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We present an investigation of vibrational features in water clusters performed by means of our recently
established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys.
Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of
high-dimensional systems starting from full-dimensional classical trajectories and projection of the
semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface
employed is a many-body representation up to three-body terms, in which monomers and two-body
interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential,
while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface
at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer
up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally
in agreement with previous variational estimates in the literature. This is particularly true for the
bending and the high-frequency stretching motions, while estimates of modes strongly influenced
by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the
dynamical and global picture provided by the semiclassical approach. Published by AIP Publishing.
https://doi.org/10.1063/1.5023155

I. INTRODUCTION

The water molecule has often attracted the attention of
the scientific community due to the fundamental role it plays
for life on our planet.1–7 In chemical and physical processes
involving water, hydrogen bonding is crucial8,9 allowing the
formation of supra-molecular structures (made of several water
molecules) known as water clusters.10–12 Water clusters are
major players in atmospheric photocatalytic processes,13,14

and they have been largely investigated by both theoretical
and experimental approaches focused on their structure and
interaction network. Many studies have been also devoted to
protonated water clusters which represent suitable and realis-
tic models for understanding the proton transfer mechanism in
aqueous solutions.15 Furthermore, the interest in water clus-
ters and systems where one or more water molecules interact
with other species has recently involved methane and hydrogen
clathrates,16–18 HCl hydrates,19–21 or even solvated ions.22–25

Focusing on homogeneous water clusters, experimental
investigations involving systems of different size ranging from
the dimer up to the decamer have shown that the vibrational
spectral features of the OH bonds are extremely sensitive
to hydrogen interactions and dependent on the specific clus-
ter network,26–28 while deuteration studies have demonstrated
that the OH vibrational frequencies may serve as a probe for
hydrogen bonding.29 Experimental findings also include the
evidence that the OH stretches involved in the hydrogen bonds
undergo a red shift sometimes as large as 600-700 cm�1,30,31

while the frequency of vibration of the free OH stretches is

a)michele.ceotto@unimi.it

almost unchanged and the bending region is characterized
by a slight but progressive blue shift with increasing cluster
size.32 The main vibrational features of these clusters are dis-
tributed in the 1500-4000 cm�1 region. The lowest in frequency
(at about 1600 cm�1) can be assigned to the bending motion,33

while the other features are associated with the OH stretch and
situated at around 3000, 3500, and 3700 cm�1.34

From a theoretical point of view, important and pioneering
work has been performed by Xantheas and co-workers, who
revealed that the potential energy surface (PES) of even small
clusters is very complicated because of the many minima that
can be located on it. They also showed that for properly study-
ing these systems a high level of electronic structure theory
must be employed and that the zero-point-energy correction
is definitely not negligible to determine the relative stabil-
ity between the several minima.35 Energy differences among
these minima are often smaller than a fraction of kcal/mol,
so an investigation based exclusively on the global minimum
is probably not accurate enough to properly account for the
overall properties.36–41

The complexity of the water cluster PESs makes their
construction difficult, while the high level of electronic the-
ory required rules out the possibility to resort to on-the-fly
ab initio approaches. However, the development in the past
years of precise fitting procedures has opened up the way to
many theoretical investigations of variously sized water clus-
ters.42–50 Among them we recall the work done by Partridge
and Schwenke51 in which they developed an accurate one body
potential, the parametrization of the water model by Burnham
and Leslie,52 or, more recently, the effort profused by the
groups of Xantheas and Bowman which led to more and more
accurate water potentials.53–60
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A practical way to describe the PES of a water cluster is
through a many-body representation. Several studies, includ-
ing those by Xantheas, Clary, Paesani and their co-workers to
name a few remarkable ones, demonstrated that the represen-
tation can be truncated to the three-body terms without signif-
icant loss of accuracy.48,61,62 In particular, Bowman’s HBB,55

WHBB,60,63 and WHBB2 PESs60 include terms up to the
three-body interaction and were shown to be very accurate and
flexible for water clusters of any size, thus permitting state-of-
art virtual state configuration interaction (VCI) calculations for
the vibrational frequencies.58 These calculations were based
on the local monomer approach that permits to accurately sim-
ulate spectra and to deal with even large water clusters which
otherwise would not be computationally affordable.

We deem that an alternative, quantum dynamical theo-
retical approach for spectroscopy calculations of water clus-
ters could more realistically describe the hydrogen bonding
among water monomers and better uncover possible reso-
nances between overtones and fundamental vibrations. The lat-
ter may, for instance, involve the OH bending overtones and the
OH stretching fundamental vibrations, which occur at nearby
frequency values. Such a quantum dynamical approach can be
provided by the semiclassical theory in its initial value repre-
sentation (SCIVR) version. SCIVR builds a bridge between
classical and quantum physics since it allows us to approxi-
mate the quantum propagator reliably by using only dynamical
quantities that are generated from a classical simulation.64–76

Specifically, the time averaged version of the quantum propa-
gator is able to detect quantum effects on small- and medium-
sized molecules accurately.77–90 Recently, we have proposed a
method called Divide-and-Conquer Semiclassical Initial Value
Representation (DC SCIVR)91,92 which makes semiclassical
dynamics viable also for large molecules. In DC SCIVR, the
full-dimensional problem is divided into a set of lower dimen-
sional ones before proceeding with a proper set of SC calcu-
lations constrained within the low-dimensional subspaces but
still based on the full-dimensional classical trajectory.

In this work, we present a theoretical investigation of vari-
ously sized water clusters by means of our recently established
DC SCIVR. Results show that quantum anharmonic effects are
not negligible and dynamical effects associated with the strong
hydrogen-bond interactions are relevant. We also illustrate a
methodology for selecting a few relevant minima in order to
run semiclassical simulations with much reduced computa-
tional costs yet retaining good accuracy. In Sec. II, we describe
the computational approach employed. Then we report our
results starting from the investigation of the vibrational fea-
tures of the smallest water clusters: the dimer and the trimer.
Finally the focus shifts to the water hexamer prism, for which
we present some evidences of the important role of hydrogen
bond interactions, and to the water decamer, whose vibrational
features we are able to precisely describe by employing just a
few selected trajectories. The paper ends with a brief summary
and the presentation of our conclusions.

II. COMPUTATIONAL METHODS

The global PES employed in the calculations has
been constructed according to the many-body representation

(truncated at the three-body level) reported in the following
equation:

V (q) =
N∑
i

VW (qi) +
N∑

j>i

VW−W (qi, qj)

+
N∑

k>j>i

VW−W−W (qi, qj, qk), (1)

where the W superscripts stand for “water,” N indicates the
number of water monomers in the cluster, q represents the
collection of all atomic coordinates, while qi is the set of
coordinates corresponding to atoms exclusively belonging to
the i-th water monomer. Specifically, we used the Partridge-
Schwenke potential for the 1-body (W ) term;51 the 2-body
(W–W ) interaction surface has been extracted from the highly
accurate WHBB potential;59 a new, computationally efficient
potential was built for the 3-body (W–W–W ) interaction start-
ing from the same database of about 40 000 ab initio points
used for the WHBB 3-body potential but employing a previ-
ously developed fitting procedure for many-body interaction
potentials.16,17,93–96 This new 3-body potential is based on
1181 polynomials; it has an rms of 46 cm�1 calculated with
respect to the database of ab initio points (51 cm�1 for WHBB
with maximum polynomial order 5), and it is about 70 times
faster than the 3-body potential (maximum polynomial order
5) included in the WHBB suite. A W–W–W potential very
similar in speed to the one employed here has been recently
and independently developed by Bowman and co-workers and
included in a new version of their water potential, named
WHBB2.60

Vibrational frequencies have been determined upon
calculation of semiclassical power spectra. Semiclassical
approaches aim at regaining quantum information starting
from classically evolved trajectories and their mathematical
formalism is obtained by approximating Feynman’s quan-
tum propagator. Feynman’s path integral formulation97 is a
renowned way to represent the quantum propagator in which
the probability of going from an initial state q0 to a final one qt

can be obtained by summing up over all the paths that connect
the two states. A weight that depends on its action is associated
with each path,〈

qt
����e
−iĤt/~���� q0

〉
=

∫ qt

q0

D
[
q (t)

]
eiSt[q0,qt]/~. (2)

Upon stationary-phase approximation, the integral in Eq. (2)
becomes a sum over the paths that give the major contribution.
Such paths are the classical ones and the approximation is
exact up to quadratic potentials.98 The result coincides with
the van Vleck version of the semiclassical propagator,99 which
is reported in the following equation:〈

qt
����e
−iĤt/~���� q0

〉
≈

∑
cl. paths

√√
1

(2πi~)F

������
−
∂2Scl

t (q0, qt)

∂qt∂q0

������
eiScl

t (q0,qt )/~−iνπ/2

=
∑

cl. paths

√
1

(2πi~)F

�����
∂qt

∂p0

�����

−1

eiScl
t (q0,qt )/~−iνπ/2, (3)
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where F is the number of degrees of freedom, p0 is the initial
momentum of the classical path, and υ is the Maslov index,
which ensures the continuity of the complex square root. A
more user-friendly version of the SC propagator has been
worked out by Miller, who introduced the Initial Value Repre-
sentation (IVR)100 of the van Vleck propagator. Application of
this SCIVR propagator to the survival amplitude of a generic
reference wavefunction | χ〉 leads to〈

χ
����e
−iĤt/~���� χ

〉
≈

∫ ∫
dp0dq0

√
1

(2πi~)F

�����
∂qt

∂p0

�����
χ∗ (qt)

× χ (q0) eiScl
t (p0,q0)/~−iνπ/2. (4)

Equation (4) points out the two main advantages of an IVR
approach, i.e., the difficult quest for a solution to a double-
boundary problem is substituted by the easy generation of
the classical trajectory starting from its initial phase-space
conditions (p0, q0), plus the removal of the partial deriva-
tive at the denominator of Eq. (3) which may lead to an
unphysical divergence of the propagator. Another milestone
contribution to SC dynamics came from Heller with the intro-
duction of the coherent state representation. Coherent states
are suitable to describe bound as well as unbound systems
since their projection onto the coordinate space consists in a
Gaussian-shaped real part and a free-particle imaginary part as
follows:101,102

〈x|ptqt 〉 =

(
det(Γ)
πF

) 1
4

e−
1
2 (x−qt )T Γ(x−qt )+ i

~pT
t (x−qt ). (5)

The width of the multidimensional coherent state is generally
chosen to be a diagonal matrix (Γ). In the case of vibrational
studies, the width matrix can be built by setting its diagonal
elements equal to the square roots of the eigenvalues of the
Hessian matrix at the equilibrium geometry, i.e., the harmonic
frequencies. The semiclassical propagator in the coherent state
representation is the Herman Kluk (HK) propagator,103〈
χ

����e
−iĤt/~���� χ

〉
≈

(
1

2π~

)F ∫ ∫
dp0dq0Ct (p0, q0) e

i
~ St (p0,q0)

× 〈χ |ptqt 〉〈p0q0 | χ〉 , (6)

where the pre-exponential factor—Ct (p0, q0)–accounts for
quantum effects but is affected by the possible chaotic behav-
ior of the classical trajectories initiated from the phase space
points (p0, q0),

Ct (p0, q0)

=

√
det

[
1
2

(
Mqq + Γ−1MppΓ +

i
~Γ

Mpq − i~ΓMqp

)]
,

(7)

where Mij = ∂it /∂j0 and i, j = p, q is itself a matrix which
represents a generic element of the monodromy matrix.98,104

The power spectrum of the Hamiltonian Ĥ is the Fourier
transform of Eq. (6), i.e.,

I(E) =

(
1

2π~

)F+1∫ +∞

−∞

dteiEt/~
∫ ∫

dp0dq0Ct (p0, q0) e
i
~ St (p0,q0)

× 〈χ |ptqt〉〈p0q0 | χ〉. (8)

Unfortunately the standard formulation of the HK propagator
is difficult to converge and computationally very demand-
ing.105,106 To overcome this issue, Kaledin and Miller demon-
strated that it is possible to time-average (TA) Eq. (6) to
arrive to an expression for the spectral density I(E)—see
Eq. (9)—where the phase-space integrand is positive-definite
and, consequently, the integral is much easier to converge,77

I(E) =

(
1

2π~

)F ∫ ∫
dp0dq0

1
2π~T

×
�����

∫ T

0
dte

i
~ [St (p0,q0)+Et+φ(t)] 〈

χ|ptqt
〉�����

2

. (9)

Equation (9) is very accurate for small- and medium-sized
molecules, but, unfortunately, runs out of steam when the sys-
tem dimensionality gets higher than 25-30 degrees of freedom
due to the so-called curse of dimensionality. To overcome this
issue, we have recently developed a divide-and-conquer semi-
classical method, which allows us to obtain the overall power
spectrum as a composition of partial spectra.91

In the following, we briefly recall how DC SCIVR works.
The basic idea is to compute a set of power spectra by operat-
ing in lower-dimensional subspaces but keeping the dynamics
full-dimensional. Among the approaches we have recently
illustrated for an effective grouping of the modes into differ-
ent subspaces,92 in this work we have adopted the so-called
Hessian approach, which consists in averaging the Hessian
off-diagonal elements H̃ij along a preliminary trajectory with
harmonic zero-point energy and in comparing them to a thresh-
old value ε. If the vibrational modes i and j satisfy the condition
H̃ij ≥ ε, they are enrolled in the same subspace. Also, they
belong to the same subspace if a third mode k exists such
that the conditions H̃ik ≥ ε and H̃kj ≥ ε are both satisfied.
Equation (9) consequently changes to

Ĩ (E) =

(
1

2π~

)M ∫ ∫
dp̃ (0)dq̃ (0)

1
2π~T

×
�����

∫ T

0
e

i
~ [S̃t (p̃(0),q̃(0))+Et+φ̃t] 〈

χ̃|p̃ (t) q̃ (t)
〉

dt
�����

2

, (10)

where f̃ indicates the projection of the generic f quantity onto
an M-dimensional subspace. Matrices (Hessian and Gaussian
width ones) as well as vectors (momentum and position) can
be easily projected by means of Hinsen and Kneller’s sin-
gular value decomposition.91,107,108 Projection of the action
is more elaborated due to the general non-separability of
the potential energy. In fact, the projected action is calcu-
lated through straightforward projection of the kinetic energy,
which is separable, and by means of a projected potential—see
Eq. (11). In the projected potential, the variables external to
the M-dimensional subspace (qF�M ) are treated as parameters
and a time-dependent field (λ), able to account for the non-
separability of the potential and to regain the exact potential
in separable instances, is introduced,91,92

V (q̃M ) = V (q̃M ; qeq
F−M ) + λ(t),

λ(t) = V (q̃M ; qF−M ) − V (q̃eq
M ; qF−M ) − V (q̃M ; qeq

F−M ).
(11)

For water clusters, due to the large number of low fre-
quency modes which may make spectra very noisy, it is nec-
essary to introduce an additional device consisting in giving
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no initial kinetic energy to modes different from bendings
and OH stretchings. Several of these modes present very low
vibrational features associated with the libration motions of
frustrated translations and rotations. Below we will show that
this ad hoc approximation does not spoil the accuracy of the
calculated frequencies for bendings and stretchings. Further-
more, we employed a recently developed and accurate approx-
imation to the pre-exponential factor,79 which has permitted
to retain the chaotic trajectories that in a basic application
of DC SCIVR would have been otherwise discarded. The
approximation exploits the exact log-derivative formulation
of the pre-exponential factor109 in which the latter depends
on a matrix Rt determined by solving an appropriate Riccati
equation

Ct (p0, q0) =

√
det

[
1
2

(
I +

i
~Γ

Rt

)]
e

1
2 ∫

t
0 dτTr[Rτ], (12)

where Rt can be approximated as

Rt = −
i
2

[
Kt

~Γ
+ ~Γ

]
+

i
4

(
~Γ − Kt

~Γ

)2(
~Γ + Kt

~Γ

) , (13)

and Kt is the Hessian matrix.
According to the convergence pattern of TA-SCIVR, the

power spectra would require generation of a number of tra-
jectories of the order of a thousand per degree of freedom to
reach convergence. A reliable procedure to alleviate compu-
tational overheads is needed for application of DC SCIVR to
large molecular systems. For this purpose, we implemented
the Multiple Coherent (MC) state approach into DC-SCIVR
by running one trajectory per each of the N st coherent states
that make up the reference state |χ〉 according to the following
equation:

��χ
〉
=

Nst∑
k=1

M∏
j=1

���p
(k)
eq,jq

(k)
eq,j

〉
+ ξ(k)

j
���−p(k)

eq,jq
(k)
eq,j

〉
, (14)

where ξ(k)
j is a parameter that allows us to distinguish between

different vibrational signals according to their symmetry or
parity. In this way, as demonstrated in the literature,80,81,83,110

accurate spectra can be recovered by running just a few clas-
sical trajectories or even a single classical trajectory pro-
vided it is close in energy to the actual quantum vibra-
tional frequency. To get more information than a traditional
discrete Fourier transform, the time integration of Eq. (10)
is performed using the compress sensing signal processing
technique.111

The divide-and-conquer approach can be also imple-
mented to calculate classical-like spectral densities from the
Fourier transform of the velocity-velocity correlation function

I (E) =
∫

dteiEt
〈
v (t) v (0)

〉
=

∫ +∞

−∞

dteiEt
∫

dq0dp0ρ (q0, p0) v (t) v (0) . (15)

By adding a further integration ( 1
T ∫

T
0 dt), we can derive the

time-averaged version of Eq. (15), similar to what Miller
and co-workers have obtained for semiclassical spectral

densities77,78 and Kaledin and Bowman have obtained for
classical simulations,112

I (E) = limT→+∞

∫
dq0dp0ρ (p0, q0)

1
2T

�����

∫ T

0
dteiE(t)v (t)

�����

2

.

(16)
Reduced dimensional spectra can be calculated by means of the
projected classical quantities obtained with the same procedure
employed in DC SCIVR.91,92 The final working formula is

I (E) = limT→+∞

∫
dq̃0dp̃0 ρ̃

(
q̃0, p̃0

) 1
2T

�����

∫ T

0
dteiE(t)ṽ (t)

�����

2

,

(17)
where ρ̃(p0, q0) is the sampling phase-space distribution
function in reduced dimensionality.

III. RESULTS AND DISCUSSION

We start off by demonstrating the reliability of our DC-
SCIVR calculations of small water clusters such as the dimer
and trimer, for which accurate Multimode (MM) and exper-
imental energy levels are available. Then, we move to the
water hexamer showing the influence of dynamical effects on
spectral densities. Finally, as an application to a larger sys-
tem, we calculate the vibrational energy levels of the water
decamer.

A. Water dimer (H2O)2

The smallest water cluster—the dimer—has 12 vibra-
tional degrees of freedom, two of which are bendings, while
four of which are OH stretchings. To calculate these six
relevant frequencies of vibration, we first tried to employ
a 6-dimensional work subspace to collect all bendings and
stretchings together, but, unfortunately, it was not possible
to get a well-resolved spectroscopic signal. To overcome this
issue, we applied the DC-SCIVR partitioning to decrease the
maximum subspace dimension down to 2 as suggested by the
large plateau which can be easily identified from the analysis of
the maximum subspace dimensionality vs Hessian threshold
dependence shown in Fig. 1.

FIG. 1. Dependence of the maximum subspace dimensionality on the arbi-
trary Hessian threshold for the water dimer.
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TABLE I. Vibrational frequencies of the water dimer, in cm�1. Assignments of mode excitations are reported in the first column; the following columns present,
in order, the experimental results (Exp), harmonic estimates (HO), Multimode (MM) and Local Monomer Model (LMM) results, DC-SCIVR frequencies
obtained from 5000 to 10 000 trajectories, MC-DC-SCIVR frequencies based on 5 trajectories, and MC-DC-SCIVR results from a single trajectory started from
the global minimum. The mean absolute errors (MAEs) are relative to the experimental values.

Index Expa HO MMb LMMb DC SCIVR10k DC SCIVR5k MC-DC SCIVR5 trajs,multmin MC-DC SCIVR1 traj

71 1600 1650 1588 1595 1597 1597 1562 1572

81 1617 1669 1603 1602 1585 1578 1588 1578

72 3163 3300 3144 3153 3154 3178 3128 3156

82 3194 3338 3157 3168 3130 3100 3180 3156

91 3591 3758 3573 3550 3550 3539 3526 3356

101 3661 3828 3627 3637 3690 3693 3680 3540

111 3734 3917 3709 3701 3670 3671 3582 3628

121 3750 3935 3713 3724 3764 3764 3717 3690

MAE ... 136 25 23 32 39 48 78

7207 7266

7362 7336

5328 5375

aFrom Ref. 27.
bFrom Ref. 58.

In our calculations, we employed a threshold value
ε = 1.8 × 10�5. Table I presents experimental values,27

MultiMode (MM) and Local Monomer Model (LMM) data,58

and our semiclassical DC-SCIVR results based on different
sets of trajectories. The outcomes of single-trajectory simu-
lations (based on a dynamics of 30 000 atomic time units)
that employed the multiple coherent procedure within the sub-
spaces (MC-DC SCIVR) are reported in the last column of
the table. The mean absolute error (MAE) with respect to
experimental values (78 cm�1) is not satisfactory especially
if compared to the MAE values of the benchmark MM and
LMM calculations (25 and 23 cm�1, respectively). To under-
stand the reasons of such inaccuracy and try to improve results,
we investigated the presence of additional minima on the sur-
face which may be neglected in a single-trajectory simulation
but, at the same time, may influence the semiclassical results.
This is true if these local minima are very close in energy to
the global minimum.110 For this purpose, we explored the PES
by means of damped-dynamics runs and found 4 local minima
just about 200 cm�1 higher in energy than the global minimum.
The damped dynamics was performed by sampling 1000 tra-
jectories according to a Husimi distribution around the global
minimum. The damping parameter has been chosen according
to a trade-off between the necessity of exploring large regions
of the PES and the need to limit the simulation times. In prac-
tice, we decreased the kinetic energy by a factor equal to 0.99
at each step of the dynamics and checked that it was termi-
nated in a minimum (either local or global) by looking at the
sign of the eigenvalues of the Hessian matrix calculated at that
geometry. Then, we re-applied the MC-DC-SCIVR approach
by running 5 trajectories per subspace this time, with each
trajectory starting from a different minimum and the MAE
shifts from 78 to a much improved 48 cm�1, which is not far
from the accuracy obtained in other previous semiclassical cal-
culations.80 This outcome will be exploited in treating much
larger clusters for which semiclassical calculations can be per-
formed only if based on a small number of trajectories. The

multiple-minima effect can also partially explain the difference
between the DC-SCIVR simulations (that visit all 5 minima)
and the single-well reference MM or LMM calculations.

To check the reliability of MC-DC-SCIVR simulations,
we also performed standard, fully converged DC-SCIVR sim-
ulations. Convergence has been reached by employing 10 000
trajectories, but 5000-trajectory simulations were found to
be already reliable. We started all the trajectories with the
cluster in its equilibrium geometry. Initial atomic velocities
were extracted, for each subspace calculation, from the cho-
sen distribution of the normal mode initial kinetic energy.
Specifically, for modes included in the subspace under inves-
tigation, a Husimi distribution centered on momentum values
corresponding to one quantum of harmonic excitation was
employed; other bending and stretching motions belonging to
different subspaces were instead assigned the corresponding
harmonic zero-point energy contribution. Finally, as antici-
pated in Sec. II, all other low frequency modes were given
no initial kinetic energy. Furthermore, harmonic frequencies
served to define the coherent state and Husimi distribution
widths. Each trajectory was evolved for a total of 30 000
atomic time units. Semiclassical investigations performed on
trajectories twice as long provided no significant differences
in the vibrational frequencies indicating that 30 000 atomic
units is a long enough evolution time to achieve numerical
convergence. MAE values for simulations based on 10 000
and 5000 trajectories are equal to 32 and 39 cm�1, respec-
tively. The MAE value obtained with MC-DC-SCIVR based
on 5 tailored trajectories (48 cm�1) is not far from those val-
ues, confirming the reliability of the computationally cheaper
approach. From the results, there is evidence for the sepa-
ration between the bending and stretching frequencies, and
that MC-DC SCIVR must be adopted upon identification of
all relevant minima. A final comparison to the experiment
demonstrates that the standard DC SCIVR is also able to
detect the high frequency stretching overtones with reasonable
accuracy.



104302-6 Di Liberto, Conte, and Ceotto J. Chem. Phys. 148, 104302 (2018)

FIG. 2. MC-DC-SCIVR vibrational spectra of bendings and stretches of the
water dimer based on 5 trajectories per subspace. The vertical solid lines
indicate the harmonic estimates, while the dashed vertical lines the Multi-
mode results. The bending fundamental and overtone signals were obtained
by tuning the reference state according to Eq. (14).

Figure 2 shows the peaks obtained with MC-DC SCIVR
employing 5 trajectories per subspace and reports Multimode
and harmonic frequency estimates for a visual comparison. We
observe that in our semiclassical spectra, because of the inter-
action between different modes, multiple-peak features appear
as, for instance, in the case of mode 10 (which shows a shoul-
der at the frequency of mode 9), or as in the case of mode 9 and
overtones of modes 7 and 8. The interaction between the bend-
ing overtones and the lower frequency stretches involved in
hydrogen bonding is a general feature of water clusters which
we found also in larger ones and which complicates the aspect
of the simulated spectra.

B. Water trimer (H2O)3

The water trimer is made of 21 vibrational degrees of
freedom, 3 of which are bendings and 6 are OH stretches.
In order to reduce the computational burden, we employed a
version of the three-body potential which is, as anticipated,
very fast to compute and retains quite well the accuracy of

the original WHBB 3-body potential. A first analysis of the
trimer is obtained by looking at its Hessian threshold trend.
We observe that employing the same threshold value used for
the dimer would lead to label all vibrational modes as inde-
pendent ones, reflecting the decrement in magnitude of the
off-diagonal elements of the trimer Hessian. Furthermore, for
the trimer, three plateaus can be clearly identified at maximum
subspace dimensionality values of 8, 6, and 1. However, simi-
lar to the dimer case, spectra projected onto high-dimensional
subspaces cannot be well resolved and the maximum sub-
space dimensionality still consistent with a resolved spectrum
is 3. For this reason and to keep working with subspaces as
high dimensional as possible, we used a threshold value for
the trimer equal to 1.5 × 10�5. The relevant 9-dimensional
space has been consequently divided into mono-, bi-, and
tri-dimensional subspaces. In particular, modes 17, 18, and
19 have been enrolled into a 3-dimensional subspace, while
modes 16 and 20 into a bidimensional one. Generation of
the initial conditions and the subsequent dynamics have been
performed according to the methodology already described
for the dimer. Table II shows our DC-SCIVR (based on
10 000 trajectories, 30 000 atomic time units long) and MC-
DC-SCIVR results compared to the Multimode and local
monomer model ones.58 Once again, a single trajectory is
insufficient to recover the correct semiclassical spectral fea-
tures, and a preliminary exploration of the potential energy
surface is required for application of MC-DC SCIVR. We
found nine different local minima very close in energy to the
global one. We repeated the same MC-DC-SCIVR procedure
described in the dimer section, running in this case 10 tra-
jectories for each subspace, each one centered on a different
minimum (global or local).

The energy range of the vibrational levels is very sim-
ilar between the two oligomers so far investigated, with the
trimer having the bending frequencies slightly blue shifted
with respect to the dimer, in agreement with the results reported
in the literature.32,60,113 Larger differences may be found for
the OH stretchings which are in general red shifted with respect
to the dimer. Semiclassical results show a strong red-shift of
mode 18 and, more mildly, of modes 16 and 17 with respect to
MM values, which is responsible for most of the MAE values

TABLE II. Main fundamental vibrational frequencies of the water trimer, in cm�1. Labels are the same as
in Table I. The last column shows classical-like results from Eq. (17) based on the Fourier transform (FT)
of the velocity-velocity autocorrelation function (Cvv). MAE values are relative to the MultiMode (MM)
results.

Index HO MM58 LMM58 DC SCIVR10k MC-DC SCIVR10 trajs,multmin MC-DC SCIVR1 traj FT (Cvv )

131 1661 1597 1602 1584 1575 1534 1520
141 1664 1600 1614 1595 1637 1528 1520
151 1681 1623 1615 1627 1634 1530 1516
161 3664 3486 3489 3440 3386 3426 3536
171 3703 3504 3500 3450 3400 3547 3548
181 3711 3514 3510 3247 3380 3151 3480
191 3911 3709 3718 3640 3610 3706 3676
201 3916 3715 3718 3700 3675 3652 3697
211 3918 3720 3719 3736 3760 3684 3640
MAE 151 – 6 54 65 88 58
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FIG. 3. Distribution of the OH distance during a dynamics where the i-th
mode is initially excited in order to enhance its motion. The left side of the
panel reports the OH distance of bound atoms, while in the right side of
the panel the distribution of OH involved in the hydrogen bonds (O· · ·H) is
presented. The different colors refer to different modes.

reported in Table II. The red shift found with semiclassical
calculations can be explained by looking at Fig. 3, where for
modes 16-21 we compare the distributions of intramolecular
(O–H) distances to (O· · ·H) distances involved in the hydro-
gen bonds along trajectories with mode-specific excitation.
Modes 19 and 20 seem to be not affected at all by long range
interactions, as expected by their free OH stretching nature.
Mode 21 is also a high-frequency free stretch. It has a broader
distribution of the intramolecular O–H distance which con-
tributes to the appearance of a tail at shorter distances for the
intermolecular O· · ·H distance. The intramolecular motion for
mode 21 is dominant, while the tail of the distribution is not
directional and hydrogen bonding is not effective. On the oppo-
site, for modes 16, 17, and 18 (with particular emphasis for the
latter) the short O· · ·H distances are related to a strong dynam-
ical hydrogen interaction. Because of it, a bond weakening is
expected resulting into a red-shift of the vibrational frequency.
This is clearly seen upon comparison with the MM results. The
dynamical effect that influences modes involved in hydrogen
bonds justifies a large part of the 54 (or 65 for MC-DC-SCIVR)
wavenumbers of MAE with respect to MM values, since if only
bending and free OH frequencies (which are not affected by
hydrogen bonding) are compared, then the MAE reduces to
20 (or 40 for MC-DC-SCIVR) cm�1. As anticipated, single-
trajectory MC-DC-SCIVR simulations are not reliable and the
major improvement we have found upon moving to a MC-DC-
SCIVR approach based on multiple minima (and trajectories)
concerns the low-energy red-shifted OH stretches because of
the non-local hydrogen interactions. Such non-local behavior
could justify the differences that arise between our results and
the MM ones, while another source of discrepancy might come
from the fact that we employed a different (even if similar)
PES for the three-body interaction. Furthermore, as already
pointed out for the dimer, these low frequency OH stretches
show much more complex spectral features with respect to
modes 13-16 and 19-21 owing to the interactions with the
bending overtones (which are in the same energy range) or
other stretches as depicted by Fig. 4. Figure 4 shows the

FIG. 4. Vibrational spectra of the water trimer. The solid lines refer to MC-
DC-SCIVR simulations based on 10 trajectories for each subspace; vertical
solid lines indicate the harmonic estimates, while the dashed ones indicate the
benchmark Multimode values. The bending fundamental and overtone signals
were obtained by tuning the reference state according to Eq. (14).

computed spectra employing the MC-DC-SCIVR approach
(solid lines) and reports MM (dashed vertical lines) and har-
monic (solid vertical lines) frequencies. Bending overtones
are very sensitive to the energy of the trajectories employed
in the semiclassical calculations and they cannot be precisely
detected when employing a dynamics energetically tailored
on the OH stretchings, and this adds to the complexity of the
resulting spectra. In particular, mode 18 presents several low-
frequency spectral features due to the overtone bendings and
a peak which is blue shifted compared to the MM frequency
and that is due to mode 19.

To point out the importance of a semiclassical approach
we have also computed classical-like spectra obtained from the
Fourier transform of velocity-velocity correlation functions.
The trajectory starting conditions were sampled using the same
strategy adopted for semiclassical simulations with the aim
to make the comparison between the different approaches as
straightforward as possible. In the classical-like case, 5000
classical trajectories for each fundamental mode were enough
to get reliable results. We notice that the classical estimates for
the three OH bending frequencies are substantially red-shifted
with respect to the MM, LMM, and DC SCIVR ones, while
free OH stretches are found in better agreement. Looking at
modes 16-18, the red-shift is less prominent when the out-
comes of classical-like simulations are compared with the DC
SCIVR results. Furthermore, as expected, no overtone features
are present in these classical-like spectra.

Finally, we compare in Table III our results to available
experimental data and find low discrepancies (about 30 cm�1

on average) within the typical semiclassical accuracy. As antic-
ipated, classical-like results are off the mark in the bending
region.

C. Water hexamer prism (H2O)6

In this section, we explore the vibrational features of the
water hexamer prism. It presents 48 degrees of freedom, 18
of which are bendings and OH stretches. Similar to what
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TABLE III. Experimental vibrational frequencies available for the water
trimer, in cm�1, and calculated ones. Experimental data are not assigned to
a specific vibrational mode, so for each theoretical approach the closest fre-
quency has been chosen for comparison. Labels are the same as in previous
tables. MAE is the mean absolute error referred to experimental data.

DC MC-DC FT
Expt.113,114 MM58 LMM58 SCIVR10k SCIVR10 trajs,multmin (Cvv )

1608 1597 1602 1584 1575 1520
1609 1600 1614 1595 1637 1520
1629 1623 1615 1627 1634 1516
3533 3514 3510 3640 3610 3536
3726 3720 3719 3736 3760 3697

MAE – 10 11 31 35 64

happens moving from the dimer to the trimer, the magnitude
of interactions becomes less intense going from the trimer to
the hexamer. Indeed, with the same Hessian threshold value
adopted for the trimer, all the modes of the hexamer have
been treated independently, with the exception of a couple
of modes (number 35 and 45) which have been still enrolled
into a bi-dimensional subspace.

We computed the hexamer DC-SCIVR spectra with 5000
trajectories per subspace, and, similar to the case of the dimer
and trimer, we also checked the reliability of a MC-DC-SCIVR
approach based on just a few trajectories. However, from our
damped dynamics simulations, it was soon evident that too
many local minima had to be taken into consideration. Running
a trajectory from each minimum would have not provided a real
computational advantage over DC-SCIVR, so we introduced
a different approach to select the most relevant minima for our
calculations.

We adopted a strategy inspired by Habershon’s recent
work on correlation distributions.115 As anticipated, the many-
body PES of the hexamer is characterized by several local
minima, very close in energy to each other. To assess the
“vicinity” of each minimum to the global one, we chose a con-
nection criterion based on structural considerations. Specifi-
cally, we introduced a correlation parameter computed as a
sum of molecular distances. In fact, by defining a proper set of
distances {di}i=1,...,Ndistances

between the atoms, the correlation
parameter σ2 can be calculated as

σ2 =

Ndistances∑
i=1

(d − dref
i )2, (18)

where dref
i is the i-th distance calculated at the global minimum

geometry. In the set of distances, we included the length of OH
bonds for each of the six monomers plus the O–O distances of
adjacent oxygen atoms. By looking at Eq. (18), it is expected
that minima very much correlated to the global one have
σ2 → 0, while higher values identify less correlated
wells.

We took into consideration σ2 values up to 0.011 Å2,
which is enough to cover more than 80% of the located local
minima. Those which are further away from the global mini-
mum (inσ2 terms) are expected to contribute less significantly
to the spectral features and are neglected. Figure 5 shows the
correlation distribution as a function of σ2 for different sets of
damped-dynamics trajectories employed. As in previous cases,

FIG. 5. Correlation distribution between the global minimum and the local
minima found by exploring the many-body PES of the hexamer. The plots
report the results for 1000 (black) and 10 000 (red) damped-dynamics trajec-
tories. Data have been interpolated by means of a cubic spline. The black aster-
isks represent the correlation peaks corresponding to the minima employed in
the MC-DC-SCIVR calculations.

the initial conditions of the damped trajectories are sampled
by means of a Husimi distribution around the PES global min-
imum, and a damping factor equal to 0.99 is adopted. Peaks
in the distribution, sampled along the σ2 range studied, are
used to select the most relevant minima for the MC-SCIVR
calculations.

Table IV shows our results compared to the local monomer
model ones.58 Vibrations are predicted by LMM at lower fre-
quencies than the typical OH stretching region, approximately

TABLE IV. Vibrational frequencies of the water hexamer prism, in cm�1.
The first column refers to the mode-excitation label; the second column is the
harmonic estimate; the third column reports the local monomer model results;
from the fourth column on, the semiclassical values are listed. The MC-DC-
SCIVR simulation based on 11 trajectories has been performed upon selection
of 10 local minima from the correlation distribution. MAE values are referred
to the LMM ones.

DC MC-DC MC-DC
Index HO LMM58 SCIVR5k SCIVR11 trajs,multmin SCIVR1 traj

311 1661 1606 1617 1602 1606
321 1672 1612 1623 1620 1592
331 1676 1620 1622 1622 1588
341 1701 1633 1664 1636 1682
351 1715 1654 1661 1640 1684
361 1739 1677 1715 1712 1722
371 3377 3092 2925 2956 3011
381 3494 3256 3052 3060 3012
391 3619 3372 3182 3168 2940
401 3638 3442 3516 3395 3198
411 3714 3482 3573 3556 3200
421 3735 3521 3640 3616 3500
431 3792 3579 3592 3606 3680
441 3809 3588 3580 3574 3608
451 3827 3630 3678 3650 3602
461 3915 3697 3771 3610 3578
471 3923 3706 3698 3750 3768
481 3925 3728 3677 3712 3700
MAE 169 – 64 57 102
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FIG. 6. Distribution of the OH distance during a dynamics where the i-th
mode is initially excited in order to enhance its motion. The left side of the
panel reports the OH distance of bound atoms, while in the right side of
the panel the distribution of OH involved in the hydrogen bonds (O· · ·H) is
presented. The different colors refer to different modes.

in the range between 3100 and 3300 cm�1. Some semiclas-
sical results were found in the 2900-3100 cm�1 region of
the spectrum. Therefore our dynamics-based results for the
lower-frequency stretches are red shifted with respect to the
time-independent ones. We ascribe the main reason for this
discrepancy to the different impact of hydrogen interactions,
which weaken such OH bonds. In a dynamical approach, the
effect of hydrogen bonding is enhanced, as already evinced for
the trimer. A further evidence of this is reported in Fig. 6, where
we compare the distributions of intramolecular (O–H) dis-
tances to (O· · ·H) distances involved in the hydrogen bonds for
modes 37-41 along trajectories with specific mode excitation.
Modes 37-39, which are semiclassically the most red-shifted
ones, present a more prominent tail at short O· · ·H distances
with respect to modes 40-41, which are not red shifted. These
features point to a stronger OH· · ·O hydrogen interaction for

FIG. 7. Vibrational spectra of the water hexamer prisms in the bending region.
The solid lines refer to MC-DC-SCIVR simulations based on 11 trajectories
for each subspace; vertical solid lines indicate the harmonic estimates, while
the dashed ones indicate the local monomer values. The bending fundamental
and overtone signals were obtained by tuning the reference state according to
Eq. (14).

FIG. 8. Vibrational spectra of the water hexamer prism in the OH stretching
region. The solid lines refer to MC-DC-SCIVR simulations based on 11 trajec-
tories for each subspace; vertical solid lines indicate the harmonic estimates,
while the dashed ones indicate the local monomer values.

modes 37-39 than for the other stretches. Consequently, the
corresponding OH bonds are weakened and their frequencies
are red shifted. MAE values relative to the LMM ones are
around 60 cm�1 for DC-SCIVR and MC-DC-SCIVR based on
11 trajectories, while the MAE is substantially higher (∼100
cm�1) when a single trajectory is employed. These values are
much lower if only modes not involved in hydrogen bond-
ing, i.e., modes 31-36 and 43-48, are considered. In fact, the
MAE decreases to 25 cm�1 for DC SCIVR and to 22 cm�1 for
MC-DC SCIVR with 11 trajectories.

Figures 7–9 show the spectra computed for the hexamer
employing the MC-DC-SCIVR approach with 11 trajectories
(solid line) together with the LMM (dashed vertical lines) and
harmonic (solid vertical lines) frequency estimates. Specif-
ically, in Fig. 7, the six bendings and their overtones are
reported, while Figs. 8 and 9 are dedicated to the low-frequency
and free OH stretches, respectively. If, for bendings, spectral
features are well resolved, peaks associated with the stretches

FIG. 9. Vibrational spectra of the water hexamer prism in the free OH stretch-
ing region. The solid lines refer to MC-DC-SCIVR simulations based on
11 trajectories for each subspace; vertical solid lines indicate the harmonic
estimates, while the dashed ones indicate the local monomer values.
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TABLE V. Fundamental frequencies of vibration for the water decamer (cm�1). HO is the label for the harmonic
frequencies; LMM are the local monomer model results; MC-DC-SCIVR refers to our semiclassical estimates.

HO LMM58 MC-DC-SCIVR11 trajs,multmin HO LMM58 MC-DC-SCIVR11 trajs,multmin

1670 1600 1590 3571 3382 3337
1675 1602 1624 3659 3417 3379
1678 1608 1624 3666 3419 3400
1686 1609 1628 3676 3420 3406
1692 1617 1660 3682 3429 3448
1712 1647 1663 3727 3518 3492
1713 1664 1674 3741 3525 3496
1720 1665 1690 3756 3534 3522
1738 1669 1708 3774 3566 3532
1748 1691 1714 3781 3568 3565
3335 3013 2936 3914 3706 3640
3352 3036 3006 3920 3734 3668
3383 3046 3022 3924 3736 3672
3387 3050 3052 3925 3741 3680
3554 3286 3121 3926 3744 3800

are instead broader and have a more complex shape due to the
intermode couplings involving both stretches and overtones of
bendings. This was also observed in the trimer and it is evi-
dent in the hexamer too. In particular, power spectra of modes
39 and 40 present a double peak feature due to the coupling
between these two modes. A similar instance occurs for spec-
tra of modes 41 and 42 which, in addition, show a shoulder at
the frequency of mode 37. The effects of coupling fade away
when moving to the free OH stretches, a characteristic which
has been already found in the trimer.

In summary, the semiclassical information about the hex-
amer energy levels based on thousands of trajectories can be
basically regained by means of a MC-DC-SCIVR treatment
that employs just 11 selected trajectories. A single-trajectory
approach is instead not enough to recover the correct spectral
features due to the strong influence of local minima similar
in both energy and connectivity to the global one. Therefore,
our MC-DC-SCIVR approach is very promising for dealing
with higher-dimensional clusters for which a DC-SCIVR cal-
culation is out of reach as in the case of the water decamer
(H2O)10.

D. Water decamer (H2O)10

Our last application concerns the water decamer which
has 10 bendings and 20 OH stretches and a total of 84 vibra-
tional degrees of freedom. Due to the computational over-
head of the simulations, for the decamer we only performed
MC-DC-SCIVR calculations based on multiple trajectories
starting from a set of minima located by means of the damped-
dynamics approach. We identified several minima on the sur-
face and calculated a correlation distribution dependent on
intramolecular OH distances and OO distances of adjacent
monomers according to Eq. (18), from which we extracted the
10 most relevant local minima. By employing the same Hes-
sian threshold value adopted for the trimer and the hexamer,
all 30 degrees of freedom have been treated as independent
ones. This is in agreement with the trend of weakening inter-
actions between vibrational modes associated with an increase

in the dimensionality of the system. For each subspace, we
performed our MC-DC-SCIVR calculations based on 11 tra-
jectories initiated from the global minimum and the 10 chosen
local minima. Results are reported in Table V which shows
a comparison of the decamer semiclassical fundamental fre-
quencies with the corresponding values calculated with the
local monomer model.58

In this case, we observe that our results for the bendings
are generally in good agreement with the LMM ones with a
MAE equal to 36 wavenumbers. Both MC-DC-SCIVR and
LMM predict more red-shifted stretches than in the case of the
smaller clusters, but they are in closer agreement with respect
to the trimer or the hexamer.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have presented a semiclassical inves-
tigation of the vibrational features of some water clusters
ranging from the dimer to the decamer by means of our recently
established divide-and-conquer semiclassical approach. Semi-
classical simulations employ several thousand classical trajec-
tories to reach convergence of results, but a computationally
cheaper MC-DC-SCIVR approach based on few, selected tra-
jectories was demonstrated to provide quite acceptable results.
The caveat here is that, differently from other molecular sys-
tems studied in the past, a single-minimum/single-trajectory
semiclassical calculation is usually not accurate. Therefore,
we have explored the potential energy surface looking for
local minima and presented a way to select them according to
their “resemblance” to the global minimum and their expected
contribution to the calculations. The application of semiclas-
sical methods to water clusters demonstrates that these tech-
niques can be employed also for large (H2O)n ones as well
as for rather floppy systems, and not only for quite rigid
ones. The divide-and-conquer method is able to simplify the
full-dimensional problem recovering part of the interactions
between the low-dimensional subspaces, thanks to the main-
tained full-dimensional nature of the trajectories on which the
subspace calculations are based. Spectral features though are
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very sensitive to intermode couplings, and multiple peak struc-
tures are often present especially in the case of low-frequency
stretches. Furthermore, vibrational angular momentum due to
the floppy nature of the system contributes to increase the width
of peaks, which is substantially larger than what is commonly
found in semiclassical calculations of single molecules.

Results show that the outcomes of experiments and pre-
vious theoretical studies are regained with quantitative agree-
ment for bendings and free OH stretches, while frequencies
of OH stretches influenced by hydrogen-bond interactions are
red shifted with respect to the estimates provided by other the-
oretical approaches. This can be clearly seen in the assignment
of the trimer experimental frequency at 3533 cm�1. We assign
it semiclassically to mode 19, while VCI calculations yield a
closer estimate for the frequency of mode 18, and classical-like
simulations point to mode 16. The difference between semi-
classical and classical-like estimates is evident and confirms
the need to undertake a semiclassical approach able to regain
quantum effects. The presence of a set of semiclassical fre-
quencies around 3000 cm�1 for the hexamer and the decamer
is consistent with previous studies even if the red shift is more
accentuated in our simulations. This is due to dynamical effects
(confirmed by the short-distance tails of the O· · ·H distance
distributions for modes involved in hydrogen bonds) and the
multi-reference nature of the semiclassical approach. Com-
pared to the isolated water molecule, bending frequencies are
more and more blue shifted and low-frequency stretches are
more and more red-shifted as the cluster size increases. Agree-
ment between semiclassical and VCI calculations for modes
in the red-shift region is better for the decamer than for smaller
clusters.

SUPPLEMENTARY MATERIAL

See supplementary material for the new 3-body water-
water-water PES employed in this work.
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50J. O. Richardson, C. Pérez, S. Lobsiger, A. A. Reid, B. Temelso,

G. C. Shields, Z. Kisiel, D. J. Wales, B. H. Pate, and S. C. Althorpe,
Science 351, 1310 (2016).

51H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997).
52C. J. Burnham, J. Li, S. S. Xantheas, and M. Leslie, J. Chem. Phys. 110,

4566 (1999).
53C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002).
54G. S. Fanourgakis and S. S. Xantheas, J. Phys. Chem. A 110, 4100 (2006).
55X. Huang, B. J. Braams, J. M. Bowman, R. E. Kelly, J. Tennyson,

G. C. Groenenboom, and A. van der Avoird, J. Chem. Phys. 128, 034312
(2008).

56G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008).
57A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, J. Chem.

Phys. 130, 144314 (2009).
58Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011).
59Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman,

J. Chem. Phys. 134, 094509 (2011).
60Y. Wang and J. M. Bowman, Phys. Chem. Chem. Phys. 18, 24057 (2016).
61S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).
62J. K. Gregory and D. C. Clary, J. Chem. Phys. 103, 8924 (1995).
63Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys.

131, 054511 (2009).
64E. J. Heller, Acc. Chem. Res. 14, 368 (1981).
65J. Shao and N. Makri, J. Phys. Chem. A 103, 7753 (1999).
66W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).
67D. V. Shalashilin and M. S. Child, Chem. Phys. 304, 103 (2004).
68E. Pollak, “The semiclassical initial value series representation of the quan-

tum propagator,” in Quantum Dynamics of Complex Molecular Systems,
edited by D. A. Micha and I. Burghardt (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007), pp. 259–271.

69J. Tatchen and E. Pollak, J. Chem. Phys. 130, 041103 (2009).
70R. Conte and E. Pollak, Phys. Rev. E 81, 036704 (2010).
71R. Conte and E. Pollak, J. Chem. Phys. 136, 094101 (2012).
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