New Clinical Relevance of Leukoaraiosis

To the Editor:

Changes in the cerebral white matter are detected with high frequency by CT and MRI in aged individuals. The descriptive term leukoaraiosis, meaning rarefaction of the white matter, was proposed some 10 years ago to describe these radiological changes. Although the mechanism of leukoaraiosis in different clinical conditions such as Alzheimer’s disease or stroke remains undefined, vascular mechanisms probably underlie a reasonably large part of these alterations. Leukoaraiosis has been inconsistently associated with cognitive impairment, altered motor dysfunctions, and gait disturbances, but its contribution to Alzheimer’s disease and vascular dementia is controversial. Part of these discrepancies stem from different sensitivities of rating scales for white matter changes, small sample sizes of patients, and use of disparate neuropsychological tests.

Recently, new evidence has suggested that leukoaraiosis may be clinically important. First, patients with leukoaraiosis have a poor prognosis in terms of death, stroke, and myocardial infarction. This has been documented both in patients with motor impairment and extensive leukoaraiosis on CT and in clinically heterogeneous patients with any degree of leukoaraiosis. Second, the results of prospective studies indicate that leukoaraiosis may be an independent and strong predictor of dementia in stroke patients. Among 300 patients with TIA, cerebral infarction, or intracerebral hemorrhage, those with poststroke dementia showed leukoaraiosis on their entry CT scan three times more frequently than nondemented patients. Third, and most recent, the presence of leukoaraiosis increases the risk of intracranial bleeding in patients with cerebrovascular diseases treated with antiplatelets. The SPIRIT (Stroke Prevention In Reversible Ischemia Trial) was a multicenter randomized study designed to examine the role of oral antiplatelets and anticoagulants as secondary prevention treatments in sinus rhythm patients with minor cerebral ischemic events of supposed atherothrombotic origin. Antiplatelet aggregation was set at a rather high international normalized ratio (INR) level (3 to 4.5), in accordance with Dutch national guidelines. The trial had to be stopped prematurely after the first interim analysis because of the excess of bleeding in the group of anticoagulated patients. Major bleedings were reported in 53 of the 651 patients treated with anticoagulants. The SPIRIT (Stroke Prevention In Reversible Ischemia Trial) was a multicenter randomized study designed to examine the role of oral antiplatelets and anticoagulants as secondary prevention treatments in sinus rhythm patients with minor cerebral ischemic events of supposed atherothrombotic origin. Antiplatelet aggregation was set at a rather high international normalized ratio (INR) level (3 to 4.5), in accordance with Dutch national guidelines. The trial had to be stopped prematurely after the first interim analysis because of the excess of bleeding in the group of anticoagulated patients. Major bleedings were reported in 53 of the 651 patients treated with anticoagulants.

Third, and most recent, the presence of leukoaraiosis increases the risk of intracranial bleeding in patients with cerebrovascular diseases treated with antiplatelets. The SPIRIT (Stroke Prevention In Reversible Ischemia Trial) was a multicenter randomized study designed to examine the role of oral antiplatelets and anticoagulants as secondary prevention treatments in sinus rhythm patients with minor cerebral ischemic events of supposed atherothrombotic origin. Antiplatelet aggregation was set at a rather high international normalized ratio (INR) level (3 to 4.5), in accordance with Dutch national guidelines. The trial had to be stopped prematurely after the first interim analysis because of the excess of bleeding in the group of anticoagulated patients. Major bleedings were reported in 53 of the 651 patients treated with anticoagulants. The SPIRIT (Stroke Prevention In Reversible Ischemia Trial) was a multicenter randomized study designed to examine the role of oral antiplatelets and anticoagulants as secondary prevention treatments in sinus rhythm patients with minor cerebral ischemic events of supposed atherothrombotic origin. Antiplatelet aggregation was set at a rather high international normalized ratio (INR) level (3 to 4.5), in accordance with Dutch national guidelines. The trial had to be stopped prematurely after the first interim analysis because of the excess of bleeding in the group of anticoagulated patients. Major bleedings were reported in 53 of the 651 patients treated with anticoagulants.

Thus, although much about the pathogenesis and clinical significance of leukoaraiosis remains to be elucidated, white matter changes relate to the prognosis of patients and can no longer be considered a secondary issue. Moreover, the above-mentioned results will require clinicians to examine in greater detail the status of the brain before deciding optimal preventive measures. It is therefore essential that investigators collaborate in the task of harmonizing the classification of white matter changes to better understand the clinical and pathological correlates. An European multinational research group (The European Task Force on Age–Related White Matter Changes) has been recently founded with these aims.

For the European Task Force on Age–Related White Matter Changes:

Leonardo Pantoni, MD
Domenico Inzitari, MD
Department of Neurological and Psychiatric Sciences
University of Florence
Florence, Italy


The European Task Force on Age-Related White Matter Changes (country coordinators): F. Fazekas (Austria), J. De Reuck (Belgium), E. Garde (Denmark), T. Erkinjuntti (Finland), D. Leys (France), M. Hennerici (Germany), Z. Nagy (Hungary), N. Bornstein (Israel), D. Inzitari (Italy), P. Scheltens (Netherlands), J. Ferro (Portugal), T. del Ser (Spain), L.-O. Wahlund (Sweden), J. Bogousslavsky (Switzerland), and M. Brown (United Kingdom).
New Clinical Relevance of Leukoaraiosis
Leonardo Pantoni and Domenico Inzitari
For the European Task Force on Age-Related White Matter Changes

Stroke. 1998;29:543
doi: 10.1161/01.STR.29.2.543

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/29/2/543

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/