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We present and test an approximate method for the semiclassical calculation of vi-

brational spectra. The approach is based on the mixed time-averaging semiclassical

initial value representation method, which is simplified to a form that contains a

filter to remove contributions from approximately harmonic environmental degrees

of freedom. This filter comes at no additional numerical cost, and it has no negative

effect on the accuracy of peaks from the anharmonic system of interest. The method

is successfully tested for a model Hamiltonian, and then applied to the study of the

frequency shift of iodine in a krypton matrix. Using a hierarchic model with up to

108 normal modes included in the calculation, we show how the dynamical interac-

tion between iodine and krypton yields results for the lowest excited iodine peaks

that reproduce experimental findings to a high degree of accuracy.
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I. INTRODUCTION

Since the early seventies of the past century, quantum molecular dynamics has been de-

voted to the study of gas phase reactions on pre-computed potential energy surfaces.1–28

However, condensed phase nuclear quantum molecular dynamics has gradually attracted

more and more attention from researchers mostly for its practical applications. The question

if quantum mechanical effects are important and crucial for the description of nuclear con-

densed phase phenomena is still open. Most probably the answer would be: “it depends”.

Spectroscopy shows that nuclear energy levels are quantized even if the full dimensional

spectrum could appear as a continuum.

Several approaches to condensed phase dynamics are based on path integrals (PI).29 In

methods such as PI Monte Carlo (PIMC)30 and PI molecular dynamics (PIMD),31–33 ther-

modynamic properties are calculated by considering the imaginary time propagator for the

Boltzmann operator. More recently, also real-time dynamics studies based on path integrals

have been performed. There exist several methods, such as centroid path integral molecu-

lar dynamics (CPMD)34–37 and ring polymer molecular dynamics (RPMD).38–49 There, the

dynamics of the nuclei is treated quantum mechanically by mapping them onto fictitious

classical particles connected by springs. A critical review of those methods with respect to

their applicability to vibrational spectroscopy can be found in Ref. 48.

Also in semiclassical molecular dynamics, real as well as imaginary time propagations can

be performed.4,50–67 These methods can also be derived from path integrals68 and they have

been applied both to gas phase problems57,69–88 and to model potentials of condensed phase

systems, such as the Caldeira-Leggett potential.64,89,90 This paper deals with the application

of semiclassical initial value representation (SCIVR)4,51,56,60–63,76,91–106 molecular dynamics

to condensed phase systems. More specifically, we recently designed a SCIVR method called

mixed time-averaging SCIVR (M-TA-SCIVR)107 for the calculation of nuclear spectra for

condensed phase systems composed of a main system of interest (SOI) coupled to a bath.

It employs the hybrid dynamics idea108 and is designed for SCIVR nuclear power spectra

calculations from the Fourier transform of a wavepacket’s correlation functions. In M-TA-

SCIVR the environment is treated by integrating out the phase space coordinates for the

corresponding degrees of freedom using a thawed Gaussian approximation.51 The method is

applicable to both pre-computed and on-the-fly ab initio quantum dynamics simulations and
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it is free of any adjustable parameters. M-TA-SCIVR proved to be reliable when compared

to exact quantum results for small dimensional systems.107 Furthermore, in an application to

an anharmonic SOI coupled to a Caldeira-Leggett environment with up to 60 harmonic bath

degrees of freedom, good agreement was found with respect to higher-accuracy SCIVRs.90

In this paper, we focus on the application of M-TA-SCIVR to problems where both

system and bath are anharmonic. This is quite challenging due to the presence of (many)

bath overtones in the spectrum, which complicate peak attribution or render it altogether

impossible. One way to resolve this issue would be to start from initial conditions where the

bath modes have little or no initial energy. However, this introduces a sampling bias because

the classical dynamics explores only the low energy, harmonic regions of the respective bath

sites. We will therefore introduce a simplified approach to M-TA-SCIVR (SAM-TA-SCIVR)

which acts as a filter for the bath excitations while still reproducing exact system frequencies.

We will apply SAM-TA-SCIVR to the power spectrum of an iodine molecule in a krypton

matrix, since this is a well studied complex condensed phase system.109–111 It is realized that

the full dimensional spectrum is very dense and that a technique, which is able to decompose

the spectrum into specific components pertaining to the normal modes of interest, would be

very useful for the interpretation and for a better understanding of the physics. For these

reasons, we describe how to selectively extract the spectrum of the SOI without resorting

to any artificial decoupling from the environment.

The paper is organized in the following way: Sec. II recalls the M-TA-SCIVR method

(II A) and presents the new approximation for dense spectra calculations (II B). In Sec. III

some tests on model systems are reported followed by the main application which is the

calculation of the power spectra for the iodine molecule in a krypton matrix. Conclusions

are drawn and future perspectives are given in Sec. IV.

II. SIMPLIFIED APPROACH TO THE MIXED TIME-AVERAGING

SEMICLASSICAL INITIAL VALUE REPRESENTATION

The main idea of this paper is to propose a method for the calculation of molecular spectra

that has a built-in filter, removing unwanted contributions from environmental degrees of

freedom (DOFs). The need for such a filter arises, when the spectrum becomes too noisy

for unambiguous peak identification, which may be the case if many DOFs carry initial
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excitation. As this approach is a simplification of the recently introduced M-TA-SCIVR,90,107

we first give a brief overview of its derivation and then continue with a simplification that

allows for the treatment of systems with possibly hundreds of degrees of freedom.

A. Mixed Time-averaging Semiclassical Initial Value Representation

The quantity to be calculated with M-TA-SCIVR is the power spectrum I(E) of a given

initial state |χ〉 subject to a Hamiltonian Ĥ. It can be found from the system’s dynamics as

the Fourier transform of the autocorrelation function

I(E) =
1

2π~

∞∫
−∞

dt eiEt/~
〈
χ
∣∣∣e−iĤt/~

∣∣∣χ〉 . (1)

The time evolution in Eq. (1) is calculated semiclassically with the propagator of Herman

and Kluk96,

e−iĤt/~ =
1

(2π~)F

∫
dp(0)

∫
dq(0) Ct(p(0),q(0))

× eiSt(p(0),q(0))/~ |p(t),q(t)〉 〈p(0),q(0)| , (2)

where (p(t),q(t)) is the 2F -dimensional classical phase space trajectory evolving from initial

conditions (p(0),q(0)), and St is the corresponding classical action. Eq. (2) also contains

the HK prefactor,

Ct(p(0),q(0)) =√
1

2F
det

[
∂q(t)

∂q(0)
+
∂p(t)

∂p(0)
− i~γ

∂q(t)

∂p(0)
+

i

~γ
∂p(t)

∂q(0)

]
(3)

which accounts for second-order quantum delocalizations around the classical paths. Finally,

the coherent state basis set in position representation for many degrees of freedom is given

by the direct product of one-dimensional Gaussian wavepackets,

〈x|p,q〉 =

(
det(γ)

πF

)1/4

× exp

[
−1

2
(x− q) Tγ (x− q) +

i

~
pT (x− q)

]
(4)

where γ is a diagonal matrix containing F time independent width parameters.
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While the semiclassical approximation of the propagator in Eq. (2) in principle allows for

the inclusion of an arbitrary number of DOFs, practical applications are limited by the need

to converge the phase space integral. We will therefore carry out two steps to accelerate the

numerical Monte Carlo phase space integration of Eq. (2). The first step is the introduction

of a time averaging integral,112,113 which is applied to Eq. (1) and yields a semiclassical

approximation with a pre-averaged phase space integrand. This expression can be further

simplified with Kaledin and Miller’s so-called separable approximation114 that results in

I(E) =
1

(2π~)F
1

2π~T

∫
dp(0)

∫
dq(0)

×

∣∣∣∣∣∣
T∫

0

dt 〈χ|p(t),q(t)〉 ei[St(p(0),q(0))+Et+φt(p(0),q(0))]/~

∣∣∣∣∣∣
2

, (5)

where φt (p(0),q(0)) denotes the phase of the HK prefactor Ct (p(0),q(0)) . The expression

now contains a positive-definite phase space integrand. While less computationally demand-

ing than Eq. (2), the separable approximation TA-SCIVR in Eq. (5) has also turned out to be

very accurate for a number of molecular dynamics applications.71,73,79,80,82–86,90,107,112,114,115

The second step towards making the dynamics of larger systems accessible is to invoke

the mixed approximation. To this end, we use the semiclassical hybrid dynamics idea108 to

divide the 2F phase space variables into 2Fhk for the system space and 2Ftg for the bath

phase space. Only the system part, denoted by the subscript hk, is then treated on the HK

level of accuracy, whereas the simpler single-trajectory TGWD approximation is used for

the bath DOFs, which are denoted by the subscript tg. This separation is made only for the

semiclassical expression, while the underlying classical dynamics is not modified. We now

assume a reference state of Gaussian form, |χ〉 = |peq,qeq〉, where qeq is the equilibrium

position and peq is the momentum corresponding to some approximated eigenenergy. In the

mixed approximation, the initial phase space coordinates (p(0),q(0)) are redefined as

p(0) =

phk(0)

peq,tg

 , q(0) =

qhk(0)

qeq,tg

 . (6)

Only the HK initial conditions (phk(0),qhk(0)) are found by Monte Carlo sampling around

(peq,hk,qeq,hk), while the bath starting coordinates are always at the equilibrium positions,

(ptg(0),qtg(0)) = (peq,tg,qeq,tg). Since the TGWD is exact for harmonic potentials, this

division should accurately reproduce the contributions of weakly coupled bath DOFs close
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to their potential minimum. With this phase space division in place, we expand the classical

trajectories and the action to first and second order, respectively, in the displacement coordi-

nates of the bath subspace. This approximates the exponent in Eq. (5) such that the phase

space integration over the original bath initial conditions (ptg(0),qtg(0)) can be performed

analytically as a Gaussian integral, and the dimensionality of the phase space integration

is reduced. The resulting twofold time integration collapses into a single one after another

separable approximation assuming approximately harmonic behavior of the bath, and we

arrive at the separable mixed TA-SCIVR (M-TA-SCIVR)

I(E) =
1

(2~)F
1

πFhk

1

2π~T

∫
dphk (0)

∫
dqhk (0)

∣∣∣∣∫ T

0

dt ei[Et+φt(p(0),q(0))+St(p(0),q(0))]/~

× 〈peq,hk,qeq,hk|phk (t) ,qhk (t)〉 〈peq,tg,qeq,tg|ptg (t) ,qtg (t)〉

× 1

[det (A (t) + A∗ (t))]1/4
exp

{
1

4
bT
t (A (t) + A∗ (t))−1 bt

}∣∣∣∣∣
2

. (7)

The matrix A(t) and the vector b(t) are defined in App. A, and their contributions will turn

out to vanish with the simplification in Sec. II B. As it has been demonstrated for a Morse

oscillator embedded in a Caldeira-Leggett bath with up to 61 DOFs,90,107 M-TA-SCIVR re-

produces both system and bath peaks precisely when compared to exact quantum dynamics

and full HK TA-SCIVR results, and reaches tight convergence within a considerably shorter

amount of time than the separable TA-SCIVR from Eq. (5).107

B. Simplification and Bath Frequency Filter

Regarding the applicability of Eq. (7) to large molecular systems, both time-averaging and

phase space separation put forward the convergence of the phase space integration with fewer

trajectories. However, one major drawback is not addressed: When investigating a system

with more than a handful of coupled degrees of freedom, spectra from both TA-SCIVR

and M-TA-SCIVR become very noisy if all degrees of freedom carry some initial excitation.

Contributions from excited peaks, whose number grows exponentially with system size,

make it impossible to identify specific excitations even on the single-trajectory level. Due

to the positive definite nature of the phase space integrand in Eq. (5) and (7), the phase

space average does not resolve this issue. An elegant solution has been proposed in the

form of multiple coherent states TA-SCIVR (MC-TA-SCIVR),79,82 where the usual product
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reference state |χ〉 in Eq. (5) is replaced with a superposition of states. This approach needs

only a handful of trajectories with initial conditions
(
pieq,q

i
eq

)
chosen such that the classical

energies are close to the positions of the desired peaks in order to reproduce quantum results

with high accuracy. More importantly here, however, is that the reference state in the MC

TA-SCIVR approach can also be used as a filter. Choosing the reference state, for example,

as

|χ〉 =
F∏
j=1

(|+peq, j, qeq, j〉+ |−peq, j, qeq, j〉) , (8)

all odd contributions from the single-trajectory spectrum are removed, thus reintroducing

clearly distinguishable peaks.82 This can be shown analytically for the harmonic oscillator,

and also works very well for anharmonic systems. The size of the systems to which this

approach is applicable, however, is limited due to the number of terms in the reference state

scaling exponentially with the number of degrees of freedom.

We will now propose a simplification of Eq. (7) that has a similar effect without needing a

filter comprising such a potentially high number of terms. First, we approximate the purely

TG parts of the integrand by their analytical harmonic oscillator values

1

[det (AHO (t) + A∗HO (t))]1/4
≈ (2~)Ftg/2 (9)

bT
t,HO (AHO (t) + A∗HO (t))−1 bt,HO ≈ 0, (10)

that are derived shortly in App. A. This already results in a considerably simpler form for

Eq. (7),

I(E) =
1

(2π~)Fhk

1

2π~T

∫
dphk (0)

∫
dqhk (0)

×
∣∣∣∣∫ T

0

dt ei[Et+φt(p(0),q(0))+St(p(0),q(0))]/~

× 〈peq,qeq|p (t) ,q (t)〉|2 . (11)

In a second step, we choose the reference state 〈peq,qeq| as a filter in the spirit of Eq. (8),

but we define it in a different, partially time-dependent fashion,

〈peq,qeq| →
(
Fhk∏
j=1

〈peq,hk,j, qeq,hk,j|
)(

Ftg∏
k=1

〈ptg,k(t), qtg,k(t)|
)

= 〈peq,hk,qeq,hk| 〈ptg (t) ,qtg (t)| .
(12)
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Since the time-dependent part is exactly the complex conjugate of the thawed Gaussian

contribution to the time-evolved wavepacket, it cancels this part of the overlap in Eq. (11).

The final simplified approach to the mixed TA-SCIVR, which we will refer to as SAM-TA-

SCIVR or simply SAM, is thus

I(E) =
1

(2π~)Fhk

1

2π~T

∫
dphk (0)

∫
dqhk (0)

×
∣∣∣∣∫ T

0

dt ei[Et+φt(p(0),q(0))+St(p(0),q(0))]/~

× 〈peq,hk,qeq,hk|phk (t) ,qhk (t)〉|2 . (13)

The remaining quantities in the integrand, namely, the action

St (p(0),q(0)) = St (phk(0),qhk(0); peq,tg,qeq,tg) (14)

as well as the prefactor phase

φt (p(0),q(0)) =φt (phk(0),qhk(0); peq,tg,qeq,tg) , (15)

are not affected by the simplifications. We stress that these quantities already “live” in a

reduced dimensionality: while their classical evolution depends on the initial conditions of

all DOFs, only the HK initial coordinates are variables of the phase space sampling. The

TG DOFs’ initial positions and momenta are fixed and can therefore be seen as parameters

of the phase space integration. In this way, the integration as well as the integrand are

restricted to the HK part of phase space.

By comparison with the original TA-SCIVR Eq. (5), one can see that Eq. (13) is indeed

the original time-averaged result with the sampling reduced to a selection of degrees of

freedom, while the remaining degrees of freedom are always taken to be initially at the

center of the reference state as in the mixed approach. The classical dynamics is still the

full dynamics of system and environment combined.

The effect of this drastic simplification of the M-TA-SCIVR is investigated analytically

for two uncoupled harmonic oscillators in App. B, and for two different numerical appli-

cations in the following sections. As we will see, it does indeed serve as a filter by virtue

of removing odd bath peaks, in particular the first harmonics of the bath oscillators. This

results in a significant reduction of noise in the spectra, especially when going to higher bath

dimensionality. The weight and accuracy of the HK peaks, on the other hand, is not affected.
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As a slight drawback, even bath excitations are reflected at the system peaks and show up

as ghost peaks in the spectrum. Since we are not interested in bath excitations anyway, and

because these artifacts are always less prominent than neighboring system excitations, we

believe this additional inaccuracy is a small price to pay, compared to the huge benefit of

recovering meaningful information from an otherwise unreadable spectrum.

III. RESULTS AND DISCUSSION

A. Morse oscillator coupled to harmonic oscillators

Our first test system will be the Caldeira-Leggett Hamiltonian

H =
p2

s

2ms

+ Vs(s) +

Fb∑
i=1

[
p2
i

2
+
ω2
i

2

(
yi +

ci
ω2
i

(s− seq)

)2
]
, (16)

and we use a Morse potential with the parameters of molecular iodine107 as the system,

Vs(s) =De

(
1− e−α(s−seq)

)2
. (17)

The bath is characterized by a discretized Ohmic spectral density,90,107,116,117 resulting in

frequencies

ωi = −ωc ln

(
1− i(1− e−ωmax/ωc)

Fb

)
. (18)

We use a small cutoff and maximum frequency, ωc = ωmax = 0.2 ωe, where ωe is the har-

monic approximation frequency of the Morse oscillator. The dimensionless effective coupling

strength is ηeff = 0.2. This situation is similar in terms of frequency difference to the exper-

imentally investigated iodine molecule in a krypton environment that we will discuss below.

First, the environment comprises four oscillators such that comparison to the other semiclas-

sical approaches is possible. Each degree of freedom is initially positioned at its potential

minimum with initial momentum corresponding to its ground state energy, pi =
√
miωi,

with ω1 = ωe for the system coordinate. 104 trajectories are sufficient to reach convergence

with respect to peak positions. Peak amplitudes may differ to a small degree with more tra-

jectories added to the phase space integration. However, amplitudes as well as peak shapes

are not our main interest, because already the original separable approximation by Kaledin

and Miller112,114 introduces significant quantitative inaccuracies for these quantities.
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FIG. 1. Morse oscillator coupled to four harmonic oscillators with ωc = ωmax = 0.2 ωe and

ηeff = 0.2. From top to bottom: SAM-TA-SCIVR according to Eq. (13) (blue line, (i)), M-TA-

SCIVR as in Eq. (7) (green line, (ii)) and full TA-SCIVR as in Eq. (5) (violet line, (iii)). All elastic

peaks are normalized to one, and the spectra overlap to make higher excitations more visible.

Results are shown in Fig. 1, where the ground state energies of the bath HOs, Egs,HO =∑
i ωi/2, have been subtracted. The degree of approximation decreases from top to bottom,

with SAM-TA-SCIVR according to Eq. (13) shown in blue (i), M-TA-SCIVR as in Eq. (7)

in green (ii) and full TA-SCIVR as in Eq. (5) with violet lines (iii). All three approaches

agree within frequency resolution in terms of peak positions. As expected and as desired,

bath excitations are very much suppressed by the SAM-TA-SCIVR method. Unlike in the

two reference spectra, some small ghost peaks appear in the SAM result, for example to

the left of (and therefore at unphysical smaller energy than) the elastic peak. As shown

analytically in App. B for two uncoupled harmonic oscillators, these ghost peaks are second

excitations of the bath modes reflected at the elastic peak. Upon close inspection, the same

behavior can be observed for all higher excitations of the system. The ghost peaks are not

a problem for the interpretation of the spectrum, as they are far smaller than the respective

HK peak they are close to. In addition, they can be identified from their position, which is

always an integer multiple of a bath frequency (or a combination thereof) to the left of a

system excitation if the bath modes are sufficiently harmonic.

While the spectrum with five weakly coupled, off-resonant oscillators already contains a

lot of bath excitations, all of these peaks can be assigned without difficulty. In the next
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example, we show a situation where this is not the case any more. The bath has still the

same parameters, but now comprises 18 instead of four harmonic oscillators. We restrict

the calculation to a single trajectory, which is sufficient to demonstrate the main challenge

arising from this higher number of DOFs. The initial conditions are the same as before,

with all DOFs centered at (peq,i, qeq,i). Results are shown in Fig. 2, with the SAM-TA-

SCIVR result (blue line, (i)) on top, and the two reference HK calculations with different

propagation times are below ((ii) and (iii)). For this higher number of bath DOFs, we

see that the propagation time from the previous 5D example with 215 steps, which leads

to a numerical energy resolution ∆E = 6 × 10−7 a.u. (0.13 cm−1), is not sufficient any

more to obtain a well-resolved spectrum. This is illustrated by the reference HK calculation

with this number of time steps (Fig. 2(ii), orange line), where the much higher number of

bath excitations leads to a quasi-continuous spectrum that is much broader than before and

does not allow for an unambiguous attribution of peaks. It is possible to recover a discrete

spectrum by significantly increasing the length of the propagation and thereby the energy

resolution. Results of the same reference TA-SCIVR calculation with 220 instead of 215 time

steps are reported in the bottom spectrum of Fig. 2 (violet line, (iii)). Here, the system

excitations can be seen clearly, and the bath peaks are very dense but discrete. As we go

from high energy resolution in Fig. 2(iii) to the lower energy resolution in Fig. 2(ii), distinct

contributions from the higher resolution can now coincide in the same energy bin. Since the

density of bath peaks gets higher far away from the system excitation, as illustrated by the

inset in Fig. 2, the lower resolution introduces an artificial bias that overestimates relative

peak weights in these regions of high bath peak density. Conversely, the system excitations

are underestimated and likely to be absorbed in the quasi-continuum. Given that the phase

space integrands in Eqs. (5) and (7) are positive definite, the phase space average does not

resolve this issue. Simply prolonging the propagation time, on the other hand, recreates

a discrete spectrum, but this is by no means a feasible general solution, as much longer

propagation times are usually prohibitively expensive and may increase the likelihood of

numerical instability.

Instead, the inherent filter of SAM-TA-SCIVR (blue line, (i) in Fig. 2) offers a numerically

cheap solution. With the same lower number of 215 time steps as in panel (ii), we obtain

a completely different picture. By removing contributions from first-order bath excitations,

the old hierarchy of prominent system peaks and very small bath excitations from Fig. 1
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FIG. 2. Morse oscillator coupled to 18 harmonic oscillators with ωc = ωmax = 0.2 ωe and ηeff = 0.2.

From top to bottom: SAM-TA-SCIVR according to Eq. (13) (blue line, (i)) with 215 propagation

time steps, full TA-SCIVR as in Eq. (5) with 215 propagation time steps (orange line, (ii)), and

full TA-SCIVR with 220 propagation time steps (violet line, (iii)). The respective highest peaks

are normalized to one.

is restored. Compared to the higher accuracy calculation in Fig. 2(iii), it is evident that

the location of the system energies is reproduced exactly. Given the higher number of bath

oscillators, the number of ghost peaks is getting bigger as well. However, at least in this

weakly coupled example, they are again the same order of magnitude as their accurate
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counterparts and therefore easily distinguished from the system excitations.

B. Molecular iodine embedded in krypton

Having introduced SAM-TA-SCIVR as a useful tool for the analysis of high-dimensional

spectra, we now turn to an experimentally investigated system, namely, iodine in a krypton

environment. Iodine surrounded by noble gas atoms has been used as a test system for a

number of semiclassical approaches, for example the study of vibrational quantum coherence

of iodine in argon clusters using a forward-backward IVR.118–120 Another study of the loss of

coherence of iodine in a krypton environment has already established the hybrid formalism

as an appropriate tool for the investigation of this system.121 Here, we are interested in the

change of the iodine vibrational spectrum by the surrounding krypton atoms. Experimen-

tally, it has been found that the iodine spectrum undergoes a redshift, from gas phase122

harmonic frequency ωe = 214.6 cm−1 and anharmonicity ωexe =0.627 cm−1 to ωe = 211.6

cm−1 and ωexe =0.658 cm−1 when embedded in krypton123, see Tab. II.

1. Model: Dynamic Cell with Rigid Walls

As shown in a closely related investigation of iodine in an argon matrix122, there are two

important caveats when it comes to spectral calculations of iodine in a rare gas environment.

First, one has to choose a suitable matrix environment to reproduce the rare gas geometry

faithfully, using a sufficient number of layers around the host molecule. For iodine in argon,

four such layers were necessary for convergence with respect to the iodine frequency shift,

corresponding to 448 argon atoms. Of these, however, only the two inner shells were taken

to be mobile, while the two outer layers were fixed during the propagation; this choice of

boundary conditions is called Dynamical Cell with Rigid Walls by the authors of Ref. 122.

We will use the same approach, but restrict the environment to just three layers with 218

atoms for the classical geometry optimization, where the outermost is fixed and the two inner

ones, comprising 72 krypton atoms, are mobile. The iodine molecule is placed inside the

face-centered cubic (fcc) krypton lattice by replacing two nearest-neighbor atoms. Then, we

perform a geometry optimization for the iodine as well as the mobile krypton atoms, while

the outer, fixed krypton atoms serve as containment. The minimum energy geometry is
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FIG. 3. The iodine molecule (orange) in two flexible layers of krypton atoms (blue) after geometry

optimization. Not shown is the fixed outermost layer of krypton atoms.

presented in Fig. 3, where iodine atoms are orange and the flexible krypton atoms are blue.

As a result, only a few atoms from the innermost shell are notably shifted. The subsequent

normal mode analysis is performed only for the 74 flexible atoms depicted in Fig. 3 with the

TrajLab software.124

As a second important point, it has been demonstrated that the halogen-rare gas inter-

action potential is essential for getting the accurate iodine bond softening which leads to

the redshift. While an anisotropic interaction of the form

Vik(Rik,R12) = (cos θik)
2 VΣ,ik (Rik) + (sin θik)

2 VΠ,ik (Rik) (19)

yields an even quantitatively accurate frequency shift for iodine in argon,122 other (simpler)

analytic interactions result in no shift at all or even a blueshift of the iodine frequencies. In

the above equation, the index i designates one of the two iodine atoms, while index k stands

for a krypton atom. The angle θik is the angle between Rik and the iodine-iodine vector

R12. The total potential is modeled as a sum over two-particle interactions

V (R1, . . . ,RN) =
∑
i<j

Vij, (20)

where we use Eq. (19) for the iodine-krypton interaction with Morse potentials VΣ and VΠ,

a simple Morse potential for the iodine intramolecular interaction and a Lennard-Jones (LJ)

potential for the krypton-krypton interaction. All potential parameters are collected in

Tab. I.
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Morse interaction De

[
cm−1

]
se

[
Å
]
α
[
Å
−1
]

I-I122 18357 2.666 1.536

I-Kr (Σ)110 287 3.733 1.49

I-Kr (Π)110 126 4.30 1.540

LJ interaction ε
[
cm−1

]
σ
[
Å
]

Kr-Kr110,125 138.7 3.58

TABLE I. Parameters for the different two-particle interactions of the iodine-krypton potential.

2. Reproducing the condensed phase quantum effects by adding degrees of

freedom

After geometry optimization and subsequent normal mode analysis, we find that, sim-

ilar to iodine in argon, the resulting shifted harmonic frequency of the iodine vibration is

already very close to the experimental result, 211.8 cm−1 against 211.6 cm−1. The major

portion of the shift from the gas phase result 214.6 cm−1 is thus a classical effect due to the

rearrangement of iodine molecule and krypton atoms, and in particular the stretching of the

iodine bond, during the geometry optimization.

In order to find the remaining contribution to the redshift due to the quantum dynamical

interaction of the iodine molecule with its krypton environment and to include overtones,

we perform SAM calculations with different numbers of normal coordinates included into

the dynamics. We have to use 217 semiclassical time steps with 2 classical substeps of length

(2π/ωe) /120, corresponding to a frequency grid spacing of 4.4 × 10−7 a.u. (0.1 cm−1), in

order to faithfully resolve possible differences. The standard phase space sampling even

of a single HK DOF becoming unfeasible as the number of normal modes approaches three

digits because the SAM expression (13) still requires the propagation of the full HK prefactor.

Thus, the main computational challenge is the calculation of the second derivatives in normal

coordinates, which brings about a computational time of a few days for one trajectory with

about 100 DOFs. As a consequence, we resort to the MC-SCIVR idea that each single

classical trajectory reproduces the part of the spectrum exactly that is closest to its own

energy, and run only six trajectories with different initial momenta for the iodine vibrational

coordinate. Each of these initial momenta corresponds to the energy of one of the first
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)
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FIG. 4. SAM-TA-SCIVR spectra for iodine in krypton for different numbers of normal modes

included in the dynamical calculation. From left to right, the regions around the first through the

fifth excited vibrational state of iodine are shown. The energy of the respective elastic peak is

subtracted on the abscissa to make calculations comparable. From top to bottom: gas phase result

(solid black lines, (i)), iodine vibration only in a rigid krypton cage (violet, (ii)), and spectra from

calculations with 32 (green, (iii)), 60 (blue, (iv)), and 108 (orange, (v)) flexible normal modes. The

dashed lines show the analytic positions of the experimental results for gas-phase iodine122 (black)

and redshifted iodine in krypton123 (red).

six excited states of iodine, which we can get approximately from a multiple-trajectory

calculation of iodine in the rigid krypton cage.

In our SAM calculations, which are summarized in Fig. 4 and Tab. II, we always treat

the iodine vibration as the only HK DOF. The first calculation (solid violet line, (ii), in
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Experiment ωe

[
cm−1

]
ωexe

[
cm−1

]
gas phase I2

122 214.6 0.627

I2 in Kr126 211.3 0.652

I2 in Kr123 211.6 0.658

Numerical results ωe

[
cm−1

]
ωexe

[
cm−1

]
normal mode analysis 211.8 –

I2 vibration in rigid Kr cage 211.8 0.62

32 DOFs 211.8 0.63

60 DOFs 211.7 0.64

108 DOFs 211.6 0.63

TABLE II. Spectroscopic parameters of the molecular iodine Morse potential. All numerical results

have been obtained from Birge-Sponer fits to the first six iodine eigenenergies from the SAM-TA-

SCIVR spectrum. The number of DOFs indicates how many of the 216 internal DOFs of the

two-shell iodine-krypton cluster have been considered in the dynamics.

Fig. 4) comprises only this one DOF, i.e. all krypton atoms are rigid. All excited peaks

from the five single-trajectory calculations are very clean, as there are only iodine excitations

in the respective spectra. A Birge-Sponer fit reveals that the harmonic frequency is indeed

identical to the eigenvalue of the normal mode, as shown in Tab. II. The anharmonicity xeωe

is clearly closer to the gas phase result than to the redshifted result in krypton. Increasing

the dimensionality of the system, we now take into account all 32 fully symmetric normal

modes (green lines, (iii), in Fig. 4). All bath DOFs carry initial momentum corresponding

to the harmonic frequency of the respective mode. We thus need to employ the SAM filter,

which works as intended in fully removing all bath excitations at least in close proximity

to the system peaks. These peaks are already shifted a little bit towards the redshifted

experimental result, which is also reflected in the results of the Birge-Sponer fit. By adding

more normal modes to the dynamical calculation, we can see that this trend continues.

With 59 TG normal modes with the same initial excitation as before (blue lines, (iv)), we

still find system peaks that can clearly be identified as such, but also a certain amount

of noise that is no longer filtered out completely. The growing number of normal modes

influencing the dynamics of the iodine vibration causes another quite significant shift towards
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the experimental result.

Going up to include 108 normal modes, we finally approach the limits of SAM. We have

given only 60 modes initial excitation corresponding to the respective mode’s ground state

energy ωi while the remaining modes have zero initial momentum. Higher initial energy

of the remaining bath DOFs would bring about significant excitation of some higher order

bath states, such that the corresponding peaks are not filtered sufficiently by the SAM

approach any more. In spite of this limitation, we still see an improvement of the excited

peak positions in the case of 108 normal modes (orange lines, (v), in Fig. 4). This also shows

in the fitted value for ωe, which is closest to the experimental results (Tab. II).

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented a simplified version of the mixed time-averaging SCIVR.

The underlying idea of M-TA-SCIVR is a hybrid description of phase space, where a small

part is described on the HK level of accuracy, while the remaining environment is treated

with TG. The SAM-TA-SCIVR builds upon this idea, but takes another approximative step

by using the exact harmonic oscillator results for the TG part of the phase space integrand.

This leads to a considerably simplified expression, reminiscent of the original HK TA-SCIVR

with a reduced phase space sampling. The motivation for this approximation was to find

an approach that is still accurate for the HK DOFs, but at the same time removes bath

excitations from the spectrum.

In the application to a Morse oscillator coupled to a Caldeira-Leggett bath, we have seen

for a small number of bath degrees of freedom that SAM indeed reproduces the HK peaks on

the same level of accuracy as reference HK or mixed calculations. The decisive advantage

over the formally more accurate approaches is the removal of odd harmonics of the bath

oscillators. For twenty bath oscillators, this filter effect proved its value by recreating a

clear spectrum from the same classical dynamics that yields excessively noisy spectra with

the reference methods. The only unfavorable characteristic of the SAM spectra are some

ghost peaks from the environmental DOFs. Since these ghost peaks are both very small and

appear at well-understood positions, we do not consider them a problem for the applicability

of the method.

Investigating an experimentally studied problem, namely, the redshift of the iodine
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molecule embedded in a krypton environment, we first saw that the shift of the harmonic

approximation frequency ωe of the iodine Morse potential is mainly an effect resulting from

the rearrangement of iodine and krypton atoms in a classical geometry optimization. We

then used SAM to find the effect of the krypton environment on the excited iodine vibra-

tional energies and to see the change in iodine energies due to the dynamical interaction

with the environment. The SAM approach allowed to include up to 108 vibrational DOFs

in the calculation, where either all or at least the majority of the bath modes carry initial

excitation. In spite of all interactions in this system being anharmonic, the bath filter still

works as intended and we can easily identify the system excitations. In the model with two

flexible inner krypton shells, contained by a fixed outer layer, we could show that adding

more and more normal modes to the calculation systematically improves the result towards

very good quantitative agreement with experimental findings. Thus, the increasingly com-

plex environment appropriately captures the effect of the system-bath dynamics on the

iodine spectrum, both for the fundamental frequency and the overtones.

In the future, the SAM approach will be combined with Divide-and-Conquer SCIVR72,127

for tackling condensed phase systems using ab initio potentials. This combination of methods

will allow the system to be significantly higher in dimensionality since the SAM approach

properly embeds the system into a condensed phase environment.
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Appendix A: Quantities From the Separable Mixed Expression

For this paper to be self-contained, we briefly collect the terms from the separable mixed

approximation in Eq. (7) that have not been defined in the main text. The 2Ftg×2Ftg matrix
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A(t), which collects coefficients of the quadratic deviations from the TG initial conditions,

consists of four submatrices defined as90

A11(t) =
1

4
mT

21 (t)γm21 (t) +
1

4~2
mT

11 (t)γ−1m11 (t)

A12(t) =
1

4
mT

21 (t)γm22 (t) +
1

4~2
mT

11 (t)γ−1m12 (t)

A21(t) =
1

4
mT

22 (t)γm21 (t) +
1

4~2
mT

12 (t)γ−1m11 (t)

A22(t) =
1

4
mT

22 (t)γm22 (t) +
1

4~2
mT

12 (t)γ−1m12 (t) .

(A1)

Prefactors of terms linear in the deviations are summarized in the 2Ftg-dimensional vector

b(t) ≡
(
bT

1,t,b
T
2,t

)T
with subvectors

bT
1,t =− 1

2
(q (t)− q (0))T

[
γm21 (t) +

i

~
m11 (t)

]
− 1

2~2
(p (t)− p (0))T [γ−1m11 (t)− i~m21 (t)

]
bT

2,t =− 1

2
(q (t)− q (0))T

[
γm22 (t) +

i

~
m12 (t)

]
− 1

2~2
(p (t)− p (0))T [γ−1m12 (t)− i~m22 (t)

]
,

(A2)

where we remind the reader that (p(t),q(t)) is the trajectory starting at the mixed initial

conditions (p(0),q(0)) from Eq. (6). The mij in the two above equations are non-square

F × Ftg submatrices of the stability matrix,

m11(t) =
∂p(t)

∂ptg(0)
, m12(t) =

∂p(t)

∂qtg(0)
,

m21(t) =
∂q(t)

∂ptg(0)
, m22(t) =

∂q(t)

∂qtg(0)
.

(A3)

Assuming, for simplicity, a system of two uncoupled harmonic oscillators with equations of

motion

pi(t) = peq,i cosωit−miωiqeq,i sinωit

qi(t) = qeq,i cosωit+
peq,i

miωi
sinωit,

(A4)

and treating site 1 with HK and site 2 on the TG level, we get zero for the respective first

component of the stability submatrices, mij,1 = 0, and the second components amount to

m11,2(t) = cosω2t, m12,2(t) = −m2ω2 sinω2t,

m21,2(t) = sinω2t/(m2ω2), m22,2(t) = cosω2t.
(A5)
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With the usual γi = miωi/~, the matrix A becomes time independent,

A =
1

4

 1/(~m2ω2) 0

0 m2ω2/~

 . (A6)

We thus find for this single uncoupled TG DOF

1

[det (A (t) + A∗ (t))]1/4
= (2~)1/2 , (A7)

and this result can be easily generalized to the case of Ftg uncoupled HOs to yield Eq. (9).

With the inverse

(A (t) + A∗ (t))−1 =

 2~m2ω2 0

0 2~/ (m2ω2)

 (A8)

and the relation

b2,t = −im2ω2b1,t, (A9)

we obtain the one-dimensional case of Eq. (10),

bT
t (A (t) + A∗ (t))−1 bt = 2~m2ω2b

2
1,t +

2~
m2ω2

(im2ω2)2 b2
1,t = 0. (A10)

All of these results will be used in the application of SAM-TA-SCIVR to the calculation of

the spectrum of two uncoupled HOs in App. B.

Appendix B: Analytical Application of SAM-TA-SCIVR to Two Uncoupled

Harmonic Oscillators

The dynamics of two uncoupled HOs of unit mass with frequencies ω1 and ω2, respectively,

is described by the Hamiltonian (in atomic units)

H =
p2

1

2
+
p2

2

2
+
ω2

1q
2
1

2
+
ω2

2q
2
2

2
. (B1)

The exact result for the spectrum, which can be found analytically as the product of two

TA-SCIVR spectra,79 reads

IHK(E) = exp

[
− p

2
eq,1

2~ω1

]
exp

[
− p2

2,0

2~ω2

]
×
∑
n,m

1

2n+mn!m!

(
p2

eq,1

~ω1

)n(
p2

eq,2

~ω2

)m
δ

(
E − ~ω1

[
n+

1

2

]
− ~ω2

[
m+

1

2

])
, (B2)
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where initial conditions (peq,0) have been chosen for simplicity and ~ has been set to unity.

Using M-TA-SCIVR according to Eq. (7) instead and treating the HO with index “1” with

HK while describing the HO with index “2” on the TG level,107 the result looks very similar

IM(E) = exp

[
− p

2
eq,1

2~ω1

]
exp

[
−p

2
eq,2

~ω2

]
×
∑
n,m

1

2n+2mn!(m!)2

(
p2

eq,1

~ω1

)n(
p2

eq,2

~ω2

)2m

δ

(
E − ~ω1

[
n+

1

2

]
− ~ω2

[
m+

1

2

])
. (B3)

With the mixed approach, all peaks positions of the TG coordinate are reproduced exactly,

while the peak weights are changed such that overtones are suppressed.107 While this inherent

suppression is a nice feature, it is not enough to completely remove peaks from a very noisy

spectrum, as we have seen in Fig. 2.

We will therefore apply the SAM-TA-SCIVR to this problem, using the same phase space

separation as before. As in the analytic results above, we will set the initial position to zero

for notational brevity, and replace phk(0) with p1 as well as (peq,hk, peq,tg) with (peq,1, peq,2)

for the same reason. After unfolding the modulus in Eq. (13), the SAM formulation thus

becomes

I(E) =
1

2π~
1

π~T

∫
dp1

∫
dq1Re

{∫ T

0

dt1

∫ ∞
t1

dt2

× ei[E(t2−t1)+φ(t2)−φ(t1)+S(t2)−S(t1)]/~

× 〈peq,1, 0|p1 (t2) , q1 (t2)〉 〈p1 (t1) , q1 (t1)|peq,1, 0〉
}
, (B4)

where (p1 (t) , q1 (t)) is the classical trajectory from Eq. (A4). Using the classical trajectory

with q0 = 0, the action becomes

S(t) =

(
p2

1

2ω1

− 1

2
ω1q

2
1

)
cosω1t sinω1t− p1q1sin2ω1t+

p2
eq,2

2ω2

cosω2t sinω2t, (B5)

and the prefactor phase is

φ (t) = −~ (ω1 + ω2)

2
t. (B6)

The phase space integration over the HK coordinates can be performed analytically, and the

remaining time integrand in Eq. (B4) can be written in the form of a large exponential,

exp

{
i

~
[E (t2 − t1) + φ(t2)− φ(t1)] + Ehk (t1, t2) + Etg (t1, t2)

}
, (B7)
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where the term Ehk (t1, t2) denotes the phase space integrated contribution from the HK

DOF,79,107 and Etg (t1, t2) is the contribution of the TG part, which consists only of (part

of) the action. Taking results from Refs. 79 and 107 and changing the integration variables

to τ = t2 − t1 and τ ′ = t1, the HK term becomes

Ehk (τ, τ ′) =
p2

eq,1

2~ω1

(
e−iω1τ − 1

)
. (B8)

For the TG term, we replace the trigonometric functions by exponentials to find

Etg (τ, τ ′) =
1

4~
p2

eq,2

2ω2

[
e2iω2(τ+τ ′) − e−2iω2(τ+τ ′) − e2iω2τ ′ + e−2iω2τ ′

]
(B9)

This makes the intermediate expression for the SAM spectrum

I(E) =
1

π~T
e−p

2
eq,1/(2~ω1)Re

{∫ T

0

dτ ′
∫ ∞

0

dτ ei[E−~(ω1+ω2)/2]τ/~

× exp

{
p2

eq,1

2~ω1

e−iω1τ +
1

4

p2
eq,2

2~ω2

[
e2iω2(τ+τ ′) − e−2iω2(τ+τ ′) + e−2iω2τ ′ − e2iω2τ ′

]}}
.

(B10)

We can now write the exponential in the last line as a product with five factors and replace

the lower exponentials by their power series expansions79,107

I(E) =
1

π~T
e−p

2
eq,1/(2~ω1)Re

{∫ T

0

dτ ′
∫ ∞

0

dτ ei[E−~(ω1+ω2)/2]τ/~

×
∑

n,m,k,l,o

(−1)k+o

n!m!k!l!o!

(
p2

eq,1

2~ω1

)n(
1

4

p2
eq,2

2~ω2

)m+k+l+o

e−iω1nτe2iω2m(τ+τ ′)e−2iω2k(τ+τ ′)e−2ilω2τ ′e2ioω2τ ′

}
.

(B11)

The resulting fivefold sum collapses to a sum over three variables in the limit T → ∞
because the factor 1/T needs to cancel after integration over τ ′ in order for the contribution

to survive, which is the case only for k = o and l = m, and we end up with

I(E) =
1

π~
e−p

2
eq,1/(2~ω1)Re

{∫ ∞
0

dτ ei[E−~(ω1+ω2)/2]τ/~

×
∑
n,k,l

1

n! (k!l!)2

(
p2

eq,1

2~ω1

)n(
1

4

p2
eq,2

2~ω2

)2k+2l

exp [−iω1nτ − 2iω2 (k − l) τ ]

}
. (B12)
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After performing the remaining integration over τ , the final SAM spectrum for two uncoupled

HOs emerges as

ISAM(E) = exp

[
− p

2
eq,1

2~ω1

]
×
∑
n,k,l

1

2n23(2k+2l)

1

n!(k!)2(l!)2

(
p2

eq,1

~ω1

)n(
p2

eq,2

~ω2

)2k+2l

δ

(
E − ~ω1

[
n+

1

2

]
− ~ω2

[
2(k − l) +

1

2

])
(B13)

From the comparison to the exact and mixed results in Eqs. (B2) and (B3), we get an insight

into the nature of this approximation. First, setting n = k = l = 0, the correct ground state

energy of the composed system is recovered. Second, by comparing the case k = l = 0 in

Eq. (B13) to m = 0 in the other expressions, we find all three spectra for the HK DOF

to be exactly the same. Third, the SAM expression turns out to contain only even peaks

in the TG coordinate. This is an important property given that these DOFs are usually

centered around the ground state energy initially, which means that the first excitations

are the main source of unwanted, noisy peaks. Finally, we see that all even TG excitations

have an unphysical counterpart at the respective “negative frequency”. The correct second

excitation at ω1 + 5ω2/2 (n = l = 0, k = 1), for example, has a ghost peak equivalent at

ω1−5ω2/2 (n = k = 0, l = 1). However, all TG peaks are systematically much smaller than

the closest HK peaks. This is why we think that the ghost peaks are a small price to pay for

a cheap built-in filter that removes odd TG excitations and thus makes spectra accessible

that would be just noise otherwise. In the numerical examples in Sec. III, we show that

these properties hold approximately also for anharmonic, coupled systems.
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