular, we are interested in proving a Nekhoroshev type theorem for it.

The point is that Nekhoroshev’s theorem applies to perturbations of integrable
systems whose Hamiltonian when written in the action angle coordinates is steep.
Now such a property, in its original form, is always violated in the spatial central
motion since it is a superintegrable system and its Hamiltonian turns out to be
always independent of one of the actions.

For degenerate systems, stability results have been obtained by Nekhoroshev
in the papers (|[Nek77, Nek79]) and, subsequently, by Niedermann (see [Nie96]),
Guzzo and Morbidelli, see [GM96, Guz99| in which the authors apply exponential
stability results in order to study the stability of the planetary problem.

A general Nekhoroshev theory for superintegrable systems has been developed
also by Fasso [Fas95], [Fas05] (see also Blaom in [Bla0l]), and the main known
result is that a weaker version of Nekhoroshev’s theorem ensuring almost conser-
vation of the two actions on which the Hamiltonian depends holds provided the
Hamiltonian is a convex function of these two actions. We remark that it is quite
clear how to extend Fasso’s theory to the case of steep dependence on the two
actions.

The first goal of the thesis is to write a complete proof of Nekhoroshev’s the-
orem for superintegrable systems under the assumption that the Hamiltonian is
quasiconvex in the actions on which it actually depends. This is done by gener-
alizing the proof by Lochak (see |[Loc92]) which is much simpler then the original
one by Nekhoroshev (see [Nek77, Nek79|) (the one extended by Fasso ).

Then, we tackle the problem of proving that the Hamiltonian in action angle
variables is quasiconvex. This is far from trivial since the expression of the Hamilto-
nian depends on the form of the potential and one expects that quasiconvexity
holds under some conditions on the potential. The main technical result of the
thesis is that actually there are only two central potentials corresponding to which
the Hamiltonian is not quasiconvex, namely, the Harmonic and the Keplerian one.

We are now going to state in a precise way the main result of the thesis.

il
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In Cartesian coordinates, the Hamiltonian of the spatial central motion is given
by

Hxp) = P4 V() 0

P = (paspy,p2) , x=(2,y,2), |[x[=va>+y’+2°,

where V' is the potential that we assume to be analytic. Furthermore, we assume
that it fulfills the following assumptions

(HO) V : (0,+00) — R is a real analytic function.

1
(H1) —¢*:= = lim »*V(r) > —o0

2 r—0+
(H2) 3Ir >0 : r*V'(r) > max {0, ("},

(H3) V¢ > max {0, ¢*} the equation (in r) 73V’(r) = ¢ has at most a finite number
of solutions.

Remark 0.0.1. (H1) ensures that there are no collision orbits provided the angular
momentum is large enough; (H2) ensures that the effective potential has at least
one strict minimum so that the domain of the actions is not empty; finally (H3)
ensures that the domain of the actions is not too complicated.

Remark 0.0.2. For example any analytic potential of Schwartz class such that
bounded orbits exist fulfills the assumptions.

Define the total angular momentum (Lq, Lo, L3) = L := x x p and denote by

L :=/L}+ L3+ L} its modulus.
Let 77;3) C R® be a compact subset of the phase space invariant under the

dynamics of H,

Theorem 0.0.1. Assume that V' is neither Harmonic nor Keplerian; then there
exists a set K C PS’), which is the union of finitely many analytic hypersurfaces,

with the following property: let P : 775‘3) — R be a real analytic function. Let

Cc® ¢ 775‘3) \K® be compact and invariant for the dynamics of H; then there exist
positive e, C1,Co, Cs, Cy with the following property: for |e| < e, consider the
dynamics of the Hamiltonian system

H..=H+¢P
then, for any initial datum in C® one has
L(t) = L(O)| < Cye*, [H(t) — H(0)] < Cye'/* (2)

for
|t’ S 03 exp(C45_1/4) . (3)



INTRODUCTION \

An immediate consequence of the above theorem is that the particle’s orbits
are confined between two spherical shells centered at the origin.

We now discuss the proof of the result. As anticipated above, the Hamiltonian
system associated to the spatial central motion problem belongs to the class of
superintegrable systems, namely, systems which admit a number of independent
integrals of motion larger than the number of degrees of freedom. The main
property of such systems is that, under some technical conditions, they admit
generalized action angle coordinates and the Hamiltonian turns out to depend on
a number of actions strictly smaller than the number of degrees of freedom.

Furthermore, in general, the level set of the actions is a nontrivial manifold
which cannot be covered by only one system of coordinates. As pointed out by
Fasso, this poses nontrivial problems for the development of the proof of Nek-
horoshev’s theorem. The geometrical idea introduced by Fasso in order to prove
Nekhoroshev’s theorem is that, even if normal form theory is classically developed
using coordinates, in the framework of superintegrable systems, the expressions
obtained in the chart, as well as the normalizing transformation, glue together
and give a function and a normal form which are defined "semilocally". By this
we mean on the manifold obtained by considering the union for I in a small open
set of the level sets of I, where I are the actions of the system.

In Chapter 1 of this thesis, we show how to use these ideas in order to adapt
Lochak’s proof of Nekhoroshev’s theorem to superintegrable systems. We also
detail the proof for the case of quasiconvex systems, which, as far as we know, was
not treated explicitly in literature. We remark that in order to get the proof only
some of the ideas by Fasso are needed.

Then (Chapter 2), we come to a detailed study of the central motion problem.
First, we apply the general geometric theory of superintegrable systems to the
spatial central motion. To do so, we first analyze the planar central motion and
show that we can reduce our analysis to this case. Thus, it turns out that the
general Nekhoroshev’s theorem proved in Chapter 1 applies if the Hamiltonian of
the planar central motion is quasiconvex. Thus we study it.

In polar coordinates, the Hamiltonian of the planar central motion problem
has the well known form

7

I
H(T7prvp9) = +t55

2By, ()

The main remark is that, in the case of systems with 2 degrees of freedom, the
quasiconvexity condition turns out to be equivalent to the nonvanishing of the so
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called Arnol’d determinant, namely,

7 (oY’
D— 01?2 \o0I
det o ; ,
ol

where h is the unperturbed Hamiltonian written in the action variables. Moreover,
in the analytic case, the Arnol’d determinant is an analytic function, thus only two
possibilities occur: either it is a trivial analytic function, or it is always different
from zero except on an analytic hypersurface.

Recall now that the two actions of the planar system are the angular momentum
vector I, := py and the action [; of the reduced system, that is, the system with
Hamiltonian (4) where py plays the role of a parameter. The action I; depends on
the form of the effective potential, namely,

Vers(r,pg) = o2 T V(r).

We use the assumptions (H0) — (H3) in order to study quite precisely the domain
of Il, ]2.

More precisely, we start by proving that, correspondingly to almost every value
of I, the effective potential has only nondegenerate critical points. Then, we fix a
value of the angular momentum I, and we proceed with the standard construction
of the action I;.

A simple analysis shows that the domain of definition of the action [y is the
union of some open connected regions &£; of the phase-space. The regions &, can
be classified into two categories according to the nature of the critical points of
Vers contained in their closure. Precisely, we will distinguish between the regions

8](1) whose closure contains a minimum of the effective potential and the regions

5;2) whose closure, instead, does not contain a minimum but contains necessarily
a maximum of the effective potential.

Then, the heart of the proof is based on the study of the asymptotic behavior
of the Arnol’d determinant at circular orbits corresponding to the critical points
of V.;¢ and goes differently in the two kinds of regions.

Specifically, we first consider the regions 5'](1) and we compute the first terms of
the expansion of the Hamiltonian at the minima by computing the first terms of
the Birkhoff normal form of the effective system in terms of the derivatives of the
potential. This has been done extending the procedure used by Féjoz in [FKO04|
who actually did the computation at order 4. Here we go at order 6. Then, we use
such an expansion in order to compute the first terms of the Arnol’d determinant
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and to show that it is a nontrivial function, except in the Harmonic and Keplerian
cases.

Precisely, we get that the first two terms of the expansion of the Arnol’d de-
terminant vanish identically if the potential V (r) fulfills a couple of differential
equations. Then, we search for the common solutions of these two equations
and we obtain that they are the Keplerian and the Harmonic potentials. This
is a quite heavy computation and is done by the help of a symbolic manipulator
(Mathematica’). The corresponding computation is reported in Appendix E.

Then, we consider the second regions 5](2). We prove that if such a region exists
then, the Arnol’d determinant diverges at its boundary and thus it is a nontrivial
function of the actions.

The result is obtained by exploiting the fact that the action /; at the maximum
admits an asymptotic expansion of the form

I = —A(E — Vo, L)In(E — Vo) + G1(E — Vo, L) | (5)

where we denote by V| the value of the effective potential at the maximum, by FE
the energy level while G; and A are two analytic functions. Moreover, A has a
zero of order 1 in (0, I5). Secondly, from this expansion, we derive the asymptotic
behavior of the Arnol’d determinant at the maximum and prove that it diverges
at such a point. In the thesis we prove formula (5) exploiting a normal form
result by Giorgilli [Gio01]|. This formula also appears in [BC17|. In this work the
authors apply a KAM type theorem to a nearly-integrable Hamiltonian system
under suitable conditions. Previously, such a formula also appeared in the work
by Neishtadt [Nei87].

To conclude we remark that our result, showing some peculiarities of the Har-
monic and the Keplerian potentials, of course reminds Bertrand’s theorem. Ac-
tually our analysis of the minima of the effective potential is a refinement of that
used in the proof of Bertrand’s theorem and can be used to get a new proof of
such a theorem (see Section 2.7). In Appendix A, we also added a proof of such a
result.

The results discussed here have been the object for two papers: [BF17| and
[BFS17].



Chapter 1

Superintegrable Hamiltonian
systems

The aim of this section is the development of a Hamiltonian perturbation theory
for superintegrable sytems, that we are now going to define

Definition 1.0.1. Let (H, M,w) a Hamiltonian system, where H : M — R is
the Hamiltonian function, M a 2d-dimensional symplectic manifold and w the
symplectic form.

Let us consider k functions Fy, ..., Fy, : M — R. Defineamap F := (Fy,..., Fy):
M +— R* and consider the function F: M — F(M) := M C R*.

We say that the functions F; constitute a maximal set of independent integrals
of motion if the following conditions are satisfied

1. {H,F;} =0 ,Vj=1,...,k ,
2. dFy,...,dFy are linearly independent at every point of M
3. for any other function G such that {H, G}, the differentials dG,dFy,. .., dFy

are linearly dependent .

Remark 1.0.3. In a superintegrable system, the F}’s are the elements of a mazimal
set of independent integrals of motion, I is a surjective submersion since the rank
of the Jacobian matrix associated is constant at every point of M* and equal to
2d — n. Furthermore, the fibers are the level sets F~'(c) .= {x € M : F(z) =
a, l=1,...k} ,qeR.

Definition 1.0.2. Let Fi,..., F, be a mazimal set of independent integrals of
motion and suppose that there exists real analytic functions P;; : M — R such
that

{Fi,F;}=PjoF, id,j5=1,...k.

The k x k matriz whose entries are the functions P, ; is the Poisson matrix.

1
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Definition 1.0.3. Let us consider a Hamiltonian system and let F, ..., Fy be a
mazximal set of independent integrals of motion admitting a Poisson matriz. The
system is said to be superintegrable if k > d and the Poisson matrixz has constant
rank equal to 2k — 2d at every point of M.

Definition 1.0.4. If k = d, the Hamiltonian system is completely integrable.

Superintegrable systems are characterized by the fact that the number of in-
dependent integrals of motion is greater than the number of degrees of freedom.
They are also known as degenerate systems due to the fact that the corresponding
Hamiltonian, when written in generalized action angle coordinates, does not de-
pend on all the actions. A property that we will describe in detail below. Systems
of that kind are frequent in literature: the Euler-Poinsot problem for the rigid
body motion and the spatial central motion problem are two important examples.

Example 1. The central motion problem.

Let us consider the spatial central motion problem, that is, a particle in R?
mouving under a central potential. The Hamiltonian describing the system written
wn Cartestan coordinates is

Hxp) = By ()

pP= (vapyapz) ) X = (ZE,y,Z) ) ‘X| =V I2+y2+22 .

Define the total angular momentum (Lq, Lo, L3) = L := x X p and denote by
L:= /L3 + L3+ L3 its modulus.

This system admits four integrals of motion, namely, the enerqy E of the system
and the three components (Li, Lo, L3) of the angular momentum vector. Provided
we restrict to a subset M* of the phase-space in which the modulus of the angular
momentum vector 1s non zero and the motion is bounded, they constitute a mazimal
set of independent integrals of motion.

Furthermore, if we compute the Poisson matriz associated, we obtain

0 0 0 0
o 0 Ly —L
P=1o -, o 1, |-
0 L, —L, 0

which has rank 2 at every point of F(M™).

The main feature of these systems is that the variables corresponding to the
degenerate directions do not contribute to the dynamics. Thus, the dimension of
the tori filled by the flow is smaller than the number of degrees of freedom and it
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implies that the structure of the phase space is finer than the one which arises in
the case of a complete integrable system.

In detail, in the first part of the current section, we introduce the double fibra-
tion structure of the phase-space by presenting first the locally trivial fibration in
n-dimensional tori given by the adaptation of the Liouville-Arnol’d construction
to the superintegrable case and, then, we will deal with a second fibration arising
from a particular choice of a symplectic atlas adapted to the first fibration. The
structure of the double fibration has been studied in detail in the works [Nek72],
[KM12], [IMF78|, [Fas95] and [Fas05].

Secondly, we will present a stability result, a general Nekhoroshev type the-
orem for superintegrable Hamiltonian systems whose corresponding Hamiltonian
is quasiconvex when written in the action angle variables.

1.1 The local geometry of a superintegrable system

We begin with a couple of definitions which are useful in the description of the
phase space of a superintegrable system.

Definition 1.1.1. Let M be a smooth manifold of dimension 2d. A foliation of
dimension n on M is an atlas {U;, ¢;}jes on M with the following properties

1. Vp € M there ezists a local chart {U;, ¢;} such that ¢(U;) = V' x V", with
V' CR™ and V" C R?*~" open subsets.

2. if {U;, ¢;} and {Uy, ¢r} are such that U;NUy, # 0 then the transition functions
dpo b7t d;(U; N UL) = ¢p(U; N Uy) are of the form

¢k © ¢;1(I7y) = (fl(x7y)7 f2(y>) ) (‘xay) € R" x dein :
The leaves of the foliation are locally described by sets of the form

{yn+1 =Cn41y-+yYm = Cm} 5
with ¢, € R which are n-dimensional submanifolds of M.

Definition 1.1.2. Let S be a manifold. A fibration (or fiber bundle) with fiber S
on a manifold N is a C* surjective map f : M — N between a manifold M (the
total space of the fibration) and the manifold N (the base space of the fibration)
such that the following conditions are satisfied

1.VpeN f1p)=M,=S
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2. every fiber of f admits local trivializations, that is, Vp € N there exist a
neighborhood U of p € N and a diffeomorphism v : f~Y(U) — U x S such
that the following diagram commutes

Let (H, M,w) be a superintegrable Hamiltonian system where M is a 2d-dimensional
symplectic manifold. Let us consider a maximal set of independent integrals of
motion

Fl,...,ng_nIM* CM%R,

with n < d, defined on an open subset M* C M. We remind the reader that we
are considering a superintegrable system, thus, the number of constants of motion
is greater than the number of degrees of freedom.

Let us consider the map F := (F,..., Fyy ) : M* — F(M*) C R*". From
Remark 1.0.3 we deduce that the map F' is a surjective submersion whose fibers
are the level sets F~!(c) ={x € M*: Fy(z) = ¢ ,k=1,...,2d — n}, cx € R.

Thus, if we suppose that the fibers are compact and connected than it follows
from Ehresmann fibration lemma' that the map F is a fibration in the sense of
definition 1.1.2.

The main result which describes the local geometry of a superintegrable Hamilto-
nian system is a generalization of the Liouville-Arnol’d Theorem for complete in-
tegrable systems. Different versions of this theorem can be found in the works
[Nek72|, [IME78|, [Fas95| and |Fas05]. The version we refer to in this work is the
one given by Fasso in [Fas05| (or [Fas95]). The result is the following

Theorem 1.1.1. Let (H, M,w) be a 2d-dimensional superintegrable Hamiltonian
system. Let F = (Fy,..., Foq ) : M* C M — F(M*) := M C R¥™" with n < d
be a map whose components belong to a maximal set of independent integrals of
motion with the property that the rank of the Poisson matriz P is everywhere
constant and equal to 2d — 2n.

Moreover, assume that the level sets, that is, the fibers of the map F are compact
and connected.

Then,

1. Ewvery fiber of F s diffeomorphic to a n-dimensional torus T"

!For details, see Appendix C
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2. Fvery fiber of F' has a neighborhood U C M* endowed with a diffeomorphism

bxa:U— BxT", B =b(U) Cc R¥™ (1.1)
such that the level sets of F' coincide with the level sets of b and, writing b =
(I, s DnyD1s s Pden, Q15"+ yQd—n), the symplectic form w can be written
as

n d—n
w|U = Zd]] /\dOéj + dek /\qu .
j=1 k=1

This result states that the submanifold M™* presents a structure of a fibration
whose fibers are diffeomorphic to n-dimensional invariant tori T". Moreover, in a
neighborhood of each torus, thus locally, there exists a set of generalized action-
angle coordinates adapted to the fibration.

Definition 1.1.3. The coordinates b x a = (I, p, q, ) are called a set of general-
ized action-angle coordinates since the variables (p,q) are not a couple of action
angle coordinates.

Lemma 1.1.1. Let H|y be a local representative of the Hamiltonian H in a local
system of generalized action angle coordinates

bxa= (]17"' 7In7p17'” yPd—n> 41, 7qd—n7a17"'7an) .
Then, H|y depends on the actions (I1,...,I,) only.

Proof. Let us consider the 2d — n integrals of motion Fj: they constitute a system
of coordinates in U which is independent of the variables «.

Thus, since F; depend only on (/,p,q) and, moreover, are in involution with
the Hamiltonian, being integrals of motion, it follows

{H|y, Fi} =0 = {H|y, I} ={H|v,p} = {H|v,q} =0,

and, in particular,
OH|y O0H|y OH|y _0
doe ¢  Op

It implies that
H|y=Hl|y(I) .

]

The following lemma gives the connection between different sets of generalized
action-angle coordinates.
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Lemma 1.1.2. Let us consider a symplectic atlas formed by generalized action
angle coordinates and let {U,b x a} and {U',b' x o'} be two charts such that
Unu’#0.

Then, the transition functions defined in each connected component of the inter-
section of the two chart domains have the following form,

I'=71+z (1.2)
(¥, d)=6(,p,q) (1.3)
o =7 a+F(,p,q) (1.4)

with F,G analytic functions, z € R" and Z € SLy(Z,n).

For the proof see for instance [Fas05].

1.2 The structure of the base space and the bi-
fibration

As we have already underlined before, the difference between integrable and su-
perintegrable system consists mainly of the fact that the tori on which we have
quasi-periodic motion have dimension smaller than the dimension of the base space
of the fibration.

We now describe this structure more in detail.

Let us consider the fibration F' : M* +— M and a symplectic atlas {U;,b; x
aj}jes of generalized action angle coordinates. We can notice that this atlas
induces an atlas for the base space manifold M with chart domains B; =: F\(U;)
and coordinates given by b; = (I;,p;,q;) = m 0 (b; X @) o F~* = b; o F~ where
we have denoted as 7 the projection onto the first coordinate, as showed in the
diagram below

Uy —2% B x T"
-
F ust

Thus, the family {B;, Z;j}j represents an atlas for the base space M. Let us now
study this manifold in detail.

From Lemma 1.1.2, we notice that the transition functions for the actions involve
only themselves meaning that we have a subset of the coordinate system which
transforms independently from the other coordinates.
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Due to the structure of M one can define a manifold A as follows: the range
of its charts are given by the projection on the first factor of B; and the transition
functions are defined by (1.2). A is called the action space.

Then, of course, one can define a map

F:M— A
which is a foliation (Def. 1.1.1) whose leaves are the set F~'(a) with a € A.

Remark 1.2.1. Since the frequency of the quasi-periodic motion on the tori de-
pends on the value of the actions, it follows that the tori based on the same leaf
support motions with the same frequency.

Hypothesis 1. We assume that the map F : M — A defines a fibration.

Thus, we have that M* has the structure of a bifibration
ML mE A,

and, furthermore, every fiber F~'(a) is isomorphic to a given manifold Q. For
example, in the situation of the spatial central motion problem, we will see that
Q5%

We conclude this section with the following lemma which tell us that the trans-
ition functions can be given an easier form if we make a smart choice of the atlas
of the fibration.

Lemma 1.2.1. If the action space A is simply connected, then there exists an
atlas with transition functions of the form

I'=1

('.qd)=6(I,p,q)
o =a+F(I,p,q)

For details see [Fas95].
In particular, we remark that, for any small enough open set ¥V C A one has

F'y)=vyxQ.

1.3 A Nekhoroshev type Theorem for superinteg-
rable systems

The aim of this section is to develop a Nekhoroshev type theorem for a perturbation
of a superintegrable Hamiltonian system with quasiconvex Hamiltonian. Precisely,
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we will show that the actions of such a system are approximately conserved for
times which are exponentially long with the inverse of the perturbation parameter.

The main problem we have to tackle in order to get this result is related to
the fact that, as we have seen in the previous sections, each system of action-angle
coordinates is in general not globally defined. This is particularly evident when Q
is compact.

This difficulty was solved by Fassd who adapted Nekhoroshev’s proof of Nek-
horoshev Theorem to this situation. Here we adapt Lochak’s proof to this context:
in particular, it simplifies considerably the result. A proof based on Lochak’s
method was already given in Blaom. In this work, the author produces an ab-
stract version of the Nekhoroshev Theorem for perturbations of non-commutative
integrable Hamiltonian systems. The result follows under the hypothesis that the
unperturbed Hamiltonian satisfies certain properties of analyticity and convexity.

In particular, our proof is given for the case of quasiconvex systems in the sense
that we will explain in a while.

Before stating the main result, we recall a couple of definitions.

Definition 1.3.1. Let M* be a 2d-dimensional real manifold. An analytic struc-
ture on M™ is an atlas with the property that all the transition functions are real
analytic. The pair (M*,{U;, ¢;});es is called a real analytic manifold.

Let M* 5 M £ A be the bifibration described previously with M* a 2d-
dimensional real analytic manifold endowed with an atlas whose transition func-
tions satisfy the hypothesis of Lemma 1.2.1 and let H : M* +— R be the unper-
turbed Hamiltonian of the corresponding superintegrable system.

Let us introduce a function h : A — R defined on the action space such that
H = hoF|, where Iy, = Fo F.

Lemma 1.3.1. The function h : A — R is a real analytic function on the whole

A.

Proof. The result follows from the fact that the map which introduces the set of
generalized action angle coordinates is an analytic diffeomorphism. O]

Finally, we will make use of the following property of quasiconvexity.

Definition 1.3.2. A function h : A +— R is said to be quasiconvex at a point I* if
the inequality
th * 2
(n, ﬁ(l n) = clnl
holds for any n such that (3¢(I*), n) = 0.

Our main result is stated in the following theorem
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Theorem 1.3.1. Let us consider a bifibration M* 5 M E A endowed with an
atlas of generalized action-angle coordinates {U;, ¢;}jes of the form specified in
Lemma 1.2.1. Let h : A— R and f : M* — R be two real analytic functions,
define H := ho Iy, where Fy = F o F, and assume that h is quasiconvez in A.
Let C C M* be compact and invariant for the dynamics of H; then, there exist
positive constants €*,Cy, Cy, C3 with the following property: for |e| < &* consider
the dynamics of the Hamiltonian system

H.:=H+¢f
then, for any initial datum in C one has
1) = 10)]| < Cre2r

for all times t satisfying )
| ¢ |< Coeaxp(Cse™2n) .

1.4 Proof of the Theorem

1.4.1 Normal form Theorem

The first part of the proof concerns the construction of a semilocal normal form.
We start by choosing an appropriate norm with which we measure the size of
the functions and of their vector fields. Then, we will define and complexify the
domain on which we will construct our normal form.

The methods used in the construction of the normal form are a slight modific-
ation of the ones of [Loc92|. The main point is that the normal form we provide
here is semilocal, meaning that it is well defined on a neighborhood of a fiber of
the action space, namely, using the notation of the previous sections, in

FTHETY(V)),

with ¥V C A a small open subset.

The result follows from the fact that the time averaging of a function and the
function which generates the transformation which puts the Hamiltonian in normal
form are defined semilocally.

However, the quantitative estimates have to be constructed locally by consid-
ering in each chart the local representative of the semilocal normal form.

Preliminaries and notations

Let us consider the bifibration M* = M £ A where (M*,{Uj, ¢;};) is the 2d-
dimensional analytic manifold with the atlas chosen as in Lemma 1.2.1 with

(bjIUjHBjXTn
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given by ¢(z) = (I;,pj,q;,®;) ,z € M*.

We choose to work semilocally in the sense that we work close to a single value
of the action. Thus, let us fix a value I* € A. To be more precise, for p > 0, we
define the ball

BAI') = {I € R : [~ I < p} .
Then, we define )
My = F7H(F7H(B,(I7))) .
and we will construct a normal form in such a submanifold. Remark that M. , =
B,(I*) x P where P is a suitable manifold.

At the end of the procedure, we will get a result valid over the whole of M* by

choosing a suitable collection of I} and p; such that

]\4'4< - UjMI;‘,pj .

We fix an atlas of generalized action angle coordinates (I, p, ¢, «) in M;~ ,. Denote
by U; C R24 the range of the jth chart and remark that the I’s coincide for all the
charts while (p, g, ) are coordinates on P. In order to measure distances on Uj,
we will introduce two parameters R > 0 and ¢ > 0 and we introduce the norm

d—n
I(Z,p, g, )| : ZIIH up L > (pl?+lal) - (1.5)
=1

Let f : M-, — R be a function. We will say that f € C¥(p) if its local repres-
entative f; in any chart is a real analytic function which extends to a bounded
complex analytic function on

Z/[Jp = UZEZ/{ij(Z) 5
where z = (I,p, q, ).

Definition 1.4.1. Let f; be the local representative of a function f € C¥(p), we
define its norm as follows

1£lll = sup |f5(2)] - (1.6)

zEZ/I

We will use the same notations for functions X taking values in R", in particular
for the Hamiltonian vector field X, of a function f.

Definition 1.4.2. Let f € C¥(p) with the further property that also its Hamilto-
nian vector field defines a complex analytic function (valued in C*¢) on C*(p). We
define

115 = SljpllfjHZ :

X5 = supl| Xy 15
J
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The normal form lemma close to a resonant torus

Take I* € A such that
Oh(I*)

ol
is periodic of period T, that is, let us suppose that

w=w(l") =

w; ,
dl such that - € Q, Vi=1,...,n.
Wi
By the assumptions of the main theorem, there exists R > 0 such that
(i) h € C¥(2R), that is, there exists a positive constant ¢; such that

1hllzr < i
(i) h is quasiconvex at every point of the action space A, that is, for every I € A
the following inequality

0%h
- > 2
{57z (D) = ¢l

holds for any n such that (3%(I), n) = 0.
(iii) there exists a positive constant C such that the following inequality,

0*h
(52 (DE) < Clnllliell

holds for any &,7 € R™ where C > ¢ is the upper bound of the spectrum of
the Hessian matrix.

We are now going to put the system in normal form in Mp« , with p sufficiently
small. First we Taylor expand at the third order h(/) obtaining

W) = h(I*)+(w*, (I = I*))+h(I=I*)+h.(I—T*) = h(I*)+hy (J)+R(J)+h.(J])
(1.7)
with J =1 —I*.
We underline that

(1) h(I*)is an unimportant constant

(2) hy is the linear part of the Hamiltonian and generates a periodic flow with
frequency w* and period T, that is,

h = (W*, J) .
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(3) h is the quadratic part of the unperturbed Hamiltonian, that is,

) o%h
() = 30 S ())

Tt is already in normal form with g, namely, {h, k- } = 0.

(4) h, is the remainder of the Taylor formula. It can be expressed as
1 [ &h
h = (1—1) ——J;J; Jpdt .
(J) 2A E:MQHMJ%%

Remark that the quadratic term h and the remainder h, are defined in the whole
of M- r and that they satisfy some estimates as stated in the lemmas below

Lemma 1.4.1. Let h as above. The following estimates

Ihll; < &R, (1.8)
RS
X7 < 22 (19)

hold.

Proof. To prove this lemma we use the Cauchy estimates (cf. Lemma C.2.2, Ap-
pendix C) to control the partial derivatives of the unperturbed Hamiltonian on
the complex neighborhood Z/IJ.R. Indeed, for i, =1,...,n, 0 < < R, we have

Thus, from the definition of h, we have that

O*h||"

e (1.10)

! . 2!
< S lhlie < 5

R+6

| = 50 S5 < 5 3

i,j=1

*h
agag([)

RAIRAE

Then, passing to the supremum on the complex domain L{JR and using the estimates
(1.10), we obtain

*
= sup
R JeBr(I*)

h iL(J) 01 sup Z’JZ‘ sup Z}JJ’ < —clRA‘ = &R,

— 2
25 II<R <R
——

<R? <R2?
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where ¢, = .
Analogously, we can estimate the vector field X; and obtain

R3
”X ||R < CQ? .

Indeed, from the definition of the Hamiltonian vector field we have X; = J Vh =
(0,0,0, (X})a) where

1 [ 9PR(I) "\ O?h(I¥)
(Kidow = 3 ( < OLOI, it - OLOI, i)

)=

Z?]:

n

1 (& |92h(17) O2h(I*)
. < = E , .
|(Xh)o¢k|—2<”:1 dL,01, |JZ|+Z§]: o101 PA

In U, we have

[(Xi)anl < 5 <—Clz | Ji|dt + —Clz | J; |>

2
S 5—201R2 = C2R2

where ¢, = 6%01. So, we have that
(X7 o | < &R? VK .
And, from the definition of the norm, we obtain

RI(Xpap| _ - B

X: |5 = < Co— .
Il = sup el <,
O
Lemma 1.4.2. Let h, as above. Then, the following estimates
17| < €1 RS (1.11)
RE)
1Xh, Il < c2— (1.12)

hold.
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Proof. By using the same strategy as in Lemma 1.4.1, we can prove similar estim-
ates for the remainder h, and its vector field. Indeed, from the definition of h,., we
have

I O3h .
mi<s [ ‘tVZ‘m“ +w>\uz-HJj\|Jk\dt,
i,k Cat

and, passing to the supremum on the complex domain L{J.R, thanks to the Cauchy
estimates, one can find

Hhr||R§§/ ﬁcl(l—t)2 sup E ‘J’} sup E !J]‘ sup E |Jk‘dt,
0

IIlI<R = I7l<Rr 5= II<R %=y

Vv -~ Vv
<R? <R2 <R?
that is,

. _ 3 ' 1
Il < greukt [ (1= 0t = e = eurt

where ¢; := 5.
Analogously, one can find an estimate for the vector field of the remainder h,.
Precisely, it is easy to prove that the following bound,

R5
||thHE S CQ? Y

holds, where c5 is a positive constant. O

We go back now to the Hamiltonian (1.7) which, up to irrelevant constants,
takes the form )
he =hy«+h+h,+cf . (1.13)

Let us assume that R is so small that the perturbation f € C*(R) and therefore
there exists a positive constant ¢ such that

Ifllz<¢.
By redefining €, we can put this constant equal to 1, namely,

lefllz <. (1.14)
In the norm (1.5) one can estimate X, by

Lemma 1.4.3. Let f € C¥(R) which satisfies (1.14). Then, the following estimate
€

Xl < Co

(1.15)

holds.
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Proof. Let f; be the local representative of the function f. Let us compute the
vector field of f; at a point z. We have

ij = ((ij)lv (ij):m (ij)fP (ij>a)
_(9/; 9f; 9f; 9f;
N (é)oz7 dq’ Op’ 8[) '

We compute the norm and obtain

c n
“ o

1=

of;

1, I; s 2[5 +

d—n (‘0][] 2>
=\l %

From Lemma C.2.2 of Appendix C and from the fact that R << 1, we deduce

' of;
opl

Do

DA

< Cgﬁ :
Passing to the supremum over j, we obtain (1.15). O

First, we study the kind of average needed to solve the homological equation.
The main point is that the domain on which the functions are constructed is Mp- ,,
on which everything is well defined and can be estimated there. Indeed,

Lemma 1.4.4. Let f; be the local representative of the function f in the chart
domain U} and let

1/t .
< f;i > U, pj,q,05) = T/ fiL,pj,q5, aj +w*t)dt
0

be its time averaging where o — a; + w*t is the periodic flow over the family of
resonant tori I = I*; then, < f; > are the local representatives of a function (f).
Moreover, let us consider the functions x; defined on each chart domain by

I .
Xj(Iapj7Qj7aj> = T/(; t[fj_ < fj >]([7pj7qjaaj +w t)dt .

The functions x; are the local representatives of a function x which is defined on

the whole My« ,.

Proof. Let us consider the local representative f, of the map f in an other chart
domain Uy such that Uy NUY # 0. Let z € U NUy and let us consider the time
averaging of fi. Using the transition functions as specified in Lemma 1.2.1, we
have

<f>k (I;pk7Qk7ak)::< f] > (Iug17g27ak+f)

I (1.16)
:T/ fil,G1, Gy o + F +wit)dt .
0
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If we construct directly the time averaging of the local representative fi, then we
obtain

1 T
< frx > (L, pr, q, ) = f/ Te(d, D, i, g + wW*t)dt
0 (1.17)

1 T
= f/ fi(I,G1, Gy o + w't + F)dt
0

that is completely equivalent to the expression (1.16).

We have proved that the time averaging < f > of the function f is an intrinsic
function on the subspace Mj- , and < f >; are its local representatives.

At this point, let us consider the function x; defined in the chart domain Z/{JP ,
that is

1 [T .
x; (L, pj, 45, 05) = f/o tlfi— < fi >1(1,pj,qj, 05 + w*t)dt .

Let us now apply the transition functions as in Lemma 1.2.1 in order to pass from
the chart U{ to the chart . We have

1 T
0

. (1.18)
1
= f/ tlfe— < f >il(L, prs qr, i + w™t)dt .
0

Note that in the second equivalence we have used the results proved in the first
part of this lemma.

Now, proceeding as before, we consider the function x; defined on a second
chart, that is

1 T

Xk (L, Prs @iy ) = T/ tlfs— < fo >1(1, prs @i, i + wt)dt
0

: (1.19)

T
0

Thus, from the equivalence of the expressions (1.18) and (1.19), it follows that we
can construct globally a function x on the subspace M- , whose local represent-
atives are the functions x;. 0

Thus, we have the following lemma

Lemma 1.4.5. Let f and h,+ as above. Then, the homological equation

X b} + = (f) (1.20)
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can be solved by

1

=g [ =@t (1.21)

Moreover, (f),x and their symplectic gradient belong to C*(p) and satisfy the
following estimates

LAKAHOIE < I S TIxllz < TIAR

2. || X

S SUXGE X, < T X

Proof. Let us denote by ®'. the flow of the Hamiltonian h,« at time ¢. It is
continuous and differentiable on the whole domain M;p- ,. Since the following

equality holds,
d
hw*7 = 7
e xt = 4
we have only to prove that the time derivative of the function y satisfies the

following identity

t=0

d
e @t* - -
3| M@=
Thus, let us compute
d d I
— o) = — = drt)d
" t:OX( w) = g toT/o sg(P")ds

1 o T
- |l —3 [ s

t=0

1 T
—g(@h) ~ 7 [ g(@i)ds,
0

where g = f — (f). At this point, noticing that ¢ is a function of zero average, we
conclude
X(®,.) = 9(®5.) = g() =g = —(f) -

dt,_,
Now, it remains to prove the estimates. To do so, we have to pass to the local
representatives of the functions. Remark that in any canonical coordinate system
one has ®.(I,p,q,a) = (I,p,q, + w*t) and, furthermore, the domain of the

coordinate system is invariant under ®f.. Thus,

T

1 *
1, Upaa)| <5 [ 15 pagarwbi,
0
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that is,
|l <t
and, from the definition of the norm, it follows that
KA, < 1111,

Similarly, one has

1
@l <7 [ - ke
and passing to the supremum, from the previous estimate, we obtain
9 T
holly < 7 [ el < TS,

and,
IxI, < T

18

We conclude by proving the estimates on the vector fields. To do so, remark first

that, for any canonical transformation 7 and any function g, one has

(1.22)

Xoor =T Xy,
where 7% X, is the pull back of the vector field, so that, in any coordinate system
one has
(Xgom;) (2) = AT H(T3(2) X, (Ti(2))
from which

_ t
ngo¢z,* - ng o q)w* 9

where we used that, in any system of generalized action angle coordinates, d®’,. =

I. In particular, the Hamiltonian vector field becomes

/ ijo(b z)dt = / Xy (I,p,q,a+w't)dt ,

from which

*

HX<f>j

P ZGUJP

and,
X

"< IX;

1 [T *
ST/O SSZZ\ij(z)}dtg Xy, )
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Similarly, one gets the estimate of X,. One has

I I
Xy, (2) = T/ thjO%*(z)dt = ?/ tXy, (I, p, g, +Wt)dt
0 0

where g;(2) 1= (f; — (f);)(2) . Now, passing to the supremum over U, we have

T
sup | Xy, (2)| < %/o t sup | Xy, (1,0, q, 0 + w*t)|dt

. >
ZGZ/IJ- ZGL{J-

1 T
< :F/o t sup | X, (2)|dt

z€Uf
<%
Thus, since
15, 11, < 21 X5 [, -
we conclude that
HXXj :ST ”ij ; ’

and,
12Xl < TIXA, -

O

Thus, the generating function and the averages are defined semilocally and it is not
necessary to work locally in each chart. Precisely, let us consider the Hamiltonian
(1.13). In what follows we shall consider the term  and the remainder h, together.
Thus, let h, := h + h,. We can notice that, since R << 1, the following estimate

|3

with Cy := max{¢é, ¢}, holds. Analogously,

< HhH +||he|ln < &R+ € RS < CLR*
R R

% R3 R5 RS
X; <X ll% + 1 Xn g < Ga— — < Cy—
H b R—H iz + I h7»3_020+020_ 2
where Cy := max{éy, co}. Thus, we are now going to work with the following

Hamiltonian

h=hy+h,+ef,

where Br satisfies the estimates above.
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Lemma 1.4.6. For k > 0, consider the Hamiltonian
hE = hy + hy + ZF + RF (1.23)

Let § < k—fl and let us assume that the functions Z* and RF belong to C¥(R — kJ)

together with their vector fields and that they satisfy the following estimates

(i)

0 if k=0 |
_ 0 if k=0
ATk € if k=1 -
Z < , X * < —
5 MEE ST B i
Cued pt if k=2 R &~
i=0
(1.24)
(1)
if k=0 ek
Rk” = s Xk ks < Car 1.25
H R—ks — C45uk if k>1 H R’“HR k6 = 3 R ( )

where p = %(%—i—@) and Cy is a positive constant given by Cy, = max{cy, 1},

where
_ 2C3max{3,C,}
~ min{10C3,5Cy/c}
1

If i < 5, then there erists a canonical transformation T* which is close to the

identity, that is,

e Tep”
T g

such that the function h* o T* has the form (1.23) where Z¥™ = Z¥ + (R*) and
satisfies the above estimates with k + 1 in place of k.

- HH;(kH)(s <G

Proof. This is essentially Lemma 7.1. of [Bam99]. The proof can be divided into
two parts. In the first part, we will describe the successive-transformation scheme
which permits us to normalize formally the Hamiltonian up to a certain order k
while the second part concerns the quantitative estimates which make rigorous the
procedures used in the first part.

The iterative procedure
As in the classical scheme, our aim is to choose as the canonical transformation
normalizing the Hamiltonian A* the time one flow of a generating function, which
shall be the solution of the homological equation.

Precisely, let x* be the solution of the homological equation

{(* b} + RY = (RF) (1.26)
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which exists by Lemma 1.4.5, that is,

Cm g [ (R et

Then one has
. . Tep®
||XkaR—k-5 < THXRkHR—k& <C; R (1'27)

Let us denote by 7* := ®,« the corresponding time one flow. From Lemma C.2.3
of Appendix C for t = 1, we obtain

* *

k
HT —1 R—(k+1)5 = HXxk R—k§
At this point, using (1.27), we have
% Tepk
k
HT -1 R—(k+1)5 < Gy R

Thus, the map 7% : M+ r—k+1)s = My p—ys is well defined and, moreover, it is a
close to the identity canonical transformation.
By the composition with h*, we obtain the new Hamiltonian

hk+1 — hk o Tk
= hye + hy + 25+ (RF) + RET!
— hw* + iLT + Zk-i-l _|_Rk’+l ’

where Z¥ = Z¥ 4+ (R*) is the term which is already in involution with A, while
RE+1 s the remainder which is composed by the following terms

Rk—i—l — hw* o Tk . hw* . {Xkth*}

+h,oT* —h,
+RN o TH - R (1:25)
+ ZkoTh - 28

The quantitative estimates

It remains now to compute the estimates of the terms of the new Hamiltonian
to make rigorous the procedure. The main point is that we will first produce
estimates in a single chart and, then, thanks to the definition of the norm we have
given on the whole space, we will construct semilocal estimates.

We compute the estimates for Z¥*! and the remainder R**! as well as for their
vector fields.
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Thus, from the definition of Z**!, we have
||Zk+1||*R—(k+1)6 <21 %rs + IR* ks -
where we have used (1) of Lemma 1.4.5. For k = 0, we obtain
128155 < 12°0% + IR < llefillh <<

since the term Z° is equal to zero.
Analogously, for k£ > 1, from the estimates (1.24) and (1.25), we obtain

k
||Zk+1”;z—(k+1)5 < C45ZNZ .
=0

We have also
[ Xzer [mgernys < N1 X2kl mors + 1 Xre I R—ks -

For k = 0, we can compute the estimate
* * * * 6
[ Xz1[5s < [ Xzol[k + [ Xrollk < 1 Xe Ik < Csp -

Analogously, for k£ > 1, from the estimates (1.24) and (1.25), we obtain
e . o
=0 i=0

At this point, it remains to compute the estimates for the remainder R**! and
its vector filed. To do so, we first compute the norm of the fourth term which
composes the remainder, that is,

rti=2ZFoTh - 2k
From Lemma C.2.4 of Appendix C, we obtain the following estimate

. 2
R—(k+1)s < 5 HXXk

*

H rt R—k§ °

2"

*
R—ké |

Analogously, we can compute the estimates for the second and the third term in
(1.28), namely, R R
r2:=h,oT"—h, ,

and
P i=RFoTF-RF.
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We have

)

R—k$

’ 2

Ir

R—(k+1)

HX s IR

3HR k+1)6

Now, it remains to estimate the ﬁrst term of (1.28), that is,

7= (hye 0 TF — hype — {X", R })

J

From Lemma C.2.5 of Appendix C, we have

At this point, we can put together all the previous estimates and find out that the
remainder (1.28) can be estimated as follows

—(k+1)5 = Z

=1

W~

4 2 X ~)*
§5|X’“ _HXkHR ko h?"Rk5
2
<2, s 2115,
Thus,
IR s < (5 IR st 3]+ 2024 ) 1|
Now, for k = 0, we have
IR 212005 1l

o= (S IR0
2 3 C,R*) C
5(54— ) SE—leﬂv
where

2C3 (36 + C1R4) < 2C3 max{3, Cl}(E + R4) < 203 max{?), Cl} .
18Cse + 5CyR* /0 — min{10C3,5C,/c} (¢ + R*) — min{10C3,5Cy/c}

C1 = =C4 .

In particular, we have ¢, < C4 and, thus,

IR 55 < Cocrr
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We can proceed analogously in order to find out the estimate for the remainder
for £ > 1. Indeed, from the estimates (1.24),(1.25) and (1.27) we obtain

- CsTepk
3
RGeS (3045u +CR' + C4s§ ) —_ . (1.29)

R

At this point, if we choose g small enough such that p < %, then it is easy to
see that the quantity between the round brackets in (1.34) satisfies the following
inequality

k—1

. 3C
3046uk + ClR4 + C48 Z qu < 4€

Thus,

2 CsTep”

E+1)|* 4 step ka1
HR ! HRf(kJrl) 5 (4045 +CiR ) R Coe "
where \
&y = 2(4046 + C1R ) S C4 ‘

18035 + 5C2R4/0'

Thus,
k+1
| (ks = Cactt "

Let us conclude by computing the norm of the vector field of the remainder
RF1 that is,
XRIH—I = JVRk—H = th*OTk—hw*—{xk,hw*}

+ Xil7>0Tk_il7
+ X’RkokaRk
+ Xzkorh_zh -

We proceed as in the previous computation. Thus, we estimate each term which
appears in the definition of Xyp«+1. Let us begin with the fourth term

f4 = sz’ofrk,zk .

From Lemma C.2.4 of Appendix C, we obtain

HT4HR (k+1)5 = HX #|Roks | X 2k | Rois -

Analogously, we can estimate the second and the third term, obtaining

5
”7"2“3 (k+1)5 < HX . k&HXhTHR kS

H7"3“R (k+1)5 > 5HX #l R nsl | Xrk | Roks -
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Let us now conclude with the first term, that is,

i = th*OTk—hw*—{Xk,hw*} *
From Lemma C.2.5 of Appendix C, we obtain the following estimate

1
17 - esnys < 5 10 s | X s

At this point, we can put together all the estimates and find out that the vector
field can be estimated as follows

4
1 Xrkst ey < D NI7]

i=1

< FHXx’“HRfMHXR’“HRfM + SHXx’“HRkaHXl}THRfké
5 * * 5 * *

+ S“Xx’“HR—k(SHXR’“HR—k(S + g”Xx’“HR—k(SHXZ’fHR—ké )

that is,
[ Xrrt1 [ Rekrnys < | 1 Xrrlrors + 12X, ks T 1 X zr ks ) 1 Xk ks -
) 0 )
For k = 0, we obtain

Xy < ( Xl 20, + I\Xzo\l*R)HXXOH*R

15 CgEf 5 CQRS TEng
R
_ Cgﬁz 15036 I 5CQR3 < Cg&lu 7
R R o R

since

z 15038 i 5CQR3 <
) R o =

Analogously, for £ > 1, we obtain

* 5 * *
1l qeens < (5 10 s 300 Bcss 50T as) Xl

k 3 k—1 k
< E&Cg/ﬁ 4 ?CQR T ?803 ,ul T&Cgﬂ ’
0 R o o 0 R R

=0
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where we have exploited the estimates (1.24),(1.25) and (1.27).
For p < %, the quantity between the round brackets becomes

WS RS o "o R ®R

15eCy* 5 CyR? L 5e kz _15Cy 5CR® 10eCy _ 35:Cy
5 R 5 o 15 —

Thus, from the definition of u,

| Xrr+1 R orys <

18 803 5 CyR?\ TeCsuF
(i)
< Z (18€C3 5CQR3> €Cgﬂk
) R o R
Mas
< C R

This concludes the proof.
From the iterative Lemma 1.4.6, the following theorem follows directly

Theorem 1.4.1. Consider a Hamiltonian of the form

hszhw*_’_ilr—'—gfv

satisfying . .
||, <crt s Ix < Ca
lefl <. I Xerllh < Cagg -

Define 1

_ SCgT CQTR2
,u.—57e(R2 + - ),

1.

26

5CyR3

5 o

(1.30)

and assume that i < 5; then, there exists an analytic canonical transformation

27
T : M+ gjo = My g with the following properties

(1) T is close to the identity, namely, it satisfies

epT’
I7 = Tiye < G5 .

(1.31)

(2) T puts the Hamiltonian in resonant normal form up to an exponentially

small remainder, namely, one has
hoT =hy +h +e(f) +Z+R,

where

(1.32)
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(i) Z is in normal form, namely, {Z, h} = 0, and of order higher than
(f), namely, it is estimated by

* * gﬂ
12052 < 2Cee [ XzllRp < 2Cs— (1.33)

(ii) R is an exponentially small remainder estimated by

* —é * 8_ —%
IRIs < Coce 7, |[Xrlljy < Csoe (1.34)

=

where Cg is a positive constant.

Proof. Firstly, we notice that the Hamiltonian (1.30) satisfies the hypothesis of
the iterative lemma with & = 0 considering Z° = 0 and R° = £f. Indeed, we have
that R is analytic in the domain M7+ r together with its vector field and that the
following estimates are satisfied

IR

* * * * €
= el e, WXl = 1Xeglly < Gy
Moreover, if we us choose § = % < R, then
. 4T 18€C3 i 5CQR3 . 72€03T i 20C2TR2
=R\ R s ) U R o

2
< 57e (803T . C, TR ) .

<1
5 -

=i

R2 o

Thus, since p is sufficiently small, we can apply the iterative lemma: there exists
a canonical transformation close to the identity, we denote it by 7° : M,. sr

MI*,RJ such that
ECJT

R 9

| 7% -1

which puts the Hamiltonian in normal form

*
@S
4

Bl = hg +h, + Z' + R, (1.35)

with Z' = e(f). Moreover, as proved in Lemma 1.4.6, we have the following

estimates
2"

€
ZTR <e, HleH%R < C?’E ,

| R | < Casns IXmillis < Co
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with C,4 a positive constant. Precisely, exploiting the fact that u < ji, the last two
estimates can be rewritten as

IR

* _ % sl
e < Cucli, || Xra|ir < Gyt
4 1 R

At this point, if we rename H = h, + Z', R? := R!, then we have that the
Hamiltonian R

hl =h, + H+R° (1.36)

satisfies again the hypothesis of the iterative lemma for £ = 0 on the domain

MI% Indeed, we have the following estimates

* *

A

we S ||| s 112 5 SCIR e,
4 4
X * N R3
||XH||% = ||Xﬁr 3R + ||X21||% < C27 +Cg%
and . .
IRy = |5 < Cucp

. , efi
IXrollsz = I Xr1ll3z < C5— -

Now, let us fix § = ﬁ and let us apply the lemma £ times with %R in place of R.
After k steps, we obtain that there exists a canonical transformation 7 close to
the identity which puts the Hamiltonian (1.36) in normal form

hoT =hp+H+Z+R=hy+h.+e(f) +Z+R .

Moreover, we have that Z and R satisfy the following estimates

k—1
|21l < Coe Y _m"

1=0
IR/, < Ceem”

4kT 18¢[i 5R3 be
m = R (Cg R +CQT+03E>

4T 18¢ji 5R3 5¢\ ] k

Moreover, we can prove that the vector fields Xz and Xy satisfy the following
estimates

with

(1.37)

k—1

. € ;

X2l < Coig >
=0
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and -
X% 52 < C?ﬂﬁmk :

while the canonical transformation 7 is close to the identity since from the estim-
ates for the remainder it follows that

N el
I7 =Ty < Colmmt=

Furthermore, since we have that m < i,

4T 3
m < — (039—5 + CQ@ + C3§>
g

- R R R

< % (03% + 0257]%3)

< 56 (8?%32T . CQZRQ)

< 27e (ﬁf + CQZR2> =i < % 7

we can rewrite
1Z]/7/s < 2Cse

. EfL
1Xz2llR), < 2Cs—

and -
« N
[T = 1% < 05? -
At this point, we would like to determine the number k of steps in order to minimize
the reminder. For this purpose, let us denote by M the term in the square brackets

in (1.37) and let us minimize the function F'(k) := (M%)k

The minimum is assumed for k = [%] Indeed,
k
F'(k) = (Mﬁ) {ln (Mﬁ) —1—1] >0 = In (Mﬁ) >—1.
e e e
Thus,
E_ 1 1
M—-—>- = k>—.
e e - M

Therefore, the minimum is assumed for k equal to the integer part of % Moreover,
since
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the norm of the remainder R and of its vector field are exponentially small. Indeed,
HRH*R/Q < Cﬁgmk = C@?ﬁiﬁ < 0656_% ,
1

* _ 15 _ g 1 57 1
HX’RH% S C3'u§mk — C3H‘ﬁe 1&[ S CSEljle i

where the last inequality follows from the fact that M < ji. Indeed,

4T 18¢f 5R3 5e
M=e—|(C C Cs—
€R<3R+ T 3R>
eCsT  C,TR? _
< 56e ( 72 + . <.
This concludes the proof. O

1.4.2 Semilocal stability estimates in the neighborhood of a
resonant torus

At this point, we have at our disposal a normal form theorem which permits us to
prove a result of semilocal stability in the neighborhood of a resonant torus by ex-
ploiting the conservation of the energy and the quasiconvexity of the unperturbed
Hamiltonian. Precisely, in this subsection, we will construct semilocal estimates
near periodic solutions.
By means of Theorem 1.4.1, we can make use of a Hamiltonian in normal form
of the kind ) )
h:=hoT =hyx+h+e(f)y +Z+R, (1.38)

where T : My« /o = M- g is the canonical transformation used for the normal-
ization. Let us choose the initial datum 2(0) € M« /s and let us denote by
z = T (2') the new variables introduced with the normalization procedure. We will
prove the following result

Lemma 1.4.7. Assume that J'(t) € By ,,(0) and let € < RY. Then there exists
positive constants Cy,Co such that

|he- (J'(1))| < C1R? (1.39)
and,
‘E(J/(t))‘ < CR! (1.40)

hold )
Vi |t| < Rer .
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Proof. We begin by considering the term
hi(J') := hoe(J') + ho(J') .
From the definition of BT = h+ h,, we want to estimate

h(J' () = B(J(0))| <Ihi(J' () = ha(J(0))] + [ (J'(£)) = heo= (J'(0)))]
+ R (T () — By (J(0))] -

(1.41)

We start with the estimate of the first term by exploiting the conservation of the
energy, that is, from h(Z'(t)) = h(2'(0)), we deduce

7 (J'(#)) = ha (J'(0))] < ‘5(2’(75)) — Z(£(0))] +IR('(t)) = R(2'(0)]

<[], +21mih
<2|2] +2IRl,

where we have denoted by Z(2') = ¢ (f) () + Z(#'). Thus,

71 (J'(8)) = (S (O))] < 2(llef k2 + 12115/2) + 2[RIl
2(e +2C¢¢e) + 2Cgce #

(24 4Cs + 2066_%)8
(2 + 506)8 = C7€ S C7R4 s

IN

(1.42)

IAINA

where we used ¢ < R?*, the estimates (1.24) and (1.34) and the fact that e <
i< s

We pass now to estimate the second term on the right-hand side of (1.41). Let
us consider
dhe-(J'(s))

| (J' () = he+ (J'(0))] S/O ds

‘ds.

We use now the fact that h, e (f) and Z are already in normal form and, thus,
they commute with the Hamiltonian h,+: we obtain

W = {hw*ah}((]/(s)) — {hw*7R}(J,(S)) '

Therefore, by means of Lemma C.2.1 of Appendix C, we can find the following
estimate

*

< [t lw [ 1 XR 7/ (1.43)

o)~ ropI < i | G|

d
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and, by means of the estimates (1.34), we find out that

/ ! * gla -1
[P (J(8)) = (JO)] < Calt] || e" -

Let us denote by Q* := ||w*|| the norm of the frequency vector w*, then
e _1 Gy e _1

hoe (J'(t)) = ho (J' < Cslt|r —e " < Q' |t Se F .

e (1) — hee (7)) < Coltir B < Doy S
If we assume )

t| < Rer
then,
P (J' (1)) = o (J(0))] < coe (1.44)

with ¢y := %Q* Furthermore, since
|h (J'(0))] < Q*|T(0)] < &R?
we deduce
[P (J'(t))| € GR? + coe < max{é, o} (e + R?) < CR*,
where we have assumed that ¢ < R%.

We conclude with the estimate of the third and last term on the right-hand
side of (1.41). Thus,

() = b (SO < 2l < 2| B]| < 208" (1.45)

Finally, putting together the estimates (1.42), (1.44) and (1.45), we obtain an
estimate for (1.41)

h(J'(t)) — ﬁ(J’(O))‘ < C7R*+ CR* + 2C,R* < (C7 +Cy + 2Cy)R* := CyR*
where we have assumed ¢ < R*. Thus,

h(0)] <

B(J’(O))‘ + CgR* .

We compute now the estimate for h(.J'(0)) by exploiting the definition of i, namely,

b7 (0) = 270, T4 )
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Thus, from the Cauchy estimates (cf. Lemma C.2.2, Appendix C), we obtain
A('(0))] < CoR"
and, finally,
(ﬁ(m))\ < CoR' + CyR' < (Cy + Ce)R" := C2R" .

This concludes the proof. O
At this point, we have to exploit the quasiconvezity condition to prove
Lemma 1.4.8. Let J' such that
|- (J)] < CLR? (1.46)
and,

‘ﬁ(J’) < CR". (1.47)

Then, there exists a constant C3 such that J' € Bj, p(0).

Proof. Let us first rewrite the term on the left-hand side of (1.47) by using the
definition of h, that is,

1, ., 02h(I%)
_§<J’ BYE

and, then, we decompose the vector v := J’ into the sum of two components by
means of the projector operator II, onto w*. Thus, we consider

‘B(J’)

J),

V= H*U—i-Hi‘U

and we pull this decomposition into the quadratic form

oh
Q) = (v, 1 (1))
We obtain
Ph, Ph L ®h, Ph, |
<U7 ﬁ(l )(U» - <H*U7 ﬁ([ )H*U>+<H* v, W(I )H* U>+2<H*U7 @(I )H* U> .

(1.48)
We use now the quasiconvexity condition (cf. Def. 1.3.2) in (1.48), thus, there
exists a positive constant ¢ such that the following inequality,
*h

(o, 5 (L) > e[|
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holds. Furthermore, we have the following estimates on the other two terms in the
right-hand side of (1.48)

O*h ,
(I, v, 012(1 L) > —C ||,

82h * 1 1
(I, v, 012(] NMLv) > —C ||| ||| -

At this point, we put all the estimates in (1.48) and obtain
925

* 2
(v, W(I )(v)) > e || o ||” = ¢ |[Mol” - 2¢ ||| || I
that is,
L 2 th % 2 n
¢ || v ap(l )(v)) + C |[ILow||” + 2C ||| [[Tv]] . (1.49)

The size of the component II,v can be estimated by using(1.46). Indeed, from the
definition of h,- and of the orthogonal component II}v, we have

ho+(J'(t)) = (W, v) = (W*, L) .
Thus, by using (1.46), we obtain the following estimate
ITLo|| < CoR? .
At this point, we can rewrite (1.49) as follows

2
0 )* < o, TR W) + CCR R+ 20C10 R [ 11|

Moreover, from the definition of fL, we have that

82
(v, W([*) —2’11 (')

and, thus, by exploiting the estimate (1.47), we obtain

¢ |0 ||* < 2|a(7)| + CC3 R 4+ 20C1o B2 || TTkv |
< 2C5R' + CCH R + 2CCoR? || T v ||

Thus, the inequality we have to solve takes the form

¢||Tho||* = 2CCR? || TTEw || — (2C, + CC2) R* <0 .
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We solve this inequality and find out that there exists a positive constant C;; such
that
HHi_UH S CHRQ .

Therefore,
o]l = [[ILo| + || Ifv|| € CiR? + CiuR? == C3R?
where C3 = C10 + Cy; > 0. ]

Corollary 1.4.1. Assume that J'(0) € By ,c,(0), then one has

T(t) € By(0) , Wi:|t] < Re 7w

We go back now to the old variables. By exploiting the estimate on the de-
formation of the action variables, we have

Corollary 1.4.2. (Stability of resonant tori)

There ezists a constant Cy such that J(0) € By ¢, (0) implies
J(t) € BL(0), Vt:|tf| < Re ¥ .

Proof. Let us compute

€CgT
R2
Thus, if we assume that J(0) € B ¢, then one has

+ CgR2 = C4R2 .

<1 =TI+ 1171 <

1

J(t) € B(0), Vt:|t| < Re 7 .

=

1.4.3 Dirichlet Theorem and semilocal stability

In this subsection we present a useful tool for the proof of the semilocal stabil-
ity which concludes Nekhoroshev’s theorem: the so called Dirichlet theorem for
simultaneous approximations.

Theorem 1.4.2. (Dirichlet theorem for simultaneous approzimations)
Let ay,...,an, € RT. For any Q > 1 there exists an integer q : 1 <q < Q and a
vector p = (p1,...,pn) € N" such that

1
]azq—pzlgj, 7,:1,,7’1,

Qn
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The proof follows directly from an application of the Minkowski’s convex body
theorem that we report in Appendix B for the sake of completeness. As we have
anticipated before, this theorem shall be applied in order to produce semilocal
stability estimates.

Let I, be the initial value of the actions, denote w = (w1, ..., w,) = 94(I) C
R™. The Dirichlet Theorem applies: V() > 1 there exists a resonant frequency
vector w* of period T' = ¢ such that 1 < T < @), whose components are rational
numbers of the form % such that

1
TQwt

1=1,...,n. (1.50)

|w; — wi| <

If @ is large enough, the frequency map w : I — w([) is invertible, then we can
invert the relation (1.50) and find out that the following inequality,

1
1 9
TQw1

L, - I < C i=1,...,n

holds.
Now, we would like to apply the stability estimates in a neighborhood of I*

which corresponds to a resonant torus of frequency w*. To do so, we have to choose
R such that ||[I — I*|| < £. Namely,

| 2
c — = us . (1.51)
TQn—1 4

At this point, we can compute the parameter i and verify that it is sufficiently
small. Thus, let us begin by the definition of ji, that is,

‘T T 2 2n—1 1
i = 57e (503 +C20R ) < Cs (sin +— ) .

R2 n—1
Choosing ) = 8_%1, one gets
7! < 265&’5ﬁ .

Inserting in the other estimates one gets the thesis.



Chapter 2

The spatial central motion problem

In this section, we apply the theory of Chapter 1 to the spatial central motion
problem, in particular we show that, when written in action angle coordinates, its
Hamiltonian is quasiconvex for any potential but the Keplerian and the Harmonic
ones.

2.1 Statement of the structure theorem

As in the Introduction, we consider the Hamiltonian of a particle of unitary mass
moving in space under the action of a central potential. In Cartesian coordinates,
it is given by
p[*
H(x,p) = - T V(|x[) (2.1)

and we define the total angular momentum (L;, Lo, L3) = L := x x p and denote
by L :=\/L?+ L3+ L% its modulus.

Let 73513) be a compact subset of R® invariant under the dynamics of H. Consider
the effective Hamiltonian, namely,

2
2
Heff(rva7L2) = E + ‘/eff(r7 L2) )

where )

L
‘/eff(r, LQ) = 2—72 + V(?”) y (22)

which will be considered as a function of (r, p,) only and, thus, L plays the role of

a parameter. Assume now that the central potential V' satisfies the assumptions
(HO0)-(H3). We have the following result

37
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Theorem 2.1.1. There exists a finite number of open disjoint sets (9](»3) C 731(43),

j=1,...,N, and a compact subset S® C 731(43) which is the union of a finite number
of analytic hypersurfaces', with the following properties:

(1) SHNOY =,V
(2) SO (U o§3>) =Py
J

(3) Each of the domains Oj(g) has the structure of a bifibration

0P LM B A R, (2.3)
with the following properties
(i) Every fiber of (’)](-3) £>Mj is diffeomorphic to T?

(it) Every fiber of M, —F>Aj is diffeomorphic to S*

(iii) the bifibration is symplectic: precisely, every fiber of Oj(.g) EN\/lj has a
neighborhood U endowed with an analytic diffeomorphism

U—bU) x Aj x T? (2.4)

such that the level sets of F~' coincide with the level sets of b x I and,
writing b = (p,q), the symplectic form becomes

dp Ndq + dI; N doy +dIx Ndas . (2.5)

(iv) In each of the domains (’);3)7 L = I, varies in an open interval, say I;
and (r,p,) vary in some level sets of Hepr. The infimum of the energy
H_y is either a nondegenerate mazimum or a nondegenerate minimum
of the effective potential.

The proof consists essentially of two steps: first we give a detailed construction
of the action angle coordinates in the planar case, and then we analyze the geo-
metry of the three dimensional case and show how to use the result of the planar
case for the construction of the generalized action angle coordinates.

namely level surfaces of analytic functions
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2.2 Action angle coordinates for the planar case

In the planar case, the Hamiltonian in polar coordinates is given by

2

P
H(T, pnp@) = 5 + Vveff(ra pg) ) (26)

where the effective potential V,;;(r, pj) was defined in (2.2).

Remark 2.2.1. Due to assumption (H2) there do not exist constants ki, ks s.t.
the potential has the form

To fix ideas, one example of a possible effective potential (for fixed value of py)
is the one in Figure 2.1.

Vers(r)

ioTol LoT02 i oTo3 T

Figure 2.1: A possible shape for the effective potential for a fixed value of py.

We now describe the domain in which the action angle variables can be intro-

duced.
We begin with the set where the angular momentum varies. Define

e 2 :=min {[Range(r*V’(r))] N [0, +oc] N [¢*, +00]} ,
e and

— Ly to be an arbitrary (large) positive number, if sup 73V’(r) = +oo,
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— Ly :=sup /r3V/(r), if supr®*V’(r) < +oc.
Then, the angular momentum will be assumed to vary in
Z:= (L, Ly) - (2.8)

We define now the domain for (r,p,). We fix py € Z and F € R and consider the
sublevels

Spo(E) :={(r,p;) + H(r,pr,pg) < E} . (2.9)

As E € R and py € T vary, the sets S,,(E) can be empty or can have one or
more connected components. We denote by S;°?(E) the union of the connected
components of S,,(E) whose closure is compact. We underline that we take the
union over the components whose closure is compact since we want to exclude the
unbounded domains which cannot be covered by action angle variables.

In conclusion, collecting all the information together, we can state that the set
of the phase space which will be covered using action angle systems of coordinates
is essentially the following one

PA = {(rvpraeapQ) :0eT » Po € I T’ pT U Scomp } ‘ (210)

EeR

Of course, for fixed values of py, the critical points of V., correspond to singular
values of action angle variables, so in order to have well defined action angle
variables, we have to eliminate some singular sets. Furthermore, in order to proceed
in the verification of quasiconvexity, we will exclude values of py corresponding to
which V¢ has degenerate critical points. Precisely, we have the following theorem

Theorem 2.2.1. There exists a finite number of open disjoint sets O; C Pa,
j=1,...,N, and a compact subset S C P which is the union of a finite number
of analytic hypersurfaces, with the following properties:

(1) SNO; =0, Vj

2) s (Uq) =P
J
(3) On each of the domains O; there exists an analytic diffeomorphism

(I)j : Oj — Aj X TQ , .Aj C R2 (211)
(r,pr, 0, p9) = (I, I2, 1, 2) (2.12)

which introduces action angle variables.
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(4) For every j, the Hamiltonian in action angle variables is a real analytic
function over the whole of A,

hjZAj'—)R.

(5) Each of the domains O; is the union for Iy in an open interval, say Z; of
level sets of H considered as a function of (r,p,) only. The infimum of the
energy H is either a nondegenerate mazximum or a nondegenerate minimum
of the effective potential.

The main point in the proof of this result consists in showing that, except
for at most a finite number of values of py € Z, the effective potential has only
nondegenerate critical points. We will also eliminate some values of py in order
to get that the critical levels of V.;; are distinct (see Lemma 2.2.3). This allows
to classify completely the domains of the action [; for fixed value of the angular
momentum.

Precisely, the construction of the sets O, will be done by first eliminating from
7 a finite set Z in such a way that, for py € Z \ Z, the effective potential has only
nondegenerate extrema at different levels. So one gets that Z \ Z; turns out to be
the union of finitely many intervals Z;. Then having fixed py € Z; one considers the
level sets of the effective Hamiltonian and takes the union of one of its compact
connected components as F varies in an interval not containing critical levels.
The set O, is obtained by taking also the union over py € Z;. The construction is
explained in detail in the next subsection.

2.2.1 The construction of the action angle variables

We begin the construction with two useful lemmas

Lemma 2.2.1. Let (7, ) be such that 7 is an extremum of Vs;(.,0). Then there
exists an odd n, a neighborhood R D U of 0 and a function ro = ro((£ — £)Y/™)
analytic in U, s.t. ro((€ — €)™ is an extremum of Voss(.;0). Furthermore ro(0) =
7, and for any ¢ # { the extremum is nondegenerate.

Proof. The proof is standard, but we give it for the sake of completeness. To fix
ideas assume that 7 is a maximum. Of course the theorem holds with n = 1 if
the maximum is nondegenerate. So, assume it is degenerate. Then, since by the
assumptions the function V;(., /) is nontrivial, there exists an odd n > 2, s.t.

OV 4(7,0) = a # 0. Thus we look for 6 = §(£) solving

_ 7 n
F(8,8) := 0, Vesp(T+ 0,0+ &%) = |V'(F+9) — 71 0) - (Tf—5)3 =0. (2.13)
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It is convenient to rewrite the square bracket as
a
mé” + Ry(9) ,

where Ry is an analytic function with a zero of order at least n 4+ 1 at the origin.
A short computation shows that we can rewrite (2.13) in the form

5 Kﬂ + Rgff)) (F + 5)3} " =¢, (2.14)

n!

which is in a form suitable for the application of the implicit function theorem.
Thus it admits a solution 6(£) which is analytic and which has the form

5(6) = (%7«3)1/ Ter o). (2.15)

It remains to show that for & different from zero (small) the critical point just
constructed is nondegenerate. To this end we compute the derivative with respect
to 0 of F' (cf. eq. (2.13)); we get

3 n
HF((E.) = T BOrT + RGO + g (210
I\
- (%) eroE), (@)
which for small £ is nonvanishing. O]

Lemma 2.2.2. Let 7 be a degenerate critical point of Viss(.;0) which is neither
a mazimum nor a minimum. Then for { in a neighborhood of ¢, the effective
potential Vosr(.; ) either has no critical points in a neighborhood of T, or it has
a nondegenerate maximum and a nondegenerate minimum which depend smoothly
on L.

Proof. A procedure similar to that used to deduce the equation (2.14) leads to the
equation

5" <% + R‘;Efs)) (F+oP =017, (2.18)

where n is now even and the sign of a is arbitrary. It is thus clear that for ({—/)/a
negative the critical point disappears. When this quantity is positive then it is
easy to see that two new critical points bifurcate from 7. Using a computation
similar to that of eqs. (2.16), (2.17) one sees that they are a maximum and a
minimum which are nondegenerate. O]
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Corollary 2.2.1. There ezxists a finite set Ty C I such that, VL € T\ Ly the
effective potential Voz;(.; L?) has only critical points which are nondegenerate ex-
trema.

Proof. Just remark that the values of L for which V,s;(.; L?) has at least one
degenerate critical point are isolated. Thus, due to the compactness of Z their
number is finite. [

Remark 2.2.2. The set Z \ L is the union of finitely many open intervals. The
critical points of Vepp are analytic functions of L* in such intervals; furthermore
they do not cross (at crossing points their multiplicity would be greater then one,
against nondegeneracy). Therefore the number, the order and the nature of the
critical points is constant in each of the subintervals.

The main structural result we need for the effective potential is the following
lemma.

Lemma 2.2.3. There exists a finite set Z, C T such that, VL € T\Z, the effective
potential Viz;(.; L?) has only critical points which are nondegenerate extrema and
the critical levels are all different. Furthermore each critical level does not coincide
with

Vo= lim V(r) . (2.19)
Proof. First we restrict to Z\Z (defined in Corollary 2.2.1), so that all the critical
points of V¢ are nondegenerate. We concentrate on one of the open subintervals
of T\ Zg (cf. Remark 2.2.2). Let ¢ := L? and let r({) be a critical point of
Verr(.;€). Consider the corresponding critical level V,;¢(r(€),¢) and compute

d _ Or OVeyy WVeyp 1
g0 Vers(r(0),6) = 25— =), 0) + —5 7= = 55, (2.20)

where we used the fact that r(¢) is critical, so that a‘g%(r(é),ﬁ) = 0 and the
explicit expression of V,¢r as a function of £. Thus the derivative (2.20) depends
on 7 only. It follows that if two critical levels coincide, then their derivatives with
respect to ¢ are different, and therefore they become different when ¢ is changed.
It follows that also the set of the values of ¢ for which some critical levels coincide
is formed by isolated points, and therefore it is composed by at most a finite
number of points in each subinterval. Of course a similar argument applies to the

comparison with 17, O

Remark 2.2.3. As L varies in one of the connected subintervals of I \ Zs the
critical levels and V°° remain ordered in the same way, in the sense that they do
not cross.
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We are now ready for the construction of action angle variables (and the proof
of Theorem 2.2.1).

Consider one of the connected subintervals of Z \ Z; and denote it by 7. We
distinguish two cases: (1) the effective potential has no local maxima for py € 7
but it must present one local minimum; (2) the effective potential has at least one
local maximum for py € 7.

We start by the case (1) and denote by 7o the minimum of V. (-, p3). The
second action is I := py, while the first one is the action of the one dimensional
effective system with Hamiltonian H(r, p,, ps) which is given by

1 Tmax
I =GB, L) = ;/ V2(E — Vg (r: I2))dr (2.21)
E € (Vigsrot ), V) (2.29)

where 7, and 7,4, are the solutions of the equation £ = V_ ;¢ (r; I2) and ry is the
minimum of the potential.

We can notice that the set S,,(V*>°) in the phase-space (r,p,) is compact.
Correspondingly the action [; varies in (0, G(V*°, I3)). Thus, we first construct
the domain O as

O = {(r,pm@,pg) : pg € 7 ,(rypr) € Spe(VOO)} , (2.23)

The actions vary in
A={(hb) : hel, Le©GV> L)} (224)

In this domain the Hamiltonian is obtained by computing F as a function of Iy, I5
by inverting the function G defined in (2.21).

Consider now the case (2) where the effective potential has at least one local
maximum. In this case there are in general several different domains which are de-
scribed by action angle coordinates. To fix ideas consider the case where V./(.; p3)
has exactly two minima 7; > ry and one maximum R, fulfilling V,;;(Ry;p3) < V°>°.
Then, the sublevel S,, (Vors(R1;p3)) has two connected components, in each of
which one can construct the action variables exactly by the formula (2.21) (with
a suitable redefinition of 7, and 74.). The two corresponding domains are

A= {(11,12) . LeT, I e (0 Gi(veff(Rl;zg),zg))} L i=1,2, (2.25)
with an obvious definition of G;.

Then there is further domain in which the action I; can be defined; such a
domain is above the local maximum of V,z; and is S,, (V) \ Sy, (Vess(R1;p3)- In
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this domain the action is still given by the formula (2.21), and the corresponding
domain of the actions is given by

Ag = {(I, 1) : b € T, Iy € (G(Vegg(Ri: 13), 1) + Ga(Veys (Ri ), I2), G (V™. 1)) |

(2.26)
In this case, the domains O; can be thought of as the regions in which the phase-
space (7, p,) is divided by the separatrix.

It is clear that in more general situations only one more kind of domains of the
phase space can exists: namely domains in which both the minimal energy and
the maximal energy correspond to the energies of local maxima of the effective
potential.

In order to conclude the construction of the domains, in both the situations
(1) and (2) described previously, we take the union over py € 7 and obtain the
domains O; as well as the action spaces A; exploiting the definition of the action
as the area under a curve in the phase-space.

Remark 2.2.4. We make the reader notice that all the domains O; are bounded
below by critical points of the effective potential V.s¢. In what follows, we are going
to differentiate the techniques used in order to prove our result of quasiconverity
according to the different nature of the critical point considered.

Summarizing we have that the following Lemma holds.

Lemma 2.2.4. Each of the domains O; in which a system of action angle vari-
ables is defined is the union for Iy in an open interval, say Z; of level sets of H
considered as a function of (r,p,) only. The infimum of the energy H is either a
nondegenerate mazximum or a nondegenerate minimum of the effective potential.
The corresponding value of the radius will be denoted by ro; = ro;(13) and depends
analytically on I, € T;.

In the following we will denote by

70; V' (ro5)

Voi (L) == Vegs(ro;(13), I3) = V (ro;) + 5

(2.27)

the corresponding critical level.

Proof of Theorem 2.2.1. In order to prove this result, it remains only to construct
the subset S. Thus, simply define § to be the union of the following analytic
hypersurfaces:

(1) {(Tv DPr; 9,199) - Do = 0}
(2) {(Tu DPr, Qap9) D Pe € Is}
(3) {(r,pr,0,p9) : Voj(pg) = H(r,pr,p0)}-
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Having said so, the Arnol’d-Liouville theorem can be applied in each domain O;
and, thus, a system of action angle coordinates can be introduced in each O;.
Moreover, since the maps ®; are analytic diffeomorphisms, then for every j, the
Hamiltonian h; : A; — R written in action variables is a real analytic function all
over Aj.

This concludes the proof. O

2.3 From the planar to the spatial case

We come to the proof of Theorem 2.1.1. To do so, as we have anticipated, we can
reduce our analysis to the planar motion.

First, we remark that the whole phase-space can be covered using two systems
of polar coordinates with z-axis (# = 0) not coinciding. Using any one of the
two systems, one can introduce explicitly by the classical procedure action angle
variables which turn out to be Iy = L and I; which is the action of the Hamiltonian
system with 1 degree of freedom and Hamiltonian H,ss(r, p,, L?). Thus, I; has
exactly the same expression as in the planar case, but with p? replaced by L? =
x Ap|*.

Furthermore, the Hamiltonian as a function of I;, I, has the same functional
form as in the planar case.

We come to the construction of the set (9](-3) and the description of the phase-
space and of the fibration related to the superintegrable structure of the spatial
case.

Then, we remark that any compact subset of the phase-space invariant under
the dynamics can be constructed as follows.

For L € T (cf. (2.8)), define

S(E) = {(x,p) : L*(x,p)=L*and H(x,p) < E} , (2.28)

then the sets 823) (E) can be empty or can have one or more connected components.

Denote again by S;”""”(E) the union of the connected components of 823) (E) whose
closure is compact. Define

P = U s . (2.29)

LeT E€R

so that the reference domain introduced at the beginning of Chapter 2 can be
redefined according to (2.29).

We construct now the subsets OJ(.S) as follows. Let Z be one of the intervals of
Remark 2.2.3. For L € Z, the structure of V.z¢(-, L*) and the construction of I
have been described after Remark 2.2.3.
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To fix ideas, let us concentrate on the situation (1) in which V.¢¢(-, L?) has
only one nondegenerate minimum, 7o(L). Define

I = (Vegs(ro(L), L?), V™)

and consider the set

RY > M= {(E,Ll,Lg,Lg) A/ L3+ L3+ L3 ::Lei,EeIE} ,

and denote by F' the map
F: PS’) = M.

Then, in the previous section we constructed a domain O for the action angle
variables of the planar case by

O = UngI UEEIE {(Typm@ap9) - Po S j. 7H(T7p7“797p9) = E} .
Correspondingly, one has the set for the spatial case constructed as follows.
0(3) = F_I(M) = ULEI UEGIE {(Xa p) : L2(X7p) = L2 ’H(Xa p) = E} :

In situation (2), we are considering an effective potential that admits at least a
nondegenerate maximum, thus, in this case different domains can be covered by the
action angle variables. However, we can proceed analogously in order to construct
the domain O®).

The map F restricted to the subset O®) is a surjective submersion since the
components are a maximal set of independent integrals of motion. Furthermore,
in Chapter 1, we have proved that their Poisson matrix satisfies the property of
having constant rank equal to 2 at every point of M.

Moreover, the set M is diffeomorphic to

M=S? T xTp

and the subset O®) is a fiber bundle over M whose fibers are compact and connec-
ted, thus, Liouville-Arnol’d theorem assures that the fibers are diffeomorphic to
2-dimensional tori T?. Furthermore, every fiber of F' posses a system of generalized
action angle coordinates.

To conclude, we define the map

F:MHiXIEZ:Aj

which is a fibration whose fibers are diffeomorphic to 2-dimensional spheres S2.
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2.4 A Nekhoroshev type theorem

Our aim is to apply the abstract version of the Nekhoroshev type theorem (cf.
Theorem 1.3.1, Chapter 1) to the spatial central motion problem. Precisely, we
have the following result

Theorem 2.4.1. Assume that V is neither Harmonic nor Keplerian; then there
exists a set KB C 73/(‘3), which is the union of finitely many analytic hypersurfaces,
with the following property: let P : 735,3) — R be a real analytic function. Let
Cc® c 735‘3) \K® be compact and invariant for the dynamics of H; then there exist
positive e, C,Cy, Cs,Cy with the following property: for |e| < e., consider the
dynamics of the Hamiltonian system

H..=H+¢P
then, for any initial datum in C® one has
IL(t) — L(0)| < Cye'*,  |H(t) — H(0)| < Coye'/* (2.30)

for
It| < Cyexp(Cyue™4) . (2.31)

Remark 2.4.1. In the case of the Harmonic and the Keplerian potentials the
Hamiltonian depends only on one action, therefore neither the steep Nekhoroshev
theorem applies (see e.g. [GCB16]).

The main point in the proof of this result is the remark that the Hamiltonian of
the spatial central motion problem, when written in the action variables, has the
same functional form as the planar case due to degeneracy. Thus, we can reduce
our analysis to the planar case.

Our main result for the planar case is the following theorem.

Theorem 2.4.2. Consider the planar central motion problem. Assume (H0)-(H3),
then one of the following two alternatives hold:

(1) Foreveryj =1,...,N there exists at most one analytic hypersurface K; C A;,
s.t. hj is quasiconvez for all (I, Is) € A; \ K;.

(2) there exists k > 0 s.t. V(r)=kr? or V(r) = —k/r.

Corollary 2.4.1. Assume that V is neither Harmonic nor Keplerian, then there
exists a set JC C Py, which is the union of a finite number of analytic hypersurfaces
s.t. a system of analytic action angle coordinates exists in an open neighborhood
of any point of P4\ K. Furthermore, the Hamiltonian H written in action angle
coordinates is quasiconver at all points of Pa \ K.
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Proof. (Theorem 2.4.1)

We apply the abstract Nekhoroshev’s theorem for degenerate systems (Theorem
1.3.1, Chapter 1). First we describe the set K®. The first set it contains is the set
S®). Then consider one of the sets (’)5»3) and the corresponding set A;. We consider
the hypersurface K; C A; on which the Hamiltonian h; is not quasiconvex; when

pulled back to O](-3) this is still an analytic hypersurface (it is the zero locus of the
Arnol’d determinant, which is an analytic function which is defined on the whole
of OJ@, since the actions are analytic on the whole of (9](»3)). We define £ to be
the union of such analytic hypersurfaces and of S®).

Then, it follows that the action angle coordinates exist, are analytic and the
Hamiltonian is quasiconvex in 73;3) \ K®). However, the action angle coordinates
can have singularities at the boundary of such a set or the Hamiltonian can fail to
be quasiconvex at such a boundary. Any compact invariant subset of 731(43) \ KB
is the preimage in the phase space of Uj C](-S), where CJ(B) C A; \ K; is compact.
It follows that the maps introducing action angle coordinates extend to bounded
analytic maps in a complex neighborhood of C](-g) for any ;5 and furthermore the

Hamiltonians h; are quasiconvex on a neighborhood of Cj(-g) with uniform constants.
Thus Theorem 2.4.1 follows. O

The proof of Theorem 2.4.2 will cover the next two sections: the strategy consists in
studying the asymptotic behavior of the Arnol’d determinant at circular orbits and
it goes differently according to the domains O;. Indeed, we will differentiate the
techniques according to the nature of the critical point contained into the domains.
Precisely, in the first part of the proof (see Section 2.6), we will concentrate on the
domains which are bounded below by a minimum of the effective potential: we will
first expand the Hamiltonian at the minimum by computing the Birkhoff normal
form and, secondly, we will use this expansion to compute the first terms in the
expansion of the Arnol’d determinant. We will show that the Arnol’d determinant
is a non trivial function except for the Harmonic and the Keplerian potentials.

In Section 2.8, we will discuss the domains bounded below by a maximum: we
will prove that the Arnol’d determinant diverges at the maximum and, thus, it is
a non trivial function of the actions.

2.5 The condition of quasiconvexity

First we remark that the notion of quasiconvexity can be expressed in a couple of
equivalent forms in the case of a Hamiltonian with two degrees of freedom.
Let us begin with the first one: let us fix one Hamiltonian h : A — R in two
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degrees of freedom in action variables and denote

_Oh - Oh
“UToL0 2T oL
Let us define by
d%h (ah T
D =det | 01> \OI 2.32
e oh . , (2.32)
ol

the well known Arnol’d determinant. We are now going to show that, for systems
with two degrees of freedom, quasiconvexity is equivalent to the nonvanishing of
the Arnol’d determinant (cf. Proposition 2.5.1 ).

Definition 2.5.1. Let h be a complete integrable Hamiltonian with n degrees of
freedom and frequency w. Then, h is said to satisfy the Arnol’d condition at I* if
the following map

(L, A) = (Aw(I), (1))

has mazimal rank at (1*,1).

Explicitly, this condition can be written in the form

Aw(I*) (8h(1*))T
D) =det | 9! o1 £0.

On(I*)
o1 0

Proposition 2.5.1. Let h : A — R with A C R? be a Hamiltonian with two
degrees of freedom in action variables. Then, h is quasiconver at I* € A if and

only if D(I*) # 0.

Proof. In the two dimensional case, D # 0 takes the form
0’h 0?h 0?h 0?h 40
w Wy — w | —ws | =5we — ———w
"\onon * o2 *\orz™  oanoL ’

9*h O0%h 0*h
Wy — 22— WiWo + — W 0,
oIz “onal, " ozt 7
where all the quantities are evaluated at the point I*.
Moreover, this condition can be explicitly written as

namely,

Q)(I*) = {n, TH (1)) #0.
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where we denoted by 7 = (wq, —wy).

Thus, we conclude that, in the case n = 2, the Arnol’d condition is equivalent
to the request that the quadratic form Q is different from zero on the hyperplane
generated by the vector n normal to the gradient VA(I*), namely, quasiconvexity.

O

Finally, we show that the condition of quasiconvexity can be written in a second
form by means of the Burgers equation. Indeed, let us rewrite explicitly the
condition D = 0: we have

h
or?

0%h o*h

D= L
onLoL, T ot

w3 + 2

(2.33)

Thus, rearranging the terms appearing in D, it is straightforward to see that, if
wy does not vanish, the condition D = 0 can be written as a Burgers equation,

precisely

ov ov w1
— —y— ith v = — . 2.34
611 Valg W v W2 ( s )

The two forms in which we have expressed the quasiconvexity condition are ab-
solutely equivalent and our main result can be obtained using both these forms.
However, for simplicity, for the study of D close to a minimum of the effective
potential, we will choose the latter one.

2.6 Domains bounded below by a minimum

In this section we concentrate on the domains O; s.t. the infimum of the energy H
at fixed I, is a minimum of the effective potential. Thus the point ry;, of Lemma
2.2.4 is a nondegenerate minimum of the effective potential. In this section, since
the domain is fixed we omit the index j from the various quantities. Thus A will
be the domain of the actions, h the Hamiltonian written in action variables, rq the
minimum of the effective potential and 1} the corresponding value.

The main result of this section is the following LLemma.

Lemma 2.6.1. Let O; be a domain s.t. the infimum of the effective Hamiltonian
at fived I is a nondegenerate minimum of the effective potential. Assume that the
Arnol’d determinant vanishes in an open subset of O, then the potential is either
Keplerian or Harmonic.

The rest of the section is devoted to the proof of such a lemma.

We exploit the remark that in one dimensional analytic systems Birkhoff normal
form converges in a (complex) neighborhood of a nondegenerate minimum. This,
together with the uniqueness of the action variables in one dimensional systems,
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implies that, for any I, the Hamiltonian h, as a function of I, extends to a complex
analytic function in a neighborhood of I; = 0 and that the expansion constructed
through the one dimensional Birkhoff normal form is actually the expansion of
h(l,13) at I; = 0. It follows that also D extends to a complex analytic function
of [; in a neighborhood of 0. Thus one has an expansion

h(ly,Is) = ho(ls) + hi(I) [y + ...+ he (L) I] + ..., (2.35)

where the quantities A, can be in principle computed as functions of the derivatives
of V' at ro(I2) and of Is.
Here we will proceed by an explicit construction using a symbolic manipulator.

Remark 2.6.1. In O, there is a 1-1 correspondence between Iy and rg, so each of
the functions h, can be considered just a function of ro and of the derivatives of
V' at ro. Correspondingly the derivatives with respect to Iy can be converted into
derivatives with respect to ro through the rule

0 2 0

— = — 2.36
Ol (34 g(ro))\/ToV'(ro) 90 (2:56)
where we have defined
roV"(r

g(ro) == (;/(—:0;) . (2.37)

Furthermore, it is convenient to define

2

R(ro, V'(r0), g(ro)) := : (2.38)

(3+ g(r0))\/T0V'(r0)

Remark 2.6.2. g constant is equivalent to the fact that the potential is homogen-
eous or logarithmic , precisely, one has

k
V(r) = 4l LeR > 3 -1
g(ro) = ¢ (7) 1 ceR, forc>3,c#

V(r)=kln(r), keR.

(2.39)

Thus, starting from the Birkhoff normal form, we compute the frequencies w;
and woy, expanded in power series of 1, namely,

wl(lg) = CUL()(]Q) + W171(12)11 + CL)LQ(IQ)]% 4+ ... s
CL)Q([Q) = w270(12> + w2,1(12)1'1 + w272(12)[12 4+ ... s

and we use it to compute an expansion of v = w; /ws at the minimum

V<[1; [2) = V()(IQ) + V1<[2)[1 + ...+ VT<IZ)[I + ... (240)
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Indeed, we have

w wiotwidly+ ... 1 lw
vV = _1 = 1,0 1,171 = (w1,0+W1,1]1+---) (1"‘5&]1"_)
W2 Wa 0 (1—1—%’3[1 —i—) W2,0 w2,0

W1,0 W11 1 Wi,0W2,1
- + ( + = 2 ]1 + ...
wzo CUQ’O 2 (x}270

I:I/0+I/1[1—|—... .

The idea is now to impose that the Burgers equation (2.34) is satisfied up to
the first order in I identically as function of /. Thus, let us consider the Burgers
equation (2.34) and let us pull into it the expansion (2.40). We obtain

i(V0<IQ)—|-I/1([Q)Il—l-VQ(IQ)IlQ—i-. .. ) = (Vo(Ig)—i-Vl (IQ)Il—‘r .. )i(l/o(fg)—l-vl (IQ)Il+ .. ) ,

a1, oL
that is
Ao (I v (I Ovo(I
vi(l2) +2v2(I2) 11 + -+ = vo(l2) 12522) + <VO(IQ) V31§22) +nllz) ’2)22)) it

At this point, we impose that the equation is satisfied up to the first order in I,
that is, we impose

81/0
V" = Vy—=—

ol ’

1 8U1+ aVo
V9 =—|1vy— + 11—
>~ 9\ Mo, " Tor, )

and we consider such equations as equations that determine the degenerate poten-
tials. We will show that such equations admit the only common solutions given
by the Harmonic and the Keplerian potentials.

According to Remark 2.6.1, we will consider all the functions v; as functions of
ro instead of I and convert all the derivatives with respect to I into derivatives
with respect to 7y using (2.36).

Finally, it is convenient to use, as much as possible, g as an independent variable
(see eq. (2.37)) instead of V. We remark that V" (rq) = g(m)r—‘:(”’), which implies
that Vr > 2 the r-th derivative of the potential can be expressed as a function of
70, V'(10), 9(r0), ¢’ (r0), . . ., g2 (rg). We will systematically do this.

There is a remarkable fact: writing explicitly the equations (2.41), it turns out
that they are independent of V', so that they are only differential equations for g.
For a proof of this fact see Appendix D.

(2.41)

We report below the outline of the computations and the key formulse. The
complete calculations have been implemented in Mathematica™and are collected
in Appendix E.
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First we computed explicitly vg, v, o, (defined by (2.40)) getting formulse of

the form
vo =3+ g(ro) , (2.42)

!/

v1 = vi(ro, V'(r0), 9(r0), 4'(10), 9" (r0))
vy = Va(T0, V’(To)>9(7“0)a9/(7"0)79”(7"0),9(3) (7’0)79(4)(7“0)) :
The explicit forms of v and 1, are rather long and are reported in Appendix E.
Then one can use the explicit forms of the functions vy and v; to compute the
r.h.s. of eq. (2.41), which will have the form

81/0

RMJ@_ =: G1(ro, V'(r0), 9(r0), ¢'(r0)) .
T'o

3 (MG + gt ) = Galra, V(1) 9010 10 10600
To 87“0
where R is the expression defined in eq. (2.38).

Then we have imposed v; = GG; and vy = G4, which are the couple of differential
equations for g that we solved.

The strategy in order to find the common solutions is standard: it consists in
taking derivatives of the equation of lower order until one gets two equations of the
same order (fourth order in g, in our case), then one solves one of the equations
for the higher order derivative and substitutes it in the other one, thus getting
an equation of order smaller then the previous one. Then one iterates. In our
case the final equation will be an algebraic equation for g, whose solutions are just
constants. The value of such constants correspond to the Kepler and the Harmonic
potentials, so the conclusion will hold.

and

So, we solve v; = G for ¢"(rq) and v, = Gy for g¥(ry), getting

g"(ro) = f2(r079(r0)>gl(r0)) )
9W (re) = fa(ro, g(ro), ¢'(r0), 9% (ro)) .

where we have used the fact that the powers of V'(r¢) can be factor out and, in
the second one, we have also used fo(70, g(10), ¢'(r0)) to remove the dependence of
g% on ¢"(rq). A similar procedure will be done systematically.

Starting from (2.43), we compute

d*fy _
drg

(2.43)

F4(T07 9(7"0)7 g/(T’o), g(3) (TO)) )

and solve the equation Fy(ro, g(r0), ¢'(r0), 9% (ro)) = fa(ro,9(r0), ¢'(r0), 9® (ro))
for ¢©®, getting

9(3) = f3(r07g(T0)7g/(r0)) .
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Starting again from (2.43), we compute

dfs _

dro F3(ro, 9(r0), 9'(r0))

and solve the equation F5(rg, g(ro), g (ro)) = f3(ro, g(r0), ¢'(r0)) for ¢’ getting
9 = fi(ro,g(ro)) -

Finally we compute
df;
d?”()

and solve Fy(ro, g(ro)) = fa(ro, g(ro)) for g. It is remarkable that such an equation
turns out to be independent of 7, so that the solutions for g(ry) are just isolated
points, namely constants. In particular, it turns out that the only real constants
solutions are ¢ = —3,9 = —2 and g = 1. The value —3 is excluded according
to Remark 2.2.1, so that the only remaining potentials are the Keplerian and the
Harmonic ones. This concludes the proof of Lemma 2.6.1.

= F5(ro, g(ro))

2.7 A new proof of Bertrand’s Theorem

Bertrand’s Theorem. Among all the central force potentials giving rise to
bounded orbits, the are only two types for which all bounded orbits are closed:
the Keplerian potential and the Harmonic potential.

Proof. By the previous section, the ratio v(Iy, I5) = =% is a trivial function of the
actions only in the Harmonic and the Keplerian case. Thus, in all the other cases,
there exist Iy, I, such that v is irrational and thus on the corresponding torus the
motion is not periodic, against the assumption. L]

2.8 Domains bounded below by a maximum

Consider now domains the O; s.t. the infimum of the energy H at a fixed I, € 7 is
a nondegenerate maximum of the effective potential V,s¢. Denote by Vi = Vj(12)
the value of the effective potential at such a maximum delimiting from below the
range of the energy in O;. The main result of this section is the following

Lemma 2.8.1. Let O; be a domain s.t. the infimum of the effective Hamiltonian
at fized Iy is a nondegenerate mazimum of the effective potential, then the Arnol’d
determinant vanishes in O; at most on an analytic hypersurface.
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The rest of the section is devoted to the proof of such a lemma. The main
tool for studying the limiting behavior of the action close to the maximum Vj is
the following normal form theorem, which is a slight reformulation of a simplified

version of the main result of [Gio01].
Theorem 2.8.1. Let \2
W(r)=W,— ?7‘2 + O(r®)
be an analytic potential having a nondegenerate mazimum at r = 0; consider the

Hamiltonian system with Hamiltonian
P2
Hrpe) =2 4 W)

then, there exists an open neighborhood Vy of 0 and a near to identity canonical
transformation ® : Vo 3 (x,y) — (r,p,) € Uy := (Vo) of the form

T

r= \/X—i_fl('ruy)
pr = VY + fo(z,y)

with f1, fo analytic functions which are at least quadratic in x,y and such that in
the variables x,y, the Hamiltonian takes the form

(2.44)

h(z,y) =Wo+ A + ) NJ (2.45)

i>1

where

(2.46)

Furthermore, the series is convergent in V.

The behavior of the action variable close to the maximum of the effective
potential is described by the following theorem.

Theorem 2.8.2. There exist analytic functions A(E, I,), Gy (E7[2), where
E=E—-Vy(l),
analytic and bounded in the domain
{(E, L) : Lel, Eel0Vull) — VO(JQ))} , (2.47)

where Vi (12) is the mazimal value of the energy at fized I in O; and s.t. the first
action Iy is given by

L =G(E, L) = —AE,L)InE + G, (E, L) (2.48)
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Furthermore F i F(EL)
n + ) 42
ANFE L) = ———= 2.49
( ) 2) 7T)\<12) ( )
with F having a zero of order 2 in (0, Iy) and \* = N\*(I,) := _dixsz (rg) > 0.

Remark 2.8.1. The main point is that the lower bound of the interval (2.47) for
E is included, so that equation (2.48) describes the actions until the mazimum.
Furthermore, by (2.48) the following limit exists

IIO = Jlm G(E,IQ) == Gl(O,IQ)

E—0t+
and is finite.

Remark 2.8.2. Since F — G(E — Vy(13), I5) is a monotonically increasing func-
tion for E € (Vo(l2), Vm(12)), there exists a function h(Iy, Is) such that

G(h(L, ) — Vo(ly), I,) = I.

Furthermore, by the implicit function theorem, h s analytic in I, Iy for Iy € 7
and I, > [10.

Proof of Theorem 2.8.2. Let I, € I and consider the Hamiltonian

2
Dy
H(r,p,, pg) = 5 T Vers(r,p3)
with pg = I5. In the whole construction I will play the role of a parameter, so,
until the end of the proof, we work in the space (7, p,) and we omit the dependence
on _[2.
We first make an expansion at 7y and obtain
p2 )\2 ) 5
H(r,p,.):é—l—%—?(r—ro) —l—(’)((r—ro) ) .

Secondly, we make a change of variable to r’ := r — rg; omitting the primes, we

obtain

p2 )\2
H(r.py) =5 + Vo - 77’2 +0(r?) . (2.50)

Fix a value of the energy £ > Vj, close enough to V4 and denote by (F) the
level curve of H at level E. Then, vy(F) is a closed curve in the phase-space whose
normalized enclosed area is the action [; that we want to compute.

Thus, by definition, we have

1 1
I = o prdr = —/ prdr (2.51)
T Jy(E) T Jyt(E)
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where 47 (E) is the upper part of the level curve, namely, the intersection of ~
with p, > 0.
We split the domain of integration into two regions, namely,

1
L == {/ prdr +/ prdr} . (2.52)
T Lyt e)nu yH(B)Ue

where U/ is a neighborhood of the nondegenerate maximum that will be fixed in a
while. First, we remark that the second integral does not see the critical point, so
it is an analytic function of E until V4. To analyze the first integral, we exploit
Theorem 2.8.1.

Let us fix a small positive x; and let us consider the neighborhood V of 0

4E 4E
RZDOV = (—xl,xl)x <— T—Fl‘%, T—l—%%) .

Provided E and x; are small enough, one has V C V; (c.f. Theorem 2.8.1). Let us
define U := (V).

We now write 7, (E) NU in the variables (z,y) and parametrize it with x €
(—x1,21). To this end remark that, since the Hamiltonian H is a function of .J
only, namely

H=Vo+AXJ+G(J),

where G(J) = 37,5, \iJ™*!, by the implicit function theorem, there exists an ana-
lytic function F(E) having a zero of order 2 at 0 and such that

_ E+ F(E)

! B

and, therefore, v, (F) can be written in the form (z,y(x)) with

y(x) = \/f + 2. (2.53)

To compute the first integral in (2.52), we remark that since ® is canonical and
analytic in a neighborhood of the origin, there exists a function S(z,y) analytic in
a neighborhood of the origin s.t.

prdr = ydx 4+ dS

so, we have,

/ = / yde + (e, y(e1)) — S(—a1,y(—a1)) .
Y+ E)nU

—x1
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Since z; is fixed, the terms involving S are analytic functions of £. Thus, we only
compute the first integral, namely,

‘/ M%:/ ¢%E+§@Jm+w%m

which takes the form

A A
E+ F(E) 2(E + F(E))
— 3 ln( 3 )

/m1 ydx:wln <x1+\/x%+w> +$1\/xf—|— 2(E + F(E))

—x1

(2.54)
It is easy to see that the first two terms are analytic in a neighborhood of 0.
Rewriting the third term as
E+F(E), - 2  2F(E)
——————mFE-In{-4+—-+
. ()\ TTE
and remarking that the second function is analytic in a neighborhood of 0, we get
the result. All the computations needed are collected in Appendix D.
The formula (2.48) is obtained by reinserting the dependence on Is. O

We come to the Arnol’d determinant. We will work in the region £ > 0 so that
the function G is regular and the implicit function theorem applies and allows to
compute h and its derivatives. Then, we will study the limit £ — 07.

By the implicit function theorem, the frequency w, is given by

oh <8G

-1

w1

Lemma 2.8.2. Let f be an analytic function of the form
f=f(E L) = f(hI1,Is) = Vo(I2), )

then, -
df  9f0E of 0Of Vo |, of
— =t = W | + .
dl, oE 0, 0l, OF 0l 0l
Proof. Tt follows directly from the definition of the function £. O]

It follows from Lemma 2.8.2 and the implicit function theorem that the frequency
wy is given by

oh 9GOV

:6_12__6_IQW1+6_]2‘

Wo
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Indeed, we have

Wy — ——

_dG_aG( avo) oG

B d_IQ " 9E 01y a_]2 ’
that is,
Wy = —% <8—G>_1+% .
0l, \OF oI,
Thus, it is worth introducing a function W, defined by
Wh(E, L) = _g_gwl + g—‘g : (2.56)

Proposition 2.8.1. Let h: A — R be the Hamiltonian in two degrees of freedom
written in action angle coordinates, then the Arnol’d determinant can be rewritten
in terms of G and W, as

Al
o1z

2 2
> Lo, VOV 50 G

D=
oI, OI, L oIz

—Wf

i (aVO (2.57)

VY 9E \ ol

Proof. By exploiting the formulee (2.55), (2.56) and Remark 2.8.2, we compute the
second derivatives of the Hamiltonian h. We have

0°h  OW(E, L) oW, Oh . W
oIz — oL, 9E 8, ' 9E
Ph AW(E, L)
oLolL, dl ’

Fh _AWB.L) _ d (0G0

o8~ db, _d_lz(_ 18_12+a_12>
AW, 06 d [0G\ %,
T AL oL 1d_fz<a_12)+a_fg'

We report here the expression of the Arnol’d determinant, that is,

0%h 0%h 0%h

D=-220242 _gne.
o2 T onan " T !

(2.58)

We can rewrite the three terms of the Arnol’d determinant (2.58) separately as
)4%1
OF

dwi
dly -’

Dy = - W W, (2.59)

Dy = 2W W, (2.60)
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L0GdAW o d (0G 2, 0*V;

— . 2.61

=Wisn al, dl, Wiig dl, (ah) MGm OI3 (2.61)

And, gathering together the expressions (2.59), (2.60) and (2.61), after simple
computation (for details see Appendix D), we obtain

W (Vo2 W1 OV, ,0%G , 0%V,
D=— — [ — 2
Wi (8[2) WiSn, an TR 12 WG o2
This concludes the proof. O

Proposition 2.8.2. The Arnol’d determinant diverges as E tends to zero.

Proof. Due to the structure (2.48) of G, it is easy to see that 2 812 is bounded as

E — 0% (remark that means derivative with respect to the second argument).

8V0

512 is a regular function of I, and W; — 0 as E approaches
2

_ 0*G , 0*V
lim (W1 o172 - Wi 8]20) = 0.

Therefore, since

zero, we have that

E—0t
Let us now concentrate on the analysis of the remaining terms of (2.57). The
asymptotic behavior of the function W is given by

T
Wi =17

Concerning the derivatives, we have

8W1 oG -2 82G E—o0t . an 8‘/0
_ (% _ —  lim (2 90) 9.
ol (aE> oLoE " E1—>Ho1+< Wir an, ) =

Concerning the first term, using

15)4%! T
0F ~ EI’E’
we have that it behaves as
A2V’
EIn*E ((9_]2)
which diverges to infinity as £ — 0. This concludes the proof. [

Lemma 2.8.1 is a consequence of the fact that D is a nontrivial analytic function

in .Aj.



Appendix A

The Bertrand’s Theorem

An interesting result concerning central force potentials is the following theorem
due to Bertrand

Bertrand’s Theorem. Among all the central force potentials giving rise to
bounded orbits, the are only two types for which all bounded orbits are closed:
the Keplerian potential and the Harmonic potential.

A.1 Classical proof of Bertrand’s Theorem

We will present here a revisited version of the original proof given by Bertrand in
[Ber73|. Precisely, we will follow the proof given by Arnol’d in [Arn91].

Consider the effective potential Vs, fix a value L of the angular momentum
and assume that it has a strict minimum at r5. We impose this condition in order
to consider only the family of central potentials which give rise to bounded orbits.
Denote

and wsy(rg) the frequency associated to the radial motion. Then, we have the
following
Lemma A.1.1. The only central potentials for which vy(rg) := Z—; 15 independent
of ro are
k
V(r)=—r* for a>-2,a#0,
Q@

V(r)=klnr,

(A.1)

where k 1s a positive constant.

62
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Proof. Just remark that the ratio vy has been computed in Chapter 2 (cf. eq.(2.42))

and is given by
1/0(7"0) = \/ 3 +g(7’0) ,

so that this is independent of r( only if g is equal to a constant and, thus, according

to the definition of ¢
. T’Ovll(’l"o)
glro) = Vi(ro)

we have that (A.1) holds. O

Lemma A.1.2. Let V(r) be a central potential of the form (A.1). Then,

, 1 [m™ L 1
lim — dr = - | (A.2)
Botoo 27 Jp, 12/2(E = Vogs(r)) 4
for a > 0 and for the logarithmic potential and
1 [m™ L 1
lim — dr = : (A.3)
Bt 21y, 12/2(E — Vegs(r)) 22+ a)
for =2 < a <0.
Proof. Consider a potential of the form (A.1). Let us consider the integral
1 [™ L
dr, (A.4)

2 . TQ\/Q(E — Vers(r))

where r,,, and ry; are the two solutions of £ = V_z¢(r).
Making the change of variable

the integral is reduced to

I L
_/ ds . (A.5)
20 - B v ()

We distinguish now the two cases in (A.1). In the case of the logarithmic potential
(the associated effective potential is depicted in Figure A.1 for different values of
the positive constant k), the integral becomes

1
i/ L ds , (A.6)
Tl 2 (B - B — ki ()
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Vers

Figure A.1: The effective potential for the logarithmic potential V'(r) = kIn(r) for
different values of the positive constant k .

and the maximal value of the energy FEj; for which we have bounded orbits can
be taken as Ej; = +oo.

Let us now take the limit of the integral (A.6) for £ — FE)j. In this case, the
extrema 1, and rj; tends to 0T and +oo respectively and the integral tends to

1 x 1

1 [t L 1 [t

— ds = — ——ds = —

27T 0 2 (L_2 o L232) 27T 0o V 1 — 32 27( 2
\/ 2 2

Let us now pass to consider the case of the power law potential. Following the
reasoning above, the integral in this case becomes

ds . (A.7)

1 /1 L
27 Jrm L2s2 Erot2
\/2 (2B - 2 — i)

For o > 0, the corresponding effective potential is depicted in Figure A.2.
We can notice that also in this case, the maximal energy E), for which we have
bounded orbits is Fj; = +00. Thus, we can take the limit of the integral above
for E +— +o0o. Also in this limit, the extrema r,, and rj; tends to 07 and +oo
respectively. Thus, the computation is the same as in the previous case and the
integrals tends to i.

We analyze the last case. For —2 < a < 0, as we can see from Figure A.3, the
maximal energy in this case is equal to Ep; = 0~ while the extrema ro? = —;—fz
and ry — +o00 .
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Vers

Figure A.2: The effective potential for the power law potential V' (r) = gro‘, a>0
for different values of the positive constant & .

Vess
Figure A.3: The effective potential for the power law potential V (r) = gro‘, -2<

a < 0 for different values of the positive constant £ .

Substituting this into the formula (A.7) and taking the limit as E' — 0~ we obtain

1 /1 L 4 1 /1 L 1 1
N S = — —_— s = — = .
2m Jo \/2 (_L2232 N L_2) 2m Jo Vsm@ — s2 2na+2  2(a+2)

25«
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This concludes the proof. O
The proof of Bertrand’s Theorem follows from these two lemmas.

Proof. (Bertrand’s Theorem)

It is well known that the orbit is closed if and only if the integral (A.4) belongs to
Q. In general, this integral will depend continuously on the initial values. Thus,
let us compute the value of this integral when we are approaching the minimum
of the effective potential, namely,

1 M L
lim —
B Bin 270y 120 /2(E — Vegs(r))

dr = vy(ro) -

where we denoted F,,;, the energy associated to the minimum. For continuity, we
have to impose that 14 is constant when L varies.

Furthermore, by comparing the two integrals when E +— FE,;, and when E +—>
FEyy, we deduce that = —1,2 which correspond precisely to the Keplerian and
the Harmonic potentials. O



Appendix B

Dirichlet Theorem

We start by presenting the one-dimensional version whose proof is much easier.
For details on the results collected in this appendix see for instance [Sch96].

Theorem B.0.1. (Dirichlet Theorem: one-dimensional version)
Let a and ) be real numbers with () > 1. Then, there exist integers p,q such that
1 <q¢<Q and |ag — p| gé.

Proof. Firstly, we prove the case for @) € N. Let us denote by {a} the fractional
part of «, that is {a} = a — [a], where we have used [a] to indicate the integer
part of a, and we observe that {«} € [0,1). Let us consider the following real

numbers
0,1,{a}, {20}, {3a},.... {(Q — 1)a} .

They are (@ + 1) real numbers in the unit interval [0, 1]. Therefore, let us divide
the unit interval [0,1] into @ sub-intervals of the same length % Since we have
(@ + 1) real numbers in the unit interval which has been divided into @ parts,
at least two real numbers {rja} and {rsa} belong to the same sub-interval with
r1,72 € Nsuch that 0 <r; < Q — 1, i = 1,2 and r; # r. Moreover, we have that

1
{nat —{rall < 5

And, if we indicate by s; and sy the integer part of ra and rya respectively, that
is, {ra} = ra— s and {rea} = roa — s9, then we have

Ira— 81 — (raar — 89)| < 1 )
T Q
Let us suppose that ry > ry, then
lga —p| < L
iy Q 9

67
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where we denoted g =r1 —ry e Nwith 1 <¢g< @ —1and p=s;—s, € N. Let us
consider now the case () € R. If ) is not an integer, we can construct an integer
by @ = [@] + 1. Then, we can apply the result above and we obtain that there
exist two integers ¢,p € N such that 1 < ¢ < Q' —1 and

1
lga — p| < @ .

Since ' — 1 = [Q)], then the inequality above is satisfied for 1 < ¢ < [Q] < @, that
is, the following inequality

1

g —p| < =

Q

is satisfied for ¢ € N such that 1 < ¢ < Q. m

The theorem above has an obvious generalisation to the multi-dimensional case
whose proof follows directly from the one-dimensional one which we report here
for the sake of completeness.

Theorem B.0.2. Suppose that o, . .., a, aren real numbers and that Q) > 1 is an
integer. Then, there exist integers q,py,...,p, with1 < ¢ < Q" and |qoy; — p;| < %
with i =1,...,n.

Theorem B.0.3. (Minkowski’s convex body theorem,)

Let Q C R? be a non empty, bounded, centrally symmetric, conver subset of RY
with volume Vol(Q) = [oa I > 2%

Then, there exist a vector of integers © = (x1,...,xq) € Q such that x; are not all
equal to zero.

Proof. Let €2 be as above and let us consider the dilate subset %Q It is easy to
see that the dilate is a convex body too. Moreover, it follows from the hypothesis
that its volume is Vol (3Q2) = Vol(2) - (%)d > 1. We say that  contains a non
zero vector of integers, namely x € Z¢, if and only if the dilate subset %Q contains
a non zero vector y such that 2y € Z2.

Therefore, it is sufficient to prove that a convex body €2 with Vol(2) > 1 contains
a non zero vector x s.t. 2z € Z%.

For this reason, let us consider two vectors p and ¢ in ). Since () is centrally
symmetric, —q € 2 and for convexity we deduce that any convex combination of
the form Aip — A\aq is contained in €2. In particular, if we take \; = Ay = %, then
we have %p — %q e (.

At this point, let us define by N(r) the number of non zero vectors p € ) such
that rp € Z%. We notice that as r — 400, N(r) will be asymptotically equal to
riVol(Q), that is, lim, % = Vol(§2).

However, since Vol(€2) > 1, then N(r) > r? when r tends to infinity. Therefore,
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there exist two unique integer points p and ¢ such that %p and %q are contained
in Q and, if we denote by p = (z1,...,24) and ¢ = (y1, ..., yq) their components,
then we have x; = y;(modr) for alli =1,... d.

Thus, the convex combination of these two vectors, that is, z = % (%p) — % (%q) is
contained in 2. We can rewrite the above combination and we obtain that z € Q
with 2z = (p—q) (wlTyl,...,mdryd)

However, from the definition of the vectors p and ¢, we obtain that the difference
between each of their coordinates is an integer multiple of r. Thus, the components

of the new vector 2z belong to Z. Thus, the theorem is proved. O]

Theorem B.0.4. (Dirichlet theorem for simultaneous approximations)
Let oy, ..., € RT. For any Q > 1 there exists an integer ¢ : 1 < q < Q and a
vector p = (p1,...,pn) € N" such that

1
g —pi| < — i=1,...,n.

n

Proof. We consider the subset 2 C R™™! given by

1 1
_ ntl. ) _ =
Q_{(Qaplv'-'vpn)eR : Q 2<q<Q+ |Oézq pz|_Q1/n}

We can easily compute its volume and we obtain

n

)n:(2Q+1)-%>2n+1.

2
Vol(Q) = (2Q + 1) - HQl/n 2Q+1) - (Ql/n
Therefore, since all the hypothesis are satisfied, we can apply Minkowski’s theorem
and we obtain that there exists a vector of integers (¢, p1, ..., pn) € N*™! which is
contained in €. It means that there exists an integer ¢ such that |¢| < Q + % and
a vector (p1,...,pn) € N such that

1
loig — pil < W :

Thus, the theorem is proved. O



Appendix C

Technical lemmas and results

C.1 Ehresmann fibration lemma
A useful criterion which is needed in order to establish when a map is a fibration
is the following lemma due to Ehresmann |[Ehr48|

Lemma C.1.1. Let F' : M — B be a surjective submersion between two differ-
entiable manifolds. If Vo € B ,F~Y(z) is compact and connected, then the sets
F~Y(x) are the fibers of a fibration.

C.2 Some useful lemmas

We report here some technical lemmas that will be used in the proof of the main
theorem

Lemma C.2.1. Given two functions f and g of class C¥(p), one has for every
d >0 that {f,g} € C*(p—6) and

* 1 * *
f g3 —s < SIX5IE 911 (C.1)

* 2 * *
IXerapllo-s = SIXSIGIX5 - (C.2)
To prove this result, we need the following lemma about the Cauchy estimates

Lemma C.2.2. Let us consider a function f € C¥(p). Then, for every chart and
Vo > 0 the k-th partial derivative of f; is bounded by

M f;

k1 kaq
02" ... 02y;

AT
<B;

where k is a multi-index and |k| = k1 + -+ - + kog.

70
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Proof of Lemma C.2.1. Let us begin with the first estimate. Let 2z € LIJP and let us
denote by f; and g; the local representatives of the functions f and g respectively.
We compute the norm on a smaller domain. Indeed, let 0 < § < p and consider

{5,953, = sup [{f;,9;}(2)] = sup }dgj )Xy, (2)]

zeuj” zeL{”
< sup | X (2)| sup |dg;(2)],
zeuf=° zeuf ™’

where we have used the definition of the Poisson brackets to obtain the second
identity. From Lemma C.2.2, we obtain

I{f5 945 < 5 sup | X, (2)| sup |g;(2)] -

eup* Z€U;

: -5
And, since U{™° C UY, we have

1 A
{f5: 95,5 < gHXf] , gl

Passing to the supremum over j, we obtain (C.1).
Let us now conclude with the second estimate. Let z € U] and f; and g; as
above. From the definition of the Poisson brackets the following identity

X{ijgj} = [ijng ] (deg>X (dX )ij (CB)

holds. Thus, if we compute the norm on a smaller region as before, we have

S H (de])ng

:—5+ H j ij

H Xif1.0) :_5

*

p

*

p— 5

*

p—6 "’

HX

ij

where we have used the Cauchy estimates of Lemma C.2.2. Proceeding as before,
we have

*

05—5

*

p

HX{fng}

HXfJ

gj )
and, passing to the supremum over j, we obtain (C.2). O

Lemma C.2.3. Let x € C¥(p) together with its vector field and fiz 0 < 6 <
p. Assume that ||XXH; < 0 and consider the time flow T' of the corresponding
Hamiltonian vector field. Then, for |t| <1, one has

17 =15 < 1115
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Proof. Let us consider z € U} and denote by 7? the local representative of the
time flow 7. We compute
/ X,

dTS
| T7(2) = 2| = |T}(2) = TP(2)| <
Passing to the supremum on the chart domain Z/{jo ~7, we obtain

t
sup ‘7’t — z‘ < / sup ’Xx ‘ds
zeup 0 zGlepf
t
< / sup | Xy, (2)|ds
0 ZGZ/IP
<tsup ’X ‘
zGZ/{p
Thus, since |t| < 1, we have
[T =1 s < X
This concludes the proof. O]

Lemma C.2.4. Let x € C¥(p) and T" as in the lemma above and consider a
function f € C¥(p) together with its vector field. Let 0 < § < p. Assume that
||XX||; < $. Then, for |t| <1, one has

ps = (5||Xf|| X1, (C4)

and

* 5 * *
1Xsort—pllp5 < 5 1Kl IS - (C.5)

Proof. Let us denote by § := g. Let z € Uf and let us denote by 7} and f; the

local representatives of the functions 7* and f respectively. We compute

BT =K< [ ShTEn|as= [ 1o el

At this point, we compute the norm on a smaller region, that is,

swp (KT = L] [ s [0 LT )]s

zeuj”‘25 ZEUfF

<[ " sup (o £} E)lds

zEUfﬂs

< t{xs fi}l, 5 -
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Thus, since [t] < 1 and Z/{pf C U7, we have

:725 < H{XJ?f]}H; )

and, passing to the supremum over j, one has

| fioT" = f;

[FoT = fl, o5 < IHx. FHI; < X, I, A1

r=4
where we have used the estimates (C.1). Going back to J, we obtain (C.4).

We come now to the second estimate. Let z € U}. From (1.22) of Chapter 1, we
can write

Xjjore(2) = d(T}) (T} (2)) Xy, (T (2)) -

J J J

Therefore,
| Xpems]| < AT o T = DXy, 0 Ty + 11X, 0 T = X5 |
) (C.6)
Let us consider the first term in (C.6). Let 6 := ¢ and consider
[ @T) o T3 =X 0 TH os < T =TI, o5 1 X511 25
<_H77 _]I||p5H f]”p 25

where we have used Lemma C.2.2. Furthermore, from Lemma C.2.3 we have

1 x
[Ty o TF =D o T 5 < 5 1
Going back to d, one has
x 3 x
HdT) " o T =Xy, 0 THI s < 5 1 X L 1X5 11 - (1)

We consider now the second term. Let § := g and consider

1 x
155 0 T = XMl s < N T7 =T g 10X M5 < 5 1177 =T o5 15X 1
1 «
S g HXXj Hp—Qg HXf] p
that is,
||Xf]o7—t Xf] p26—5HX
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If we express d in terms of ¢, we obtain

1X5 0 T = X ||, 5 <5 |1x,, (C.8)
Let us now pull this estimates into expression (C.6). We have
fioTi=f; o 0 Xj i
Passing to the supremum over j we obtain the estimate (C.5).
This concludes the proof. O

Lemma C.2.5. Let x € C¥(p) be the solution of the homological equation
{Xho}+f=(f), (C.9)

and consider the time one flow T of the corresponding vector field. Let 0 < § < p.
Then, one has

1P © T = her = {X, heo | 5 < HX 1A, (C.10)

and,
1 X o7ty | s < 5 X IX G (C.11)

Proof. Let us begin with the first estimate. Let z € L{JP. We can write

(hars o5 = o = D D) = [ D050 W = [ (12
- [ @) - gena,

0
(C.12)
where we denoted g;(z) := {x;, hu~;}(2).

)
Let us denote § := g and consider

1
SUp. [(he 0Ty — vy — D5 e s 1) (2)] < / sup |g5(TH(2)) — g5(2)]dt .

p—28 p—20
Z€U,] 2€U,;

Passing to the supremum over j and exploiting the estimate (C.4) of the previous
lemma, we obtain

* 1 * *
e o T = b = D s M5 < 5 I 1 sl
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and, from the definition of g; and the homological equation (C.9), we have

9 = {Xj7hw*,j} = <f>3 -1,

and
lg;ll5 < 211411,

Finally, expressing ¢ in terms of §, we have
e g 0 Tj = g = x5, b5 < 5 Il lgsl, < 5 Gl 151

And, passing to the supremum over j, we obtain (C.10).
We now pass to the second estimate. From (C.12), we obtain that

Hth*,joﬁfhw*,jf{va *; P 6 — HX g] p_(s .
By exploiting the previous estimate (C.5), we obtain
3
Hth*,jOﬂ—hw*,j—{Xja o— 5 = (')‘ HX Xillp o

and, since
* *
1 X, 1, <21 X5 1],
we conclude

* *

Jp

H th*,joﬂfhw*,j*{xjvhw*,j} fi

5_(5

The estimate (C.11) is obtained passing to the supremum over j. O



Appendix D

Normal forms and other results

D.1 Birkhoff normal form

In Chapter 2, we have made use of a Birkhoff normal form for the Hamiltonian
of the planar central motion problem in a neighborhood of a circular orbit and
we have constructed this by means of a symbolic manipulator ( Mathematica’?!).
Here we report the first steps of the Birkhoff normal form procedure to get an idea
of how the scheme goes.

Let us begin by considering the Hamiltonian of the planar central motion in
polar coordinates, namely,

2 2

P2 D P 5
H(r,pr,pe) := Er to2t V(r) = ET + Vers(r,0p) - (D.1)

We assume that there exists a minimum r( of the effective potential, that is,

2
Dy
Irg >0 = V/(ro,p) = 3 +V'(rg) =0 = p; =1r3V'(ro) . (D.2)
By restricting our analysis to the region where py is positive, we can notice a 1-1
correspondence between py and ry so that we can just deal with rg.
We begin by Taylor expanding the Hamiltonian (D.1) in a neighborhood of the
circular orbit: we obtain
2 V. (o)
pr eff 0
H(rp) = Vegs(ro) + 2+ 57 ~L2 0 — )t
1>2

where we have used the fact that the first derivative of the effective potential
vanishes at the minimum.

76
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For the sake of clarity, we report here the explicit formulae for the derivatives
of Vers. Thus, we first compute the derivatives

vy
/ !
off = ——3+V("”o) ;

3
v =3 e,
7’0
12p2
V=gt V)
To
o L+ 1) pg I
V= (=1) RO + VO (rg) .

0

Secondly, we use the equality (D.2) and obtain the explicit formulze for the deriv-
atives of the effective potentials

b = () + VO () (D.3)

These formulae will be used later in order to highlight a key property of the Taylor
expansion.

Now, we go back to the expanded Hamiltonian where we denote by p :=r —rg
the displacement and where we isolate the quadratic part, that is,

"(ro v ro
H(rvpr):Veff(To)ﬂL&ﬂL(gV( >+V (m)p +Z—eff( >p.

2 "o 1>3

The coefficient of the second order term in p, namely,

3‘/,(7’())
To

./4(7"0) =

+ VH(TQ) >0 ,

is positive since it is computed at the minimum of the effective potential, thus, we
use it to make a canonical change of variables (p, p.) — (z,y) with

x =/ A(ro)p
y = Dr ,
v/ A(ro)

in order to diagonalize the quadratic part of the Hamiltonian. The rescaled
Hamiltonian becomes

72 v ro l
H(x,y) = Vers(ro) + v/ A(ro) y+ +> efjl”!( >(A(r0))‘2xl. (D.4)

>3
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The Hamiltonian above is the classical form of the Hamiltonian in a neighborhood
of an elliptic equilibrium and, therefore, we can introduce the action angle variables
by performing a Birkhoff normal form. In Chapter 2, we have constructed the
Birkhoff normal form at the sixth order by means of a symbolic manipulator.
Here, we outline the general scheme, thus, to get some ideas of the computations
needed, we perform only the first steps obtaining the normal form arrested at the

fourth order.
To do so, let us consider the Hamiltonian expansion (D.4) arrested at the fourth

order, namely,
2 2 /
H(z,y) = Vess(ro) + Alro) y —;—x + ./42(7“0) (a(rg)x3 + ,6’(7“0)3:4) + 0(:1:4) ,

where we have denoted by «, 8 the coefficients of the higher order terms of the
Hamiltonian. Precisely,

o To 5 To 5
o) 1= S 4y F = B0

@ To 3 To 3
8r0) = L (a3 = S0 gyt

where we have denoted B(rg) := ‘/'e(;’}(ro) and C(rg) := Ve(;}(ro).
At this point, we consider the complex variables
1

§= ﬁ
1 )
= —(y—ix
1 ﬁ(y )
in which the symplectic form turns out to be dx Ady = idé Adn. By exploiting this
change of variables and considering that a homogeneous polynomial of degree [ in
the (y,x) variables does not change degree when expressed in the new variables

(n,€), the new Hamiltonian becomes
av2A
8

+ %4(64 — 48+ 680> — 4&n” + ') + o((E+m)*) |

where we have omitted the dependence on rg.
Let us now consider the Hamiltonian

av2A
8

(y +1ix)

H(E,m) = Vegp(ro) + vV Ay + (&3 — 3% + 3¢n* — )i

H(En) = VA + (€% — 36 + 3¢n* — )i

+ %(&4 — 480+ 6&°n° — 4én® + 1) .
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We proceed with the normalization at the third order: let us rewrite the expression
above in a more concise way, that is,

H(&n) =h (& n) + PP (En) + PY(En) , (D.5)

underlining the degree of the homogeneous polynomials. We make the reader
notice that we have omitted the terms of order higher than four since they do not
contribute to the construction of the fourth order Birkhoff normal form.

Having said this, we begin the construction by searching for the coefficients
Pj with (J,L) such that |J| + |L| = 3, J # L in order to construct the third
order term of the generating function y, that is

3
(3) _ J,L v
XD (€ n) ; N

|JI+IL1=3

To do so, let us consider the third order homogeneous polynomial P®), that is,

V2A . 3av2A . 3av2A . 2A
PO ) = e = Sy el = S5

3 3 3 3
= P3(,0)§3 + P2(,1)5277 + 131(,2)5772 + Po(:))??3 .

The third order term of the generating function is

a\/§€3_3a\/§§2 _3(1\/5
24 g o177y

X (& n) = &’ + @773 -

Then, using the Lie transform method, we can apply the time one Hamiltonian
flow generated by x® to the Hamiltonian (D.5) in order to normalize it at the
third order. Indeed, let T = P, s and compute

Hi(&,n) == Ho® x(&n) =hD(En) + (PPEn) + {X®, P }HEn)

+ (R o T — h® — (X, h}) (,n)
+(

+ (

(D.7)

PO o706 _ p(3)) X))

that is,
5 3
H(&m) = WP(En) + 217 (€ n) + Ra(En) (D.8)
with Zl(?’) (&,m) being the solution of the homological equation. Precisely,
zP0m= >  PiEnt=0,

|J|+|L|=3, J=L
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and it turns out to be identically zero. The remaining terms are collected into the
remainder R, that is,

Ri(&n) = (B o T® — B® — {x® B} (&,n)
+ (PP o T® — PO (¢,n)
+(PWoT®) (&, m) .

Remark D.1.1. From the properties of the Lie transform, it s known that the
composition between an homogeneous polynomial g of degree i and the time one
Hamiltonian flow generated by a function x of degree j is given by

go CI)X = Zgl )
1>0
with .
g = ﬁ{X7gl—1}7 [>0
go=4g
Moreover, g, is an homogeneous polynomial of degree i + 1(j — 2).

At this point, we develop the terms of the remainder R, by exploiting the
properties contained in Remark D.1.1. We obtain

(h® o T® = h® — (DY) (€, n) =h® (&, n) + b (€ n) + b5 (&) + heo.t.
— W2 (&) = B (&)

where we have use the fact that

A€ m) = (X hP}

Thus,
(h® o T —h® — (& hDY) (&) = By (€, m) + oot .

Analogously, we have
(PO oT® = PO) (&,n) = PV (&) + hot. ,

and
(P o TN (&, n) = PY(E,n) + hot. .

Therefore, we can rewrite the remainder by collecting together the polynomials
having the same degree, that is

Ri(€n) =RV (En) + hot.
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where

4

V(& m) = h7 () + Y m) + PO ).
Thus, the Hamiltonian (D.8) becomes

Hi(&n) = h2(&m) + R (€, ) + hot. . (D.9)

At this point, we notice that we have three terms that contribute to the fourth
order homogeneous polynomial of the remainder. We can adjust them so that we
can express R§4) in an explicit way. We start by noticing that we can rewrite the
term hgz) as

WD) = 51X, 0, KON E ) = —5 Y, PY Em) = — PP Em)

where the second identity comes from the homological equation exploiting the fact
that the normal term Z®) is equal to zero. Thus, the remainder R§4 can be
simplified as
1
RV (& m) = 5P (Em) + PO ). (D-10)

(3)

Let us now compute the term P;”: inserting the expressions (D.6) and (D.7) in

the definition of P*) (¢, ) = {(X®), P®Y(&,n), after some computations, we obtain

PO (€. _3a2\/_ 1, 3042\/745377 B 15042\/7152 )
30’V A 3 302VA ,
+ 1 &n +—16 nt.

We remind the expression of P®, that is,

POE,m) = %(5‘* —4€% + 66" — Agn’ +11") (D.12)

We substitute (D.11) and (D.12) in the expression (D.10) for the remainder and
obtain

rVen) = (S + 4 ) VA + (B0 - T) Vg + (-0 + 2 Vg

(- (55 v

4
= R\ €'+ RY &0+ Ry &0 + R e + R

(D.13)
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One can compute also the higher order terms of the remainder. However, for what
concerns our work we stop at the fourth order.

We go back now to the Hamiltonian (D.9) and we search now for another
canonical transformation in order to normalize the Hamiltonian at the fourth or-
der. Thus, following the steps we have done previously to obtain the third order
normalization, let us search for the generating function x®* having the form

(4) Rgil])[, J. L
Em= > A0 >€n '

|J|+|L|=4, JAL

By exploiting the coefficients of (D.13), we can construct the generating function
x* which takes the form

302 B 3a? ﬁ 302 B 302 B
4) _ 4y 3 o080 D o0 4
(&m) ( 128 32> e < 16 > & <16 1) g T )
At last, applying the canonical transformation to the Hamiltonian (D.9), we obtain
the Hamiltonian below, normalized at the fourth order

Hy(&,m) = hP(&,n) + Z47(€,1) + Ra(E,)

where

Zem - X Ee - (e 2 Vagr.

16
|J|+|L|=4, J=L

At this point, substituting the coefficients o« = %B(A)’g and = I—EC(A)’% in the
Hamiltonian above, we obtain

_ _ 2
Hy(&,m) = vV Aén + (%) &’ +o((€n)?) -

Finally, we can introduce the action angle variables. To do so, let us first consider
the normalized Hamiltonian

Hy(€,m) = Vigp(ro) + V-Atn + (%) En*+o((En)?) ,

and the new variables (11, ¢;) introduced by (§,7n) — (11, ¢1), where

§= \/71611(7)1
n= Ve
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Then, the Hamiltonian (D.1) normalized at the fourth order becomes

—5B? +3C
H = ‘/eff<7“0> + \/./_4]1 + <ﬁ4> ]12 + 0(]?) .

Let us denote by Iy := py the second action and by ¢o the corresponding angle,
then, by exploiting the 1-1 correspondence between ro and py (and, thus, I5), we
conclude with the following expression for the Hamiltonian (D.1) normalized at
the fourth order

bt ) = Vagy(1) + AT + (2L SR 1oy

= ho(]g) + h1<12)]1 + hQ(_[Q)IlQ + O(]f) .

D.2 Burgers equation

We report here the proof of a useful property satisfied by the coefficients of the
Birkhoff normal form which turns out to be powerful when writing the expansion
of the Burgers equation.

Thus, let us consider the Hamiltonian (D.4), that is,

2 | .2 D (ro l
H(,y) = Vasg(ro) + V/Alro) L2 +Zvefil“!( St (D)

2
1>3

and, before the normalization procedure by means of the Birkhoff normal form,
let us focus on the first order approximation of the Hamiltonian, that is,

y2—|—$’2

H(z,y) ~ Vegs(ro) + VAo

Before introducing the action angle variables, we can notice that the first order
approximation of the action [ is given by

y2+$2
2 J

thus, we can compute the frequencies wy; and ws at order zero in Iy, namely,

3V %
wio = \/ (TU) + V”(T’o) , Wag = (700) ‘

[1:

To To

The key quantity that we can compute now is the ratio of the frequency which at
order zero can be expressed as

vo = @10 _ 3, Vro)ro

WQ,U V, (TQ)
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We make the reader notice that if we introduce the function

V”(TQ)’I"O
9(ro) = <5
\%4 (T())
then, the ratio can be expressed as vy = /3 + g(ro) and all the computations

hugely simplify: it follows that the derivatives of the potential can be rewritten as
v(l) (TO) = ‘B(TOJ g(T0>7 cee 79(172) (T0)> vl(TO)J l 2 3.
Let us prove this fact by induction. For [ = 3, we have

V(3)(r0) _ diro (9(7"0)::(7”0)) _ g'(ro)V'(ro) _ 9(ro)V'(ro) i g(ro)V"(ro) ‘

o re o

Let us now pull the definition of V" in the last term. We obtain

V(S)(TO) — <g,<7’0) - g(TO) + 92(T0)> VI(T()) — Fg(qno?g(ro)’g/(ro)) V/(T’o) )

7o re 0

Now, let us suppose that the thesis is verified for [ — 1 and let us prove it for [.
Thus, we consider

vO(ro) :diro (]'-1—1(7“0, g(r0),4'(r0), ..., g3 (1)) V’(ro))
=gy 1080010, ) V()

+ Fio1(ro, 9(ro), g (ro), - ... g" 72 (r0)) V" (r0)
and, from the definition of V", we obtain the thesis
VO(re) = Fi(ro, 9(r0), ' (ro),s - - ., g2 (1)) V' (ro), 1 >3 . (D.15)

We can use this fact to rewrite the derivatives of the effective potential. Indeed,
by inserting (D.15) in (D.3), we obtain

‘/;(,l»)]c(fo) = Gi(ro,9(r0), g (r0), .., 9" "2 (ro)) V(ro), 1 > 3.
It follows that the Hamiltonian (D.14) takes the form

H(w.y) = Vegs(ro) + Galro, 9(r0)) (V' (ro)) £

+ Z Gi(ro, g(ro), g (r0), ..., 9" (ro)) V’(To)l_ﬁ v

>3
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We are now ready to perform a Birkhoff normal form in order to get a normalized
Hamiltonian h(Iy, I5) which will depend only on the actions I; and I3 of the form

h(Il7 [2) - ho([z) + hl(lz)ll + hz([g)[f +

The main point is that the Birkhoff normal form procedure does not change the
form of the coefficients hg, hy,...: it contributes only to shift the index in the
powers of V'(ry). Thus, we have

ho = Vegs(ro)
hy = Ha(ro, 9(ro)) V' (r0) 2
b= Ha(r0, 9(r0), 9 (r0), -, 7D (r0)) V' (1) 72, 12 2,
Starting from the Birkhoff normal form, one can compute the expansion of the
frequencies w; and wy in I; as a function of the radius ry. Therefore, we have
oh

“I= e T 7'[1(7“0>Q(To))V/(TO)%+ZlHl(T‘o,g(To)agl(TO)v e P o))V (o) 2 Y
1>2

thus,
= > W0, 9(r0). ' (o). .2 () V' () E I

>1
Analogously, we can prove

Oh Vi(r / - ! L
(9_12 - 7EOU> + ZW12<7”079(7”0)79 (r0), - - 7921 3(7”0))‘/ (7“0)1 2[{ h

1>2

Wo =

Then, one can check that the ratio of the frequency v = ‘w"—; can be expressed as
/ 21 / —L
=3+ g(ro) + ZVZ(T()ag(TO)ag (ro)s---s 9" (ro))V'(ro) 21y .
1>1

By putting this expansion into the Burgers equation, after some trivial computa-
tions, one can check that at each order the powers of V/(rg) can be factor out so
that the Burgers equation turns out to be independent from V'(rg) and it can be
solved order-by-order for g(ro) and its derivatives.

D.3 Domains bounded below by a maximum of the
effective potential

We report here some standard computation needed in order to prove Theorem
2.8.2 of Chapter 2.
Let us begin with the following lemma



APPENDIX D. NORMAL FORMS AND OTHER RESULTS 86

Lemma D.3.1. Let us fiv x; > 0 and E > 0 small enough and consider the curve
v i =z, 1] = R? given by
v = (z,y(z))

with y(x) = \/M + 22, where F(E) is an analytic function having a zero
of order 2 at the origin and A > 0 is a positive parameter.

Then, ~ ~
/xl E+ F(E)
A

ydr = — InFE+ Gi(E),

—x1

where G is a bounded analytic function for E > 0.

Proof. Let us rewrite the integral as

:/_ \/erx?dm:/:l\/F(E)?er?dm, (D.16)

where we denote by F' the function

- 20E+ F(E
F(E):= M
A
In order to compute the integral (D.16), we first change the variable of integration
to s 1= F(E) such that the integral takes now the form

/\/ _ d:c:F(E)Q/:lmds,

F By
At this point, we perform standard computation. Indeed, let us begin by
considering the integral

where we denote s; =

I[JI:/ \/1+$2d8.
—5

We perform a new change of variables, that is, we introduce a variable 9 such that
s = sinh 4. The integral becomes

s [ [
1 1 1 h 2,,9
20:/ \/1+52ds:/ cosh? 9 di) = / cosh(20) +1 5

0 2

where we used the formula cosh(219) = cosh®¥ — 1 and we denoted 1J; = arcsinhs;.
Thus,

7, - sinh 1912(:osh U 81nh(—191)2005h(—191) 0, = sinh 0, cosh 9 + 0, .




APPENDIX D. NORMAL FORMS AND OTHER RESULTS 87

where we used the relations sinh(—19) = sinh ¥ and cosh(—9) = — cosh?. We go
back to the original variables and obtain

Ty = s14/1 + s? + arcsinhs; .

renor (i () o ()
_ xl\/m + F(E)? In (331 + \/m> — F(E)*In(F(E))

where we used the identity arcsinhz = In(x + /1 + x2).

Finally, from the definition of the function F'(£), we obtain

T \/ LAE+F(E) , AB+F(E) ( . \/ﬁ | AE+ F(E)) )

A A

(E+ F(E)) 2(E + F(E))
3 ln( ) ) .

(D.17)
We begin to analyze the first term of (D.17).

T, = xl\/x%+—2(E+f<E)) =x%\/1+—2(E§§(E)) = 2\/1+ f(E)

where we denoted f(E) = UELFE) - At this point, since f(E) — 0 for E — 0

Aw%
and z is fixed, we can develop this term obtaining

n—a Y (12)iEr = e FE)

n>0 n>0

where ¢, := (142)/\37
Furthermore, since F(E) is an analytic function having a zero of order 2 at

the origin, we can exploit its expansion and obtain that the integral Z; can be

expressed as
Zaiziﬁijizbnz?n,

n>0
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with suitable coefficients b,,.
Analogously, we analyze the second term of (D.17), that is,

1 AELTED (o, o TEETED)

) )
_ 2(E+ F(E)) n

== (2:1:1 +;bnE )

_ 2(E+ F(E)) 20E+ F(E .
_fm(lewf <1+nz>;bE) .

By exploiting the analyticity of F(E), we can rewrite it as
Zéizizizangyl,
n>2
where a,, are suitable coefficients. Thus,
Z&—%Z& ::$%%—:E:(jhl?n.
n>1
We conclude by analyzing the third term. Let us begin by rewriting it as follows

I3 = ——(E+5(E>) In (E <§+%)) ,

that is,
(E+F(E), ~ (E+F(E) 2  F(E)
Igz—flnE—fln(Xﬁ‘/\—) .

We analyze the second term

2F

A

The first term is an analytic function of E, thus it can be expanded at the origin

o (E+F(E) o~ (D" (FE))"
mo=Lad - S S ()

n>1 n>0

Since %g) is an analytic function having a zero of order 1 at the origin, then it

can be expanded at zero in order to obtain

YA o E“T ZdE

n>1 n>1
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that is,

T30 =Y D,E".

n>1

Finally we have that the integral Z takes the form

(E+ F(E))
A
(E+ F(E))

= In(E) + G1(E) ,

where G1(E) = 2% + > ons &, E™, with ¢, := C, + D,,, is a bounded analytic
function for £ > 0.
This concludes the proof. O

T=— nE+a7+ ) éE"

n>1

Proof of formula (2.57) of Chapter 2. We remind the reader the expression for the
Arnol’d determinant, that is,
O0%h 0?h 9*h

D=— 249 _
o2 T onon " T ot

(D.18)

After having rewritten the three terms of the Arnol’d determinant as functions of
W, = (E)_l, W, = —g—ng + ‘3—‘2, E and I, namely, after having computed

oOF
oW,
D, = — 27 - D.19
1 WiW;, 55 ( )
d
Dy — oW, I (D.20)
dr,
oG AW, d [/0G 9%V
2 3 2 D.21
=Wign oI, dI, WL drl, (812) Wise o1z’ ( )

we can collect them together in (D.18): we obtain

,OW, 8G) W, d <8G) ,0%V,
- - Wl

= _W1W2

or W (2W2+W18[2 a, " van \an o

Furthermore, from Lemma 2.8.2 of Chapter 2, we obtain
d [0G 0°G A% lale
— = | = — \Wo— — | + 75,
dl; \ 01 01,0F 0l oI5

and, from the definition of W, we have

d [0G 1 (9W1 aVp 0°G
d_I((?_I)_ W2 al, (Wz‘ )* |
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Thus, the determinant can be rewritten as

vy dwy oW, oVy
012) an "o (W2 B 3_12)

,OW,
W SE OF

82G Noa 0"Vo

D=-W

+ W <W2 +

Moreover, by exploiting again LLemma 2.8.2 of Chapter 2, we have

dw, o (W2 8%) 4%

d/ OE ol ol ’
and,
. 8W (9V0 8W1 avo 8W1
D=-WW,o8 +W1(W ag)(aE (W2 8]2)+ 8]2>+
oW, Vo ,0*G ,0*V
A ol (W2 a1, ) +Wi— IE -~ Wi 17
that is,

oW oW oV, 2 oW oV,
— W2 aEl W, aEl <W22 - (_0) ) TV Raas] (W2 + _0)

8[2 8[2 a[2
W, WV JOPG 0%
Wion <W2 812) Wioe o2 “Wion oIz -

We conclude that the Arnol’d determinant takes the form

D=-W

Wy (OVp\? M Vy L 40°G 0%V
— ( —— 2 )
OF (312) Wier, o, T o2 W OI2
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M

Mathematica computation

Some useful functions

mySeries[f_, rO_, Nord_]:=NModule[{htnp, i, B},
ht mp = Expand [Nor mal [Series[f, {r, rO, Nord}1]1 /. r-rO-r /.
{r>r B, pr->prp}/. BAk=07/; k>Nordi;
For[i =0, i < Nord, i ++,
H[O, i ] = Coefficient [htnp, B, i]
1
For[i =0, i < Nord, i ++,
Print ["H[O,", i, "1 =", H[O, i1];
1
1

nmyPoi ssonBracket [f_, g_]:=
Modul e[{}, Expand[Factor [D[f, £] D[g, n] -D[f, n] D[g, £111]

nmyKer nel Range[f _]: =
Modul e[ {zf, Rf, htnp, |istamnom, ntermni, i, X, den, m n},
ht mp = Expand [Factor [f]];
|'i stambnom = CoefficientRul es[htnp, {& n}l;
ntermni =Length[listanmonom J;

Rf = 0;
For[i =1, i sntermni, i ++,

m=listamonom [[i J1[[1110[11];

n=Ilistamonom [[i 11[[111[[2]];

den = m-n;

I f [den =0,
Zf += FronCoefficientRules[{listanmonom [[i]]}, {& n}],
Rf += FronCoefficientRules[{listanonom [[i]]1}, {& n}l,
Print ["Houston, we've had a problem heret!"]

11

{Expand[Fact or [Zf 1], Expand[Factor [Rf 1]}

1

91
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myHonol ogi cal Equationfw_, f_1:=
Modul e[ {htnp, | i stamonomi, ntermni, i, X, den, m n},
ht mp = Expand [Factor [f]];
I'i stamobnom = CoefficientRul es[htnp, {& n}l;
ntermni =Length[listamonom J;
X =0;
For[i =1, i sntermni, i ++,
m=listamonom [[i 11[[1]11[[1]1];
n=1listamonom [[i 11[[1]11[[2]1];
den = m-n;
I f [den == 0,
Print ["Houston, we've had a problemhere!"],
X+= (1/ (I denw)) FromCoefficientRules[{listamnom [[i]1]1}, {& n}l,
Print ["Houston, we've had a problem heret!"]
11
Expand [Fact or [X]]
1

Birkhoff normal form for the Hamiltonian of the planar central
motion at a minimum

ORDVAX = 6;
ORDBI RK = ORDIVAX;

Hniz =172 (pr*"2 + pe”r2/r"2) +VI[r]

pr2+—
;

1
— +V[r]
2

= Expansion of the Hamiltonian Hiniz at the minimum r0

ht mp = nySeri es [Hini z, r0, ORDVAX];

pe?
H[0,0] = +V[ro]
2r0?
pe? r
H[0,1] = - +r V' [r0]
ro3
r2 3pe?r? 1
H[0,2] = pre=p +— 12V’ [r0]
2 2r0* 2
2pe?rd 1
H[0,3] = - P +—r3v®[roj
ros 6
5pe?rt 1
H[0, 4] = P +— r4v®[ro]
2r08 24
3pe?rs 1
HO5] = PP 2 sy
ro’ 120
7 p6?r6 1
H[0,6] = P + rév® roj

2r08 720
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Hsvil =

r2
Sum[l/i !%Sinplify[Coefficient[i !«H[O, i], r, i]]1=*r"i, {i, O, 6}]+p7

pr2  pe? 62 3 pe?

r 04

+V[r0] +r [—p

1
+V[ro]|+—r?
ros

2
1 60 pe?
+ VO roy |+ —rt | ———
24 r 08
1 2520 pe?
r6
720 ro8

+V”[I‘O}] +

2
1 12 pe?
gr3 - +VA [roy |+

1 ( 360 pe?

— ¢S
ro’

+VO [roy|+
120

+V© [rO]J

= Assumptionson the central potential

H[O0, 1] =0;
Veff2 =Sinmplify[2*Coefficient [H[O, 2], r, 2]];
$Assunptions = {Veff2>0, r0>0, pe==Sgrt [rO*3V' [r0]], pe>0, 3+g[r0] >0};

= [ntroduction of the complex variablesé, n

cfdiag = Power [Veff2, 1/47;

rul ediag = {pr - cfdiagPR r » R/cfdiag};
For[i =0, i < ORDVAX, i ++,

HD[O, i ] = Factor [H[O, i] /. rul edi ag];
1

rul econplex = {PR » 1/Sqrt [2] (E+1 n), R> 1 /Sqgrt[2] (&€-1 n)};
For[i =0, i < ORDVAX, i ++,

HC[O, i ] = Expand[Fact or [HD[O, i ] /. rul econpl ex]]

1

w = CoefficientRul es[HC[O, 2], {& n}l1[[111([[2]11/];

= Birkhoff normal form algorithm

For [i = ORDMAX+1, i < ORDBIRK, i ++, HC[O, i] =0];
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For[i =3, i < ORDBIRK, i ++,
{ZHC[i -2, i ], RHC[i -2, i ]} = nyKernel Range[HC[i -3, i]];
X[i ] = myHonol ogi cal Equati on[w, RHC[i -2, i]];

For[j =0, ] < ORDBIRK, ] ++,
HCIi -2, j]1 = Expand[Factor [HC[i -3, j11]
1;

For[j =0, ] < ORDBIRK, j ++,
tnp = HC[i -3, j I;
For[l =1, | < IntegerPart [(ORDBIRK=-j) / (i =2)1, | ++,
t np = nyPoi ssonBr acket [tnp, X[i]];
HCLi -2, j 1 (i =2)] +=tnp;
HCIli -2, j +| (i -2)] = Expand[Factor [HC[i -2, j +| (i -2)]111;
tnp = Expand [Factor [tmp / (I +1)]1;
]
]
1

pteta = Sgrt [rO*3 V' [r0]1];
dl =1/D[pteta, r0];

rulact = {& » Sqrt [l 1], n->-1 Sqgrt[l11};

Haz [0] = HC[ORDBI RK-2, 071;

Haz[1] = HC[ORDBI RK-2, 2] /. rul act;
Haz[2] = HC[ORDBI RK-2, 4] /. rul act;
Haz [3] = HC[ORDBI RK-2, 6] /. rul act;

Ham= Haz [0] + Haz [1] + Haz [2] + Haz [3];
F[ro_1:=r0OV'' [r0]/V' [r0]
gl =D[F[r0], {rO, 1}1;
g2 = D[F[r0], {r0, 2}1;
g3 = D[F[r0], {r0O, 3}1;
g4 = D[F[r0], {rO, 4}1;
We express the function V[r0] and its derivativesin terms of g and its derivatives
sO =Flatten[Sol ve[g[rO] == g0, D[V[rO], {r0, 2}11]

{V”[I’O] . g[ro}rz)/'[roJ }

sl =Flatten[Sol ve[D[g[r0], {rO, 1}] =91, D[V[r0], {r0, 3}111;
Sl=Flatten[Sinplify[sl /. sO]]

(-g(r0] +g[r0J2+r0g'[r0]) V[ro]
r 02 }

{v@iroy »
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s2 =Flatten[Sol ve[D[g[r0], {r0O, 2}] =92, D[V[rO], {r0, 4}111;
S2 =Flatten[Sinplify[s2 /. s1/. s0]]
1
{V<4>[r0] S
r o3

V' [r0] (-3g[r0]J?+g[r0]®+g[r0] (2+3r0g’[r0])+r0 (-2g'[r0] +rOg"[r0]>)}

s3 =Flatten[Sol ve[D[g[r0], {r0O, 3}] =93, D[V[r0], {r0, 5}111;
S3=Flatten[Sinplify[s3 /. s2 /. s1/. s0]]

1
{V<5>[r0] > ——V/[r0] (-69[r01°+g[ro}*+
ro
g[r0]? (11+6r0g'[r0])+2g[r0] (-3-7r0g’'[r0] +2r02g”[r0]) +
ro (Gg’[r01+3r09’[r012+r0(739”[r01+r09<3>[r01)))}
s4 = Flatten[Sol ve[D[g[r0], {rO, 4}] =94, D[V[rO], {r0, 6}111;
S4=Flatten[Sinplify[s4 /. s3 /. s2/. s1/. s0]]

1
{V<6> (0] > —— V'[r0] (-10g[r0]*+g[r0]®+
ro

59[r0]® (7+2r0g'[r0]) +10g[r0}? (-5-5r0g'[r0] +r0%g”[r0]) +
g[r0] (24+70r0g'[r0] +15r0%g'[r0]®>-25r0%g”[r0] +5r03g® [r0]) +
ro(-20r0g’[r0]?+2g'[r0] (-12+5r0%g”[r0]) +
ro (129"[r0]74rOg<3)[r0]+r02g<‘”[r0])))}
d2 =Sinplify[dl /. sOJ;
We rewrite the Hamiltonian in BNF intermsof V' [r 0], g[r0] and its derivatives
Hoi rk = Fact or [Expand[Ham/. S4 /. S3 /. S2 /. S1 /. sO /. pe » pteta]ll;
Coef f Hbi rk = CoefficientList[Hoirk, 117;
Hoi rkO = Sinpl i fy[CoeffHbirk[[1]]]

1
V([ro] = roV [roj

Hoi rk1 = Sinplify[CoeffHoirk[[2]]]

(3+g(r0]) vV I[ro0]
ro

Hoirk2 = Sinplify[CoeffHbirk[[3]]]

(-180+10g(r0]®-29g[r0]*+102r0g'[r0] -5r0%g’'[r0]2+g[r0]? (94-r0g'[r0]) +
9r0%g”(r0] +g([r0] (78+31r0g’'[r0] +3r02g”(r0])) / (48r0% (3+g(r0])?)
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Hoirk3 = Sinplify[CoeffHbirk([[4]]]
1

6912r07/2 (3+g[r0])%2+/V[r0]
(184g[r0)7+20g([r0]®+4044r0%g'[r0]®-235r0%g'[r0]*+
49[r0]® (279+17r0g’[r0]) +g[r0]° (4000 -72r0g’[r0] -84r0%g”[r0]) +
54r0%g'[r0]% (-494+25r02g”[r0]) -
108r0g'[r0] (-364+181r02g”[r0] +14r03g® [r0]) -
g[ro]* (6820+3504r0g’ [r0] -129r0%g’'[r0]?+1152r02g”([r0] +48r0%g® [r0]) +
27 (8880 +3432r0%g”([r0] -17r0*g”(r0]?+576r0%g® [r0] +24r0*g® [r0]) -
g[r0]? (1515r0%g'[r0]%+94r0%g'[r0]°+
12r0g’[r0] (-1389+100r0?g”[r0] +14r0%g® [r0]) +3 (58356 -
5976 r0%g”[r0] +17r0%g”[r0]?-1296r03g® [r0] -72r0* g™ [r0])) +
29[r0]® (411r0%g'[r0]?+r0g'[r0] (-3916+81r02g”[r0]) +
12 (-3695-100r02g”(r0] +6r03g® [r0] +r0*g“ [ro])) +
2g(r0] (533r0%g'[(r0]®+9r0%g'(r0]® (-964+25r0°g”[r0]) -
9r0g'[r0] (-3408+643r0°g”[r0]+56r03g® [r0]) +
9 (1416 +4554r0%g”(r0] -17r0%g”[r0]?+792r03g® [r0] +36r0*g* [r0])))

HBI RK = Hbi rkO + Hoi rk1 11+ Hoirk2 «1172 + Hbi rk3 »1173;

The Burgers equation

m Theexpansion of the two frequencies w1 and w2
$Assumptions = {V' [r0] >0, r0 > 0};
The frequency wl
wl = D[HBIRK, 11];
Coef f wl = Coefficientlist [wl, |1];
010 = Sinplify[Coeffwl[[1]]]

(3+g([r0]) V[ro0]
ro

wll =Sinplify[Coeffwl[[2]1]]

(-180+10g(r0J®-29g[r0]*+102r0g'[r0] -5r0*g’'[r0]2+g[r0]? (94-r0g'[r0]) +
9r0%g”(r0] +g[r0] (78+31r0g’'[r0] +3r02g”(r0])) / (24r0% (3+g(r0])?)
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wl2 =Sinplify[Coef fwl[[3]1]]
1

2304r07/2 (3+g[r0])%2~/V[ro]
(184g[r0)7+20g([r0]®+4044r0%g'[r0]®-235r0%g'[r0]*+
49[r0]® (279+17r0g’[r0]) +g[r0]° (4000-72r0g'[r0] -84r0*g”[r0]) +
54r0%g'[r0]% (-494+25r02g”[r0]) -
108r0g'[r0] (-364+181r02g”[r0] +14r03g® [r0]) -

g[ro]* (6820+3504r0g’ [r0] -129r0%g’'[r0]?+1152r02g”([r0] +48r0%g® [r0]) +
27 (8880 +3432r0%g”([r0] -17r0*g”(r0]?+576r0%g® [r0] +24r0*g® [r0]) -

g[r0]? (1515r0%g'[r0]%+94r0%g'[r0]°+
12r0g’[r0] (-1389+100r0?g”[r0] +14r0%g® [r0]) +3 (58356 -

5976 r0%g”[r0] +17r0%g”[r0]?-1296r03g® [r0] -72r0* g™ [r0])) +

29[r0]® (411r0%g'[r0]?+r0g'[r0] (-3916+81r02g”[r0]) +
12 (-3695-100r02g”(r0] +6r03g® [r0] +r0*g“ [ro])) +

2g(r0] (533r0%g'[(r0]®+9r0%g'(r0]® (-964+25r0°g”[r0]) -
9r0g'[r0] (-3408+643r0°g”[r0]+56r03g® [r0]) +

9 (1416 +4554r0%g”(r0] -17r0%g”[r0]?+792r03g® [r0] +36r0*g* [r0])))

The frequency w2
D2 = Ful | Si npl i fy[d2]
2
(3+9(ro]) \Vrov(roj
w2 =Sinplify[D[HBIRK, r0] «+D2 /. sO1;

Coef f w2 = Coefficientlist[w2, |1];

w20 = Si npl i fy[Coef fw2[[1]]]

V' [r0]
ro

w21l = Sinplify[Coef fw2[[2]1]1]
-3+2g[r0]+g[r0]2+r0g’[r0]

roZ (3+gfroj)3?

w22 =Sinmplify[Coeffw2[[3]]]
1

241072 (3+g[r0])*~/V[ro]
(49(r0]°-111r0%g'[(r0]2+10r0%g’'[(r0]®-4g[ro]* (2+r0g'[r0]) -
g[ro]® (248+13r0g'[r0] +r02g”(r0]) +g'[r0] (288r0-39r03g”[r0]) +
g[r0]? (-720+62r0g'[r0] +28r0%g”[r0] +3r03g® [r0]) +
9 (120+34r0%g”([r0] +3r03g® [r0]) +g[r0] (-37r0%g’[r0)?+

g'[r0] (291r0-13r0%g”[r0]) +3 (-36+65r0°g”[r0] +6r03g [r0])))

w23 = Sinplify[Coeffw2[[4]1];
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m Theexpansion of theratio of the frequencies v=wl/w?2
Invw20 = Sinmplify[l/w207;
WL =Sinplify[wl*lnvw20];
w20 = 1;
W21 = Sinmplify[w2l %1 nvw20];
w21
-3+29g(r0]+g(r0]2+r0g[r0)]
(r0 (3+g(ro1))*2Vviro]
W22 = Sinplify[w22 %1 nvw20];

w22
1

24r0% (3+g[r0])*V[r0]
(49(r0]°-111r0%g’'[(r0]2+10r0%g’'[r0]®-4g(r0]* (2+r0g'[r0]) -

g[r0]® (248+13r0g'[r0] +r0?g”[r0]) +g'[r0] (288r0-39r03g”[r0]) +

g[r0]% (-720+62r0g’'[r0] +28r02g”([r0] +3r0%g® [r0]) +

9 (120+34r0%g”([r0]+3r03g® [r0]) +g[r0] (-37r0%g'[r0]?+

g'[r0] (291r0-13r03g”(r0]) +3 (-36+65r02g”(r0] +6r0%g® [r0])))

W23 = Si nplify[w23 * | nvw20];
Orega2 = Si nplify[w20 + W21l « 1 11 + w22 % 117 + w23 # 1 13];
W2 = Series[1/0rega2, {l1, 0, 3}1;
v=Sinplify[W*W7;

= The Burgersequation
vSecon =Sinplify[v*D[v, r0] »D21;
vPrim=Sinplify[D[v, 1]1;
Burg = vPri m- vSecon;
We extract the order 0 (burg0) and the order 1 (burgl) of the Burgers equation
Coef f Burg = Coef fi ci entLi st [Burg, 1117;
burg0 = Si npl i fy [Expand[Coef fBurg[[1]]]]
- (149g(roj®+29g(r0]*+42r0g'[r0] +5r0%g'[r0]2+g[r0]? (26+r0g'[r0]) +
g[r0] (-6+17r0g'[r0] -3r0%g”[r0]) -9 (4+rozg”[r0]>)/
(24ro3/2 (3+9[r0])2v/V(ro] )
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burgl = Sinplify[CoeffBurg[[2]]] /. SO

1
(-489g[r0] (3+g[r0])>V[ro]

1152r0% (3+g[r0])%2V [r0]?2
(149g(r0j®+2g(r0]*-30r0g'[r0] +5r0%g'[r0]®+g[r0]® (26+r0g'[r0]) -
9 (4+r0%g”[r0])-g(r0] (6+7r0g’[r0]+3r0%g”(r0])) +
V' [r0] (376 g(r0]’+20g(r0]®+444r0%g'[r0]®-235r0%g [r0]*+
49[ro]® (687+17r0g'[r0]) +g[r0]® (9664 +1080r0g'[r0] -84r0°g”[r0]) +
54r0%g'[r0]% (26 +25r02g”[r0]) +g[r0]*
(15068 + 6336 r0g'[r0] +129r0%g’'[r0]%-1248r02g”[r0] -48r0°g® [r0]) -
108r0g'[r0] (44+9r02g”[r0]+14r0%g® [roj) -
27 (-240+648r0%g”[r0] +17r0*g”[r0]?-24r0*g® [r0]) -
g[r0]? (-5349r02g'(r0]?+94r03g'[r0]°+
12r0g’[r0] (-1569-72r0%g”[r0] +14r0%g® [r0]) +3 (7380 +
71281029 [r0] +17r0%*g”[r0]?+432r03g® [r0]-72r0*g* [r0])) +
2g(ro] (-67r0%g'[(r0]®+9r0%g'[r0]2 (388 +25r02g”[r0]) -
9r0g'[r0] (-168-45r02g”(r0] +56r03g® [r0]) -
9 (744 +1710r102g”[r0] +17r0%g”[r0]2+72r0%g® [r0] -36r0*g“ [r0])) +
29(r0]® (723r0%g'[r0]>+r0g'[r0] (8444+81r0°g”[r0]) +
12 (49-306r102g”[r0] -18r0%g® [r0] +r0*g® [r0]))))

m Theiterative procedure

We put burg0 and burgl equal to 0 and solve with respecttog”’ [r 0] and g ) [r O] respectively
equal = Flatten[Si nplify[Sol ve[burg0 == 0, D[g[r0], {r0, 2}1111
{g7[r0] > (-36+149g[r0]®+2g[r0]*+42r0g'[r0] +5r0%g'[r0]%+
g[r0]? (26+r0g’[r0]) +g[r0] (-6+17r0g’'[r0])) /(3r0% (3+g[r0]))}
equazione2 = Sinplify[equal[[1]1]1[[2]]]

(-36+149g(r0]®+2g[r0]*+42r0g’[r0] +5r07g'[r0]?+
g[r0]? (26+r0g'[r0]) +g(r0] (-6+17r0g’[r0])) /(3r0% (3+g[r0]))
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equa2 = Flatten[Si nplify[Sol ve[burgl ==0, D[g[rO0], {r0, 4}1111]

{g“‘) (ro] -
1

241" (31g1r0])? (-2809g(r0]"-20g[r0]®-444r03g'(r0]3+235r0%g'[r0]*-
r +g[r

49[r0]°® (375+17r0g’[r0]) +49g[r0]° (-880-258r0g’[r0] +21r0?g”[r0]) -
54r0%g'[r0]% (26 +25r02g”[r0]) +27 (-240+648r02g”[r0] +17r0% g~ [r0]?) +
108r0g'[r0] (44+9r0%2g”([r0]+14r0%g® [r0]) +g[r0]*
(-1820-6384r0g'[r0] -129r02g'[r0]?+1104r0%g”[r0] +48r03g® [r0]) -

29g(r0]3 (603r0%g’'[r0]>+r0g'[r0] (9956 +81r02g”(r0]) -

12 (275+252r0%g”[r0] +18r03g® [r0])) -
29g(ro] (-67r0%g'[r0]®+9r0%g'[r0]* (268 +25r02g”(r0]) -

9r0g'[r0] (-888-45r02g”[r0] +56r0%g® [r0]) -

9 (-120+1494r0%g”[r0] +17r0*g”[r0]?+72r03g® [r0])) +
g[r0]? (-3909r02g'[r0]2+94r03g'[r0]3+

12r0g'[r0] (-2541-72r0%g”[r0] +14r0%g® [r0]) +

3 (3060+5832r029”[r0}+17r04g”[r0}2+432r03g(3>[rO])))}

equazioned4 = Sinplify[equa2[[1]1]1[[2]]]
1
24r0% (3+9g[r0])3
49[r0]® (375+17r0g’[r0]) +4g[r0]° (-880-258r0g’'[r0] +21r02g”[r0]) -
54r0°9g'[r0]% (26 +25r02g”[r0]) +27 (-240+648r02g”[r0] +17r0*g”[r0]?%) +
108r0g'[r0] (44+9r02g”[r0]+14r0%g® [ro]) +
g[ro]* (-1820-6384r0g'[r0] -129r0%g'[r0]%+1104r0°g”[r0] +48r03g™ [r0]) -
29g(r0]® (603r0%g'[r0]%+r0g'[r0] (9956 +81r02g”[r0]) -
12 (275+252r0%g”(r0] +18r03g [r0])) -
29g(r0] (-67r0%g'[r0]®+9r0%g’'[r0]* (268 +25r0%g”(r0]) -
9r0g'[r0] (-888-45r02g”[r0] +56r03g® [r0]) -
9 (-120+1494r0%g”[r0] +17r0*g”[r0]2+72r03g® [r0])) +
g[roj? (-3909r02g'(r0]?+94r03g'[r0]3+
12r0g'[r0] (-2541-72r0%g”[r0] +14r0%g® [r0]) +
3 (3060 +5832r0%g”(r0] +17r0*g”([r0]?+432r03g® [r0])))

(-2809g(r0]"-209g(r0]®-444r03g'(r0]®+235r0%g'[r0]*-

Weinsert g [r 0] in equazioned
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equazi onednew = Si npl i fy [equazi one4 /. equal]
1
9r0* (3+g[r0])3
(-25920+3749[r0]7+22g[r0]®+9828r02g'[r0]?-1434r0%g’'[r0]%-
140r0% g’ [r0]%+g[r0]® (2712-47r0g'[r0]) -49[r0]° (-2687+69r0g’[r0]) +
29g(r0]* (12083+333r0g'[r0] -42r0%g'[r0]2+9r0%g® [r0]) +
27r0g’[r0] (908+21r03g® [r0]) +
g[r0]® (26238+9116r0g’'(r0] -729r02g'[r0]%+162r03g® [r0]) +
g[ro] (4527r0%g'[r0]12-781r0%g'[r0]®+54r0g'[r0] (760+7r03g® [r0]) +
54 (-664+9r03g® [r0])) +g[r0]% (-1014r0%g'[r0]*>-101r03g'[r0]3+
63r0g'[r0] (455+r0%g® [r0]) +54 (-46+9r0°g® [r0])))

We compute the second order derivative of equazione2 , we solve for g* [r 0] and we equal this new expression to
equazionednew. We solvefor g () [r 0]

equazi one2Der 2 = Si npl i fy [D[equazi one2, {r0, 2}]]
1
3r0% (3+gJ[r0])3
69(r0]° (26-4r0g’'[r0] +r0%g”[r0]) +g’'[r0]% (378r0?-75r0*g”[r0]) +
g[ro]* (768-278r0g'[r0] +12r0%g’ [r0]>+68r0°g”[r0] +r03g® [r0]) +
9r0g'[r0] (60+9r02g”(r0] +10r03g® [r0]) +
18 (-108-39r0%g”[r0] +5r0%g”[r012+21r03g® [r0]) +g[r0]3 (122r0%g'[r0]? +
262r02g”[r0] +r0g'[r0] (-1186+3r02g”[r0]) +23 (72+r0%g® [r0])) +
g[r0]? (972+450r02g'[r0]?+306r0%g”(r0] +10r0*g”[r0]?+
153r03g® [r0] +r0g'[r0] (-2142+27r0%g”(r0] +10r03g® [r0])) +
gro] (-324r0%g”(r0] +60r0*g”(r0]J?+g'[r0]? (702r0%-25r0%g”[r0]) +
405 (-4+r0%g® [r0]) +3r0g'[r0] (-378+27r0%g”[r0]+20r0%g® [r0])))

(12g(ro1®+10r0*g'[roj*+

equad =Flatten[Sinmplify][
Sol ve [equazi one2Der 2 - equazi onednew == 0, D[g[r0], {rO, 3}]] /. equal]]
{g®[ro] > (98496 -10g([r0]’+10g(r0]®-131328r0g’[r0] -9450r0%g'[r0]? +
5757r0°%g'[r0]%+385r0%g'[r0]*+g[r0]® (-1788+217r0g’[r0]) +2g[r0]®
(-7742+1131r0g'[r0]) +g[r0]* (-57422+7254r0g'[r0] +519r02g'[r0]?) +
g[r0]® (-96594 -3136r0g'[r0] +4932r0°g'[r0]?) +
g[r0]? (-31968-72855r0g’[r0] +14529r02g’'[r0]?+373r0%g’[r0]%) +
29(r0] (52380-84375r09'[r0] +5031r0?g'[r0]?+1519r0%g’[r0]%)) /
(9r0® (3+9g(r0])% (-42+9g[r0]+59g(r0J?+11r0g’(r0]))}
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equazione3d = Sinplify[equa3[[1]1]1[[2]]]

(98496 -109g(r0]’+10g[r0)®-131328r0g’'[r0] -9450r0%g’'[r0]?+5757r0%g’[r0]°+
385r0%g'[r0]%+g[r0]® (-1788+217r0g’[r0]) +2g[r0]% (-7742+1131r0g’[r0]) +
gro]* (-57422+7254r0g'[r0] +519r0%g'[r0]?) +

gro]? (-96594 -3136r0g'[r0] +4932r0%g'[r0]?) +

g[r0]? (-31968-72855r0g'[r0] +14529r0%g’'[r0]2+373r0%g'[r0]3) +

2g(r0] (52380-84375r0g'[r0] +5031r02g'[r0]?+1519r0%g’'[r0]3)) /
(9r0® (3+9g([r0])% (-42+9g(r0] +59g(r0]J?+11r0g'(r0]))

We compute the first order derivative of the equazione2 and we solvefor g ) [r 0]

equazi one2Der 1 = Si npli fy[D[equazi one2, {r0, 1}] /. equal]
1

9r0% (3+9g[r0])2
(-864+369g[r0]°+29g(r0]°®+1080r0g’'[r0] +657r0%g'[r0]>+35r0%g [r0]%+
3g[r0]* (76 +13r0g’[r0]) +g[r0]® (616 +327r0g’[r0]) +
39g(r0]? (174+343r0g'[r0] +6r0%g'[r0]?) +
3g(r0] (-180+519r0g'[r0] +91r0%g'[r0]?))

We equal the two expressions for g (®) [r 0] obtaining two equationsfor g’ [r 0]

Eql = Si npli fy[equazi one2Der 1 - equazi one3];

equalNew= Sinplify[Sol ve[Eql == 0, D[g[r0O], {r0, 1}111]

{{g’[r0] > (177 +1109[r0] +59g(r0]?-4g[r0]®+
V3 +/((8+9g[r0])? (851+690g(r0] +171g(r0]2+164g[r0]3))) /

(29r0-2r0g(ro0J)}, {g'[r0] > (177+1109[r0] +59[r0]?>-4g[r0])3-

\/?\/((3+g[r01)2 (851+6909g(r0] +171g[r0]?+16g[r0]J®))) /(2910 -
2r0g[r0])}}

equazi onell = equalNew[[111[[1]1]1[[2]]

(177+1109[r0] +5Qgr0]2-4g[ro]®+

\/?\/(3+g[r0])2 (851+690g[r0] +171g(r0]2+16g(ro}3) )/ (29r0-2r0g[r0])
equazi onel2 = Sinplify[equalNew[[2]1][[1]1]1[[2]]]

(177+1log[r0] +5g[roj2-4g[rojs-

ﬁ\/(3+g[r0]>2 (851+690g[r0] +171g(r0]2+16g(ro]3) )/ (29r0-2r0g[r0])
We consider the first one, compute the first oder derivative, susbtitute the expression for g’ [r 0] and solvefor g [r 0]
equalNew[[111[[111[[2]]

(177+110g[r0] +5g[roj2-4g[rojs+

ﬁ\/(3+g[r0]>2 (851+690g[r0] +171g(r0]2+16g(r0]3) )/ (29r0-2r0g[r0])
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EqlDer = Sinplify[D[equazionell, {r0, 1}] /. equalNew[[1]1]1[[11]1]
- ((177+1109[r0] +59[r0)?>-4g[ro]3
\/_\/( (3+9[r0])2 (851+6909g(r0] +171g[r0]+16g[r0]3)))
(179400 +/3 +200686 /3 g(r0] +626+/3 g[r0]*-48+/3 g[r0]®+
2703/ ((3+g[r0])? (851+690g(r0] +171g[r0]?+16g[r0]3)) +
406 g(r0]+/((3+g[r0])? (851+690g[r0]+171g(r0]®+16g(r0]3)) +
2g[r0]? (404553 -
181+/((3+g[r0])® (851+690g([r0] +171g(r0]?+16g[r0]3)))+2g[ro]?

(6813+/3 +8+/((3+9[r0])? (851+690g[r0] +17lg[r0}2+16g[r0]3)))))/

(ro2 (—29+29[r0])3\/(3+g[r0])2 (851+690g(r0] +171g(r0]?+16g[r0]°) )

equazi one2New = Si npl i fy [equazi one2 /. equalNew[[1]]]
1

ro2 (29-2g(r07])?

(50760—249g[r0}3—1389[r0]4+329[r015

332\/?\/ (3+9[r0])2 (851+690g(r0] +171g(r012+16g[roj%) -
29g[r0]? (-5594+7+/3 /((3+g[r0])? (851+690g[r0] +171g(r0}2+16g[r0]3))) +
39g(r0] (15469 +19+/3 +/((3+g(r0])? (851+690g(r0] +17lg[r0]2+169[r0]3))))

We equal the two expressionsfor g’ [r 0] and obtain that the solutionsareg [r 0] = const ant . Precisely,
Num= Nuner at or [Si npl i fy[EglDer -equazi one2New] 1;

Soluzionil=Flatten[Sinplify[Sol ve[Num=0]]]
29
{grro1 > -3, giro1 > ==, g1ro) - Root |

179147 + 458229 111 + 394 875 11% + 162491 1113 + 35862 #1* + 4140 115 + 200 #1° &, 1],
g[r0] - Root [179147 + 458229 111 + 394875 11? + 162491 1113 +
35862 11 + 4140 11° + 200 #1° &, 5], g[r0] - Root |

179147 + 458229 111 + 394875 112 + 162491 1113 + 35862 n11* + 4140 111° + 200 11° &, 6| }
NSol ve [Num== 0]

{{g[r0] - -3.85584 +2.123691i}, {g[rO0] - -3.85584 -2.12369 1},
{g[r0] - -3.}, {g[r0] - -3.}, {g[r0] --3.}, {g[r0] - -2.14151})
3
3

{{g[r0] » -
{g(ro] - -

. 85584 +2.12369 1}, {g[r0] - -3.85584 -2.123691i},
.}, {g[r0] - -3.3, {g[r0] - -3.}, {g[r0] - -2.14151}}

Anaogously, we consider the second equation for g’ [r 0] and we do the same
Eq2Der = Si npli fy[D[equazi onel2, {r0, 1}] /. equalNew[[2]]];
equazi one2New2 = Si npl i fy[equazi one2 /. equalNew[[2]]];
Nun? = Nuner at or [Si npl i fy [Eg2Der -equazi one2New211;
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Soluzioni 2 =Flatten[Sinplify[Sol ve[Nun? == 0]]1]

{g[ro] - -3, giro] »-2, g[r0] -1, g[r0] > Root |
179147 + 458229 111 + 394 875 11% + 162491 1113 + 35862 #1* + 4140 115 + 200 #1° &, 2],
g[r0] - Root [179147 + 458229 111 + 394875 11? + 162491 1113 +
35862 11" + 4140 11° + 200 #1° &, 3], g[r0] - Root |
179147 + 458229 11 + 394 875 111 + 162491 11% + 35862 11* + 4140 111° + 200 11° &, 4]}

NSol ve [Nun? == 0]

{{9[r0] »-3.}, {g[r0] »-3.}, {g[r0] »-3.1,
{g[r0] - -2.}, {g[r0] - 1.}, {g[r0] - -0.743563}}

= Check of the solutions
eq = Nuner at or [equazi one2 /. g' [r0] -» 0]
-36-69([r0]+269(r0j2+149g[ro0j®+2g(roj*
Check for the first group of solutions

For[i =1, i <5, 1 ++,
Solutl[i] =FullSinplify[eq /. Soluzioni1[[i]]]

1

For[i =1, i < 5, 1 ++,

If[Sinmplify[Solutl[i] ==0],
Print ["g[r0]=", Soluzioni1[[i]]1[[2]], " is a solution" ],
Print ["g[r0]=", Soluzioni1[[i]]1[[2]], " is not a solution" ]
1]

g[r0]=-3 is a solution

29 )
g[rO]:7 is not a solution

g[roj=
Root [179147 + 458229 11 + 394875 11% + 162491 1113 + 35862 11* + 4140 1115 + 200 #1° &, 1]
is not a solution
g[roj=
Root [179147 + 458229 1l + 394875 11% + 162491 1113 + 35862 11* + 4140 111° + 200 111° &, 5|
is not a solution
g(roj=
Root [179147 + 458229 1l + 394875 11% + 162491 1113 + 35862 11* + 4140 111° + 200 #1° &, 6|
is not a solution

Check for the second group of solutions

For[i =1, i < 6, i ++,
Solut2[i] =FullSinplify[eq /. Soluzioni2[[i]]]
1
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For[i =1, 1 < 6, i ++,
I f[Sinplify[Solut2[i] ==0],
Print ["g[r0]=", Soluzioni2[[i]][[2]], " is a solution" ],
Print ["g[r0]=", Soluzioni2[[i]]1[[2]], " is not a solution" ]
1]

g[r0]=-3 is a solution
g[r0]=-2 is a solution

g[(r0]=1 is a solution
g[roj=
Root [179 147 + 458229 1l + 394875 11 + 162491 11° + 35862 11* + 4140 u1° + 200 116 &, 2]
is not a solution
g[roj-
Root [179147 + 458229 n1 + 394875 11? + 162491 1113 + 35862 11* + 4140 1115 + 200 #1° &, 3|
is not a solution
g[roj-
Root [179147 + 458229 11 + 394875 11% + 162491 1113 + 35862 11* + 4140 1115 + 200 1#1° &, 4]
is not a solution

We obtain that g[r0]=-3, g[r0]=-2 and g[r0]=1 are solutions. We exclude the case g[r0]=-3 since it does not satisfy the
hypothesis on the effective potential
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