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We present and test an approximate method for the semiclassical calculation of vibrational spectra.
The approach is based on the mixed time-averaging semiclassical initial value representation method,
which is simplified to a form that contains a filter to remove contributions from approximately har-
monic environmental degrees of freedom. This filter comes at no additional numerical cost, and it has
no negative effect on the accuracy of peaks from the anharmonic system of interest. The method is suc-
cessfully tested for a model Hamiltonian and then applied to the study of the frequency shift of iodine
in a krypton matrix. Using a hierarchic model with up to 108 normal modes included in the calcula-
tion, we show how the dynamical interaction between iodine and krypton yields results for the lowest
excited iodine peaks that reproduce experimental findings to a high degree of accuracy. Published by
AIP Publishing. https://doi.org/10.1063/1.5020144

I. INTRODUCTION

Since the early seventies of the past century, quantum
molecular dynamics has been devoted to the study of gas phase
reactions on pre-computed potential energy surfaces.1–28 How-
ever, condensed phase nuclear quantum molecular dynam-
ics has gradually attracted more and more attention from
researchers mostly for its practical applications. The question
if quantum mechanical effects are important and crucial for
the description of nuclear condensed phase phenomena is still
open. Most probably the answer would be: “it depends.” Spec-
troscopy shows that nuclear energy levels are quantized even
if the full dimensional spectrum could appear as a continuum.

Several approaches to condensed phase dynamics are
based on path integrals (PIs).29 In methods such as PI Monte
Carlo (PIMC)30 and PI molecular dynamics (PIMD),31–33

thermodynamic properties are calculated by considering the
imaginary time propagator for the Boltzmann operator. More
recently, also real-time dynamics studies based on path inte-
grals have been performed. There exist several methods, such
as centroid path integral molecular dynamics (CPMD)34–37

and ring polymer molecular dynamics (RPMD).38–49 There,
the dynamics of the nuclei is treated quantum mechanically
by mapping them onto fictitious classical particles connected
by springs. A critical review of those methods with respect to
their applicability to vibrational spectroscopy can be found in
Ref. 48.

Also in semiclassical molecular dynamics, real as well
as imaginary time propagations can be performed.4,50–67

These methods can also be derived from path integrals68 and
they have been applied both to gas phase problems57,69–88

and to model potentials of condensed phase systems, such
as the Caldeira-Leggett potential.64,89,90 This paper deals

a)Author to whom correspondence should be addressed: michele.ceotto@
unimi.it

with the application of semiclassical initial value representa-
tion (SCIVR)4,51,56,60–63,76,91–106 molecular dynamics to con-
densed phase systems. More specifically, we recently designed
a SCIVR method called mixed time-averaging SCIVR (M-TA-
SCIVR)107 for the calculation of nuclear spectra for condensed
phase systems composed of a main system of interest (SOI)
coupled to a bath. It employs the hybrid dynamics idea108 and
is designed for SCIVR nuclear power spectra calculations from
the Fourier transform of a wavepacket’s correlation functions.
In M-TA-SCIVR, the environment is treated by integrating out
the phase space coordinates for the corresponding degrees of
freedom (DOFs) using a thawed Gaussian approximation.51

The method is applicable to both pre-computed and on-the-
fly ab initio quantum dynamics simulations and it is free of
any adjustable parameters. M-TA-SCIVR proved to be reliable
when compared to exact quantum results for small dimensional
systems.107 Furthermore, in an application to an anharmonic
SOI coupled to a Caldeira-Leggett environment with up to
60 harmonic bath degrees of freedom, good agreement was
found with respect to higher-accuracy SCIVRs.90

In this paper, we focus on the application of M-TA-SCIVR
to problems where both system and bath are anharmonic.
This is quite challenging due to the presence of (many) bath
overtones in the spectrum, which complicate peak attribution
or render it altogether impossible. One way to resolve this
issue would be to start from initial conditions where the bath
modes have little or no initial energy. However, this intro-
duces a sampling bias because the classical dynamics explores
only the low energy, harmonic regions of the respective bath
sites. We will therefore introduce a simplified approach to
M-TA-SCIVR (SAM-TA-SCIVR) which acts as a filter for
the bath excitations while still reproducing exact system fre-
quencies. We will apply SAM-TA-SCIVR to the power spec-
trum of an iodine molecule in a krypton matrix, since this
is a well-studied complex condensed phase system.109–111 It
is realized that the full dimensional spectrum is very dense
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and that a technique, which is able to decompose the spec-
trum into specific components pertaining to the normal modes
of interest, would be very useful for the interpretation and
for a better understanding of the physics. For these reasons,
we describe how to selectively extract the spectrum of the
SOI without resorting to any artificial decoupling from the
environment.

The paper is organized in the following way: Sec. II recalls
the M-TA-SCIVR method (Sec. II A) and presents the new
approximation for dense spectra calculations (Sec. II B). In
Sec. III, some tests on model systems are reported followed by
the main application which is the calculation of the power spec-
tra for the iodine molecule in a krypton matrix. Conclusions
are drawn and future perspectives are given in Sec. IV.

II. SIMPLIFIED APPROACH TO THE MIXED
TIME-AVERAGING SEMICLASSICAL INITIAL
VALUE REPRESENTATION

The main idea of this paper is to propose a method for
the calculation of molecular spectra that has a built-in filter,
removing unwanted contributions from environmental degrees
of freedom (DOFs). The need for such a filter arises when the
spectrum becomes too noisy for unambiguous peak identi-
fication, which may be the case if many DOFs carry initial
excitation. As this approach is a simplification of the recently
introduced M-TA-SCIVR,90,107 we first give a brief overview
of its derivation and then continue with a simplification that
allows for the treatment of systems with possibly hundreds of
degrees of freedom.

A. Mixed time-averaging semiclassical initial
value representation

The quantity to be calculated with M-TA-SCIVR is the
power spectrum I(E) of a given initial state | χ〉 subject to a
Hamiltonian Ĥ. It can be found from the system’s dynamics
as the Fourier transform of the autocorrelation function

I(E) =
1

2π~

∞∫
−∞

dt eiEt/~
〈
χ

����e
−iĤt/~����χ

〉
. (1)

The time evolution in Eq. (1) is calculated semiclassically with
the propagator of Herman and Kluk (HK),96

e−iĤt/~ =
1

(2π~)F

∫
dp(0)

∫
dq(0) Ct(p(0), q(0))

× eiSt (p(0),q(0))/~ |p(t), q(t)〉 〈p(0), q(0)| , (2)

where (p(t), q(t)) is the 2F-dimensional classical phase space
trajectory evolving from initial conditions (p(0), q(0)) and St is
the corresponding classical action. Equation (2) also contains
the HK prefactor,

Ct(p(0), q(0))

=

√
1

2F
det

[
∂q(t)
∂q(0)

+
∂p(t)
∂p(0)

− i~γ
∂q(t)
∂p(0)

+
i
~γ

∂p(t)
∂q(0)

]

(3)

which accounts for second-order quantum delocalizations
around the classical paths. Finally, the coherent state basis
set in position representation for many degrees of freedom

is given by the direct product of one-dimensional Gaussian
wavepackets,

〈x|p, q〉 =
(

det(γ)
πF

)1/4

× exp

[
−

1
2

(x − q)T γ (x − q) +
i
~

pT (x − q)

]
, (4)

where γ is a diagonal matrix containing F time independent
width parameters.

While the semiclassical approximation of the propagator
in Eq. (2) in principle allows for the inclusion of an arbi-
trary number of DOFs, practical applications are limited by
the need to converge the phase space integral. We will there-
fore carry out two steps to accelerate the numerical Monte
Carlo phase space integration of Eq. (2). The first step is
the introduction of a time averaging integral,112,113 which is
applied to Eq. (1) and yields a semiclassical approximation
with a pre-averaged phase space integrand. This expression
can be further simplified with Kaledin and Miller’s so-called
separable approximation114 that results in

I(E) =
1

(2π~)F

1
2π~T

∫
dp(0)

∫
dq(0)

×

��������

T∫
0

dt 〈χ |p(t), q(t)〉 ei[St (p(0),q(0))+Et+φt (p(0),q(0))]/~
��������

2

,

(5)

where φt (p(0), q(0)) denotes the phase of the HK prefac-
tor Ct (p(0), q(0)) . The expression now contains a positive-
definite phase space integrand. While less computation-
ally demanding than Eq. (2), the separable approxima-
tion TA-SCIVR in Eq. (5) has also turned out to be very
accurate for a number of molecular dynamics applica-
tions.71,73,79,80,82–86,90,107,112,114,115

The second step towards making the dynamics of larger
systems accessible is to invoke the mixed approximation. To
this end, we use the semiclassical hybrid dynamics idea108

to divide the 2F phase space variables into 2Fhk for the sys-
tem space and 2F tg for the bath phase space. Only the sys-
tem part, denoted by the subscript hk, is then treated on the
HK level of accuracy, whereas the simpler single-trajectory
Thawed Gaussian Wavepacket Dynamics (TGWD) approxi-
mation is used for the bath DOFs, which are denoted by the
subscript tg. This separation is made only for the semiclassi-
cal expression, while the underlying classical dynamics is not
modified. We now assume a reference state of Gaussian form,
| χ〉 =

���peq, qeq

〉
, where qeq is the equilibrium position and

peq is the momentum corresponding to some approximated
eigenenergy. In the mixed approximation, the initial phase
space coordinates (p(0), q(0)) are redefined as

p(0) = *
,

phk(0)

peq,tg

+
-

, q(0) = *
,

qhk(0)

qeq,tg

+
-

. (6)

Only the HK initial conditions (phk(0), qhk(0)) are found by
Monte Carlo sampling around

(
peq,hk, qeq,hk

)
, while the bath

starting coordinates are always at the equilibrium positions,
(ptg(0), qtg(0)) = (peq,tg, qeq,tg). Since the TGWD is exact for
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harmonic potentials, this division should accurately reproduce
the contributions of weakly coupled bath DOFs close to their
potential minimum. With this phase space division in place,
we expand the classical trajectories and the action to first and
second order, respectively, in the displacement coordinates of
the bath subspace. This approximates the exponent in Eq. (5)
such that the phase space integration over the original bath

initial conditions (ptg(0), qtg(0)) can be performed analyti-
cally as a Gaussian integral, and the dimensionality of the
phase space integration is reduced. The resulting twofold time
integration collapses into a single one after another separable
approximation assuming approximately harmonic behavior of
the bath, and we arrive at the separable mixed TA-SCIVR
(M-TA-SCIVR),

I(E) =
1

(2~)F

1
πFhk

1
2π~T

∫
dphk (0)

∫
dqhk (0)

�����

∫ T

0
dt ei[Et+φt (p(0),q(0))+St (p(0),q(0))]/~

×
〈
peq,hk, qeq,hk

���phk (t), qhk (t)
〉 〈

peq,tg, qeq,tg
���ptg (t), qtg (t)

〉
×

1

[det (A (t) + A∗ (t))]1/4
exp

{
1
4

bT
t
(
A (t) + A∗ (t)

)−1 bt

}�����

2

. (7)

The matrix A(t) and the vector b(t) are defined in Appendix A,
and their contributions will turn out to vanish with the simpli-
fication in Sec. II B. As it has been demonstrated for a Morse
oscillator embedded in a Caldeira-Leggett bath with up to 61
DOFs,90,107 M-TA-SCIVR reproduces both system and bath
peaks precisely when compared to exact quantum dynamics
and full HK TA-SCIVR results and reaches tight convergence
within a considerably shorter amount of time than the separable
TA-SCIVR from Eq. (5).107

B. Simplification and bath frequency filter

Regarding the applicability of Eq. (7) to large molecu-
lar systems, both time-averaging and phase space separation
put forward the convergence of the phase space integration
with fewer trajectories. However, one major drawback is not
addressed: When investigating a system with more than a
handful of coupled degrees of freedom, spectra from both TA-
SCIVR and M-TA-SCIVR become very noisy if all degrees
of freedom carry some initial excitation. Contributions from
excited peaks, whose number grows exponentially with system
size, make it impossible to identify specific excitations even on
the single-trajectory level. Due to the positive definite nature
of the phase space integrand in Eqs. (5) and (7), the phase
space average does not resolve this issue. An elegant solu-
tion has been proposed in the form of multiple coherent states
TA-SCIVR (MC-TA-SCIVR),79,82 where the usual product
reference state | χ〉 in Eq. (5) is replaced with a superposition
of states. This approach needs only a handful of trajectories
with initial conditions

(
pi

eq, qi
eq

)
chosen such that the classi-

cal energies are close to the positions of the desired peaks in
order to reproduce quantum results with high accuracy. More
importantly here, however, is that the reference state in the MC
TA-SCIVR approach can also be used as a filter. Choosing the
reference state, for example, as

| χ〉 =

F∏
j=1

(���+peq, j, qeq, j

〉
+ ���−peq, j, qeq, j

〉)
, (8)

all odd contributions from the single-trajectory spectrum are
removed, thus reintroducing clearly distinguishable peaks.82

This can be shown analytically for the harmonic oscillator
(HO) and also works very well for anharmonic systems. The
size of the systems to which this approach is applicable, how-
ever, is limited due to the number of terms in the reference
state scaling exponentially with the number of degrees of
freedom.

We will now propose a simplification of Eq. (7) that has
a similar effect without needing a filter comprising such a
potentially high number of terms. First, we approximate the
purely Thawed Gaussian (TG) parts of the integrand by their
analytical harmonic oscillator values,

1
[
det

(
AHO (t) + A∗HO (t)

)]1/4
≈ (2~)Ftg/2 , (9)

bT
t,HO

(
AHO (t) + A∗HO (t)

)−1
bt,HO ≈ 0, (10)

that are derived shortly in Appendix A. This already results in
a considerably simpler form for Eq. (7),

I(E) =
1

(2π~)Fhk

1
2π~T

∫
dphk (0)

∫
dqhk (0)

×
�����

∫ T

0
dt ei[Et+φt (p(0),q(0))+St (p(0),q(0))]/~

×
〈
peq, qeq

���p (t) , q (t)
〉���

2
. (11)

In a second step, we choose the reference state
〈
peq, qeq

��� as
a filter in the spirit of Eq. (8), but we define it in a different,
partially time-dependent fashion,

〈
peq, qeq

���→
*.
,

Fhk∏
j=1

〈
peq,hk,j, qeq,hk,j

���
+/
-

*.
,

Ftg∏
k=1

〈
ptg,k(t), qtg,k(t)���

+/
-

=
〈
peq,hk, qeq,hk

���
〈
ptg (t) , qtg (t)��� . (12)

Since the time-dependent part is exactly the complex conju-
gate of the thawed Gaussian contribution to the time-evolved
wavepacket, it cancels this part of the overlap in Eq. (11). The
final simplified approach to the mixed TA-SCIVR, which we
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will refer to as SAM-TA-SCIVR or simply SAM, is thus

I(E) =
1

(2π~)Fhk

1
2π~T

∫
dphk (0)

∫
dqhk (0)

×
�����

∫ T

0
dt ei[Et+φt (p(0),q(0))+St (p(0),q(0))]/~

×
〈
peq,hk, qeq,hk

���phk (t) , qhk (t)
〉���

2
. (13)

The remaining quantities in the integrand, namely, the action

St (p(0), q(0)) = St

(
phk(0), qhk(0); peq,tg, qeq,tg

)
(14)

as well as the prefactor phase

φt (p(0), q(0)) = φt

(
phk(0), qhk(0); peq,tg, qeq,tg

)
, (15)

are not affected by the simplifications. We stress that these
quantities already “live” in a reduced dimensionality: while
their classical evolution depends on the initial conditions of
all DOFs, only the HK initial coordinates are variables of the
phase space sampling. The TG DOFs’ initial positions and
momenta are fixed and can therefore be seen as parameters
of the phase space integration. In this way, the integration as
well as the integrand is restricted to the HK part of phase
space.

By comparison with the original TA-SCIVR Eq. (5), one
can see that Eq. (13) is indeed the original time-averaged result
with the sampling reduced to a selection of degrees of freedom,
while the remaining degrees of freedom are always taken to
be initially at the center of the reference state as in the mixed
approach. The classical dynamics is still the full dynamics of
system and environment combined.

The effect of this drastic simplification of the M-TA-
SCIVR is investigated analytically for two uncoupled har-
monic oscillators in Appendix B and for two different numer-
ical applications in Secs. III A and III B. As we will see, it
does indeed serve as a filter by virtue of removing odd bath
peaks, in particular the first harmonics of the bath oscillators.
This results in a significant reduction of noise in the spec-
tra, especially when going to higher bath dimensionality. The
weight and accuracy of the HK peaks, on the other hand, is
not affected. As a slight drawback, even bath excitations are
reflected at the system peaks and show up as ghost peaks in
the spectrum. Since we are not interested in bath excitations
anyway, and because these artifacts are always less prominent
than neighboring system excitations, we believe this additional
inaccuracy is a small price to pay, compared to the huge ben-
efit of recovering meaningful information from an otherwise
unreadable spectrum.

III. RESULTS AND DISCUSSION
A. Morse oscillator coupled to harmonic oscillators

Our first test system will be the Caldeira-Leggett Hamil-
tonian

H =
p2

s

2ms
+ Vs(s) +

Fb∑
i=1



p2
i

2
+
ω2

i

2
*
,
yi +

ci

ω2
i

(
s − seq

)+
-

2
, (16)

and we use a Morse potential with the parameters of molecular
iodine107 as the system,

Vs(s) = De

(
1 − e−α(s−seq)

)2
. (17)

The bath is characterized by a discretized Ohmic spectral
density,90,107,116,117 resulting in frequencies

ωi = −ωc ln

(
1 −

i(1 − e−ωmax/ωc )
Fb

)
. (18)

We use a small cutoff and maximum frequency, ωc = ωmax

= 0.2 ωe, where ωe is the harmonic approximation frequency
of the Morse oscillator. The dimensionless effective coupling
strength is ηeff = 0.2. This situation is similar in terms of fre-
quency difference to the experimentally investigated iodine
molecule in a krypton environment that we will discuss below.
First, the environment comprises four oscillators such that
comparison to the other semiclassical approaches is possible.
Each degree of freedom is initially positioned at its poten-
tial minimum with initial momentum corresponding to its
ground state energy, pi =

√
miωi, with ω1 = ωe for the system

coordinate. 104 trajectories are sufficient to reach conver-
gence with respect to peak positions. Peak amplitudes may
differ to a small degree with more trajectories added to the
phase space integration. However, amplitudes as well as peak
shapes are not our main interest because already the orig-
inal separable approximation by Kaledin and Miller112,114

introduces significant quantitative inaccuracies for these
quantities.

Results are shown in Fig. 1, where the ground state ener-
gies of the bath HOs, Egs,HO =

∑
iωi/2, have been subtracted.

The degree of approximation decreases from top to bottom,
with SAM-TA-SCIVR according to Eq. (13) shown in blue
(i), M-TA-SCIVR as in Eq. (7) in green (ii), and full TA-
SCIVR as in Eq. (5) with violet lines (iii). All three approaches
agree within frequency resolution in terms of peak positions.
As expected and as desired, bath excitations are very much
suppressed by the SAM-TA-SCIVR method. Unlike in the
two reference spectra, some small ghost peaks appear in the
SAM result, for example, to the left of (and therefore at
unphysical smaller energy than) the elastic peak. As shown

FIG. 1. Morse oscillator coupled to four harmonic oscillators withωc =ωmax
= 0.2 ωe and ηeff = 0.2. From top to bottom: SAM-TA-SCIVR according to
Eq. (13) [blue line, (i)], M-TA-SCIVR as in Eq. (7) [green line, (ii)], and full
TA-SCIVR as in Eq. (5) [violet line, (iii)]. All elastic peaks are normalized to
one, and the spectra overlap to make higher excitations more visible.
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analytically in Appendix B for two uncoupled harmonic oscil-
lators, these ghost peaks are second excitations of the bath
modes reflected at the elastic peak. Upon close inspection, the
same behavior can be observed for all higher excitations of
the system. The ghost peaks are not a problem for the inter-
pretation of the spectrum, as they are far smaller than the
respective HK peak they are close to. In addition, they can
be identified from their position, which is always an integer
multiple of a bath frequency (or a combination thereof) to the
left of a system excitation if the bath modes are sufficiently
harmonic.

While the spectrum with five weakly coupled, off-
resonant oscillators already contains a lot of bath excitations,
all of these peaks can be assigned without difficulty. In the
next example, we show a situation where this is not the case
any more. The bath has still the same parameters, but now
comprises 18 instead of four harmonic oscillators. We restrict
the calculation to a single trajectory, which is sufficient to
demonstrate the main challenge arising from this higher num-
ber of DOFs. The initial conditions are the same as before,
with all DOFs centered at (peq,i, qeq,i). Results are shown in
Fig. 2, with the SAM-TA-SCIVR result [blue line, (i)] on top
and the two reference HK calculations with different propa-
gation times are below [(ii) and (iii)]. For this higher number
of bath DOFs, we see that the propagation time from the pre-
vious 5D example with 215 steps, which leads to a numerical

FIG. 2. Morse oscillator coupled to 18 harmonic oscillators withωc =ωmax
= 0.2 ωe and ηeff = 0.2. From top to bottom: SAM-TA-SCIVR according to
Eq. (13) [blue line, (i)] with 215 propagation time steps, full TA-SCIVR as in
Eq. (5) with 215 propagation time steps [orange line, (ii)], and full TA-SCIVR
with 220 propagation time steps [violet line, (iii)]. The respective highest peaks
are normalized to one.

energy resolution ∆E = 6 × 10−7 a.u.
(
0.13 cm−1

)
, is not

sufficient any more to obtain a well-resolved spectrum. This is
illustrated by the reference HK calculation with this number
of time steps [Fig. 2(ii), orange line], where the much higher
number of bath excitations leads to a quasi-continuous spec-
trum that is much broader than before and does not allow for
an unambiguous attribution of peaks. It is possible to recover
a discrete spectrum by significantly increasing the length of
the propagation and thereby the energy resolution. Results of
the same reference TA-SCIVR calculation with 220 instead of
215 time steps are reported in the bottom spectrum of Fig. 2
[violet line, (iii)]. Here, the system excitations can be seen
clearly, and the bath peaks are very dense but discrete. As we
go from high energy resolution in Fig. 2(iii) to the lower energy
resolution in Fig. 2(ii), distinct contributions from the higher
resolution can now coincide in the same energy bin. Since the
density of bath peaks gets higher far away from the system
excitation, as illustrated by the inset in Fig. 2, the lower res-
olution introduces an artificial bias that overestimates relative
peak weights in these regions of high bath peak density. Con-
versely, the system excitations are underestimated and likely to
be absorbed in the quasi-continuum. Given that the phase space
integrands in Eqs. (5) and (7) are positive definite, the phase
space average does not resolve this issue. Simply prolonging
the propagation time, on the other hand, recreates a discrete
spectrum, but this is by no means a feasible general solution,
as much longer propagation times are usually prohibitively
expensive and may increase the likelihood of numerical
instability.

Instead, the inherent filter of SAM-TA-SCIVR [blue line,
(i) in Fig. 2] offers a numerically cheap solution. With the
same lower number of 215 time steps as in panel (ii), we
obtain a completely different picture. By removing contribu-
tions from first-order bath excitations, the old hierarchy of
prominent system peaks and very small bath excitations from
Fig. 1 is restored. Compared to the higher accuracy calcula-
tion in Fig. 2(iii), it is evident that the location of the system
energies is reproduced exactly. Given the higher number of
bath oscillators, the number of ghost peaks is getting bigger as
well. However, at least in this weakly coupled example, they
are again the same order of magnitude as their accurate coun-
terparts and therefore easily distinguished from the system
excitations.

B. Molecular iodine embedded in krypton

Having introduced SAM-TA-SCIVR as a useful tool for
the analysis of high-dimensional spectra, we now turn to
an experimentally investigated system, namely, iodine in a
krypton environment. Iodine surrounded by noble gas atoms
has been used as a test system for a number of semiclassi-
cal approaches, for example, the study of vibrational quan-
tum coherence of iodine in argon clusters using a forward-
backward IVR.118–120 Another study of the loss of coherence
of iodine in a krypton environment has already established the
hybrid formalism as an appropriate tool for the investigation
of this system.121 Here, we are interested in the change of the
iodine vibrational spectrum by the surrounding krypton atoms.
Experimentally, it has been found that the iodine spectrum
undergoes a redshift, from gas phase122 harmonic frequency
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ωe = 214.6 cm�1 and anharmonicity ωexe = 0.627 cm�1 to
ωe = 211.6 cm�1 and ωexe = 0.658 cm�1 when embedded in
krypton;123 see Table II.

1. Model: Dynamic cell with rigid walls

As shown in a closely related investigation of iodine in
an argon matrix,122 there are two important caveats when it
comes to spectral calculations of iodine in a rare gas environ-
ment. First, one has to choose a suitable matrix environment
to reproduce the rare gas geometry faithfully, using a suffi-
cient number of layers around the host molecule. For iodine in
argon, four such layers were necessary for convergence with
respect to the iodine frequency shift, corresponding to 448
argon atoms. Of these, however, only the two inner shells were
taken to be mobile, while the two outer layers were fixed during
the propagation; this choice of boundary conditions is called
dynamical cell with rigid walls by the authors of Ref. 122.
We will use the same approach, but restrict the environment to
just three layers with 218 atoms for the classical geometry opti-
mization, where the outermost is fixed and the two inner ones,
comprising 72 krypton atoms, are mobile. The iodine molecule
is placed inside the face-centered cubic (fcc) krypton lattice
by replacing two nearest-neighbor atoms. Then, we perform
a geometry optimization for the iodine as well as the mobile
krypton atoms, while the outer, fixed krypton atoms serve as
containment. The minimum energy geometry is presented in
Fig. 3, where iodine atoms are orange and the flexible krypton
atoms are blue. As a result, only a few atoms from the inner-
most shell are notably shifted. The subsequent normal mode
analysis is performed only for the 74 flexible atoms depicted
in Fig. 3 with the TrajLab software.124

As a second important point, it has been demonstrated
that the halogen-rare gas interaction potential is essential for
getting the accurate iodine bond softening which leads to the
redshift. While an anisotropic interaction of the form

Vik(Rik , R12) = (cos θik)2 VΣ,ik (Rik) + (sin θik)2 VΠ,ik (Rik)

(19)

yields an even quantitatively accurate frequency shift for
iodine in argon,122 other (simpler) analytic interactions result

FIG. 3. The iodine molecule (orange) in two flexible layers of krypton atoms
(blue) after geometry optimization. Not shown is the fixed outermost layer of
krypton atoms.

TABLE I. Parameters for the different two-particle interactions of the iodine-
krypton potential.

Morse interaction De (cm�1) Se (Å) α (Å�1)

I-I122 18 357 2.666 1.536
I-Kr (Σ)110 287 3.733 1.49
I-Kr (Π)110 126 4.30 1.540

LJ interaction ε (cm�1) σ (Å)

Kr-Kr110,125 138.7 3.58

in no shift at all or even a blueshift of the iodine frequen-
cies. In the above equation, the index i denotes one of the two
iodine atoms, while index k stands for a krypton atom. The
angle θik is the angle between Rik and the iodine-iodine vector
R12. The total potential is modeled as a sum over two-particle
interactions

V (R1, . . . , RN ) =
∑
i<j

Vij, (20)

where we use Eq. (19) for the iodine-krypton interaction with
Morse potentials VΣ and VΠ , a simple Morse potential for the
iodine intramolecular interaction and a Lennard-Jones (LJ)
potential for the krypton-krypton interaction. All potential
parameters are collected in Table I.

2. Reproducing the condensed phase quantum effects
by adding degrees of freedom

After geometry optimization and subsequent normal
mode analysis, we find that, similar to iodine in argon, the
resulting shifted harmonic frequency of the iodine vibration
is already very close to the experimental result, 211.8 cm�1

against 211.6 cm�1. The major portion of the shift from the
gas phase result 214.6 cm�1 is thus a classical effect due
to the rearrangement of iodine molecule and krypton atoms,
and in particular the stretching of the iodine bond, during the
geometry optimization.

In order to find the remaining contribution to the red-
shift due to the quantum dynamical interaction of the iodine
molecule with its krypton environment and to include over-
tones, we perform SAM calculations with different numbers
of normal coordinates included into the dynamics. We have
to use 217 semiclassical time steps with 2 classical substeps
of length (2π/ωe) /120, corresponding to a frequency grid
spacing of 4.4 × 10�7 a.u. (0.1 cm�1), in order to faithfully
resolve possible differences. The standard phase space sam-
pling even of a single HK DOF becoming unfeasible as the
number of normal modes approaches three digits because the
SAM expression (13) still requires the propagation of the full
HK prefactor. Thus, the main computational challenge is the
calculation of the second derivatives in normal coordinates,
which brings about a computational time of a few days for
one trajectory with about 100 DOFs. As a consequence, we
resort to the MC-SCIVR idea that each single classical tra-
jectory reproduces the part of the spectrum exactly that is
closest to its own energy and run only six trajectories with dif-
ferent initial momenta for the iodine vibrational coordinate.
Each of these initial momenta corresponds to the energy of
one of the first six excited states of iodine, which we can get
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FIG. 4. SAM-TA-SCIVR spectra for iodine in krypton
for different numbers of normal modes included in the
dynamical calculation. From left to right, the regions
around the first through the fifth excited vibrational state
of iodine are shown. The energy of the respective elastic
peak is subtracted on the abscissa to make calculations
comparable. From top to bottom: gas phase result [solid
black lines, (i)], iodine vibration only in a rigid krypton
cage [violet, (ii)], and spectra from calculations with 32
[green, (iii)], 60 [blue, (iv)], and 108 [orange, (v)] flexible
normal modes. The dashed lines show the analytic posi-
tions of the experimental results for gas-phase iodine122

(black) and redshifted iodine in krypton123 (red).

approximately from a multiple-trajectory calculation of iodine
in the rigid krypton cage.

In our SAM calculations, which are summarized in Fig. 4
and Table II, we always treat the iodine vibration as the
only HK DOF. The first calculation [solid violet line, (ii), in
Fig. 4] comprises only this one DOF, i.e., all krypton atoms
are rigid. All excited peaks from the five single-trajectory cal-
culations are very clean, as there are only iodine excitations
in the respective spectra. A Birge-Sponer fit reveals that the
harmonic frequency is indeed identical to the eigenvalue of
the normal mode, as shown in Table II. The anharmonicity
xeωe is clearly closer to the gas phase result than to the red-
shifted result in krypton. Increasing the dimensionality of the
system, we now take into account all 32 fully symmetric nor-
mal modes [green lines, (iii), in Fig. 4]. All bath DOFs carry
initial momentum corresponding to the harmonic frequency
of the respective mode. We thus need to employ the SAM

TABLE II. Spectroscopic parameters of the molecular iodine Morse poten-
tial. All numerical results have been obtained from Birge-Sponer fits to the
first six iodine eigenenergies from the SAM-TA-SCIVR spectrum. The num-
ber of DOFs indicates how many of the 216 internal DOFs of the two-shell
iodine-krypton cluster have been considered in the dynamics.

Experiment ωe (cm�1) ωexe (cm�1)

Gas phase I2
122 214.6 0.627

I2 in Kr126 211.3 0.652
I2 in Kr123 211.6 0.658

Numerical results ωe (cm�1) ωexe (cm�1)

Normal mode analysis 211.8 . . .

I2 vibration in rigid Kr cage 211.8 0.62
32 DOFs 211.8 0.63
60 DOFs 211.7 0.64
108 DOFs 211.6 0.63

filter, which works as intended in fully removing all bath
excitations at least in close proximity to the system peaks.
These peaks are already shifted a little bit towards the red-
shifted experimental result, which is also reflected in the results
of the Birge-Sponer fit. By adding more normal modes to the
dynamical calculation, we can see that this trend continues.
With 59 TG normal modes with the same initial excitation
as before [blue lines, (iv)], we still find system peaks that
can clearly be identified as such, but also a certain amount
of noise that is no longer filtered out completely. The grow-
ing number of normal modes influencing the dynamics of the
iodine vibration causes another quite significant shift towards
the experimental result.

Going up to include 108 normal modes, we finally
approach the limits of SAM. We have given only 60 modes ini-
tial excitation corresponding to the respective mode’s ground
state energy ωi while the remaining modes have zero initial
momentum. Higher initial energy of the remaining bath DOFs
would bring about significant excitation of some higher order
bath states, such that the corresponding peaks are not filtered
sufficiently by the SAM approach any more. In spite of this
limitation, we still see an improvement of the excited peak
positions in the case of 108 normal modes [orange lines, (v),
in Fig. 4]. This is corroborated by the fitted value forωe, which
is closest to the experimental results (Table II).

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented a simplified version of
the mixed time-averaging SCIVR. The underlying idea of
M-TA-SCIVR is a hybrid description of phase space, where
a small part is described on the HK level of accuracy, while
the remaining environment is treated with TG. The SAM-TA-
SCIVR builds upon this idea, but takes another approximative
step by using the exact harmonic oscillator results for the TG
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part of the phase space integrand. This leads to a considerably
simplified expression, reminiscent of the original HK TA-
SCIVR with a reduced phase space sampling. The motivation
for this approximation was to find an approach that is still
accurate for the HK DOFs, but at the same time removes bath
excitations from the spectrum.

In the application to a Morse oscillator coupled to a
Caldeira-Leggett bath, we have seen for a small number of
bath degrees of freedom that SAM indeed reproduces the HK
peaks on the same level of accuracy as reference HK or mixed
calculations. The decisive advantage over the formally more
accurate approach is the removal of odd harmonics of the bath
oscillators. For twenty bath oscillators, this filter effect proved
its value by recreating a clear spectrum from the same clas-
sical dynamics that yields excessively noisy spectra with the
reference methods. The only unfavorable characteristic of the
SAM spectra are some ghost peaks from the environmental
DOFs. Since these ghost peaks are both very small and appear
at well-understood positions, we do not consider them as a
problem for the applicability of the method.

Investigating an experimentally studied problem, namely,
the redshift of the iodine molecule embedded in a krypton
environment, we first saw that the shift of the harmonic approx-
imation frequency ωe of the iodine Morse potential is mainly
an effect resulting from the rearrangement of iodine and kryp-
ton atoms in a classical geometry optimization. We then used
SAM to find the effect of the krypton environment on the
excited iodine vibrational energies and to see the change in
iodine energies due to the dynamical interaction with the envi-
ronment. The SAM approach allowed us to include up to 108
vibrational DOFs in the calculation, where either all or at least
the majority of the bath modes carry initial excitation. In spite
of all interactions in this system being anharmonic, the bath
filter still works as intended and we can easily identify the sys-
tem excitations. In the model with two flexible inner krypton
shells, contained by a fixed outer layer, we could show that
adding more and more normal modes to the calculation sys-
tematically improves the result towards very good quantitative
agreement with experimental findings. Thus, the increasingly
complex environment appropriately captures the effect of the
system-bath dynamics on the iodine spectrum, both for the
fundamental frequency and the overtones.

In the future, the SAM approach will be combined with
divide-and-conquer SCIVR72,127 for tackling condensed phase
systems using ab initio potentials. This combination of meth-
ods will allow the system to be significantly higher in dimen-
sionality since the SAM approach properly embeds the system
into a condensed phase environment.
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APPENDIX A: QUANTITIES FROM THE SEPARABLE
MIXED EXPRESSION

For this paper to be self-contained, we briefly collect the
terms from the separable mixed approximation in Eq. (7) that
have not been defined in the main text. The 2F tg × 2F tg matrix
A(t), which collects coefficients of the quadratic deviations
from the TG initial conditions, consists of four submatrices
defined as90

A11(t) =
1
4

mT
21 (t)γm21 (t) +

1

4~2
mT

11 (t)γ−1m11 (t) ,

A12(t) =
1
4

mT
21 (t)γm22 (t) +

1

4~2
mT

11 (t)γ−1m12 (t) ,

A21(t) =
1
4

mT
22 (t)γm21 (t) +

1

4~2
mT

12 (t)γ−1m11 (t) ,

A22(t) =
1
4

mT
22 (t)γm22 (t) +

1

4~2
mT

12 (t)γ−1m12 (t) .

(A1)

Prefactors of terms linear in the deviations are summarized
in the 2F tg-dimensional vector b(t) ≡

(
bT

1,t , bT
2,t

)T
with

subvectors

bT
1,t = −

1
2

(q (t) − q (0))T
[
γm21 (t) +

i
~

m11 (t)

]

−
1

2~2
(p (t) − p (0))T

[
γ−1m11 (t) − i~m21 (t)

]
,

bT
2,t = −

1
2

(q (t) − q (0))T
[
γm22 (t) +

i
~

m12 (t)

]

−
1

2~2
(p (t) − p (0))T

[
γ−1m12 (t) − i~m22 (t)

]
,

(A2)

where we remind the reader that (p(t), q(t)) is the trajectory
starting at the mixed initial conditions (p(0), q(0)) from Eq. (6).
The mij in the two above equations are non-square F × F tg

submatrices of the stability matrix,

m11(t) =
∂p(t)
∂ptg(0)

, m12(t) =
∂p(t)
∂qtg(0)

,

m21(t) =
∂q(t)
∂ptg(0)

, m22(t) =
∂q(t)
∂qtg(0)

.
(A3)

Assuming, for simplicity, a system of two uncoupled harmonic
oscillators with equations of motion

pi(t) = peq,i cosωit − miωiqeq,i sinωit,

qi(t) = qeq,i cosωit +
peq,i

miωi
sinωit

(A4)

and treating site 1 with HK and site 2 on the TG level, we
get zero for the respective first component of the stability
submatrices, mij ,1 = 0, and the second components amount
to

m11,2(t) = cosω2t, m12,2(t) = −m2ω2 sinω2t,

m21,2(t) = sinω2t/(m2ω2), m22,2(t) = cosω2t.
(A5)

With the usual γi = miωi/~, the matrix A becomes time
independent,

A =
1
4

*
,

1/(~m2ω2) 0

0 m2ω2/~
+
-

. (A6)
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We thus find for this single uncoupled TG DOF

1

[det (A (t) + A∗ (t))]1/4
= (2~)1/2 , (A7)

and this result can be easily generalized to the case of F tg

uncoupled HOs to yield Eq. (9). With the inverse

(
A (t) + A∗ (t)

)−1
= *

,

2~m2ω2 0

0 2~/ (m2ω2)
+
-

(A8)

and the relation

b2,t = −im2ω2b1,t , (A9)

we obtain the one-dimensional case of Eq. (10),

bT
t
(
A (t) + A∗ (t)

)−1 bt

= 2~m2ω2b2
1,t +

2~
m2ω2

(im2ω2)2 b2
1,t = 0. (A10)

All of these results will be used in the application of SAM-TA-
SCIVR to the calculation of the spectrum of two uncoupled
HOs in Appendix B.

APPENDIX B: ANALYTICAL APPLICATION
OF SAM-TA-SCIVR TO TWO UNCOUPLED
HARMONIC OSCILLATORS

The dynamics of two uncoupled HOs of unit mass with
frequencies ω1 and ω2, respectively, is described by the
Hamiltonian (in atomic units)

H =
p2

1

2
+

p2
2

2
+
ω2

1q2
1

2
+
ω2

2q2
2

2
. (B1)

The exact result for the spectrum, which can be found
analytically as the product of two TA-SCIVR spectra,79 reads

IHK(E) = exp

−

p2
eq,1

2~ω1


exp


−

p2
2,0

2~ω2



×
∑
n,m

1
2n+mn!m!

*
,

p2
eq,1

~ω1

+
-

n

*
,

p2
eq,2

~ω2

+
-

m

× δ

(
E − ~ω1

[
n +

1
2

]
− ~ω2

[
m +

1
2

])
, (B2)

where initial conditions (peq, 0) have been chosen for simplic-
ity and ~ has been set to unity. Using M-TA-SCIVR according
to Eq. (7) instead and treating the HO with index “1” with HK
while describing the HO with index “2” on the TG level,107

the result looks very similar

IM(E) = exp

−

p2
eq,1

2~ω1


exp


−

p2
eq,2

~ω2



×
∑
n,m

1

2n+2mn!(m!)2
*
,

p2
eq,1

~ω1

+
-

n

*
,

p2
eq,2

~ω2

+
-

2m

× δ

(
E − ~ω1

[
n +

1
2

]
− ~ω2

[
m +

1
2

])
. (B3)

With the mixed approach, all peak positions of the TG coor-
dinate are reproduced exactly, while the peak weights are

changed such that overtones are suppressed.107 While this
inherent suppression is a nice feature, it is not enough to com-
pletely remove peaks from a very noisy spectrum, as we have
seen in Fig. 2.

We will therefore apply the SAM-TA-SCIVR to this prob-
lem, using the same phase space separation as before. As in
the analytic results above, we will set the initial position to
zero for notational brevity and replace phk(0) with p1 as well
as (peq,hk, peq,tg) with (peq,1, peq,2) for the same reason. After
unfolding the modulus in Eq. (13), the SAM formulation thus
becomes

I(E) =
1

2π~
1
π~T

∫
dp1

∫
dq1Re

{ ∫ T

0
dt1

∫ ∞
t1

dt2

× ei[E(t2−t1)+φ(t2)−φ(t1)+S(t2)−S(t1)]/~

×
〈
peq,1, 0���p1 (t2) , q1 (t2)

〉 〈
p1 (t1) , q1 (t1)���peq,1, 0

〉 }
,

(B4)

where (p1 (t) , q1 (t)) is the classical trajectory from Eq. (A4).
Using the classical trajectory with q0 = 0, the action becomes

S(t) = *
,

p2
1

2ω1
−

1
2
ω1q2

1
+
-

cosω1t sinω1t − p1q1sin2ω1t

+
p2

eq,2

2ω2
cosω2t sinω2t, (B5)

and the prefactor phase is

φ (t) = −
~ (ω1 + ω2)

2
t. (B6)

The phase space integration over the HK coordinates can be
performed analytically, and the remaining time integrand in
Eq. (B4) can be written in the form of a large exponential,

exp

{
i
~

[
E (t2 − t1) + φ(t2) − φ(t1)

]
+ Ehk (t1, t2) + Etg (t1, t2)

}
,

(B7)

where the term Ehk (t1, t2) denotes the phase space integrated
contribution from the HK DOF79,107 and Etg (t1, t2) is the con-
tribution of the TG part, which consists only of (part of) the
action. Taking results from Refs. 79 and 107 and changing the
integration variables to τ = t2 � t1 and τ′ = t1, the HK term
becomes

Ehk
(
τ, τ′

)
=

p2
eq,1

2~ω1

(
e−iω1τ − 1

)
. (B8)

For the TG term, we replace the trigonometric functions by
exponentials to find

Etg
(
τ, τ′

)
=

1
4~

p2
eq,2

2ω2

[
e2iω2(τ+τ′) − e−2iω2(τ+τ′)

− e2iω2τ
′

+ e−2iω2τ
′
]

. (B9)

This makes the intermediate expression for the SAM spectrum
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I(E) =
1
π~T

e−p2
eq,1/(2~ω1)Re

{∫ T

0
dτ′

∫ ∞
0

dτ ei[E−~(ω1+ω2)/2]τ/~

× exp



p2
eq,1

2~ω1
e−iω1τ +

1
4

p2
eq,2

2~ω2

[
e2iω2(τ+τ′) − e−2iω2(τ+τ′)

+ e−2iω2τ
′

− e2iω2τ
′
] 






. (B10)

We can now write the exponential in the last line as a product
with five factors and replace the lower exponentials by their
power series expansions,79,107

I(E) =
1
π~T

e−p2
eq,1/(2~ω1)Re

{ ∫ T

0
dτ′

∫ ∞
0

dτ ei[E−~(ω1+ω2)/2]τ/~

×
∑

n,m,k,l,o

(−1)k+o

n!m!k!l!o!
*
,

p2
eq,1

2~ω1

+
-

n

*
,

1
4

p2
eq,2

2~ω2

+
-

m+k+l+o

× e−iω1nτe2iω2m(τ+τ′)e−2iω2k(τ+τ′)e−2ilω2τ
′

e2ioω2τ
′

}
.

(B11)

The resulting fivefold sum collapses to a sum over three vari-
ables in the limit T → ∞ because the factor 1/T needs to be
canceled after integration over τ′ in order for the contribution
to survive, which is the case only for k = o and l = m, and we
end up with

I(E) =
1
π~

e−p2
eq,1/(2~ω1)Re

{ ∫ ∞
0

dτ ei[E−~(ω1+ω2)/2]τ/~

×
∑
n,k,l

1

n! (k!l!)2
*
,

p2
eq,1

2~ω1

+
-

n

*
,

1
4

p2
eq,2

2~ω2

+
-

2k+2l

× exp [−iω1nτ − 2iω2 (k − l) τ]

}
. (B12)

After performing the remaining integration over τ, the final
SAM spectrum for two uncoupled HOs emerges as

ISAM(E) = exp

−

p2
eq,1

2~ω1



×
∑
n,k,l

1

2n23(2k+2l)

1

n!(k!)2(l!)2
*
,

p2
eq,1

~ω1

+
-

n

*
,

p2
eq,2

~ω2

+
-

2k+2l

× δ

(
E − ~ω1

[
n +

1
2

]
− ~ω2

[
2(k − l) +

1
2

])
.

(B13)

From the comparison to the exact and mixed results in
Eqs. (B2) and (B3), we get an insight into the nature of this
approximation. First, setting n = k = l = 0, the correct ground
state energy of the composed system is recovered. Second, by
comparing the case k = l = 0 in Eq. (B13) to m = 0 in the
other expressions, we find all three spectra for the HK DOF
to be exactly the same. Third, the SAM expression turns out
to contain only even peaks in the TG coordinate. This is an
important property given that these DOFs are usually centered
around the ground state energy initially, which means that the
first excitations are the main source of unwanted, noisy peaks.

Finally, we see that all even TG excitations have an unphys-
ical counterpart at the respective “negative frequency.” The
correct second excitation at ω1 + 5ω2/2 (n = l = 0, k = 1), for
example, has a ghost peak equivalent atω1 � 5ω2/2 (n = k = 0,
l = 1). However, all TG peaks are systematically much smaller
than the closest HK peaks. This is why we think that the ghost
peaks are a small price to pay for a cheap built-in filter that
removes odd TG excitations and thus makes spectra accessible
that would be just noise otherwise. In the numerical examples
in Sec. III, we show that these properties hold approximately
also for anharmonic, coupled systems.
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