Safety and efficacy of non-conjugated and accumulated unsaturated straight-chain and branched-chain, aliphatic primary alcohols, aldehydes, acids, acetal and esters belonging to chemical group 4 when used as flavourings for all animal species

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

Abstract

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of 24 compounds belonging to chemical group 4 (non-conjugated and accumulated unsaturated straight-chain and branched-chain, aliphatic primary alcohols, aldehydes, acids, acetal and esters). This opinion concerns 23 compounds from this group. They are currently authorised as flavours in food. The FEEDAP Panel established the following conclusions: hex-3(cis)-en-1-ol [02.056], (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], non-6(cis)-enal [05.059], hex-3(cis)-enal [05.075], (Z)-hept-4-enal [05.085], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271] and hex-3(cis)-enyl isobutyrate [09.563] are safe at the proposed maximum use level of 5 mg/kg complete feed for all target species; citronellol [02.011], (-)-3,7-dimethyl-6-octen-1-ol [02.229], citronellal [05.021], 2,6-dimethylhept-5-enal [05.074], citronelic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078] and citronellyl propionate [09.129] are safe at the maximum use level of 5 mg/kg for all species, except cats for which the proposed normal use level of 1 mg/kg is considered safe; undec-10-enal [05.035], 1-ethoxy-1-(3-hexenyl)ethane [06.081] and hex-3-enyl isovalerate [09.505] are safe at the normal use levels of 1 mg/kg for all species. No safety concern would arise for the consumer from the use of these compounds up to the highest safe level in feeds. Hazards for skin and eye contact, and respiratory exposure are recognised for the majority of the compounds under application. Most are classified as irritating to the respiratory system. The use of the majority of the compounds in animal feed at the maximum safe level is considered safe for the environment. As all the compounds under assessment are used in food as flavourings, and their function in feed is essentially the same as in food, no further demonstration of efficacy is necessary.

© 2016 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: sensory additives, flavourings, unconjugated straight-chain and branched-chain aliphatic primary alcohols, aldehydes, acids and esters, chemical group 4

Requestor: European Commission

Question number: EFSA-Q-2010-00988

Correspondence: feedap@efsa.europa.eu
Panel members: Gabriele Aquilina, Giovanna Azimonti, Vasileios Bampidis, Maria de Lourdes Bastos, Georges Bories, Andrew Chesson, Pier Sandro Cocconcelli, Gerhard Flachowsky, Jürgen Gropp, Boris Kolar, Maryline Koubal, Secundino López Puente, Marta López-Alonso, Alberto Mantovani, Baltasar Mayo, Fernando Ramos, Guido Rychen, Maria Saarela, Roberto Edoardo Villa, Robert John Wallace and Pieter Wester

Acknowledgements: The Panel wishes to thank the members of the Working Group on Feed Flavourings, including Paul Brantom, Birgit Dusemund, Christer Hogstrand, Patrick Van Beelen and Johannes Westendorf, for the support provided to this scientific opinion.

Suggested citation: EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2016. Scientific opinion on the safety and efficacy of non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols, aldehydes, acids, acetals and esters belonging to chemical group 4 when used as flavourings for all animal species. EFSA Journal 2016;14(8):4559, 22 pp. doi:10.2903/j.efsa.2016.4559

ISSN: 1831-4732

© 2016 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

Reproduction of the image listed below is prohibited and permission must be sought directly from the copyright holder:

Figure 2: © Taylor & Francis

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Table of contents

Abstract .. 1
1. Introduction .. 4
 1.1. Background and Terms of Reference ... 4
 1.2. Additional information .. 4
2. Data and methodologies .. 5
 2.1. Data ... 5
 2.2. Methodologies ... 5
3. Assessment .. 6
 3.1. Characterisation .. 6
 3.1.1. Characterisation of the flavouring substances .. 6
 3.1.2. Stability .. 9
 3.1.3. Conditions of use .. 9
 3.2. Safety .. 9
 3.2.1. Absorption, distribution, metabolism and excretion and residues ... 9
 3.2.2. Toxicological studies .. 11
 3.2.3. Safety for the target species ... 12
 3.2.3.1. Conclusions on safety for the target species .. 13
 3.2.4. Safety for the consumer ... 14
 3.2.5. Safety for the user .. 14
 3.2.6. Safety for the environment ... 14
 3.2.6.1. Conclusions on safety for the environment ... 16
 3.3. Efficacy ... 16
 4. Conclusions ... 16
Documentation provided to EFSA ... 17
References .. 17
Abbreviations .. 20
1. **Introduction**

1.1. **Background and Terms of Reference**

Regulation (EC) No 1831/2003 establishes the rules governing the Community authorisation of additives for use in animal nutrition. In particular, Article 4(1) of that Regulation lays down that any person seeking authorisation for a feed additive or for a new use of a feed additive shall submit an application in accordance with Article 7 and in addition, Article 10(2) of that Regulation specifies that for existing products within the meaning of Article 10(1), an application shall be submitted in accordance with Article 7, within a maximum of 7 years after the entry into force of this Regulation.

The European Commission received a request from Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG) for authorisation of 24 substances belonging to chemical group (CG) 4 (citronellol, hex-3(cis)-en-1-ol, non-6-en-1-ol, oct-3-en-1-ol, hex-4(cis)-en-1-ol, (-)-3,7-dimethyl-6-octen-1-ol, citronellal, undec-10-enal, non-6(cis)-enal, 2,6-dimethylhept-5-enal, hex-3(cis)-enal, hept-4-enal, 1-ethoxy-1-(3-hexenyl)ethane, citronelic acid, citronellyl acetate, citronellyl butyrate, citronellyl formate, citronellyl propionate, hex-3(cis)-enyl acetate, hex-3(cis)-enyl formate, hex-3-enyl butyrate, hex-3-enyl hexanoate, hex-3-enyl isovalerate, and hex-3(cis)-enyl isobutyrate), when used as a feed additive for all animal species (category: sensory additives; functional group: flavourings). CG 4 for flavouring substances is defined in Commission Regulation (EC) No 1565/2000 as 'non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acid, acetal and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal.' During the assessment, the applicant expressed the intention to withdraw the application for hex-4(cis)-en-1-ol (EU Flavour Information System (FLAVIS) number) [02.160]. This compound is excluded from the present assessment.

According to Article 7(1) of Regulation (EC) No 1831/2003, the Commission forwarded the application to the European Food Safety Authority (EFSA) as an application under Article 4(1) (authorisation of a feed additive or new use of a feed additive) and under Article 10(2) (re-evaluation of an authorised feed additive). During the course of the assessment, the applicant withdrew the application for the use of chemically defined flavourings in water for drinking. EFSA received directly from the applicant the technical dossier in support of this application. The particulars and documents in support of the application were considered valid by EFSA as of 25 August 2010.

According to Article 8 of Regulation (EC) No 1831/2003, EFSA, after verifying the particulars and documents submitted by the applicant, shall undertake an assessment in order to determine whether the feed additive complies with the conditions laid down in Article 5. EFSA shall deliver an opinion on the safety for the target animals, consumer, user and the environment and on the efficacy of citronellol [02.011], hex-3(cis)-en-1-ol [02.056], (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], (-)-3,7-dimethyl-6-octen-1-ol [02.229], citronellal [05.021], undec-10-enal [05.035], non-6(cis)-enal [05.059], 2,6-dimethylhept-5-enal [05.074], hex-3(cis)-enal [05.075], (Z)-hept-4-enal [05.085], (Z)-1-ethoxy-1-(3-hexenyl)ethane [06.081], citronelic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078], citronellyl propionate [09.129], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271], hex-3-enyl isovalerate [09.505] and hex-3(cis)-enyl isobutyrate [09.536], when used under the proposed conditions of use (see Section 3.1.3).

1.2. **Additional information**

Twenty-two of the 23 compounds have been previously assessed by Joint FAO/WHO Expert Committee on Food Additives (JECFA) (WHO, 1999a,b, 2000, 2002a, 2004a,b) and found to be of

2 Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG), Avenue Louise 130A, B-1050, Brussels, Belgium.

4 The applicant informed EFSA (4 July 2012) on the intention to withdraw the application for hex-4(cis)-en-1-ol [FLAVIS Number 02.216].

5 On 10 March 2016, EFSA was informed by the European Commission on the withdrawal of the application for re-authorisation of chemically defined flavourings - use in water.
no safety concern when used at the estimated intake level. The compound not assessed by JECFA was (-)-3,7-dimethyl-6-octen-1-ol [02.229]. In 1979, JECFA set a group acceptable daily intake (ADI) of 0.5 mg/kg body weight (bw) per day for citral, geranyl acetate, citronellol, linalool and linalyl acetate expressed as citral (WHO, 1980) based on a no-observed-effect level (NOEL) of 51 mg/kg bw per day from a single-dose study in rat (Oser, 1958). In 2004, the ADI was retained (WHO, 2004a).

Subsequently, the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) concluded that all 23 compounds do not give rise to safety concern when used as flavours in food (EFSA, 2008a, 2009; EFSA CEF Panel, 2010a,b; EFSA CEF Panel, 2010c, 2011, 2013a,b).

All 23 compounds are currently listed in the Regulation (EU) No 872/20126 and in the European Union Register of Feed Additives, and thus authorised for use in food and feed in the European Union (EU), respectively. They have not been previously assessed by EFSA as feed additives.

Regulation (EC) No 429/20087 allows substances already approved for use in human food to be assessed with a more limited procedure than for other feed additives. However, the use of this procedure is subject to the condition that food safety assessment is relevant to the use in feed.

2. Data and methodologies

2.1. Data

The present assessment is based on data submitted by the applicant in the form of a technical dossier8 in support of the authorisation request for the use of the compounds belonging to CG 4 as feed additives. The technical dossier was prepared following the provisions of Article 7 of Regulation (EC) No 1831/2003, Regulation (EC) No 429/2008 and the applicable EFSA guidance documents.

The FEEDAP Panel has sought to use the data provided by the applicant together with data from other sources, such as previous risk assessments by EFSA or other expert bodies, peer-reviewed scientific papers and experts’ knowledge, to deliver the present output.

EFSA has verified the European Union Reference Laboratory (EURL) report as it relates to the methods used for the control of the ‘non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols, aldehydes, acids, acetics and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal’ in animal feed. The Executive Summary of the EURL report can be found in Annex A.9

2.2. Methodologies

The approach followed by the FEEDAP Panel to assess the safety and the efficacy of 23 compounds belonging to CG 4, is in line with the principles laid down in Regulation (EC) No 429/2008 and the relevant guidance documents: Guidance for the preparation of dossiers for sensory additives (EFSA FEEDAP Panel, 2012a), Technical Guidance for assessing the safety of feed additives for the environment (EFSA, 2008b), Guidance for the preparation of dossiers for additives already authorised for use in food (EFSA FEEDAP Panel, 2012b), Guidance for establishing the safety of additives for the consumer (EFSA FEEDAP Panel, 2012c), and Guidance on studies concerning the safety of use of the additive for users/workers (EFSA FEEDAP Panel, 2012d).

8 FEED dossier reference: FAD-2010-0041.

9 The full report is available on the EURL website: https://ec.europa.eu/jrc/sites/default/files/FinRep-FAD-2010-0041.pdf
3. Assessment

3.1. Characterisation

3.1.1. Characterisation of the flavouring substances

The molecular structures of the 23 flavouring additives under assessment are shown in Figure 1 and their physicochemical characteristics in Table 1.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citronellol</td>
<td>02.011</td>
</tr>
<tr>
<td>(-)-3,7-Dimethyl-6-octen-1-ol</td>
<td>02.229</td>
</tr>
<tr>
<td>Citronellal</td>
<td>05.021</td>
</tr>
<tr>
<td>Citronelic acid</td>
<td>08.036</td>
</tr>
<tr>
<td>Citronellyl acetate</td>
<td>09.012</td>
</tr>
<tr>
<td>Citronellyl butyrate</td>
<td>09.049</td>
</tr>
<tr>
<td>Citronellyl formate</td>
<td>09.078</td>
</tr>
<tr>
<td>Citronellyl propionate</td>
<td>09.129</td>
</tr>
<tr>
<td>Hex-3(cis)-en-1-ol</td>
<td>02.056</td>
</tr>
<tr>
<td>(Z)-Non-6-en-1-ol</td>
<td>02.093</td>
</tr>
<tr>
<td>Oct-3-en-1-ol</td>
<td>02.094</td>
</tr>
<tr>
<td>Non-6(cis)-enal</td>
<td>05.059</td>
</tr>
<tr>
<td>Hex-3(cis)-enal</td>
<td>05.075</td>
</tr>
<tr>
<td>(Z)-Hept-4-enal</td>
<td>05.085</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl acetate</td>
<td>09.197</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl formate</td>
<td>09.240</td>
</tr>
<tr>
<td>Hex-3-enyl butyrate</td>
<td>09.270</td>
</tr>
<tr>
<td>Hex-3-enyl hexanoate</td>
<td>09.271</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl isobutyrate</td>
<td>09.563</td>
</tr>
<tr>
<td>Undec-10-enal</td>
<td>05.035</td>
</tr>
<tr>
<td>2,6-Dimethylhept-5-enal</td>
<td>05.074</td>
</tr>
</tbody>
</table>

10 Racemate.
11 R- or S-enantiomer not specified by CAS No in Register (EFSA CEF Panel, 2013b; FGE.06Rev 4).
12 JECFA evaluated cis-3-octen-1-ol. CAS No in Register refers to the (Z)-isomer. Register name to be changed to Oct-3Z-en-1-ol (EFSA CEF Panel 2010b, 2013b; FGE.05Rev2 and FGE.06Rev4).
13 JECFA evaluated cis-3-hexenyl butyrate. CAS No in Register refers to the (Z)-isomer (EFSA, 2008a; FGE02.rev1). Register name to be changed to hex-3(cis)-enyl butyrate.
14 JECFA evaluated cis-3-hexenyl hexanoate. CAS No in Register refers to the (Z)-isomer (EFSA, 2008a; FGE02.rev1). Register name to be changed to hex-3(cis)-enyl hexanoate.
15 JECFA evaluated 2,6-dimethyl-5-heptenal. (R)- or (S)-enantiomer not specified by CAS in Register (EFSA CEF Panel, 2013b).
All of the compounds under consideration are produced by chemical synthesis or, in the case of (-)-3,7-dimethyl-6-octen-1-ol [02.229], derived by fractional distillation of essential oils (e.g. Citronella or Geranium species) and saponification of extracts. Typical routes of synthesis are described for each compound.18

Data was provided on the batch-to-batch variation in five batches of each additive except hex-3-enyl hexanoate [09.271] for which only one batch was provided due to the low use volume (< 1 kg/year).19

The content of the active substance exceeded the JECFA specifications for all compounds (Table 2).

16 Register name to be changed to 1-ethoxy-1-(3Z-hexenyloxy)ethane. Racemate of 1-ethoxy-1-(3Z-hexenyloxy)ethane (EFSA CEF Panel, 2011; FGE.96).
17 (Z)- or (E)-isomer not specified by CAS No in Register (EFSA CEF Panel, 2010c; FGE.01Rev2).
18 Technical dossier/Section II.
19 Technical dossier/Section II/Annex 2.1 and Supplementary information May 2011.
except hex-3(cis)-enyl formate [09.240] (for which one batch was below JECFA specifications) and hex-3(cis)-enal [05.075]. Data for this compound was provided only for a formulated product which for four batches contains approximately 30% triacetin and for a fifth batch in which the triacetin content was stated to be 50%. Triacetin (glycerol triacetate) is a recognised food additive (E1518) and is used as a solvent/carrier for flavourings. Both JECFA (WHO, 1975) and the SCF (European Commission, 1995) assessed triacetin without specifying an ADI.

Table 2: Identity of the substances and data on purity

<table>
<thead>
<tr>
<th>EU register name</th>
<th>FLAVIS no.</th>
<th>JECFA minimum specification %<sup>(a)</sup></th>
<th>Assay %</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citronellol</td>
<td>02.011</td>
<td>90<sup>(b)</sup></td>
<td>97.2</td>
<td>95.0-98.9</td>
<td></td>
</tr>
<tr>
<td>Hex-3(cis)-en-1-ol</td>
<td>02.056</td>
<td>98<sup>(c)</sup></td>
<td>98.7</td>
<td>98.5-99.1</td>
<td></td>
</tr>
<tr>
<td>(Z)-Non-6-en-1-ol</td>
<td>02.093</td>
<td>95</td>
<td>96.7</td>
<td>95.7-97.4</td>
<td></td>
</tr>
<tr>
<td>Oct-3-en-1-ol<sup>(d)</sup></td>
<td>02.094</td>
<td>96<sup>(e)</sup></td>
<td>97.0</td>
<td>96.7-97.3</td>
<td></td>
</tr>
<tr>
<td>(-)-3,7-Dimethyl-6-octen-1-ol<sup>(f)</sup></td>
<td>02.229</td>
<td><sup>(g)</sup></td>
<td>76.4<sup>(h)</sup></td>
<td>75.0-79.1</td>
<td></td>
</tr>
<tr>
<td>Citronellal</td>
<td>05.021</td>
<td>85<sup>(i)</sup></td>
<td>97.3</td>
<td>89.8-99.4</td>
<td></td>
</tr>
<tr>
<td>Undec-10-enal</td>
<td>05.035</td>
<td>90</td>
<td>97.5<sup>(j)</sup></td>
<td>94.6-98.7</td>
<td></td>
</tr>
<tr>
<td>Non-6(cis)-enal</td>
<td>05.059</td>
<td>90<sup>(k)</sup></td>
<td>97.9</td>
<td>96.4-99.8</td>
<td></td>
</tr>
<tr>
<td>2,6-Dimethylhept-5-enal</td>
<td>05.074</td>
<td>85<sup>(l)</sup></td>
<td>88.3</td>
<td>86.2-90.8</td>
<td></td>
</tr>
<tr>
<td>Hex-3(cis)-enol</td>
<td>05.075</td>
<td>97</td>
<td>69.1<sup>(m)</sup></td>
<td>61.4-66.1</td>
<td></td>
</tr>
<tr>
<td>Hept-4-enol</td>
<td>05.085</td>
<td>98<sup>(n)</sup></td>
<td>98.9</td>
<td>98.0-99.4</td>
<td></td>
</tr>
<tr>
<td>(Z)-Hept-4-enol</td>
<td>05.085</td>
<td>93</td>
<td>95.2<sup>(o)</sup></td>
<td>94.0-95.9<sup>(p)</sup></td>
<td></td>
</tr>
<tr>
<td>(Z)-1-Ethoxy-1-(3-hexenyloxy)ethane</td>
<td>06.081</td>
<td>97</td>
<td>99.1</td>
<td>98.2-99.5</td>
<td></td>
</tr>
<tr>
<td>Citronelic acid</td>
<td>08.036</td>
<td>90<sup>(q)</sup></td>
<td>99.3</td>
<td>98.6-100</td>
<td></td>
</tr>
<tr>
<td>Citronellyl acetate</td>
<td>09.012</td>
<td>92<sup>(r)</sup></td>
<td>98.4</td>
<td>96.0-99.2</td>
<td></td>
</tr>
<tr>
<td>Citronellyl butyrate</td>
<td>09.049</td>
<td>90<sup>(s)</sup></td>
<td>99.3</td>
<td>99.3-99.6</td>
<td></td>
</tr>
<tr>
<td>Citronellyl formate</td>
<td>09.078</td>
<td>90<sup>(t)</sup></td>
<td>95.8</td>
<td>91.0-98.2</td>
<td></td>
</tr>
<tr>
<td>Citronellyl propionate</td>
<td>09.129</td>
<td>90<sup>(u)</sup></td>
<td>98.0</td>
<td>95.8-99.7</td>
<td></td>
</tr>
<tr>
<td>Hex-3(cis)-enyl acetate</td>
<td>09.197</td>
<td>98<sup>(v)</sup></td>
<td>99.7</td>
<td>99.0-100</td>
<td></td>
</tr>
<tr>
<td>Hex-3(cis)-enyl formate</td>
<td>09.240</td>
<td>95</td>
<td>96.7</td>
<td>94.7-99.0</td>
<td></td>
</tr>
<tr>
<td>Hex-3-enyl butyrate</td>
<td>09.270</td>
<td>95</td>
<td>99.7</td>
<td>99.2-100</td>
<td></td>
</tr>
<tr>
<td>Hex-3-enyl hexanoate</td>
<td>09.271</td>
<td>96</td>
<td>99.2<sup>(w)</sup></td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>Hex-3-enyl isovalerate</td>
<td>09.505</td>
<td>95</td>
<td>99.9</td>
<td>99.7-100</td>
<td></td>
</tr>
<tr>
<td>Hex-3(cis)-enyl isobutyrate</td>
<td>09.563</td>
<td>98</td>
<td>99.6</td>
<td>99.2-100</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- EU: European Union; FLAVIS number: EU Flavour Information System numbers; JECFA: The Joint FAO/WHO Expert Committee on Food Additives.
- (c): At least 98% as sum of (Z)- and (E)-isomers; min. 92% of (Z)-isomer (Technical dossier Supplementary information May 2011).
- (d): JECFA evaluated cis-3-octen-1-ol (CAS No as in Register). CAS No in Register refers to the (Z)-isomer . Register name to be changed to Oct-3Z-en-1-ol (EFSA CEF Panel, 2010b, 2013b).
- (e): At least 90% of C9H18O as (Z)-isomer; secondary components 2–6% diunsaturated and saturated C10 alcohols, 2-4% citronellyl acetate and 2–3% citronellal (EFSA CEF Panel, 2013b).
- (f): The product name specifies citronellol (ex Geranium).
- (g): Not evaluated by JECFA. According to EFSA: at least 90% cis-isomer; secondary components 2-6% diunsaturated and saturated C10 alcohols, 2-4% citronellyl acetate and 2-3% citronellal (EFSA CEF Panel, 2013b).
- (h): At least 75%. Average of four batches, a fifth batch has a purity of 98.6%, min. 75%. Other identified components: geraniol (8%).
- (j): At least 90% (min. 97% total decenals).

Potential contaminants are considered as part of the product specification and are monitored as part of the Hazard Analysis and Critical Control Point system applied by all consortium members. The parameters considered include residual solvents, heavy metals and other undesirable substances. However, no evidence of compliance was provided for these parameters.

3.1.2. Stability

The minimum shelf life of the compounds under assessment ranges from 6 to 24 months, when stored in closed containers under recommended conditions. This assessment is made on the basis of compliance with the original specification over this storage period.

3.1.3. Conditions of use

The applicant proposes the use of all 23 compounds in feed for all animal species without a withdrawal time. The applicant proposes a normal use level of 1 mg/kg feed and a high use level of 5 mg/kg.

3.2. Safety

The assessment of safety is based on the highest use level proposed by the applicant (5 mg/kg).

3.2.1. Absorption, distribution, metabolism and excretion and residues

In general, compounds belonging to CG 4 are rapidly absorbed, distributed, metabolised and excreted (WHO, 1999b; EFSA, 2010b, 2013b).

The metabolic reactions involved in the biotransformation of straight-chain and branched-chain unsaturated primary aliphatic alcohols, aldehydes, carboxylic acids and esters (WHO, 1999b; EFSA (EFSA CEF Panel, 2010b, 2013b) are: (i) hydrolysis of esters (Heymann, 1980); (ii) oxidation of linear and branched-chain alcohols and aldehydes to acids, by high capacity NAD+/NADP-dependent enzymes (Voet and Voet, 1990; Feron et al., 1991; Parkinson, 1996); (iii) reduction of aldehydes to alcohols by NAD(P)H-dependent reductases; (iv) conjugation with glucuronic acid of alcohols (a minor pathway for primary alcohols) and polar metabolites resulting from a combination of omega-, omega-1- and beta-oxidation (Diliberto et al., 1990); (v) metabolism of the resulting linear- or branched-chain unsaturated carboxylic acids to carbon dioxide in the tricarboxylic acid cyclic and fatty acid pathway (Voet and Voet, 1990), by β-oxidation (linear- and short-chain branched carboxylic acids) or ω-oxidation (medium- and long-chain carboxylic acids, presence of ethyl or propyl side chains); (vi) isomerisation reactions by enoyl-CoA isomerase (shift of the double bond from delta3- to delta2- enoyl CoA, when unsaturation begins at an odd-numbered carbon) and 3-hydroxyacyl-CoA epimerase (cis to trans isomerisation of delta2-enoyl-CoA); (vii) saturation of unsaturated short-chain acids, to yield a substrate that may participate in the fatty acid pathway (Stryer, 1988; EFSA, 2010b, 2013b).

Unsaturated carboxylic acids are metabolised by well-recognised pathways leading to the production of acetyl-CoA and propionyl-CoA, which enter general metabolism (Stryer, 1988).

Aliphatic acetals, such as (Z)-1-ethoxy-1-(3-hexenyl)ethane [06.081], undergo hydrolysis in the acidic environment of gastric fluid. The resulting alcohols and aldehydes are absorbed and metabolised as outlined above (WHO, 2002b). Acetals absorbed before acid hydrolysis will be oxidised by liver cytochromes to the corresponding acids (Vicchio and Callery, 1989).

Metabolism studies in laboratory animals are available for citronellol [02.012], citronellal [05.021] and citronellic acid [09.012].
Citronellal is unique and does not follow the general catabolic pathways described above. After single oral administration (6 g) to rabbits, four urinary metabolites were isolated, three of which are characterised by a cyclic terpenoid structure, namely (+)-trans-menthane-3,8-diol (42%), (+)-cis-menthane-3,8-diol (24%) and (-)-isopregol (16%) (Ishida et al., 1989). The fourth metabolite was trans-3,7-dimethyl-6-octene-1,8-dioic acid (known as ‘reduced’ or dihydro-Hildebrandt acid). The formation of trans- and cis-menthane-3,8-diol was confirmed in vitro after 3 h of incubation of citronellal with fresh gastric fluid isolated from male rabbits. A mechanism of acid-catalysed cyclisation of citronellal has been hypothesised, whereas the acidic metabolite is formed by regioselective oxidation of the aldehyde function and dimethyl allyl groups. The structure of citronellal metabolites is shown in Figure 2.

Figure 2: Proposed metabolic pathways of (+)-citronellal in rabbits according to Ishida et al. (1989)

Early metabolism studies described the formation of the dihydro-Hildebrandt acid in rabbits after subcutaneous injection of citronellal or after administration of citronelic acid, indicating that ω-oxidation occurs (Asano and Yamakawa, 1950 as cited by WHO, 2004b). When citronellol was given to rats by gavage, the dihydro-Hildebrandt acid and an alcohol precursor (8-hydroxy-3,7-dimethyl-6-octenoic acid) have been reported as urinary metabolites (Fischer and Bielig, 1940 as cited by WHO, 2004b). Rat lung microsomes have been shown capable of ω-hydroxylation of citronellol (Chadha and Madyastha, 1982; as cited by WHO, 2004b).

Studies on metabolism of compounds belonging to CG 4 in target animals are lacking in the scientific literature. However, the enzymes involved in the biotransformation pathways of these compounds are present in all target species.

Carboxylesterases, responsible for the hydrolysis of esters, are present in the gut especially of ruminants and liver of several animal species (cattle, pigs, broiler chicks, rabbits and horses), operating the hydrolysis of esters and originating the respective alcohols and acids (Gusson et al., 2006). Carboxylesterase activity also plays a significant role in detoxification processes in fish (Li and Fan, 1997; Di Giulio and Hinton, 2008). Reduction of aldehydes to alcohols can also be carried out by carbonyl reductases that are widely distributed in animal species, including cattle, pig, rabbit, dog, sheep and birds as reviewed by Felsted and Bachur (1980), and more recently evaluated in vitro in liver from cattle, pig, goat and sheep (Szotakova et al., 2004). β-Oxidation and ω-oxidation are endogenous pathways and are expected to occur in all animal species, and β-oxidation has been demonstrated in fish (Crockett and Sidell, 1993) and birds (Pan and Fouts, 1978; Sanz et al., 2000). The CYP450 monoxygenase families are present and have been characterised in a number of food-producing animals, including ruminants, horses, pigs, (Nebbia et al., 2003; Ioannides, 2006; Fink-Gremmels, 2008), fish (Wolf and Wolfe, 2005) and birds (Blevins et al., 2012). All these species, also carry out conjugation reactions with sulfate and glucuronic acid (Watkins and Klaassen, 1986; James, 1987; Gusson et al., 2006), producing water-soluble derivatives that are eliminated in urine. Therefore, mammals, fish and birds can also be assumed to have the ability to metabolise and excrete the flavouring substances present in CG 4. The FEEDAP Panel notes that for feline species the capacity for conjugation is limited (Shrestha et al., 2011; Court, 2013).

Deposition and residue studies of the compounds in farm animals are not available. However, there is data which indicate that grazing animals are naturally exposed to compounds found in CG 4 and these can be found in trace amounts in edible products. Documented examples are hept-4-(cis)-enal...
(or (Z)-hept-4-enal) and hex-3(cis)-enal that can be present in milk as a result of degradation of linolenic acid (Bendall, 2001; Bendall and Olney, 2001) and in the fat of pasture-fed lambs (Sivadier et al., 2008). Similarly, the introduction of hex-3-en-1-ol into the rumen of a dairy cow (5 g) also resulted in its appearance in milk in μg/L levels (Honkanen et al., 1964). In a controlled study, citronellol was found in Ragusano cheese (4 months ripening) from fresh pasture cow milk, being absent in cheese made from the milk of cows fed total mixed ration (Carpino et al., 2004). Citronellol was identified in 11 out of 14 plant species grazed by the animals in the pasture system.

3.2.2. Toxicological studies

Subchronic, repeated-dose studies, with multiple doses tested could be found only for hex-3(cis)-en-1-ol [02.056] and 2,6-dimethylhept-5-enal [05.074], tested individually, and for citronellyl acetate [09.012] when tested as an admixture with geranyl acetate. An additional study was identified in which citronellol [02.011] was tested as an admixture with linalool at a single dose level.

In a 98-day study in rats (males/females, 15 animals/sex and group), three doses of hex-3(cis)-en-1-ol [02.056] (0, 310, 1,250 and 5,000 mg/kg bw corresponding to 0, 30, 127 and 410 mg/kg bw per day in males, and to 0, 42, 168 and 721 mg/kg bw per day in females) were administered via water for drinking. The study investigated haematological and urinary parameters, gross pathology and histopathology. From this study, a no observed adverse effect level (NOAEL) of 127 mg/kg bw per day was derived for hex-3(cis)-en-1-ol based on effects observed at the highest dose tested: a transitory anaemia in females (reduced haemoglobin observed after 6 weeks but not after 14 weeks), an increase in the relative weights of kidneys and adrenals in males and an increase in the concentration of urine also in males. However, there were no histological signs of renal damage and no indications of abnormal kidney functions, and nephrotoxic effects were not observed at lower dosages neither in males nor in females (Gaunt et al., 1969).

Because of similarity in structure and metabolism, the NOAEL derived for hex-3(cis)-en-1-ol [02.056] is extrapolated to (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], non-6(cis)-en-1-al [05.059], hex-3(cis)-enal [05.075], (Z)-hept-4-enal [05.085], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271] and hex-3(cis)-enyl isobutyrate [09.563]. Hex-3-enyl isovalerate [09.505] is not included because the exact stereoisomeric form is not known.

In a subchronic study in rats (males/females, 15 animals/sex and group), 2,6-dimethylhept-5-enal [05.074] was administered with diet at doses of 0, 9, 37 and 150 mg/kg bw per day (measured values) for 3 months. The study examined body weight, feed and water intake, haematology (at week 6 and 13), gross pathology and histopathological changes. At the highest dose tested, serum glucose was increased in both sexes compared with controls and an increase in liver and kidney weights was observed in females. A NOAEL of 37 mg/kg bw per day was determined for 2,6-dimethylhept-5-enal (Gaunt et al., 1983).

The subchronic toxicity of citronellyl acetate [09.012] was tested in mice and rats as an admixture with geranyl acetate (NTP, 1987). The test material is described as geranyl acetate in admixture with a maximum 17% citronellyl acetate. It was administered by gavage at doses of 0, 125, 500 and 1,000 mg/kg bw per day in mice (males/females, 10 animals/sex and group) and of 0, 250, 500, 1,000, 2,000 and 4,000 mg/kg bw per day in rats (males/females, 10 animals/sex and group) for 13 weeks. The study examined mortality, body weight, gross pathology and histopathological changes. No adverse effects were seen, however, no data were available on haematological parameters and clinical chemistry. The same admixture with 71% geranyl acetate and 29% citronellyl acetate was not considered carcinogenic to mice and rats in a 2-year study. However, the reduced survival observed in high-dose male rats, high-dose male mice, and high- and low-dose female mice lowered the sensitivity of these studies for detecting neoplastic responses in these groups. The low survival in mice was associated with infections. In male rats, the marginal increases of squamous cell papillomas of the skin and tubular cell adenomas of the kidney may have been related to administration of the mixture (NTP, 1987). A NOAEL could not be derived from this study.

A mixture of citronellol [02.011] and linalool (1:1 by weight) was administered to rats (10 males/10 females) at dietary levels of 100 mg/kg bw per day for 12 weeks. No treatment-related effects were seen, except a depression in growth and food intake in males which was attributed to the reduced palatability of the test materials. The study considered urine analysis and haematology (on three rats per sex and group), gross pathology (on all animals, liver and kidney weights were
recorded). Histopathology was not performed, although tissues were preserved at necropsy. The NOEL for citronellol was 50 mg/kg bw per day, the only dose tested (Oser, 1958).

Although there was a later NTP study (1987), JECFA did not use these results because of serious concerns about infections and low survival to revise the ADI, which remains based on the Oser study. Consequently, the FEEDAP Panel retains a NOAEL of 50 mg/kg bw per day derived from the 90-day study with citronellol [02.011] in rat (Oser, 1958) as a group NOAEL for citronellol and related citronellyl derivatives.

3.2.3. Safety for the target species

The first approach to the safety assessment for target species takes account of the intended use levels in animal feed relative to the maximum reported exposure of humans on the basis of the metabolic body weight. Human exposure in the EU to the individual compounds ranges from 0.32 to 3,700 µg/person per day (EFSA, 2008a, 2009; EFSA CEF Panel, 2010a,b,c, 2011, 2013a,b). This corresponds to 0.01–172 µg/kg bw^{0.75} per day. These exposure levels are considered safe for humans. Table 3 summarises the result of the comparison with human exposure for representative target animals.

Table 3: Comparison of exposure of humans and target animals (calculated from the proposed maximum feed concentrations of 5 mg/kg feed) to the flavourings under application

<table>
<thead>
<tr>
<th>Flavouring</th>
<th>Use level in feed (mg/kg)</th>
<th>Human exposure (µg/kg bw^{0.75} per day)(a)</th>
<th>Target animal exposure µg/kg bw^{0.75}/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon</td>
<td>Piglet</td>
<td>Dairy cow</td>
<td>Salmon</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Citronellol</td>
<td>5</td>
<td>15</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(\text{cis})-en-1-ol</td>
<td>5</td>
<td>172</td>
<td>118</td>
</tr>
<tr>
<td>(Z)-Non-6-en-1-ol</td>
<td>5</td>
<td>0.10</td>
<td>118</td>
</tr>
<tr>
<td>Oct-3-en-1-ol</td>
<td>5</td>
<td>0.22</td>
<td>118</td>
</tr>
<tr>
<td>(\text{Z})-3,7-Dimethyl-6-octen-1-ol</td>
<td>5</td>
<td>17.2</td>
<td>118</td>
</tr>
<tr>
<td>Citronellal</td>
<td>5</td>
<td>38</td>
<td>118</td>
</tr>
<tr>
<td>Undec-10-enal</td>
<td>5</td>
<td>0.01</td>
<td>118</td>
</tr>
<tr>
<td>Non-6(cis)-enal</td>
<td>5</td>
<td>0.08</td>
<td>118</td>
</tr>
<tr>
<td>2,6-Dimethylhept-5-enal</td>
<td>5</td>
<td>1.25</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enal</td>
<td>5</td>
<td>0.19</td>
<td>118</td>
</tr>
<tr>
<td>(Z)-Hept-4-enal</td>
<td>5</td>
<td>0.07</td>
<td>118</td>
</tr>
<tr>
<td>(Z)-1-Ethoxy-1-(3-hexenyloxy)ethane</td>
<td>5</td>
<td>0.21</td>
<td>118</td>
</tr>
<tr>
<td>Citronelic acid</td>
<td>5</td>
<td>0.13</td>
<td>118</td>
</tr>
<tr>
<td>Citronellyl acetate</td>
<td>5</td>
<td>8.81</td>
<td>118</td>
</tr>
<tr>
<td>Citronellyl butyrate</td>
<td>5</td>
<td>1.25</td>
<td>118</td>
</tr>
<tr>
<td>Citronellyl formate</td>
<td>5</td>
<td>4.04</td>
<td>118</td>
</tr>
<tr>
<td>Citronellyl propionate</td>
<td>5</td>
<td>1.62</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl acetate</td>
<td>5</td>
<td>25.51</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl formate</td>
<td>5</td>
<td>1.72</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl butyrate</td>
<td>5</td>
<td>6.03</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl hexanoate</td>
<td>5</td>
<td>1.62</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3-enyl isovalerate</td>
<td>5</td>
<td>0.37</td>
<td>118</td>
</tr>
<tr>
<td>Hex-3(cis)-enyl isobutyrate</td>
<td>5</td>
<td>0.56</td>
<td>118</td>
</tr>
</tbody>
</table>

bw: body weight.
(a): Metabolic body weight (kg bw^{0.75}) for a 60-kg person = 21.6.

Table 4 shows that for all compounds, except hex-3\text{cis}-en-1-ol, the intake by the target animals greatly exceeds that of humans, resulting from use in food. Consequently, safety for the target species at the feed concentration applied cannot be derived from the risk assessment for food use.

As an alternative, the maximum feed concentration which can be considered safe for the target animals can be derived from the lowest NOAEL if suitable data are available. Toxicological data derived from a subchronic, repeated-dose study were available for hex-3\text{cis}-en-1-ol [02.056],...
2,6-dimethylhept-5-enal [05.074] and citronellol [02.011], from which a NOAEL value could be derived (see Section 3.2.2). The NOAEL of 127 mg/kg bw per day for hex-3(cis)-en-1-ol [02.056] is considered to apply also to (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], non-6(cis)-enal [05.059], hex-3(cis)-enal [05.075], (Z)-hept-4-enal [05.085], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271] and hex-3(cis)-enyl isobutyrate [09.563]. Similarly, the NOAEL of 50 mg/kg bw per day for citronellol [02.011] can be applied to (-)-3,7-dimethyl-6-octen-1-ol [02.229], citronellal [05.021], citronellic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078] and citronellyl propionate [09.129].

Applying an uncertainty factor (UF) of 100 to the respective NOAELs, the maximum safe intake for the target species was derived following the EFSA Guidance for sensory additives (EFSA FEEDAP Panel, 2012a), and thus the maximum safe feed concentration was calculated (Table 4). The UF for cats is increased by an additional factor of 5 because of the reduced capacity of glucuronidation (Court and Greenblatt, 1997).

Table 4: Maximum safe concentration in feed for different target animals for (A) hex-3(cis)-en-1-ol and related compounds, (B) 2,6-dimethylhept-5-enal, and (C) citronellol and related compounds

<table>
<thead>
<tr>
<th>Target animal</th>
<th>Default values</th>
<th>Maximum safe intake/feed concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body weight (kg)</td>
<td>Feed intake (g/day)(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonids</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Veal calves (milk replacer)</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>Cattle for fattening</td>
<td>400</td>
<td>8,000</td>
</tr>
<tr>
<td>Dairy Cows</td>
<td>650</td>
<td>20,000</td>
</tr>
<tr>
<td>Piglets</td>
<td>20</td>
<td>1,000</td>
</tr>
<tr>
<td>Pigs for fattening</td>
<td>100</td>
<td>3,000</td>
</tr>
<tr>
<td>Sows</td>
<td>200</td>
<td>6,000</td>
</tr>
<tr>
<td>Chicks for fattening</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Laying hens</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Turkeys for fattening</td>
<td>12</td>
<td>400</td>
</tr>
<tr>
<td>Dogs</td>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>Cats(c)</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

(a): Complete feed with 88% dry matter (DM), except milk replacer for veal calves (94.5% DM), and for cattle for fattening, dairy cows, dogs and cats for which the values are expressed as DM intake.

(b): Complete feed containing 88% DM; milk replacer 94.5% DM.

(c): The uncertainty factor for cats is increased by an additional factor of 5 because of the reduced capacity of glucuronidation (Court and Greenblatt, 1997).

(A): hex-3(cis)-en-1-ol, (Z)-non-6-en-1-ol, oct-3-en-1-ol, non-6(cis)-enal, hex-3(cis)-enal, (Z)-hept-4-enal, hex-3(cis)-enyl acetate, hex-3(cis)-enyl formate, hex-3(cis)-enyl butyrate, hex-3(cis)-enyl hexanoate and hex-3(cis)-enyl isobutyrate.

(B): 2,6-dimethylhept-5-enal.

(C): citronellol, (-)-3,7-dimethyl-6-octen-1-ol, citronellal, citronellic acid, citronellyl acetate, citronellyl butyrate, citronellyl formate and citronellyl propionate.

As individual reliable NOAELs could not be identified for the remaining three compounds, the threshold of toxicological concern (TTC) approach was followed to derive the maximum safe feed concentration (EFSA FEEDAP Panel, 2012a). For Cramer class I compounds, i.e. undec-10-enal [05.035], (Z)-1-ethoxy-1-(3-hexenyloxy)ethane [06.081] and hex-3-enyl isovalerate [09.505], the calculated safe use level is 1.5 mg/kg complete feed for cattle, salmonids and non-food-producing animals, and 1.0 mg/kg complete feed for pigs and poultry.

3.2.3.1. Conclusions on safety for the target species

The FEEDAP Panel concludes that:

- hex-3(cis)-en-1-ol [02.056], (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], non-6(cis)-enal [05.059], hex-3(cis)-enal [05.075], (Z)-hept-4-enal [05.085], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271]
and hex-3(cis)-enyl isobutyrate [09.563] are safe at the proposed maximum use level of 5 mg/kg complete feed for all target species;
- citronellol [02.011], (-)-3,7-dimethyl-6-octen-1-ol [02.229], citronellal [05.021], 2,6-dimethylhept-5-enal [05.074], citronelic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078] and citronellyl propionate [09.129] are safe at the proposed maximum use level of 5 mg/kg complete feed for all target species, except cats, for which the proposed normal use level of 1 mg/kg is considered safe;
- undec-10-enal [05.035], (Z)-1-ethoxy-1-(3-hexenyloxy)ethane [06.081] and hex-3-enyl isovalerate [09.505] are safe at the proposed normal use levels of 1 mg/kg complete feed for all animal species.

3.2.4. Safety for the consumer

The safety for the consumer of the 23 compounds used as food flavours has been already assessed by JECFA (WHO, 2000, 2002a) and EFSA (EFSA, 2008a; EFSA 2013a,b). All compounds are currently authorised in the EU as food flavourings without limitations.6

Given the low use levels of CG 4 compounds to be applied in feed, and the expected extensive metabolism and excretion in target animals (see Section 3.2.1), the FEEDAP Panel considers that the possible residues in food derived from animals fed with these flavourings would not appreciably increase the human intake levels of these compounds.

3.2.5. Safety for the user

No specific data on the safety for the user were provided. In the material safety data sheets,21 hazards for skin and eye contact, and respiratory exposure are recognised for the majority of the compounds under application. Most are classified as irritating to the respiratory system.

3.2.6. Safety for the environment

The additions of naturally occurring substances that will not result in a substantial increase in the concentration in the environment are exempt from further assessment. Examination of the published literature shows that this applies to 13 substances, citronellol [02.011], hex-3-(cis)-en-1-ol [02.056], (-)-3,7-dimethyl-6-octen-1-ol [02.229], citronellal [05.021], hex-3(cis)-enal [05.075], citronelic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078], hex-3(cis)-enyl acetate [09.197], hex-3(cis)-enyl formate [09.240], hex-3-enyl butyrate [09.270] and hex-3-enyl hexanoate [09.271], which occur in the environment at levels above the application rate of 5 mg/kg feed (data taken from the Netherlands Organisation for Applied Scientific Research (TNO) database Volatile Compounds in Food ver. 14.1; Burdock, 2009).22

The other 10 compounds, namely (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], undec-10-enal [05.035], non-6(cis)-enal [05.059], 2,6-dimethylhept-5-enal [05.074], (Z)-hept-4-enal [05.085], (Z)-1-ethoxy-1-(3-hexenyloxy)ethane [06.081], citronellyl propionate [09.129], hex-3-enyl isovalerate [09.505] and hex-3(cis)-enyl isobutyrate [09.563] do not occur in the environment at levels above the application rate of 1–5 mg/kg feed. However, the FEEDAP Panel considers that there is a high probability of complete hydrolysis in the target animal of the three esters, citronellyl propionate [09.129], hex-3-enyl isovalerate [09.505] and hex-3(cis)-enyl isobutyrate [09.563], resulting in citronellol and hex-3-(cis)-en-1-ol, which are naturally occurring compounds. Similarly, considering the metabolism in the target animal (see Section 3.2.1), it is expected that undec-10-enal [05.035], non-6(cis)-enal [05.059], 2,6-dimethylhept-5-enal [05.074] and hept-4-enal [05.085] will be mineralised to CO2. Therefore, these compounds are excluded from further assessment.

For the remaining three compounds, namely non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094] and (Z)-1-ethoxy-1-(3-hexenyloxy)ethane [06.081], the predicted environmental concentration for soil (PECsoil) was calculated based on the use rate (Table 5) and compared with the trigger values for compartments set in the phase I of the relevant EFSA guidance (EFSA, 2008b).

21 Technical dossier/Section II/Annex II.3.
22 Technical dossier/Supplementary information June 2011.
The PEC\textsubscript{soil} values are above the threshold of 10 \(\mu\)g/kg (EFSA, 2008b). The PEC for pore water (PEC\textsubscript{pore water}), however, is dependent on the sorption, which is different for each compound. For these calculations, the substance-dependent constants, such as organic carbon sorption constant (\(K_{\text{oc}}\)), molecular weight, vapour pressure and solubility, are needed. These were estimated from the Simplified Molecular Input Line Entry Specification (SMILES) notation of the chemical structure (Table 6) using EPIWEB 4.1.23 This program was also used to derive the SMILES notation from the CAS numbers. The \(K_{\text{oc}}\) value derived from the first-order molecular connectivity index was used, as recommended by the EPIWEB program.

The half-life (DT\textsubscript{50}) was calculated using BioWin3 (Ultimate Survey Model), which gives a rating number. This rating number \(r\) was translated into a half-life using the formula by Arnot et al. (2005):

\[
\text{DT}_{50} = 10^{(-r \times 1.07 + 4.12)}
\]

This is the general regression used to derive estimates of aerobic environmental biodegradation half-lives from BioWin3 model output.

Table 5: Predicted environmental concentration (PEC) values of non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094] and \((Z)-1\)-ethoxy-1-(3-hexenyloxy)ethane [06.081]

<table>
<thead>
<tr>
<th>EU register name</th>
<th>CAS no.</th>
<th>Dose mg/kg</th>
<th>PEC\textsubscript{soil} ((\mu)g/kg)</th>
<th>PEC\textsubscript{pore water} ((\mu)g/L)</th>
<th>PEC\textsubscript{surface water} ((\mu)g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-6-en-1-ol</td>
<td>35854-86-5</td>
<td>5</td>
<td>107</td>
<td>79</td>
<td>26</td>
</tr>
<tr>
<td>Oct-3-en-1-ol</td>
<td>20125-84-2</td>
<td>5</td>
<td>107</td>
<td>134</td>
<td>45</td>
</tr>
<tr>
<td>((Z)-1)-Ethoxy-1-(3-hexenyloxy)ethane</td>
<td>28069-74-1</td>
<td>1.5</td>
<td>32</td>
<td>22</td>
<td>7</td>
</tr>
</tbody>
</table>

EU: European Union; PEC: predicted environmental concentration; CAS No: Chemical Abstracts Service.

The PEC\textsubscript{soil} values are above the threshold of 10 \(\mu\)g/kg (EFSA, 2008b). The PEC for pore water (PEC\textsubscript{pore water}), however, is dependent on the sorption, which is different for each compound. For these calculations, the substance-dependent constants, such as organic carbon sorption constant (\(K_{\text{oc}}\)), molecular weight, vapour pressure and solubility, are needed. These were estimated from the Simplified Molecular Input Line Entry Specification (SMILES) notation of the chemical structure (Table 6) using EPIWEB 4.1.23 This program was also used to derive the SMILES notation from the CAS numbers. The \(K_{\text{oc}}\) value derived from the first-order molecular connectivity index was used, as recommended by the EPIWEB program.

The half-life (DT\textsubscript{50}) was calculated using BioWin3 (Ultimate Survey Model), which gives a rating number. This rating number \(r\) was translated into a half-life using the formula by Arnot et al. (2005):

\[
\text{DT}_{50} = 10^{(-r \times 1.07 + 4.12)}
\]

This is the general regression used to derive estimates of aerobic environmental biodegradation half-lives from BioWin3 model output.

Table 6: Physicochemical properties predicted by EPIWEB 4.1 for non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094] and \((Z)-1\)-ethoxy-1-(3-hexenyloxy)ethane [06.081]

<table>
<thead>
<tr>
<th>EU register name</th>
<th>CAS no.</th>
<th>DT\textsubscript{50}(a) (days)</th>
<th>Molecular weight (g/mol)</th>
<th>Vapour pressure (Pa)</th>
<th>Solubility (mg/L)</th>
<th>(K_{\text{oc}})(b) (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-6-en-1-ol</td>
<td>35854-86-5</td>
<td>3</td>
<td>142.24</td>
<td>2</td>
<td>619.3</td>
<td>69</td>
</tr>
<tr>
<td>Oct-3-en-1-ol</td>
<td>20125-84-2</td>
<td>3</td>
<td>128.22</td>
<td>7</td>
<td>1,855</td>
<td>38</td>
</tr>
<tr>
<td>((Z)-1)-Ethoxy-1-(3-hexenyloxy)ethane</td>
<td>28069-74-1</td>
<td>6</td>
<td>172.27</td>
<td>65</td>
<td>180</td>
<td>77</td>
</tr>
</tbody>
</table>

EU: European Union; CAS No: Chemical Abstract Service number.
(a): DT\textsubscript{50}, half-life of the additive (EPIWB 4.1.BioWin3).

The three substances in Table 5 have PEC\textsubscript{pore water} above 0.1 \(\mu\)g/L, and a PEC\textsubscript{soil} above 10 \(\mu\)g/kg. Therefore, these three substances are subjected to phase II risk assessment.

In the absence of experimental data, the phase II risk assessment was performed using ECOSAR v1.11, which estimates the halff-maximal effective concentration (EC\textsubscript{50}) for earthworms, fish, green algae and daphnids from the SMILES notation of the substance. The predicted no effect concentration (PNEC) for terrestrial environment (PNEC\textsubscript{soil}) was determined by dividing the LC\textsubscript{50} earthworm by a UF of 1,000. The corresponding PNEC for aquatic compartment (PNEC\textsubscript{aquatic}) was derived from the lowest toxicity value for freshwater environment by applying an UF of 1,000.

For the three compounds, the ratio PEC/PNEC for soil was < 1, indicating that there is no risk for the terrestrial environment at the use levels considered safe for target species (Table 7). The PEC/PNEC for surface water was < 1 for 1-ethoxy-1-(3-hexenyloxy)ethane [06.081], indicating that there is no risk to the fresh water environment at the dose considered safe for target species. For non-6-en-1-ol [02.093] and oct-3-en-1-ol [02.094], the maximum proposed use level would result in PEC\textsubscript{soil}/PNEC ratio > 1. For both compounds, the proposed normal use level of 1 mg/kg feed would not cause a risk for the fresh water environment.

23 Available online: http://www.epa.gov/opptintr/exposure/pubs/episuedl.htm
The use of all additives in fish feed in land-based aquaculture systems does not give a predicted environmental concentration of the additive (parent compound) in surface water (PEC\textsubscript{swaq}) above the trigger value of 0.1 \textmu{g}/L when calculated according to the guidance. For sea cages, a dietary concentration of 0.05 mg/kg would ensure that the threshold for the predicted environmental concentration of the additive (parent compound) in sediment (PEC\textsubscript{sed}) of 10 \textmu{g}/kg is not exceeded when calculated according to the EFSA guidance (EFSA, 2008b).

3.2.6.1. Conclusions on safety for the environment

The concentrations considered safe for the target species (see Section 3.2.3) are unlikely to have detrimental effects on the terrestrial and fresh water environments, except for non-6-en-1-ol [02.093] and oct-3-en-1-ol [02.094], for which the proposed normal use level of 1 mg/kg feed would not cause an environmental risk. For the marine environment, the safe use level is estimated to be 0.05 mg/kg feed.

3.3. Efficacy

As the 23 compounds under assessment are also used in food as flavourings, and their function in feed is essentially the same as that in food, no further demonstration of efficacy is necessary.

4. Conclusions

The FEEDAP Panel concludes that hex-3\textit{(cis)}-en-1-ol [02.056], (Z)-non-6-en-1-ol [02.093], oct-3-en-1-ol [02.094], non-6\textit{(cis)}-enal [05.059], hex-3\textit{(cis)}-enal [05.075], (Z)-hept-4-enal [05.085], hex-3\textit{(cis)}-enyl acetate [09.197], hex-3\textit{(cis)}-enyl formate [09.240], hex-3-enyl butyrate [09.270], hex-3-enyl hexanoate [09.271] and hex-3\textit{(cis)}-enyl isobutyrate [09.563] are safe at proposed maximum use level of 5 mg/kg feed for all target species; citronellol [02.011], (\(-\))3,7-dimethyl-6-octen-1-ol [02.229], citronellial [05.021], 2,6-dimethylhept-5-enal [05.074], citronelic acid [08.036], citronellyl acetate [09.012], citronellyl butyrate [09.049], citronellyl formate [09.078] and citronellyl propionate [09.129] are safe at proposed maximum use level of 5 mg/kg complete feed for all target species, except cats for which the proposed normal use level of 1 mg/kg is considered safe; undec-10-enal [05.035], (Z)-1-ethoxy-1-(3-hexenyloxy)ethane [06.081] and hex-3-enyl isovalerate [09.505] are safe at the proposed normal use levels of 1 mg/kg complete feed for all animal species.

No safety concern would arise for the consumer from the use of these compounds up to the highest safe levels in feed.
Hazards for skin and eye contact, and respiratory exposure are recognised for the majority of the compounds under application. Most are classified as irritating to the respiratory system.

The concentrations considered safe for the target species are unlikely to have detrimental effects on the terrestrial and fresh water environments, except for non-6-en-1-ol [02.093] and oct-3-en-1-ol [02.094] for which the proposed normal use level of 1 mg/kg feed is considered safe.

As all of the compounds under assessment are also used in food as flavourings and their function in feed is essentially the same as that in food, no further demonstration of efficacy is necessary.

Documentation provided to EFSA

1) Chemically Defined Group 04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal (CDG 04). June 2010. Submitted by Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG).

2) Chemically Defined Group 04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal (CDG 04). Supplementary information. May 2011. Submitted by Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG).

3) Chemically Defined Group 04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal (CDG 04). Supplementary information. March 2012. Submitted by Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG).

4) Chemically Defined Group 04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal (CDG 04). Supplementary information. July 2012. Submitted by Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG).

5) Chemically Defined Group 04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal (CDG 04). Supplementary information. June 2016. Submitted by Feed Flavourings Authorisation Consortium European Economic Interest Grouping (FFAC EEIG).

6) Evaluation report of the European Union Reference Laboratory for Feed Additives on the Methods(s) of Analysis for Chemically Defined Group 04 (CDG04 Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/ aldehydes/acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes. No aromatic or heteroaromatic moiety as a component of an ester or acetal).

7) Comments from Member States.

References

EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2010b. Scientific Opinion on Flavouring Group Evaluation 5, Revision 2 (FGE.05Rev2): branched- and straight-chain unsaturated carboxylic acids and esters of these with all aliphatic saturated alcohols from chemical groups 1, 2, 3 and 5. EFSA Journal 2010;8(10):1400, 84 pp. doi:10.2903/j.efsa.2010.1400

EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2011. Scientific Opinion on Flavouring Group Evaluation 96 (FGE.96): consideration of 88 flavouring substances considered by EFSA for which EU production volumes/anticipated production volumes have been submitted on request by DG SANCO. Addendum to FGE. 51, 52, 53, 54, 56, 58, 61, 62, 63, 64, 68, 69, 70, 71, 73, 76, 77, 79, 80, 83, 84, 85 and 87. EFSA Journal 2011;9(12):1924, 60 pp. doi:10.2903/j.efsa.2011.1924

www.efsa.europa.eu/efsajournal 18

NTP (National Toxicology Program), 1987. Carcinogenesis studies of food grade geranyl acetate (71% geranyl acetate, 29% citronellyl acetate) (CAS No. 105-87-3) in F344 rats and B6C3F1 mice (gavage study), NTP TR 252. NIH Publication No. 88-2508.

Abbreviations

bw body weight
CAS Chemical Abstracts Service
CD Commission Decision
CDG chemically defined group
CEF EFSA Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids
CG chemical group
DM dry matter
DT50 degradation half-time
EC50 half-maximal effective concentration
ECOSAR component program of EPI suite™
EEIG European Economic Interest Grouping
EPI suite Estimation Programs Interface (EPI) Suite™
EURL European Union Reference Laboratory
FAO Food and Agriculture Organization
FEEDAP EFSA Scientific Panel on Additives and Products or Substances used in Animal Feed
Chemical group 4 for all animal species

FFAC Feed Flavourings authorisation Consortium of (FEFANA) the EU Association of Specialty Feed Ingredients and their Mixtures
FGE Flavouring Group Evaluation
FLAVIS the EU Flavour Information System
FL-No FLAVIS number
GC-MS gas chromatography–mass spectrometry
JECEA The Joint FAO/WHO Expert Committee on Food Additives
KOC organic carbon sorption constant
Kow octanol–water partition coefficient
LC50 lethal concentration 50
LogKow logarithm of octanol–water partition coefficient
NAD nicotinamide adenine dinucleotide
NADP+ nicotinamide adenine dinucleotide phosphate
NOEL no observed effect level
NOAEL no observed adverse effect level
PEC predicted environmental concentration
PECsed predicted environmental concentration of the additive (parent compound) in sediment
PECpore water predicted environmental concentration for pore water
PECsoil predicted environmental concentration for soil
PECsw predicted environmental concentration for surface water
PECswaq predicted environmental concentration of the additive (parent compound) in surface water
PNEC predicted no effect concentration
PNECaquatic predicted no effect concentration for aquatic compartment
PNECsoil predicted no effect concentration for terrestrial environment
SMILES Simplified Molecular Input Line Entry Specification
TNO Netherlands Organisation for Applied Scientific Research
TTC threshold of toxicological concern
UF uncertainty factor
WHO World Health Organization
Annex A – Executive Summary of the Evaluation Report of the European Union Reference Laboratory for Feed Additives on the Method(s) of Analysis for Chemically Defined Flavourings – Group 04

The Chemically Defined Flavourings - Group 04 (CDG04 - Non-conjugated and accumulated unsaturated straight-chain and branched-chain aliphatic primary alcohols/ aldehydes/ acids, acetals and esters with esters containing unsaturated alcohols and acetals containing unsaturated alcohols or aldehydes), in this application comprises 24 substances, for which authorisation as feed additives is sought under the category "sensory additives", functional group 2(b) "flavouring compounds", according to the classification system of Annex I of Regulation (EC) No 1831/2003.

In the current application submitted according to Article 4(1) and Article 10 (2) of Regulation (EC) No 1831/2003, the authorisation for all species and categories is requested. The flavouring compounds of interest have a purity ranging from 85% to 98%.

Mixtures of flavouring compounds are intended to be incorporated only into feedingstuffs or drinking water. The Applicant suggested no minimum or maximum levels for the different flavouring compounds in feedingstuffs.

For the identification of volatile chemically defined flavouring compounds CDG04 in the feed additive, the Applicant submitted a qualitative multi-analyte gas-chromatography mass-spectrometry (GC–MS) method, using Retention Time Locking (RTL), which allows a close match of retention times on GC–MS. By making an adjustment to the inlet pressure, the retention times can be closely matched to those of a reference chromatogram. It is then possible to screen samples for the presence of target compounds using a mass spectral database of RTL spectra. The Applicant maintained two FLAVOR2 databases/libraries (for retention times and for MS spectra) containing data for more than 409 flavouring compounds. These libraries were provided to the EURL. The Applicant provided the typical chromatogram for the CDG04 of interest.

In order to demonstrate the transferability of the proposed analytical method (relevant for the method verification), the Applicant prepared a model mixture of flavouring compounds on a solid carrier to be identified by two independent expert laboratories. This mixture contained twenty chemically defined flavourings belonging to twenty different chemical groups to represent the whole spectrum of compounds in use as feed flavourings with respect to their volatility and polarity. Both laboratories properly identified all the flavouring compounds in all the formulations. Since the substances of CDG04 are within the volatility and polarity range of the model mixture tested, the Applicant concluded that the proposed analytical method is suitable to determine qualitatively the presence of the substances from CDG04 in the mixture of flavouring compounds.

Based on the satisfactory experimental evidence provided, the EURL recommends for official control for the qualitative identification in the feed additive of the individual (or mixture of) flavouring compounds of interest the GC–MS–RTL (Agilent specific) method submitted by the Applicant.

As no experimental data were provided by the Applicant for the identification of the active substance(s) in feedingstuffs and water, no methods could be evaluated. Therefore the EURL is unable to recommend a method for the official control to identify the active substance(s) of interest in feedingstuffs or water.