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Introduction

The principal objects of study of Number Theory in positive characteristic are the global function
fields, which are the natural analogues of the number fields. It is possible to associate to every
function field some invariants like, for example, the genus or the class number, that play an
important role in the study of the arithmetic properties. Even if these objects have an algebraic
nature many analytic tools have been introduced and studied in order to have information on
such invariants. For example we can mention the Weil Zeta function, the Artin L-functions and
the Goss Zeta function which all have an analytic nature (both in the classical and in the p-adic
setting). The goal of this thesis is to investigate some links between these families of objects
and provide theorems that build a bridge between the analytic side and the algebraic side of
the theory. In all these theorems an important role will be played by the Stickelberger Series
ΘS(X) which is an algebraic object, but it can be used to generate all sort of L-functions thus
providing a kind of “universal series” from which all analytic functions originate. In the second
part of this thesis we study the Iwasawa tower generated by the torsion of a Hayes module and
use the Stickelberger series to prove a main conjecture.

Let F be a global function field defined over a finite field Fq of characteristic p, fix a prime
∞ of F and let A be the ring of elements regular outside of ∞. We take a finite set of primes S
containing ∞ and we denote with FS the maximal abelian extension of F unramified outside S
and with GS := Gal(FS/F ) its Galois group. The Stickelberger series of S is an element ΘS(X)
in the power series algebra ZJGSKJXK.
In Section 1.3 we study the relations between the Stickelberger series and the Artin L-function
L(s, χ).

Let F∞ denote the completion of F at the prime ∞, C∞ the completion of a fixed algebraic
closure of F∞ and S∞ the topological group C×∞ × Zp. In [Gos2] the author defines a function
ζA(s) over S∞ that takes values in C∞, which represents the analogue in positive characteristic
of the Riemann Zeta function, by

ζA(s) =
∑

a−s for s ∈ S∞,

where the sum is taken over all the non zero ideals a of A.
For this function, which is called Goss Zeta function, we prove Theorem 1.6.4:

Theorem. For every y ∈ Zp, there exists a continuous ring homomorphism Ψy : ZJGSKJXK→
C∞JXK, such that

Ψy (ΘS(X)) (x) = ζA(−s)
∏
p∈S
p6=∞

(1− ps) for every x ∈ C×∞ ,

where s = (x, y) ∈ S∞.
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There exists also a local version of the Goss Zeta function, which is called the ν-adic Zeta
function ζν(sν) and that takes value in the complete and algebraically closed field Cν (here ν is
a prime of F different from ∞). For this function, Theorem 1.8.4 provides a connection with
the Stickelberger series:

Theorem. Assume that ν ∈ S. Then for every y ∈ Zp and j ∈ Z/|F×ν |, there exists a continuous
ring homomorphism Ψy,j : ZJGSKJXK→ CνJXK, such that

Ψy,j (ΘS(X)) (x) = ζν(−sν)
∏
p∈S

p6=ν,∞

(1− psν ) for every x ∈ C×ν ,

where sν = (x, y, j) ∈ Sν := C×ν × Zp × Z/|F×ν |.

In [ABBL] the authors use a special case of the previous theorem, for the rational function
field F = Fq[T ], to prove a main conjecture for (the p-parts of) the class groups in the p-
cyclotomic extension generated over Fq[T ] by the p∞-torsion of the Carlitz module (p 6= ∞ a
prime of Fq[T ]). In the second chapter of this thesis, for a general function field F , we investigate
the extension generated by the torsion of a Hayes module and we are able to prove the main
conjecture for the χ part of the Iwasawa module, when χ is a character of type 1 or 2 (Definition
2.3.6). These results were achieved thanks to the work of Greither and Popescu on the Deligne’s
Picard 1-motive ([GP1] and [GP2]).

We worked under two assumptions: the first one is that the degree of the prime∞ is 1. This
assumption was needed to assure that all the field extensions we are dealing with are geometric,
but the reader may observe that this assumption is not really restrictive since we can reduce to
this case by extending the costant field of F . The second assumption is that the class number
of degree zero divisors h0(F ) is coprime with p.
Let HA be the Hilbert class field of A and Ψ : A→ HA{τ} a Hayes module. Fix a prime p of F
with degree dp and denote with Fn the extension of HA generated by the pn+1 torsion of Ψ. The
field Fn is an abelian Galois extension of F ramified only at the two primes p and ∞. These
fields form an Iwasawa tower

F ⊂ HA ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂
⋃
n∈N

Fn =: F∞ ,

indeed if we denote with Γn = Gal(Fn/F0) we have that

Γ∞ := Gal(F∞/F0) = lim←
n

Gal(Fn/F0) ' Z∞p .

We denote with Cn := Cl0(Fn){p} the p-part of the class group of degree zero divisors of Fn.
There is a natural action of Γn := Gal(Fn/F0) on Cn, thus this group can be seen as a module
over the ring Zp[Γn]. These groups form a projective system with respect to the norm maps
which allows us to define the limit

C∞ := lim←
n

Cn ,

which is a module over the Iwasawa algebra ZpJΓ∞K, but unlike the classical case, in this
setting this algebra is not Noetherian, thus we do not have a structure theorem for the finitely
generated torsion modules. The main goal of the second chapter is to understand the structure
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of the module C∞ and compute its Fitting ideal. Instead of doing it directly we have to deal
with the characters of the group G0 := Gal(F0/F ) which acts naturally on Cn and C∞.
Let χ ∈ Hom(G0,C×) be a complex character of the group G0 and W = Zp[ζ] the Witt ring
generated by a primitive root of unity ζ of order |G0|. For each G0-module M we define its
χ-part as

M(χ) := eχ
(
M ⊗Zp W

)
,

where eχ ∈W [G0] is the idempotent of χ.
Theorem 2.4.7 states:

Theorem. Let χ be a character of type 1 or 2. Then C∞(χ) is a finitely generated torsion
module over the Iwasawa algebra Λ := W JΓ∞K.

Let Θ∞(X) be the projection of the Stickelberger series ΘS(X) to ZJΓ∞×G0KJXK (here we
put S = {p,∞}) and Θ∞(X,χ) = eχΘ∞(X) ∈W JΓ∞KJXK. Also put

Θ]
∞(X,χ) =


Θ∞(X,χ) if χ is of type 1 ,

Θ∞(X,χ)

1−X
if χ is of type 2 ,

Our main results on the Iwasawa module C∞(χ) is Theorem 2.4.8:

Theorem (Iwasawa main conjecture). Let χ be a character of type 1 or 2. Then we have

FittΛ (C∞(χ)) =
(

Θ]
∞(1, χ)

)
.

For the characters of type 3 we have no direct information on the structure of Cn(χ) and
C∞(χ), but, working on Pontrjagin duals, we are able to prove a result on the χ-part of the
Stickelberger series: for the characters of type 3 which are trivial on the decomposition group
of p, the series Θn(X,χ) and Θ∞(X,χ) have a zero of order at least 2 at X = 1.



Chapter 1

Stickelberger Series and L-functions

1.1 Setting and notations

In this first chapter we will introduce and study the properties of some analytic and algebraic
objects that have been used to study the arithmetic of function fields. The main algebraic object
we are dealing with is the Stickelberger series, while the analytic objects we will introduce are
the Artin L-functions, the Goss Zeta function and the Goss ν-adic Zeta function. The goal of
this chapter is to investigate some links between these families of objects and provide theorems
that build a bridge between the analytic side and the algebraic side of the theory.

• F is a global function field of characteristic p > 0, i.e., a finite algebraic extension of a
field of transcendence degree 1 over a finite field Fpr := Fq which we call the constant field
of F . A more geometric interpretation would be to consider F as the function field of a
smooth projective curve X defined over Fq;

• ∞ is a fixed place of F and A is the subring of F of the elements regular outside of ∞;

• for any place ν of F (including ∞), Fν is the completion of F at ν. Its ring of integers
will be denoted by Oν and U1(ν) will be the group of 1-units of Fν . The residue field
Oν/(ν) := Fν is a finite extension of Fq of degree dν := [Fν : Fq] (also called the degree of
ν), its order will be denoted by Nν := qdν . The degree of a prime ν will be often denoted
also by deg ν;

• vν : Fν → Z is the (canonical) valuation at ν and πν will denote a fixed uniformizer for
Fν , i.e., an element with vν(πν) = 1;

• the degree of a fractional ideal a =
∏
ν 6=∞ ν

nν of A is the quantity deg a =
∑

ν 6=∞ nνdν .

1.2 Stickelberger Series

Let S be a finite set of places of F that contains∞ and we denote with FS the maximal abelian
extension of F unramified outside S and with GS := Gal(FS/F ) its Galois group. For every
place ν 6∈ S let φν be the Frobenius at ν, i.e., the unique element of GS that satisfies

φν(x) ≡ xNν (mod ν̃)
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for every x ∈ FS , where ν̃ is any place of FS lying above ν. We observe that the extension
FS/F is unramified at ν, so the decomposition group of ν in GS is pro-cyclic and topologically
generated by φν .

Definition 1.2.1. The Stickelberger series of S is defined by the Euler product

ΘS(X) =
∏
ν 6∈S

(
1− φ−1

ν Xdν
)−1

.

Actually the product above provides a well defined element of ZJGSKJXK: for every com-
mutative unitary ring R, an element f(X) ∈ RJXK is invertible if and only if f(0) is invertible
in R, thus every Euler factor eν(X) := 1 − φ−1

ν Xdν is invertible in ZJGSKJXK. Furthermore if
we denote with IS the set of fractional ideals of A with support outside of S (remember that
∞ ∈ S) and with φa the Artin symbol associated to a ∈ IS , i.e.,

a =
∏

νnν =⇒ φa =
∏

φnνν

(recall that A is a Dedekind domain), then we can write

ΘS(X) =
∑
a∈IS
a≥0

φ−1
a Xdeg a =

∑
n>1

∑
a∈IS
a≥0

deg a=n

φ−1
a Xn

(where we use the notation a ≥ 0 to denote the integral ideals of A). Since for every positive
integer n there exists at most a finite number of primes ν with degree equal to n, the series on
the right is clearly an element of Z[GS ]JXK.

1.3 Artin L-functions

Let K/F be a finite subextension of FS whose Galois group is GK and let SK ⊂ S bet the set
of ramified places together with ∞.

Notation 1.3.1. We remark that we shall always include ∞ in SK (i.e., if K/F is not ramified
at ∞ we put SK := {ν prime of F ramified in K/F} ∪ {∞}).

For every ν 6∈ SK let FrobKν ∈ GK be the Artin symbol. In particular if ν 6∈ S, FrobKν is
the image of φν through the canonical projection GS � GK .
For every complex character χ of GK , i.e., an element of Hom(GK ,C×), we put

χ(ν) =


χ(FrobKν) if ν 6∈ SK ,

0 if ν ∈ SK .

Definition 1.3.2. The Artin L-function associated to (K,χ) is

LK(s, χ) =
∏
ν 6∈SK

(
1− χ(ν)(Nν)−s

)−1
, for Re(s) > 1

(where the condition Re(s) > 1 guarantees convergence).
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Our goal in this section is to provide a link between LK(s, χ) and ΘS(X).
Let Ψ : GS → C× be a continuous character of GS , i.e., a continuous homomorphism with respect
to the natural topologies. We recall that the natural topology on a Galois group is the Krull
topology which is generated by the left (or right) cosets of normal subgroups with finite index.
With an abuse of notation we denote with Ψ also the ring homomorphism ZJGSKJXK → CJXK
induced in a natural way by Ψ.

Theorem 1.3.3. (a) Let K/F be a finite subextension of FS with Galois group GK and let
χ be a complex character of GK . Then there exists a continuous character Ψ of GS such
that

Ψ (ΘS(X)) (q−s) = LK(s, χ−1)
∏

ν∈S−SK

(
1− χ−1(ν)q−sdν

)
, for Re(s) > 1 . (1.1)

(b) Let Ψ be a continuous character of GS. Then there exists a finite subextension K of FS
with Galois group GK and a complex character χ of GK such that equation (1.1) holds.

Proof. (a) Let πK be the canonical projection GS � GK and put Ψ := χ ◦ πK . Clearly Ψ is
a continuous character of GS . We have that

Ψ (ΘS(X)) =
∏
ν 6∈S

(
1− χ

(
πK(φ−1

ν )
)
Xdν

)−1

=
∏
ν 6∈S

(
1− χ−1(FrobKν)Xdν

)−1

and so

Ψ (ΘS(X)) (q−s) =
∏
ν 6∈S

(
1− χ−1(FrobKν)q−sdν

)−1

=
∏
ν 6∈SK

(
1− χ−1(ν)q−sdν

)−1 ∏
ν∈S−SK

(
1− χ−1(ν)q−sdν

)
= LK(s, χ−1)

∏
ν∈S−SK

(
1− χ−1(ν)q−sdν

)
.

(b) The kernel of Ψ has finite index, indeed Ψ factors through the profinite group GS/Ker(Ψ),
which is topologically isomorphic to Ψ(GS) due to the first homomorphism theorem. How-
ever the only profinite (hence compact) subgroups of C× are the finite subgroups.
We denote with K the fixed field of Ker(Ψ), whose Galois group GK is isomorphic to the
quotient GS/Ker(Ψ), with χ the character induced by Ψ on GK and with SK the set of
ramified primes in K/F (recall that it always includes ∞ by our convention recalled in
Notation 1.3.1).
Clearly for ν 6∈ S the diagram

GS
Ψ //

πK ''

C×

GS/Ker(Ψ) ' GK
χ

77
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shows that Ψ(φν) = χ(FrobKν) and

Ψ (ΘS(X)) =
∏
ν 6∈S

(
1−Ψ(φ−1

ν )Xdν
)−1

=
∏
ν 6∈S

(
1− χ−1(FrobKν)Xdν

)−1

=
∏
ν 6∈SK

(
1− χ−1(ν)Xdν

)−1 ∏
ν∈S−SK

(
1− χ−1(ν)Xdν

)
.

From this equation (1.1) follows immediately if we observe that LK(s, χ−1) is equal to the

product
∏
ν 6∈SK

(
1− χ−1(ν)Xdν

)−1
evaluated at X = q−s.

In the final part of this section we will give an application of the previous theorem to prove
that the Stickelberger series lies in the Tate algebra.
Let R be any topological ring. The Tate algebra R〈X〉 is the set of formal power series with
coefficients in R, such that the coefficients tend to 0. Note, in particular, that the polynomial
ring R[X] is contained in the Tate algebra. Let W be the ring of integers of a finite extension of
Qp. For the purpose of this thesis and, in particular in Chapter 2, we will be mainly interested
in rings of the form R = W JGK, where G is the Galois group of an infinite extension of function
fields. We recall that the topology on this ring is the weakest such that the projection π :
W JGK � W [Gal(K/F )] is continuous for each finite subextension K/F . A classical result on
profinite groups tell that G admits a basis of neighbourhoods of 1G consisting of open subgroup
of finite index which correspond, by Galois Theory, to the finite subextensions. Thus, a sequence
of elements an of W JGK tend to 0 if and only if the sequence of the projections π(an) is equal
to 0 when n is big enough, for each finite subextension K/F .
The coefficients of the Stickelberger series lie in ZJGSK, but to show that ΘS(X) is an element
of the Tate algebra we have to replace Z with a non-archimedean complete ring, thus we will
use the natural embedding Z ↪→ W to identify ΘS(X) with an element of W JGSKJXK. (Note
that we consider Z with the discreet topology, thus the previous embedding is continuous).

Proposition 1.3.4. Let W be the ring of integers of a finite extension of Qp. Then ΘS(X) is
an element of the Tate algebra W JGSK〈X〉.

Proof. It is enough to show that for each finite subextension K/F the image of the Stickelberger
series under the projection π : W JGSKJXK � W [Gal(K/F )]JXK is a polynomial. We will not
work directly with ΘS(X) but we will consider f(X) := (1 − qX)ΘS(X). Since (1 − qX)−1 =∑

n≥0 q
nXn is an element of the Tate algebra, i.e. (1− qX) is a unit in W JGSK〈X〉, the thesis

will follow immediately if we prove that f(X) is in the Tate algebra. Here we want to underline
the necessity of replacing Z with W : the series

∑
n≥0 q

nXn is not in the Tate algebra ZJGSK〈X〉.
Let Ψ : GS → C× a continuous character. Following part (b) of Theorem 1.3.3 let K be the

fixed field of ker Ψ, GK be the Galois group Gal(K/F ), which is finite, and χ be the character
induced by Ψ on GK . We note that χ is the trivial character if and only if Ψ is the trivial
character on GS and, in this case, K = F and SK = {∞}. For Re(s) > 1 we have

Ψ (ΘS(X)) (q−s) = LK(s, χ−1)
∏

ν∈S−SK

(
1− χ−1(ν)q−sdν

)
.
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Now we introduce the full Artin L-function which is defined by the Euler product

L(s, χ−1) =
∏
ν

(
1− χ−1(ν)(Nν)−s

)−1
, for Re(s) > 1,

that differs from LK(s, χ−1) only for the factors associated to the primes of SK . Thus we have

Ψ (f(X)) (q−s) = (1− q1−s)Ψ (ΘS(X)) (q−s)

= (1− q1−s)L(s, χ−1)
∏
ν∈S

(
1− χ−1(ν)q−sdν

)
.

A theorem of Weil [Wei, VII, Theorem 6] tells that if χ 6= χ0 then L(s, χ−1) is a polynomial in
q−s, thus Ψ (f(X)) ∈ W [ψ(GS)][X]. Another theorem of Weil [Wei, VII, Theorem 4] tells that
for χ = χ0 we have

L(s, χ0) =
P (q−s)

(1− q−s)(1− q1−s)
,

where P (X) is a polynomial of degree 2g (g is the genus of F ). Thus also in this case we have
proved that Ψ (f(X)) is a polynomial, because the factor 1−q1−s in the denominator of L(s, χ0)
is killed by the same factor in Ψ (f(X)) (q−s), while the factor 1 − q−s is killed by one of the
terms in the product over the primes of S: here we are using that S is not empty.
We have just proved that Ψ (f(X)) is a polynomial for each continuous character Ψ, thus for
each finite subextension K/F , if we denote by π the projection GS � Gal(K/F ) we have

π (f(X)) ∈ Z[Gal(K/F )][X]

and so f(X) ∈ ZJGSK〈X〉 ⊂W JGSK〈X〉, which is our thesis.

In Chapter 2 we will need to evaluate the Stickelberger series ΘS(X) at some point of W JGSK,
the previous proposition grants us that when we take x in the unit disk {x ∈W JGSK : |x| ≤ 1} ,
then the series ΘS(x) converges.

1.4 The S∞-power of an ideal

Let C∞ be the completion of a fixed algebraic closure of F∞ and put S∞ := C×∞ × Zp. The
analogue of the Riemann Zeta function for F (i.e., in positive characteristic) has been originally
defined for some special values (the integers) by Carlitz in [Car] and later extended by Goss as
a C∞-valued function whose domain is S∞, in [Gos2]. We will see later how the integers embeds
in this topological group. This work of Goss may be interpreted a sort of analytic continuation
of the function defined by Carlitz.
Before going into the details of the Goss Zeta function, we need to define the term Is for any
nonzero fractional ideal I of F and any s ∈ S∞ (see also [Gos1, Chapter 8]).

Definition 1.4.1. A sign function on F∞ is any homomorphism sgn : F×∞ → F×∞ such that its
restriction to F×∞ is the identity. We extend sgn to all F∞ by defining sgn(0) = 0.

We fix a generator π∞ of the maximal ideal of F∞. We will say that the sign function sgn is
normalized if sgn(π∞) = 1. Since U1(∞) is a pro-p-group and the image of sgn has order prime
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to p, every sign function is trivial on U1(∞). From the decomposition a = π
v∞(a)
∞ ζu given by

the isomorphism
F×∞ ' πZ∞ × F×∞ × U1(∞) (1.2)

we deduce that for every normalized sign function we have sgn(a) = ζ.
The 1-unit associated to a ∈ F×∞ is the element

〈a〉∞ :=
a

π
v∞(a)
∞ sgn(a)

∈ U1(∞) .

From now on we will consider a fixed normalized sign function and the decomposition (1.2) will
be written as

a = πv∞(a)
∞ · sgn(a) · 〈a〉∞ .

For every u ∈ U1(∞) and y ∈ Zp the series
∑
n≥0

(
y

n

)
(u− 1)n converges in U1(∞), so we put

uy = ((u− 1) + 1)y :=
∑
n≥0

(
y

n

)
(u− 1)n .

We say that an element a ∈ F is positive if sgn(a) = 1 and we denote by A+ the set of
positive integers of F , i.e., the subset positive elements in A.
Let I be the set of nonzero fractional ideals of F and denote by P+ the principal fractional
ideals with a positive generator. The group I/P+ is finite and we put

h+(A) := |I/P+| .

We also denote with pt be the maximal power of p that divides h+(A). We recall that d∞ =
[F∞ : Fq] and, for any a ∈ F×∞, define the degree of a as deg(a) = −d∞v∞(a). Note that if
I = (i) is principal, then the definition of deg(i) coincides with the degree of the ideal I, i.e.,
deg(i) = deg(I) := logq |A/I|.

Remark 1.4.2. We have that h+(A) = h0(F ) · d∞ · (qd∞ − 1)/(q − 1), where h0(F ) denotes
the cardinality of the class group of degree zero divisors of F : let P denote the full subgroup
of principal ideals of I and let h(A) be the cardinality of I/P. Applying ([Ros], Proposition
14.1, part (b)) to our setting we deduce that h(A) = h0(F ) · d∞. Since P+ ⊂ P, we have a
surjective map I/P+ → I/P whose kernel is isomorphic to P/P+, thus h+(A) = h(A)|P/P+| =
h0(F )d∞|P/P+|.
To compute the cardinality of P/P+ consider the following diagram

F+
� � //

��

F×
sgn // //

��

F×∞

��
P+
� � // P // // P/P+

where the vertical map on the right is induced by the central vertical map. Clearly the map
F× → P is surjective and so it is the map F×∞ → P/P+. Note that the map F+ → P+ is an
isomorphism (its kernel is F+ ∩F×q = {1}) thus we deduce, by the snake lemma, that the kernel
of the right vertical map is isomorphic to the kernel of the central vertical map, which is F×q .

And so we have proved that |P/P+| = |F×∞|/|F×q | = (qd∞ − 1)/(q − 1).
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We fix a d∞-th root of π∞ and call it π∗: for every integer j we put sj = (π−j∗ , j). The map
j 7→ sj gives us an embedding Z ↪→ S∞.

For every s = (x, y) ∈ S∞ our goal is to define the exponential of a fractional ideal Is. We
start by defining the exponential of a positive element: given a ∈ F×∞ with sgn(a) = 1 and
s ∈ S∞ we put

as = xdeg(a)〈a〉y∞ .

The following proposition sums up some fundamental properties which can be found in Section
8.1. of [Gos1]. We report here the proof to make the exposition more clear.

Proposition 1.4.3. For every a, b ∈ F×∞ with sgn(a) = sgn(b) = 1, one has

• as+t = asat for every s, t ∈ S∞.

• (ab)s = asbs for every s ∈ S∞.

• (asi)sj = asij for every i, j ∈ Z.

• asi = ai for every i ∈ Z.

Proof. This is an easy exercise: let s = (x1, y1) and t = (x2, y2). Then

• as+t = a(x1x2,y1+y2) = (x1x2)deg(a)〈a〉y1+y2
∞ = x

deg(a)
1 〈a〉y1

∞x
deg(a)
2 〈a〉y2

∞ = asat.

• (ab)s = x
deg(ab)
1 〈ab〉y1

∞ = x
deg(a)+deg(b)
1 〈a〉y1

∞〈b〉y1
∞ = x

deg(a)
1 〈a〉y1

∞x
deg(b)
1 〈b〉y1

∞ = asbs.

• We recall that asi = π
−i deg(a)
∗ 〈a〉i∞ thus we have 〈asi〉∞ = 〈a〉i∞ and

deg(asi) = deg
(
π
−i deg(a)
∗

)
= −d∞v∞

(
π
id∞v∞(a)
∗

)
= −d∞v∞

(
πiv∞(a)
∞

)
= −d∞iv∞(a)

= i deg(a) .

And so (asi)sj = π
−j(ideg(a))
∗

(
〈a〉i∞

)j
= π

−ij deg(a)
∗ 〈a〉ij∞ = asij .

• asi = π
−ideg(a)
∗ 〈a〉i∞ = π

id∞v∞(a)
∗ 〈a〉i∞ =

(
π
v∞(a)
∞ 〈a〉∞

)i
and, since a is positive, this last

term is equal to ai.

To simplify notations put
e := h+(A) = |I/P+| .

Now we can define the exponential of a fractional ideal: given I ∈ I, there exists a positive
element α ∈ F× such that Ie = (α). We put

Is = xdeg I〈α〉y/e∞ ,
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where 〈α〉1/e∞ denotes the unique e-th root of 〈α〉∞ that is a 1-unit. Furthermore we put

〈I〉∞ := 〈α〉1/e∞ .

We observe that in general 〈I〉∞ and Is do not belong to F∞, but to a suitable extension (see
the following proposition).

Proposition 1.4.4. (a) 〈I〉∞ and Is are well defined.

(b) If I = (α) ∈ P+ then Is = αs.

(c) For every j ∈ Z: Isj is algebraic over F .

(d) Let FV be the extension of F obtained by adding every element of the form Is1 with I ∈ I.
Then FV/F is a finite extension with degree at most e.

(e) Let F∞,V be the extension of F∞ obtained by adding every element of the form 〈I〉∞ with
I ∈ I. Then F∞,V/F is a finite extension with degree that divides pt.

Proof. (a) We suppose Ie = (α) = (β) for some positive α, β. Then α and β differ by a unit of
A, i.e., by an element a ∈ F×q (see, for example [Ros, Proposition 5.1]). Therefore α = βa
implies sgn(α) = sgn(β)sgn(a). However α and β are positive and so sgn(a) = 1. Finally,
since a ∈ F×q , we conclude that a = sgn(a) = 1 and α = β.

(b) From the equality I = (α) it follows that deg(I) = deg(α) and Ie = (α)e = (αe). Therefore

Is = xdeg(I)〈αe〉y/e∞ = xdeg(α)〈α〉y∞ = αs .

(c) Let I ∈ I and α ∈ F be such that Ie = (α). We prove that Isj is a root of the polynomial
f(X) = Xe − αj ∈ F [X].
The equality Ie = (α) implies that e deg(I) = deg(α) = −d∞v∞(α). Therefore

(Isj )e =
(
π
−j deg(I)
∗ 〈α〉j/e∞

)e
= π

−j e deg(I)
∗ 〈α〉j∞

= π
j d∞ v∞(α)
∗ 〈α〉j∞

=
(
πv∞(α)
∞ 〈α〉∞

)j
= αj .

(d) We have already proved in the previous step that Is1 is algebraic over F , so it is enough to
show that FV can be generated by a finite number of elements of the form Is1 . Let I and
J be representatives of the same equivalence class in I/P+ and let α, β and γ be positive
elements such that Ie = (α), Je = (β) and I = γJ . Clearly there exists a constant a such
that the equality α = γeβa holds, but the same considerations explained in (a), lead us to
conclude that a = 1. Furthermore we have that deg(I) = deg(J) + deg(γ). Then

Is1 = π
− deg(I)
∗ 〈α〉1/e∞

= π
− deg(J)−deg(γ)
∗ 〈γ〉∞〈β〉1/e∞

= Js1π
− deg(γ)
∗ 〈γ〉∞
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= Js1πv∞(γ)
∞ 〈γ〉∞ = Js1γ .

Therefore to generate FV it is enough to take one fractional ideal Is1 for every equivalence
class of I/P+.
To prove that the degree of FV/F is at most e we proceed in the following way:

Step 1: If the equivalence class of J is a power of the class of I in I/P+ then F (Js1) ⊆ F (Is1),
indeed if J = Irγ for some positive element γ and some r ∈ N we have that Js1 = Irs1γ
and so Js1 ∈ F (Is1).

Step 2: If C is a cyclic component of I/P+ and I is a representative for a generator of C,
then from the previous step it follows that

F (Is1) ⊆
⋃

[J ]∈C

F (Js1) ⊆ F (Is1) .

Step 3: We decompose I/P+ as the sum of its cyclic components

I/P+ =

r⊕
i=1

Ci

with ni = |Ci|, and for every cyclic component Ci let Ii be a representative of a

generator. We observe that e =
r∏
i=1

ni.

In the proof of (c) we have proved that Isj is a root of the polynomial f(X) = Xe−αj ,
when Ie = (α). However in general f(X) is not the minimal polynomial of Isj , indeed
if there exists k ∈ N and a positive β such that Ik = (β), the same argument of (c)
shows that Isj is a root of g(X) = Xk − βj . Therefore the degree of the extension
F (Is1)/F is smaller than or equal to the order of the class of I in I/P+. From this
it also follows that the minimal polynomial of Is1i over F has degree at most ni.

From the previous step we deduce that FV =
r⋃
i=1

F (Is1i ) and so

[FV : F ] ≤
r∏
i=1

[F (Is1i ) : F ] ≤
r∏
i=1

ni = e .

(e) The proof of this point is similar to the previous one, it is enough to recall that F∞,V is
obtained by adding to F∞ the e-th roots of elements in U1(∞) and that, since U1(∞) is a
multiplicative group isomorphic to Z∞p , F∞ already contains the n-th roots of the elements
of U1(∞) when n is coprime with p (by Hensel’s Lemma).

All the objects defined until now depend on the choice of the positive element π∞ and on
the choice of its d∞-th root π∗. Before concluding this section we want to see what happens
when we change these two elements. To do this we will follow the ideas of [Gos1, Section 8.2.].
Let π(i), i = 1, 2 be generators of the maximal ideal of F∞, both positive with respect to the sign
function and π∗,(i), i = 1, 2 two fixed d∞-th roots. We denote with 〈I〉∞,(i) the 1-unit associated
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to I, with respect to π(i) and with Is(i) the corresponding exponential.

The elements π(1) and π(2) differ by a unit in A×∞ = F×∞ × U1(∞). Let u = π(1)/π(2), since π(1)

and π(2) are both positive, u is a 1-unit. We denote with u1/d∞ the only d∞-th root of u which
is a 1-unit. We observe that it is uniquely determined by π(1) and π(2), i.e., it does not depend
on π∗,(1) and π∗,(2).

Lemma 1.4.5. For every I ∈ I we have

〈I〉∞,(1) =
(
u1/d∞

)deg(I)
〈I〉∞,(2) .

Proof. From the equality (
u1/d∞

)d∞
=
π(1)

π(2)
=

(
π∗,(1)

π∗,(2)

)d∞
it follows that there exists a d∞-th root of unity ζ such that

u1/d∞ = ζ
π∗,(1)

π∗,(2)
.

Let α be such that Ie = (α). We have that e deg(I) = deg(α) = −d∞v∞(α) and, for i = 1, 2

〈Ie〉∞,(i) = 〈α〉∞,(i) =
α

π
v∞(α)
(i)

=
α

π
−e deg(I)
∗,(i)

.

Therefore recalling that, by Remark 1.4.2, d∞ divides e, we have(〈I〉∞,(1)

〈I〉∞,(2)

)e
=
π
e deg(I)
∗,(1)

π
e deg(I)
∗,(2)

=
(
u1/d∞ζ−1

)e deg(I)
=
(
u1/d∞

)e deg(I)
.

Finally, we observe that inside the brackets in the first and in the last term of the equality there
are 1-units, so we can extract the e-th root without ambiguity and obtain the thesis.

Corollary 1.4.6. There exists a d∞-th root of unity ζ such that

I
sj
(1) = ζj deg(I)I

sj
(2) .

Proof. Let ζ be as in the previous lemma. Then

I
sj
(1) = π

−j deg(I)
∗,(1) 〈I〉j∞,(1)

=
(
π∗,(2)ζ

−1u1/d∞
)−j deg(I) (

u1/d∞
)j deg(I)

〈I〉j∞,(2)

= π
−j deg(I)
∗,(2) ζj deg(I)〈I〉j∞,(2)

= ζj deg(I)I
sj
(2) .

Corollary 1.4.7. If F contains all the d∞-th roots of unity then FV does not depend on the
choice of π∞ and π∗.

We observe that the hypothesis of the corollary is equivalent saying that d∞ has the form
p`m, where m is any divisor of q − 1.
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1.5 The Goss Zeta Function

Recall that by a ≥ 0 we mean the integral ideals of A.

Definition 1.5.1. The Goss Zeta function is defined by the sum

ζA(s) =
∑
a∈I
a≥0

a−s ,

for s = (x, y) ∈ S∞.

This sum is clearly convergent for |x|∞ > 1 and can also be rewritten as an Euler product
just like the classical Riemann Zeta function

ζA(s) =
∏
ν 6=∞

(
1− ν−s

)−1
.

Since −s = (x−1,−y), this product amounts to

ζA(s) =
∏
ν 6=∞

(
1− 〈ν〉−y∞ x− deg(ν)

)−1

=
∏
ν 6=∞

(
1− 〈αν〉−y/e∞ x− deg(ν)

)−1

for some αν such that νe = (αν).
We recall that for every integer n we have only a finite number of integral ideals a with

degree equal to n and so the sum

an(y) =
∑
a∈I
a≥0

deg(a)=n

〈a〉−y∞ ∈ C∞

is finite. This allows us to write the Goss Zeta function as a sum over the positive integers.

ζA(s) =
∑
n≥0

an(y)x−n . (1.3)

This last form is very important because we will prove it is convergent for every (x, y) ∈ S∞ and
so can be interpreted as an analytic extension to the whole space S∞ of the Goss Zeta function.

1.5.1 Convergence of the Goss Zeta Function

In this section we will prove that for every s = (x, y) ∈ S∞ the sum (1.3) is convergent and, in
particular, this provides the analytic extension of the Goss Zeta function to the whole space.
More precisely we will prove that when n goes to infinity the number v∞ (an(y)) diverges faster
than a linear polynomial in n, uniformly with respect to y and, since v∞(x−n) is linear with
respect to n, the convergence of the series will readily follow. Indeed we shall prove that, when
n is big enough, the number v∞ (an(y)) behaves like a polynomial in n of degree 2 (or is larger
than that).



1.5 The Goss Zeta Function 17

We fix a1, a2, . . . ae ∈ I representatives of the equivalence classes C1, C2. . . . Ce of I/P+.
Every non null fractional ideal of Cj can be written uniquely as the product a = αaj , with
α ∈ F+. Now we have

an(y) =
e∑
j=1

〈aj〉−y∞
∑
α∈F+
αaj≥0

deg(αaj)=n

〈α〉−y∞ . (1.4)

Fix an index j, let nj = n− deg(aj) and put

an(Cj , y) =
∑
a∈Cj
a≥0

deg(a)=n

〈a〉−y∞ and bn,j(y) =
∑
α∈F+
αaj≥0

deg(α)=nj

〈α〉−y∞ ,

so that an(Cj , y) = 〈aj〉−y∞ · bn,j(y). From (1.4) we deduce that our thesis can be obtained just
proving that the function v∞ (bn,j(y)) is bounded from below by a polynomial of degree 2 in n
for any j, since |〈aj〉−y∞ |∞ = 1.
We can limit ourselves to integers n such that d∞ divides nj , because for the other values of n
we have bn,j(y) = 0 (there are no α with degree nj).

Let div(x) be the divisor associated to x, i.e., the element

div(x) =
∑
ν

ordν(x)ν.

Without ambiguity we will use this notation for both the elements α ∈ F× and for the fractional
ideals a ∈ I. Be careful: the divisors associated to the element α and to the fractional ideal (α)
may not coincide since the component at infinity may not be the same. For the same reason
the degrees of α and of the divisor associated to α may be different (remember that principal
divisors have always degree zero). Contrariwise the degrees of a fractional ideal and of its divisor
always coincide. To make this more clear consider the following example.

Example 1.5.2. Let F be the rational function field Fq(T ) and fix as a place at infinity the
rational place corresponding to T−1. In this case the ring of ∞-integers is just the polynomial
ring Fq[T ]. If we denote with p the prime corresponding to the element T we have that the
divisor associated to the element T is p−∞ while the divisor associated to the ideal (T ) is just
p.
Furthemore we have that deg T = 1 = deg (p) and deg (p−∞) = 0.

For every i ∈ N let Di = div(aj) + (nj/d∞ − i)∞ and L(Di) be its Riemann-Roch space,
which is defined by

L(Di) =
{
α ∈ F× : div(α) +Di ≥ 0

}
.

We observe that the divisors Di are sorted in descending order and so each space L(Di) is
contained in the previous one, i.e., L(Di) ⊇ L(Di+1) for any i. Furthermore the following
equality is true

L(Di) =

{
α ∈ L(D0) : v∞(α) ≥ i− nj

d∞

}
. (1.5)
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We recall that each L(Di) is a vector space over Fq with finite dimension `i. Afterwards we will
need to know the dimension of some of these spaces and we use the Riemann-Roch theorem to
calculate it. Since

deg(Di) = deg(aj) + nj − id∞ = n− id∞ ,

for i < (n− 2g + 2)/d∞, we have

`i = deg(Di)− g + 1 = n− id∞ − g + 1 ,

where we denote with g the genus of F . We want to study the asymptotic behavior of bn,j(y)
for n → ∞, so the number n should be thought as “big” with respect the other numbers. For
this reason we can always assume that there exists at least one index i such that the previous
equality holds.

From equality (1.5) it follows that α ∈ F× satisfies both the following conditions

• αaj ≥ 0

• deg(α) = nj

if and only if α ∈ L(D0) − L(D1) (note that they imply v∞(α) = − nj
d∞

). If we put X = {α ∈
L(D0)− L(D1) : sgn(α) = 1}, we can rewrite bn,j(y) as

bn,j(y) =
∑
α∈X
〈α〉−y∞ .

Lemma 1.5.3. Let a ∈ L(D1) and b ∈ X. Then a+ b ∈ X.

Proof. Both L(D1) and X are subsets of the vector space L(D0) and so a+ b belongs to L(D0).
We observe that v∞(a) ≥ 1− nj/d∞ while v∞(b) = −nj/d∞ 6= v∞(a), therefore

v∞(a+ b) = min{v∞(a), v∞(b)} = − nj
d∞

and a+ b 6∈ L(D1).
To complete our proof it remains to show that a + b is positive. Let m = v∞(a) ≥ 1 − nj/d∞
and let â ∈ O×∞ be such that a = πm∞â.

For every α ∈ F×∞ we have that sgn(α) ≡ απ
−v∞(α)
∞ (mod π∞) and so we can write b =

π
−nj/d∞
∞ (1 + π∞b̂) with b̂ ∈ O∞ (note that b is positive). Then

a+ b = π
−nj/d∞
∞ (π

m+nj/d∞
∞ â+ 1 + π∞b̂) = πv∞(a+b)

∞ (1 + π
m+nj/d∞
∞ â+ π∞b̂) .

Hence

sgn(a+ b) ≡ (a+ b)π−v∞(a+b)
∞ (mod π∞) (1.6)

≡ 1 + π
m+nj/d∞
∞ â+ π∞b̂ (mod π∞)

≡ 1 (mod π∞)

and the thesis is proved.
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The previous lemma tells us that the sum defines an action of L(D1) (seen as an abelian
group) on the set X by traslation. It is obvious that this action is free, since the equality
g + x = h + x, with g, h ∈ L(D1) and x ∈ X can be obtained only for g = h. Now we
can decompose X as the disjoint union of the orbits of its elements under this action. Let
X1, X2, . . . Xt be the orbits of the elements of X (so that with Xi ∩ Xj = ∅ if i 6= j and

X =

t⋃
l=1

Xl) and fix an element xl ∈ Xl for each orbit. Then

bn,j(y) =
∑
α∈X
〈α〉−y∞

=
t∑
l=1

∑
α∈Xl

〈α〉−y∞

=

t∑
l=1

∑
u∈L(D1)

〈u+ xl〉−y∞ .

We put

hn(y) = hn,j,l(y) :=
∑

u∈L(D1)

〈u+ xl〉−y∞ . (1.7)

Just like before note that our thesis on the growth of v∞(bn,j(y)) may be obtained by proving
that the growth of the function v∞ (hn(y)) (as a function of n) is greater than a linear polynomial
in n.

The following lemma puts together two results of [Tha, Chapter 5]. Here we give a detailed
proof.

Lemma 1.5.4. Let K be a function field with constant field Fq, v any normalized valuation
on K and W ⊂ K an Fq-vector space with finite dimension. Assume that v(w) > 0 for every
w ∈W .

(a) If i is an integer with 0 ≤ i < (q − 1) dimFq W , for every x ∈ K we have∑
w∈W

(x+ w)i = 0 .1

(b) For every j ∈ N+ we put Wj = {w ∈W : v(w) ≥ j}. Then for every y ∈ Zp we have

v

(∑
w∈W

(1 + w)y

)
≥ (q − 1)Q ,

where we put Q =
∑
j

dimFq Wj.

Proof. (a) Let d = dimFqW and we fix a basis {e1, e2, . . . , ed} over Fq. For every j ∈ N we
have

δj =
∑
c∈Fq

cj =


−1 if q − 1 divides j and j > 0,

0 otherwise.

1In the sum it may appear a term of the form 00. In this case we use the convention that 00 := 1.
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Applying the multinomial theorem we have∑
w∈W

(x+ w)i =
∑

c1,c2,...cd∈Fq

(x+ c1e1 + . . . cded)
i

=
∑

c1,c2,...cd∈Fq

∑
j1,j2,...jd
j1+···+jd≤i

i!

j1! . . . jd!(i− j1 − · · · − jd)!
xi−j1−···−jd(c1e1)j1 . . . (cded)

jd

=
∑

j1,j2,...jd
j1+···+jd≤i

i!

j1! . . . jd!(i− j1 − · · · − jd)!
xi−j1−···−jdej11 . . . ejdd δj1 . . . δjd .

In this sum each term is equal to zero, indeed we have that j1 + · · · + jd ≤ i < (q − 1)d
and so at least one of the index j is smaller than q − 1. For that index we have δj = 0.

(b) The first member of the inequality (seen as a function of y) is continuous and the second
member does not depend on y. This implies that it is enough to prove the statement when
y is a positive integer because the set of positive integers N+ is dense in Zp.
Let J be the greatest positive integer such that WJ 6= {0} and so we have

{0} = WJ+1 $WJ ⊆WJ−1 ⊆ · · · ⊆W2 ⊆W1 = W.

For every j = 1, . . . , J we denote with dj the dimension of Wj and with d = d1 = dimFqW
such that

0 < dJ ≤ dJ−1 ≤ · · · ≤ dj+1 ≤ dj ≤ · · · ≤ d2 ≤ d1 = d .

We fix a basis {e1, e2, . . . , ed} of W such that for every j the set {e1, e2, . . . , edj} forms a
basis for Wj . Furthermore we put

Uj = SpanFq{e1+dj+1
, . . . , edj} .

We observe that for every index j we have:

• Wj = Wj+1 ⊕ Uj .
• dimFqUj = dj − dj+1.

• For every u ∈ Uj : v(u) ≥ j (in particular we have the equality for every u 6= 0).

We will prove the following statement: for every index j ∈ {1, 2, . . . , J} and for every
positive integer y ∈ N+ we have the inequality

v

 ∑
w∈Wj

(1 + w)y

 ≥ (q − 1)

jdj +

J∑
l=j+1

dl

 . (1.8)

Note that for j = 1 the previous statement is exactly the thesis of (b).
We will prove the inequality by an inductive process: we will first give a proof for j = J
and then we will prove it for a generic index j, by assuming it is true for the index j + 1.

Case j = J : by the binomial theorem we have∑
w∈WJ

(1 + w)y =

y∑
h=0

(
y

h

) ∑
w∈WJ

wh .
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We apply part (a) to the vector space WJ to deduce that the sum
∑

w∈WJ
wh is equal to

zero when h < (q − 1)dJ , thus we have∑
w∈WJ

(1 + w)y =

y∑
h=(q−1)dJ

(
y

h

) ∑
w∈WJ

wh .

Since v is a non-Archimedean valuation we have

v

 y∑
h=(q−1)dJ

(
y

h

) ∑
w∈WJ

wh

 ≥ min
h≥(q−1)dJ
w∈WJ

{v(wh)} = min
h≥(q−1)dJ

{hJ} = (q − 1)JdJ ,

thus we have proved

v

 ∑
w∈WJ

(1 + w)y

 ≥ (q − 1)JdJ .

Now we assume that the inequality (1.8) is true for the index j+ 1 and we prove it for the
index j: using the decomposition Wj = Wj+1 ⊕ Uj and the binomial theorem we have∑

w∈Wj

(1 + w)y =
∑

t∈Wj+1

u∈Uj

(1 + t+ u)y =

y∑
h=0

(
y

h

) ∑
t∈Wj+1

(1 + t)h
∑
u∈Uj

uy−h .

We apply part (a) to the vector space Uj to deduce that the sum
∑

u∈Uj u
y−h is equal to

zero when y − h < (q − 1)dimFqUj , i.e., h > y − (q − 1)(dj − dj+1) =: ŷ , thus we have

∑
w∈Wj

(1 + w)y =

ŷ∑
h=0

(
y

h

) ∑
u∈Uj

uy−h
∑

t∈Wj+1

(1 + t)h .

Proceeding like the case j = J and using the assumption for the index j + 1 we have

v

 ∑
w∈Wj

(1 + w)y

 ≥ min
h≤ŷ
u∈Uj

v
uy−h ∑

t∈Wj+1

(1 + t)h


= min

h≤ŷ
u∈Uj

(y − h)v(u) + v

 ∑
t∈Wj+1

(1 + t)h


≥ min

h≤ŷ
u∈Uj

(y − h)v(u) + (q − 1)

(j + 1)dj+1 +
J∑

l=j+2

dl


= (q − 1)(dj − dj+1)j + (q − 1)

(j + 1)dj+1 +
J∑

l=j+2

dl


= (q − 1)

jdj +

J∑
l=j+1

dl

 .
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We use this lemma to give an estimate of hn(y):

Lemma 1.5.5. Let hn(y) be the function defined in (1.7). Then we have

v∞ (hn(y)) ≥ (q − 1)n2

2d∞
+O(n)

uniformly with respect to y.

Proof. We have

〈u+ xl〉∞ = π−v∞(u+xl)
∞ (u+ xl) = π

nj/d∞
∞ xl

(
1 +

u

xl

)
.

Recall that, by definition of X, xl is positive and v∞(xl) = −nj/d∞, thus π
nj/d∞
∞ xl is a 1-

unit and so we can elevate it to the power −y, furthermore v∞(u/xl) = v∞(u) − v∞(xl) =
v∞(u) + nj/d∞ > 0. Therefore from (1.7) we deduce

hn(y) = (π
nj/d∞
∞ xl)

−y
∑

u∈L(D1)

(
1 +

u

xl

)−y
= (π

nj/d∞
∞ xl)

−y
∑

w∈x−1
l L(D1)

(1 + w)−y.

The elements of x−1
l L(D1) have positive valuation at∞ and the vector space x−1

l L(D1) satisfies
every hypothesis of point (b) of Lemma 1.5.4. Hence we have

v∞ (hn(y)) = v∞

( ∑
w∈x−1

l L(D1)

(1 + w)−y

)
≥ (q − 1)Q,

where Q =
∑

i dimFqWi and Wi = {w ∈ x−1
l L(D1) : v∞(w) ≥ i}. Now we observe that the

element w is in Wi if and only if u = xlw is in L(D1) and v∞(u) ≥ i + v∞(xl) = i − nj/d∞,
i.e, u ∈ L(Di). From this fact we can deduce that the map Wi → L(Di), w 7→ xlw is an
isomorphism of Fq-vector spaces and so

dimFqWi = dimFqL(Di) = `i .

Finally, with some calculations we obtain that

Q =

∞∑
i=1

`i ≥
b(n−2g+2)/d∞c∑

i=1

`i .

If d∞ does not divide n− 2g + 2 the last sum is equal to

b(n−2g+2)/d∞c∑
i=1

(n− id∞ − g + 1) ,

if d∞ divides n− 2g + 2 the last sum is equal or greater than

(n−2g+2)/d∞−1∑
i=1

(n− id∞ − g + 1) ,
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thus in both cases we have:

Q ≥
n/d∞+O(1)∑

i=1

(n− id∞ +O(1))

= (n+O(1))

(
n

d∞
+O(1)

)
− d∞

n/d∞+O(1)∑
i=1

i

=
n2

d∞
+O(n)− d∞

2

(
n

d∞
+O(1)

)(
1 +

n

d∞
+O(1)

)
=

n2

d∞
+O(n)− n2

2d∞
+O(n)

=
n2

2d∞
+O(n) .

From this lemma and the previous remarks it follows that

Theorem 1.5.6 (Analytic extension of the Goss Zeta Function). The series∑
n≥0

an(y)x−n

is absolutely convergent for every (x, y) ∈ S∞ and is also uniformly convergent on the compact
subsets of S∞.

1.6 Stickelberger series and Goss Zeta Function

Our goal is to show a link between the Zeta function and the Stickelberger series ΘS(X) as we
did in Section 1.3 for the Artin L-functions.
Let WS be the subgroup of GS generated by all the Artin symbols φν with ν 6∈ S and let K be
the fixed field of the topological closure of WS . In Section 1.2 we have already observed that
the element φν is a topological generator of the decomposition group of ν in GS , therefore the
extension K/F is totally split at every prime ν 6∈ S. From Tchebotarev density theorem we
deduce that K = F and so GS is the topological closure of WS .

Remark 1.6.1. We note that the group WS is contained in the projection of the Weil group to
GS .

Lemma 1.6.2. Let λ and µ be two distinct primes outside S. Then φµ 6= φλ.

Proof. Let IF be the idéle group of F and H be the subgroup

F×µ ×
∏
ν 6=µ
ν 6∈S

O×ν ×
∏
ν∈S
{1}.

Furthermore let K be the class field of F×H (as usual F× is embedded diagonally in IF ,
while F×ν is embedded via the map which sends the element x to the idéle whose coordinates
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are all equal to 1, except for the one corresponding to the prime ν which is equal to x) and
rec : IF → Gal(K/F ) be the map induced by the Artin map.
For every prime ν 6∈ S we have that O×ν is contained in the kernel of rec and so the extension
K/F is unramified at every prime outside S, in particular we have that K is contained is FS .
Moreover

FrobKµ = rec(πµ) = 1

FrobKλ = rec(πλ) 6= 1

since πλ 6∈ F×H. Therefore the extension K/F is totally split at the prime µ, while λ is inert
in K. From this observation it follows that the decomposition groups of µ and λ in GS do not
coincide and so to distinct primes correspond distinct Artin symbols.

We denote with f the degree of the extension F∞,V/F∞ (recall that f divides pt by Propo-
sition 1.4.4) and with N : F×∞,V → F×∞ the norm map. For any y ∈ Zp and for any ν 6∈ S we
put

Ψy(φν) = N
(
〈ν〉−1
∞
)y/f

.

Observe that the norm sends 1-units to 1-units and therefore it is possible to extract the f -th
root without ambiguity. From the previous lemma it follows that the map Ψy is well defined on
Artin symbols.

Lemma 1.6.3. The map Ψy extends to a group homomorphism Ψy : WS → C×∞.

Proof. Since WS is generated by the Artin symbols every σ ∈WS may be written as σ =
∏
φnνν

for some integers nν . We put Ψy(σ) =
∏

Ψy(ν)nν . We have to check that this extension is well
defined.
For every a ∈ I we denote with ia the idéle whose ν-coordinate is equal to π

vν(a)
ν , in particular it

is equal to 1 if and only if ν does not belong to the support of a. We also observe that every idéle
of this form is a finite idéle, i.e., it has component at∞ equal to 1, since fractional ideals do not
have ∞ in their support. Clearly the map ϕ : I → IF , a 7→ ia is an injective homomorphism.
Let recS : IF → GS be the map induced by the Artin homomorphism and i ∈ Im(ϕ)∩ker(recS).
Since ker(recS) = F× ·

∏
ν 6∈S O

×
ν we have that i can be written as a product of an element x ∈ F×

and an idéle o ∈
∏
ν 6∈S O

×
ν . The component at infinity of o is equal to 1 since ∞ ∈ S, and the

same is true for i because of the definition of the function ϕ. This implies that x must be equal
to 1 and i = o. Now for every prime ν ∈ S different from ∞ the component iν of i must be
equal to 1 because it belongs to the kernel of recS and for every prime ν 6∈ S it must be equal
to πnν for some integer n and belongs to O×ν . The only possibility is that i is the unit.
We have proved that the composition of ϕ and recS is injective. The image of a fractional ideal
a =

∏
ν ν

nν under this map is the element σ =
∏
ν φ

nν
ν and so we have proved that if σ ∈ WS

may be written in two different ways as a product of Artin symbols, then Ψy(σ) does not depend
on the chosen one.

From the continuity of the norm map and of the root extraction map it follows immediately
that Ψy : WS → C×∞ is a continuous homomorphism. From what we have previously observed
GS is the topological closure of WS and, since C∞ is a complete topological space, Ψy may be
extended in a unique way to a continuous homomorphism defined on GS which we will still call
Ψy by a little abuse of notation.

Let Ψy : ZJGSKJXK→ C∞JXK be the natural map induced by Ψy.
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Theorem 1.6.4. Let ΘS(X) be the Stickelberger series and ζA the Goss Zeta function. Then,
for every s = (x, y) ∈ S∞ we have

Ψy (ΘS(X)) (x) = ζA(−s)
∏
ν∈S
ν 6=∞

(1− νs) .

Proof. Let ν be a prime not in S, n be the order of [ν] in I/P+ and α be a positive element such
that νn = (α). Due to what we have already observed 〈ν〉∞ is the only 1-unit whose n-th power
coincides with 〈α〉∞. We write n = phn′ with (p, n′) = 1 and let u be the only 1-unit whose
n′-th power coincides with 〈α〉∞. Since n′ is coprime with p, we have that u is in U1(∞) ⊂ F∞
and that 〈ν〉∞ is a root of the polynomial a(X) = Xph − u ∈ F∞[X]. Let b(X) be the minimal
polynomial of 〈ν〉∞ over F∞. Since 〈ν〉∞ is a root of a(X) and is totally inseparable, it must

be a(X) = b(X)p
l

and b(X) = Xpk − v, where l, k and v satisfy h = k + l and u = vp
l
. If we

denote with K the extension of F∞ obtained by adding 〈ν〉∞, we have that K/F∞ has degree
pk, while F∞,V/K has degree f/pk. Therefore

N (〈ν〉∞) = NK,F∞(〈ν〉∞)f/p
k

= vf/p
k

= 〈ν〉f∞

(everything works for p = 2 as well since in that case NK,F∞(〈ν〉∞) = −v = v).
From this it follows that Ψy(φν) = 〈ν〉−y∞ and that

Ψy (ΘS(X)) =
∏
ν 6∈S

(
1−Ψy(φ

−1
ν )Xdν

)−1

=
∏
ν 6∈S

(
1− 〈ν〉y∞Xdν

)−1

and so

Ψy (ΘS(X)) (x) =
∏
ν 6∈S

(
1− 〈ν〉y∞xdν

)−1

=
∏
ν 6=∞

(
1− 〈ν〉y∞xdν

)−1 ∏
ν∈S
ν 6=∞

(
1− 〈ν〉y∞xdν

)
= ζA(−s)

∏
ν∈S
ν 6=∞

(1− νs) .

1.7 A special case

In this section we will consider a special case and provide a link between the map Ψy of the
previous section and the Artin reciprocity map. We assume that the class number of F is
equal to 1 and we choose a prime at infinity of degree 1. The particularity of this case is that
we can give an explicit description of the idéle class group (Theorem 1.7.1). One example of
function field that satisfies these properties is the rational function fields Fq(T ) which have been
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studied in [ABBL]. Theorem 1.7.2 at the end of this section will show that Theorem 1.6.4 is a
generalization of [ABBL, Theorem 3.8]
Under the assumptions on the class number and the degree of ∞ we have that A is a principal
ideal domain and that h+(A) = 1. We also have that the residue field of F∞ coincides with
the constant field Fq and so every element of F× can be written in a unique way as product
of a constant and a positive element of F . Moreover the condition h+(A) = 1 implies that for
every prime ν 6= ∞ the corresponding prime ideal of A is principal and can be generated by a
positive element πν ∈ F . We choose an uniformizer at ∞ in the following way: first we fix a
prime p 6=∞ of degree 1, let πp be its unique positive generator and then put π∞ := π−1

p . Note
that this uniformizer is positive and is an element of F 2. Finally we observe that FV = F and
F∞,V = F∞.

The Goss Zeta function is defined (as before) by

ζA(s) =
∑
a∈A+

a−s =
∏
ν 6=∞

(
1− π−sν

)−1
.

The image of the character Ψy is contained in U1(∞) ⊂ F×∞ and satisfies Ψy(φν) = 〈πν〉−y∞ .
We want to provide a slightly more explicit link between the character Ψ1 and the Artin

map. Let IF be the Idéle group of F .

Theorem 1.7.1. The idéle class group IF /F× is isomorphic to the product

F×∞,+ ×
∏
ν 6=∞

O×ν =: H,

where we have denoted with F×∞,+ the kernel of the map sgn : F×∞ → Fq.

Proof. First we prove that every idéle of H identifies a different equivalence class in IF /F×. Let
i = (i∞, iν1 , iν2 , . . . ) and j = (j∞, jν1 , jν2 , . . . ) be two idéles in H and assume that they belong
to the same equivalence class. Let x ∈ F× be such that i = xj. For every ν 6= ∞ we have that
iν = xjν , but since both iν and jν are units in Fν , it follows that vν(x) = 0. Moreover from the
product formula we have v∞(x) = −

∑
ν 6=∞ dνvν(x) = 0 and so x is a constant. Finally since

i∞ = xj∞ and both i∞ and j∞ are positive, we deduce that x = 1.
To complete the proof (and provide an explicit isomorphism) we have to show that every equiv-
alence class of IF /F× contains an idéle of H. Let i = (i∞, iν1 , iν2 , . . . ) be any idéle and consider
the element

xi = sgn(i∞)−1
∏
ν 6=∞

π−vν(iν)
ν ,

which is in F× because there are only finitely many ν with vν(iν) 6= 0. It is easy to check that
the idéle xi is in H and that the map

IF /F× −→ H

[i] 7→ xii

is an isomorphism.

2If F is the rational function field Fq(T ), here we are simply taking as uniformizer the element π∞ = 1/(T−α),
where α is any element of Fq and p = (T − α).
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Let CF := IF /F× be the idéle class group of F and consider the composition of the Artin
map with the projection Gab

F := Gal(F/F )ab � GS . The map we obtain in this way has the

group OS =
∏
ν 6∈S

O×ν as its kernel and, therefore, the Artin map induces a continuous embedding

recS : CF /OS ↪→ GS .

This embedding is not surjective since the group GS is profinite, while the quotient CF /OS is

not. If we denote with ĈF /OS the profinite completion 3 of CF /OS , the map recS extends in a
unique way to an isomorphism of topological groups

r̂ecS : ĈF /OS
∼−→ GS .

Using the isomorphism in Theorem 1.7.1, one has that the quotient CF /OS is isomorphic to

πZ∞ × U1(∞)×
∏
ν∈S
ν 6=∞

O×ν .

Its profinite completion is the group

〈̂π∞〉 × U1(∞)×
∏
ν∈S
ν 6=∞

O×ν

where 〈̂π∞〉 ' Ẑ.

Theorem 1.7.2. We denote with πS the canonical projection ĈF /OS � U1(∞). Then the
following diagram is commutative

GS
Ψ1 //

r̂ec−1
S

""

U1(∞)

ĈF /OS

πS

:: ::
.

In general for every y ∈ Zp we have the following commutative diagram

GS
Ψy //

r̂ec−1
S ��

U1(∞)

ĈF /OS πS
// // U1(∞)

y

OO

where y denotes the raise-to-the-power y map.

3For a topological group G, the profinite completion Ĝ is the inverse limit of its finite quotients with respect
to the natural projection maps.
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Proof. We have already noted that GS is the topological closure of the group WS , generated by
the Artin symbols. Since all the maps in the theorem are continuous, it is enough to show that
Ψ1(φν) = π ◦ r̂ec−1

S (φν) for every ν 6∈ S.
We recall that the global Artin map is the product on each idéle component of the local Artin
maps and that the local Artin map recν sends πν to φν , since the extension FS/F is unramified
at ν. Let iν be the idéle whose ν-coordinate is equal to πν and whose µ-coordinates for µ 6= ν
are all equal to 1. The image of the equivalence class [iν ] ∈ IF /F× under the map recS is equal
to φν . As noted above, the hypothesis h+(A) = 1 implies that we have a positive generator
πν ∈ F for ν, hence

φν = recS ([iν ]) = recS
(
[π−1
ν iν ]

)
and, recalling that the idéle π−1

ν iν belongs to H, we obtain that

πS ◦ r̂ec−1
S (φν) = 〈π−1

ν 〉∞ = Ψ1(φν) .

For a general y ∈ Zp the thesis is obtained simply by observing that for every Artin symbol φν
we have Ψy(φν) = Ψ1(φν)y by definition.

1.8 ν-adic Zeta Function

In this section we will define a ν-adic analogue of the Goss Zeta function.
Fix a place ν different from ∞ and let Fν ,Cν ,Fν and πν be the ν-adic versions of the objects
defined for the place∞. Fix an algebraic closure F of F and let σ : F ↪→ Cν be an F -embedding.
All the objects that we shall define later on depend on σ, but we will omit this dependency to
simplify the notations.
Let Fν,V := σ(FV)Fν , which will play the role of the field F∞,V, and let Sν = C×ν ×Zp×Z/|F×ν |,
which is a subgroup of the group of C×ν -valued characters on F×ν . As done in Proposition 1.4.4,
we can prove that Fν,V is a totally inseparable extension of Fν with degree less than or equal to
pt (the maximal power of p that divides h+(A)). Since this extension is totally inseparable the
residue field of Fν,V is still Fν and so the cyclic group Z/|F×ν | acts on the multiplicative group
of this residue field by raise to the power. Now we take an element sν = (x, y, j) ∈ Sν and
we define the exponential Isν ∈ C×ν for every fractional ideal I ∈ I coprime with ν. We recall
that the element Is1 ∈ FV is a root of the polynomial Xe − α where α is the unique positive
generator of Ie (here s1 is the element (π−1

∗ , 1) ∈ S∞) and so the valuation at ν of Is1 is equal
to zero. This implies that the element σ(Is1) is a unit in Fν,V and so can be written uniquely
as a product

σ(Is1) = ω(I)〈I〉ν
for some ω(I) ∈ F×ν and 〈I〉ν a 1-unit of Fν,V. With the notation above it is easy to check that
the map which sends I to ω(I) is a group homomorphism ω : Iν → F×ν defined on the group Iν
of the fractional ideals coprime with ν.
Finally if we take sν = (x, y, j) ∈ Sν and I coprime with ν we can define

Isν = xdeg(I)ω(I)j〈I〉yν .

We can embed Z in Sν via the map j ∈ Z 7→ sν,j = (1, j, j) ∈ Sν . One can show that this ν-adic
exponential satisfies the following properties (analogous to the ones of the exponential defined
is Section 1.4)
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Proposition 1.8.1. For every I, J ∈ I coprime with ν, one has

• Isν+tν = IsνItν for every sν , tν ∈ Sν .

• (IJ)sν = IsνJsν for every sν ∈ Sν .

• (Isν,i)sν,j = Isν,ij for every i, j ∈ Z.

• Isν,j = σ(Isj ) for every j ∈ Z. In particular Isν,j is algebraic over F .

Proof. The proofs of the first 3 properties are similar to the analogous properties of the expo-
nential defined in Section 1.4 and so are left to the reader. For the last one we have

Isν,j = ω(I)j〈I〉jν = σ (Is1)j = σ(Isj ).

Definition 1.8.2. The ν-adic Goss Zeta function is defined by

ζν(sν) =
∑
a∈I
a≥0
ν-a

a−sν =
∏

p6=ν,∞
(1− p−sν )−1 .

Now we want to obtain the function ζν(sν) as the image of the Sickelberger series under an
appropriate map. This will be done for all the primes ν 6= ∞ which are in S, so for the rest
of this section we will assume that ν ∈ S. Let fν be the degree of the extension Fν,V/Fν and
denote by Nν : F×ν,V → F×ν the norm map. We fix (y, j) ∈ Zp × Z/|F×ν | and for every p 6∈ S we
put

Ψy,j(φp) = Nν(〈p〉−1
ν )y/fνω(p)−j .

In Lemma 1.6.2 we have proved that different primes correspond to different Artin symbols and
so Ψy,j(φp) is well defined.

Lemma 1.8.3. For every (y, j) ∈ Zp × Z/|F×ν | the map Ψy,j extends to a continuous ring
homomorphism ZJGSKJXK→ CνJXK.

Proof. Let τ =
∏
φ
np
p ∈ WS . By the proof of Lemma 1.6.3 we have that the map that sends∏

pnp to
∏
φ
np
p is injective on the set of fractional ideals with support outside of S. Then we

can put Ψy,j(τ) :=
∏

Ψy,j(φp)
np without ambiguity. Now since WS is dense in GS we have that

Ψy,j extends in a unique way as a continuous map defined over GS because Cν is complete.

We have the following

Theorem 1.8.4. Let ΘS(X) be the Stickelberger series and ζν the ν-adic Goss Zeta function.
If we assume ν ∈ S then for every sν = (x, y, j) ∈ Sν we have

Ψy,j (ΘS(X)) (x) = ζν(−sν)
∏
p∈S

p6=ν,∞

(1− psν ).
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Proof. Le p be a prime not in S, n the exact order of [p] in I/P+ and α a positive element such
that pn = (α). We have that (pn)s1 = (α)s1 = α and so

ω(p)n〈p〉nν = σ(ps1)n = σ(α)s1 = α ,

which implies that 〈p〉nν = 〈α〉ν .
From now on with proceed like in Theorem 1.6.4. Write n = phn′ with (p, n′) = 1 and let u be
the unique 1-unit whose n′ power coincide with 〈α〉ν . Since n′ is coprime with p, we have that

u is in Fν and that 〈p〉ν is a root of the polynomial a(X) = Xph − u ∈ Fν [X]. Let b(X) be the
minimal polynomial of 〈p〉ν over Fν . Since 〈p〉ν is a root of a(X) and it is a totally inseparable

element, it must be a(X) = b(X)p
l

and b(X) = Xpk − v, where l, k and v satisfy h = k + l and

u = vp
l
. If we denote with K the extension of Fν obtained by adding 〈p〉ν , we have that K/Fν

is an extension of degree pk and Fν,V/K has degree fν/p
k. Therefore

Nν (〈p〉ν) = NK,F∞(〈p〉ν)fν/p
k

= vfν/p
k

= 〈p〉fνν .

From this we obtain that Ψy,j(φp) = 〈p〉−yν ω(p)−j and

Ψy,j (ΘS(X)) =
∏
p6∈S

(
1−Ψy,j(φ

−1
p )Xdp

)−1

=
∏
p6∈S

(
1− 〈p〉yνω(p)jXdp

)−1

and so

Ψy,j (ΘS(X)) (x) =
∏
p6∈S

(
1− 〈p〉yνω(p)jxdp

)−1

=
∏

p6=ν,∞

(
1− 〈p〉yνω(p)jxdp

)−1 ∏
p∈S

p6=ν,∞

(
1− 〈p〉yνω(p)jxdp

)

= ζν(−sν)
∏
p∈S

p6=ν,∞

(1− psν ) .

1.9 Properties of ν-adic Zeta Function

In this section we will investigate some properties of the ν-adic Zeta function and in particular
its values at integers.
For each pair of non negative integers j and n, we define

Sn(j) =
∑
a≥0

deg a=n

asj

and the power series

Z(X, j) =
∑
n≥0

Sn(j)Xn

whose coefficients lie in FV.
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Lemma 1.9.1. The series Z(X, j) is actually a polynomial of degree less than or equal to
d∞ + g − 1 + b j

q−1c.

Proof. Fix a non negative integer j. We prove that when n is bigger than d∞ + g − 1 + b j
q−1c,

Sn(j) is equal to 0. To prove this we shall apply the same tools used to prove the convergence
of the Goss Zeta function.
Let Ch for h = 1, . . . , e be the classes of I/P+ and, for each h, fix a representative ah ∈ Ch.
Now define

Sn(Ch, j) =
∑
a≥0

deg(a)=n
a∈Ch

asj = a
sj
h ·

∑
α∈P+
αah≥0

deg(α)=n−deg(ah)

αj .

Clearly Sn(j) is the sum of the Sn(Ch, j) (as h varies) so it is enough to show that each of them
is equal to 0. Fix an index h and let nh = n−deg(ah). We will consider only indices h such that
d∞ divides nh, otherwise the thesis is trivial. Just like in Section 1.5.1 we denote with X the set
of positive elements α such that αah is an integral ideal and whose degree is equal to nh, and
with L(D1) the Riemann-Roch space associated to the divisor D1 = div(ah) + (nh/d∞ − 1)∞.
The additive group of L(D1) acts by traslation on X and the action is free, so we can decompose

X as the union of its orbits under this action: X =
t⋃
l=1

Xl. Fix a representative xl ∈ Xl for each

orbit. Then we have

Sn(Ch, j) = a
sj
h

t∑
l=1

∑
u∈L(D1)

(u+ xl)
j = a

sj
h

t∑
l=1

xjl

∑
w∈x−1

l L(D1)

(w + 1)j .

Observe that v∞(xl) = −nh/d∞ and v∞(u) ≥ 1 − nh/d∞. This implies that v∞(w) is positive
for every w ∈ x−1

l L(D1) and that the vector space x−1
l L(D1) satisfies the hypothesis of Lemma

1.5.4 part (a). Therefore the inner sum is zero when j < (q − 1)`1 = (q − 1)(n− g + 1).

The polynomials Z(X, j) are strictly related to the special values of the Goss Zeta function
since we have that Z(1, j) = ζA(−sj) for any j ∈ N.

We shall also need some ν-adic version of this polynomials, which will be used to interpolate
the special values of the ν-adic Goss Zeta function.

Definition 1.9.2. The ν-adic L-series is defined by

Lν(X, y, ωi) =
∑
n≥0

 ∑
a≥0 , ν-a
deg(a)=n

ω(a)i〈a〉yν

Xn ,

for any y ∈ Zp and i ∈ Z/|F∗ν |.

From the definition one immediately has

Proposition 1.9.3. For every sν = (x, y, i) ∈ Sν we have

Lν(x, y, ωi) = ζν(−sν). (1.9)
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Proof. We recall that for a fractional ideal a coprime with ν we have asν = ω(a)i〈a〉yνxdeg a and
so

Lν(x, y, ωi) =
∑
n≥0

 ∑
a≥0 , ν-a
deg(a)=n

ω(a)i〈a〉yνxn



=
∑
n≥0

 ∑
a≥0 , ν-a
deg(a)=n

asν


=

∑
a∈I

a≥0 , ν-a

asν

= ζν(−sν).

The following theorem provides a link between this power series and the polynomial Z(X, j)
for some particular values of i and j. It also shows that for these values of i and j the series
Lν(X, y, ωi) is actually a polynomial.

Theorem 1.9.4. Assume that ν ∈ S.

(a) Let i and j be two non negative integers, such that i ≡ j (mod qdν − 1). Then

Lν(X, j, ωi) = Z(X, j)(1− νsjXdν ) .

In particular Lν(X, j, ωi) in a polynomial.

(b) For every y ∈ Zp we have that

Lν(X, y, ωi) ≡ Z(X, i) (mod ν) ,

where ν denotes any prime of FV which lies above ν.

Proof. (a) Fix a prime p different from ν and∞ and consider fp(X) = 1−ω(p)i〈p〉jνXdp as an
element of Fν,VJXK. Clearly fp(X) is invertible since fp(0) = 1 and its inverse is given by

fp(X)−1 =
∑
n≥0

(
ω(p)i〈p〉jνXdp

)n
.

Let
f−1
n (X) :=

∏
deg(p)=n

fp(X)−1

then the product ∏
n≥0

f−1
n (X)
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is convergent with respect to the X-adic topology.
The map that sends every ideal I coprime with ν to the 1-unit 〈I〉ν is multiplicative and
the same is true for the map ω defined on this set of ideals. This fact, together with the
unique factorization of ideals in A, allows us to conclude that the limit of the product
above is equal to Lν(X, j, ωi), i.e.,

Lν(X, j, ωi) =
∏

p6=ν,∞

(
1− ω(p)i〈p〉jνXdp

)−1
. (1.10)

In the proof of Theorem 1.8.4 we have seen that this product is equal to

Ψj,i (ΘS(X)) ·
∏
p∈S

p6=∞,ν

(
1− ω(p)i〈p〉jνXdp

)−1
.

Since i ≡ j (mod qdν − 1), we have that ω(p)i = ω(p)j and so

Ψj,i(φ
−1
p ) = ω(p)i〈p〉jν = ω(p)j〈p〉jν = σ (ps1)j .

We recall that ps1 lies in FV and that σ is the identity on this field, so

Ψj,i(φ
−1
p ) = psj = π

−jdp
∗ 〈p〉j∞ = Ψj(φ

−1
p )π

−jdp
∗ .

From this equality if follows that

Ψj,i (ΘS(X)) =
∏
p6∈S

(
1−Ψj,i(φ

−1
p )Xdp

)−1

=
∏
p6∈S

(
1−Ψj(φ

−1
p )π

−jdp
∗ Xdp

)−1
(1.11)

= Ψj

(
ΘS(π−j∗ X)

)
.

We have proved that

Lν(X, j, ωi) = Ψj

(
ΘS(π−j∗ X)

)
·
∏
p∈S

p6=∞,ν

(
1− psjXdp

)−1
. (1.12)

Since

Z(X, j) =
∑
a∈I
a≥0

asjXdeg a =
∑
n≥0

 ∑
a≥0

deg a=n

〈a〉j∞

 (π−j∗ X)n ,

the same arguments used to obtain (1.10), applied now to Z(X, j), allow us to write

Z(X, j) =
∏
p6=∞

(
1− 〈p〉j∞(π−j∗ X)dp

)−1
. (1.13)
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The product (1.13) can be written as

Ψj

(
ΘS(π−j∗ X)

)
·
∏
p∈S
p6=∞

(
1− psjXdp

)−1
.

Thus, joining together (1.12) and (1.13), we obtain that

Lν(X, j, ωi) = Z(X, j)(1− νsjXdν ) .

(b) For every ideal a we have that

〈a〉yν ≡ 1 ≡ 〈a〉iν (mod ν) .

Hence

Lν(X, y, ωi) =
∑
n≥0

 ∑
a≥0 , ν-a
deg a=n

ω(a)i〈a〉yν

Xn

≡
∑
n≥0

 ∑
a≥0 , ν-a
deg a=n

ω(a)i〈a〉iν

Xn (mod ν)

= Lν(X, i, ωi) (mod ν)

= Z(X, i)(1− νsiXdν ) (mod ν)

≡ Z(X, i) (mod ν) .



Chapter 2

Stickelberger series and class groups

2.1 Introduction

In this chapter we will apply the results of Chapter 1 to the study of class group of degree zero
divisors. We will first introduce the Hayes modules and use them to build an Iwasawa tower.
Then we will study the behaviour of the p-part of the class groups of degree zero divisors of the
fields in the tower and of their inverse limit taken with respect to the norm maps. The study of
these objects is one of principal part of Iwasawa Theory. The Iwasawa Main Conjecture relates
the characteristic ideals of Iwasawa modules to the ν-adic L-functions, thus providing a link
between the algebraic and the analytic side of the theory. A version of the Main Conjecture for
Zdp-extensions of global function fields was proved by R. Crew in [Cre] using mainly geometric
tools and, later, with a different approach by Burns in [Bur], with the contribute of Kueh, Lai
and Tan ([KLT]). The Iwasawa extensions we will consider in this chapter are Z∞p -extensions,
thus the inverse limit of the p-part of the class groups turns out to be a module over a non-
Noetherian Iwasawa algebra and, unlike the classical case, we do not have a structure theorem
for finitely generated torsion modules like [Was, Theorem 13.12] and so we are forced to study
its Fitting ideal instead of the characteristic ideal which cannot be defined in this setting. For
an alternative approach to this problem the reader may look, for example, at [BBL], where the
authors study Z∞p -extensions of global function fields using Zdp-filtrations.

Through this chapter we will assume that d∞ = 1 and that p does not divide h0(F ). Under
these assumptions we have the following simplifications:

• The residue field F∞ coincides with the field of costants Fq.

• Every principal ideal admits a positive generator.

• The class number of the ring of integers A is equal to h0(F ).

• The field F∞,V coincides with the field F∞.

• For every a ∈ F : deg(a) = −v∞(a).

• π∗ = π∞.
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2.2 Hayes extensions

LetHA be the Hilbert class field ofA, i.e., the maximal abelian extension of F which is unramified
at every prime and totally split at ∞. Obviously we have that HA is a subfield of FS for any
choice of the set S. Since the prime ∞ has degree 1 we have that the constant field of HA is Fq.
It is a well known fact from class field theory that Pic(A) ' Gal(HA/F ) and the isomorphism
is provided by the Artin reciprocity map. In particular the class of a fractional ideal a is sent
to to its Frobenius in Gal(HA/F ) and, in case the support of a is disjoint from S, this is simply
the restriction of its Artin symbol φa ∈ GS .

Definition 2.2.1. We denote with HA{τ} the ring of skew-polynomials in the variable τ with
coefficient in the field HA. A Hayes module is an homomorphism of Fq-algebras Φ : A→ HA{τ},
such that:

(a) the image of A is not contained in HA;

(b) for every a ∈ A the coefficient of degree 0 of Φa := Φ(a) is equal to a;

(c) for every a ∈ A the degree of Φa, seen as a polynomial in τ , is equal to deg(a) (i.e., Φ has
rank 1);

(d) for every a ∈ A, the leading coefficient of Φa is sgn(a) (i.e., Φ is sgn-normalized).

For details on the Hayes module the reader may refer to ([Gos1] Chapter 7, [Hay] and [Shu]).

Remark 2.2.2. In the general theory a Hayes module is defined over the narrow class field H+
A ,

i.e., the abelian extension of F that is naturally isomorphic to Pic+(A) := I/P+ by class field
theory. In our context we have a simplification because the fields HA and H+

A coincide since the
degree of the prime at infinity is equal to 1.

We use a Hayes module to define an action of A on the algebraic closure of F . For every
a ∈ A and x ∈ F we put a · x := Φa(x). This action defines a structure of A-module on F .
If we take an integral ideal a of A we can consider the left ideal of HA{τ} generated by all
the elements Φa with a ∈ a. Since HA{τ} is right-euclidean, we have that every left ideal is
principal. We denote by Φa the unique monic generator of this ideal.

Definition 2.2.3. An element x ∈ F is said to be of a-torsion if Φa(x) = 0. Since Φa is a non
zero polynomial (for a 6= 0) we have that the set Φ[a] of all elements of a-torsion is finite.

Proposition 2.2.4. Let a 6= 0 be an integral ideal and let Φ[a] be the a-torsion of Φ. Then

(a) Φ[a] is an A/a-module;

(b) Φ[a] ' A/a;

(c) if λa is a generator of Φ[a] as A/a-module, then every other generator is of the form Φb(λa)
for some b ∈ (A/a)×.

We use the a-torsion of the Hayes module Φ to define extensions of the field F analogous
to the cyclotomic extension of Q. We denote by F (a) the extension of HA generated by Φ[a],
i.e., F (a) := HA(Φ[a]). Equivalently this extension can be obtained simply by adding an A/a-
generator of Φ[a] to HA.
The following theorem summarizes the properties of the Hayes extension contained in [Gos1]
Proposition 7.5.4, Corollary 7.5.6, Proposition 7.5.8 and Proposition 7.5.18.
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Theorem 2.2.5. The following hold

(a) F (a) is a geometric, abelian Galois extension of F ;

(b) Gal (F (a)/HA) ' (A/a)× via an isomorphism which sends a ∈ A to the element σa ∈
Gal (F (a)/HA) which verifies σa(λ) = Φa(λ) for every λ ∈ Φ[a];

(c) the only ramified primes in F (a)/HA are the primes of HA dividing a and ∞;

(d) the inertia group of ∞ coincides with its decomposition group and is isomorphic to to F×q
via the isomorphism in (b);

(e) if pn is the exact power of p dividing a, then the inertia group of p is isomorphic to (A/pn)×

via the isomorphism in (b);

(f) if I is an ideal of A coprime with a and σI ∈ Gal (F (a)/F ) is its Artin symbol, then we
have that σI(λ) = ΦI(λ) for every λ ∈ Φ[a].

Now we fix a prime p for the rest of the section and we set S = {p,∞}. For each non negative
integer n we put Fn := F (pn+1) and Gn = Gal(Fn/F ). From point (b) of Theorem 2.2.5 we
deduce that Fn/F0 is a p-extension and that F0/F is an extension of order h0(F )(qdp−1). Since
we have assumed h0(F ) coprime with p we can decompose Gn as the product G0 × Γn where
Γn = Gal(Fn/F0) is a p-group and G0 is the part of order coprime with p.
The fields Fn form an Iwasawa tower: if we denote with F∞ the union of all the fields Fn, with

G∞ := Gal(F∞/F ) = lim←
n

Gn

and with
Γ∞ := Gal(F∞/F0) = lim←

n

Γn

we have that Γ∞ ' Z∞p . Observe that the only primes ramified in F∞/F are p and ∞ and so
F∞ is a subextension of FS . The following diagram gives a recap of the fields and Galois groups
introduced above.

F

G0

Pic(A)

Gn

G∞

GS

HA F0
Γn

Γ∞

Fn F∞ FS

2.2.1 Primes in Hayes extensions

Now we focus on the behaviour of the primes in these extensions: as we have already observed
any prime different from p and ∞ is unramified in all the extensions.
The prime p is unramified in HA/F and totally ramified in F∞/HA, in the sense that each prime
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of HA lying above p is totally ramified. Since F∞/F is an abelian extension we have that all the
primes of HA lying above p have the same inertia group (isomorphic to Gal(F∞/HA) ) in G∞.
The prime ∞ is totally split in HA/F , then it ramifies (not totally in general) in F0/HA, with
inertia group isomorphic to F×q , and then it is again totally split in the remaining extensions.

2.3 Fitting ideals for Tate modules

Fix an algebraic closure Fq of Fq and denote with γ the arithmetic Frobenius, which is a topo-
logical generator of the pro-cyclic Galois group GF := Gal(Fq/Fq). For every field L, we denote
by Lar the compositum of L with Fq. In the case of the field Fn (resp. F∞) we have that F arn
(resp. F ar∞ ) is a Galois extension of F , whose Galois group is isomorphic to Gn × GF (resp.
G∞ ×GF) since the constant field of Fn (resp. F∞) is Fq.

2.3.1 The modules Hn(ν)

For every prime ν of F there exists only a finite number of primes of F arn that lie above ν,
because the extension Fn/F is finite and F arn /Fn is arithmetic (we recall that in an arithmetic
extension every prime splits in finitely many places). The following proposition tells us the exact
number of primes lying above ν.

Proposition 2.3.1. The number of primes of F arn lying above ν in equal to

• dν · [Fn : F ] if ν 6= p,∞;

• dp · h0(F ) if ν is equal to p;

• h0(F ) · qndp · (qdp − 1)/(q − 1) if ν is equal to ∞.

Proof. For every field K and every positive integer t we denote with K(t) the compositum of
K with Fqt . One can see that Fn(t) is the compositum of the two fields Fn and F (t) which are
disjoint over F , since Fn/F is a geometric extension, F (t)/F is arithmetic and Fqt is the costant
field of Fn(t). We also oberve that F arn is the union of all the fields Fn(t) when t varies over all
positive integers.
Fix a prime ν of Fn(t) which lies above ν and let e be the ramification index of ν over ν and f
be its inertia degree. Clearly these two numbers do not depend on the choice of ν since Fn(t)/F
is an abelian extension. We have also that e does not depend on t since Fn(t)/Fn is arithmetic.
Now we have

f = [Fν : Fν ] =
[Fν : Fqt ][Fqt : Fq]

[Fν : Fq]
= t · deg(ν)

dν
.

The degree of the extension Fn(t)/F is equal to [Fn : F ] · t so, if we denote with r the number
of primes of Fn(t) lying above ν, from the Kummer formula we have

[Fn : F ] · t = r · e · f = r · e · t · deg(ν)

dν
,

which can be re-arranged to obtain

r =
dν · [Fn : F ]

e · deg(ν)
.
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When the integer t is big enough we have that the degree of ν is equal to one. So to obtain the
thesis it is enough to recall that every prime different from p and ∞ is unramified if Fn/F , that
for the prime p the ramification index in equal to [Fn : HA] = [Fn : F ]/h0(F ) and that for the
prime ∞ the ramification index is equal to |F×q | = q − 1.

Before going on we recall here the definition of Fitting ideal of a finitely generated module.
For an in-depth discussion the reader may refer to [Nor, Chapter 3] or the appendix of [MW].
Let R be any commutative and unitary ring. For our purpose R will be one of the rings W [Γ•]
or W [Γ•]JGFK where W is an appropriate local ring, but we give here the general definition. Let
M be a finitely generated module over M and fix a set of generators e1, . . . , er. A relation vector
between the generators is an element a = (a1, . . . , ar) ∈ Rr such that

∑
aiei = 0. A matrix of

relations is any q × r matrix, with q ≥ r, whose entries are in R and whose rows are relation
vectors.

Definition 2.3.2. The Fitting ideal of the finitely generated R-module M is the ideal generated
by the determinants of the r× r minors of all the matrices of relations of M . It will be denoted
by FittRM .

We want to point out that here we have called Fitting ideals what the author of [Nor] refers
to as 0-Fitting invariant of M .

Remark 2.3.3. • It may appear that the definition above depends on the choice of the set
of generators {ei}, but it can be proved that the Fitting ideal does not change when we
take a different set of generators.

• It is easy to check that we can limit ourselves to determinants of the r × r matrices of
relations.

• One can prove that the Fitting ideal is contained if the annihilator of the module. Thus
the definition appears interesting only for torsion modules.

We denote with Hn(ν) the Zp-free module generated by the set of primes of F arn lying above
ν. Let In(ν) ⊂ Gn be the inertia group of ν: we have that Hn(ν) is also a free Zp[Gn/In(ν)]-
module of rank dν . Moreover there is a natural action of the group GF on Hn(ν) and we are
interested in studying the structure of Hn(ν) as a Zp[Gn]JGFK-module.

For ν ∈ {p,∞} we will denote by Frν any lift to Gn of the Frobenius map that belongs to
Gn/In(ν). For the prime ∞ the inertia group In(∞) is contained in G0 and does not depend
on n, so we shall simply denote it with I∞. Since the decomposition and inertia groups of ∞
coincide, we can choose Fr∞ = 1. The same choice can be done for the prime p if and only if the
prime p is totally split in HA. For all the other primes we simply denote with Frν the Frobenius
map in Gn.

Definition 2.3.4. The Euler factor at ν is

eν(X) := 1− Fr−1
ν Xdν ∈ Zp[Gn]JXK .

Since we will also need to specialize the variable X at γ−1, we put

eν := eν(γ−1) = 1− Fr−1
ν γ−dν ∈ Zp[Gn]JGFK .
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The statements of [GP2, Lemmas 2.1 and 2.2] adapted to our setting translate into the
following

Lemma 2.3.5. For ν ∈ {p,∞} we denote with Augν,n the augumentation ideal of Zp[Gn]JGFK
associated to the inertia group In(ν), i.e., the ideal generated by the elements of the form τ − 1,
with τ ∈ In(ν). Then

(a) if ν 6= p,∞, then FittZp[Gn]JGFK (Hn(ν)) = (eν);

(b) FittZp[Gn]JGFK (Hn(∞)) = (e∞, Aug∞,n);

(c) FittZp[Gn]JGFK (Hn(p)) = (ep, Augp,n).

From this lemma and the fact that the Hn(ν) are free Zp[Gn/In(ν)]-modules, we have the
isomorphisms

• if ν 6= p,∞
Hn(ν) ' Zp[Gn]JGFK/(eν) ;

• if ν =∞
Hn(∞) ' Zp[G0/F×q × Γn]JGFK/(e∞) ;

• if ν = p
Hn(p) ' Zp[Pic(A)]JGFK/(ep) .

2.3.2 Complex characters

Let χ ∈ Hom(G0,C×) be a complex character for G0. The character χ takes values in the set of
roots of unity of order |G0| = h0(F )(qdp − 1) and so we need to consider modules over the Witt
ring W = Zp[ζ], where ζ denotes any primitive root of unity of order |G0|. Recall that we are
assuming (|G0|, p) = 1, we put

eχ :=
1

|G0|
∑
g∈G0

χ(g−1)g ∈W [G0]

for the idempotent associated to χ. For any W [G0]-module M , we denote its χ-part by M(χ) :=
eχM . If M is a Zp[G0]-module we first turn it into a W [G0]-module by tensoring with W over
Zp and then we consider the χ-part of this tensor product (all this will often be tacitly assumed
and forgotten in the notations). We also recall that W is a flat Zp-module and so the functor
W ⊗Zp − is exact in the category of Zp-modules. Finally note that if the action of G0 is trivial
on M , then

M(χ) =


W ⊗Zp M if χ = χ0 ,

0 if χ 6= χ0 .

Definition 2.3.6. Let χ be a character of G0. We will distinguish 3 types of characters:

• χ is said to be of type 1 if χ (I∞) 6= 1;

• χ is said to be of type 2 if χ (I∞) = 1 and χ (Gal(F0/HA)) 6= 1;

• χ is said to be of type 3 if χ (Gal(F0/HA)) = 1.

Among the characters of type 3 there is the trivial one which will be denoted by χ0.
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2.3.3 The theorem of Greither and Popescu

Now we can start our computations: since d∞ = 1 and we have chosen Fr∞ = 1 we have that
e∞ = 1− γ−1. From Lemma 2.3.5 we have that Hn(∞) ' Zp[G0/I∞ × Γn] and so

Hn(∞)(χ) '


0 if χ is of type 1 ,

W [Γn] otherwise .
(2.1)

For the prime p we have Hn(p) ' Zp[Pic(A)]JGFK/(1− Fr−1
p γ−dp) and so we have the following

exact sequence

(1− Fr−1
p γ−dp)Zp[Pic(A)]JGFK ↪→ Zp[Pic(A)]JGFK� Hn(p) . (2.2)

We can tensor the previous exact sequence with W and multiply by eχ to obtain

eχ(1− Fr−1
p γ−dp)W [Pic(A)]JGFK ↪→ eχW [Pic(A)]JGFK� Hn(p)(χ) . (2.3)

If we observe that eχ(1 − Fr−1
p γ−dp) =

(
1− χ(Fr−1

p )γ−dp
)
eχ and eχW [Pic(A)]JGFK = W JGFK,

we can conclude that

Hn(p)(χ) '


0 if χ is of type 1 or 2 ,

W JGFK/
(
1− χ(Fr−1

p )γ−dp
)

otherwise .
(2.4)

Now consider the group of divisors Hn(∞) ⊕Hn(p) which is the free Zp-module of divisors
of F arn whose support is contained in S. We denote with Dn its subgroup of divisors of degree
zero, i.e., the kernel of the map

deg : Hn(∞)⊕Hn(p)→ Zp ,

and with Dn(χ) its χ-part. Since there is no action of G0 on Zp we have that when χ is not the
trivial character, Dn(χ) is simply the sum Hn(∞)(χ)⊕Hn(p)(χ), i.e.,

Dn(χ) '


0 if χ is of type 1 ,

W [Γn] if χ is of type 2 ,

W [Γn]⊕W JGFK/
(
1− χ(Fr−1

p )γ−dp
)

if χ is of type 3 and χ 6= χ0 .

(2.5)

Let Xn be the projective curve defined over Fq and associated with Fn and Jac(Xn)(Fq)
the set of Fq-rational points of its Jacobian. We recall that for each abelian group M , the
multiplication by p defines a surjective map M [pn+1]→ M [pn] from the pn+1-torsion subgroup
of M to the pn-torsion subgroup. One can use this maps to define a projective limit which
is called the p-adic Tate module of M and we will denote it with Tp(M) (note that the Tate
module depends only on the p-part of M). For more details the reader may refer to the classical
work of Tate [Tat] or [Mum, Chapter IV].
We will denote Tp(Fn) := Tp

(
Jac(Xn)(Fq)

)
the p-adic Tate module of the Jacobian of Xn,

defined over the algebraically closed field Fq . Our task is to study the structure of Tp(Fn) as a
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Galois module over Zp[Γn]JGFK. More precisely we will study its χ-part when χ is of type 1 or
2.

Following the definitions and the properties given in [GP1, Section 2] we consider the
Deligne’s Picard 1-motive MS,∅ associated to the field F arn and to the set of primes of F arn
which lie above the primes of S. We can take the empty set as auxiliary set of primes in the
definition of MS,∅ because we are only interested in the study of the p-adic Tate module of the
Jacobian (see [GP1, Remark 2.7]). In what follows we will simply denote the Deligne’s Picard
1-motive with Mn.
The multiplication by p induces a surjective map on the pm-torsion of Mn for every positive
integer m and so we can define the p-adic Tate module of Mn as

Tp(Mn) = lim←
m

Mn[pm] .

We denote with Θn(X) (resp. Θ∞(X)) the projection of the Stickelberger series ΘS(X) to
Z[Gn]JXK (resp. ZJG∞KJXK), which is easily seen to be the Stickelberger series associated to the
extension Fn/F (resp. F∞/F ) since the set of ramified primes in this subextension is exactly S.

In [GP1, Theorem 4.3] the authors prove the following

Theorem 2.3.7. One has

FittZp[Gn]JGFK (Tp(Mn)) =
(
Θn(γ−1)

)
.

Note that evaluating the Stickelberger series Θn(X) at X = γ−1 makes sense because of
Proposition 1.3.4.

2.3.4 Fitting ideals for Tate modules: finite level

In [GP1, after Definition 2.6] the authors provide the following exact sequence

0 −→ Tp(Fn) −→ Tp(Mn) −→ Dn −→ 0 . (2.6)

For every character χ we denote by Θn(X,χ) the only element of W [Γn]JXK that satisfies
Θn(X,χ)eχ = eχΘn(X).

Theorem 2.3.8. Let χ ∈ Ĝ0 be a character not of type 3. Then we have

FittW [Γn]JGFK (Tp(Fn)(χ)) =
(

Θ]
n(γ−1, χ)

)
,

where we put

Θ]
n(γ−1, χ) =


Θn(γ−1, χ) if χ is of type 1 ,

Θn(γ−1, χ)

1− γ−1
if χ is of type 2 .

Proof. From Theorem 2.3.7 we have that the Fitting ideal of Tp(Mn) over the ring Zp[Gn]JGFK
is the ideal generated by Θn(γ−1). We want to use this information to determine the Fitting
ideal of Tp(Mn)(χ) over the ring W [Γn]JGFK.
Since Zp[Gn]JGFK is a Noetherian ring and Tp(Mn) is finitely generated we have a presentation

Zp[Gn]JGFK⊕r
α // Zp[Gn]JGFK⊕s // // Tp(Mn),
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with r ≥ s because Tp(Mn) is a torsion module. Note that we cannot assume, in general, that
α is injective. The map α can be identified with a r× s matrix whose entries are in Zp[Gn]JGFK
and the ideal generated by the determinants of the s×s minors of α is

(
Θn(γ−1)

)
. Now we take

the χ-part in the previous presentation to obtain

W [Γn]JGFK⊕r
αχ //W [Γn]JGFK⊕s // // Tp(Mn)(χ),

i.e., a presentation for Tp(Mn)(χ) as a module over W [Γn]JGFK. Clearly the ideal generated by
the determinants of the s × s minors of αχ is generated by eχΘn(γ−1) = Θn(γ−1, χ) and it is
the Fitting ideal of Tp(Mn)(χ) over W [Γn]JGFK.
We have already observed that tensor product W ⊗Zp − is an exact functor and so it preserves
exact sequences. The same happens when we take the χ part and so, from (2.6), we obtain

0 −→ Tp(Fn)(χ) −→ Tp(Mn)(χ) −→ Dn(χ) −→ 0 . (2.7)

• If χ is of type 1, from (2.5) we have that Dn(χ) = 0, thus

Tp(Fn)(χ) ' Tp(Mn)(χ)

and so the thesis is proved because in this case Θ]
n(γ−1, χ) = Θn(γ−1, χ).

• If χ is of type 2, from (2.5) we have that Dn(χ) = W [Γn] 'W [Γn]JGFK/(1−γ−1) which is
a cyclic W [Γn]JGFK-module. This allows us to apply [CG, Lemma 3] to the previous exact
sequence and to obtain

(1− γ−1)FittW [Γn]JGFK (Tp(Fn)(χ)) = FittW [Γn]JGFK (Tp(Mn)(χ)) =
(
Θn(γ−1, χ)

)
.

When χ is a character of type 3 things get more complicated, since Dn(χ) is not cyclic and
so we cannot apply [CG, Lemma 3] as we did in the previous theorem. We shall consider those
characters in Section 2.5.

2.3.5 Fitting ideals for Tate modules: infinite level

Until now we have studied the Galois module Tp(Fn) for a fixed integer n. Now we will consider
two indices n > m ≥ 0 and study the relation between Tp(Fn) and Tp(Fm).
We put Γnm = Gal(Fn/Fm) and we recall that this extension of fields is totally ramified at every
prime that lies above p and unramified at every other prime (moreover the number of primes
in Fm above p is the same for any m and coincides with the number of primes of HA lying
above p). We denote with Cn the p-part of the class group of degree zero divisors of F arn and
we recall that Tp(Fn) = Hom(Qp/Zp, Cn). Thus the norm map from Cn to Cm induces a map
Nn
m : Tp(Fn) → Tp(Fm) and likewise the inclusion map induces a map imn : Tp(Fm) → Tp(Fn).

We define
Tp(F∞)(χ) = lim←

n

Tp(Fn)(χ) ,

where the limit is taken with respect to the norm maps. The limit Tp(F∞)(χ) is a module over
the profinite (non noetherian) algebra ΛF := W JΓ∞KJGFK. Our next goals are to prove that, for
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characters of type 1 and 2, this module is finitely generated and torsion over ΛF and to compute
its Fitting ideal.

There is a natural Galois action of Γnm on Tp(Mn) and an inclusion map imn : Tp(Mm) →
Tp(Mn) that satisfies Tp(Mn)Γnm = imn (Tp(Mm)) (see [GP1, Theorem 3.1]). There is also a
norm map Nn

m : Tp(Mn) → Tp(Mm) such that the compositum Nn
m ◦ imn is the multiplication

by [Fn : Fm].
We have one last norm map defined from Dn to Dm and inclusion map from Dm to Dn whose
compositum in again the multiplication by [Fn : Fm].
All this norm and inclusion maps defined on Tp(F•), Tp(M•) and D• are compatible with the
exact sequence (2.6) in the sense that the following diagram is commutative for every index m
and n.

0 // Tp(Fn) //

Nn
m

��

Tp(Mn) //

Nn
m

��

Dn
//

Nn
m

��

0

0 // Tp(Fm) //

inm

VV

Tp(Mm) //

inm

VV

Dn
//

inm

VV

0

This diagram suggests to investigate the behaviour of the norm map on Tp(Mn) first and
then move to Tp(Fn). We denote with IΓnm the augumentation ideal of W [Γn] associated to the
subgroup Γnm. The next lemma follows immediately from Theorem 3.9 of [GP1].

Lemma 2.3.9. The norm map Nn
m : Tp(Mn) → Tp(Mm) is surjective and its kernel is

IΓnmTp(Mn).

Proof. From [GP1, Theorem 3.9 part (2)] we have that Tp(Mn) is free over Zp[Γnm] (because Γnm
is a p-group). Thus

Ĥ i (Γnm, Tp(Mn)) = 0 for every integer i ,

where we denoted by Ĥ i(Γnm, •) the i-th group of Tate cohomology.
Specializing the previous equality at i = 0 we obtain

Nn
m (Tp(Mn)) = Tp(Mn)Γnm = imn (Tp(Mm)) .

In a similar way we obtain the second part of the lemma by specializing at i = −1.

Now we can study the norm map on Tp(Fn).

Proposition 2.3.10. Let χ be a character of type 1 or 2. Then the norm map Nn
m : Tp(Fn)(χ)→

Tp(Fm)(χ) is surjective and its kernel is IΓnmTp(Fn)(χ).

Proof. Consider the exact sequence (2.7). If χ is a character of type 1 we have that Tp(Fn)(χ) '
Tp(Mn)(χ) and so the thesis is simply a restatment of the previous lemma (recalling that taking
the χ-part of a module is an exact functor).
Now assume χ is of type 2 so that Dn(χ) ' W [Γn] and note that this is a Γnm-cohomologically
trivial module. Since Tp(Mn)(χ) is also cohomologically trivial by (the proof of) [GP1, Theorem
3.9], we have that

Ĥ i (Γnm, Tp(Fn)(χ)) = 0 for every i ∈ Z . (2.8)
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Specializing at i = −1 we obtain

ker{Nn
m : Tp(Fn)(χ)→ Tp(Fm)(χ)} = IΓnmTp(Fn)(χ) .

To prove surjectivity of the norm map we take Γnm-invariants in (2.7) to obtain

0→ Tp(Fn)(χ)Γnm −→ Tp(Mm)(χ) −→ Dn(χ)Γnm −→ Ĥ1 (Γnm, Tp(Fn)(χ)) = 0 .

Note that Dn(χ)Γnm ' W [Γn]Γ
n
m ' W [Γm] and compare the previous exact sequence with (2.7)

with m in place of n. We readily get that Tp(Fn)(χ)Γnm ' Tp(Fm)(χ). Now specializing (2.8) at
i = 0 we obtain

Nn
m (Tp(Fn)(χ)) = Tp(Fn)(χ)Γnm ' Tp(Fm)(χ) .

We are now ready to state our first main theorem.

Theorem 2.3.11. Let χ be a character of type 1 or 2. Then Tp(F∞)(χ) is a finitely generated
torsion ΛF-module.

Proof. Fix an index m, and denote with Im the augumentation ideal of W JΓ∞K associated to
the subgroup Gal(F∞/Fm). In particular we have

Im = lim←
n

IΓnm .

We also put
Ĩm = ΛF ⊗W JΓ∞K Im

for the corresponding ideal of ΛF. Now Proposition 2.3.10 yields Tp(Fm)(χ) = Nn
m (Tp(Fn)(χ)).

Applying the first homomorphism theorem and again Proposition 2.3.10 we also have that

Nn
m (Tp(Fn)(χ)) ' Tp(Fn)(χ)/kerNn

m = Tp(Fn)(χ)/IΓnmTp(Fn)(χ) ,

thus
Tp(Fm)(χ) ' Tp(Fn)(χ)/IΓnmTp(Fn)(χ) .

The previous equality holds for every n > m and so we have

Tp(Fm)(χ) ' Tp(F∞)(χ)/ImTp(F∞)(χ) = Tp(F∞)(χ)/ĨmTp(F∞)(χ) .

The module on the left is finitely generated over

W [Γm]JGFK = ΛF/Ĩm

and, since the ideals Ĩm form an open filtration of the profinite algebra ΛF, we can apply the
generalized Nakayama Lemma (see [BH]) and obtain that Tp(F∞)(χ) is a finitely generated
module over ΛF.
Now we define the element Θ]

∞(γ−1, χ) ∈ ΛF as

Θ]
∞(γ−1, χ) =


Θ∞(γ−1, χ) if χ is of type 1 ,

Θ∞(γ−1, χ)

1− γ−1
if χ is of type 2 ,
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which is simply the inverse limit of the generators of the Fitting ideals of Tp(Fm)(χ) over

W [Γm]JGFK (computed in Theorem 2.3.8). At the finite level we have Θ]
n(γ−1, χ)Tp(Fn)(χ) = 0

because the Fitting ideal of a module is contained in the annihilator. Taking the inverse limit of
the previous equalities we obtain Θ]

∞(γ−1, χ)Tp(F∞)(χ) = 0 and so Tp(F∞)(χ) is torsion.

Now that we have proved that the module Tp(F∞)(χ) is a finitely generated torsion module
over ΛF, we know that its Fitting ideal is well defined. With our second main theorem we
compute a generator of that ideal via an inverse limit process.

Theorem 2.3.12. Let χ be a character of type 1 or 2. Then we have

FittΛF (Tp(F∞)(χ)) =
(

Θ]
∞(γ−1, χ)

)
.

Proof. From the equality(
Θ]
∞(γ−1, χ)

)
= lim←

n

(
Θ]
n(γ−1, χ)

)
= lim←

n

FittW [Γn]JGFK (Tp(Fn)(χ))

we reduce the proof to showing the equality

FittΛF (Tp(F∞)(χ)) = lim←
n

FittW [Γn]JGFK (Tp(Fn)(χ))

We denote with N∞m the projection Tp(F∞)(χ) � Tp(Fm)(χ). These maps are obviously com-
patible with the norm maps, in the sense that N∞m = Nn

m ◦N∞n . Let t1, . . . , tr be generators of
Tp(F∞)(χ) over ΛF, then we have thatN∞m (t1), . . . , N∞m (tr) generate Tp(Fm)(χ) overW [Γm]JGFK,
since Tp(Fm)(χ) = Tp(F∞)(χ)/ĨmTp(F∞)(χ).
Then for every integer n we have the following exact sequence

0→ Kn −→W [Γn]JGFK⊕r −→ Tp(Fn)(χ)→ 0

where the map on the right is given by (w1, . . . , wr) 7→
∑

iwiN
∞
n (ti). We also have the exact

sequence at the infinite level

0→ K∞ −→ Λ⊕rF −→ Tp(F∞)(χ)→ 0 .

The previous exact sequences fits into the diagram

0 // Kn
//

knm

��

W [Γn]JGFK⊕r //

πnm

��

Tp(Fn)(χ) //

Nn
m

��

0

0 // Km
//W [Γm]JGFK⊕r // Tp(Fm)(χ) // 0

where knm denotes the restriction of the projection πnm to the kernel Kn. The kernel of πnm is
(IΓnmW [Γn]JGFK)⊕r, while the kernel of Nn

m is IΓnmTp(Fn)(χ) due to Proposition 2.3.10 and so
the map between these two kernels is surjective. The map πnm is clearly surjective thus, by
the snake lemma, we have that knm is also surjective and so the previous diagram satisfies the
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Mittag-Leffler condition which allows us to take the inverse limit. Comparing this limit with
the exact sequence at level infinity we obtain that

K∞ = lim←
n

Kn.

We denote with Mr×r(Km) the set of r × r matrices whose entries are in W [Γm]JGFK and
such that each row, seen as a vector in W [Γm]JGFK⊕r, is in Km and with knm the natural
extension of the map Kn → Km to Mr×r(Kn) → Mr×r(Km). From the surjectivity of the
first map we clearly have that also the extension is surjective. From the definition we have that
FittW [Γm]JGFK (Tp(Fm)(χ)) is the ideal generated by all detMm, with Mm ∈ Mr×r(Km). Note
that, since the diagram above is commutative, we have that for each Mm

πnm (detMn) = det (knm(Mn)) .

In what follows we will use the same notation also for the infinite level.
Now if we take M∞ ∈ Mr×r(K∞) we have that π∞m (detM∞) ∈ FittW [Γm]JGFK (Tp(Fm)(χ)) and
so π∞m (FittΛF (Tp(F∞)(χ))) ⊆ FittW [Γm]JGFK (Tp(Fm)(χ)). Since this is true for each index m we
have that

FittΛF (Tp(F∞)(χ)) ⊆ lim←
m

FittW [Γm]JGFK (Tp(Fm)(χ)) .

For the other inclusion we need a little bit more work and, in particular, we have to deal with
some topological properties of the rings W [Γm]JGFK. Essentially we will follow the arguments
of [GK, Theorem 2.1].
Each element of FittW [Γm]JGFK (Tp(Fm)(χ)) may be written as a linear combination

xm =

s∑
i=1

λi detM (i)
m (2.9)

with λi ∈ W [Γm]JGFK and M
(i)
m ∈ Mr×r(Km). If we denote with M

(i)
m the matrix whose first

row is equal to the first row of M
(i)
m multiplied by λi and whose other rows are all equal to the

corresponding row of M
(i)
m we have that M

(i)
m is in Mr×r(Km) and that detM

(i)
m = λidetM

(i)
m

and so it is not restrictive to assume that all the coefficients λi in the linear combination (2.9)
are equal to 1. One can also show that the number s of the terms in that sum may be chosen
independently from m: this follows easly from the fact that also the number of elements needed
to generate Tp(Fm)(χ) (and Tp(F∞)(χ)) can be chosen independently from m.
Now we put Bm := Mr×r(Km)⊕s and define the non-linear operator φm : Bm → W [Γm]JGFK,
by φm

(
M

(1)
m , . . . ,M

(s)
m

)
=
∑

i detM
(i)
m (as usual we define also an operator φ∞ for the infinite

level). This operator is clearly continuous because of the continuity of the determinant (on Bm
we put the natural topology induced from W [Γm]JGFK). From what we have observed we have
that the image of φm is exactly the Fitting ideal of Tp(Fm)(χ). The map knm which we have
previously extended to Mr×r(Kn) can also be extended to Bn and this extension fits into the
diagram

Bn
φn //

knm
��

W [Γn]JGFK

πnm
��

Bm
φm
//W [Γm]JGFK .
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Now take a sequence (xm)m∈N ∈ lim
←−

FittW [Γm]JGFK (Tp(Fm)(χ)), to prove the thesis we have to

show that there exists an element b∞ ∈ B∞ such that φ∞(b∞) = (xm)m∈N.
For each integer m we put Ωm = φ−1

m (xm). The topological ring W [Γm]JGFK is a Hausdorff
space, thus finite sets are closed and, from the continuity of φm, we have that also Ωm is closed.
Furthermore, since Bm is compact (because W [Γm]JGFK is compact) and Ωm is contained in the
direct sum of s · r2 copies of W [Γm]JGFK, we get that also Ωm is compact. For each ωn ∈ Ωn we
have that

φm (knm(ωn)) = πnm (φn(ωn)) = πnm(xn) = xm

thus the image of Ωn under knm is contained in Ωm. This allows us to define a new set

Ωm =
⋂
n>m

knm(Ωn) ⊂ Ωm.

From the compactness of Ωn and the continuity of knm we deduce that the set Ωm is not empty
and it is also compact. Clearly the image of Ωn under the map knm is contained in Ωm, but we
will now prove that it is exactly Ωm. Take an element ωm ∈ Ωm. From the definition we have
that there exists, for each n > m, an element ωn ∈ Ωn such that knm(ωn) = ωm. Now fix a
positive index h and for n > m+ h consider knm+h(ωn) ∈ Ωm+h as a sequence in n. Since Ωm+h

is compact we have that it admits a convergent subsequence. We denote with ωm+h the limit
of this subsequence, thus for each integer n > m we have defined an element ωn ∈ Ωn. Then we
have

knm+h(ωn) = knm+h

 lim
t→∞

t in the subsequence

ktn(ωt)


= lim

t→∞
t in the subsequence

(
knm+h ◦ ktn(ωt)

)
= lim

t→∞
t in the subsequence

(
ktm+h(ωt)

)
= ωm+h .

The previous equality shows us that ωm+h is in Ωm+h and, since ωm = km+h
m (ωm+h), we have

proved the surjectivity of the map km+h
m . But we have also proved that the sequence ωm is

coherent and, since φm(ωm) = xm for each integer m we have that ω∞ := lim
←−

ωm is in B∞ and

φ∞(ω∞) = (xm)m∈N .

2.4 Fitting ideals for the class groups

In this section we will investigate the p-part of the class groups of degree zero divisors of the
fields Fn in the Iwasawa tower and their inverse limit. As in the previous section we shall see
the inverse limit as a module over the non-Noetherian Iwasawa algebra Λ := W JΓK (which is the
quotient of the algebra ΛF with respect to the augumentation ideal of GF), we will prove that it
is finitely generated and torsion and we will compute its Fitting ideal as a limit of the Fitting
ideals at the finite levels.
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2.4.1 Fitting ideals for the class groups: finite level

Let Cn := Cl0(Fn){p} be the p-torsion of the class groups of degree zero divisors of Fn. In
particular the natural action of Γn makes it a module over the commutative ring Zp[Γn]. Since
Cn is finite its Fitting ideal over Zp[Γn] is well defined. Using the computation done for Tp(Fn)(χ)
we will be able to compute also the χ-part of the Fitting ideal of W ⊗Zp Cn over W [Γn].

Denote with Tp(Fn)GF the quotient Tp(Fn)/(1−γ−1)Tp(Fn). Note that the ideal (1−γ−1) of
Zp[Γn]JGFK is the augumentation ideal of GF (recall that GF is pro-cyclic and γ is the arithmetic
Frobenius, which is a topological generator) and so the action of GF on Tp(Fn)GF is trivial.

Lemma 2.4.1. The module Tp(Fn)GF is isomorphic to Cn as module over Zp[Gn].

Proof. The proof of this lemma will be achieved by applying certain functors to some well known
exact sequences.
We start with the classical sequence

0→ Zp → Qp → Qp/Zp → 0

and apply the contravariant funtor Hom(∗, Cn) to obtain

→ Hom(Qp, Cn)→ Hom(Zp, Cn)→ Ext1(Qp/Zp, Cn)→ Ext1(Qp, Cn)→ .

Since Qp is a field and Cn is finite we have that Hom(Qp, Cn) = Ext1(Qp, Cn) = 0 and so

Cn ' Hom(Zp, Cn) ' Ext1(Qp/Zp, Cn). (2.10)

We recall that Cn is the p-part of the class group of degree zero divisors of F arn , which satisfies
the equality Tp(Fn) = Hom(Qp/Zp, Cn). If we consider the multiplication by 1− γ−1 on Cn we
have the following exact sequence (where surjectivity on the right is due to Lang’s Theorem,
see, for example, [Ser, Chapter VI, §4]):

0 // Cn // Cn
1−γ−1

// Cn // 0.

If we apply the functor Hom(Qp/Zp, ∗) to the previus sequence we get

// Hom(Qp/Zp, Cn) // Tp(Fn)
1−γ−1

// Tp(Fn) // Ext1(Qp/Zp, Cn)

��
Ext1(Qp/Zp, Cn).

The group Cn is a finite p-group thus Hom(Qp/Zp, Cn) = 0 and since the costant field of F arn
is algebrically closed we have that Cn is divisible hence Ext1(Qp/Zp, Cn) = 0. From the last
sequence we get

Ext1(Qp/Zp, Cn) ' Tp(Fn)/(1− γ−1)Tp(Fn)

and combining this with (2.10) we obtain the thesis.

As we have previously anticipated we want to use our computation of the Fitting ideal of
Tp(Fn)(χ), which is a module over W [Γn]JGFK, to compute the Fitting ideal of Cn(χ), which is
a module over W [Γn]. To do this we need the following general result on Fitting ideals.
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Lemma 2.4.2. Let R be any unitary ring and M a finitely generated torsion module over R.
Let I be any non trivial ideal of R and denote with π the canonical projection R� R/I. Then
we have

FittR/I (M/IM) = π (FittR(M)) .

Proof. Let m1,m2, . . . ,mr be a set of generators of M . Clearly the image mh of the elements mh

under the canonical projection M � M/IM is a set of generators of M/IM as a R/I-module
and so any relation between the generators of M determines a relation between the generators
of M/IM . Thus

π (FittR(M)) ⊆ FittR/I (M/IM) .

To prove the other inclusion we fix a relation between the generators of M/IM and prove that
it comes from a relation between the generators of M , i.e., let a1, a2, . . . , ar ∈ R be such that

r∑
h=1

π(ah)mh = 0 (in M/IM),

then
∑

h ahmh ∈ IM and so there exist i1, i2, . . . , ir ∈ I such that

r∑
h=1

ahmh =

r∑
h=1

ihmh.

From the previous equality we deduce that the coefficients bh := ah−ih forms a relation between
the generators mh of M and we also have that this relation induces the original one between
the generators of M/IM since π(bh) = π(ah). Thus we have proved the inclusion

FittR/I (M/IM) ⊆ π (FittR(M)) .

Now we are ready to compute the Fitting ideal of Cn(χ). Let π : W [Γn]JGFK→W [Γn] be the
map that sends γ 7→ 1, since W [Γn] = W [Γn]JGFK/IGF we have that this map is the canonical
projection. Thus, combining Lemma 2.4.1, Lemma 2.4.2 and the computations of Theorem 2.3.8
we obtain

Theorem 2.4.3. Let χ ∈ Ĝ0 be a character not of type 3. Then we have

FittW [Γn] (Cn(χ)) =
(

Θ]
n(1, χ)

)
,

where

Θ]
n(1, χ) =


Θn(1, χ) if χ is of type 1 ,

Θn(γ−1, χ)

1− γ−1 ∣∣γ=1

if χ is of type 2 .
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2.4.2 Fitting ideals for the class groups: infinite level

Now we consider the fields Fn for different indices n. Let

C∞ := lim←
n

Cn

where the limit is made with respect to the norm maps Nn
m : Cn → Cm with n > m ≥ 0. Since

every group Cn has an action of the Galois group Γn it turns out that C∞ has a structure of
module over

ZpJΓK := lim←
n

Zp[Γn].

We will also need to consider the maps imn : Cn → Cm which are the maps induced by the
immersions imn : Div(Fm) ↪→ Div(Fn) with n > m ≥ 0. We recall that for a divisor D =

∑
ν nνν

of Fm we have imn (D) :=
∑

ν

∑
w|ν e(w|ν)w, where e(w|ν) is the ramification index of w over ν.

In particular one can see from the Kummer formula that deg (imn (D)) = [Fn : Fm] ·deg(D), thus
the image of a degree zero divisor by the map imn still has degree zero. We also observe that the
image of Div(Fm) by imn is contained in the subset of Γnm-invariant elements of Div(Fn).
The following proposition gives us some information about the injectivity and surjectivity of the
maps N and i on the class groups.

Proposition 2.4.4. Let F0 ⊆ K ⊂ E ⊂ F∞ with E/F0 a finite extension.

(a) The norm map NE
K : Cl0(E)→ Cl0(K) is surjective.

(b) The map iEK : Cl0(K)→ Cl0(E) is injective.

Proof. (a) Fix a prime ν of K which lies above ∞ and let B be the ring of elements regular
outside ν. As we have observed in Section 2.2.1 the prime at infinity does not have inertia
in F∞/F and so the degree of ν is equal to 1. This implies that Cl(B) ' Cl0(K).
Let C be the integral closure of B in E: there is a natural map Cl0(E)→ Cl(C) which is
surjective because the extension E/K is totally split at ν and so, again, every prime of E
which lies above ν has degree equal to one. So we are in the following setting:

Cl0(E)� Cl(C)→ Cl(B) ' Cl0(K),

where the map Cl(C) → Cl(B) is the natural norm map. To complete the proof we will
have to show that this map is surjective.
Let H(B) (resp. H(C)) be the Hilbert class field, i.e, the maximal abelian extension of
K (resp. E) which is unramified everywhere and totally split at ν (resp. at the prime of
E which lies above ν). By class field theory we have the isomorphisms Gal(H(B)/K) '
Cl(B) and Gal(H(C)/E) ' Cl(C) induced by the Artin map. Now we observe that the
two fields E and H(B) are disjoint over K because E/K is totally ramified at every prime
of K which lies above p and H(B)/K is unramified at every prime, thus we have the
canonical isomorphism Gal(EH(B)/E) ' Gal(H(B)/K).
The restriction map

Res : Gal (H(C)/E)� Gal (EH(B)/E) ' Gal (H(B)/K)
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fits into the following commutative diagram (from class field theory)

Cl(C)
' //

N
��

Gal (H(C)/E)

Res
��

Cl(B)
' // Gal (H(B)/K)

and so the surjectivity is proved.

(b) Let G := Gal(E/K) and for every field L we denote with PL the set of principal divisors
of L. Taking the G-cohomology in the exact sequence

0 // F×q // E× // PE // 0 (2.11)

we obtain

0 // F×q // K× // PGE // H1(G,F×q ) // H1(G,E×) //

// H1(G,PE) // H2(G,F×q ).

From Hilbert 90 we have that H1(G,E×) = 0 and, since G is a p-group we also have that
H i(G,F×q ) for every i ≥ 1, thus H1(G,PE) = 0 and the following exact sequence holds

0 // F×q // K× // PGE // 0 .

If we compare this last sequence with the analogue of (2.11) for the field K we have that
PGE = PK .
Taking the G-cohomology in

0 // PE // Div0(E) // Cl0(E) // 0 .

we obtain

0 // PGE = PK // Div0(E)G // Cl0(E)G // H1(G,PE) = 0 ,

which fits into the following commutative diagram

0 // PK // Div0(K) //
� _

��

Cl0(K) //

iEK
��

0

0 // PK // Div0(E)G // Cl0(E)G // 0.

(2.12)

Applying the snake lemma we obtain the thesis.

From diagram (2.12) we also deduce that

Cl0(E)G/iEK
(
Cl0(K)

)
' Div0(E)G/iEK

(
Div0(K)

)
(2.13)

Now we take a character χ of G0. Before computing the limit of the class groups we have to
study the kernel of the norm map NE

K(χ) : Cl0(E)(χ) → Cl0(K)(χ) for the intermediate finite
extensions E/K.
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Lemma 2.4.5. Let F0 ⊆ K ⊂ E ⊂ F∞ with E/F0 a finite extension and let G := Gal(E/K).
Assume that |G| = p. Then the group ∆ := Gal(F0/HA) acts trivially on Cl0(E)G/iEK

(
Cl0(K)

)
.

Proof. As we have already observed in (2.13) we have the isomorphism

Cl0(E)G/iEK
(
Cl0(K)

)
' Div0(E)G/iEK

(
Div0(K)

)
.

If we consider the two maps

Div0(E)G ↪→ Div(E)G � Div(E)G/iEK (Div(K))

we have that the kernel of the composition of this two maps is Div0(E)G ∩ iEK (Div(K)) =
iEK
(
Div0(K)

)
and so there is an injection

Div0(E)G/iEK
(
Div0(K)

)
↪→ Div(E)G/iEK (Div(K)) .

Thus it is enough to show that ∆ acts trivially on Div(E)G/iEK (Div(K)).
Let p1, . . . , ps be the set of primes of K which lie above p and P1, . . . ,Ps the set of primes of
E which lie above p. We recall that the extension E/K is totally ramified at p and so we can
assume for every j = 1, . . . , s that Pj is the unique prime of E which lies over pj , moreover the
only extension where the prime p (may) split is HA/F and so s divides h0(F ), i.e., is coprime
with p. In particular we have that

iEK(pj) = pPj .

Now we prove that the group Div(E)G/iEK (Div(K)) is isomorphic to the sum of s copies of
Z/p and that a set of generators is

{
Pj + iEK (Div(K))

}
j=1,...,s

. We can write Div(K) =
⊕

ν Zν
(where ν runs through all the primes of K) and Div(E) =

⊕
ν Hν , with Hν =

⊕
w|ν Zw (where

w runs through the set of primes of E which lie above ν). Now for the ramified primes we have
Hpj = ZPj = HG

pj and for the unramified primes, if we denote with Gν the decomposition group

of ν in G, we have that Hν = Z[G/Gν ]w and so HG
ν = iEK (Zν). We have proved that

Div(E)G =

s⊕
j=1

ZPj ⊕
⊕
ν 6=pj

iEK (Zν)

and

iEK (Div(K)) =

s⊕
j=1

pZPj ⊕
⊕
ν 6=pj

iEK (Zν)

thus

Div(E)G/iEK (Div(K)) =

s⊕
j=1

(Z/p)Pj .

Now we observe that if we take a set of integers α1, . . . , αs each of them coprime with p, we
have that also the set

{
αjPj + iEK (Div(K))

}
j=1,...,s

generates Div(E)G/iEK (Div(K)): indeed for
each index j, by the Bezout identity, we have that there exist two integers m and n such that
nαj = 1 +mp and so

n
(
αjPj + iEK (Div(K))

)
= Pj +mpPj + iEK (Div(K))

= Pj +miEK(pj) + iEK (Div(K))
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= Pj + iEK (Div(K)) .

Now we consider the field E∆ (resp. K∆) which is the subfield of E (resp. K) fixed by the
elements of ∆. Since ∆ is a subgroup of G0 (with cardinality coprime with p) there is a canonical
isomorphism G∆ := Gal(E∆/K∆) ∼= G and since the extension F0/HA is totally ramified at the
primes above p we have that there are exactly s primes in E∆ (resp. K∆) above p.
We denote with P∆

j (resp. p∆
j ) the unique prime of E∆ (resp. K∆) which lies below Pj (resp.

pj).

As above we can prove that the group Div(E∆)G
∆
/iE

∆

K∆

(
Div(K∆)

)
is isomorphic to the sum

of s copies of Z/p and that a set of generators is
{
P∆
j + iE

∆

K∆

(
Div(K∆)

)}
j=1,...,s

. To conclude

we observe that iE
E∆(P∆

j ) = |∆|Pj and, since |∆| is coprime with p, the image of these classes

under the map iE
E∆ is a set of generators for Div(E)G/iEK (Div(K)) and clearly the action of ∆

on this classes is trivial.

We use the previuos lemma to prove:

Proposition 2.4.6. Let F0 ⊆ K ⊂ E ⊂ F∞ with E/F0 a finite extension and let G :=
Gal(E/K). Then for χ of type 1 or 2 we have

ker
(
NE
K

)
(χ) = IGCl

0(E)(χ)

where IG denotes the augumentation of G.

Proof. We will proceed by induction on |G|. We need to consider two basic cases: for |G| = 1
both members of the equality are zero and so there is nothing to prove.
For |G| = p we have that χ may be seen as a non trivial character of ∆ = Gal(F0/HA)
because it is of type 1 or 2 and, by the previous lemma, we have that ∆ acts trivially on
Cl0(E)G/iEK

(
Cl0(K)

)
, thus we have(

Cl0(E)G/iEK
(
Cl0(K)

))
(χ) = 0,

i.e., Cl0(E)G(χ) = iEK
(
Cl0(K)

)
(χ). The group G is cyclic and we denote with g a fixed

generator, thus IGCl
0(E)(χ) = (g − 1)Cl0(E)(χ). We also recall the well known isomorphism

IGCl
0(E)(χ) ' Cl0(E)(χ)/Cl0(E)G(χ). Then we have the following two sequences:

0 // ker
(
NE
K(χ)

)
// Cl0(E)(χ)

NE
K // Cl0(K)(χ) // 0,

0 // Cl0(K)(χ)
iEK // Cl0(E)(χ)

1−g // IGCl
0(E)(χ) // 0.

The first one is exact because of the surjectivity of the norm (Proposition 2.4.4, part (a)), the
second one is exact because of what we have previously observed. Comparing the cardinalities
of the groups in the two sequences we deduce that |ker

(
NE
K

)
(χ)| = |IGCl0(E)(χ)|, but since

IGCl
0(E)(χ) ⊆ ker

(
NE
K

)
(χ), we have the equality between them.

For the inductive step we can now assume |G| = pl > p, thus we can take an intermediate
field K $ E′ $ E and let G1 = Gal(E/E′) and G2 = Gal(E′/K) with both G1 and G2 with
cardinality strictly smaller than G. Then by the inductive hypothesis we have

ker
(
NE
E′
)

(χ) = IG1Cl
0(E)(χ)
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and
ker
(
NE′
K

)
(χ) = IG2Cl

0(E′)(χ).

From Proposition 2.4.4, part (a), we have that NE
E′ : Cl0(E)(χ)→ Cl0(E′)(χ) is surjective and

so
NE
E′
(
IGCl

0(E)(χ)
)

= IG2Cl
0(E′)(χ).

If we take x ∈ ker
(
NE
K

)
(χ) since NE

K = NE′
K ◦ NE

E′ we have that NE
E′(x) ∈ ker

(
NE′
K

)
(χ) =

IG2Cl
0(E′)(χ), thus there exists g ∈ IG and y ∈ Cl0(E)(χ) such that NE

E′(x) = NE
E′(gy). This

is equivalent to x− gy ∈ ker
(
NE
E′
)

(χ) and so

x ∈ ker
(
NE
E′
)

(χ) + IGCl
0(E)(χ) = IGCl

0(E)(χ),

since ker
(
NE
E′
)

(χ) = IG1Cl
0(E)(χ) ⊆ IGCl0(E)(χ). We have proved that

ker
(
NE
K

)
(χ) ⊆ IGCl0(E)(χ).

The other inclusion is trivial.

Now following the proof of Theorem 2.3.11 we can finally prove:

Theorem 2.4.7. Let χ be a character of type 1 or 2. Then C∞(χ) is a finitely generated torsion
Λ-module.

Proof. We recall that for every index m we have denoted with Im the augumentation ideal of
W JΓ∞K associated to the subgroup Gal(F∞/Fm) which is the inverse limit of the augumentation
ideals IΓnm .
From Proposition 2.4.4 part (a) we have Cm(χ) = Nn

m (Cn(χ)) and from Proposition 2.4.6 we
deduce

Nn
m (Cn(χ)) ' Cn(χ)/kerNn

m = Cn(χ)/IΓnmCn(χ) ,

thus
Cm(χ) ' Cn(χ)/IΓnmCn(χ) .

The previous equality holds for every n > m and so we have

Cm(χ) ' C∞(χ)/ImC∞(χ) .

The module on the left is finite and, in particular, finitely generated over

W [Γm] = Λ/Im.

The ideals Im form an open filtration of the Iwasawa algebra Λ, thus we can deduce that C∞(χ)
is a finitely generated module over Λ because of the generalized Nakayama Lemma ([BH]).

To show that C∞(χ) is also torsion we define the element Θ]
∞(1, χ) ∈ Λ as

Θ]
∞(1, χ) =


Θ∞(1, χ) if χ is of type 1 ,

Θ∞(γ−1, χ)

1− γ−1 ∣∣γ=1

if χ is of type 2 ,
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which is simply the inverse limit of the elements Θ]
n(1, χ) which generate the Fitting ideals of

the various modules Cm(χ) over W [Γm] (Theorem 2.4.3).

Now it is easy to see that Θ]
∞(1, χ)C∞(χ) = 0, since Θ]

n(1, χ)Cn(χ) = 0 for every n, and so
C∞(χ) is a torsion Λ-module.

Now we can prove the main conjecture. The reader may see that the arguments of the proof
are similar to the ones of Theorem 2.3.12, indeed this is a consequence of the surjectivity of the
norm maps and of the computations on the kernels.

Theorem 2.4.8 (Main Conjecture). Let χ be a character of type 1 or 2. Then we have

FittΛ (C∞(χ)) =
(

Θ]
∞(1, χ)

)
.

Proof. The equality (
Θ]
∞(1, χ)

)
= lim←

n

(
Θ]
n(1, χ)

)
= lim←

n

FittW [Γn] (Cn(χ))

reduce the proof to proving that

FittΛ (C∞(χ)) = lim←
n

FittW [Γn] (Cn(χ)) .

We denote with N∞m the projection C∞(χ) � Cm(χ) and with t1, . . . , tr a fixed set of gen-
erators of C∞(χ) over Λ. From the equality Cm(χ) = C∞(χ)/ImC∞(χ) we deduce that
N∞m (t1), . . . , N∞m (tr) generate Cm(χ) over W [Γm].
For every integer n we have the following exact sequence

0→ Kn −→W [Γn]⊕r −→ Cn(χ)→ 0

where the map on the right is given by (w1, . . . , wr) 7→
∑

iwiN
∞
n (ti), which holds also at the

infinite level
0→ K∞ −→ Λ⊕r −→ C∞(χ)→ 0

and which fits into the diagram

0 // Kn
//

knm

��

W [Γn]⊕r //

πnm

��

Cn(χ) //

Nn
m

��

0

0 // Km
//W [Γm]⊕r // Cm(χ) // 0 .

As usual knm denotes the restriction of the projection πnm to the kernel Kn. The kernel of πnm
is (IΓnmW [Γn])⊕r, while the kernel of Nn

m is IΓnmCn(χ) due to Proposition 2.4.6 and so the map
between these two kernels is surjective. The map πnm is surjective thus, by the snake lemma, we
have that knm is also surjective and so the previous diagram satisfies the Mittag-Leffler condition
which allows us to take the inverse limit. Comparing this limit with the exact sequence at level
infinity we obtain that

K∞ = lim←
n

Kn.

Now, to conclude the proof, the reader may follow the same technical arguments of the second
part of the proof of Theorem 2.3.12.
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Now using this Main Conjecture and the theorems of Chapter 1 on the Goss Zeta function
and on the ν-adic Zeta function we expect to find some correlation between the Fitting ideal of
C∞ and the special values of the Zeta functions.

2.5 The characters of type 3

In this section we give a look at the χ-part of the modules Cn and Tp(Fn) when χ is a character
of type 3. Note that the trivial character χ0 is one of these characters. Unlike the case of
characters of type 1 and 2 we will not be able to obtain results directly on these modules, but
we have to deal with their duals (Zp-duals and Pontrjagin duals). At the end of the section we
will also focus on the problems that occur when we try to define the projective limits of these
modules.

Throughout this section we will denote with χ a character of type 3, which may be identified
canonically with a character of the Picard group ∆ = Gal(HA/F ) ' Pic(A). For every G0-
module M we denote with M∗ := HomZp(M,Zp) the Zp-dual of M . Note that when we consider
the scalar extension we have M∗ ⊗Zp W = HomW (M ⊗Zp W,W ).
From our computations (2.1) and (2.4) we have that for type 3 characters:

Hn(∞)(χ) = W [Γn] and Hn(p)(χ) = W JGFK/
(

1− χ(Fr−1
p )γ−dp

)
(2.14)

where Frp ∈ ∆ is the Artin symbol of the prime p.
We denote, as usual, with Dn the kernel of the degree map

deg : Hn(∞)⊕Hn(p)→ Zp.

Then we have that if χ is different from the trivial character χ0

Dn(χ) 'W [Γn]⊕W JGFK/
(

1− χ(Fr−1
p )γ−dp

)
, (2.15)

since there is no action of ∆ on Zp and so Zp(χ) = 0.
For the trivial character χ = χ0 we first need to consider the degree map on the submodule

Hn(p)(χ0). We denote with Dn,p(χ0) the kernel of this map and define

Dn,p(χ0)⊕Hn(∞)(χ0)→ Hn(p)(χ0)⊕Hn(∞)(χ0)

(x, y) 7→ (x− deg y · 1 , y) ,

where 1 is the element which corresponds to the unity under the isomorphism Hn(p)(χ0) '
W JGFK/

(
1− γ−dp

)
. Clearly this map is injective and its image is contained in Dn(χ0), but one

can easily see that this map is also onto Dn(χ0) with inverse the map

Dn(χ0)→ Dn,p(χ0)⊕Hn(∞)(χ0)

(x, y) 7→ (x+ deg y · 1 , y) .

We have shown that
Dn(χ0) ' Dn,p(χ0)⊕Hn(∞)(χ0) .

Now we compute Dn,p(χ0): since the primes of F arn which lie above p have all degree 1 and the
action of γ (and also γ−1) simply permutes these primes, we have that γ does not change the
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degree of an element, i.e., deg (γ−1x) = degx for each element x ∈ Hn(p)(χ0). This implies
that (1 − γ−1)Hn(p)(χ0) is contained in Dn,p(χ0), but from the isomorphism Hn(p)(χ0) '
W JGFK/

(
1− γ−dp

)
we deduce that (1− γ−1)Hn(p)(χ0) is exactly Dn,p(χ0).

Thus we have proved that

Dn(χ) '


W [Γn]⊕W JGFK/

(
1− χ(Fr−1

p )γ−dp
)

if χ 6= χ0 ,

W [Γn]⊕W JGFK/
(

1−γ−dp
1−γ−1

)
if χ = χ0 .

(2.16)

Now we want to give a resolution of Dn(χ) as a module over W [Γn]JGFK. First we start
considering the case χ 6= χ0. We denote with n(Γn) ∈W [Γn]JGFK the element

n(Γn) =
∑
σ∈Γn

σ .

It is easy to see that for each σ ∈ Γn we have (σ − 1)n(Γn) = 0. Now we denote with IΓn the
augumentation ideal of W [Γn]JGFK associated to Γn, i.e., the ideal generated by the elements
σ− 1, with σ ∈ Γn. From what we have just observed we have that the multiplication by n(Γn)
on the quotient W [Γn]JGFK/

(
1− χ(Fr−1

p )γ−dp
)

induces a map

Hn(p)(χ) = W [Γn]JGFK/
(
IΓn , 1− χ(Fr−1

p )γ−dp
)

n(Γn)−−−→W [Γn]JGFK/
(

1− χ(Fr−1
p )γ−dp

)
whose cokernel is W [Γn]JGFK/

(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)
. So we are in the following situation:

Hn(p)(χ)
n(Γn)−−−→W [Γn]JGFK/

(
1− χ(Fr−1

p )γ−dp
)
�W [Γn]JGFK/

(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)
.

(2.17)
We will show now that this sequence is exact, i.e., that the map of the left is injective. To do
this we observe that all the modules in the sequence are free over W and we count the ranks.
From (2.14) we have that the module on the left has rank dp. For the central module we have

W [Γn]JGFK/
(

1− χ(Fr−1
p )γ−dp

)
'
(
W JGFK/

(
1− χ(Fr−1

p )γ−dp
))

[Γn]

and so the rank is dp|Γn|. For the module on the right we have

W [Γn]JGFK/
(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)
' ((W [Γn]/n(Γn)) JGFK) /

(
1− χ(Fr−1

p )γ−dp
)

whose rank is
dp(|Γn| − |Γn/Γn|) = dp|Γn| − dp.

Thus we have proved that (2.17) is exact.
Now simply recalling that

Hn(∞)(χ) = W [Γn] 'W [Γn]JGFK/(1− γ−1)

we obtain the following resolution for Dn(χ)

0 // Dn(χ) //W [Γn]JGFK/(1− γ−1)⊕W [Γn]JGFK/
(
1− χ(Fr−1

p )γ−dp
)

//

//W [Γn]JGFK/
(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)

// 0.

(2.18)
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Proceeding in a similar way for the trivial character, and using the computation done for
Dn(χ0) one obtains the resolution

Dn(χ0) ↪→W [Γn]JGFK/(1− γ−1)⊕W [Γn]JGFK/ (vp)�W [Γn]JGFK/ (n(Γn) , vp) , (2.19)

where we have put vp := (1− γ−dp)/(1− γ−1).
Taking the χ-part in the exact sequence [GP1, after Definition 2.6] one obtains

Tp(Fn)(χ) ↪→ Tp(Mn)(χ)� Dn(χ)

which can be joined with (2.18), to obtain

Tp(Fn)(χ) �
� // Tp(Mn)(χ) //W [Γn]JGFK/(1− γ−1)⊕W [Γn]JGFK/

(
1− χ(Fr−1

p )γ−dp
)

����
W [Γn]JGFK/

(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)

for χ 6= χ0. All the four modules in the previous sequence are free and finitely generated over
W (and so also over Zp). The module Tp(Mn)(χ) has projective dimension 1 over W [Γn]JGFK
because of [GP1, Theorem 3.9] and the same is trivially true also for the third module. This
allows us to apply [GP2, Lemma 2.4] and obtain

(1− γ−1)
(

1− χ(Fr−1
p )γ−dp

)
FittW [Γn]JGFKTp(Fn)(χ)∗ = Θn(γ−1, χ) ·

(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)
.

(2.20)
Proceeding in a similar way for the trivial character and using the resolution of Dn(χ0) above,
we obtain

(1− γ−dp)FittW [Γn]JGFKTp(Fn)(χ0)∗ = Θn(γ−1, χ0) · (n(Γn) , vp) . (2.21)

Now we focus a little bit more on equation (2.20): consider the natural projection π : W [Γn]JGFK→
W [Γn] which maps γ to 1. If Frp lies in the kernel of the character χ, i.e., the character is triv-
ial on the decomposition group of p, the left hand side of the equality has a zero of order
(at least) 2 when evaluated at γ = 1 and the ideal

(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)

becomes princi-
pal and generated by the non zero element n(Γn), thus the Stickelberger series Θn(X,χ) has
a zero of order at least 2 in X = 1. If Frp does not belong to the kernel of χ, then the ideal(
n(Γn) , 1− χ(Fr−1

p )γ−dp
)

does not become principal (in general) when projected to W [Γn]. Sim-
ilar consideration allows us to conclude that the Stickelberger series has a zero at X = 1, but in
this case we cannot say that the order is greater than one.
The same consideration applied to equation (2.21) lead us to conclude that also the Stickelberger
series Θn(X,χ0) has a zero at X = 1, of order at least 1. Thus if we put

Θ]
n(γ−1, χ) =


Θn(γ−1,χ)
(1−γ−1)2 if Frp ∈ kerχ and χ 6= χ0 ,

Θn(γ−1, χ)

1− γ−1
otherwise ,

we have
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Theorem 2.5.1. Let χ ∈ Ĝ0 be a character of type 3. Then we have

FittWnJGFKTp(Fn)(χ)∗ =



Θ]
n(γ−1, χ) ·

(
n(Γn)

1−χ(Fr−1
p )γ−dp

, 1

)
if Frp 6∈ kerχ ,

Θ]
n(γ−1, χ) ·

(
n(Γn)

1+γ−1+···+γ−dp+1 , 1− γ−1
)

if Frp ∈ kerχ and χ 6= χ0 ,

Θ]
n(γ−1, χ0) ·

(
n(Γn)

1+γ−1+···+γ−dp+1 , 1
)

if χ = χ0 .

Now we move to the study of the class group of Fn as a module over W [Γn]. In the beginning
of [GP2, Section 3] it is shown that

C∨n ' Tp(Fn)∗/(1− γ−1)Tp(Fn)∗,

where C∨n = Hom(Cn,Qp/Zp) is the Pontrjagin dual of Cn. Thus we can now apply Lemma
2.4.2 to obtain

FittW [Γn]Cn(χ)∨ = π
(
FittW [Γn]JGFKTp(Fn)(χ)∗

)
,

where π : W [Γn]JGFK→W [Γn] is the map which sends γ to 1. Then we have

Theorem 2.5.2. Let χ ∈ G0 be a character of type 3. Then we have

FittW [Γn]Cn(χ)∨ =



Θ]
n(1, χ) ·

(
n(Γn)

1−χ(Fr−1
p )

, 1

)
if Frp 6∈ kerχ ,

Θ]
n(1, χ) ·

(
n(Γn)
dp

)
if Frp ∈ kerχ and χ 6= χ0 ,

Θ]
n(1, χ0) ·

(
n(Γn)
dp

, 1
)

if χ = χ0 .

Remark 2.5.3. We would like to point out some particular cases: if the decomposition group
of the prime p is contained is the kernel of the non trivial character χ, then the Fitting ideal of
Cn(χ)∨ is principal as we see from the previous theorem.
Another interesting case is when the degree of the prime p is coprime with p. In this case the

degree dp is invertible in Zp and so the fractional ideal
(
n(Γn)
dp

, 1
)

actually is an integral ideal,

which has 1 as one of its generators. Thus in this case the Fitting ideal of Cn(χ0)∨ is principal

and it is generated by Θ]
n(1, χ0).

Now it would be interesting to proceed like for characters of type 1 and 2 and make some
kind of projective limits of the modules Tp(Fn)(χ)∗ and Cn(χ)∨ and study the Fitting ideal of
this limit. However at this point it is not clear which are the maps we have to consider to make
this limit: note that the natural norm maps Nn+m

n from Tp(Fn+m)(χ) to Tp(Fn)(χ) and from
Cn+m(χ) to Cn(χ) induce maps on the dual with the opposite direction, so it is not possible
to use them to make a projective limit. Another problem is that when considering the natural
projection πn+m

n : W [Γn+m]→W [Γn] we have that πn+m
n (n(Γn+m)) = |A/p|m · n(Γn), thus the

generators of the Fitting ideals of Cn(χ)∨ are not compatible with respect of this projection
map, and cannot be used to define an element in the algebra W JΓ∞K.
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