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Introduction

The principal objects of study of Number Theory in positive characteristic are the global function
fields, which are the natural analogues of the number fields. It is possible to associate to every
function field some invariants like, for example, the genus or the class number, that play an
important role in the study of the arithmetic properties. Even if these objects have an algebraic
nature many analytic tools have been introduced and studied in order to have information on
such invariants. For example we can mention the Weil Zeta function, the Artin L-functions and
the Goss Zeta function which all have an analytic nature (both in the classical and in the p-adic
setting). The goal of this thesis is to investigate some links between these families of objects
and provide theorems that build a bridge between the analytic side and the algebraic side of
the theory. In all these theorems an important role will be played by the Stickelberger Series
©s(X) which is an algebraic object, but it can be used to generate all sort of L-functions thus
providing a kind of “universal series” from which all analytic functions originate. In the second
part of this thesis we study the Iwasawa tower generated by the torsion of a Hayes module and
use the Stickelberger series to prove a main conjecture.

Let I be a global function field defined over a finite field F, of characteristic p, fix a prime
oo of F' and let A be the ring of elements regular outside of co. We take a finite set of primes S
containing co and we denote with Fg the maximal abelian extension of F' unramified outside S
and with Gg := Gal(Fs/F) its Galois group. The Stickelberger series of S is an element ©g(X)
in the power series algebra Z[Gs][X].

In Section 1.3 we study the relations between the Stickelberger series and the Artin L-function
L(s, x).

Let F denote the completion of F' at the prime oo, C, the completion of a fixed algebraic
closure of Fi, and S the topological group CX x Z,. In [Gos2] the author defines a function
Ca(s) over Sy that takes values in Co,, which represents the analogue in positive characteristic
of the Riemann Zeta function, by

Ca(s) = Za_s for s € Seo,

where the sum is taken over all the non zero ideals a of A.
For this function, which is called Goss Zeta function, we prove Theorem 1.6.4:

Theorem. For every y € Z,, there exists a continuous ring homomorphism V,, : Z[Gs][X] —
Coo[X], such that

U, (05(X)) (z) = Ca(—s) [] (1 —9*) for every x € CX,
pes
pFoo

where s = (x,Y) € Seo.
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There exists also a local version of the Goss Zeta function, which is called the v-adic Zeta
function ¢, (s,) and that takes value in the complete and algebraically closed field C,, (here v is
a prime of F' different from oo). For this function, Theorem 1.8.4 provides a connection with
the Stickelberger series:

Theorem. Assume thatv € S. Then for everyy € Z, and j € Z/|F,;|, there exists a continuous
ring homomorphism W, ; : Z[Gs][X] — C,[X], such that

Wy, (05(X)) () = G(—sv) H (1—p*) for every z € C),
peS
pF#v,00

where s, = (z,y,j) €Sy, :=C} x Zy, x Z/|F}]|.

In [ABBL] the authors use a special case of the previous theorem, for the rational function
field F' = Fy[T], to prove a main conjecture for (the p-parts of) the class groups in the p-
cyclotomic extension generated over F,[T] by the p>°-torsion of the Carlitz module (p # oo a
prime of Fy[T). In the second chapter of this thesis, for a general function field F', we investigate
the extension generated by the torsion of a Hayes module and we are able to prove the main
conjecture for the x part of the Iwasawa module, when x is a character of type 1 or 2 (Definition
2.3.6). These results were achieved thanks to the work of Greither and Popescu on the Deligne’s
Picard 1-motive ([GP1] and [GP2]).

We worked under two assumptions: the first one is that the degree of the prime oo is 1. This

assumption was needed to assure that all the field extensions we are dealing with are geometric,
but the reader may observe that this assumption is not really restrictive since we can reduce to
this case by extending the costant field of F'. The second assumption is that the class number
of degree zero divisors h°(F) is coprime with p.
Let H4 be the Hilbert class field of A and ¥ : A — H{7} a Hayes module. Fix a prime p of F'
with degree d,, and denote with F}, the extension of H4 generated by the p"*! torsion of . The
field F), is an abelian Galois extension of F' ramified only at the two primes p and co. These
fields form an Iwasawa tower

FCHyCRCRC--CF,C-C|JFu=F,
neN

indeed if we denote with I',, = Gal(F},/Fy) we have that

oo 1= Gal(Fao/Fo) = lim Gal(F, | Fy) ~ L.

n

We denote with C,, := CI°(F,){p} the p-part of the class group of degree zero divisors of F},.
There is a natural action of Iy, := Gal(F,,/Fy) on C,, thus this group can be seen as a module
over the ring Zy[I',]. These groups form a projective system with respect to the norm maps
which allows us to define the limit
Cx = ligl Ch,
n
which is a module over the Iwasawa algebra Z,y[I's], but unlike the classical case, in this
setting this algebra is not Noetherian, thus we do not have a structure theorem for the finitely
generated torsion modules. The main goal of the second chapter is to understand the structure
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of the module C», and compute its Fitting ideal. Instead of doing it directly we have to deal
with the characters of the group Gy := Gal(Fy/F) which acts naturally on C,, and Cw.
Let x € Hom(Gy,C*) be a complex character of the group Gy and W = Z,[(] the Witt ring
generated by a primitive root of unity ¢ of order |Go|. For each Gp-module M we define its
X-part as

M(x) == ey (M ®z, W) ,
where e, € W[Gy)] is the idempotent of x.
Theorem 2.4.7 states:

Theorem. Let x be a character of type 1 or 2. Then Cu(x) is a finitely generated torsion
module over the Iwasawa algebra A := W[I'x].

Let ©(X) be the projection of the Stickelberger series ©g(X) to Z[I's x Go][X] (here we
put S = {p,00}) and O (X, x) = €,0(X) € W[['s][X]. Also put

O (X,x) if xisof type 1,
OL(X,x) =

O (X
Olo(_)’(X) if x is of type 2,
Our main results on the Iwasawa module Coo(x) is Theorem 2.4.8:

Theorem (Iwasawa main conjecture). Let x be a character of type 1 or 2. Then we have

Fitty (Cso(X)) = (@io(l,x)) :

For the characters of type 3 we have no direct information on the structure of C,(x) and
C(X), but, working on Pontrjagin duals, we are able to prove a result on the y-part of the
Stickelberger series: for the characters of type 3 which are trivial on the decomposition group
of p, the series 0, (X, x) and O (X, x) have a zero of order at least 2 at X = 1.



Chapter 1

Stickelberger Series and L-functions

1.1 Setting and notations

In this first chapter we will introduce and study the properties of some analytic and algebraic
objects that have been used to study the arithmetic of function fields. The main algebraic object
we are dealing with is the Stickelberger series, while the analytic objects we will introduce are
the Artin L-functions, the Goss Zeta function and the Goss v-adic Zeta function. The goal of
this chapter is to investigate some links between these families of objects and provide theorems
that build a bridge between the analytic side and the algebraic side of the theory.

e F'is a global function field of characteristic p > 0, i.e., a finite algebraic extension of a
field of transcendence degree 1 over a finite field F,,» := F, which we call the constant field
of F. A more geometric interpretation would be to consider F' as the function field of a
smooth projective curve X defined over Fy;

e 00 is a fixed place of F' and A is the subring of F' of the elements regular outside of oo;

e for any place v of F' (including co), F, is the completion of F' at v. Its ring of integers
will be denoted by O, and U;(v) will be the group of 1-units of F,,. The residue field
O, /(v) :=F, is a finite extension of I, of degree d, := [F, : F,] (also called the degree of
v), its order will be denoted by Nv := ¢%. The degree of a prime v will be often denoted
also by degv;

e v, : ), — Z is the (canonical) valuation at v and 7, will denote a fixed uniformizer for
F,, i.e., an element with v, (m,) = 1;

e the degree of a fractional ideal a = ngoo V"™ of A is the quantity dega = Zwéoo nydy,.

1.2 Stickelberger Series

Let S be a finite set of places of F' that contains co and we denote with Fg the maximal abelian
extension of F' unramified outside S and with Gg := Gal(Fs/F) its Galois group. For every
place v € S let ¢, be the Frobenius at v, i.e., the unique element of Gg that satisfies

by (z) = 2N (mod )
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for every © € Fg, where 7 is any place of Fg lying above v. We observe that the extension
Fg/F is unramified at v, so the decomposition group of v in Gg is pro-cyclic and topologically
generated by ¢,.

Definition 1.2.1. The Stickelberger series of S is defined by the Euler product
-1
os(x) =[] (1-a'x%) .
vES

Actually the product above provides a well defined element of Z[Gg][X]: for every com-
mutative unitary ring R, an element f(X) € R[X] is invertible if and only if f(0) is invertible
in R, thus every Euler factor e,(X) := 1 — ¢;1 X% is invertible in Z[Gs][X]. Furthermore if
we denote with Zg the set of fractional ideals of A with support outside of S (remember that
oo € S) and with ¢4 the Artin symbol associated to a € Zg, i.e.,

a=[[v"=da=]]00

(recall that A is a Dedekind domain), then we can write

®S(X) — Z gb;leega — Z Z ¢¢1_1Xn

a€Zls nzl a€Zlg
a>0 a>0
dega=n

(where we use the notation a > 0 to denote the integral ideals of A). Since for every positive
integer n there exists at most a finite number of primes v with degree equal to n, the series on
the right is clearly an element of Z[Gs|[X].

1.3 Artin L-functions

Let K/F be a finite subextension of Fg whose Galois group is Gx and let Sk C S bet the set
of ramified places together with oo.

Notation 1.3.1. We remark that we shall always include co in Sk (i.e., if K/F is not ramified
at oo we put Sk := {v prime of F' ramified in K/F} U {oo}).

For every v € Sk let Frobxv € G be the Artin symbol. In particular if v € S, Frobgxv is
the image of ¢, through the canonical projection Gg - Gf.
For every complex character x of G, i.e., an element of Hom(Gg,C*), we put
x(Frobgv) ifv ¢ Sk,
x(v) =
0 ifveSk.

Definition 1.3.2. The Artin L-function associated to (K, x) is

Li(s,x) = H (1- X(V)(Nl/)_s)_l, for Re(s) > 1
v Sk

(where the condition PRe(s) > 1 guarantees convergence).
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Our goal in this section is to provide a link between Lx (s, x) and ©g(X).
Let ¥ : Gg — C* be a continuous character of Gg, i.e., a continuous homomorphism with respect
to the natural topologies. We recall that the natural topology on a Galois group is the Krull
topology which is generated by the left (or right) cosets of normal subgroups with finite index.
With an abuse of notation we denote with ¥ also the ring homomorphism Z[Gs][X] — C[X]
induced in a natural way by W.

Theorem 1.3.3. (a) Let K/F be a finite subextension of Fs with Galois group Gk and let
x be a complex character of Gi. Then there exists a continuous character U of Gg such
that

U(0s(X) (¢ =Lr(s.x ) ] (1—X_1(V)q_5d”), for Re(s) > 1.  (1.1)
veS—Sk

(b) Let ¥ be a continuous character of Gg. Then there exists a finite subextension K of Fs
with Galois group Gx and a complex character x of Gi such that equation (1.1) holds.

Proof. (a) Let mx be the canonical projection Gg - G and put ¥V := x o mg. Clearly V¥ is
a continuous character of Gg. We have that

v(©O5x) = [[(1-x(rxle;)x%) "

vegS

= H (1 - X_l(Frobe)Xd")_1

vES

and so

(O5(x)) (%) = [ (1-x(Eobgw)g=)

VS

- T Oe—xoe ) T (- 'wa)
vESK veS—Sk

= Lg(s,x 1Y) H (1—X_1(V)q_8d”>.

veS—Sk

(b) The kernel of ¥ has finite index, indeed ¥ factors through the profinite group Gs/Ker(¥),
which is topologically isomorphic to ¥(Gg) due to the first homomorphism theorem. How-
ever the only profinite (hence compact) subgroups of C* are the finite subgroups.

We denote with K the fixed field of Ker(¥), whose Galois group G is isomorphic to the
quotient Gg/Ker(V), with x the character induced by ¥ on Gg and with Sk the set of
ramified primes in K/F (recall that it always includes co by our convention recalled in
Notation 1.3.1).

Clearly for v ¢ S the diagram

G v Cx

x/

Gg/Ker(V) ~ Gi
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shows that ¥(¢,) = x(Frobgv) and

v (Os(x)) = TT(1-wHx®)"

ves

= — x " Y(Frobgv) X% -
g(l X~ (Frobgv) X )

= H (1 - X_I(V)Xd”>7l H (1 — X_I(V)Xd”) .
vE Sk veS—Sk

From this equation (1.1) follows immediately if we observe that Ly (s, x!) is equal to the

-1
product H (1 - X_I(V)Xd”> evaluated at X = ¢~*.

VvESK
O

In the final part of this section we will give an application of the previous theorem to prove
that the Stickelberger series lies in the Tate algebra.
Let R be any topological ring. The Tate algebra R(X) is the set of formal power series with
coefficients in R, such that the coefficients tend to 0. Note, in particular, that the polynomial
ring R[X] is contained in the Tate algebra. Let W be the ring of integers of a finite extension of
Qp. For the purpose of this thesis and, in particular in Chapter 2, we will be mainly interested
in rings of the form R = W[G], where G is the Galois group of an infinite extension of function
fields. We recall that the topology on this ring is the weakest such that the projection w :
W[G] - W[Gal(K/F)] is continuous for each finite subextension K/F. A classical result on
profinite groups tell that G admits a basis of neighbourhoods of 14 consisting of open subgroup
of finite index which correspond, by Galois Theory, to the finite subextensions. Thus, a sequence
of elements a,, of W[G] tend to 0 if and only if the sequence of the projections 7(ay) is equal
to 0 when n is big enough, for each finite subextension K/F.
The coefficients of the Stickelberger series lie in Z[Gg], but to show that ©¢(X) is an element
of the Tate algebra we have to replace Z with a non-archimedean complete ring, thus we will
use the natural embedding Z — W to identify ©g(X) with an element of W[Gs][X]. (Note
that we consider Z with the discreet topology, thus the previous embedding is continuous).

Proposition 1.3.4. Let W be the ring of integers of a finite extension of Q,. Then ©g(X) is
an element of the Tate algebra W[Gs](X).

Proof. Tt is enough to show that for each finite subextension K/F the image of the Stickelberger
series under the projection 7 : W[Gg][X] — W[Gal(K/F)][X] is a polynomial. We will not
work directly with ©¢(X) but we will consider f(X) := (1 — ¢X)Og(X). Since (1 —¢X)™! =
Y om0 q"X™ is an element of the Tate algebra, i.e. (1 —¢X) is a unit in W[Gg](X), the thesis
will follow immediately if we prove that f(X) is in the Tate algebra. Here we want to underline
the necessity of replacing Z with W: the series ), ., ¢" X" is not in the Tate algebra Z[Gs](X).

Let ¥ : Gg — C* a continuous character. Following part (b) of Theorem 1.3.3 let K be the
fixed field of ker ¥, G be the Galois group Gal(K/F'), which is finite, and x be the character
induced by ¥ on Gg. We note that y is the trivial character if and only if W is the trivial
character on Gg and, in this case, K = F and Sk = {oo}. For Re(s) > 1 we have

)\ (@S(X)) (q_s) — LK(S,X_l) H (1 o X—l(y)q—sdy) ‘

veS—Sk
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Now we introduce the full Artin L-function which is defined by the Euler product

L(s,x ') = H (1- X_l(v)(Ny)_S)i1 , for MRe(s) > 1,

14

that differs from Lg (s, x 1) only for the factors associated to the primes of Sx. Thus we have

W (f(X))(g7*) = (1—¢'~*)¥ (Os(X)) ()
= (1= )L T (1-x e ).

veS

A theorem of Weil [Wei, VII, Theorem 6] tells that if y # xo then L(s,x ') is a polynomial in
q~°, thus ¥ (f(X)) € W[Y(Gs)][X]. Another theorem of Weil [Wei, VII, Theorem 4] tells that
for x = xo we have

Plg*)
(1—q )1 —q'72)
where P(X) is a polynomial of degree 2g (g is the genus of F'). Thus also in this case we have
proved that ¥ (f(X)) is a polynomial, because the factor 1 —¢'~* in the denominator of L(s, xo)
is killed by the same factor in W (f(X)) (¢—*), while the factor 1 — ¢~* is killed by one of the
terms in the product over the primes of S: here we are using that S is not empty.
We have just proved that ¥ (f(X)) is a polynomial for each continuous character ¥, thus for
each finite subextension K/F, if we denote by 7 the projection Gg — Gal(K/F') we have

L(s,x0) =

™ (f(X)) € Z[Gal(K/F)][X]
and so f(X) € Z[Gs](X) € W[Gs](X), which is our thesis. O

In Chapter 2 we will need to evaluate the Stickelberger series ©g(X) at some point of W[Gs],
the previous proposition grants us that when we take x in the unit disk {z € W[Gg] : |z| < 1},
then the series O g(x) converges.

1.4 The S, -power of an ideal

Let C be the completion of a fixed algebraic closure of Fi, and put Sy := CX x Z,. The
analogue of the Riemann Zeta function for F' (i.e., in positive characteristic) has been originally
defined for some special values (the integers) by Carlitz in [Car] and later extended by Goss as
a Coo-valued function whose domain is Sy, in [Gos2]. We will see later how the integers embeds
in this topological group. This work of Goss may be interpreted a sort of analytic continuation
of the function defined by Carlitz.

Before going into the details of the Goss Zeta function, we need to define the term I° for any
nonzero fractional ideal I of F' and any s € So (see also [Gosl, Chapter 8]).

Definition 1.4.1. A sign function on Fy, is any homomorphism sgn : FJ{ — F such that its
restriction to FX is the identity. We extend sgn to all F, by defining sgn(0) = 0.

We fix a generator my, of the maximal ideal of Fi,. We will say that the sign function sgn is
normalized if sgn(m) = 1. Since Uj(o0) is a pro-p-group and the image of sgn has order prime
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to p, every sign function is trivial on Uj(co). From the decomposition a = mas® (a)Cu given by
the isomorphism
FX ~ 7wl x FX x Up(oo) (1.2)

we deduce that for every normalized sign function we have sgn(a) = (.
The 1-unit associated to a € F is the element

a
()00 := € U(00).
ﬂ&w(a)sgn(a)

From now on we will consider a fixed normalized sign function and the decomposition (1.2) will
be written as

a= ) sgn(a) - (a)os
For every u € U;(o0) and y € Z, the series Z <y> " converges in Uy (00), so we put
n>0 n
uw =((u—1)+1)Y Z()u—l
n>0

We say that an element a € F' is positive if sgn(a) = 1 and we denote by A, the set of
positive integers of F', i.e., the subset positive elements in A.
Let Z be the set of nonzero fractional ideals of F' and denote by P, the principal fractional
ideals with a positive generator. The group Z/Py is finite and we put

hH(A) == |T/Ps].

We also denote with p' be the maximal power of p that divides h™(A). We recall that do, =
[Foo : Fy] and, for any a € FJ, define the degree of a as deg(a) = —dxvso(a). Note that if
I = (i) is principal, then the definition of deg(i) coincides with the degree of the ideal I, i.e.,
deg(i) = deg(I) := log, |A/I|.

Remark 1.4.2. We have that ht(A) = hO(F) - du - (g% — 1)/(q — 1), where h°(F) denotes
the cardinality of the class group of degree zero divisors of F: let P denote the full subgroup
of principal ideals of Z and let h(A) be the cardinality of Z/P. Applying ([Ros|, Proposition
14.1, part (b)) to our setting we deduce that h(A) = h°(F) - ds. Since Py C P, we have a
surjective map Z/P; — Z/P whose kernel is isomorphic to P/Py, thus h*(A) = h(A)|P/P+| =
HO(F)doo PP, |

To compute the cardinality of P/P, consider the following diagram

sgn

F.C FX FX
PJFCH 7) — > P/PJF

where the vertical map on the right is induced by the central vertical map. Clearly the map
F* — P is surjective and so it is the map FX — P/P,. Note that the map F — P, is an
isomorphism (its kernel is F NFy = {1}) thus we deduce, by the snake lemma, that the kernel
of the right vertical map is isomorphic to the kernel of the central vertical map, which is F.
And so we have proved that [P/Py| = [FX|/|F| = (¢%~ —1)/(q — 1).
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We fix a doo-th root of 7o and call it m,: for every integer j we put s; = (w;j,j). The map
J > sj gives us an embedding Z — Sq.

For every s = (z,y) € S our goal is to define the exponential of a fractional ideal I°. We
start by defining the exponential of a positive element: given a € F with sgn(a) = 1 and

5 € Seo We put

a® = xdeg(a) <a>go ]

The following proposition sums up some fundamental properties which can be found in Section
8.1. of [Gosl]. We report here the proof to make the exposition more clear.

Proposition 1.4.3. For every a,b € F with sgn(a) = sgn(b) = 1, one has
o ot = a®al for every s,t € Ss.
o (ab)® = a®b® for every s € Suc.
o (a®)% = a®i for everyi,j € Z.
e a* =a' for everyi € Z.
Proof. This is an easy exercise: let s = (x1,y1) and t = (z2,y2). Then

° as—f—t _ a(wlzg,yl-i-yg) — (xll.z)deg(a) <a>gé+y2 _ :L,ileg(a) <a>gé$(21€g(a) (aﬂ% — aal.

o (ab)® = 2 (bt = o {BOTIBO Gy s = 1B ()80 ()8 = b,
o We recall that a% = , ' (@) {a)t, thus we have (a*')s = (a)i, and

deg(a®) = deg (W;z‘degm))
— —dove (ﬂidwvw(a))

= —dooVUso (Wigc"’(“)>
= —dnoiVoo(a)
= i deg(a).

And so (a%)% = 7.r*—j(idcg(a)) (<a>éo)j _ 7T*—z‘j dcg(a)<a>(i){> — s

o ati = m, 18 (g)

= ridecvoo(a) (a)t, = <7rgo°°(a)<a)oo> and, since a is positive, this last

term is equal to a’.

O]

To simplify notations put
e:=h"(A) =|T/Py|.

Now we can define the exponential of a fractional ideal: given I € Z, there exists a positive
element o € F'* such that I¢ = (). We put

¢ = xdeg I<a>géée ’
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where (a><1>ée denotes the unique e-th root of () that is a 1-unit. Furthermore we put
(D)oo = (@) 7.

We observe that in general (I)o, and I° do not belong to Fi, but to a suitable extension (see
the following proposition).

Proposition 1.4.4. (a) (I)s and I*° are well defined.
(b) If I = () € Py then I° = o,
(c) For every j € Z: I® is algebraic over F'.

(d) Let Fy be the extension of F obtained by adding every element of the form I*' with I € T.
Then Fy/F is a finite extension with degree at most e.

(e) Let Fuo v be the extension of Fs obtained by adding every element of the form (I)so with
I €. Then Fy v/F is a finite extension with degree that divides p'.

Proof. (a) We suppose I¢ = (a) = () for some positive «, 3. Then « and  differ by a unit of
A, ie., by an element a € F; (see, for example [Ros, Proposition 5.1]). Therefore a = a
implies sgn(a)) = sgn(5)sgn(a). However o and (3 are positive and so sgn(a) = 1. Finally,
since a € F¥, we conclude that a = sgn(a) = 1 and a = §.

(b) From the equality I = («) it follows that deg(I) = deg(«) and I¢ = («)¢ = (a®). Therefore

7S — xdeg([)<ae>%e _ xdeg(a)<a>go =af.

(c) Let I € 7 and a € F be such that I¢ = (). We prove that I%7 is a root of the polynomial
f(X)=X°¢—aol € FIX].
The equality 1¢ = («) implies that e deg(/) = deg(a) = —dooVoo (). Therefore

(Isj)e — (ﬂ_;j deg(1)<a>]o'ée)e
ﬂ_;je deg(I) <a>Joo
(o) )

ﬂ_i'doo Voo (@

- <7rgo°°(a)<a>oo>] — ol

(a

(d) We have already proved in the previous step that 7! is algebraic over F', so it is enough to
show that Fyv can be generated by a finite number of elements of the form I°!. Let I and
J be representatives of the same equivalence class in Z/P, and let o, 8 and « be positive
elements such that I¢ = (a), J¢ = (8) and [ = ~J. Clearly there exists a constant a such
that the equality o = 4¢Sa holds, but the same considerations explained in (a), lead us to

conclude that a = 1. Furthermore we have that deg(l) = deg(J) + deg(y). Then
T = deg([) <a><1>ée

— deg(J)—d

= I ()

— J517T; deg(’Y)< >

Y)oo
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= P () = T,

Therefore to generate Fy it is enough to take one fractional ideal I°! for every equivalence
class of Z/P.
To prove that the degree of Fy/F is at most e we proceed in the following way:

Step 1: If the equivalence class of .J is a power of the class of I in Z/P then F(J*') C F(I*),
indeed if J = I"+y for some positive element v and some r € N we have that J = ™51~
and so J°t € F(I°).

Step 2: If C is a cyclic component of Z/P, and [ is a representative for a generator of C,
then from the previous step it follows that

P c |J F() C FUI™).
[J]eC

Step 3: We decompose Z/P as the sum of its cyclic components
'
/Py = Ci
i=1

with n; = |C;|, and for every cyclic component C; let I; be a representative of a

.
generator. We observe that e = H ;.
i=1

In the proof of (c) we have proved that I%/ is a root of the polynomial f(X) = X¢—a7,
when I¢ = («). However in general f(X) is not the minimal polynomial of 7%/, indeed
if there exists k € N and a positive 3 such that I* = (), the same argument of (c)
shows that I% is a root of g(X) = X* — B7. Therefore the degree of the extension
F(I®1)/F is smaller than or equal to the order of the class of I in Z/P,. From this
it also follows that the minimal polynomial of I;* over F has degree at most n;.

T
From the previous step we deduce that Fy = U F(I7') and so
i=1

[Py F<[[[F@) : Fl <[] ri=e.
i=1 =1

(e) The proof of this point is similar to the previous one, it is enough to recall that F v is
obtained by adding to Fiu the e-th roots of elements in Uj(0c0) and that, since Uj(o0) is a
multiplicative group isomorphic to Z;°, Fis already contains the n-th roots of the elements
of Uy (o0) when n is coprime with p (by Hensel’s Lemma).

O

All the objects defined until now depend on the choice of the positive element 7, and on
the choice of its duo-th root m,. Before concluding this section we want to see what happens
when we change these two elements. To do this we will follow the ideas of [Gosl, Section 8.2.].
Let m(;), i = 1,2 be generators of the maximal ideal of Fi, both positive with respect to the sign
function and T, (;),i = 1,2 two fixed deo-th roots. We denote with (I)., ;) the 1-unit associated
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to I, with respect to m(;) and with I (SZ.) the corresponding exponential.

The elements 7(;) and 7(9) differ by a unit in A% = F3 x Uj(oo). Let u = m)/m(g), since m()
and o) are both positive, u is a 1-unit. We denote with ul/ the only doo-th root of u which
is a 1-unit. We observe that it is uniquely determined by 7(;) and m(y), i.e., it does not depend
on T (1) and T (2)-

Lemma 1.4.5. For every I € T we have

deg([)
Doy = (0/5) 7 (Do o) -

doo
(i) 210 _ (o)
T(2) Tx,(2)

it follows that there exists a dso-th root of unity ¢ such that

Proof. From the equality

M — CW*,(U

Tx,(2)
Let a be such that I° = (o). We have that e deg(/) = deg(a) = —doovoo() and, for i = 1,2
e o @
<I >oo,(z) = <a>oo,(z) = Voo () = T deg(I) *

@) T, (3)
Therefore recalling that, by Remark 1.4.2, d, divides e, we have
e e deg(I)
(1) oo, (1) _ s, (1) _ (ul/dw<_1>e deg(I) _ (ul/dw)e deg(I) '
<I>007(Z) 7Te (dze)g(l)

Finally, we observe that inside the brackets in the first and in the last term of the equality there
are 1-units, so we can extract the e-th root without ambiguity and obtain the thesis. O

Corollary 1.4.6. There exists a doo-th To0t of unity ¢ such that
$j _ oJdeg(l) rSi
Iy = ¢ g

Proof. Let ¢ be as in the previous lemma. Then

1 = ma il
- (m,(z)C —1u1/d°°)7j deg(I) (ul/dw)jdegm (1@
A,
¢ deg(f)l(sg) .

O]

Corollary 1.4.7. If F contains all the ds-th roots of unity then Fy does not depend on the
choice of T and m,.

We observe that the hypothesis of the corollary is equivalent saying that d, has the form
p'm, where m is any divisor of ¢ — 1.
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1.5 The Goss Zeta Function

Recall that by a > 0 we mean the integral ideals of A.

Definition 1.5.1. The Goss Zeta function is defined by the sum

for s = (z,y) € Seo.

This sum is clearly convergent for |z|o, > 1 and can also be rewritten as an Euler product
just like the classical Riemann Zeta function

Ca(s) = H (1 — st)_l .
v#0o

- —y), this product amounts to

Cals) = I (1= )= des)
IS

— H (1 — <Oéy>;oy/em—deg(l/))71

v#oo

Since —s = (x

-1

for some «,, such that v¢ = («,).
We recall that for every integer n we have only a finite number of integral ideals a with
degree equal to n and so the sum

an(y> = Z <a>c:oy € Cx
acl
a>0
deg(a)=n

is finite. This allows us to write the Goss Zeta function as a sum over the positive integers.

Cals) = an(y)z™". (1.3)

n>0

This last form is very important because we will prove it is convergent for every (z,y) € Sy and
so can be interpreted as an analytic extension to the whole space Sy of the Goss Zeta function.

1.5.1 Convergence of the Goss Zeta Function

In this section we will prove that for every s = (x,y) € Ss the sum (1.3) is convergent and, in
particular, this provides the analytic extension of the Goss Zeta function to the whole space.
More precisely we will prove that when n goes to infinity the number v, (a,,(y)) diverges faster
than a linear polynomial in n, uniformly with respect to y and, since voo(z~") is linear with
respect to n, the convergence of the series will readily follow. Indeed we shall prove that, when
n is big enough, the number v (a,(y)) behaves like a polynomial in n of degree 2 (or is larger
than that).
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We fix aj,a9,...a. € Z representatives of the equivalence classes C1,Cs....C. of Z/Py.
Every non null fractional ideal of C; can be written uniquely as the product a = aa;, with

a € F. Now we have
e

an(y) =D (o) D (). (1.4)
j=1 aEF,
OzCljZO
deg(aa;)=n

Fix an index j, let n; = n — deg(a;) and put

an(Cry)= D (@ and byi(y) = D> (a),

aeCj aEF
a>0 aa;>0
deg(a)=n deg(a)=n;

so that a,(Cj,y) = (a;)ad - by j(y). From (1.4) we deduce that our thesis can be obtained just
proving that the function v (by ;(y)) is bounded from below by a polynomial of degree 2 in n
for any j, since |[(a;)od|oc = 1.
We can limit ourselves to integers n such that d., divides nj, because for the other values of n
we have b, j(y) = 0 (there are no a with degree n;).

Let div(z) be the divisor associated to z, i.e., the element

div(z) = Z ord, (z)v.

Without ambiguity we will use this notation for both the elements o € F* and for the fractional
ideals a € Z. Be careful: the divisors associated to the element o and to the fractional ideal («)
may not coincide since the component at infinity may not be the same. For the same reason
the degrees of a and of the divisor associated to « may be different (remember that principal
divisors have always degree zero). Contrariwise the degrees of a fractional ideal and of its divisor
always coincide. To make this more clear consider the following example.

Example 1.5.2. Let F' be the rational function field F,(7T") and fix as a place at infinity the
rational place corresponding to 7~ !. In this case the ring of co-integers is just the polynomial
ring Fy[T]. If we denote with p the prime corresponding to the element 7' we have that the
divisor associated to the element 7' is p — oo while the divisor associated to the ideal (T) is just
p.

Furthemore we have that deg T'=1 = deg (p) and deg (p — c0) = 0.

For every i € N let D; = div(a;) + (n;/ds — i)oo and L(D;) be its Riemann-Roch space,
which is defined by
L(D;) ={a € F*:div(a)+D; >0} .

We observe that the divisors D; are sorted in descending order and so each space L£(D;) is
contained in the previous one, ie., £(D;) 2 L(D;y1) for any i. Furthermore the following
equality is true

L(D;) = {a € L(Dy) : vao(@) > i — ;Z} . (1.5)
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We recall that each £(D;) is a vector space over [, with finite dimension ¢;. Afterwards we will
need to know the dimension of some of these spaces and we use the Riemann-Roch theorem to
calculate it. Since

deg(D;) = deg(a;) +nj —idoo =n — ids ,

for i < (n —2g+2)/ds, we have
bi=deg(D;)) —g+1=n—ide—g+1,

where we denote with g the genus of F. We want to study the asymptotic behavior of b, ;(y)
for n — 0o, so the number n should be thought as “big” with respect the other numbers. For
this reason we can always assume that there exists at least one index ¢ such that the previous
equality holds.

From equality (1.5) it follows that o € F'* satisfies both the following conditions

® aaj; > 0
o deg(a) =n;

if and only if & € £(Dg) — L(D1) (note that they imply voo () = —C%). If we put X = {a €
L(Dgy) — L(D1) : sgn(a) = 1}, we can rewrite by, j(y) as

bnj(y) = Y _{a)3Y.

acX
Lemma 1.5.3. Leta € £L(D;1) andbe X. Thena+b e X.

Proof. Both £(D1) and X are subsets of the vector space £(Dp) and so a + b belongs to L(Dy).
We observe that ve(a) > 1 —nj/ds while voo(b) = —nj/dos # vo(a), therefore
.
Voo (@ 4 b) = min{vee (@), veo (b)} = — =L
doo
and a+b ¢ L(Dy).
To complete our proof it remains to show that a + b is positive. Let m = voo(a) > 1 — nj/d
and let a € OF, be such that a = 73la.
For every a € FX we have that sgn(a) = amal>(®) (mod 7)) and so we can write b =

W;onj/dw(l + Toob) With b € Oug (note that b is positive). Then

a+b=mag/ (wgno”L”f/d""& + 14 mogb) = wlel@td) (1 4 g fdee oy Toob) .

o0
Hence
sgn(a+0) = (a+ byrr=tt) (mod 7o) (1.6)
= 14+ amtileq 4 orh (mod 7o)
=1 (mod 7o)

and the thesis is proved. ]
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The previous lemma tells us that the sum defines an action of £(D;) (seen as an abelian
group) on the set X by traslation. It is obvious that this action is free, since the equality
g+x = h+x, with g;h € L£L(D;) and z € X can be obtained only for ¢ = h. Now we
can decompose X as the disjoint union of the orbits of its elements under this action. Let
X1, Xs,...X; be the orbits of the elements of X (so that with X; N X; = 0 if ¢ # j and

¢
X = U X;) and fix an element z; € X; for each orbit. Then
=1

bug(y) = D (@)

aeX

= DD

=1 aeX];

= Z Z (u+ 7).

I=1 uel (D)
We put

hn(y) = hnji(y) == Z (u+a)d . (1.7)
ueL(D1)

Just like before note that our thesis on the growth of v (by j(y)) may be obtained by proving
that the growth of the function vy, (hy,(y)) (as a function of n) is greater than a linear polynomial
in n.

The following lemma puts together two results of [Tha, Chapter 5]. Here we give a detailed
proof.

Lemma 1.5.4. Let K be a function field with constant field Fy, v any normalized valuation
on K and W C K an F4-vector space with finite dimension. Assume that v(w) > 0 for every
weWw.

(a) If i is an integer with 0 < i < (¢ — 1) dimp, W, for every x € K we have

Z(x+w)i:0.1

weW

(b) For every j € Nt we put W; = {w € W : v(w) > j}. Then for every y € Z, we have

v <Z <1+w>y> > (¢-1)Q,
weWw
where we put QQ = Z dimp, W;.
J

Proof.  (a) Let d = dimp, W and we fix a basis {e1,ez,...,eq} over F,. For every j € N we

have
—1 if ¢ — 1 divides 7 and j > 0,

5jzzcj:

c€Fy 0  otherwise.

Tn the sum it may appear a term of the form 0°. In this case we use the convention that 0° := 1.
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Applying the multinomial theorem we have

Z (z+w) = Z (z +cre1 + ... cqeq)’

weWw €1,c2,...c4€F4
7! L ) ,
= E g =g : ),OCZ N (erer )t (cqeq)
€1,¢2,.-c4€Fq  j1,52;--Ja .'71 Jd 7 Jd
jitja<i
— —J1—=Jd pJ1 Jd(s. 0.
= E T €y ...¢€ .. .
- | T Y 1 d 1 Jd
.- . 1+ -.-7d:\1 1 :
gy S da (i—j Jd)
Jite+ja<i

In this sum each term is equal to zero, indeed we have that j; + -+ jg < i < (¢ — 1)d
and so at least one of the index j is smaller than ¢ — 1. For that index we have J; = 0.

The first member of the inequality (seen as a function of y) is continuous and the second
member does not depend on y. This implies that it is enough to prove the statement when
y is a positive integer because the set of positive integers N* is dense in Z,.

Let J be the greatest positive integer such that W; # {0} and so we have
0} =Wy 1 GW, CWy 1 C---CWo CW =W.

For every j =1,...,J we denote with d; the dimension of W; and with d = d; = dimp, W
such that
0<d;<dyj1<---<dj1<d;j <---<dy<dy=d.

We fix a basis {e1,e2,...,eq4} of W such that for every j the set {e1,ez,...,eq4,} forms a
basis for W;. Furthermore we put

Uj = Span]Fq{edeH, o€ )
We observe that for every index j we have:
o W; =W, 0Uj.
° diquUj = Clj — dj+1.
e For every u € U;j: v(u) > j (in particular we have the equality for every u # 0).

We will prove the following statement: for every index j € {1,2,...,J} and for every
positive integer y € NT we have the inequality

J
v Y 0+wy | =1 (ddi+ D di] . (1.8)
’LUGWJ‘ I=j+1

Note that for j = 1 the previous statement is exactly the thesis of (b).
We will prove the inequality by an inductive process: we will first give a proof for j = J
and then we will prove it for a generic index j, by assuming it is true for the index j + 1.

Case j = J: by the binomial theorem we have

S avur=> (1) ¥

weWy h=0 weW
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We apply part (a) to the vector space W to deduce that the sum >, - wh is equal to
zero when h < (¢ — 1)dy, thus we have

y
_ Y h
S ¥ (1) T
weWy h=(q—1)dy weW;
Since v is a non-Archimedean valuation we have
y
y h ; Ay . _
v Z <h> Z w' ] > min {v(w")}= min {hJ}=(¢—1)Jd,,

h>(g—1)d h>(g—1)d
h:(q—l)dJ weWy _11(}q€W3 7 2(a=1)d,s

thus we have proved

v Y Q4w? | =(g—1)Jd;.

weWy

Now we assume that the inequality (1.8) is true for the index j+ 1 and we prove it for the
index j: using the decomposition W; = W;1 @ U; and the binomial theorem we have

Y

S arwpr= Y (1+t+u)yzz<z> Sty wh

’UJEWj tEW[]J'v+1 h=0 tEWj+1 UEU]'
uclU;

We apply part (a) to the vector space U; to deduce that the sum Zuer w?~" is equal to
zero when y — h < (¢ — 1)dimg Uj, i.e., h >y — (¢ — 1)(d; — dj41) =: §, thus we have

> @+w)y i()Zuy P A+

wew; = uel; teW,41

Proceeding like the case j = J and using the assumption for the index j + 1 we have

Y : y—h h
v Z(l—i—w) ZI’?<12 v|u Z (1+1)

weW; u€l; teWj 1

= min } (y — h)v(u) +v Z (1+1)"

776<ij teWjt1
J
> E%l (y = hJv(w) + (g = 1) | (G + Ddjr + 122 di
J
=(¢—1)(dj —dj31)i+ (¢ = 1) | G+ Ddjr + Y _ d
1=j+2

J
= (-1 |jdj+ > d

I=j+1
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We use this lemma to give an estimate of hy,(y):

Lemma 1.5.5. Let h,(y) be the function defined in (1.7). Then we have

q— 1)n?
o () = U= 4 O
2d 0
uniformly with respect to y.
Proof. We have
(U4 x)0o = TrC:O”‘”(“”l)(u + 1) = W&f/dmxl (1 + g) .
1
Recall that, by definition of X, x; is positive and v (2;) = —nj/doo, thus ng/dwcz:l is a 1-

unit and so we can elevate it to the power —y, furthermore voo(u/x;) = voo(u) — voo(x) =
Uoo(u) +nj/ds > 0. Therefore from (1.7) we deduce

haly) = (25 a3 <”u>_y=<w&%‘/dwxl>-y S tw.

Z
u€L(D1) wez, ' L(D1)

The elements of z; ' £(D;) have positive valuation at co and the vector space z; ' £(D;) satisfies
every hypothesis of point (b) of Lemma 1.5.4. Hence we have

Voo (hn(y)) = voo< >, o+ W)y> > (¢— 1@,

wez; ' L(D1)

where @ = Y, dimp, W; and W; = {w € z; 'L(D1) : voo(w) > i}. Now we observe that the
element w is in W; if and only if u = zjw is in £(D1) and veo(u) > i + V(1) = @ — nj/do,
ie, u € L(D;). From this fact we can deduce that the map W; — L£(D;), w — zjw is an
isomorphism of F,-vector spaces and so

diqu Wz = dlquﬁ(Dl) = El .
Finally, with some calculations we obtain that

[(n—2g+2)/doo |

Q:i&z Z l; .
i—1

i=1
If doo does not divide n — 2g + 2 the last sum is equal to

[(n—2g+2)/de |

Y (n—ide—g+1),

i=1
if do divides n — 2g + 2 the last sum is equal or greater than

(n—2g+2) /doo—1

Z (n—idew —g+1),

=1
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thus in both cases we have:

n/doo+O(1)
Q > ) (n—ide+0(1))
=1
n n/dec+0O(1)
= (n+0(1)) (d + 0(1)> —dee Y

=1

2 n2
2
n

From this lemma and the previous remarks it follows that

Theorem 1.5.6 (Analytic extension of the Goss Zeta Function). The series

Z an(y>x_n

n>0

is absolutely convergent for every (x,y) € Seo and is also uniformly convergent on the compact
subsets of Sao-

1.6 Stickelberger series and Goss Zeta Function

Our goal is to show a link between the Zeta function and the Stickelberger series ©g(X) as we
did in Section 1.3 for the Artin L-functions.

Let Wg be the subgroup of Gg generated by all the Artin symbols ¢, with v € S and let K be
the fixed field of the topological closure of Wg. In Section 1.2 we have already observed that
the element ¢, is a topological generator of the decomposition group of v in Gg, therefore the
extension K/F' is totally split at every prime v ¢ S. From Tchebotarev density theorem we
deduce that K = F and so Gg is the topological closure of Wg.

Remark 1.6.1. We note that the group Wy is contained in the projection of the Weil group to
Gs.

Lemma 1.6.2. Let A and p be two distinct primes outside S. Then ¢, # ¢y.
Proof. Let I be the idéle group of F' and H be the subgroup
Frx [T ox < [T
v ves

vES

Furthermore let K be the class field of F*H (as usual F* is embedded diagonally in Ip,
while F¢ is embedded via the map which sends the element x to the idéle whose coordinates
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are all equal to 1, except for the one corresponding to the prime v which is equal to x) and
rec : [p — Gal(K/F) be the map induced by the Artin map.
For every prime v ¢ S we have that O is contained in the kernel of rec and so the extension
K/F is unramified at every prime outside S, in particular we have that K is contained is Fg.
Moreover

Frobgp =rec(m,) =1

Frobg A = rec(my) # 1

since my ¢ F* H. Therefore the extension K/F is totally split at the prime p, while A is inert
in K. From this observation it follows that the decomposition groups of p and A in Gg do not
coincide and so to distinct primes correspond distinct Artin symbols. ]

We denote with f the degree of the extension Fi, v/Fs (recall that f divides p* by Propo-
sition 1.4.4) and with N : F_J , — FX the norm map. For any y € Z, and for any v ¢ S we
put

Uy (6,) = N (1)) .

Observe that the norm sends 1-units to 1-units and therefore it is possible to extract the f-th
root without ambiguity. From the previous lemma it follows that the map ¥, is well defined on
Artin symbols.

Lemma 1.6.3. The map V¥, extends to a group homomorphism ¥, : Wg — CX..

Proof. Since Wy is generated by the Artin symbols every o € Wg may be written as o = [[ ¢
for some integers n,. We put ¥, (o) = [[ ¥, (v)"™. We have to check that this extension is well
defined.

For every a € 7 we denote with iy the idéle whose v-coordinate is equal to Wﬁ”(a), in particular it
is equal to 1 if and only if v does not belong to the support of a. We also observe that every idéle
of this form is a finite idéle, i.e., it has component at co equal to 1, since fractional ideals do not
have oo in their support. Clearly the map ¢ : Z — Ip, a — i, is an injective homomorphism.
Let recg : Ip — Gg be the map induced by the Artin homomorphism and i € Im(y) Nker(recg).
Since ker(recg) = F* ][, 45 O, we have that i can be written as a product of an element z € F'
and an idéle o € Hygs O;f. The component at infinity of o is equal to 1 since co € S, and the
same is true for i because of the definition of the function ¢. This implies that  must be equal
to 1 and i = o. Now for every prime v € S different from oo the component i, of i must be
equal to 1 because it belongs to the kernel of recg and for every prime v ¢ S it must be equal
to 7]} for some integer n and belongs to O;. The only possibility is that i is the unit.

We have proved that the composition of ¢ and recg is injective. The image of a fractional ideal
a =[], v™ under this map is the element o = [], ¢» and so we have proved that if 0 € Wg
may be written in two different ways as a product of Artin symbols, then ¥, (o) does not depend
on the chosen one. O

From the continuity of the norm map and of the root extraction map it follows immediately
that ¥, : Wg — CZ is a continuous homomorphism. From what we have previously observed
G is the topological closure of Wg and, since C4, is a complete topological space, ¥, may be
extended in a unique way to a continuous homomorphism defined on Gg which we will still call
VU, by a little abuse of notation.

Let ¥, : Z[Gs][X] — Cx[X] be the natural map induced by W¥,,.
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Theorem 1.6.4. Let ©g(X) be the Stickelberger series and (4 the Goss Zeta function. Then,
for every s = (z,y) € Seo we have

W, (05(X)) (2) = Ca(—s) [ (1 - *).

ves

v#o0
Proof. Let v be a prime not in S, n be the order of [v] in Z/P, and « be a positive element such
that ™ = («). Due to what we have already observed (V) is the only 1-unit whose n-th power
coincides with (o). We write n = p"n’ with (p,n’) = 1 and let u be the only 1-unit whose
n’-th power coincides with (). Since n' is coprime with p, we have that u is in Uj(00) C Fio
and that (1)o is a root of the polynomial a(X) = X" — u € Fyo[X]. Let b(X) be the minimal
polynomial of (V)s over Fuo. Since (V) is a root of a(X) and is totally inseparable, it must
be a(X) = b(X)pl and b(X) = XP" — v, where I,k and v satisfy h = k + 1 and u = v*'. If we
denote with K the extension of F,, obtained by adding (), we have that K/F, has degree
p*, while Fl, v/K has degree f/p*. Therefore

N ((")oo) = Ni, oo (1) o) /7" = 0? 7" = ()1

(everything works for p = 2 as well since in that case Ni r ((V)oo) = —v = v).
From this it follows that U, (¢,) = (v) and that

w,0s(X) = [I(1-w@Hx%)"

vgS

- 11 (1 . <y>goxd~)*1

vES

and so

v, 05(x) (@) = J[(1-wLa®)"

vegS
= 1 (- we®) " IT (1 - i)
Ze 3
= o) [La-»).
i

1.7 A special case

In this section we will consider a special case and provide a link between the map ¥, of the
previous section and the Artin reciprocity map. We assume that the class number of F is
equal to 1 and we choose a prime at infinity of degree 1. The particularity of this case is that
we can give an explicit description of the idéle class group (Theorem 1.7.1). One example of
function field that satisfies these properties is the rational function fields Fy(7") which have been
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studied in [ABBL]. Theorem 1.7.2 at the end of this section will show that Theorem 1.6.4 is a
generalization of [ABBL, Theorem 3.8]

Under the assumptions on the class number and the degree of oo we have that A is a principal
ideal domain and that h*(A) = 1. We also have that the residue field of Fo, coincides with
the constant field F, and so every element of F'* can be written in a unique way as product
of a constant and a positive element of F. Moreover the condition h™(A) = 1 implies that for
every prime v # oo the corresponding prime ideal of A is principal and can be generated by a
positive element m, € F. We choose an uniformizer at oo in the following way: first we fix a
prime p # oo of degree 1, let m, be its unique positive generator and then put e := 7w, 1 Note
that this uniformizer is positive and is an element of F' 2. Finally we observe that Fyy = F and
Fov=Fx.

The Goss Zeta function is defined (as before) by

)= ar=T[(-m)".

ac€AL v#oo

The image of the character ¥, is contained in U;(co) C FZ and satisfies ¥y (¢,) = (m)oc
We want to provide a slightly more explicit link between the character ¥; and the Artin
map. Let Ir be the Idéle group of F.

Theorem 1.7.1. The idéle class group Ip/F* is isomorphic to the product

FZ % H O) = H,

v#£oo
where we have denoted with Fo><<>,+ the kernel of the map sgn: F — F,.

Proof. First we prove that every idéle of H identifies a different equivalence class in Ip/F*. Let
i = (looytuys vy ---) and j = (Joos Juys Jugs - - - ) be two idéles in H and assume that they belong
to the same equivalence class. Let z € F* be such that i = zj. For every v # oo we have that
i, = xj,, but since both i, and j, are units in F,, it follows that v,(x) = 0. Moreover from the
product formula we have voo(2) = =3, dyvy(z) = 0 and so z is a constant. Finally since
loo = TJoo and both i, and jo, are positive, we deduce that x = 1.

To complete the proof (and provide an explicit isomorphism) we have to show that every equiv-
alence class of Ip/F* contains an idéle of H. Let i = (ioo, @y, ly, - - - ) be any idéle and consider
the element

T = sgn (i) ! H A

v#oo

which is in F'* because there are only finitely many v with v,(i,) # 0. It is easy to check that
the idéle zi is in H and that the map

]IF/F’>< —H

[l] — .CUii

is an isomorphism. O

2If F is the rational function field F(T), here we are simply taking as uniformizer the element 7o, = 1/(T —a),
where « is any element of Fy and p = (T — «).



1.7 A special case 27

Let Cp := Ip/F* be the idéle class group of F' and consider the composition of the Artin
map with the projection G2 := Gal(F/F)* — Gg. The map we obtain in this way has the
group Og = H O} as its kernel and, therefore, the Artin map induces a continuous embedding

vES

recg : CF/OS — GS.

This embedding is not surjective since the group Gg is profinite, while the quotient Cr/Og is

not. If we denote with Cr/Og the profinite completion 3 of Cr/Og, the map recg extends in a
unique way to an isomorphism of topological groups

1“/6\(35 : CF/OS = Gs .
Using the isomorphism in Theorem 1.7.1, one has that the quotient C'r/Og is isomorphic to

7TZ><U1 ><]~_[OX

ves
v#oo
Its profinite completion is the group
(TToo) X Uy (00) % H o)
ves
V#00

—

where (o) ~ Z.

Theorem 1.7.2. We denote with wg the canonical projection Cp/Og — Uy(oo). Then the
following diagram is commutative

CF/ Os
In general for every y € Z, we have the following commutative diagram

Uy

GS Ul(oo)

r/e\csli Ty

Cp/Os —=Ui(0)

where y denotes the raise-to-the-power y map.

3For a topological group G, the profinite completion G is the inverse limit of its finite quotients with respect
to the natural projection maps.



1.8 v-adic Zeta Function 28

Proof. We have already noted that Gg is the topological closure of the group Wy, generated by
the Artin symbols. Since all the maps in the theorem are continuous, it is enough to show that
U (¢,) = morecy (¢,) for every v & S.

We recall that the global Artin map is the product on each idéle component of the local Artin
maps and that the local Artin map rec, sends 7, to ¢,, since the extension Fs/F' is unramified
at v. Let i, be the idéle whose v-coordinate is equal to m, and whose p-coordinates for p # v
are all equal to 1. The image of the equivalence class [i,] € Ip/F* under the map recg is equal
to ¢,. As noted above, the hypothesis h*(A) = 1 implies that we have a positive generator
m, € F for v, hence

¢y = recg ([iu]) = recgs ([W;liu])

and, recalling that the idéle 7, i, belongs to H, we obtain that

g O 7’/6\051(@/) = (71';1)00 = qjl(¢u) :

For a general y € Z, the thesis is obtained simply by observing that for every Artin symbol ¢,
we have U, (¢,) = ¥i(¢,)Y by definition. O

1.8 wv-adic Zeta Function

In this section we will define a v-adic analogue of the Goss Zeta function.

Fix a place v different from oo and let F,,C,,F, and 7, be the v-adic versions of the objects
defined for the place co. Fix an algebraic closure F of F and let o : F' < C, be an F-embedding.
All the objects that we shall define later on depend on o, but we will omit this dependency to
simplify the notations.

Let F, v := o(Fv)F,, which will play the role of the field Fx v, and let S, = C} x Z, x Z/|F |,
which is a subgroup of the group of C;-valued characters on F}*. As done in Proposition 1.4.4,
we can prove that I, v is a totally inseparable extension of F,, with degree less than or equal to
p! (the maximal power of p that divides h*(A)). Since this extension is totally inseparable the
residue field of F), v is still F, and so the cyclic group Z/|F;;| acts on the multiplicative group
of this residue field by raise to the power. Now we take an element s, = (z,y,j) € S, and
we define the exponential I*» € C) for every fractional ideal I € Z coprime with v. We recall
that the element I°1 € Fy is a root of the polynomial X¢ — a where « is the unique positive
generator of I¢ (here s; is the element (7, 1,1) € Ss) and so the valuation at v of I*! is equal
to zero. This implies that the element o(/°) is a unit in F, v and so can be written uniquely

as a product
o(I) = w(I)(I),

for some w(l) € F) and (I), a 1-unit of F, . With the notation above it is easy to check that
the map which sends I to w(I) is a group homomorphism w : Z, — F)* defined on the group Z,
of the fractional ideals coprime with v.
Finally if we take s, = (z,y,j) € S, and I coprime with v we can define

1% = g8, (1) ()Y,
We can embed Z in S, via the map j € Z — s, ; = (1,,7) € S,. One can show that this v-adic
exponential satisfies the following properties (analogous to the ones of the exponential defined
is Section 1.4)
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Proposition 1.8.1. For every I,J € T coprime with v, one has
o [Svttv — [Sv [t for every s,,t, €S,.
o (IJ)% =1I°"J* for every s, €S,.
o ([®vi)svi = [5vii for every i,j € Z.
o [%vi =g (I%) for every j € Z. In particular I°3 is algebraic over F.

Proof. The proofs of the first 3 properties are similar to the analogous properties of the expo-
nential defined in Section 1.4 and so are left to the reader. For the last one we have

[5vi — w([)]([){/ — ([51)j — O.(Isj).

Definition 1.8.2. The v-adic Goss Zeta function is defined by

Glsy) =) a*= [ @-p)".

acel pFV,00
a>0 7
via

Now we want to obtain the function (,(s,) as the image of the Sickelberger series under an
appropriate map. This will be done for all the primes v # oo which are in S, so for the rest
of this section we will assume that v € S. Let f, be the degree of the extension F, v /F, and
denote by N, : I, — F)¢ the norm map. We fix (y, j) € Z, x Z/|F;{| and for every p ¢ S we
put

Wy (dp) = No((0); 1) () 7 .

In Lemma 1.6.2 we have proved that different primes correspond to different Artin symbols and
so W, i(¢p) is well defined.

Lemma 1.8.3. For every (y,j) € Z, x Z/|F)| the map ¥, ; extends to a continuous ring
homomorphism Z[|Gs][X] — C,[X].

Proof. Let 7 =[] gf)gp € Wg. By the proof of Lemma 1.6.3 we have that the map that sends
[Ip™ to Hgbg” is injective on the set of fractional ideals with support outside of S. Then we
can put W, ;(7) := [[ ¥y ;(dp)"* without ambiguity. Now since Wy is dense in Gg we have that
v, ; extends in a unique way as a continuous map defined over Gg because C, is complete. [J

We have the following

Theorem 1.8.4. Let Og(X) be the Stickelberger series and ¢, the v-adic Goss Zeta function.
If we assume v € S then for every s, = (x,y,7) € S, we have

Uy, (05(X)) () = Gu(=s) J] (1—9p*).
pesS
p751j7oo
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Proof. Le p be a prime not in S, n the exact order of [p] in Z/P; and « a positive element such
that p" = («). We have that (p")*! = («)®* = « and so

w(p)*(p)y = o(p™)" = 0(a)” = a,

which implies that (p)7 = (@),

From now on with proceed like in Theorem 1.6.4. Write n = p"n’ with (p,n/) = 1 and let u be
the unique 1-unit whose n’ power coincide with {«),. Since n’ is coprime with p, we have that
w is in F, and that (p), is a root of the polynomial a(X) = X?" — u € F,[X]. Let b(X) be the
minimal polynomial of (p), over F,. Since (p), is a root of a(X) and it is a totally inseparable
element, it must be a(X) = b(X)pl and b(X) = X?" — v, where I, k and v satisfy h = k + [ and
u = v?'. If we denote with K the extension of F, obtained by adding (p)y, we have that K/F),
is an extension of degree p* and F,v/K has degree f,/ p¥. Therefore

N ((phe) = Nic o ()} /7" = 05" = (o)
From this we obtain that W, ;(¢p) = (p) “w(p)™ and

T, (O5(X) = (1—%,j<¢;1>xdp)‘1
¢

) (O,

&

-
nn

=3
n

and so

Wy (0s(X) (@) = [T (1- t)epa®)”

pEs
= I (- mteeye®) " T (1 ewirya®)
pF#£V,00 pes
pFv,00
= Gs) [T -9
peS
p#l/,OO

1.9 Properties of v-adic Zeta Function

In this section we will investigate some properties of the v-adic Zeta function and in particular
its values at integers.
For each pair of non negative integers j and n, we define

>, o
a>0
dega=n

= an<J>Xn

n>0

and the power series

whose coefficients lie in Fy/.
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Lemma 1.9.1. The series Z(X,j) is actually a polynomial of degree less than or equal to
doo +9—1+ 5]

Proof. Fix a non negative integer j. We prove that when n is bigger than doo + g9 — 1 + {q%lj,
Sn(j) is equal to 0. To prove this we shall apply the same tools used to prove the convergence
of the Goss Zeta function.

Let Cp, for h = 1,...,e be the classes of Z/Py and, for each h, fix a representative a; € Cj.

Now define
. . Sq ]
Sn(Ch,j) = Z a¥ =a; - Z o’
a>0 acPy
deg(a)=n aap>0
acCh, deg(a)=n—deg(ay)

Clearly S,,(j) is the sum of the S, (C}, j) (as h varies) so it is enough to show that each of them
is equal to 0. Fix an index h and let n, = n—deg(ay). We will consider only indices h such that
doo divides ny, otherwise the thesis is trivial. Just like in Section 1.5.1 we denote with X the set
of positive elements « such that aap is an integral ideal and whose degree is equal to np, and
with £(D;) the Riemann-Roch space associated to the divisor D; = div(ay) + (np/dec — 1)00.

The additive group of £(D;) acts by traslation on X and the action is free, so we can decompose
t

X as the union of its orbits under this action: X = U X;. Fix a representative x; € X, for each

=1
orbit. Then we have

Sn(Ch, j —ahz Z u—l—xﬂ—a le Z (w—I—l)j.

I=1 ueL(D1) wez, ' L(D1)

Observe that veo(x;) = —np/do and veg(u) > 1 — np/ds. This implies that v (w) is positive
for every w € x; *£(Dy) and that the vector space x; ' £(D;) satisfies the hypothesis of Lemma
1.5.4 part (a). Therefore the inner sum is zero when j < (¢ — 1)y = (¢ —1)(n — g+ 1). O

The polynomials Z(X, j) are strictly related to the special values of the Goss Zeta function
since we have that Z(1,j) = (a(—s;) for any j € N.

We shall also need some v-adic version of this polynomials, which will be used to interpolate
the special values of the v-adic Goss Zeta function.

Definition 1.9.2. The v-adic L-series is defined by

L(X,y,w) = | > w@ia)y|x",
n>0 | a>0, via
deg(a)=n
for any y € Z,, and i € Z/|F}|.

From the definition one immediately has

Proposition 1.9.3. For every s, = (x,y,1) € S, we have

Ly(m,y,wi) = G(=s0). (1.9)
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Proof. We recall that for a fractional ideal a coprime with v we have a* = w(a)(a)y2%® and
S0

n>0 \ a>0, via

= E asV

acel
a>0, via

= Cu(_su)'
O

The following theorem provides a link between this power series and the polynomial Z (X, j)
for some particular values of ¢ and j. It also shows that for these values of i and j the series
L,(X,y,w") is actually a polynomial.

Theorem 1.9.4. Assume that v € S.
(a) Leti and j be two non negative integers, such that i =j (mod ¢% —1). Then
Ly(X,j,w') = Z(X,j)(1 = v X¥).
In particular L,(X,j,w") in a polynomial.
(b) For every y € Z,, we have that
L,(X,y,w') = Z(X,i) (mod7),
where U denotes any prime of F'y which lies above v.

Proof.  (a) Fix a prime p different from v and oo and consider f,(X) =1— w(p)i(p)) X% as an
element of F, v[X]. Clearly f,(X) is invertible since f,(0) =1 and its inverse is given by

KOO =3 (we) eix®)".

n>0

Let
A= I K&

deg(p)=n

I

n>0

then the product
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is convergent with respect to the X-adic topology.

The map that sends every ideal I coprime with v to the 1-unit (I), is multiplicative and
the same is true for the map w defined on this set of ideals. This fact, together with the
unique factorization of ideals in A, allows us to conclude that the limit of the product

above is equal to L, (X, j,w"), i.e.,
, o -1
LX) = T (1-wmiext) . (1.10)
p#v,00
In the proof of Theorem 1.8.4 we have seen that this product is equal to
o -1
i (0s(X)- [[ (1-w®ip)ix®)
pes

p#oo’y

Since i = j (mod ¢ — 1), we have that w(p)’ = w(p)’ and so
Wiy ) = w(p) (p)), = wp) (p)), = o (b)) .
We recall that p*! lies in Fyy and that o is the identity on this field, so
Wjildy ) = v = m P ) = Wiy Hm
From this equality if follows that

Wy 05(x) = [T (1- it hx®) "

pES

= 11 (1 - \I/j(gb;l)ﬂ'*_jdedp)_l (1.11)
pés
= ¥, (0s(r,7X)) .

We have proved that

Lo(X,jw) = ¥ (0s(m7 X)) - ] (1 - pSfXdP)il . (1.12)
peSsS
p;éOO,l/

Since
Z(X,5) =Y Xt =% "1 3" (a)l | (mIX)",
acel n>0 a>0
a>0 dega=n

the same arguments used to obtain (1.10), applied now to Z(X, j), allow us to write

2(x.5) = [T (1~ Gemix)™) . (113)

poo

33
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34

The product (1.13) can be written as

0 (@S(ﬂ';jX)) . H (1 _ ijXdp>_1 .

pes
poo

Thus, joining together (1.12) and (1.13), we obtain that

L,(X,j,w') = Z(X,j)(1 —v5 X%,

(b) For every ideal a we have that

Hence

L,(X,y,w')

n>0 \ a>0, via
dega=n

L,(X,i,w")

(mod 7)

Z(X,i)(1 — viXW)
Z(X,i) (mod D).

X’I’L

X" (mod D)

(mod 7)



Chapter 2

Stickelberger series and class groups

2.1 Introduction

In this chapter we will apply the results of Chapter 1 to the study of class group of degree zero
divisors. We will first introduce the Hayes modules and use them to build an Iwasawa tower.
Then we will study the behaviour of the p-part of the class groups of degree zero divisors of the
fields in the tower and of their inverse limit taken with respect to the norm maps. The study of
these objects is one of principal part of Iwasawa Theory. The Iwasawa Main Conjecture relates
the characteristic ideals of Iwasawa modules to the v-adic L-functions, thus providing a link
between the algebraic and the analytic side of the theory. A version of the Main Conjecture for
Zg—extensions of global function fields was proved by R. Crew in [Cre] using mainly geometric
tools and, later, with a different approach by Burns in [Bur|, with the contribute of Kueh, Lai
and Tan ([KLT]). The Iwasawa extensions we will consider in this chapter are Z;°-extensions,
thus the inverse limit of the p-part of the class groups turns out to be a module over a non-
Noetherian Iwasawa algebra and, unlike the classical case, we do not have a structure theorem
for finitely generated torsion modules like [Was, Theorem 13.12] and so we are forced to study
its Fitting ideal instead of the characteristic ideal which cannot be defined in this setting. For
an alternative approach to this problem the reader may look, for example, at [BBL], where the
authors study Z;°-extensions of global function fields using Zg—ﬁltrations.

Through this chapter we will assume that do, = 1 and that p does not divide h°(F). Under
these assumptions we have the following simplifications:

e The residue field Fy, coincides with the field of costants IF,.
e Every principal ideal admits a positive generator.

The class number of the ring of integers A is equal to h°(F).

The field Fi v coincides with the field Fi.

For every a € F: deg(a) = —vs(a).

® Ty = Moo



2.2 Hayes extensions 36

2.2 Hayes extensions

Let H 4 be the Hilbert class field of A, i.e., the maximal abelian extension of F' which is unramified
at every prime and totally split at oco. Obviously we have that H4 is a subfield of Fg for any
choice of the set S. Since the prime oo has degree 1 we have that the constant field of H4 is F,.
It is a well known fact from class field theory that Pic(A) ~ Gal(Ha/F) and the isomorphism
is provided by the Artin reciprocity map. In particular the class of a fractional ideal a is sent
to to its Frobenius in Gal(H 4/F') and, in case the support of a is disjoint from S, this is simply
the restriction of its Artin symbol ¢4 € Gg.

Definition 2.2.1. We denote with H4{7} the ring of skew-polynomials in the variable 7 with
coefficient in the field H4. A Hayes module is an homomorphism of F-algebras ® : A — H {7},
such that:

(a) the image of A is not contained in H 4;
(b) for every a € A the coefficient of degree 0 of &, := ®(a) is equal to a;

(c) for every a € A the degree of ®,, seen as a polynomial in 7, is equal to deg(a) (i.e., ® has
rank 1);

(d) for every a € A, the leading coefficient of ®, is sgn(a) (i.e., ® is sgn-normalized).
For details on the Hayes module the reader may refer to ([Gosl] Chapter 7, [Hay] and [Shu]).

Remark 2.2.2. In the general theory a Hayes module is defined over the narrow class field HX,
i.e., the abelian extension of F' that is naturally isomorphic to Pict(A) := Z/P4 by class field
theory. In our context we have a simplification because the fields H 4 and H:{ coincide since the
degree of the prime at infinity is equal to 1.

We use a Hayes module to define an action of A on the algebraic closure of F. For every
a € Aand z € F we put a -z := ®,(z). This action defines a structure of A-module on F.
If we take an integral ideal a of A we can consider the left ideal of Hs{7} generated by all
the elements ®, with a € a. Since Ha{7} is right-euclidean, we have that every left ideal is
principal. We denote by ®, the unique monic generator of this ideal.

Definition 2.2.3. An element = € F is said to be of a-torsion if ®,(x) = 0. Since ®, is a non
zero polynomial (for a # 0) we have that the set ®[a] of all elements of a-torsion is finite.

Proposition 2.2.4. Let a # 0 be an integral ideal and let ®[a] be the a-torsion of ®. Then
(a) ®la] is an A/a-module;
(b) ®la] ~ A/a;

(c) if A\q is a generator of ®la] as A/a-module, then every other generator is of the form ®y(Aq)
for some b € (A/a)*.

We use the a-torsion of the Hayes module ® to define extensions of the field F' analogous
to the cyclotomic extension of Q. We denote by F'(a) the extension of H,4 generated by ®[a],
ie., F(a) :== Ha(®[a]). Equivalently this extension can be obtained simply by adding an A/a-
generator of ®[a] to H4.

The following theorem summarizes the properties of the Hayes extension contained in [Gosl]
Proposition 7.5.4, Corollary 7.5.6, Proposition 7.5.8 and Proposition 7.5.18.
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Theorem 2.2.5. The following hold
(a) F(a) is a geometric, abelian Galois extension of F';

(b) Gal (F(a)/Ha) ~ (A/a)* via an isomorphism which sends a € A to the element o, €
Gal (F(a)/Ha) which verifies 04(\) = ®o(N) for every X € ®lal;

(c) the only ramified primes in F(a)/H4 are the primes of Hy dividing a and oo;

(d) the inertia group of co coincides with its decomposition group and is isomorphic to to F;
via the isomorphism in (b);

(e) if p™ is the exact power of p dividing a, then the inertia group of p is isomorphic to (A/p™)*
via the isomorphism in (b);

(f) if I is an ideal of A coprime with a and oy € Gal (F(a)/F) is its Artin symbol, then we
have that or(\) = ®1(\) for every A € ®[a].

Now we fix a prime p for the rest of the section and we set S = {p, co}. For each non negative
integer n we put F,, := F(p"*!) and G,, = Gal(F,/F). From point (b) of Theorem 2.2.5 we
deduce that F,/Fy is a p-extension and that y/F is an extension of order h°(F)(¢% —1). Since
we have assumed hY(F) coprime with p we can decompose G,, as the product Go x I, where
Iy, = Gal(F,/Fy) is a p-group and G is the part of order coprime with p.

The fields F;, form an Iwasawa tower: if we denote with F, the union of all the fields F},, with

Goo 1= Gal(Fiso/F) = lim Gy,
n
and with
Iy := Gal(Fs/Fy) = lim I,
we have that I's, >~ Z3°. Observe that the only primes ramified in Fi./F are p and oo and so

F is a subextension of Fg. The following diagram gives a recap of the fields and Galois groups
introduced above.

Gg

2.2.1 Primes in Hayes extensions

Now we focus on the behaviour of the primes in these extensions: as we have already observed
any prime different from p and oo is unramified in all the extensions.
The prime p is unramified in H4/F and totally ramified in F,/H 4, in the sense that each prime
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of Hy4 lying above p is totally ramified. Since F,/F is an abelian extension we have that all the
primes of H4 lying above p have the same inertia group (isomorphic to Gal(Fs/Hy4) ) in Geo.
The prime oo is totally split in H4/F, then it ramifies (not totally in general) in Fy/H 4, with
inertia group isomorphic to Fy, and then it is again totally split in the remaining extensions.

2.3 Fitting ideals for Tate modules

Fix an algebraic closure F; of F, and denote with + the arithmetic Frobenius, which is a topo-
logical generator of the pro-cyclic Galois group Gy := Gal(F,/F,). For every field L, we denote
by L% the compositum of L with F,. In the case of the field F}, (resp. F.) we have that F2"
(resp. F2) is a Galois extension of F', whose Galois group is isomorphic to G, x G (resp.

G« x Gr) since the constant field of F}, (resp. Fi) is .

2.3.1 The modules H,(v)

For every prime v of F' there exists only a finite number of primes of F%" that lie above v,
because the extension F,,/F is finite and F?"/F, is arithmetic (we recall that in an arithmetic
extension every prime splits in finitely many places). The following proposition tells us the exact
number of primes lying above v.

Proposition 2.3.1. The number of primes of F" lying above v in equal to
e d,-[F,: F|ifv#p,o0;
e dy,-hO(F) if v is equal to p;
o WO(F)-q"% . (¢% —1)/(q— 1) if v is equal to cc.

Proof. For every field K and every positive integer ¢t we denote with K(¢) the compositum of
K with F:. One can see that F},(t) is the compositum of the two fields F;, and F'(t) which are
disjoint over F', since F,/F is a geometric extension, F'(t)/F is arithmetic and [ is the costant
field of F,(t). We also oberve that F;¥" is the union of all the fields F,(¢) when ¢ varies over all
positive integers.

Fix a prime ¥ of F,(t) which lies above v and let e be the ramification index of 7 over v and f
be its inertia degree. Clearly these two numbers do not depend on the choice of 7 since F,,(t)/F
is an abelian extension. We have also that e does not depend on ¢ since F,(t)/F;, is arithmetic.

Now we have Fy F|[F, .| deg()
=Fy:F,| = 7o gl g ©—¢. egy.
F=1 ) [Fo, : Fy] d,

The degree of the extension F,(t)/F is equal to [F,, : F| -t so, if we denote with r the number
of primes of F,(t) lying above v, from the Kummer formula we have

~deg(v)

[Fp:Fl-t=r-e-f=r-e-t 1

which can be re-arranged to obtain

_dy - [Fy F
~ e-deg(p)
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When the integer t is big enough we have that the degree of 7 is equal to one. So to obtain the
thesis it is enough to recall that every prime different from p and oo is unramified if F,,/F, that
for the prime p the ramification index in equal to [F}, : Ha] = [F,, : F]/h°(F) and that for the
prime oo the ramification index is equal to [Fy| = ¢ — 1. O

Before going on we recall here the definition of Fitting ideal of a finitely generated module.
For an in-depth discussion the reader may refer to [Nor, Chapter 3] or the appendix of [MW].
Let R be any commutative and unitary ring. For our purpose R will be one of the rings W[[',]
or W[I'][GF] where W is an appropriate local ring, but we give here the general definition. Let
M be a finitely generated module over M and fix a set of generators eq,...,e,. A relation vector
between the generators is an element a = (ay,...,a,) € R" such that > a;e; = 0. A matriz of
relations is any ¢ X r matrix, with ¢ > r, whose entries are in R and whose rows are relation
vectors.

Definition 2.3.2. The Fitting ideal of the finitely generated R-module M is the ideal generated
by the determinants of the r x r minors of all the matrices of relations of M. It will be denoted
by Fittg M.

We want to point out that here we have called Fitting ideals what the author of [Nor| refers
to as 0-Fitting invariant of M.

Remark 2.3.3. e [t may appear that the definition above depends on the choice of the set
of generators {e;}, but it can be proved that the Fitting ideal does not change when we
take a different set of generators.

e It is easy to check that we can limit ourselves to determinants of the r x r matrices of
relations.

e One can prove that the Fitting ideal is contained if the annihilator of the module. Thus
the definition appears interesting only for torsion modules.

We denote with H,,(v) the Z,-free module generated by the set of primes of F){" lying above
v. Let I,(v) C Gy, be the inertia group of v: we have that H,(v) is also a free Zy|G,,/I,(v)]-
module of rank d,. Moreover there is a natural action of the group Gr on H,(v) and we are
interested in studying the structure of H,(v) as a Zy|[G,][GF]-module.

For v € {p,00} we will denote by Fr, any lift to G,, of the Frobenius map that belongs to
Gy /I, (v). For the prime oo the inertia group I,(co) is contained in Go and does not depend
on n, so we shall simply denote it with /... Since the decomposition and inertia groups of oo
coincide, we can choose Fro, = 1. The same choice can be done for the prime p if and only if the
prime p is totally split in H 4. For all the other primes we simply denote with Fr, the Frobenius
map in Gy,.

Definition 2.3.4. The Fuler factor at v is
ev(X) :=1—Fr,' X% € 7,[G,][X] .

1

Since we will also need to specialize the variable X at y~', we put

e, = e, (v 1) =1-Fr, 'y~ € Z,[G,][Gr].-
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The statements of [GP2, Lemmas 2.1 and 2.2] adapted to our setting translate into the
following

Lemma 2.3.5. For v € {p,o0} we denote with Aug,,, the augumentation ideal of Z,|Gy][GF]
associated to the inertia group I, (v), i.e., the ideal generated by the elements of the form T — 1,
with 7 € I,(v). Then

(a) if v #p,00, then Fitty, 1 11ce] (Hn(v)) = (ey);
(b) Fitth[Gn]lIG]F]] (Hn(00)) = (eco; AUgoom);

(¢) Fittz, c)16:] (Hn(p)) = (e, Augyn).

From this lemma and the fact that the H,(v) are free Z,|G,,/I,,(v)]-modules, we have the
isomorphisms

o if v£p 00
Hy(v) ~ Zy|Gn][Grl/(ev) ;

o if v =00

H,,(00) = Zp[Go/Fg x T'n][Grl/(€sc) ;

o ifv=p
Hy(p) = Zp[Pic(A)|[Gr]/(ep) -

2.3.2 Complex characters

Let x € Hom(Go, C*) be a complex character for Gy. The character x takes values in the set of
roots of unity of order |Go| = h°(F)(¢% — 1) and so we need to consider modules over the Witt
ring W = Zp[(], where ¢ denotes any primitive root of unity of order |Gp|. Recall that we are
assuming (|Gol,p) = 1, we put

ex =7 > xlg")g € W[G

for the idempotent associated to x. For any W|[Gg]-module M, we denote its x-part by M (y) :=
exM. If M is a Zy[Gpl-module we first turn it into a W[Gp]-module by tensoring with W over
Zy, and then we consider the y-part of this tensor product (all this will often be tacitly assumed
and forgotten in the notations). We also recall that W is a flat Z,-module and so the functor
W ®z, — is exact in the category of Z)-modules. Finally note that if the action of Gy is trivial
on M, then

W &gz, M if x =Xxo,

M(x) =
0 if X # Xo -

Definition 2.3.6. Let x be a character of Gy. We will distinguish 3 types of characters:
e x is said to be of type 1 if x (Iso) # 1;
e x is said to be of type 2 if x (I) =1 and x (Gal(Fy/Ha)) # 1,
e Y is said to be of type 3 if x (Gal(Fy/H,)) = 1.

Among the characters of type 3 there is the trivial one which will be denoted by xg.
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2.3.3 The theorem of Greither and Popescu

Now we can start our computations: since do, = 1 and we have chosen Fro, = 1 we have that
oo = 1 — 771 From Lemma 2.3.5 we have that H,(c0) ~ Z,[Go/I x I'y] and so

0 if x is of type 1,
Hn(o0)(x) = (2.1)
WIl,] otherwise.

For the prime p we have H,,(p) =~ Z,[Pic(A)]|[Gr]/(1 — Fr;lfy_dp) and so we have the following
exact sequence

(1 = Fry 'y )2, [Pic(A)|[Ga] — Zy[Pic(A)|[Gz] — Ha(p). (2:2)
We can tensor the previous exact sequence with W and multiply by e, to obtain
ex(1— Fry 'y =)W [Pic(A)|[Gs] < exW[Pic(A)][Ge] - Ha(p)(x) - (2.3)

If we observe that e, (1 — Frp_lfy*d") =(1- X(Frp_l)fy*d") ey and e, W[Pic(A)|[Gr] = W[GF],
we can conclude that

0 if x is of type 1 or 2,

Ho(p)(x) =~ (2.4)
WIGr]/ (1 - X(Frp_l)v_dp) otherwise .

Now consider the group of divisors Hy(c0) @ H,,(p) which is the free Z,-module of divisors
of F?" whose support is contained in S. We denote with D,, its subgroup of divisors of degree
zero, i.e., the kernel of the map

deg : Hy(00) ® Hy(p) = Zp,

and with D, () its x-part. Since there is no action of G on Z, we have that when y is not the
trivial character, D, (x) is simply the sum H,,(c0)(x) & Hn(p)(x), i.e.,

0 if x is of type 1,
D, (x) =< WIL,] if  is of type 2, (2.5)
WL, @ W[Gr]/ (1 - X(Frp_l)'y*dp) if x is of type 3 and x # X0 -

Let X, be the projective curve defined over F, and associated with F,, and Jac(X,,)(F,)
the set of Fq—rational points of its Jacobian. We recall that for each abelian group M, the
multiplication by p defines a surjective map M[p"*1] — M[p"] from the p"*!-torsion subgroup
of M to the p™-torsion subgroup. Omne can use this maps to define a projective limit which
is called the p-adic Tate module of M and we will denote it with T),(M) (note that the Tate
module depends only on the p-part of M). For more details the reader may refer to the classical
work of Tate [Tat] or [Mum, Chapter IV].

We will denote T,(F,) := T, (Jac(X,)(Fy)) the p-adic Tate module of the Jacobian of Xy,
defined over the algebraically closed field F,. Our task is to study the structure of T,,(F},) as a
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Galois module over Z,[I',|[GF]. More precisely we will study its x-part when x is of type 1 or
2.

Following the definitions and the properties given in [GP1, Section 2] we consider the
Deligne’s Picard 1-motive Mg associated to the field Fj;" and to the set of primes of Fj"
which lie above the primes of S. We can take the empty set as auxiliary set of primes in the
definition of Mgy because we are only interested in the study of the p-adic Tate module of the
Jacobian (see [GP1, Remark 2.7]). In what follows we will simply denote the Deligne’s Picard
1l-motive with M,,.

The multiplication by p induces a surjective map on the p"-torsion of M, for every positive
integer m and so we can define the p-adic Tate module of M,, as

Ty (M) = im M, [p"].

m

We denote with 0,,(X) (resp. © (X)) the projection of the Stickelberger series ©g(X) to
Z[Gp|[X] (resp. Z[Goo][X]), which is easily seen to be the Stickelberger series associated to the
extension F,,/F (resp. Fuo/F) since the set of ramified primes in this subextension is exactly S.

In [GP1, Theorem 4.3] the authors prove the following

Theorem 2.3.7. One has

Fitty ¢ 1ce] Tp(Mn)) = (©n(y7h) -

Note that evaluating the Stickelberger series ©,(X) at X = y~! makes sense because of
Proposition 1.3.4.

2.3.4 Fitting ideals for Tate modules: finite level

In [GP1, after Definition 2.6] the authors provide the following exact sequence
0 — T,(Fn) — T,(My) — D,, — 0. (2.6)

For every character xy we denote by O, (X, x) the only element of WI',][X] that satisfies
On(X, x)ey = 6,0 (X).

Theorem 2.3.8. Let x € éB be a character not of type 3. Then we have

Fittw e, il (To(Fa)00) = (04(:71,0)) |

where we put
On(v7Hx) i x is of type 1,
OL(y Ly = _
n(’Y X) @n(7 1’X)
11—yt

Proof. From Theorem 2.3.7 we have that the Fitting ideal of T,,(M,,) over the ring Z,[G,][GF]
is the ideal generated by ©,(y~!). We want to use this information to determine the Fitting

ideal of T,(My,)(x) over the ring WI',,][GF].
Since Zy|Gy|[Gr] is a Noetherian ring and T,,(M,,) is finitely generated we have a presentation

if x s of type 2.

Zp|GnlGr]®" — Zp| Gl [Gr]®* — Ty (M),
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with r > s because T),(M,,) is a torsion module. Note that we cannot assume, in general, that
« is injective. The map « can be identified with a r X s matrix whose entries are in Z,|G,][GF]
and the ideal generated by the determinants of the s X s minors of « is (@n(v_l)). Now we take
the y-part in the previous presentation to obtain

W L] [GE]® —= WL, [GE]®* — Tp(Ma) (),

i.e., a presentation for 7),(M,,)(x) as a module over W|[I',,|][GF]. Clearly the ideal generated by
the determinants of the s x s minors of «, is generated by €,0,(y™!) = 0, (y71, x) and it is
the Fitting ideal of T),(My,)(x) over WI',,][GF].

We have already observed that tensor product W ®z, — is an exact functor and so it preserves
exact sequences. The same happens when we take the x part and so, from (2.6), we obtain

0 — Tp(Fn)(X) — Tp(Mn)(x) — Dn(x) — 0. (2.7)

e If x is of type 1, from (2.5) we have that D, (x) = 0, thus

Tp(Fn)(x) = Tp(Mn)(x)
and so the thesis is proved because in this case @%(7*1, X) =60.(v"1, x).

e If y is of type 2, from (2.5) we have that D, (x) = W[[,] ~ W[T,][Gr]/(1 —~7!) which is
a cyclic W[I',,][Gr]-module. This allows us to apply [CG, Lemma 3] to the previous exact
sequence and to obtain

(1 =7 DFittyir, jce (To(Fa) (00) = Fittwir,jiee (Tp(Mn) (X)) = (On(v7",2)) -

O

When Y is a character of type 3 things get more complicated, since D, () is not cyclic and
so we cannot apply [CG, Lemma 3| as we did in the previous theorem. We shall consider those
characters in Section 2.5.

2.3.5 Fitting ideals for Tate modules: infinite level

Until now we have studied the Galois module T,(F},) for a fixed integer n. Now we will consider
two indices n > m > 0 and study the relation between T),(F},) and T),(F,).

We put I'?', = Gal(F,,/F,,) and we recall that this extension of fields is totally ramified at every
prime that lies above p and unramified at every other prime (moreover the number of primes
in F,, above p is the same for any m and coincides with the number of primes of H4 lying
above p). We denote with C,, the p-part of the class group of degree zero divisors of F%" and
we recall that T,(F,) = Hom(Q,/Zp, Cy,). Thus the norm map from C,, to Cy, induces a map
N}« T,(F,) — Tp(Fy,) and likewise the inclusion map induces a map )" : Tp(Fy,) — Tp(Fp).
We define

TP(FOO)<X) = hinTp(Fn)(X) )

n

where the limit is taken with respect to the norm maps. The limit T),(Fu)(x) is a module over
the profinite (non noetherian) algebra Ap := W[I'w][GFr]. Our next goals are to prove that, for
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characters of type 1 and 2, this module is finitely generated and torsion over Ag and to compute
its Fitting ideal.

There is a natural Galois action of I'}}, on T,(M,,) and an inclusion map ;" : T,,(M,,) —
T,(M,,) that satisfies Tp(My)'m = i (T,(M,,)) (see [GP1, Theorem 3.1]). There is also a
norm map N} : Tp(My,) — T,(M,y,) such that the compositum N} o 4" is the multiplication
by [Fy @ Fi).

We have one last norm map defined from D,, to D,, and inclusion map from D,, to D, whose
compositum in again the multiplication by [F), : F,].

All this norm and inclusion maps defined on T, (F,),T,(Ma,) and D, are compatible with the
exact sequence (2.6) in the sense that the following diagram is commutative for every index m
and n.

00— T, (Fy) T,(M,) Dy, 0
N ||, N ||, N ||
0 ——T,(F) T, (M) Dy, 0

This diagram suggests to investigate the behaviour of the norm map on T,(M,,) first and
then move to T),(F;,). We denote with Ir» the augumentation ideal of WI',] associated to the
subgroup I',. The next lemma follows immediately from Theorem 3.9 of [GP1].

Lemma 2.3.9. The norm map N} : T,(M,) — T,(My,) is surjective and its kernel is
Itn Tp(My,).

Proof. From [GP1, Theorem 3.9 part (2)] we have that T},(M,,) is free over Z,[I'1,] (because I'};,
is a p-group). Thus A
H' (I}, T,(M,;)) =0 for every integer i,

where we denoted by H {(T™ @) the i-th group of Tate cohomology.
Specializing the previous equality at ¢ = 0 we obtain

Ny, (Tp(Mn)) = Tp(Mn)F?" in (Tp(Mm)) .

In a similar way we obtain the second part of the lemma by specializing at i = —1. O
Now we can study the norm map on T),(F,).

Proposition 2.3.10. Let x be a character of type 1 or 2. Then the norm map N} : T,(F,)(x) —

Tp(Fm)(x) is surjective and its kernel is Irn Tp(F)(X).

Proof. Consider the exact sequence (2.7). If x is a character of type 1 we have that T),(F,)(x) ~
T,(My,)(x) and so the thesis is simply a restatment of the previous lemma (recalling that taking
the x-part of a module is an exact functor).
Now assume Y is of type 2 so that D, (x) ~ W[I';,] and note that this is a I'}},-cohomologically
trivial module. Since T),(M,,)(x) is also cohomologically trivial by (the proof of) [GP1, Theorem
3.9], we have that

H (T, T,(F,)(x)) =0 for every i € Z. (2.8)
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Specializing at ¢ = —1 we obtain

ker{ N7, : Ty(F)(X) = Tp(Fn) (00)} = I, Tp(Fn) ().

To prove surjectivity of the norm map we take I'}' -invariants in (2.7) to obtain
0 = Tp(F) ()" — Tp(Mm)(x) — Da(x)'™ — H' (T, T (F) (x)) = 0.

Note that D,,(x)'m ~ W[l',]'™m ~ WI',,] and compare the previous exact sequence with (2.7)
with m in place of n. We readily get that T),(F,)(x)'™ ~ T,(F,)(x). Now specializing (2.8) at
1 = (0 we obtain

Ny (Tp(Fn) (X)) = To(Fa) ()" = T(Fn ) (X) -

We are now ready to state our first main theorem.

Theorem 2.3.11. Let x be a character of type 1 or 2. Then T, (Fx)(X) is a finitely generated
torsion Ap-module.

Proof. Fix an index m, and denote with J,, the augumentation ideal of W[I'w] associated to
the subgroup Gal(Fx/Fy,). In particular we have

We also put B
jm = A]F ®W[[Foo]] jm

for the corresponding ideal of Ar. Now Proposition 2.3.10 yields T),(F)(x) = N (Tp(Fn)(x))-
Applying the first homomorphism theorem and again Proposition 2.3.10 we also have that

N (Tp(Fn) (X)) = Tp(Fn) () /ker Ny, = Tp(F ) (x)/ Irn, Tp(Fn) (X)
thus
Tp(Fn)(x) ~ Tp(Fn)(X)/IF?nTp(Fn)(X) .

The previous equality holds for every n > m and so we have

Tp(Fn) (%) = Ty(Foo) (00 /I Tp(Foo) (%) = Tp(Foo) () /T Tp(F) (x) -

The module on the left is finitely generated over
W] [Gr] = Ar/Tm

and, since the ideals jJ;m form an open filtration of the profinite algebra Ap, we can apply the
generalized Nakayama Lemma (see [BH]|) and obtain that 7),(Fx)(x) is a finitely generated
module over Ay.

Now we define the element ©% (v, x) € Ar as

Oco(v™H,x) if x is of type 1,

@go(')/_l’X) = @oo(')’_l X)

] — if x is of type 2,
-7
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which is simply the inverse limit of the generators of the Fitting ideals of T,(F,)(x) over

W Lyn][GF] (computed in Theorem 2.3.8). At the finite level we have O (v, X)Tp(Fn)(x) =0
because the Fitting ideal of a module is contained in the annihilator. Taking the inverse limit of
the previous equalities we obtain ©4 (77!, X)Tp(Fso)(x) = 0 and so Tp,(Fuo)(x) is torsion. [

Now that we have proved that the module T),(Fu)(x) is a finitely generated torsion module
over A, we know that its Fitting ideal is well defined. With our second main theorem we
compute a generator of that ideal via an inverse limit process.

Theorem 2.3.12. Let x be a character of type 1 or 2. Then we have

Fittp, (Tp(Foo) (X)) = (9'&(7‘1&)) :

Proof. From the equality
(€ (v ) =tim (©(v, %)) = lim Fittyr, . (Tp(Fa) (X))

we reduce the proof to showing the equality

Fittap (Tp(Foo) (X)) = lim Fittywr, j1ce (Tp(Fn) (X))

We denote with N3 the projection T, (Fuo)(x) = Tp(Fm)(x). These maps are obviously com-
patible with the norm maps, in the sense that N, = N o N°°. Let ¢1,...,t, be generators of
T, (Fs)(x) over A, then we have that N2 (t1), ..., N5 (t,) generate T),(Fyy, ) (x) over WLy, |[GF],

since Ty, (Fm) (x) = Tp(Foo) (X) /ImTp (Foo) ()
Then for every integer n we have the following exact sequence

0 — K, — WL,][Gr]®" — T,(Fn)(x) = 0

where the map on the right is given by (wi,...,w,) — >, w;N5°(t;). We also have the exact
sequence at the infinite level

0— Koo — AF" — T,(Fso)(x) — 0.

The previous exact sequences fits into the diagram

0 Ky W] [Gr]®" Tp(Fp)(x) —=0
k2, o, N,
0 K W] [Gr]™" Tp(Fm)(x) —=0

where k]!, denotes the restriction of the projection 7 to the kernel K,. The kernel of 7}, is
(Irn W[T,][Gr])®", while the kernel of N7 is It T),(Fy,)(x) due to Proposition 2.3.10 and so
the map between these two kernels is surjective. The map =, is clearly surjective thus, by
the snake lemma, we have that £}, is also surjective and so the previous diagram satisfies the
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Mittag-LefHer condition which allows us to take the inverse limit. Comparing this limit with
the exact sequence at level infinity we obtain that

Ky = li<£n K,.
n
We denote with M, (K,;,) the set of r x r matrices whose entries are in W[Il',,|[Gr] and
such that each row, seen as a vector in W[[,|[GF]®", is in K, and with k", the natural
extension of the map K, — K, to My, (K;) = My, (Kp,). From the surjectivity of the
first map we clearly have that also the extension is surjective. From the definition we have that
Fittyr,,)16e] (Tp(Fm)(X)) is the ideal generated by all det M,,, with M, € M;x(Ky). Note
that, since the diagram above is commutative, we have that for each M,

my (det M,,) = det (k) (M,,)) .

In what follows we will use the same notation also for the infinite level.
Now if we take Mo, € M;x;(Koo) we have that 730 (det M) € Fittyr,,jjcep (Tp(Fm) (X)) and
so oy (Fitta; (Tp(Foo) (X)) € Fittw(r,.16s] (Tp(Fm)(x))- Since this is true for each index m we
have that

Fitta, (Tp(FOO)(X)) - 1121 FittW[Fm][[G]F]] (Tp(Fm>(X)) .

m

For the other inclusion we need a little bit more work and, in particular, we have to deal with
some topological properties of the rings WI',,|[Gr]. Essentially we will follow the arguments
of [GK, Theorem 2.1].
Each element of Fittyr,,jjce) (1p(Fm)(Xx)) may be written as a linear combination

Tm = _ Aidet M) (2.9)
=1

with A; € W[Tw][Gr] and MY € Myyr(Kpm). If we denote with 370 the matrix whose first

m

row is equal to the first row of M,(,fb multiplied by A; and whose other rows are all equal to the
corresponding row of Mg) we have that MS,? is in M, x,(K,,) and that det Mﬁf} = \;det Mq(fl')
and so it is not restrictive to assume that all the coefficients A; in the linear combination (2.9)
are equal to 1. One can also show that the number s of the terms in that sum may be chosen
independently from m: this follows easly from the fact that also the number of elements needed
to generate T),(F,)(x) (and T)(Fuso)(x)) can be chosen independently from m.

Now we put By, := M, (Ky)®® and define the non-linear operator ¢, : By, — W[y ][Gr],
by ém (My(,}), ceey Mf?) =) det Mr(,i) (as usual we define also an operator ¢ for the infinite
level). This operator is clearly continuous because of the continuity of the determinant (on By,
we put the natural topology induced from W(I',,][GF]). From what we have observed we have
that the image of ¢, is exactly the Fitting ideal of T),(F,,)(x). The map k], which we have
previously extended to M, x,(K,) can also be extended to B, and this extension fits into the
diagram
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Now take a sequence (T )men € im Fittyr, 1cs] (Tp(Fm) (X)), to prove the thesis we have to
«—

show that there exists an element by, € By, such that ¢oo(boo) = (T )men-

For each integer m we put Q,, = ¢,}(z,,). The topological ring WI',,][Gr] is a Hausdorff
space, thus finite sets are closed and, from the continuity of ¢,,, we have that also €2, is closed.
Furthermore, since B,, is compact (because WI',,][GF] is compact) and €, is contained in the
direct sum of s -2 copies of W[I';,][Gr], we get that also Q,, is compact. For each w, € Q,, we
have that

Gm (b (wn)) = 7 (Pn(wn)) = T (Tn) = Tm

thus the image of 2, under £}, is contained in £2,,,. This allows us to define a new set

Q= ) k() C Q.

n>m

From the compactness of €, and the continuity of &7 we deduce that the set €2, is not empty
and it is also compact. Clearly the image of Q,, under the map k7, is contained in Q,,, but we
will now prove that it is exactly €,,. Take an element @,, € €,,. From the definition we have
that there exists, for each n > m, an element w, € Q, such that £k (w,) = @W,,. Now fix a
positive index h and for n > m + h consider k] th (wrn) € Qpan as a sequence in n. Since Q45
is compact we have that it admits a convergent subsequence. We denote with @, the limit
of this subsequence, thus for each integer n > m we have defined an element @,, € £2,. Then we

have

kgz-i-h(wn) = kpmin tlggo kfz (wt)
t in the subsequence
=l (Ko k(@)
t in the subsequence
: t
= tllglo (km+h (wt))

t in the subsequence

= Wm+h -

The previous equality shows us that t,,x is in §m+h and, since w,, = k}ﬁ*h (Wman), we have
proved the surjectivity of the map karh. But we have also proved that the sequence w,, is
coherent and, since ¢, (W,,) = x,, for each integer m we have that Wy, := l(in W is in By and

Poo(Woo) = (Tm)meN - ]

2.4 Fitting ideals for the class groups

In this section we will investigate the p-part of the class groups of degree zero divisors of the
fields F}, in the Iwasawa tower and their inverse limit. As in the previous section we shall see
the inverse limit as a module over the non-Noetherian Iwasawa algebra A := W[I'] (which is the
quotient of the algebra Ay with respect to the augumentation ideal of Gy), we will prove that it
is finitely generated and torsion and we will compute its Fitting ideal as a limit of the Fitting
ideals at the finite levels.
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2.4.1 Fitting ideals for the class groups: finite level

Let C, := CI%(F,){p} be the p-torsion of the class groups of degree zero divisors of F},. In
particular the natural action of I';, makes it a module over the commutative ring Z,[I',]. Since
Ch, is finite its Fitting ideal over Z,[I',,] is well defined. Using the computation done for T;,(F},)(x)
we will be able to compute also the y-part of the Fitting ideal of W ®z, C,, over W[I',].
Denote with 7,,(F,, )¢, the quotient Ty, (F,)/(1—v~1)T,(F,). Note that the ideal (1—~71) of
Zp|I',][Gr] is the augumentation ideal of G (recall that Gy is pro-cyclic and v is the arithmetic
Frobenius, which is a topological generator) and so the action of Gy on T},(F},)g, is trivial.

Lemma 2.4.1. The module T,(F,)q; is isomorphic to Cy, as module over Zy|G,).

Proof. The proof of this lemma will be achieved by applying certain functors to some well known
exact sequences.
We start with the classical sequence

0—=2Zp—Qp—Qy/Z, =0
and apply the contravariant funtor Hom(x, C),) to obtain
— Hom(Qy, Cp,) — Hom(Z,, Cy,) — Ext'(Q,/Z,, C) — Ext'(Q,, Cp,) — .
Since Q, is a field and C, is finite we have that Hom(Q,, C,,) = Ext!(Q,, C;,) = 0 and so
C,, =~ Hom(Z,, Cy,) ~ Ext!(Q,/Zy, C). (2.10)

We recall that C,, is the p-part of the class group of degree zero divisors of F%", which satisfies
the equality T,(F,) = Hom(Qy,/Z,, Cy,). If we consider the multiplication by 1 —~~1 on C,, we
have the following exact sequence (where surjectivity on the right is due to Lang’s Theorem,
see, for example, [Ser, Chapter VI, §4]):

1—y

0 Ch Cy, Cy 0.

If we apply the functor Hom(Q)/Z,, *) to the previus sequence we get

177_1

- Hom(@p/Zp, Cpn) — Tp(Fn) Tp(Fn) - Eth(Qp/va Cy)

|

Ext! (Qp/Zp, Cr).

The group C), is a finite p-group thus Hom(Q,/Z,,C;,,) = 0 and since the costant field of "
is algebrically closed we have that C,, is divisible hence Extl(Qp /Zy,Cp) = 0. From the last
sequence we get

Eth(Qp/Zzn Cn) = T,(Fn) /(1 — ’7_1)Tp(Fn)

and combining this with (2.10) we obtain the thesis. O

As we have previously anticipated we want to use our computation of the Fitting ideal of
T»(Fn)(x), which is a module over W [I',|[GF], to compute the Fitting ideal of Cy,(x), which is
a module over W[I',,]. To do this we need the following general result on Fitting ideals.
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Lemma 2.4.2. Let R be any unitary ring and M a finitely generated torsion module over R.
Let I be any non trivial ideal of R and denote with 7 the canonical projection R — R/I. Then
we have

Fittp; (M/IM) = 7 (Fittp(M)).

Proof. Let m1, mao, ..., m, be a set of generators of M. Clearly the image T, of the elements my,
under the canonical projection M — M/IM is a set of generators of M/IM as a R/I-module
and so any relation between the generators of M determines a relation between the generators
of M/IM. Thus

m (Fittg(M)) C Fittg, (M/IM).

To prove the other inclusion we fix a relation between the generators of M/IM and prove that
it comes from a relation between the generators of M, i.e., let a1, a9,...,a, € R be such that

r

> w(an)mn =0 (in M/IM),
h=1

then ), apmy € IM and so there exist i1,49,...,4, € I such that

T T
Z apmp = Z TpMp,.
h=1 h=1

From the previous equality we deduce that the coefficients b, := aj —i;, forms a relation between
the generators my of M and we also have that this relation induces the original one between
the generators of M/IM since m(by) = m(ap). Thus we have proved the inclusion

Fittg/; (M/IM) C 7 (Fittg(M)) .
0

Now we are ready to compute the Fitting ideal of Cy,(x). Let m : W[I[',][Gr] — W]I',] be the
map that sends v — 1, since W[I',,| = W[I',][GF]/Ig, we have that this map is the canonical
projection. Thus, combining Lemma 2.4.1, Lemma 2.4.2 and the computations of Theorem 2.3.8
we obtain

Theorem 2.4.3. Let x € C/JB be a character not of type 3. Then we have

Fittyir, (Ca(x)) = (84(1,3))

where
O, (1, x) if x is of type 1,

0L (1,x) = -
n(1x) M if X is of type 2.
11—~ |v:1
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2.4.2 Fitting ideals for the class groups: infinite level

Now we consider the fields Fj, for different indices n. Let

Cx :=1imC,
—

n

where the limit is made with respect to the norm maps N} : C),, = C), with n > m > 0. Since
every group C, has an action of the Galois group I',, it turns out that Cy has a structure of
module over

Zp[T] = lim Z,, ).

n

We will also need to consider the maps ;' : €}, — (), which are the maps induced by the
immersions 4" : Div(F},) < Div(F,,) with n > m > 0. We recall that for a divisor D =" n,v
of i we have i7'(D) :=3_, >, e(w|v)w, where e(w[v) is the ramification index of w over v.
In particular one can see from the Kummer formula that deg (i)"(D)) = [Fy, : Fi] - deg(D), thus
the image of a degree zero divisor by the map ¢)* still has degree zero. We also observe that the
image of Div(F,,) by /" is contained in the subset of I']'-invariant elements of Div(F,,).
The following proposition gives us some information about the injectivity and surjectivity of the
maps N and ¢ on the class groups.

Proposition 2.4.4. Let Fy C K C E C Fy with E/Fy a finite extension.
(a) The norm map NE : CI°(E) — CI°(K) is surjective.
(b) The map if. : CI9(K) — CI°(E) is injective.

Proof. (a) Fix a prime v of K which lies above co and let B be the ring of elements regular
outside v. As we have observed in Section 2.2.1 the prime at infinity does not have inertia
in F,/F and so the degree of v is equal to 1. This implies that CI(B) ~ CI°(K).

Let C be the integral closure of B in E: there is a natural map CI°(E) — CI(C) which is
surjective because the extension E/K is totally split at v and so, again, every prime of F
which lies above v has degree equal to one. So we are in the following setting:

CI°(E) - CI(C) — CI(B) ~ CI°(K),

where the map Cl(C) — CI(B) is the natural norm map. To complete the proof we will
have to show that this map is surjective.

Let H(B) (resp. H(C)) be the Hilbert class field, i.e, the maximal abelian extension of
K (resp. F) which is unramified everywhere and totally split at v (resp. at the prime of
E which lies above v). By class field theory we have the isomorphisms Gal(H(B)/K) =~
Cl(B) and Gal(H(C)/E) ~ CI(C) induced by the Artin map. Now we observe that the
two fields £ and H(B) are disjoint over K because F/K is totally ramified at every prime
of K which lies above p and H(B)/K is unramified at every prime, thus we have the
canonical isomorphism Gal(EH(B)/E) ~ Gal(H(B)/K).

The restriction map

Res : Gal (H(C)/E) - Gal (FH(B)/E) ~ Gal (H(B)/K)
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fits into the following commutative diagram (from class field theory)

Cl(0) = Gal (H(C)/E)
Nl lRes
Cl(B) = Gal (H(B)/K)

and so the surjectivity is proved.

(b) Let G := Gal(E/K) and for every field L we denote with P, the set of principal divisors
of L. Taking the G-cohomology in the exact sequence

0 FX EX P 0 (2.11)

we obtain

0 F; KX Pg Hl(GaF;)H—Hl(G’Ex)H

— HY(G,Pp) — H*(G,Fy).

From Hilbert 90 we have that H'(G, E*) = 0 and, since G is a p-group we also have that
H'(G,F)) for every i > 1, thus H'(G,Pg) = 0 and the following exact sequence holds

0 Fy K> Pg 0.

If we compare this last sequence with the analogue of (2.11) for the field K we have that
PY = Pk.
Taking the G-cohomology in

0 —Pp —> Div)(E) —= CI°(E) —=0.
we obtain
0 ——P¢ = Px — Div'(E)Y —= CI°(E)¢ —= HY(G,PE) =0,

which fits into the following commutative diagram

0 Pk Div'(K) — CI°(K) —=0 (2.12)
s
K
0 —> Px — Div?(E)¢ —— CI°(E)¢ ——0.

Applying the snake lemma we obtain the thesis.

From diagram (2.12) we also deduce that
CI°(E)C fit. (CI°(K)) ~ Div’(E)C /if (DivP(K)) (2.13)

Now we take a character x of Gg. Before computing the limit of the class groups we have to
study the kernel of the norm map NE(y) : CI°(E)(x) — CI°(K)(x) for the intermediate finite
extensions F/K.
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Lemma 2.4.5. Let Fy C K C E C Fy with E/Fy a finite extension and let G := Gal(E/K).
Assume that |G| = p. Then the group A := Gal(Fy/Ha) acts trivially on C1°(E)€ /i% (CI°(K)).

Proof. As we have already observed in (2.13) we have the isomorphism
CI%(E)C Ji% (CI°(K)) ~ Div®(E)C /if (DivO(K)) .
If we consider the two maps
Div?(E)Y — Div(E)¢ — Div(E)¢ /i% (Div(K))

we have that the kernel of the composition of this two maps is Div?(E)% N (Div(K)) =
i% (Div’(K)) and so there is an injection

Div?(E)€ /i%. (Div)(K)) — Div(E)C /if (Div(K)).

Thus it is enough to show that A acts trivially on Div(E)%/if (Div(K)).

Let p1,...,ps be the set of primes of K which lie above p and By, ..., B, the set of primes of
E which lie above p. We recall that the extension F/K is totally ramified at p and so we can
assume for every j = 1,...,s that *B; is the unique prime of E which lies over p;, moreover the
only extension where the prime p (may) split is H4/F and so s divides h°(F), i.e., is coprime
with p. In particular we have that

it (pj) = PP; -

Now we prove that the group Div(FE)%/i% (Div(K)) is isomorphic to the sum of s copies of
Z/p and that a set of generators is {3, + i (DiV(K))}jzl,...,s . We can write Div(K) = @, Zv
(where v runs through all the primes of K) and Div(E) = @, Hy, with H, = @®,,, Zw (where
w runs through the set of primes of F which lie above v). Now for the ramified primes we have
Hy, =79, = Hpcj and for the unramified primes, if we denote with GG, the decomposition group

of v in G, we have that H, = Z[G/G,]w and so HS =i (Zv). We have proved that

Div(E @Z$J®@1K (Zv)

V#Fy
and
w (Div(K @pZ‘If] <) @ iy (Zv)
V7£pj
thus .
Div(E)C /il (Div(K)) = €D (Z/p) %;
j=1
Now we observe that if we take a set of integers aj,...,as each of them coprime with p, we

have that also the set {a;B; + i% (Div(K))}j:1 _, generates Div(E)% /if (Div(K)): indeed for

each index j, by the Bezout identity, we have that there exist two integers m and n such that
noj = 14+ mp and so

n (a;P; + i% (Div(K))) = B; + mpP; + if (Div(K))
=P + mig(p;) + i (Div(K))
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=P, + i% (Div(K)).

Now we consider the field E® (resp. K?) which is the subfield of E (resp. K) fixed by the
elements of A. Since A is a subgroup of Gy (with cardinality coprime with p) there is a canonical
isomorphism G2 := Gal(E®/K*®) = G and since the extension Fy/H 4 is totally ramified at the
primes above p we have that there are exactly s primes in E2 (resp. K A) above p.

We denote with ‘BJ.A (resp. ij) the unique prime of E2 (resp. K*) which lies below 8, (resp.
pj)-
As above we can prove that the group Dlv(EA)GA Jifa (DlV(K 2)) is isomorphic to the sum

of s copies of Z/p and that a set of generators is {‘BJA + %A (DiV(KA))} L To conclude
]: 7"'78

we observe that i%, (‘BJ-A) = |A|PB; and, since |A| is coprime with p, the image of these classes
under the map i%, is a set of generators for Div(E)% /if (Div(K)) and clearly the action of A
on this classes is trivial. O

We use the previuos lemma to prove:

Proposition 2.4.6. Let Fp C K C E C Fy with E/Fy a finite extension and let G :=
Gal(E/K). Then for x of type 1 or 2 we have

ker (N%) (x) = ICI°(E) (x)
where Ig denotes the augumentation of G.

Proof. We will proceed by induction on |G|. We need to consider two basic cases: for |G| =1
both members of the equality are zero and so there is nothing to prove.

For |G| = p we have that x may be seen as a non trivial character of A = Gal(Fy/Ha)
because it is of type 1 or 2 and, by the previous lemma, we have that A acts trivially on

CI°(E)C /if (CI°(K)), thus we have

(Cr(B)Y/i% (CI(K))) (x) =0,

, CI°(E) = Z[E{ (Clo ) X)- The group G is cyclic and we denote with g a fixed
generator thus IgClo(E)( ) = (g — 1)CI°(E)(x). We also recall the well known isomorphism
IcCI%(E)(x) ~ CI°(E)(x)/CI°(E)%(x). Then we have the following two sequences:

E

0— ker (NE(x)) —= CIO(E)(x) —2= CI(K) (x) —= 0,

0 CI(K) (x) > CI(E) (x) —L IeC1(E)(x) —= 0.

The first one is exact because of the surjectivity of the norm (Proposition 2.4.4, part (a)), the
second one is exact because of what we have previously observed. Comparing the cardinalities
of the groups in the two sequences we deduce that |ker (NZ) (x)| = [IcCI°(E)(x)|, but since
IcCI°(E)(x) C ker (N£) (x), we have the equality between them.

For the inductive step we can now assume |G| = pt > p, thus we can take an intermediate
field K G E' G E and let Gy = Gal(E/E') and Gy = Gal(E'/K) with both G| and Gy with
cardinality strictly smaller than G. Then by the inductive hypothesis we have

ker (Ng/) (x) = 16, CI°(E)(x)
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and

ker (N') () = I, CI(E') (x).

From Proposition 2.4.4, part (a), we have that NE, : CI°(E)(x) — CI°(E")(x) is surjective and
SO

Ng: (IcC1(E)(x)) = 1, CI(E) (%)
If we take z € ker (NF) (x) since NE = NE o NE we have that NE (z) € ker (NE) (x) =

I, CI°(E")(x), thus there exists g € I and y € CI%(E)(x) such that NE,(z) = NE (gy). This
is equivalent to x — gy € ker (Ng,) (x) and so

x € ker (Ng) (x) + 1aCI°(E)(x) = IcCI°(E)(x),
since ker (N£)) (x) = I, CI°(E)(x) C IcCI°(E)(x). We have proved that
ker (Ng) (x) C IcCI°(E)(x)-
The other inclusion is trivial. O

Now following the proof of Theorem 2.3.11 we can finally prove:

Theorem 2.4.7. Let x be a character of type 1 or 2. Then Cu(X) is a finitely generated torsion
A-module.

Proof. We recall that for every index m we have denoted with J,, the augumentation ideal of
W I« ] associated to the subgroup Gal(Fuo/Fy,) which is the inverse limit of the augumentation
ideals Irn .

From Proposition 2.4.4 part (a) we have Cp,(x) = N}

7 (Cr(x)) and from Proposition 2.4.6 we
deduce

Ny, (Cn(x)) = Cn(x) /ker Ny, = Cr(x)/Irn, Cn(X) ,

thus
Cin(x) = Cn(x)/Iry, Cn(X) -

The previous equality holds for every n > m and so we have

Crn(X) = Coo(X)/TImCoo(X) -

The module on the left is finite and, in particular, finitely generated over

The ideals J,, form an open filtration of the Iwasawa algebra A, thus we can deduce that Coo(x)
is a finitely generated module over A because of the generalized Nakayama Lemma ([BH]).
To show that Co () is also torsion we define the element @go(l, X) € A as

O (1, %) if x is of type 1,

0%, (1,x) = -1
W if x is of type 2,

-
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which is simply the inverse limit of the elements @?1(1, X) which generate the Fitting ideals of
the various modules C,,(x) over W[I';,] (Theorem 2.4.3).

Now it is easy to see that @ﬂoo(l,x)C’oo(m = 0, since @%(l,x)cn(x) = 0 for every n, and so
Cx(x) is a torsion A-module. O

Now we can prove the main conjecture. The reader may see that the arguments of the proof
are similar to the ones of Theorem 2.3.12, indeed this is a consequence of the surjectivity of the
norm maps and of the computations on the kernels.

Theorem 2.4.8 (Main Conjecture). Let x be a character of type 1 or 2. Then we have

Fitty (Co(x)) = (@io(l,x)) :

Proof. The equality
(€% (1.%)) = lim (©4(1,x)) = lim Fittyy(r, | (Ca(x)

reduce the proof to proving that
Fittp (COO(X)) - hin FittW[Fn] (Cn(X)) :

n

We denote with N2° the projection Cx(x) — Cn(x) and with ¢1,...,t, a fixed set of gen-
erators of Cu(x) over A. From the equality Cp,(x) = Coo(X)/ImCoo(x) we deduce that
NSo(t1), ..., N22(t,) generate Cy,(x) over WL,

For every integer n we have the following exact sequence

0— K, — W% — Cn(x) =0

where the map on the right is given by (wi,...,w,) — >, w;N3°(t;), which holds also at the
infinite level
0= Ko — A¥ — C(x) = 0

and which fits into the diagram

0 K, WL, ®r Cr(X) —0
kz, T Nz,
0—> Kn, W D] ©7 Comn(x) —0.

As usual £}, denotes the restriction of the projection 7! to the kernel K,. The kernel of 7},
is (Irn, W[L'y])®", while the kernel of N}, is Itn Cy,(x) due to Proposition 2.4.6 and so the map
between these two kernels is surjective. The map 7]}, is surjective thus, by the snake lemma, we
have that £}, is also surjective and so the previous diagram satisfies the Mittag-Lefller condition
which allows us to take the inverse limit. Comparing this limit with the exact sequence at level
infinity we obtain that
Koo =1lim K.
n

Now, to conclude the proof, the reader may follow the same technical arguments of the second
part of the proof of Theorem 2.3.12. O
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Now using this Main Conjecture and the theorems of Chapter 1 on the Goss Zeta function
and on the v-adic Zeta function we expect to find some correlation between the Fitting ideal of
C and the special values of the Zeta functions.

2.5 The characters of type 3

In this section we give a look at the x-part of the modules C), and T),(F;,) when y is a character
of type 3. Note that the trivial character yo is one of these characters. Unlike the case of
characters of type 1 and 2 we will not be able to obtain results directly on these modules, but
we have to deal with their duals (Z,-duals and Pontrjagin duals). At the end of the section we
will also focus on the problems that occur when we try to define the projective limits of these
modules.

Throughout this section we will denote with y a character of type 3, which may be identified
canonically with a character of the Picard group A = Gal(H4/F) ~ Pic(A). For every Go-
module M we denote with M* := Homg, (M, Z,) the Z,-dual of M. Note that when we consider
the scalar extension we have M* ®z, W = Homy (M ®z, W,W).

From our computations (2.1) and (2.4) we have that for type 3 characters:

Ho(o0)(x) = WC) and  Ha(w)() = WG/ (1 - x(Fr )y ®)  (2.14)

where Fr, € A is the Artin symbol of the prime p.
We denote, as usual, with D,, the kernel of the degree map

deg : H,(0c0) @ Hy(p) — Zy,.

Then we have that if y is different from the trivial character xq
Da(x) = W] & WG]/ (1 - x(Fry)y™) , (2.15)

since there is no action of A on Z, and so Z,(x) = 0.
For the trivial character x = xo we first need to consider the degree map on the submodule
H,(p)(x0). We denote with D,, ,(x0) the kernel of this map and define

Dinp(x0) @ Hy(00)(x0) = Hn(p)(x0) © Hn(0)(x0)
(x,y) — (x —degy - 1,y) ,
where 1 is the element which corresponds to the unity under the isomorphism H,(p)(xo) =~

WIGr]/ (1 — 'y_dﬂ). Clearly this map is injective and its image is contained in D, (xo), but one
can easily see that this map is also onto D, (xo) with inverse the map

Dun(x0) = Dnyp(x0) ® Hn(o0)(x0)
(z,y) = (x +degy - 1,y) .

We have shown that
Dn(XO) = Dn,p(XO) 53] Hn(OO)(Xo) .

Now we compute D,, ,(x0): since the primes of F?" which lie above p have all degree 1 and the
action of v (and also y~!) simply permutes these primes, we have that v does not change the
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degree of an element, i.e., deg (v 'z) = degx for each element x € H,(p)(xo). This implies

that (1 — v 1) H,(p)(x0) is contained in Dy ,(x0), but from the isomorphism H,(p)(xo) =~
WI[Gr]/ (1 —~v~%) we deduce that (1 —~~)H,(p)(xo) is exactly Dy p(x0).
Thus we have proved that

W] @ WG]/ (1 — x(Fry,)y=%) if x # xo,

D (x) =~ » (2.16)
wir.) & wicsl/ (=) if X = o

Now we want to give a resolution of D,(x) as a module over W[I',][GF]. First we start
considering the case x # xo. We denote with n(I',) € W[I',,][Gr] the element

n(ly) = Z o.
oel'y

It is easy to see that for each o € I'), we have (o — 1)n(I';,) = 0. Now we denote with I, the
augumentation ideal of WI',][GF] associated to T'y, i.e., the ideal generated by the elements
o — 1, with ¢ € I'),. From what we have just observed we have that the multiplication by n(I';,)
on the quotient W [I',][Gr]/ (1 — X(Frp_l)'y_d") induces a map

Ha(p) () = WILAJ[GeL/ (I, 1 = x(Fry )y ) “52% WD Gl / (1 - x(Fry )y %)

whose cokernel is W [Iy][Gr]/ (n(T'n),1 — X(Frgl)’y_dp). So we are in the following situation:

n(lr)

Ha(p)(0) “ WITIGEL/ (1= x(Fry )y~ ) = WIDJ[Gx]/ (n(Ta) 1 = x(Fry)y™%).

(2.17)
We will show now that this sequence is exact, i.e., that the map of the left is injective. To do
this we observe that all the modules in the sequence are free over W and we count the ranks.
From (2.14) we have that the module on the left has rank dy,. For the central module we have

WL [Gs]/ (1 = x(Frg )y~ ) = (WGsl/ (1= x(Fy )y ™) ) L)

and so the rank is d,|I',|. For the module on the right we have

WITIGEL/ (n(Tn) 1 = x(Fry )y~ ) 2 (WDl /n(Tw)) [Ga]) / (1 = x(Fry )y ™)

whose rank is

dy(ITn| = [Tn/Tnl) = dp|Tn| — dp.

Thus we have proved that (2.17) is exact.
Now simply recalling that

Hy(00)(x) = WLy = WL, [Gr] /(1 =77

we obtain the following resolution for D,,(x)

0 D (x) WG]/ (1 =) @ WIDL][Ge]/ (1 — x(Fry )y ™) ——

WC[GE]/ (#(Ta) 1 = X(Fry )y~ %) ——————0.
(2.18)
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Proceeding in a similar way for the trivial character, and using the computation done for
D, (xo0) one obtains the resolution

Dn(xo0) = WINW][GE]/(1 = v71) @ WTW][Gel/ (vp) » WIER][GE]/ (n(Tn) vp) . (2.19)

where we have put v, := (1 —~y~%)/(1 —y71).
Taking the x-part in the exact sequence [GP1, after Definition 2.6] one obtains

Tp(Fn)(x) = Tp(Mn)(x) = Dn(x)

which can be joined with (2.18), to obtain

T (Fn) () = Tp(Ma) (x) —= W] [Grl/(1 = y~) @ WILR][GE]/ (1 — x(Fry 1)y~ %)
W[Fn][[GIF]]/( Fn) ) 1- X( ) _dp)

for x # xo. All the four modules in the previous sequence are free and finitely generated over
W (and so also over Zj,). The module T},(M,,)(x) has projective dimension 1 over WI',][GF]
because of [GP1, Theorem 3.9] and the same is trivially true also for the third module. This
allows us to apply [GP2, Lemma 2.4] and obtain

(=771 (1= X(Fry )y Fittwir, ji6a To(F) (00" = 0a(370) - (n(Ta) 11 = x(Fry )y )

(2.20)
Proceeding in a similar way for the trivial character and using the resolution of D, (xo) above,
we obtain

(1 — v~ ) Fittyr, e o (Fn) (X0)* = On(v " x0) - (n(Tn) ,vp) - (2.21)

Now we focus a little bit more on equation (2.20): consider the natural projection 7 : W', ][GF] —
WI',] which maps « to 1. If Fry lies in the kernel of the character x;, i.e., the character is triv-
ial on the decomposition group of p, the left hand side of the equality has a zero of order
(at least) 2 when evaluated at v = 1 and the ideal (n(I',),1 (Fr_l) ~%) becomes princi-
pal and generated by the non zero element n(I'y), thus the Stlckelberger series O, (X, x) has
a zero of order at least 2 in X = 1. If Fry does not belong to the kernel of x, then the ideal
(n(Tn),1— X(Frgl)’y_dp) does not become principal (in general) when projected to W[I',]. Sim-
ilar consideration allows us to conclude that the Stickelberger series has a zero at X = 1, but in
this case we cannot say that the order is greater than one.

The same consideration applied to equation (2.21) lead us to conclude that also the Stickelberger
series O,(X, xo) has a zero at X = 1, of order at least 1. Thus if we put

-1
U= i Py e kery and x # X0,
@?1(’7717 X) = -1
1_77_1 otherwise,

we have
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Theorem 2.5.1. Let x € @0 be a character of type 3. Then we have

.
651(7717X)' <1X(nFSﬂl;711§,ydp71> ifFTP ¢kerx,
Fitty, (6.1 Tp(Fn) (X)" = 651(7*1, X) - (1+v—lz(--lfi)'y‘dv+l ,1— 'y*l> if Fry € kerx and x # Xo,
_ n(I'y .
\ OL(v,x0) - (1+V,1+(,,,+)7_dp+1 : 1) if X = Xo-

Now we move to the study of the class group of F,, as a module over W[I',,]. In the beginning
of [GP2, Section 3] it is shown that

C;L/ = Tp(Fn)*/(l - ’771)Tp(Fn)*7

where CY = Hom(C),,Q,/Z,) is the Pontrjagin dual of C,. Thus we can now apply Lemma
2.4.2 to obtain

Fittyr,1Cn(x)" = 7 (Fittwr, i Ty (Fn) (X))
where 7 : W[I',][Gr] — WI',] is the map which sends «y to 1. Then we have

Theorem 2.5.2. Let x € Gg be a character of type 3. Then we have

/

eh(1,x) - <% , 1) if Fryy & kerx,

Fittw[rn]Cn(X)V = @51(1,)() . (%) if Frry € kerx and x # Xo,
\ 0%(1, xo) - (Ldr‘,") ,1) if X =Xo-

Remark 2.5.3. We would like to point out some particular cases: if the decomposition group
of the prime p is contained is the kernel of the non trivial character y, then the Fitting ideal of
Cr(x)Y is principal as we see from the previous theorem.

Another interesting case is when the degree of the prime p is coprime with p. In this case the

degree dj is invertible in Z, and so the fractional ideal (%p") , 1) actually is an integral ideal,

which has 1 as one of its generators. Thus in this case the Fitting ideal of C},(xo)" is principal
and it is generated by @?1(1, X0)-

Now it would be interesting to proceed like for characters of type 1 and 2 and make some
kind of projective limits of the modules T),(F,)(x)* and Cy(x)" and study the Fitting ideal of
this limit. However at this point it is not clear which are the maps we have to consider to make
this limit: note that the natural norm maps N?™™ from T, (F,+m)(x) to T,(F,)(x) and from
Crim(x) to Cp(x) induce maps on the dual with the opposite direction, so it is not possible
to use them to make a projective limit. Another problem is that when considering the natural
projection 7™ : W[y tm] — W[Ty,] we have that 777 (n(Tppm)) = |A/p|™ - n(T},), thus the
generators of the Fitting ideals of Cj, ()Y are not compatible with respect of this projection
map, and cannot be used to define an element in the algebra W[I's].



Bibliography

[ABBL] B. Anglés - A. Bandini - F. Bars - I. Longhi, “Iwasawa Main Conjecture for the Carlitz

[BH]

[BBL]

[Bur]

[Car]

[CG]

[Cre]

[Gosl]
[Gos2]

cyclotomic extension and applications”, arXiv:1412.5957 [math.NT] (2015), submitted.

P.N. Balister - S. Howson, “Note on Nakayama’s lemma for compact A-modules”, Asian
J. Math. 1 (1997), no. 2, 224-229.

A. Bandini - F. Bars - . Longhi, “Characteristic ideals and Iwasawa theory”, New York
J. Math 20 (2014), 759-778.

D. Burns, “Congruences between derivatives of geometric L-functions.” With an ap-
pendix by Burns, K.F. Lai and K.-S. Tan, Invent. Math. 184 (2011), no. 2, 221-256.

L. Carlitz. “On certain functions connected with polynomials in a Galois field”, Duke
Math. j. (1935), 137-168.

P. Cornacchia - C. Greither, “Fitting ideals of class group of real fields with prime
power conductor”, J. Number Theory, 73 (1998), 459-471.

R. Crew, “L-functions of p-adic characters and geometric Iwasawa theory”, Invent.
Math. 88 (1987), no. 2, 395-403.

D. Goss, Basic Structures of Function Field Arithmetic, (Springer-Verlag, 1996).

D. Goss, “v-adic Zeta Functions, L-series and Measures for Function Fields”, Inven-
tiones Mathematicae, 55 (1979), 107-116.

C. Greither - M. Kurihara, “Stickelberger elements, Fitting ideals of class groups of
CM-fields and dualisation”, Math. Z., 260 (2008), no. 4, 905-930.

C. Greither - C.D. Popescu, “The Galois module structure of ¢-adic realizations of
Picard 1-motives and applications”, Int. Math. Res. Not., (2012), no. 5, 986-1036.

C. Greither - C.D. Popescu, “Fitting ideals of f-adic realizations of Picard 1-motives
and class groups of global function fields”, J. Reine Angew. Math., 675 (2013), 223—
247.

D.R. Hayes, “A brief introduction to Drinfeld Modules” in “The Arithmetic of function
fields” (Columbus, OH, 1991) Ohio State Univ. Math. Res. Inst. Publ. 2, 1-32.

K.-L. Kueh - K.F. Lai - K.-S. Tan, “Stickelberger elements for Zg—extensions of function
fields”, J. Number Theory, 128 (2008), 2776-2783.



Bibliography

[MW]

[Mum]

[Nor|

[Ros]

[Ser]

[Shu]

[Tat]

[Thal

[Was]
[Wei]

B. Mazur - A. Wiles, “Class fields of abelian extensions of Q”, Invent. Math., 76 (1984),
179-330.

D. Mumford, Abelian Varieties, Tata inst. of fundamental research, Bombay, 1970.

D.G. Northcott, Finite free resolutions, Cambridge University Press, Cambridge Tracts
in Mathematics, No. 71, Cambridge, 1976.

M. Rosen, Number theory in function fields, GTM 210, Springer-Verlag, New York,
2002.

J.P. Serre, Algebraic groups and class fields, GTM 117, Springer-Verlag, New York,
1988.

L. Shu, “Kummer’s criterion over global function fields”, J. Number Theory, 49 (1994),
319-359.

J. Tate, “Endomorphisms of Abelian Varieties over Finite Fields”, Invent. Math., 2
(1966), 134-144.

D.S. Thakur, Function Field Arithmetic, World Scientific Publishing Co., Inc., River
Edge, NJ, 2004.

L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

A. Weil, Basic Number Theory, 3rd ed., Springer-Verlag, New York, 1974.

62



