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The study of cognition as a biological function may be unique in the life sciences in the

extent to which findings ultimately are calibrated against a single species, Homo sapiens

[...]. The study of respiration and other biological functions, for example, are not so

calibrated, although scientific investigation doubtless began with concern for the human

case. (We stop breathing, we die – so what is breath?) Rather, evidence is followed

wherever it leads, and it can lead to unexpected places. [...] Memory, needless to say, is

critical to cognition. Without memory, present circumstances have no context; the

detection of change is impossible. Without the ability to detect change, the decision to

alter behavior can only be random, haphazard. Without memory, learning of any kind is

impossible.
— Pamela Lyon, The cognitive cell: bacterial behavior reconsidered,

Front. Microbiol. 2015
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Abstract

DUring mitosis, DNAmaterial needs to be properly segregated. Chromosome segregation is trig-
gered by the Anaphase Promoting Complex or Cyclosome (APC/C), an E3 ubiquitin ligase

activated by its cofactor Cdc20. Activation of APCCdc20 is conditioned by the presence of optimal con-
ditions for a proper partition of sister chromatids. Without such conditions, activation of APC/CCdc20

could lead to unequal chromosome segregation, by which an aneuploid progeny could arise. The
Spindle Assembly Checkpoint (SAC) inhibits the activity of APC/CCdc20, blocking the progression
through the cell cycle and thus preventing erroneous chromosome segregation.

When cells experience a prolonged SAC activation, they may die in mitosis by apoptosis, or over-
come the arrest and progress into the cell cycle even when chromosome segregation is impaired. The
second scenario is also known as adaptation to the SAC (or mitotic slippage). Once adapted, cell
proliferation can still be blocked (via apoptosis or G1 arrest) or cells can resume cell division. The
latter case may establish a progeny of cells in which aneuploidy and genomic instability introduce
large genetic variability, with potentially irreversible and deleterious effect on the cell population.

Using S. cerevisiae as a model organism, we characterized a population of cells escaped from a
prolonged mitotic arrest, which we called adapted cells. Proteomic analysis of these cells revealed
large rewirings of biological processes and pathways, suggesting a pseudo "differentiated" state for
adapted cells. The cell cycle of adapted cell is heavily modified, to account for the chronic inhibition
of APC/CCdc20. On the one hand, APC/CCdc20 itself become less responsive to the SAC, as observed
in a population of cells where we uncoupled adaptation from missegregation. We showed that cel-
lular size was not responsible for the partial recovery of APC/CCdc20 activity in the presence of the
SAC. Our data rather suggest a role for Cdc28-mediated phosphorylation. On the other hand, other
activators of APC/C like Cdh1 become essential, unlike what observed in a regular cell cycle. The
synthetic lethality of adapted cells with mitotic exit genes suggests potential molecular targets for
specific inhibition of adapted cells.
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1
Introduction

1.1 General Principles of Mitosis

ONe of the key aspects of the Cell Theory concerns the origin of each cell. In 1855, Robert Remak
and Rudolf Virchow were the first scientists to monitor cellular proliferation, observing that

each cell gives rise to two cells. From additional discoveries in the last century, we know that every
cell originates from a division of pre-existing cells, herediting the genetic information encoded in the
DNA. This process is accomplished by the Cell Cycle (Figure 1.1), which allows every (mother) cell
to produce two (daughter) cells with identical DNA content.

Figure 1.1: The Eukaryotic Cell Cycle is composed by subsequent phases - Schematic representation of the eukaryotic
cell cycle. DNA is duplicated in S phase and organized in sister chromatids, which are properly segregated inM phase. After
segregation, mother cells physically divide into two daughter cells by cytokinesis. Both S and M phase are preceded by Gap
phases: G1 for S-phase, while G2 for M-phase. Source: (Morgan 1999-2007)

At the beginning of the cell cycle, S-phase takes place. Here, DNA is unwounded from hete-
rochromatin to euchromatin, allowing replication origin firing and duplication of DNA. At the end of
replication, the two DNA molecules produced by DNA replication stick together. They are known as
sister chromatids. Then, cells proceed to M-phase, which is composed by mitosis and cytokinesis.
During mitosis, sister chromatids attach to the mitotic spindle, a dynamic structure made of micro-
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tubules that allows segregation of each pair of sister chromatids. Eventually, daughter cells separate
at cytokinesis. Between S and M phase, Gap phases (G1 and G2) ensure a proper transition between
one phase and the next, giving time to the cell to activate specific regulatory pathways and to grow
properly. Phases G1, S and G2 form a major phase of the cell cycle called interphase. While inter-
phase takes a large part of the cell cycle time, mitosis lasts for a shorter amount of time.

In this study, we investigate mitosis in Saccharomyces cerevisiae cells, whose main features are
introduced in the following subsections.

1.1.1 Sister chromatids segregate during mitosis

At the end of interphase, DNA is organized in sister chromatids, held together by cohesin rings (Nas-
myth & Haering 2009). Then, cells undergo mitosis through a series of events that can be organized
in different subphases (Alberts et al. 2002-2008):

1. Prophase

In this phase, each couple of sister chromatids becomes more condensed. In particular, a hete-
rochromatic region called centromere is defined for both sister chromatids. For each centromeric
region of each chromosome, a protein complex called kinetochore is assembled. Meanwhile,
the mitotic spindle is polymerized from the two opposite poles, called MicroTubules Organiz-
ing Centers (MTOCs). In the open mitosis of mammalian cells, these poles are provided by
centrosomes, which are located in the cytosol (Figure 1.2, 1).

2. Prometaphase

The mitotic spindle starts to attach sister chromatids, by physically interacting with kineto-
chores. In mammalian cells, where MTOCs are outside the nucleus, the Nuclear Envelope
BreakDown (NEBD) takes place to allow formation of the mitotic spindle (Figure 1.2, 2).

3. Metaphase

At this stage, all kinetochores of the sister chromatids are attached to the opposite poles of the
mitotic spindle and chromosomes are aligned on the metaphase plate, the equator of the mitotic
spindle (Figure 1.2, 3).

4. Anaphase

Cohesin rings are cleaved, and sister chromatids are separated due to the physical tension ex-
erted by kinetochores-microtubules attachment. MTOCs pull away from each other, allowing
chromosome segregation (Figure 1.2, 4).

At the end of mitosis, the two sets of chromosomes get closer to their MTOC. Then, telophase and
cytokinesis ensure a proper division of the mother cell into two daughter cells. In mammalian cells,
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nuclear envelope is reassembled and cytokinesis creates a cleavage furrow on the plasma membrane
(Figure 1.2, 5-6).
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Figure 1.2: Mitotic Phases ensure correct chromosomes segregation - During mitosis, sister chromatids are segregated
through several stages. A schematic representation of these stages is reported in this figure. Source (Alberts et al. 2010)

1.1.1.1 Budding yeast performs a closed mitosis

So far, we described an open mitosis, in which disassembly of the nuclear envelope allows the inter-
action of the mitotic spindle with chromosomes. This phenomenon occurs in human and mammalian
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cell lines. Organisms like budding yeast, instead, undergo through the same mitotic phases, but with
different cytological structures. First, budding yeast cells form a bud (Figure 1.3a). This bud will
inherit half of the replicated DNA content, giving rise to a daughter cell. The cytoplasmic region
between mother cell and bud is called budneck, and it provides a site for cleavage furrow.

Differently from mammalian cells, NEBD does not take place in budding yeast, which performs
a closed mitosis. Here, the role of MTOCs is covered by Spindle Pole Bodies (SPBs), protein com-
plexes that are located within the nuclear envelope. From these poles, both nuclear and cytoplasmic
microtubules are assembled (Figure 1.3a). While nuclear microtubules ensure attachment to sister
chromatids, cytoplasmic ones give a correct orientation of the metaphase plate: the axis of mitotic
spindle has to be perpendicular to the budneck, with one SPB in the mother cell and the other one in
the bud. Once anaphase is concluded, cytokinesis takes place, cleaving both plasma membrane and
nuclear envelope (Figure 1.3b, c).

Figure 1.3: Mitosis in budding yeast - Schematic representation of mitotic spindle andMTOCs duringmitosis of budding
yeast, in particular during (A) G2-M phase, (B) anaphase and (C) early telophase. 1: nuclear membrane; 2: cytoplasmic
microtubules; 3: interpolar microtubules; 4: kinetochore; 5: kinetochore microtubules; 6: spindle pole body (SPB). Source:
(Vági et al. 2012)

1.1.2 Cyclin-dependent kinase 1 promotes mitotic onset and progression

From the description given above, it emerges that subcellular organelles and macromolecular struc-
tures undergo several reorganizations in mitosis (Morgan 1999-2007). Most of these rearrangements
rely on the activity of Cyclin-dependent kinases (Cdks), which phosphorylate specific substrates on
serine/threonine residues. Action range and phosphorylation activity of Cdks are determined by their
binding with Cyclins, whose levels oscillate during the cell cycle and reach their maximum expres-
sion during specific cell cycle phases. These fluctuations allow selectivity of Cdks activity (Morgan
1999-2007).

Cyclin-dependent kinase 1 Cdk1 (Cdc28 in budding yeast) is the main mitotic kinase. It binds
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interacts with Cdc28 and enters in nucleus during prometaphase. Clb2:Cdc28 activity increases in prophase. (b) Activation
of the MPF Clb2:Cdc28. Upon binding with Clb2, Cdc28 is inhibited by Wee1 (Swe1). A subsequent dephosphorylation
performed by Cdc25 (Mih1) establishes an active MPF. Figure inspired from (Morgan 1999-2007)

mitotic Cyclins B, forming a complex - called Mitosis Promoting Factor (MPF) - that promotes pro-
gression through mitosis (Rahal & Amon 2008). In budding yeast, there are four cyclin B: Clb1, Clb2,
Clb3 and Clb4. Their overall mitotic activity is redundant, even if deletion of Clb2 has the most severe
effect on cellular viability and mitotic progression (Fitch et al. 1992), suggesting that the main MPF
in budding yeast is represented by Clb2:Cdc28 complex.

Precisely, MPF activity rises upon Clbs synthesis (Figure 1.4a). While Clb1,2 start to be syn-
thetized at the G2/M transition, mRNA of Clb3,4 accumulates at early stages of S-phase (Fitch et al.

1992). Once assembled, MPF complex is inactive, due to the inhibitory phosphorylation performed
byWee1 kinase (Swe1 in budding yeast) on the ATP-binding site of Cdk1. A counteracting activity of
Cdc25 phosphatase (Mih1 in budding yeast) removes this inhibition (Figure 1.4b) and activates MPF.
During mitotic onset, Clb2 localizes to the nucleus (Hood et al. 2001), ensuring an active MPF in the
nuclear compartment until metaphase. In conjunction with chromosomes segregation, Clb2:Cdc28
activity decreases, due to the inhibition of both Clb2 and Cdc28, allowing mitotic exit. In the next
subsections, we further describe the molecular mechanisms underlying the decline of Clb2:Cdc28
MPF activity during the metaphase-to-anaphase transition and after anaphase.

1.1.3 Metaphase-to-Anaphase Transition

As already mentioned in Subsection 1.1.1, sister chromatids segregation occurs during anaphase. This
transition is not only driven by the mitotic spindle, but rather by several biochemical reactions, most of
which involve an E3-ubiquitin ligase, called Anaphase Promoting Complex or Cyclosome (APC/C).
This complex ubiquitinates specific substrates, which are then degraded by the 26S proteasome. Func-
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tionality of APC/C relies on its structure and regulatory mechanisms, which we report in the next
subsections.

1.1.3.1 Structure of the APC/C

The structure of the APC/C complex has been widely studied in budding yeast, human and animal
models (Zhang et al. 2016; Qiao et al. 2016; Alfieri et al. 2017; Sivakumar &Gorbsky 2015; Thornton
et al. 2006) and it is still under investigation. 14 different protein subunits (13 in yeast) are organized
in three subcomplexes (Figure 1.5): a catalytic module, a scaffolding module platform and a TPR
lobe (Alfieri et al. 2017; Sivakumar & Gorbsky 2015). The catalytic module is a flexible structure
that mediates ubiquitination of APC/C substrates, cooperating with a ubiquitin-conjugating enzyme
(E2). The TPR lobe consists of homodimeric proteins with multiple tetratricopeptide repeats. This
subcomplex assumes an "arc lamp" shape and it mediates the binding with substrates and co-activators
of APC/C. Both catalytic and TPR modules are anchored to the scaffolding platform, which stabilizes
the overall structure of APC/C and supports its functionality.
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Figure 1.5: Schematic representation of APC/C structure - Representation of the three modules: platform subcomplex,
catalytic core subcomplex and TRP lobe subcomplex. Each protein is reported with the mammals nomenclature in capital
letters, and yeast nomenclature in parentheses. Source: (Sivakumar & Gorbsky 2015)

1.1.3.2 Cdc20 and Cdh1 are essential co-activators of APC/C

The described complex per se is inactive. In order to ubiquitinate its substrates, APC/C has to be
activated by two co-factors: Cdc20 and Cdh1. Cdc20 activates APC/C during metaphase, while Cdh1
from the anaphase onset to the subsequent G1. Both co-activators possess a short N-terminal mo-
tif called C-box (Schwab et al. 2001) and a dipeptide C-terminal domain called IR (Vodermaier et al.
2003), which allow binding with the TPR lobe of APC/C. Once bound, each co-activator exposes its C-
terminal domain, which contains WD40 repeats that allow binding of substrates. Only substrates with
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degron sites are recognized byCdc20 and/or Cdh1. D-box (or destruction box) RxxLx[D/E][∅]xN[N/S],
KEN box [DNE]KENxxP and ABBAmotif Fx[ILV][FY]x[DE] represent the known canonical degron
sites (Alfieri et al. 2017), and their recognition by APC/C co-activators depends on intrinsic factors
encoded in protein sequence, or cell-state dependent, extrinsic factors (Davey & Morgan 2016).

Metaphase Anaphase

APC/CCdc20

Pds1
degradation

Esp1
activation

cohesin
cleavage

Clbs
degradation

Cdc28
inactivation

Dephosphorylation
of Cdc28 substrates

APC/CCdh1

Spindle
elongation

Figure 1.6: APC/C promotes completion of mitosis - Subsequent activation of APC/CCdc20 and APC/CCdh1 allows sister
chromatids segregation and inhibition of Cdc28 kinase activity. Figure inspired from (Morgan 1999-2007)

APC/CCdc20 activity Cdc20 activity is essential for anaphase onset, and yeast conditional mutants
for this gene arrest in metaphase with undivided nuclei and stable securine levels (Shirayama et al.

1998; Yamamoto et al. 1996). A tight regulated balance between Cdc20 synthesis and degradation
occurs through mitosis. Synthesis of Cdc20 starts in G2/M and it is mediated by mitotic Cdc28 activ-
ity in yeast, presumably by repressing the transcriptional inhibitor Yox1 via phosphorylation (Liang
et al. 2012). Cdc20 degradation is APC/C-dependent and occurs in cis, via D- and KEN degron boxes
located in Cdc20 protein sequence (Foe et al. 2011). A member of APC/C called Mnd2 covers an
important role in Cdc20 degradation (Foster & Morgan 2012).

APC/CCdc20 is assembled during prophase/prometaphase, reaching its high activity at the end of
metaphase. When all sister chromatids are properly attached to the mitotic spindle, APC/CCdc20 ubiq-
uitinates Clb2 and securine (Pds1 in yeast). While degradation of Clb2 leads to the reduction of
Cdc28 kinase activity, Pds1 degradation activates separase (Eps1 in yeast), which in turns cleaves
the cohesin rings that helds sister-chromatids together. Finally, phosphorylation of Cdc28 substrates
decreases, promoting chromosome movement to the MTOCs and spindle elongation (Morgan 1999-
2007) (Figure 1.6). Among the Cdc28 substrates, Yox1 phosphorylation is reverted: Cdc20 synthesis
is repressed, and Cdc20 degradation prevails.

APC/CCdh1 activity In most higher eukaryotes, APC/CCdc20 activity is sufficient for triggering a
chain of events which revert phosphorylation of Cdk1-substrates. Budding yeast, instead, needs
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additional mechanisms. Here, Cdh1 plays an important role. APC/CCdh1 activity follows that of
APC/CCdc20 in early anaphase, and it mediates the complete degradation of mitotic cyclins. Cdh1
localizes to the nucleus in G1 (Höckner et al. 2016); once cells proceed in S and G2/M phases, the
APC/C co-activator diffuses to the cytoplasm: this is due to the increased Cdc28 mitotic activity that
phosphorylates Cdh1, inhibiting its ability to localize to the nucleus and to bind APC/C (Höckner
et al. 2016). During anaphase onset, Clb2:Cdc28 is partially inhibited by APC/CCdc20, leading to the
dephosphorylation of Cdh1 that enters in the nucleus and binds APC/C. The resulting APC/CCdh1

complex induces degradation of mitotic cyclins and Cdc20, allowing exit from mitosis (Figure 1.6).

1.1.3.3 Regulation of APC/C activity by phosphorylation

As just described, Cdc28 kinase negatively regulates APC/CCdh1. In general, phosphorylation of
APC/C and/or its co-activators provides several regulatory mechanisms (Figure 1.8).

Phosphorylation of TPR lobe promotes APC/CCdc20 activity Binding affinity between APC/C
and Cdc20 increases in the presence of phosphorylated TPR lobe (Cdc16, Cdc27, Cdc23), causing
an increase of APC/CCdc20 activity. (Rudner & Murray 2000; Qiao et al. 2016; Zhang et al. 2016;
Cross 2003). In Xenopus egg extracts, phospho-mimicking mutants of Apc3 (Cdc27), Apc6 (Cdc16)
or Apc8 (Cdc23) are able to ubiquitinate Cyclin B in vitro, in the presence of Cdc20 (Qiao et al. 2016).
In budding yeast, nonphosphorylatable mutants of Cdc16 and Cdc27 impair APC/CCdc20 function in
vivo (Rudner & Murray 2000; Vernieri et al. 2013).

APC/CCdc20

Clb2:Cdc28

APC/CCdh1

Figure 1.7: Two oscillators regulate mitotic APC/C activity - Representation of APC/C regulation discussed above.
(Red) Clb2:Cdc28 stimulates APC/CCdc20 via phosphorylating APC/C and promoting Cdc20 synthesis. During anaphase
onset, active APC/CCdc20 induces Clb2 degradation, resulting in a decreased Cdc28 activity. (Green) Clb2:Cdc28 inhibits
APC/CCdh1 via preventing binding of Cdh1 with APC/C. When activated, APC/CCdh1 induces degradation of Clb2 and
Cdc20. Figure inspired from (Cross 2003)

Phosphorylation of the TPR lobe is mainly Cdc28-dependent (Rudner & Murray 2000). Cdc28
activity on APC/CCdc20 and Cdh1 draws the attention on two feedback loops (Figure 1.7). While
Cdc28 establishes a negative feedback loop with APC/CCdc20, it interacts with APC/CCdh1 in a positive
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feedback loop. Combination of these two oscillatory mechanisms provides a circuit that is responsible
for controlling Cdc28 mitotic kinase levels (Cross 2003).

Apc1 subunit inhibits Cdc20 binding with APC/C Recently, it has been proposed a role of phos-
phorylated Apc1 in promoting APC/CCdc20 assembly (Qiao et al. 2016; Zhang et al. 2016). Apc1
belongs to the APC/C platform subcomplex (Figure 1.5), and it has a N-terminal Auto-Inhibitory (AI)
segment that prevents Cdc20 binding with Apc3 (Cdc27). Several phosphosites were identified in
AI loop in HeLa cells (Qiao et al. 2016; Zhang et al. 2016), and a phospho-mimicking mutant of AI
segment was able to ubiquitinate Cyclin B in vitro (Qiao et al. 2016). Indeed, phosphorylation of this
region removes Apc1 inhibitory effects, allowing binding of Cdc20 with APC/C (Qiao et al. 2016;
Zhang et al. 2016). This phosphorylation could be mediated by recruitment of CyclinB-Cdk1 com-
plex by Apc3 (Zhang et al. 2016), which may displace active Cdk1 to the N-terminal loop of Apc1
(Zhang et al. 2016), allowing phosphorylation of the AI segment. At the moment, there is no evidence
about Apc1 inhibitory function in budding yeast.

Inhibition of Cdc20 by phosphorylation It has been found that Cdc20 is phosphorylated in vivo
by CyclinA2-Cdk2 during interphase in HeLa cells (Hein & Nilsson 2016). CyclinB1-Cdk1 also
contributes to this phosphorylation in earlymitosis, targeting 3 threonine sites and reducing the activity
of APC/CCdc20 (Hein et al. 2017). In mammals, this phosphorylation is reverted by the phosphatase
PP2A, which preferentially targets phosphothreonines rather than phosphoserines (Hein & Nilsson
2016; Hein et al. 2017). PP2A predominantly affects the phosphorylation state of Cdc20 and not that
of Apc1, which is required for an active APC/CCdc20 - as described in the subsection above. This is
due to the presence of phosphoserine sites on Apc1, which are unlikely to be target of PP2A (Hein
et al. 2017).
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Figure 1.8: Phosphorylation mechanisms regulate APC/CCdc20 activity - Schematic representation of the
(de)phosphorylation reactions that has been proposed to regulate APC/CCdc20 activity. Cdk1 activity phosphorylates Apc6
and Apc3, enhancing binding affinity between Cdc20 and APC/C (Rudner & Murray 2000; Qiao et al. 2016; Zhang et al.
2016; Cross 2003; Vernieri et al. 2013). This binding is improved when Apc1 is phosphorylated (Qiao et al. 2016; Zhang
et al. 2016). On the other hand, PP2A activity has been proposed to have an active role in promoting Cdc20 (Hein & Nilsson
2016; Hein et al. 2017), while inhibiting Cdc16 phosphorylation (Vernieri et al. 2013).

1.1.4 Reversing Cdc28 activity: Cdc14 triggers mitotic exit
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Figure 1.9: Release of Cdc14 allows exit from mitosis - Cdc14 localizes to the nucleolus, until anaphase. During early
anaphase, a first pool of Cdc14 is released in the nucleus via FEAR pathway (Stegmeier et al. 2002). In late anaphase,
Cdc14 is also released in the cytoplasm via MEN. Localization to the nucleolus is mediated by Cfi1/Net1 inhibitor. During
anaphase, phosphorylation of Cfi1/Net1 weakens the bound with Cdc14, allowing its release. Among Cdc14 substrates,
reversal of Cdh1 and Sic1 phosphorylation allows inhibition of residual Cdc28 kinase activity.

As described in the previous subsection, APC/C triggers the reversal of Cdc28 mitotic activity.
In yeast, the phosphatase primarily involved is Cdc14. During interphase, Cdc14 is localized to the
nucleolus and it is inactive, due to its binding with the inhibitor Cfi1/Net1; this conformation is main-
tained until metaphase (Figure 1.9). When cells undergo anaphase, a first pool of Cdc14 is released
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to the nuclear compartment. This phenomenon is known as Cdc Fourteen Early Anaphase Release
(FEAR), and it is mediated by phosphorylation of Cfi1/Net1 Figure 1.9). In late anaphase, Cfi1/Net1
is further phosphorylated, allowing the full release of Cdc14 in cytoplasm: at this stage of the cell
cycle, Mitotic Exit Network (MEN) takes place (Figure 1.9).

Once released in the nuclear and/or cytoplasmic compartment, Cdc14 reverses the phosphoryla-
tion of several Cdc28 substrates. Among them, Cdh1 and Sic1 cover an important role in mitotic exit
(Visintin et al. 1998): they are inhibited by Cdc28-mediated phosphorylation, and activated upon re-
lease of Cdc14. Dephosphorylation of Cdh1 promotes APC/CCdh1 activity, as discussed in Subsection
1.1.3. Cdc14 dephosphorylation also activates Sic1, a stoichiometric inhibitor of Cdc28. (Visintin
et al. 1998; Cross 2003).
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Figure 1.10: FEAR andMEN regulate release of Cdc14 - Schematic representation of FEAR and MEN pathway. Both
of them are responsible for release of Cdc14 from the nucleolus, therefore activating an efficient reversal of Cdc28 activity.

1.1.4.1 FEAR

This pathway allows the release of Cdc14 during early anaphase (Stegmeier et al. 2002) of yeast cells.
It is not essential for cellular viability, but it is required for a correct timing of mitotic exit. Several
components of FEAR trigger Cdc14 release via phosphorylation of Cfi1/Net1 inhibitor (Figure 1.10).
One of them is Clb2:Cdc28 complex (Azzam et al. 2004; Queralt et al. 2006), which phosphorylates
Cfi1/Net1 before being inactivated by APC/CCdc20 during anaphase onset (Queralt et al. 2006).

Polo like kinase Cdc5 covers an important role in promoting FEAR: overexpression of Cdc5 antici-
pates Cdc14 release in metaphase, phosphorylating Cfi1/Net1 and Cdc14 in vivo (Visintin et al. 2003).
Cdc5-dependent phosphorylation sites of Cfi1/Net1 differ from that of Cdc28-dependent, suggesting
a non-redundant mechanism of Cfi1/Net1 inhibition (Rodriguez-Rodriguez et al. 2016). Moreover,
Cdc28 phosphorylates Cdc5 on T242 site, mediating the Polo like kinase activity towards Cfi1/Net1
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(Rodriguez-Rodriguez et al. 2016).
Phosphorylation of Cfi1/Net1 is reversed by PP2ACdc55, which localizes to the nucleolus during

metaphase, in order to prevent premature release of Cdc14 (Queralt et al. 2006). In vivo, PP2ACdc55

activity is inhibited by separase Esp1, which physically interacts with Cdc55 (Queralt et al. 2006) and
promote FEAR (Stegmeier et al. 2002).

1.1.4.2 MEN

The major release of Cdc14 takes place during late anaphase/telophase (Figure 1.9) of yeast cells.
Here, the main kinase that phosphorylates Cfi1/Net1 is Dbf2 (Figure 1.10). Together with its coac-
tivator Mob1, Dbf2 localizes to the SPBs in late anaphase, its kinase activity being complemented
by the kinase Cdc15 (Visintin & Amon 2001). Colocalization of Cdc15 and Dbf2 is regulated by
GTP-binding protein Tem1, whose levels increase during anaphase/telophase and localize to the SPB
that is close to the bud (Bardin et al. 2000). Tem1 is further activated by the GDP/GTP exchange
factor Lte1, which localizes to the plasma membrane of the bud (Bardin et al. 2000) and promotes
Cdc15 localization to the SPB (Visintin & Amon 2001). The GTPase Bub2-Bfa1, instead, negatively
regulates Tem1 activity.

Cdc5 also plays a role in MEN, phosphorylating the Bub2-Bfa1 complex and preventing its in-
hibitory effect on Cdc14 release (Hu & Elledge 2002; Hu et al. 2001). Cdc5 kinase activity depends
on T70 phosphorylation site, which is Cdc28-regulated. Indeed, Cdc5 T70-phosphomutant delays
mitotic progression and releases a poor pool of Cdc14 in late anaphase (Rodriguez-Rodriguez et al.
2016). Nevertheless, inhibition of Dbf2 in T70-phosphomutant does not completely abolish Cdc14
release, suggesting a MEN-independent mechanism of Cfi1/Net1 phosphorylation by Cdc5 (Visintin
et al. 2003; Rodriguez-Rodriguez et al. 2016).
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1.2 The Mitotic Guardian: Spindle Assembly Checkpoint

DUring anaphase onset, APC/CCdc20 promotes sister chromatids segregation. In order to prop-
agate identical copies of the DNA to the cellular progeny, each cell must segregate chro-

mosomes evenly. In physiological conditions, APC/CCdc20 promotes anaphase onset when all sister
chromatids are properly attached to the mitotic spindle. Activation of APC/CCdc20 in the presence of
one or more unattached sister chromatids will cause missegregations, establishing two daughter cells
with an unequal DNA content. This condition is known as aneuploidy, and it may cause deleteri-
ous and irreversible effects on the two daughter cells (Santaguida & Amon 2015). To prevent any
erroneous chromosome segregation, each eukaryotic cell activates the Spindle Assembly Checkpoint
(SAC) - or Mitotic Checkpoint - during prometaphase. This checkpoint provides a signaling pathway
that prevents activation of APC/CCdc20, blocking cellular proliferation in prometaphase. When all sis-
ter chromatids are attached to the mitotic spindle, the SAC is inactivated and APC/CCdc20 promotes
anaphase onset. In this section we provide molecular details about this pathway.
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Figure 1.11: MCC inhibits APC/CCdc20 activity - (a) Without SAC activity, Cdc20 binds APC/C and allows recognition
of specific substrates, as discussed in Section 1.1. In this way, substrates are then ubiquitinated and degraded. (b) In the
presence of SAC activity, Cdc20 is sequestered by an active Mad2. Then, the complex is stabilized by Mad3 and Bub1,
forming the MCC. Finally MCC binds APC/CCdc20, which in turn promotes Cdc20 ubiquitination and degradation. In this
way, APC/CCdc20 substrates are not targeted for degradation by 26S proteasome.
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1.2.1 Molecular network of the SAC

1.2.1.1 Inhibition of APC/CCdc20: the role of MCC

The mitotic checkpoint prevents APC/CCdc20 activity by inhibiting Cdc20 from recognizing APC/C
substrates (Figure 1.11, (a) vs (b)). The repression occurs via stoichiometric binding of Cdc20 with
several proteins of the SAC: Mad2, Mad3 (BubR1 in mammals) and Bub3. Expression of these pro-
teins is constant through the cell cycle, but they specifically interact with Cdc20 when the SAC is
active. As expected, mad2Δ, mad3Δ and bub3Δ cells missegregate with a higher frequency than
wild-type cells (Hoyt et al. 1991).

During early stages of Cdc20 inhibition, Mad2 undergoes a conformational switch that increases
its binding affinity with Cdc20 (see Subsection 1.2.1.2 for details) . Then, Bub3 andMad3 stabilize the
Mad2:Cdc20 complex, forming the Mitotic Checkpoint Complex (MCC) (Figure 1.11b). Recently, it
has been discovered the presence of 2 molecules of Cdc20 in MCC (Izawa & Pines 2015; May et al.

2017; Sewart & Hauf 2017). When in MCC, Cdc20 binds APC/C without promoting ubiquitination
of any substrates. Indeed, Cdc20 itself is ubiquitinated and targeted for degradation (Foe et al. 2011)
(Figure 1.11b). Finally, when MCC is disassembled both SAC proteins and APC/C are released.

1.2.1.2 Unattached kinetochores catalyze Mad2 conformational switch

The rate-limiting step of MCC assembly is Cdc20 sequestration by Mad2 (Faesen et al. 2017). In an
unperturbed cell cycle, spontaneous binding between Mad2 and Cdc20 is slow, due to the inactive
conformation of cytoplasmic Mad2 (open conformation, O-Mad2) (Simonetta et al. 2009). The SAC
stimulates the Mad2 conformational switch to an active form (closed conformation, C-Mad2), which
then binds with high efficiency Cdc20. In this context, unattached kinetochores serve as platforms
for protein recruitment and catalysis of Mad2 conformational switch. This catalytic reaction does not
occur spontaneously in the cytoplasm, but the requirement of unattached kinetochores is overrode by
the ectopic overexpression of O-Mad2, or the ectopic expression of C-Mad2 (Mariani et al. 2012).

In physiological conditions, the reaction is catalysed by the checkpoint protein Mad1. Mad1 lo-
calization at the kinetochore requires several reaction to occur. In the presence of unattached kine-
tochores, one of the outer kinetochore proteins - Spc105, or Knl1 in mammals - is phosphorylated
by the Mps1 kinase in multiple Met-Glu-Leu-Thr (MELT) motifs. Phosphorylated MELT motifs al-
low then to recruit Bub3 (Primorac et al. 2013), together with Bub1 (Primorac et al. 2013; London
& Biggins 2014) (Figure 1.12). Then, Mps1 phosphorylates Bub1, which recruits a tetrameric com-
plex composed by Mad1 and C-Mad2 (London & Biggins 2014). Localization of Mad1:C-Mad2 at
the unattached kinetochore induces O-Mad2 conformational switch (De Antoni et al. 2005) (Figure
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1.12), therefore allowing cytoplasmic MCC assembly. Hence, localization of Mad2 to the unattached
kinetochore is a marker for SAC activity (Bonaiuti et al. 2017). The inhibitory strength of the SAC
correlates with the number of unattached kinetochores, and already one kinetochore is sufficient for
SAC signaling (Dick & Gerlich 2013).

Ndc80

Spc105/Knl1

Bub1

Bub3
KT

Mad1
C-Mad2

C-Mad2

O-Mad2 C-Mad2

Mps1

P

P

Figure 1.12: Unattached kinetochore catalyzes conformational switch from open to closedMad2 - During the check-
point activity, several proteins are recruited to the unattached kinetochores (KT). Mainly via Mps1 activity, phosphorylation
of Spc105 (Knl1 in mammals) allows recruitment of Bub3/Bub1, which in turns mediates localization of tetrameric complex
Mad1-Mad2. For any molecule of Mad2 with an open conformation (O-Mad2) that localizes to the unattached kinetochore,
a shift to closed conformation takes place (C-Mad2).

1.2.1.3 The unclear role of Cdk1 in SAC

Assembly of kinetochores and localization of checkpoint proteins is a process that requires energy and
involves several kinases, as reported above. In the last years, it has been proposed a role of the Cdk1
kinase in supporting SAC signaling from unattached kinetochores. For instance, inhibition of Cdk1
in nocodazole-arrested HeLa cells overrides the checkpoint-dependent arrest (Vincenzo et al. 2003)
and delocalizes Mad2 from the unattached kinetochores (Vázquez-Novelle et al. 2014). Moreover, a
non-degradable cyclin B supports a constant Cdk1 activity that destabilizes kinetochore-microtubules
attachment, leading to SAC activation (Vázquez-Novelle et al. 2014).

Experimental data on budding yeast, however, suggest the opposite scenario. Here, inhibition of
Cdc28 (via analog-sensitive mutant or ectopic overexpression of Sic1 inhibitor) leads to a persistent
arrest in nocodazole-treated cells, with stable levels of Clb2 and Pds1 and decreasing levels of Cdc20
(Vernieri et al. 2013). The inability to enter anaphase is not due the decreased Cdc20 levels, since
deletion of the transcriptional repressor Yox1 recapitulates the same mitotic arrest (Vernieri et al.
2013), despite stable levels of Cdc20. These results suggest that in yeast inhibition of Cdc28 during a
mitotic arrest alters primarily the APC/CCdc20 activity. Most likely, Cdk1 has opposite effects on the
SAC, and the prevailing of one over the other is species-specific.

Taken together, these experimental data propose a dual role of Cdk1 in regulating APC/CCdc20
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(Figure 1.13). While Cdk1 promotes APC/CCdc20 activity - as reported in Section 1.1 - it has also an
inhibitory effect by promoting SAC activity.

CDK1

SAC

APC/CCdc20

Figure 1.13: Paradoxical regulation of APC/CCdc20 by Cdk1 - Basing on experimental evidence, Cdk1 both promotes
and inhibits APC/CCdc20. Inhibition is mediated by SAC activation.

1.2.2 Induction of SAC in budding yeast

In mammalian cells, the SAC is activated at each cell cycle. Indeed, knockout of SAC-related genes
strongly affects cellular viability, suggesting that the mitotic checkpoint covers an essential role. On
the other hand, budding yeast cells that lack SAC-related genes are still viable, suggesting that the
SAC is not strongly activated at every cell cycle.

In this section, we provide an overview of the methods we used for engaging the SAC in budding
yeast.

M      S     G      V     T      T      S      L      R      Y     P       G     Q  

V      S     G      V     T      T      S      L      R      C     P       G      L  

ATGTCTGGTGTGACAACTTCATTGCGTTATCCCGGCCAA
#|||||||||||||||||||#|||||||#||||||||#|
GTGTCTGGTGTGACAACTTCGTTGCGTTGTCCCGGCCTA

TUB2

tub2-401

233 245

GTPase domain C-terminal domain

coiled coil region

47 383 409 431

Tub2

Figure 1.14: Nucleotides and amino acid sequence of TUB2 and tub2-401 - Schematic representation of Tub2 protein
domains. The 3 mutated residues of tub2-401 belong to the C-terminal portion of the GTPase domain.

1.2.2.1 Depolymerization of microtubules

As described in Subsection 1.2.1, the SAC signal generates from unattached kinetochores, which are
not able to attach to the mitotic spindle. They can be created by inhibiting polymerization of mi-
crotubules, e.g., with antimitotic drugs such as nocodazole and benomyl. Nocodazole-arrested cells
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exhibit Mad2 localization to the unattached kinetochores (Vernieri et al. 2013) - together with Bub3
checkpoint protein (Bonaiuti et al. 2017) - which activate the SAC signaling cascade. However, the
effects of nocodazole starts to decrease after 5-6h of administration, and ad-hoc readditions have to
be performed in order to maintain the mitotic arrest (data not shown).

Another way to induce a constant microtubules depolymerization relies on TUB2 cold-sensitive
mutants (Huffaker et al. 1988). Here, polymerization of microtubules is inhibited when cells grow
at low temperatures. In this thesis we focus on tub2-401 mutant, which has 4 point mutations in the
TUB2 ORF, but only 3 out of 4 introduce alterations in the sequence of the GTPase domain of the
protein (Figure 1.14). When tub2-401 cells are grown at the restrictive temperatures, cells arrest in
mitosis and no nuclear and cytoplasmic microtubules are detectable (Huffaker et al. 1988), mimicking
the effect due to nocodazole.

1.2.2.2 Ectopic overexpression of SAC proteins

Another way to induce the checkpoint is the overexpression of SAC molecular players. This method
does not cause unattached kinetochores. For instance, overexpression of Mps1 under a galactose-
inducible promoter GAL1pr ectopically induces a metaphase arrest, without altering mitotic spindle
structure (K. Hardwick et al. 1996), in a Mad1-independent fashion.

In this thesis, we used overexpression of Mad2 (GAL1-MAD2(3x), (Rossio et al. 2010b)). When
these cells grow in galactose-containing medium, they arrest with metaphase spindles and stable lev-
els of nuclear Pds1 (Rossio et al. 2010b). Despite the inactive conformation of the overexpressed
Mad2 (O-Mad2, (Simonetta et al. 2009; De Antoni et al. 2005)), the expression of about 60 times the
endogenous Mad2 levels induces a bona-fide SAC arrest: MCC assembly of these cells is similar to
that of nocodazole-arrested cells, independently from Mad1 localization to the kinetochores (Mariani
et al. 2012).
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1.3 Adaptation to the Mitotic Checkpoint

THe mitotic checkpoint is invoked during specific cancer chemotherapy treatments. In particular,
antimitotic drugs activate the SAC, causing a prolonged mitotic arrest; among them, taxanes

are widely used for solid tumor treatment. They enhance microtubule assembly, causing a stabilization
of the mitotic spindle and inhibition of chromosome segregation (Chabner & Longo 2014). Vinca al-
kaloids are another class of antimitotic drugs which destabilize microtubules, giving rise to unattached
kinetochores and a SAC response. These drugs are mainly used for treatment of lymphomas, testicular
cancer, breast and lung cancer (Chabner & Longo 2014).

Cellular death

Activation of
Apoptosis

Adaptation

+ drug

Mitotic Arrest
(SAC ON)

Resuming
APC/C
activity

Figure 1.15: Upon a prolonged mitotic arrest, cells eventually die or adapt to the SAC - In the case of cells without
drug resistance, administration of antimitotic drugs introduces a prolonged mitotic arrest via SAC activity. Then, cells
undergo two possible outcomes: cellular death via apoptosis, or adaptation to the SAC by resuming an active APC/C.

If malignant cells acquire resistance to these drugs, they will not arrest in mitosis; otherwise, cells
undergo a prolonged mitotic arrest. In such case, two outcomes are possible (Figure 1.15). Antimitotic
drug promotes the death of treated cells, via triggering apoptotic pathways (Chabner & Longo 2014;
Topham & Taylor 2013) (Figure 1.15). A second option is that cells resume an active APC/CCdc20

despite continuous SAC activity, therefore adapting to themitotic checkpoint (Figure 1.15). The ability
to overcome the SAC and resume a metaphase-to-anaphase transition is also known as adaptation to
the SAC, or mitotic slippage.

In this section, we report properties and different models of adapting cells, describing also the
consequences of adaptation to the SAC.
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1.3.1 Properties of adaptation to the SAC

One of the first examples of adaptation to the SAC was provided in PtK1 and RPE1 cells treated
with different doses of nocodazole (Brito & C. L. Rieder 2006). In these vertebrate cells, a slow and
progressive reduction of CyclinB levels took place during an active SAC arrest (Brito & C. L. Rieder
2006). These first studies put in evidence two properties of adapting cells:

• Mitotic slippage is not a consequence of a weakened SAC signal

Adapting vertebrate cells exhibit localization of Mad1, Mad2 and BubR1 to the unattached
kinetochores, even after CyclinB degradation (Brito & C. L. Rieder 2006). This result is in
accordance with a recent study in our lab (Bonaiuti et al. 2017), in which we showed that the
vast majority of the monitored yeast cells arrested in nocodazole degrades Clb2 in the presence
of Mad2 localization.

• Degradation of CyclinB requires APC/C activity

Inhibition of proteasome in nocodazole-arrested cells causes a stabilization of CyclinB levels
and blocks mitotic slippage, suggesting that CyclinB is degraded by the proteasome. This ac-
tive degradation is mediated by APC/C, since the combined knockdown of Cdc20 and Cdh1
co-activators prevents degradation of substrates during mitotic slippage (Lee et al. 2010). In-
terestingly, while vertebrate adapting cells exhibit a slow decay of mitotic cyclin levels during
adaptation (Brito & C. L. Rieder 2006), budding yeast cells show an abrupt decay of Clb2
(Bonaiuti et al. 2017; Vernieri et al. 2013). This discrepancy may reflect the different weight
of SAC and APC/C regulations operated by CylinB:Cdk1 in mammals as opposed to yeast, as
mentioned above.

1.3.2 Adaptation requires Cdc20, but not Cdh1

Adapting cells undergo anaphase in the presence of SAC signal. In this transition, APC/C activity is
expected to be sustained by its co-activators Cdc20 and/or Cdh1. Cdh1 is dispensable but not essential
for promoting adaptation, since wild-type and cdh1Δ cells undergo anaphase with similar kinetics
(Vernieri et al. 2013). Hence, theremight exist a small fraction of free APC/C bound to Cdc20, capable
to promote anaphase onset despite SAC signaling. In this respect, it has been proposed in budding
yeast that the small number of APC/C, Cdc20 and Mads molecules can introduce fluctuations in the
APC/CCdc20 levels (Bonaiuti et al. 2017). During a mitotic arrest, these levels reach a steady-state,
which is under a critical anaphase threshold. Fluctuations around the steady state allow APC/CCdc20

to hit the threshold, reaching the required amount of APC/CCdc20 for anaphase onset (Figure 1.16a).
According to this model, the distance between the anaphase threshold and APC/CCdc20 levels
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defines the ability of cells to adapt. In this scenario, the key molecular species is phosphorylated
APC/C bound to Cdc20. For this reason, the amount of phosphorylated APC/C is critical to understand
the adaptation process, and so are the mechanisms that control APC/C phosphorylation. As described
in Section 1.1, phosphorylation of the Cdc16 and Cdc27 subunits of APC/C increases the binding
affinity between APC/C and Cdc20. The latter covers an important role in adaptation to the SAC,
since phosphomutants of Cdc16 and Cdc27 do not perform mitotic slippage (Rudner & Murray 2000;
Vernieri et al. 2013). The phosphatase counteracting Clb2:Cdc28 on the phosphorylation state of
APC/C is PP2ACdc55 (Vernieri et al. 2013) (Figure 1.16b).
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Figure 1.16: APC/CCdc20 is activated by stochastic fluctuations and phosphorylation in budding yeast - (a) Stochastic
simulation of APC/CCdc20 levels during amitotic arrest. Two trajectories assuming the same steady-state level are represented
in time. Due to stochastic fluctuations, they hit the anaphase threshold in different times. Source: (Bonaiuti et al. 2017). (b)
APC/CCdc20 is activated by phosphorylation. A negative feedback loop (NFL) with Cdc28 kinase stimulates phosphorylation
of Cdc16 and Cdc27 subunits, while PP2ACdc55 phosphatases dephosphorylates Cdc16 in a positive feedback loop (PFL).
Source (Vernieri et al. 2013).

As mentioned, Cdh1 is not required for adaptation. In special cases, however, adaptation can be
driven by Cdh1 too. Deletion of the MEN inhibitor Bub2 anticipates mitotic slippage in nocodazole-
arrested cells, due to a hyperactive MEN that activates Cdh1 (Toda et al. 2012).

These results are in accordance with what was observed in budding yeast cells arrested upon
Mad2 overexpression (Rossio et al. 2010b). Here, deletion of Bub2 anticipates colony growth, while
phospho-mimickingmutant of Net1 exhibits a delay, due to a reduced release of Cdc14. In this context,
an additional role of RSC chromatin remodeling complex has been proposed (Rossio et al. 2010b).

1.3.3 Cellular fate after mitotic slippage: death or survival?

When cells adapt to the SAC, missegregation events are likely to occur (C. Rieder & Maiato 2004),
due to an APC/C-dependent anaphase onset in the presence of antimitotic stimuli that alter mitotic
spindle structure. In this event, each adapting cell will produce two aneuploid daughter cells, which
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may undergo different fates (C. Rieder & Maiato 2004; Rossio et al. 2010a) (Figure 1.17). Daughter
cells could undergo cellular senescence, due to the activation of p53 that leads to a prolonged G1 arrest
(C. Rieder & Maiato 2004) (Figure 1.17). This tumor suppressor is induced by DNA damage, dosage
compensation or metabolic alterations (Santaguida & Amon 2015; Santaguida et al. 2017; C. Rieder
& Maiato 2004). Otherwise, cells can resume proliferation after adaptation (Figure 1.17). They may
experience replication stress (Santaguida et al. 2017), after which they may perform several cell cy-
cles with a slight or no activation of p53 (C. Rieder & Maiato 2004; Santaguida et al. 2017). During
proliferation, cells have to deal with a persistent antimitotic drug and several stresses coming from
their aneuploid state, for instance: proteotoxicity, genome instability, upregulation of factors involved
in oxidative stress or amino acid biosynthesis/cellular bioenergetics (Santaguida & Amon 2015).

The combination of the reported features influences the viability of proliferating cells after adap-
tation. Furthermore, tumorigenicity of adapted cells may influence the cellular viability. As a matter
of fact, many cancer cells would die, while normal cells would recover a proliferative status (C. Rieder
& Maiato 2004). On the other hand, we cannot exclude that adapted cancer cells may acquire an in-
creased efflux pump activity, mutations in taxanes/vinca alkaloids binding sites, or increased apoptotic
inhibitors (Chabner & Longo 2014). The latter might promote proliferative status of cancer cells upon
a prolonged SAC activity.

Mitotic Arrest
(SAC ON) Adaptation

G1 arrest

Cell death

Proliferation

Survival

Figure 1.17: Adapted cells undergo cell death or survival - Upon mitotic arrest induced by antimitotic drug, adapting
cells to the SAC missegregate and enter in the subsequent G1. In this phase, activation of p53 can introduce cellular
senescence, which in turn leads cell death. On the other hand, cells can undergo proliferation, in which the survival rate
depends on the deleterious effects acquired during adaptation and during proliferation after adaptation.
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1.4 Cell Size Regulation

ONe of the important aspects that influences cellular proliferation is cell size, as cells have to
properly couple cell growth with cell division, in order to ensure the correct cellular volume

for biochemical reactions. Here, we present properties of cell size control in budding yeast cells.

a) b)

Clns:Cdc28

Clbs:Cdc28

Cdc28
inactivation

Figure 1.18: General properties of budding yeast cell growth - (a) Regulation of apical and isotropical growth is
mediated by Cdc28. Clns:Cdc28 triggers apical growth, while Clbs:Cdc28 is responsible for isotropic growth duringmitosis.
Figure arranged from (Moseley & Nurse 2009). (b) Example of two cells, in which the logarithm of total amount of a
cytoplasmic red fluorescent protein (top) or cell area (bottom) was measured in time, during an entire cell cycle. Both
measurements fit an exponential law. Source: (Di Talia et al. 2007)

1.4.1 Morphology of budding yeast

As reported in Section 1.1, Saccharomyces cerevisiae cells proliferate by budding, which requires a
polarized secretion in a restricted portion of the plasma membrane. In particular, bud dynamics is
regulated by two types of growth: apical and isotropic. Apical growth is due to the polarization of the
cortical actin cytoskeleton to a certain site of the plasma membrane, while isotropic growth causes
bud expansion by delivering new wall components to the plasma membrane. These types of growth
are regulated by Cdc28 kinase activity (Lew & Reed 1993) (Figure 1.18a). Apical growth takes place
during G1/S transition, and it is mediated by G1 cyclins (Cln1, Cln2 and Cln3). Isotropic growth is
promoted by Clb1 and Clb2 cyclins during mitosis. The budding yeast cell growth mainly takes place
from budding to cytokinesis, and it fits with an exponential law (Di Talia et al. 2007) (Figure 1.18b).
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This means that the growth rate is proportional to the cellular volume (Di Talia et al. 2007), and it
is adjusted in the different phases of the cell cycle (Goranov et al. 2009; Leitao & Kellogg 2017) for
coupling cell growth with cell division. Cellular growth needs nutrients, energy, protein synthesis
and fatty acid biosynthesis, since inhibition of these processes leads to a reduction of cellular volume
(Goranov et al. 2009; Vadia et al. 2017; Hannah & Barkai 2014).

1.4.1.1 Cell Size Control in G1 is implemented by an inhibitor-dilution mechanism

The best understood mechanism of cell size regulation in budding yeast takes place at the beginning
of the cell cycle. Prior to bud emergence and DNA replication, cells need to pass through a START
point in G1, which represents an irreversible step into the cell cycle (Figure 1.19a). During G1, cells
adjust their growth rate according to the initial cell size, so that they all reach START with a critical
size (Di Talia et al. 2007; Turner et al. 2012) (Figure 1.19a). For this reason, this mechanism of size
control is called sizer. The relative growth in G1 will then be inversely proportional to the initial size
of the cell: smaller cells have to prolong G1 for growing and reaching the critical size, while bigger
cells have a shorter G1 (Di Talia et al. 2007) (Figure 1.19b).

From a molecular point of view, a switch is required for promoting bud emergence and cellular
progression during START transition (Figure 1.19c). This switch involves Clns:Cdc28 activity, which
is in charge of supporting apical growth as already discussed. In particular, the transcription factor
Whi5 inhibits the transition through START point, by preventing synthesis of Cln1/2 in G1 cells. At
the same time, Cln3:Cdc28 phosphorylates Whi5, reducing its inhibitory effect and allowing G1/S
transcriptional activity (Turner et al. 2012) (Figure 1.19c). Relief of Whi5 repression is mediated by
the G1 size control, which provides an inhibitor-dilution mechanism (Schmoller et al. 2015). The
cellular concentration of Cln3 is constant through the size growth in G1, while Whi5 concentration
decreases (Figure 1.19d, left plot); due to an increasing synthesis of Cln3 which is not matched by that
of Whi5 (Schmoller et al. 2015) (Figure 1.19d, right plot). Therefore, the requirement of a START
critical size is obtained by the critical dilution of the molecular inhibitor that prevents cell cycle pro-
gression.

1.4.1.2 Size growth during mitosis

Cell growth also takes place during M phase (Figure 1.18), via the activity of Clbs:Cdc28. We know
that several molecular players take part to the progression through mitosis - as discussed in Section 1.1
- but there is no evidence about a critical mitotic size. Mitotic cell growth, however, has been partially
characterized and evaluated in budding yeast, where mitosis represents the phase with the maximum
growth rate (Goranov et al. 2009; Leitao & Kellogg 2017). Importantly, daughter cells take the major
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Figure 1.19: The G1 sizer model promotes cellular proliferation by an inhibitor-dilution mechanism - (a) Coupling
of growth and proliferation in the cell cycle. When a daughter cell originates from a previous cell cycle, its size at birth
will determine the amount of relative growth in G1. This size control ensures that cells go through START with a critical
size. Source: (Turner et al. 2012). (b) Negative correlation between size at birth and relative growth on G1. While small
cells have a big G1 growth, big cells have not. Source: (Turner et al. 2012). (c) Molecular mechanism for G1/S transition.
Cln1/2:Cdc28 promotes G1/S transition, but their synthesis is inhibited during G1 by transcription factor Whi5. Phospho-
rylation of Whi5 by Cln3:Cdc28 allows Whi5 inhibition and progression in G1/S. Source: (Turner et al. 2012). (d) Inhibitor
Whi5 is diluted in cells. Schematic behavior ofWhi5 and Cln3 concentration (left plot) and synthesis rate (right plot) respect
to an increasing cell size in time. Figure inspired from (Schmoller et al. 2015).
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part as opposed to the mother cell (Leitao & Kellogg 2017). The combined growth of mother and
daughter will follow an exponential dynamics.

1.4.2 Cell size during SAC activity: any evidence of MCC dilution?

Cell size dynamics can well play a role in adaptation to the SAC. As discussed in Section 1.2, during an
active mitotic checkpoint O-Mad2 localizes to the unattached kinetochores and switches to C-Mad2,
diffusing in the cytoplasm and allowing MCC assembly. Diffusion of MCC allows propagation of the
"wait-anaphase" signal in the cellular volume (Heasley & of the . . . 2017).

Figure 1.20: Cell Size could impair SAC strength with an inhibitor-dilution mechanism - Increase of cytoplasmic
volume will affect concentration of unattached kinetochores, because they are present as absolute number in the cells.
This dilution could potentially impair the SAC signal, creating a pool of free APC/C that is not inhibited by MCC. Figure
rearranged from (Gerhold et al. 2016).

Assuming a constant concentration of APC/C and Mad2, Bub3 and Mad3/BubR1, any increase of
cell size could causes during amitotic arrest a decrease in the concentration of the signaling unattached
kinetochores, because of their constant absolute number (Gerhold et al. 2016) (Figure 1.20). More-
over, a bigger cytoplasmic volume may reduce the probability of O-Mad2 to localize to the unattached
kinetochores, and the distance over which MCC has to be diffused increases (Gerhold et al. 2016).
Hence, APC/C inhibition could decrease as a consequence of cell growth in mitosis. In agreement
with this possibility, it has been observed a negative correlation between cellular volumes and SAC
strength in early embryogenesis of C. elegans (Galli & Morgan 2016). Moreover, eightfold reduction
of mouse oocytes size causes an increased metaphase meiotic duration and a stalled APC/C activity
upon nocodazole treatment (Lane & Jones 2017). We will explore the role of cell growth in adaptation
in the Results - Section 4.1.
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1.5 Cellular Memory

THe results presented in the thesis deal with molecular memory. In this section, I review some of
the most recent results on the topic.

1.5.1 Cellular cognition

Cognitive biology claims that each cell is able to acquire informations from the surrounding envi-
ronment. These informations are then processed and an active response towards the environment is
elaborated (Lyon 2015). These abilities are based on molecular mechanisms, which determine the
cognitive capacity of the cell (Lyon 2015). For this reason, it has been proposed the presence of a
cellular response regulator (Morimoto & Koshland 1991), which summarizes incoming informations
and regulates the output response, like a motherboard in computers. Upon sensing the input signal,
cells assign a value to the summary of informations (Valence (Lyon 2015)). Then, elaboration of the
input occurs. In this process, a tight interconnection between learning, adaptation and memory takes
place. Learning represents the capacity to adapt behavior according to the past experience, which in
turn is retained by the Memory property (Lyon 2015). The outcome of this process is an activator,
which directs a specific output to the environment.
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Figure 1.21: Adaptation and Memory in Cellular Cognition - (a) Upon introduction of a certain stimulus, response
regulator activity increases and elaborates the input. In these conditions, cells can perfectly adapt to the stimulus, recovering
a basal activity of the response regulator. An imperfect recovery is associated to an imperfect adaptation. (b) During
subsequent introduction of a stimulus, cells can retain memory or not. In the presence of memory, the response regulator
activity is higher during the second induction.

When a cell is exposed to a certain stimulus, the activity of its response regulator increases, in
order to elaborate a proper output (Figure 1.21a). Once cell learns how to deal with the stimulus, it
can adapt to it. In particular, a perfect adaptation is defined when the activity of the response regulator
regains the basal level that was present prior to stimulus exposure (Figure 1.21a). Any retention of the
activity above the basal level leads to an imperfect adaptation. Adaptation involves both cells experi-
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encing the stimulus from the first time (i.e., "adapting") and cells with a continuous experience after
the first exposure (i.e., "adapted"). This classical notion differs from the definition of adaptation to the
SAC (or mitotic slippage - Section 1.3), in which the term "adaptation" only refers to the behavior of
adapting cells upon the SAC stimulus.

Upon repetition of identical stimuli, the concept of memory can be formulated (Morimoto &
Koshland 1991). The exposure to a second identical stimulus could trigger a response similar to that
of the first stimulus, or even an increased response (Figure 1.21b). In the first case, memory is absent
and is not retained after the elaboration of the first stimulus. In the second case, memory retains the
past experience of the first stimulus and allows a better response. In the case of imperfect adaptation,
the high residual activity upon the first stimulus could facilitate the achievement of a higher response
when cell is exposed to the second stimulus (Morimoto & Koshland 1991).

1.5.2 Bacterial chemotaxis is a cognitive process

One of the first examples of cellular cognitive processes is represented by bacterial chemotaxis in E.

coli. This process allows bacteria to arrange their movements, according to the gradient of chemi-
cal ligands in the surrounding environment (Figure 1.22a). Bacterial cells coordinate two types of
movements: a straigthforward movement (also called run) and a tumbling one. While the run allows
straight movements following the chemical gradients, tumbling is needed for changing direction (Fig-
ure 1.22a) (Webre et al. 2003).

Chemotaxis is well characterized from a molecular point of view in E. coli (Figure 1.22b) (We-
bre et al. 2003). Tumbling is promoted by the Chemotactic protein CheA, a kinase which mediates
phosphorylation of CheY protein. Phosphorylated CheY then binds to flagellar motors and promotes
tumbles. When random tumbling orients cell to an environmental chemical gradient, ligands bind
to Methyl-accepting chemotaxis proteins (MCPs) that are located on the cellular membrane (Figure
1.22b). This event reduces activity of CheA, resulting in an inhibition of tumbling and a promotion
of straightforward movement.

While ligands inhibit CheA, they progressively promote CheR activity in methylation of MCPs
(Figure 1.22b), which in turn restores CheA kinase activity. MCPs methylation is a slow process -
compared to the ligand-dependent response (Webre et al. 2003; Barkai & Leibler 1997) - but it allows
bacterial cells to adapt to the chemical gradient. Indeed, progressive methylation of MCPs restores a
random tumbling frequency, independently from the ligand concentration. (Barkai & Leibler 1997).

In this case, the response regulator of bacterial chemotaxis is composed by a fast ligand-dependent
signal and a slow methylation-dependent signal (Morimoto & Koshland 1991). While the fast process
allows to learn from the present conditions in the environment, the slow one allows the retention of
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Figure 1.22: General principles of bacterial chemotaxis - (a) Bacteria such as E. coli exhibit two movements: runs and
tumbles. In this way, they manage attraction or repulsion respect to chemical gradients in the environment. Source: (Webre
et al. 2003) (b) Molecular pathway responsible for regulation of tumbling frequency.

past conditions. The final outcome is a robust perfect adaptation (Barkai & Leibler 1997). Upon
a withdrawal and reintroduction of the gradient, bacteria do not retain any memory (Morimoto &
Koshland 1991).

1.5.3 Budding yeast retains memory on deceptive mating attempt

Cellular cognition was firstly observed in bacteria. Recently, some examples of cognitive processes
were also reported in higher eukaryotes. One of them includes budding yeast cells during a pheromone-
induced cell cycle arrest (Caudron&Barral 2013). Administration of �-factor pheromone to cells with
mating type a induces a signaling cascade that inhibits activation of the G1/S cyclin Cln3, therefore
arresting cells in G1 (Figure 1.23d). When these cells are grown in microfluidic chambers under a
constant flow of �-factor, they resume proliferation after experiencing a G1 arrest (Figure 1.23a, b),
suggesting that they adapt to the pheromone and became refractory to it. Interestingly, while mother
cells resume proliferation, daughter cells are competent to the G1 arrest. Interestingly, mother cells
are able to retain memory of adaptation, since withdrawal of �-factor does not eliminate the refractory
state (Caudron & Barral 2013).

This form of memory cannot be explained by a decreased sensing and/or valence of �-factor stim-
ulus, since the mating signaling-cascade is still functional in refractory cells (Caudron & Barral 2013).
Proliferation of refractory cells requires an active Cln3, which in turn is inhibited by the translational
inhibitor Whi3 (Figure 1.23d). This means that cells somehow learn how to bypass Whi3 inhibition
and resume Cln3 activity. Upon prolonged administration of the pheromone, the learning process
is achieved by the assembly of Whi3 prions, which preferentially localize to the mother cells (Fig-
ure 1.23c). In this way, binding between Whi3 and mRNA of Cln3 is alleviated, and cells progress
through G1/S. It also has been shown that the Hsp70 chaperone Ssa1 inhibits Whi3 assembly and
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prevents adaptation to G1 arrest (Caudron & Barral 2013).
In this case, the response regulator involves two signals: the mating pathway and Whi3. Dur-

ing early stages of pheromone administration, both signals inhibit Cln3. As cells are arrested in G1
and fail in mating attempts, Whi3 tends to form super-assemblies, inhibiting itself and allowing Cln3
activation. Retention of memory correlates with retention of Whi3 prions in the mother cell.
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Figure 1.23: Budding yeast cells perform a cognitive process during a prolonged exposure to �-factor - (a) Upon
a prolonged administration of �-factor 7nM, wild-type cells escape from the G1 arrest. Source: (Caudron & Barral 2013).
(b) Proportion of arrested cells was plotted versus time of pheromone administration. Source: (Caudron & Barral 2013).
(c) Upon �-factor administration, Whi3 forms super-assembly in mother cells, and not in daughter ones. Source: (Caudron
& Barral 2013). (d) Schematic representation of the response regulator described in (Caudron & Barral 2013). At the
first stages of G1 arrest, both �-factor and Whi3 inhibits Cln3 activity. The increased proportion of Whi3 prions allows
activation of Cln3 and cell cycle progression, despite the continuous presence of the pheromone. Ssa1 inhibits formation of
Whi3 prions.

1.5.4 Propagation of memory through the cellular progeny

The previous example provides a case in which memory is propagated through the cellular progeny.
Another example of inherited cognitive process was recently proposed in human mammary epithelial
cells (Yang et al. 2017). Upon mitotic exit of these cells, the proliferative status of the newly-born
daughter cells can be evaluated, in terms of Cdk2 levels. Indeed, high Cdk2 levels positively correlate
with proliferative capacity. Cdk2 is activated by chemical mitogens in growth medium, MEK/ERK
pathway and CyclinD:Cdk4 (Figure 1.24a), and inhibition of these components in the mother cells
abolishes Cdk2 levels and proliferative status in daughter cells (Yang et al. 2017). Indeed, high levels
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of Cdk2 in daughter cells are stimulated by CyclinD1 mRNA and protein, which are inherited from
mother cells (Figure 1.24b, c). Moreover, if mother cells experience DNA damage, p53 is activated
and inherited by daughter cells, due to the high half-life of the tumor suppressor (Yang et al. 2017)
(Figure 1.24b, c). As a result, p21 is activated and it negatively regulates Cdk2 levels (Yang et al.

2017) (Figure 1.24c).
The response regulator of these daughter cells relies on the ratio between Cyclin D1 and p21, which

dictates the cellular fate: proliferation or quiescence (Figure 1.24d). Here, the memory is based on
the past experience of mother cells, upon DNA damage and/or mitogens exposure, that is molecularly
inherited by daughter cells.

Figure 1.24: Inheritance of mitogens and DDR activity by daughter cells influences their proliferative status - (a)
Molecular basis of CyclinE/A:Cdk2. Source: (Yang et al. 2017). (b) Upon exposure to mitogens and/or DNA damage,
mother cells promote respectively Cyclin D1 and p53. Source: (Yang et al. 2017). (c) From the cellular activity of mother
cell, daughter inherited mRNA of Cyclin D1 and p53 protein. Then, Cyclin D1 will compete with p21 for regulating entry
into G1/S. Inheritance of Cyclin D1 and p53 is the source of cellular memory of these cells. Source: (Yang et al. 2017). (d)
The response regulator of daughter cells is based on the ratio between p21 concentration and Cyclin D1. High levels of p21
correlates with low levels of Cyclin D1 and quiescence. On the other hand, low levels of p21 allows to high levels of Cyclin
D1 to promote proliferation. Source: (Yang et al. 2017).
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2
Aim of the Thesis

W Hen cells are treated with antimitotic drugs, adaptation to the SAC is one of the possible
outcomes of a prolonged mitotic arrest. Although several studies are focused on the over-

come of this arrest, the cellular fate after adaptation has not been so well examined. To this purpose,
we characterized the first cell cycles of cells that resumed proliferation after adaptation to the mitotic
checkpoint: we refer to these cells as adapted cells.

In the first part of the Results, we described the phenotype of adapted cells in the presence of
Mad2 overexpression as the source of SAC signal. Here, the absence of missegregation after adapta-
tion allows to analyze for many hours the behavior of adapted cells. In the second part, we induce the
SAC via spindle disruption to confirm the features observed in the first part in more "physiological"
conditions. Finally, we report the results of Mass-Spectrometry analysis on adapted cells. Our data
show at the molecular level how the cell cycle is rewired in adapted cells.
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3
Material and Methods

3.1 Strains, Media and Reagents

3.1.1 Strains

All strains are listed in table 6.1 (see Appendix) and were derivative of or were backcrossed at least
three times with W303 (ade2-1, trp1-1, leu2-3, 112, his3-11, ura3). Original construct for GAL1-
MAD2was developed in the lab of S. Piatti (Centre de Recherche en Biologie Cellulaire deMontpellier
- Montpellier, France); cdc16-6Amutant, cdc27-5Amutant and GAL-CDC28-HA were received from
A. Murray (Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,
United States); CDC16-MYC and CDC27-MYC were received from J. M. Peters (Research Institute
of Molecular Pathology - Vienna, Austria); SIC1(10x) was received by D. P. Toczyski (Department of
Biochemistry, University of California - San Francisco USA); CFIII (CEN3.L.YPH278) URA3SUP11
was received by P. D. Wulf (Center for Integrative Biology, University of Trento - Italy).

3.1.1.1 Production of tetO2-CDC20-127 strain

tetO2-CDC20-127(1x) cells were obtained by yeast transformation of wild-type strain yAC1001 with
plasmid pBS94 from A. Murray (Department of Molecular and Cellular Biology, Harvard University,
Cambridge, MA, United States), carrying a copy of cdc20-127 (Hwang et al. 1998) with TRP1marker
under the doxycycline-repressible promoter tetO2. The plasmid was digested with three different re-
striction enzymes (EcoRV, Bsu36I, BstNI). Transformant were tested for single insertion by Southern
Blot, while checkpoint-deficiency by FACS analysis. The strain was created by LucaMariani, a former
member of the laboratory.
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3.1.1.2 Production of tub2-401 mutants

tub2-401 cells were obtained by yeast transformation of wild-type strain yAC1001 with plasmid
pTH18 from T. Huffaker (Department ofMolecular Biology and Genetics, Cornell University - Ithaca,
United States), which contains a copy of TUB2 ORF carrying the 4 point mutations (Huffaker et al.
1988) with URA3 marker. The plasmid was digested with restriction enzyme KpnI before transfor-
mation (Huffaker et al. 1988). Transformant were than plated on 5-fluoro-orotic acid plates to select
against URA3, and resulting colonies were amplified and tested for cold-sensitivity at 15°C.

3.1.1.3 Strains with proteins tagged with Fluorescent Protein

CLB2-GFP was received by P.A. Silver (Department of Biological Chemistry and Molecular Phar-
macology, Harvard Medical School and The Dana-Farber Cancer Institute - Boston, USA); TUB2-
mCherrywas received by Rosella Visintin (Department of Experimental Oncology, European Institute
of Oncology - Milan, Italy);MAD2-GFP was received by T. Tanaka (Centre for Gene Regulation and
Expression, College of Life Sciences, University of Dundee, Scotland, UK). Tagging of endogenous
Clb2 with mCherry was performed in the lab by Paolo Bonaiuti (Bonaiuti et al. 2017).

3.1.2 Media and reagents

All population experiments were performed using YEP medium (1% yeast extract, 2% Bacto Pep-
tone, 50 mg/l adenine) supplemented with 2% glucose (YEPD), 2% raffinose (YEPR), or 2% raffinose
and 2% galactose (YEPRG). Live-cell imaging experiments were performed using synthetic complete
medium supplemented with ammonium sulfate. For chromosome loss assay, cells were grown in syn-
thetic medium lacking uracile before plating them.

�-factor (GenScript®) was used at 5 �g/ml for 1h 30 min, followed by 2.5 �g/ml for 30 min;
readdition was performed at 20 �g/ml. Nocodazole (Sigma-Aldrich®) was used at 3, 5 or 15 �g/ml,
while readdition at 1.5, 2.5 or 7.5 �g/ml. Readdition of �-factor was performed when more than 90%
of the cells were budded, and starting from this event every 2h. Readdition of nocodazole was per-
formed after 3h from the inoculum, and then every 2h. Doxycycline hyclate (Sigma-Aldrich) was used
at 10 �g/ml according to (Barnhart et al. 2011), in order to repress cdc20-127 expression in tetO2-
CDC20-127(1x) cells. When cells were synchronized in G1 before releasing them without cdc20-127
expression, doxycycline was added together with 2.5 �g/ml of �-factor, in order to allow an optimal
G1 synchronization while starting to repress cdc20-127.

In population and single-cell experiment withGAL1-MAD2(3x) andGAL1-CDC28-HA cells, galac-
tose 2%was added 1 hour before the release from �-factor. Except for tub2-401 cells, all the experiment
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were performed at 30°C.

3.2 Western Blot Analysis

3.2.1 Protein Lysate Preparation

Cells were sampled and centrifuged at 4000 rpm, 2 min. Once supernatant was discarded, pellet was
resuspended in 1 ml of Trichloroacetic acid (TCA) 20%. Pellet was centrifuged again (13200 rpm, 3
min), separated from supernatant via aspiration and resuspended in 100 �l of TCA 20% to precipitate
proteins. Samples were stored at -20°C.

Glass beads were added to the stored pellets, allowing a complete lysis in a vortex, for 10 min, at
room temperature. Then, 400 �l of TCA 5% were added in each sample, in order to slightly increase
pH. Liquid volume was separated from glass beads, transferring it in a new tube and centrifugating it
at 4000 rpm, 10 min. Supernatant was aspirated carefully, and pellet was centrifuged again at 4000
rpm for 5 min, for achieving a better collection of pellet.

For each sample, 1 part of Laemmly Buffer (SDS 2%, Tris-HCl 60 mM pH 6.8, glycerol 10%,
bromophenol blue 0.01%, 2-mercaptoethanol 10%) and half-part of basic tris 1M were added, in order
to further increase pH. Then, samples were incubated at 95°C for 2 min, in order to allow protein de-
naturation and breakage of disulfide bonds (Fraschini et al. 1999). Finally, samples were centrifugated
at 13200 rpm, 5 min. Supernatant was collected and stored at -20°C.

3.2.2 Western and Transfer Blot

Lysates were then loaded and separated by SDS-page gels. In Western Blots reported in Section
4.1, home-made gels were used, with 10% or 12.5% polyacrylamide containing an acrylamide-to-
bisacrylamide ratio of 29/1. In Sections 4.3, 4.4 and Appendix, Criterion™ TGX Stain-Free™ Precast
Gels from Bio-Rad © 10% were used. In both cases, proteins were separated applying a voltage of
100-140 V, in a running buffer (Glycine 2M, Tris 0.25 M, SDS 0.02 M, pH 8.3).

Wet transfer blot on Amersham Protran Nitrocellulose Membranes (GE © Healthcare) was per-
formed for home-made western blot, using a transfer buffer (1% glycine, 0.02M basic Tris, 20%
methanol) and applying a voltage of 100 V for 1h 15min, at 4°C. For precast gels, semi-dry transfer
blot was performed, using Trans-Blot® Turbo™ Transfer Pack (Midi Format, 0.2 �m Nitrocellulose)
on a Trans-Blot® Turbo™ Transfer System, setting 25 V, 2.5 A for 7 min.
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3.2.3 Protein detection

Membranes coming from transfer blot were incubated with TBS-Tween and milk 5% for 1h at room
temperature. Then, they were incubated overnight with primary antibodies. The next day, membranes
were washed with TBS-Tween for 30 min, and then incubated with HRP secondary antibodies for 1h,
at room temperature. After an additional washing phase of 1h, proteins were detected by an enhanced
chemiluminescence system (Pierce ECL; Thermo Fischer Scientific) and digitalized images were ac-
quired with a Chemidoc XRS+System (Bio-Rad©).

The following primary antibodies were used: anti-ScMad2 (fromMonoclonal Antibodies Facility
at the IFOM-IEO Campus), anti-MYC (fromMonoclonal Antibodies Facility at the IFOM-IEO Cam-
pus), anti-Clb2 (sc-9071; Santa Cruz Biotechnology, Inc.), anti-Pgk1 (D660; Invitrogen), anti-Tub1
(MCA78G, Bio-Rad), anti-Cdc28 (sc-6709; Santa Cruz Biotechnology, Inc.), anti-Mad1 (IQ242; Im-
muQuest Ltd). Secondary antibodies came from Bio-Rad laboratories.

3.2.4 Quantification of Western Blot

Quantification of signal coming from chemiluminescence reaction was performed with Image Lab ™

Software (Bio-Rad©). In Western Blot reported in Section 4.1, each band was quantified with Volume
Tool, taking a fixed rectangular area for each lane and considering as background the same fixed area
in a portion of membrane without signal. Western Blot in Sections 4.3 and 4.4 were quantified with
Lane and Bands Tool, manually adjusting lane profiles.

In both cases, signal coming from any protein of interest was normalized to the signal coming
from the housekeeping protein (Pgk1, Tub1 or Mad1).

3.2.5 Phos-Tag Western Blot

Detection of phosphorylated Cdc16 and Cdc27 was performed by Phosphate-affinity Mn2+-Phos-tag
Western Blot (Kinoshita et al. 2006; Kinoshita et al. 2009). For Cdc27, home-made gels 7.5% were
prepared adding to the regular recipe Phos-Tag™ AAL-107 5mM reagent (Wako Chemicals GmbH
©) and MnCl2 10 mM. In the presence of manganese ions, Phos-Tag reagent binds specifically to
phosphate groups, allowing separation of phosphorylated isoforms from the non-phosphorylated one.
For Cdc16, half doses of Phos-Tag™ AAL-107 5mM reagent and MnCl2 10 mM were used. Protein
separation was achieved applying a constant amperage (15 mA/gel) for about 3/4 hours.

Before proceeding with wet transfer blot, gels were incubated in transfer buffer supplemented with
100 mM EDTA pH 8 for 30 min, in order to chelate the manganese ions. Then, gels were washed for
15 min with transfer buffer, and regular wet transfer blot protocol was performed on nitrocellulose
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membranes. Membranes were incubated with TBS-Tween with milk 2% and BSA 2% for 1 h. Then,
they were incubated overnight with anti-MYC primary antibodies, 4°C. From this point, the regular
procedure for protein detection was performed, using HRP anti-mouse secondary antibodies.

3.3 Proteomic Analysis

Here we report the workflow for LC/MS-MS proteome analysis of adapted cells, performed by Vittoria
Matafora (Lab. of Functional Proteomics - A. Bachi - IFOM,Milan - IT), except for the last subsection
that was performed by myself. For further details, see (Matafora et al. 2017).

3.3.1 Protein Lysate Preparation

From a culture in log phase growth, 10 mL were sampled and centrifuged (4000 rpm, 2 min, room
temperature). Supernatant was discarded, while pellet was resuspended in 1 ml of 100 mM Tris/HCl
pH 7.6. Once supernatant was discarded again (13200 rpm, 3 min, 4°C), pellet was subjected to rapid
cooling in dry ice plus denatured alcohol, and stored at -80°C.

From -80°C, pellet was resuspended in 70-80 �L of 100 mM Tris pH 7.6, 100 mM dithiothreitol,
5% SDS and heated at 95°C for 5 min. Then, glass beads were added and sample was vortexed for 10
min, at room temperature, for a complete lysis. Subsequently, 35-40 �l of 100 mM Tris pH 7.6, 100
mM dithiothreitol (DTT), 5% SDS were added. Sample was centrifuged (13200 rpm, 5 min, room
temperature), and supernatant was collected and stored at -20°C.

3.3.2 Protein Digestion for MS analysis

For digestion, 50 �g of lysate were added to 200 �L of 8M urea in 0.1M Tris/HCl, pH 8.5 (UA buffer)
and transferred to YM-30 microcon filters (Cat No. MRCF0R030, Millipore©). After centrifugation
(14000 ×g, 15 min), three washing with 400 �l of UA buffer were done (14000 ×g, 15 min). Lysate
was reduced with 0.01 M DTT in UA buffer for 30 min at room temperature. Then, 2 washing with
400 �l of UA buffer were repeated; 100 �l of 0.05 M iodoacetamide in 8 M urea were added, in order
to alkylating proteins, and samples were incubated in the dark for 5 min. Filters were washed twice
with 100 �l of UA buffer, followed by two washing with 100 �l of 40mM NH4HCO3. Subsequently,
sample was resuspended in 95 �l of 40 mM NH4HCO3, supplemented with 120 mM CaCl2 and 1 �g
of trypsin, and incubated overnight at 37°C. Then, an additional incubation with 1 �g of trypsin for 3
h was performed. Peptides resulting from the digestion were collected by centrifugation and purified
on a C18 StageTip (Proxeon Byosystems©, Denmark). Once concentrated, peptides were splitted in
independent samples for technical replicates.
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3.3.3 Mass Spectrometry Analysis

From digested samples, 1 �g was injected in a quadrupole Orbitrap Q-exactive HF mass spectrometer
(Thermo Scientific ©). Peptides separation was achieved on a linear gradient from 95% solvent A (2%
ACN, 0.1% formic acid) to 55% solvent B (80% acetonitrile, 0.1% formic acid) over 240 min, and to
a final 100% of solvent B in 3 min at a constant flow rate of 0.25 �l∕min on UHPLC Easy-nLC 1000
(Thermo Scientific ©). The LC system was connected to a 23 cm fused-silica emitter of 75 �m inner
diameter (New Objective, Inc. Woburn, MA, USA), packed in-house with ReproSil-Pur C18-AQ 1.9
�m beads (Dr Maisch Gmbh, Ammerbuch, Germany) using a high-pressure bomb loader (Proxeon,
Odense, Denmark). A Data-Dependent Acquisition (DDA) was performed on the mass spectrometer,
with the following settings: dynamic exclusion of 15 s enabled, MS1 resolution of 70000 at m∕z
200, MS1 automatic gain control target of 3e+6, MS1 maximum fill time of 60 ms, MS2 resolution of
17500, MS2 automatic gain control target of 1e+5, MS2 maximum fill time of 60ms, MS2 normalized
collision energy of 25. For each DDA cycle, one full MS1 scan range of 300-1650 m∕z was followed
by 12 MS2 scans, using an isolation window size of 2 m∕z.

3.3.4 Database Search and Spectral Library Construction

Files with raw data coming fromMS analysis were processed with MaxQuant software (1.5.6.0) (Cox
& Mann 2008), using Andromeda search engine (Cox et al. 2011). MS/MS peak lists were searched
against the UniProtKB/Swiss-Prot protein sequence Yeast complete proteome database (release 2014).
A reverse decoy database was generated within Andromeda, setting a 0.01 False Discovery Rate (FDR)
for Peptide SpectrumMatches (PSMs) and proteins. A filtering was applied to the resulting list, asking
at least two peptides identifications per protein, of which at least one peptide had to be unique to the
protein group. Spectral libraries were generated using Skyline (2.5.0.6157) (MacLean et al. 2010) and
Andromeda search results.

3.3.5 Protein Quantitation using Data-Dependent Acquisition Analysis

DDA files were analyzed in a label-free manner, using MaxQuant software (Cox & Mann 2008) for
protein quantitation. Quantitation was provided by Label-Free Quantification intensities (LFQ inten-
sities), which represent the intensities values coming from MS/MS normalized across the entire data
set.
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3.3.6 Data Normalization and Statistics

Once LFQ intensities were obtained for identified protein of adapted and not adapted cells, Z-scores
were evaluated for each protein. In order to identify any significant increase or decrease in protein
abundance, a t-test was performed on Z-scores, using Perseus software (1.5.6.0) (Tyanova et al. 2016).
ForGAL1-MAD2(3x) cells, a FDRof 0.01was set, while for tub2-401 0.05. Then, a hierarchical cluster
analysis was performed on Z-scores. Each analysis included two biological replicates, both of them
with two technical replicates.

3.3.7 Exploring significant and not-significant proteome enrichment

Protein lists resulting from hierarchical cluster analysis were submitted to PANTHER database (Mi et
al. 2013; Mi et al. 2017), performing a statistical overrepresentation test across Gene Ontology (GO)
Slim Biological Process terms of Saccharomyces cerevisiae (p-value < 0.05). Fold-enrichment was
evaluated for any significant GO term, as reported in (Mi et al. 2013). Each list was also subjected to
a statistical overrepresentation test of Saccharomyces cerevisiae pathways, using ConsensusPathDB-
yeast database (Herwig et al. 2016; Kamburov et al. 2013; Kamburov et al. 2011; Pentchev et al.

2010) (FDR < 0.05). Beyond significant enrichment, each list was submitted to SGD Gene Ontology
Slim Mapper (Cherry et al. 2012) and pathways of interest were identified. Selected proteins were
inserted in Protein-to-Protein Interaction (PPI) network, using Cytoscape software (Cline et al. 2007;
Saito et al. 2012; Shannon et al. 2003; Smoot et al. 2011). GeneMANIA plugin (Montojo et al. 2010)
was used for querying proteins of interest, looking only for physical interactions.

3.4 Single Cell Experiments

3.4.1 Image acquisition settings

Each single-cell experiment was performed via monitoring cells growing in microfluidic chambers
(CellASIC®), in which flowing medium was maintained with a ONIX microfluidic perfusion sys-
tem (CellASIC®). Time-lapse movies of GAL1-MAD2(3x) were recorded using a DeltaVision Elite
imaging system (Applied Precision) based on an inverted microscope (IX71; Olympus) with a cam-
era (CoolSNAP HQ2; Photometrics) and a UPlanFL N 60x (1.25 NA) oil immersion objective lens
(Olympus). During experiments at 30°C, an oil immersion with refractive index n=1.516 was used.
In the case of experiment performed at temperatures lower than 21°C, we used oil immersion with
n = 1.512. GFP, and mCherry were acquired using single bandpass filters (EX475/28 EM523/36 for
GFP, EX575/25 EM632/60 for mCherry). Time-lapses of tub2-401 and GAL1-CDC28-HA cells were
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acquired with another DeltaVision system, with the same settings as described above but with a dif-
ferent camera (Scientific CMOS Camera). Excited and non-excited fields were acquired, in order to
evaluate any phototoxicity of the acquisition setting by comparing the cell cycle duration in excited
and non-excited cells.

3.4.2 GAL1-MAD2(3x) adapting and adapted cells

3.4.2.1 Experimental setup

Log-phase cells growing at 30°C in synthetic medium with raffinose were diluted to OD600 ∼ 0.1 and
�-factor 5 �g∕ml was added in each volume. After 1h 30 min, �-factor 2.5 �g∕ml was added. Cells
were diluted to OD600 ∼ 0.15, sonicated and loaded in the microfluidic plate. Then, cells were kept in
G1 while exposing them to galactose, in order to pre-induce GAL1pr. After 1h, cells were released in
synthetic medium with galactose, leaving them to grow at 30°C.

3.4.2.2 Excitation settings

The following excitation settings were used:

• POL: 1 z-stack, exposure time 0.08s, power lamp 32%, every 10 min

• GFP (Clb2): 1 z-stack, exposure time 0.15s, power lamp 32%, every 10 min

• mCherry (Tub2): 3 z-stacks (0.85 �m), exposure time 0.10s, power lamp 10%, every 10 min

3.4.3 GAL1-CDC28-HA adapting cells in nocodazole

3.4.3.1 Experimental setup

Log-phase cells growing at 30°C in YEPR were diluted to OD600 ∼ 0.15 and �-factor 5 �g∕ml was
added in each volume. After 1h 30 min, �-factor 2.5 �g∕ml was added. Cells were diluted to OD600 ∼
0.2, sonicated and loaded in the microfluidic plate. Then, cells were kept in G1 while exposing them
to galactose, in order to pre-induce GAL1pr. After 1h, cells were released in YEPRG supplemented
with nocodazole 15 �g∕ml, leaving them to grow at 30°C. When most of the cells were budded and
entered in mitosis, �-factor 20 �g∕ml was added in the flowing medium, in order to re-synchronize
cells in the subsequent G1 after adaptation.

3.4.3.2 Excitation settings

The following excitation settings were used:
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• POL: 1 z-stack, exposure time 0.08s, power lamp 32%, every 10 min

• GFP (Mad2): 11 z-stacks (0.3 �m), exposure time 0.07s, power lamp 10%, every 10 min

• mCherry (Clb2): 1 z-stack, exposure time 0.5s, power lamp 10%, every 10 min

Images for Mad2-GFP were deconvoluted with SoftWoRx software, and a maximum intensity projec-
tion was performed with all the z-stacks.

3.4.4 tub2-401 adapting and adapted cells

3.4.4.1 Technical specifications

Experiments with tub2-401 cells were performed at lower temperature (15-21°C), enveloping the mi-
crofluidic plate in a incubating metallic chamber (Figure 3.1a) in which a refrigerated antifreeze mix-
ture was flowing. Temperature control was performed by a BOLD LINE Water-Jacket Top Stage
Incubation System (OKOlab ©). In this system, refrigeration and flow of antifreeze was performed
by an immersion thermostat (LAUDA© DR. R. WOBSER GMBH & CO. KG, Germany) which was
connected to the incubating chamber with several insulated tubes. Moreover, an objective cooler was
connected to the same system, in order to refrigerate the objective during the timelapse. Temperature
control was performed by BOLD LINE T-unit, together with SmartBox (OKOlab ©). The system
took into account room temperature (measured by a thermistor) and temperature inside the incubating
chamber (monitored by a fine gauge thermocouple). T-unit allowed two ways of temperature con-
trol: Sample Mode (keeping constant the temperature of specimen monitored by thermocouple) or
Chamber Mode (maintaining a constant temperature of chamber). A BOLD LINE Logger Software
(OKOlab ©) allowed communications with OKOlab system in order to log data from it.

3.4.4.2 Calibration of Incubator System before the timelapse

In order to properly set temperature control before doing the timelapse, the following pipeline was
performed :

1. Measuring temperature in the imaging region

A fake microfluidic plate was put in the incubating chamber and filled with mineral oil in the
corresponding cavity of imaging region. Then, objective was put in contact with plate, under
the imaging region. Thermocouple was inserted in the mineral oil, and incubating chamber was
closed (Figure 3.1c). Incubation system was set to Chamber Mode at ∼ 16°C, allowing to keep
constant temperature of chamber while monitoring the one in the imaging region. Moreover,
we put a cylinder full of mineral oil inside the chamber, on the bottom part of it (Figure 3.1b).
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Once temperature reached a steady state, we turned on the DeltaVision imaging system, and we
left the entire system to reach an equilibrium temperature for 24 hours.

2. Calibration
Once the system reached the equilibrium, we moved the thermocouple from the imaging region
to the cylinder (Figure 3.1d). This allowed to evaluate the difference between temperature of
imaging region and that of the inside part of chamber. Usually, imaging region was 2/3°C higher
than the bottom part of the chamber. Assuming a linear relationship between these two temper-
atures, we set incubation system in Sample mode, in order to maintain constant the temperature
of the cylinder region. During this mode, thermocouple was shifted in the cylinder and cylinder
temperature was adjusted, according to the desired temperature in the imaging region.

3. Incubation of the experimental microfluidic plate Before closing the chamber, a new mi-
crofluidic plate was inserted. PBS was removed from wells, which were filled with synthetic
medium. Once closed, we allowed the system to reach an equilibrium for 24 hours. In this way,
medium was refrigerated before the experiment.

Figure 3.1: Details of incubator system - (a) Design of incubating chamber (OKOlab©). (b) Details of cylinder located
on the bottom part of chamber. (c) Details of temperature measurement in the imaging region. (d) Calibration of temperature
between imaging region and cylinder. Settings of incubator system were performed by Okolab© and with the support of
Imaging Technological Development Unit at IFOM - Milan, IT.

3.4.4.3 Experimental setup

Log-phase cells growing at 30°C in synthetic medium were diluted to OD600 ∼ 0.2 and �-factor 5
�g∕ml was added in each volume. After 1h 30 min, �-factor 2.5 �g∕ml was added. After 2 hours
from the first �-factor addition, cells were release in synthetic medium supplemented with �-factor 5
�g∕ml and leaving them to grow at low temperature for 1 hour. This additional phase allowed cells
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to keep the G1 arrest, while starting to sense the low temperature. After 1h from release, cells were
diluted again to OD600 ∼ 0.2, sonicated and loaded in the microfluidic plate. Once all the positions to
be monitored were chosen, cells were released from �-factor, leaving them to grow in cold synthetic
medium. During the entire timelapse, temperature was continuously monitored.

3.4.4.4 Excitation Settings

For these experiment, we identified the following excitation settings:

• POL: 1 z-stack, exposure time 0.08s, power lamp 32%, every 15 min

• GFP (Clb2): 1 z-stack, exposure time 0.15s, power lamp 32%, every 15 min

3.5 Single Cell Analysis

3.5.1 Segmentation and tracking of cell bodies

Timelapse were imported in Phylocell (Charvin et al. 2008), an open-source software written in
MATLAB® by G. Charvin (Institut de Génétique et Biologie Moléculaire et Cellulaire - Illkirch-
Graffenstaden, France), and available at https://github.com/gcharvin/phyloCell. Using Phy-
locell, segmentation of cell bodies was achieved with homothetic inflation and/or watershed algo-
rithms, manually adjusting the obtained areas where necessary. Tracking of segmented area in time
was performed by Iterative Closest Point algorithm. Software was further improved by Emanuele
Martini (Technical Development Imaging Unit, IFOM - Milan, Italy), in order to achieve a better seg-
mentation of adapted cells.

From segmented area, we extracted informations about cellular dimension and fluorescence in
time, by ad-hoc software written in MATLAB® by Paolo Bonaiuti in the lab. During data extraction,
background fluorescence was subtracted from the cellular one. Moreover, each couple "mother-and-
daughter" was considered as an unique Region of Interest (ROI).

3.5.2 Image Analysis of GAL1-MAD2(3x) and tub2-401 cells

To the purpose of simplifying the analysis, we followed only the progeny coming from each mother
cells at the beginning of the timelapse, ignoring the one originated from daughter cells of adapting
mother cells. Evaluation of mitotic duration inGAL1-MAD2(3x) and tub2-401 cells was performed via
evaluating nuclear signal of Clb2-GFP, using the same procedure described in (Vernieri et al. 2013)
and developed in the lab by Fridolin Gross. Briefly, by k-means algorithm on Clb2 fluorescence we
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were able to identify the nucleus for each cell. Since Clb2 is expresses only in mitosis, estimation of
nuclear area was accurate only during mitotic phase (Figure 3.2a). In this way, mean nuclear fluores-
cence of Clb2 was estimated in mitosis. Each trajectory was smoothed and plotted, in order to check
one by one the behavior of each cell (Figure 3.2b) and manually defining mitotic entry and exit from
the plotted trajectory, with a basic user interface. Selection of mitotic entry was defined by the user at
the time in which Clb2 started to increase, while mitotic exit when Clb2 started to decrease. Mitotic
duration was defined as the difference between these two timepoints. Moreover, we also recorded
information about cellular area of mother and daughter cells within these timepoints (Figure 3.2c).
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Figure 3.2: Measuring Clb2 nuclear levels and cellular area in GAL1-MAD2(3x) and tub2-401 cells - (a) Raw image
of GFP signal in a GAL1-MAD2(3x) cell. (b) Processed image with k-means algorithm. Basing on Clb2-GFP fluorescence,
the algorithm allowed to identify: extracellular region (black), cytosolic region (grey), nuclear region (white). Mean levels
of Clb2 were evaluated in the white region. (c) Evaluation of Clb2 mean nuclear fluorescence in adapting and adapted cells
during a shift to galactose. (d) Monitoring cellular size of adapting and adapted cells. For each mitotic round of adapting
and adapted cells, we monitored cellular growth of mother and daughter cells. Area in pixel was converted to �m2 according
to the pixel size of the objective.

3.5.3 Image Analysis of GAL1-CDC28-HA cells in nocodazole

Image analysis of nocodazole-arrested cells was performed with the same procedure described in
(Bonaiuti et al. 2017) and developed in the lab by Paolo Bonaiuti. For each cell, mean cellular value
of Clb2-mCherry signal was evaluated in time, and each resulting trajectory was smoothed (Figure
3.3a). Meanwhile, Mad2-GFP Localization Index (LI) signal (Primorac et al. 2013) was evaluated in
time: for a segmented area A, LI is defined as
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LI(A) =
⟨A1%⟩ − ⟨A⟩
std (A)

, (3.1)

where ⟨A1%⟩ is the mean of the 1% brightest pixels inside A, ⟨A⟩ is the mean fluorescence in
A, std (A) standard deviation of fluorescence in A. The procedure allowed to automatically identify
the time by which Clb2 started to increase and decrease (Figure 3.3a). Since adapted cells degrade
Clb2 in the presence of localized Mad2 to the unattached kinetochores (Bonaiuti et al. 2017), we set
a threshold for LI equal to 5 in order to better discriminate good localizations for bad ones (Figure
3.3b-c). As a negative control for localization, Mad2 LI was under the fixed threshold in cells at the
beginning of the timelapse (i.e. during G1 arrest), where Mad2 does not localize by definition.
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Figure 3.3: Evaluating Clb2 levels and Mad2 Localization Index during a mitotic arrest - (a) An example of raw
trajectory coming from analysis of nocodazole-arrested cells. For each cells we monitored in time the behavior of mean
levels of Clb2 (red) and of Mad2 Localization Index (LI) (green). The automatic procedure allowed to automatically detect
mitotic entry and anaphase onset, according to the rising levels of Clb2 and their decay. (b-c) For each cell, we plot mitotic
duration versus localization index of Mad2 during G1 arrest (black dot) and during adaptation (blue or red dot). A threshold
equal to 5 for LI (green dashed line) allowed to better isolate cases in which cells adapted with an active Mad2 localization.
All the MATLAB scripts for evaluation of Clb2 and Mad2 signals were designed by Paolo Bonaiuti in the lab (Bonaiuti
et al. 2017).
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3.5.4 Cell Size Control Analysis

This analysis was adapted from (Di Talia et al. 2007), in which a theoretical framework was applied
for explaining cell size control during G1/S transition. We arranged this analysis in the metaphase-to-
anaphase transition of adapting cells, as described in Section 4.1. Considering mother and daughter as
an unique cell body during the measured mitosis, we wanted to fit raw data with an exponential law:

A(t) = A0 exp (�t) , (3.2)

whereA(t) represents the cellular area at time t,A0 cellular area at mitotic entry, � growth rate. By
normalizing Equation 3.2 by A0 and applying logarithm to both members of the equation, we obtain
the following relation:

ln
[

A(t)
A0

]

= �t, (3.3)

which represent a line with slope �. Therefore, trajectories of cellular area during mitosis of
adapting cells were normalized to the value at the mitotic entry, and their logarithmic values were
fitted with the linear law 3.3 (Figure 3.4). For each fitting, we estimated a goodness of fit (adjusted
R2) and the growth rate �. Together with raw data, these parameters were evaluated for testing cell
size control hypothesis, as described in Section 4.1.
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Figure 3.4: Fitting cellular size raw data with an exponential growth - An example of fit with raw data coming from
one adapting cell. The result is a line with slope � (i.e. growth rate).

3.5.5 Statistical Methods

Sample size was not evaluated a-priori for each experiment. Statistical analysis were performed with
GraphPad Prism ®, with significance level � = 0.05. Normality of each sampled distribution was
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tested, using D’Agostino-Pearson omnibus and Shapiro-Wilk tests, and not rejecting the normality
hypothesis when both tests returned a p-value p greater than the significance level.

For comparison of two normal distributions, a two-tailed unpaired t-test with Welch’s correction
was performed; in the case of not-normal distributions, a two-tailed Mann-Whitney test was used.
Evaluation of linear correlation coefficient was performed with Pearson coefficient - for normal dis-
tributions - or Spearmann coefficient - for not-normal distributions.

Comparison of three ormore normal distributionswas performedwith an ordinary one-wayANOVA,
testingmultiple comparisons with Tukey test. In the case of not-normal distributions, a Kruskal-Wallis
test with Dunn’s multiple comparisons test were used. For multiple comparisons, the following sym-
bols were reported: ns (p > 0.05), * (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001).

3.6 Other Techniques

3.6.1 FACS Analysis

In this study, FACS analysis was used for an evaluation of DNA content in a population of cells. For
each timepoint, 1 ml of cells was collected and centrifugated (13200 rpm, 1-3 min). Then, supernatant
was discarded and pellet was resuspended with 1 ml of ethanol 70%, in order to fix cells. Fixed cells
were then incubated at 4°C.

Then, ethanol was discarded from each sample (13200 rpm, 3 min) and resulting pellet was resus-
pended with 1 ml of Tris HCl 50 mM pH 7.6. After another centrifugation (13200 rpm, 3 min), cells
were incubated at 37°C with 500 �l of Tris HCl 50 mM pH 7.6 supplemented with RNAse 1 mg/ml,
for 4-5 hours or during an entire overnight. Subsequently, supernatant was discarded (13200 rpm, 3
min) and each sample was washed with PBS(1x) or FACS Buffer (Tris HCl 1 M pH 7.6, NaCl 5 M,
MgCl2 1 M). After another centrifugation (13200 rpm, 3 min), pellet was resuspended in 300 �l of
Propidium Iodide (PI) in order to stain DNA. Cells were incubated at 4°C for at least 20 min, then 100
�l were diluted in 1 ml of Tris HCl 50 mM pH 7.6.

After a proper sonication, diluted cells were processed at flow cytometry (FACScalibur, DB),
scoring 10000 event for each sample. Raw data were then analyzed with FlowJo® software.

3.6.2 Immunofluorescence (IF) Analysis

This technique was used for visualization of spindle in population experiments. Via looking at spindle
morphology, we were able to distinguish cell cycle phase of each cells: interphase (only one dot
visible), metaphase (short spindle) and anaphase (elongated spindle). Moreover, IF of nocodazole-
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arrested cells allowed to evaluate the efficiency of the drug in depolymerizing mitotic spindle.
For each timepoint, 1 ml of cells was collected and centrifugated (13200 rpm, 1-3 min). Then,

supernatant was discarded and pellet was resuspended with 1 ml of KPi buffer (0.1 M Kphos pH 6.4 -
obtained by mixing K2HPO4 with KH2PO4 - 0.5 mMMgCl2) supplemented with formaldehyde 3.7%,
in order to fix cells. Samples were then incubated at 4°C.

Then, 3 washes were performed with 1 ml of KPi buffer for each sample (4000 rpm, 2 min),
discarding supernatant each time. Then, one final wash with 1 ml of sorbitol solution (Sorbitol 1.2
M, 0.1 M Kphos pH 7.4, 0.5 mM MgCl2) was performed. Supernatant was discarded (4000 rpm, 2
min) and each pellet was resuspended in 200 �l of mix solution (sorbitol solution supplemented with
zymolase 10 mg/ml and 2-mercaptoethanol), leaving in a thermomixer at 37°C, 400 rpm, 15/20 min,
in order to allow cell wall digestion.

When spheroplasts were visible, each sample was centrifuged (3800 rpm, 1.5 min), supernatant
was discarded and each pellet was resuspended with 1 ml of sorbitol solution. After an additional wash
(3800 rpm, 1.5 min), pellet was stored at -20°C. 5 �l of treated spheroplasts were loaded to glass slides
(Thermo-Scientific) coated with polylysine (Sigma-Aldrich). After 15/20 min, slides were immersed
in cold methanol (-20°C) for 3 min - in order to dehydrate samples - and then in cold acetone (-
20°C) for 10 s, in order to fix samples. Then, each sample was incubated with anti-Tub1 primary
antibody (MCA78G, Bio-Rad), allowing incubation for 2h at room temperature. Subsequently, 3
washes were performed with BSA-PBS solution (containing PBS plus bovine serum albumin BSA),
and each sample was incubated with secondary antibody (FITC-conjugated anti-rat antibody from
Jackson ImmunoResearch Laboratories) for 1h, at room temperature, in a dark place. Finally, after 4
washes with BSA-PBS solution, DAPI was added in each sample - in order to also detect DNA - and
slides were closed.

3.6.3 Serial dilution and droptest assay

Cells were grown overnight in 5 ml of liquid medium, allowing them to rich a high concentration
during the overnight. Then, the strain with the lowest concentration was identified and all the other
strains were diluted to that concentration in 1 ml. For each strain, 100 �l of diluted cells were added
to 1 ml of sterile water, and from this final volume 200 �l were loaded on the first column of a 96
well. 180 �l of sterile water were added from second to sixth column. Then, 20 �l of cells from the
first column were collected, and serial dilution were performed from the second to the sixth column.
Finally, cells were spotted on agar plates with a mold or multichannel pipette.
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3.6.4 Measuring concentration and cell size

Monitoring of cellular concentration and/or size in GAL1-MAD2(3x) (see Section 4.1) and tub2-401

cells (see Section 4.2) was performed using Scepter ™ Handheld Automated Cell Counter (© Millipore
Corporation) with Scepter ™ Sensors 40 �m. Each log-phase cell culture was diluted 1:100 in 1 ml of
PBS(1x), sonicated and then processed at the counter. Data log were handled with Scepter ™ Software
Pro.

3.7 Biological replicates

For each experiment showed in Results, the number of technical replicates - where present - is reported
in the caption of the associated figure. Here, we summarize the number of biological replicates:

• 1 replica: Figures 4.3, 4.6, 4.9, 4.16, 4.19, 4.20, 4.21, 4.35, 4.36b-c, 4.38, 4.39, 4.40, 6.1, 6.2

• 2 replicates: Figures 4.2, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11, 4.12, 4.14, 4.15, 4.18 (more than 2),
4.22, 4.28, 4.36a, 4.41
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4
Results

4.1 Proliferating Cells after Adaptation to the Mitotic Check-

point induced by Mad2 overexpression

AN ectopic activation of the Mitotic Checkpoint can be achieved by overexpressing Mad2, plac-
ing 3 copies of the gene under the galactose-inducible promoter GAL1pr (GAL1-MAD2(3x),

(Rossio et al. 2010b)). When grown in galactose, cells exhibit an arrest in mitosis (Rossio et al. 2010b;
Mariani et al. 2012) that lasts several hours, after which they adapt to the mitotic block (Rossio et al.

2010b; Vernieri et al. 2013), resuming APC/C activation, and thus enter anaphase and eventually exit
from mitosis. In this section, we describe features of cells that resume proliferation after adaptation.

4.1.1 Adaptation to the SAC induced byMad2 overexpression establishes a Refractory
State

A live-cell imaging approach allows to appreciate the large cell-to-cell variability and stochasticity of
adaptation (Vernieri et al. 2013; Bonaiuti et al. 2017). To minimize such variability, we synchronized
WT and GAL1-MAD2(3x) cells in G1, and then we released them in microfluidic chambers, under
a constant flow of galactose-containing medium (Figure 4.1). Under these conditions, both strains
experienced the samemetabolic alterations due to the shift of carbon source, but onlyGAL1-MAD2(3x)

cells arrested in mitosis (Rossio et al. 2010b; Mariani et al. 2012; Vernieri et al. 2013). We thus refer
toWT cells as "cycling" (Figure 4.1a), while GAL1-MAD2(3x) cells in the first arrest caused by Mad2
overexpression as "adapting" cells (Figure 4.1b). After adaptation, we noticed that GAL1-MAD2(3x)

cells resume proliferation: we called these cells "adapted" (Figure 4.1b).
We monitored the dynamics of mitotic spindles, using �-tubulin TUB2 tagged with mCherry, and

mitotic progression with the endogenous mitotic cyclin B (CLB2) tagged with GFP. Tagged Clb2
allowed us to estimate the duration of mitotic arrest for each cell: mitotic entry was identified by the
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Figure 4.1: Monitoring Proliferating Cells after Adaptation to the SAC induced byMad2 overexpression -WT cells
(yAC2006 -MATa, TUB2-mCherry CLB2-GFP) andGAL1-MAD2(3x) cells (yAC2671 -MATa, TUB2-mCherry CLB2-GFP
GAL1-MAD2(3x) were grown in synthetic medium containing raffinose, synchronized in G1 and then released in synthetic
medium containing galactose). Clb2 and Tub2 fluorescence was monitored for each cell. (a) An example of WT cell -
"cycling" condition. (b) An example of GAL1-MAD2(3x) cell. The first cell cycle upon Mad2 overexpression is reported as
"adapting", while the subsequents are named "adapted"

time Clb2 levels start to increase, and anaphase onset by the time of Clb2 degradation (Figure 4.2a).
Confirming our previous work (Vernieri et al. 2013), we observed a significant difference in mitotic
duration between cycling and adapting cells (Figure 4.2b). Asmentioned above, we observed that cells
are able to proliferate again after adaptation, with a mitotic length significantly shorter compared to
adapting cells (Figure 4.2b). This result suggests that cells become partially refractory to the Mitotic
Checkpoint, with mitotic timing still significantly longer than that of cells in unperturbed conditions
(Figure 4.2b). In conclusion, after adaptation to Mad2 overexpression, we were able to observe a
population of proliferating cells which seemed to become refractory to the SAC. We define these cells
adapted refractory cells.
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Figure 4.2: Proliferating Cells after Adaptation exhibit a decreased mitotic duration - Single cells analysis of WT
cells (yAC2006 -MATa TUB2-mCherry CLB2-GFP) andGAL1-MAD2(3x) cells (yAC2671 -MATa TUB2-mCherry CLB2-
GFP GAL1-MAD2(3x) described in Figure 4.1. (a) Mean nuclear Clb2 signal was estimated for each cell, as reported in
(Vernieri et al. 2013) - see an example in the figure for adapted cells (black arrow). Clb2 trajectories were plotted in time,
synchronizing them when Clb2 signal started to increase. (b) Comparison of mitotic duration. For each condition reported
in a), timespan between Clb2 increase and decrease was estimated and defined as mitotic duration. Statistical analysis were
performed with GraphPad Prism ®, using Kruskal-Wallis test with Dunn’s Multiple Comparison Test (significance level
0.05). N: number of observation. m: median of population. For each population, median and interquartile range were
reported. The same significant differences were also observed in a previous biological replica, in which cells were not
pre-synchronized in G1 before inducing Mad2 overexpression.

4.1.2 Refractoriness is not due to a decrease in GAL1 promoter activity in time

In the experiment shown in Figures 4.1 and 4.2, we induced the SAC by overexpressingMad2. We thus
asked whether the refractory state was simply due to a physiological decrease in Mad2 overexpression
during the long time-course of the experiment. We thus followed in GAL1-MAD2(3x) cells the levels
ofMad2 upon 24h of galactose exposure (Figure 4.3). The analysis suggests that Mad2 overexpression
seems to slightly decrease in time.
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Figure 4.3: Mad2 levels slightly decrease during 24h of induction - A population of asynchronous MATa, GAL1-
MAD2(3x) cells (yAC2465) was shifted from YEPR to YEPRG, in order to induce Mad2 overexpression. Cells were moni-
tored for 12h. (a) Western Blot analysis of Mad2 levels at early stages of overexpression. (b) Western Blot analysis of Mad2
levels at late stages of overexpression. (c) Quantification of Mad2 levels. For each timepoint, Mad2 levels were normalized
to the housekeeping protein levels, i.e. Pgk1. Ratios from a) were normalized to their maximum levels, while ratios from
b) were normalized to the value of the ratio at 12h in a). Each dot correspond to a single data (1 technical replica for a), 3
technical replicates for b))
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Mad2 levels may decrease in time owing to the prolonged activation of theGAL1 promoter. To test
this possibility, we aimed at comparing the SAC arrest in two GAL1-MAD2(3X) strains, both overex-
pressingMad2 from theGAL1 promoter for the same amount of time. Both strains were grown for 12h
in galactose, arrested in �-factor and released again in galactose: the GAL1 promoter is supposed to
be under identical conditions in the two strains. However, during the 12 hours of growth in galactose
one strain expressed an allele of CDC20 (cdc20-127) which produces a mutant Cdc20 able to bypass
the SAC (Hwang et al. 1998) (Figure 4.4a, adapting). The other strain, instead, expressed wild type
Cdc20 (Figure 4.4a, adapted refractory). Thus, the first strain neither experienced a SAC arrest nor
adaptation during the 12 hours of growth in galactose, regardless of the high levels of Mad2. The
second strain instead adapted and entered the refractory state. In this setting, a difference in cell cycle
timing between adapted refractory cells and cells adapting to the SAC for the first time could not be
explained with difference in GAL1 activation time. It would rather be due to the fact that one class of
cells had previously adapted to the SAC and the other did not.

We expressed the cdc20-127 gene under the doxycycline-repressible tetO2 promoter. The abil-
ity of this mutant form of Cdc20 to bypass the spindle checkpoint was tested and confirmed in our
GAL1-MAD2(3x) system (See Appendix). GAL1-MAD2(3x) tetO2-CDC20-127(1x) cells were grown
overnight with galactose and without doxycycline (i.e. with cdc20-127). After 12 h, doxycycline was
added to silence the tetO2 promoter, cells were arrested in G1 and monitored in the continuous pres-
ence of galactose (Figure 4.4b). After repression of cdc20-127 synthesis, cells that never experienced
adaptation (Figure 4.4b, adapting) exhibited an arrest in mitosis longer than cells that had experienced
adaptation (Figure 4.4b, adapted refractory). This result suggests that the refractory state is not due to
alterations in GAL1pr activity in time, but cells acquire "experience" from a prolonged mitotic arrest
which allows them to have a faster mitotic phase. We argue that they become specialized "adapted"
cells. At this stage, we cannot exclude the possibility that for reasons other than time of activation,
GAL1pr activity is reduced in continuous presence of SAC. We will address this criticism in the Dis-
cussion.

4.1.3 Refractoriness is lost upon microtubules depolymerization

We next asked if refractoriness induced by Mad2 overexpression would be maintained changing SAC-
inducing stimuli. To answer this question, we used nocodazole to activate the SAC in cells adapted to
Mad2 overexpression. We synchronized adapted refractory cells in G1 and released them in different
concentrations of nocodazole. Regardless of the concentration of nocodazole, adapted refractory cells
exhibited a 5h-long arrest in mitosis (Figure 4.5) without detectable microtubules polymerization and
rebudding cells. WT cells showed the same behavior. These results suggest that refractoriness is
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Figure 4.4: Overexpression of Mad2 is still able to induce the SAC after 12 hours from its induction - (a) Scheme of
the experiment. MATa, tetO2-CDC20-127(1x), GAL1-MAD2(3x) cells (yAC2807) were grown for 12h in YEPRG medium
in order to induce overexpression of Mad2. During this first phase, SAC was only active in adapted refractory cells, since
they were not expressing cdc20-127. Then, cells were synchronized in G1 by �-factor and released in YEPRG medium
supplemented with doxycycline hyclate 10 �g∕ml (Barnhart et al. 2011) in both conditions, in order to repress cdc20-127
synthesis. After 1,5h from release, �-factor was readded in order to resynchronize cells in G1. (b) FACS analysis of the
experiment described in a). Red profiles correspond to timepoints in which more than 80% of scored cells exhibit a 2C DNA
content.
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Figure 4.5: Adapted refractory cells become competent to the SAC induced by nocodazole - MATa, WT (yAC3202)
and MATa, GAL1-MAD2(3x) (yAC2465) cells were grown overnight for 15h in YEPRG, in order to produce a population
of adapted refractory cells from yAC2465. Then, cells were synchronized in G1 with �-factor and released in YEPRG
supplemented with 0, 3, 5 or 15 �g∕ml of nocodazole, monitoring them for 5h. For each condition, �-factor was readded
after 1.5h and 3.5h from release, while nocodazole was readded after 3h from release. (a) FACS profiles for WT cells. (b)
FACS profiles for adapted refractory cells.
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unable to overcome the effects of nocodazole, maybe due to the fact that the latter induces a stronger
SAC response (e.g. enhanced MCC assembly).

4.1.4 Memory in Adaptation to the Checkpoint has a timespan

So far, we described a form of refractoriness which takes place in the continuous presence of SAC-
inducing stimuli. We next asked whether the refractory state is maintained when the stimulus is tran-
siently removed. If this were the case, we would conclude that cells have a memory of adaptation
(Caudron & Barral 2013), as described in the Introduction (Section 1.5). In the next subsections, we
describe two experimental approaches to remove transiently the stimulus inducing the SAC.

4.1.4.1 Loss of memory upon removal of Mad2 overexpression

Removal and reintroduction of Mad2 overexpression in Adapted Refractory Cells We induced
the SAC by overexpressing Mad2. To relieve cells from the SAC transiently, we restored the endoge-
nous levels of Mad2. We grew Adapted refractory cells and we released them in glucose-containing
medium, in order to completely repress GAL1pr activity and Mad2 overexpression. Via Western Blot
analysis, we observed that cells took 12h for restoring Mad2 endogenous levels (Figure 4.6a-b), as-
suming a cellular size that was similar to that of cells that never experience Mad2 overexpression (data
not shown). This result sets the minimum length of stimulus removal with this approach.

After cells had regained endogenous levels of Mad2, we needed to re-introduce proper Mad2 over-
expression. It is known that activation of GAL1pr is different in budding yeast cells grown in glucose
or in raffinose (Stockwell et al. 2015) because glucose strongly represses GAL transcription as op-
posed to raffinose. It is reported that upon a shift in galactose, cells grown in raffinose activate the
GAL1prwithin 20min (Kundu et al. 2007); on the other hand, cells that grow in glucose show a slower
kinetics of induction (Kundu et al. 2007). Indeed, when we evaluated Mad2 overexpression in GAL1-
MAD2(3x) cells grown in raffinose (Figure 4.6c, Induction) or in glucose (Figure 4.6c, Induction w/o
derepression), we observed that Mad2 overexpression started after 4 hours in cells grown in glucose,
exhibiting a lag-phase of 3h respect to cells grown in raffinose (Figure 4.6d, Induction vs Induction
w/o derepression). In order to eliminate this lag-phase, we introduced in cells grown in glucose an
intermediate phase of 2h in raffinose, before releasing them in galactose (Figure 4.6c, Induction with
derepression). With this protocol, Mad2 overexpression behaved similarly in cells pre-grown in glu-
cose and raffinose.
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Figure 4.6: Removal and reinduction of Mad2 overexpression in adapted refractory cells - (a) Removal of Mad2
overexpression in GAL1-MAD2(3x) cells. MATa GAL1-MAD2(3x) (yAC2465) cells were grown overnight in galactose,
in order to make them adapted refractory. Then, they were shifted in YEPD in order to repress GAL1pr activity. Cells
were monitored for 12h, and cells were sampled each hour for Western Blot analysis. (b) Quantification of Western Blot
in a), normalizing Mad2 signal by the housekeeping Pgk1 signal. Each normalized ratio was divided by the ratio at time
0, and plotted in time. Each dot represent a technical replicate, while the continuous line connects mean value for each
timepoint. (c) Experimental setup for optimizing Mad2 re-induction. MATa GAL1-MAD2(3x) (yAC2465) cells were grown
overnight in YEPR or YEPD. The next day, cells that grew in YEPR where released in YEPRG (Induction). On the other
hand, cells grown in YEPD were directly release in YEPRG (Induction w/o derepression) or in YEPR for 2h and then in
YEPRG (Induction with derepression). Gray boxes correspond to the timespan in which cells were monitored. Cells were
sampled for Western Blot analysis. (d) Western Blot of the experiment described in c). Upper part: comparison of Mad2
levels in Induction and Induction w/o derepression. Lower part: comparison of Mad2 levels in Induction and Induction with
derepression.

Memory is erased upon 12h We then produced adapted refractory cells and shifted them in glucose-
containing medium for removing the SAC-inducing stimulus for 12h. Then,GAL1prwas de-repressed
in raffinose for 3 hours and consequently re-induced with a new round of galactose exposure (Figure
4.7a, Withdraw condition). We compared these cells to cells where the GAL1pr was induced for the
first time (Figure 4.7a, Adapting condition). In the second induction on agar plates, Withdraw cells
exhibited a growth similar to cells under their first induction (Figure 4.7b, Adapting vs Withdraw).
When re-induction occurred in liquid medium, the proportion of dumbbell cells was very similar to
cells experiencing their first induction (Figure 4.7c), indicating a similar arrest in mitosis. These
results suggest that adapted refractory cells after the removal of the SAC-inducing stimulus for 12
hours become again fully competent to the SAC.
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Figure 4.7: Adapted refractory cells become competent again to the SAC upon 12h of overexpressedMad2 removal
- (a) Experimental Setup. MATa GAL1-MAD2(3x) (yAC2465) cells were grown in YEPR liquid medium. Subsequently,
they were grown in three different conditions until 47 hours from their inoculum. Then, they were diluted to∼ 9e+7 cells/ml
and serial dilutions and spotting were performed on YEPD and YEPRG agar plates. (b) Serial dilution and spot assay for
yAC2465 cells described in a). (c) Analysis of cellular morphology in liquid medium. Adapting and Withdraw cells were
released in YEPRG liquid medium, instead of plating them. They were monitored for 5h, and cellular morphology was
scored for 100 cells every hour.

4.1.4.2 Memory experiment using cdc20-127 expression

The type of experiment just described is based on several changes in carbon-source, which could
introduce alteration in metabolic pathways (Paulo et al. 2015). Moreover, Mad2 being a very stable
protein (Figure 4.6a-b), we could not test a transient removal of the SAC stimulus shorter than 12
hours. Therefore, as a second approach we withdrew the SAC stimulus using the transient cdc20-127
expression. Since Cdc20 is degraded with a half-life of∼ 7 minutes (Bonaiuti et al. 2017; Pan & Chen
2004), it is much easier and faster to add and remove the SAC stimulus bymodulating cdc20-127 levels
than changing levels of Mad2.

Expression of cdc20-127 in adapted refractory cells is able to uncouple proliferation and SAC

First, we tested how efficiently cdc20-127 expression silences the SAC in adapted refractory cells.
To this purpose, tetO2-CDC20-127(1x) GAL1-MAD2(3x) cells were grown in galactose-containing
medium with endogenous Cdc20 for 12h, in order to allow them to acquire refractoriness to the SAC.
Then, expression of cdc20-127 was established for 3h or 12h. (Figure 4.8a, Withdraw). Finally, we
synchronized cells in G1 and released them while expressing cdc20-127 (Figure 4.8, Withdraw). Cel-
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lular size was monitored for the entire timespan of withdrawal (Figure 4.9). As controls, we used cells
that were grown all the time with an active SAC (Adapted refractory) or never (Adapting). Notice, for
Adapting cells we use the same terminology of Figure 4.4 although these cells are not really adapting
after the arrest in �-factor. These are actually cycling cells.
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Figure 4.8: UncouplingMad2 overexpression from SAC activity in adapted refractory cells - (a) Experimental Setup.
MATa, tetO2-CDC20-127(1x), GAL1-MAD2(3x) (yAC2807) cells were inoculated in YEPR liquidmedium. Then, they were
shifted in YEPRG for 12h - in order to induce Mad2 overexpression - and immediately splitted in 3 different conditions,
modulating the SAC activity via activation or inactivation of cdc20-127 synthesis. Then, cells were synchronized in G1
with �-factor and released in YEPRG, monitoring them for 4h in the presence of cdc20-127. �-factor was re-added after 1h
and 3h from release, in order to re-synchronize cells in the subsequent G1 phase. Samples were collected for FACS analysis,
both for (b) 12h of stimulus removal and (c) 3h removal. Red profiles correspond to timepoints in which more than 80% of
scored cells exhibit a 2C DNA content.

Both with 3h and 12h removal, Withdraw and Adapting cells assumed a very similar cell cycle pro-
gression, (Figure 4.8b-c, Adapting vs Withdraw), while assuming different size (Figure 4.9b). Upon a
removal of 3h, Withdraw cells assumed an Adapted refractory-like cell size, while after 12h their size
decreased to Adapting-like size. Removing the stimulus for 3 or 12h suffices to show the same cell
cycle kinetics after the release from �-factor as cells that were never arrested. Without withdrawal,
the expression of cdc20-127 is not sufficient to reset perfectly the cell cycle. We estimate in ∼ 20 min
the residual delay. We conclude that the SAC stimulus can be effectively removed with either a 3h or
12h expression of cdc20-127.
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Figure 4.9: Cell size behavior during SAC-withdrawal by cdc20-127 expression - (a) MATa, tetO2-CDC20-127(1x),
GAL1-MAD2(3x) (yAC2807) cells were grown as Adapting, Adapted refractory and Withdraw as indicated in the experi-
mental setup of Figure 4.8a. Cells were monitored from the beginning of the withdrawal for 12h, recording informations
about cellular size using Scepter ™ Handheld Automated Cell Counter (© Millipore Corporation). (b) Plot of mean cell
volume for each condition. (c) Histograms of cell volume recorded by Scepter™: at the beginning of the withdrawal (0 h),
after 3h and 12h from withdrawal.

Memory is retained for 3h, but not for 12h Once we validated the expression of cdc20-127 for
SAC-stimulus removal, we tested the presence of memory in Withdraw cells, by releasing them from
G1 in the presence of an active checkpoint - i.e., without cdc20-127 (Figure 4.10, WITH SAC, a).
Withdraw cells experienced the SAC for the second time, while Adapting cells for the first time.
Adapted refractory cells experienced a continuous activity of SAC for the entire experiment, as de-
scribed in Section 4.1.2.

In agreement with previous data, Withdraw cells that experienced a 12h removal were again com-
petent to the SAC, exhibiting a mitotic arrest that was similar to that of cells that experienced SAC
activity for the first time (Figure 4.10b, Withdraw vs Adapting). Withdraw cells that experienced a 3h
removal, instead, exhibited a mitotic duration similar to Adapted refractory cells (Figure 4.10c, With-
draw vs Adapted refractory), although the latter were slightly faster. In summary, our data suggest
that refractoriness to the SAC is erased upon 12h of SAC-inducing stimulus removal, while it is still
preserved upon a withdrawal of 3h.
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Figure 4.11: Recap of the results from memory experiment with cdc20-127 - For each of the FACS profiles reported
in Figure 4.8 and Figure 4.10, we evaluate the proportion of cells with a double DNA content (2C cells). On the left: W/O
SAC, i.e. cells released without checkpoint activity. On the right: WITH SAC, i.e. cells released with checkpoint activity.
Proportion of 2C cells was evaluated with FlowJo® software.
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4.1.5 Understanding Cell Size Control during Refractoriness

Figure 4.9 shows that upon silencing the SAC for 3h, size of Withdraw cells was similar to size of
Adapted refractory cells. Both assumed wild type-like dimensions after 12h of cdc20-127 expression
(Figure 4.9c). This result may suggest that faster mitotic timing of adapted refractory cells correlates
with increased cellular dimensions. In molecular terms, larger size may weaken the SAC by diluting
MCC component (Galli & Morgan 2016), as discussed in the Introduction (see Section 1.4). In cells
adapted to Mad2 overexpression, the checkpoint strength is not due to the kinetochore-to-cytoplasm
ratio, since the SAC signal does not originate from any unattached kinetochores (Mariani et al. 2012).
However, MCC still constitutes a limiting factor and it could be diluted in the cell if synthesis of MCC
components does not correlate with cell size. An implication of this hypothesis is that cells adapt
when they reach a critical size. We thus asked whether this was the case.
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Figure 4.12: Evaluation of time and size in cycling, adapting and adapted refractory cells - (a) Distributions of
size in cycling, adapting and adapted refractory cells at anaphase onset. Statistical analysis were performed with GraphPad
Prism ®, using Kruskal-Wallis test with Dunn’s Multiple Comparison Test (significance level 0.05) For each population,
median and interquartile range were reported. (b) Monitoring cell size at anaphase onset in the progeny of each adapting
cells. For each adapting cell that exhibit at least one adapted refractory cell cycle, cell size of adapted refractory cell was
normalized to the size of the ancestral adapting cell and plotted as a function of generation number after adaptation to the
SAC. Number of trajectories: 20. (c) Scatter plot between time and size in cycling, adapting and adapted refractory cells at
anaphase onset (i.e. when Clb2 started to be degraded). According to the normality of distributions, Pearson or Spearman
correlation coefficient were evaluated, testing whether they were significantly different from 0 (significance level 0.05).
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To study cell size in adapted refractory cells, we further analyzed the single-cell experiment de-
scribed in Subsection 4.1.1, measuring the area of segmented cells at mitotic entry (i.e. when Clb2
started to increase) and at anaphase onset (i.e. when Clb2 started to decrease). We considered cellu-
lar area as the sum of mother with daughter cell. We noticed that adapted refractory cells tended to
acquire an area that was similar to adapting cells during anaphase onset (Figure 4.12a, b), although
with reduced mitotic timing (Figure 4.2). These data are consistent with the idea that cells are able to
adapt and become refractory to the Mitotic Checkpoint by reaching a critical size.

We thus directly evaluated correlation between time and size during adaptation (Figure 4.12c).
We observed a positive and significant correlation in adapting cells (i.e., cells that adapt later reach a
larger size), which puts in doubt the existence of a critical size of adaptation. In the following subsec-
tion, we are going to use a theoretical approach (Di Talia et al. 2007) for clarifying the existence or
not of this critical size.
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Figure 4.13: Goodness of fit with an exponential function for adapting and adapted refractory cells - Distribution of
adjusted R2 coming from experimental fitting of mitotic behavior of cell size adapting cells (in red) and adapted refractory
cells (in green) with an exponential function. Distributions were plotted with MATLAB®, using kernel density estimator
method. For each probability function, observations above the brown line correspond to the 75% of the right-tail distribution.

4.1.5.1 Refractoriness to the SAC does not require a critical size

We focused our analysis on adapting cells, measuring the behavior of their area during the timecourse.
As already mentioned, for each mitosis we considered mother and its daughter cell as a unique cell
body. Via fitting the raw data with an exponential law, we obtained an adjusted R2 greater than 0.7
for 75% of cells in our sample (Figure 4.13 - adapting). Under this degree of confidence, we assumed
an exponential growth of cellular area in adapting cells:

AADP = A0 exp
(

�TADP
)

, (4.1)
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where AADP and TADP represent area and time during adaptation (i.e., between entry in mitosis
and anaphase onset, measured by Clb2-GFP); A0 cellular area at mitotic entry; � growth rate. Note
that � is the only parameter which is estimated from the fitting procedure, while the others are coming
from single-cell measurements. By applying logarithmic transformation to equation 4.1, we obtain
the following equivalent formula:

log
(

AADP
)

= log
(

A0
)

+ �TADP . (4.2)

If there is a critical adaptation size, we expect that size at adaptation [log (AADP
)] does not cor-

relate neither with size at mitotic entry [log (A0
)], nor with cellular expansion [�TADP

] (Figure 4.14,
I and II). Instead, we expect a negative correlation between size at mitotic entry and cellular growth
(Figure 4.14, III). A negative slope equals to −1 corresponds to a perfect sizer model (Di Talia et al.
2007). Our experimental data from adapting cells show a significant negative correlation between
cellular expansion and size at mitotic entry (Figure 4.14, III), therefore suggesting the presence of a
moderate size control mechanism. However, the critical size hypothesis also postulates that all cells
adapt with the same size, regardless of the time spent in metaphase TADP and of the size at mitotic
entry A0. This was not the case, since adaptation size positively correlates with both (Figure 4.14,
I and II). We conclude that adaptation is not triggered by the achievement of a critical size volume,
although some aspect of size control is probably present.

4.1.5.2 Control of size growth in Adapting Cells

Despite the absence of a critical size of adaptation, Figure 4.14-III suggests the presence of some el-
ement of size control. A better comprehension about this control would be achieved by uncoupling
the cellular expansion �TADP and evaluating the individual contribution of growth rate � and adapta-
tion time TADP in the observed negative correlation (Osella et al. 2014). We discovered that growth
rate negatively correlates with size at mitotic entry, while adaptation time does not (Figure 4.15).
Therefore, cells that enter with a small size in mitosis tend to assume a high growth rate (Figure 4.15,
log

(

A0
) vs �) and adapt with a small size (Figure 4.14-I). Our results suggest that a control of size

growth in adapting cells takes place during mitosis. This mechanism would act on modulating growth
rate rather than adaptation timing (Figure 4.14).

4.1.5.3 Cellular Growth of Adapted refractory cells resume properties of cycling cells

Once adapting cells become refractory, they maintain a size at anaphase onset which is similar to
what was achieved in adaptation (Figure 4.12a and b). At the same time, these cells have a faster cell
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cycle compared to adapting cells. To shed light on the interplay between size and cell cycle time,
we proceeded with the same theoretical workflow (Di Talia et al. 2007; Osella et al. 2014) that was
applied in Section 4.1.5.1 for adapting cells.

75 % of sampled adapted refractory cells exhibit adjusted R2 greater than 0.59 when their size
behavior was fitted with an exponential law (Figure 4.13 - adapted), and some values were lower than
0.5 and negative. Hence, we had to reject the hypothesis of exponential growth, and we could not
assume Equations 4.1 and thus 4.2 for adapted cells. Likewise, all the analysis shown in Figure 4.14
could not be repeated.

Nevertheless, a general description of cell size in these cells can be performed. Assuming that
a mother cellM and its daughter D define a couple "mother-and-daughter" C from mitotic entry to
anaphase onset, we can evaluate growth rate as

aC =
ΔC
ΔT

=
Cexit − Centry
Texit − Tentry

, (4.3)

where ΔC = Cexit − Centry defines the difference between the area of C at entry and exit from
mitosis, while ΔT = Texit − Tentry refers to the mitotic duration (Figure 4.16a). Since C =M +D by
definition,

aC =
ΔC
ΔT

=
Δ (M +D)

ΔT
= ΔM
ΔT

+ ΔD
ΔT

= aM + aD, (4.4)

allowing us to evaluate the single contribution of mother and daughter cells during mitotic cel-
lular growth for C . We evaluated experimental growth rates for adapted refractory cells, comparing
them to the growth rate of cycling and adapting cells. The analysis reveals that growth rate in adapted
refractory cells is higher than in adapting cells (Figure 4.16b, left plot), while ΔC is lower (Figure
4.16b, right plot). A higher growth rate depends on a shorter mitotic timing of adapted refractory
cells respect to adapting cells. A lower ΔC is explained by the fact that adapted refractory cells enter
into mitosis with a larger size than adapting ones, while reaching a similar size at the anaphase onset
(Figure 4.12c-d).

In this framework, we also evaluated the contribution of mother and daughter cell growth sep-
arately. We discovered that mother cells did not contribute to cellular growth of adapted refractory
cells (Figure 4.16c), since the median values of aM and ΔM were null, as in cycling cells. On the
other side, behavior of daughter cell growth recapitulated what we observed from couple "mother-and-
daughter" C (Figure 4.16d). These data suggest that growth rate of adapted refractory cells increases
after adaptation, resuming a daughter-driven growth and cycle times similar to cycling cells, while
preserving the size variability obtained during the first adaptation event. We have not explored further
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the basis of this unique growth, which would surely require further analysis.
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Figure 4.16: Evaluation of experimental growth rate in cycling, adapting and adapted refractory cells - (a) An
example of how experimental growth rate is evaluated for a cell. (b) Evaluation of experimental growth rate and added
cellular area for: (b) each couple, (c) each mother cell, (d) each daughter cell. Statistical analysis were performed with
GraphPad Prism ®, using Kruskal-Wallis test with Dunn’s Multiple Comparison Test (significance level 0.05). For each
population, median and interquartile range were reported.

4.1.6 Some conclusions on proliferating cells after adaptation

Upon ectopic overexpression of Mad2, we characterized a population of proliferating cells after adap-
tation to the SAC. These cells are refractory to the checkpoint (Figure 4.17a), and maintain memory
of adaptation between 3-12h of stimulus removal (Figure 4.17c, d). Moreover, refractory state is lost
when adapted refractory cells are treated with nocodazole (Figure 4.17b). One very important prop-
erty of adapted refractory cells concerns their ploidy: as revealed by FACS analysis, there is no any
(sub-)population of aneuploid cells arising from adaptation to the Mad2 overexpression, suggesting
the absence of missegregation events.

In this section we also explored cell size as a possible explanation for refractory state. Despite
a positive correlation between refractoriness and size, we discovered that adaptation is not triggered
by a critical size (Figure 4.17f). Instead, Adapted refractory cells adopt a new growth rate, resuming
properties that are similar to that of cycling cells, while preserving the size that was reached in adap-
tation (Figure 4.17e, f).
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One may ask whether these results are specific of Mad2 overexpression, or if they represent gen-
eral properties of proliferating cells after adaptation to the SAC. To answer this question, we induced
adaptation with other experimental means.
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Figure 4.17: Properties of cells adapted to Mad2 overexpression - Schematic representation of properties reported in
this section. (a) Proliferating cells after adaptation become refractory to the SAC. (b) Refractoriness to the checkpoint is
lost upon nocodazole administration. (c-d) Memory has a timespan, according to the duration of SAC withdrawal. (e) Cell
size increase exponentially in adapting cells. Once adapted, cells perform faster cell cycle with an increased growth rate
and similar size at the anaphase onset. (f) Absence of a critical size by which cells become refractory to the SAC.
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4.2 Proliferating Cells after Adaptation to the Mitotic Check-

point induced by spindle depolymerization

SO far, we studied a population of proliferating cells after adaptation to the SAC, inducing ectopi-
cally the Mitotic Checkpoint via overexpression of one of its molecular player. Overexpression

of SAC molecular players represents an easy way to arrest cells in mitosis and evaluate the short- and
long-term effect of this block. However, this method may have off-target effects, and it is artificial
since it does not require unattached kinetochore in checkpoint signaling (Mariani et al. 2012). Thus,
even if Mad2 overexpression comes with the advantage of uncoupling adaptation from chromosome
missegregation, it would be important to use other methods for inducing SAC and characterizing adap-
tation and refractoriness to the checkpoint in more "physiological" conditions.

One option would be to treat cells with nocodazole. However, nocodazole starts to decrease its ef-
fectiveness without any proper re-addition after 5-6h (data not shown). In order to induce the SAC via
a constant disruption of mitotic spindle, we used cold-sensitive mutants of �-tubulin tub2-401 which
are not able to properly polymerize microtubules at low temperatures (Huffaker et al. 1988; Sullivan
& Huffaker 1992). In this section, we report preliminary results about cells adapted to microtubules
depolymerization in Tub2 mutants grown at low temperatures.

4.2.1 A viable population of adapted cells arise from tub2-401mutants at semi-permissive
temperatures

4.2.1.1 Screening of semi-permissive temperatures on agar plates

As a preliminary experiment, we screened cellular growth of tub2-401 at different temperatures. As a
readout for SAC activity, we used tub2-401 mad2Δ cells: these cells should be checkpoint-deficient,
therefore becoming not viable upon restrictive conditions (K. G. Hardwick et al. 1999). Moreover, we
also monitoredWT and mad2Δ cells, in order to test whether the low temperature per-se activates the
Mitotic Checkpoint.

Cells were grown in liquid medium at 30°C, and subsequently spotted on agar plates at differ-
ent temperatures, and monitored day by day (Figure 4.18). At permissive temperature (30°C), all
strains exhibited a similar growth. When temperature was decreased to semi-restrictive conditions
(∼ 22-25°C), the mitotic checkpoint started to be activated, since viability of tub2-401 mad2Δ cells
decreased compared to the other strains (Figure 4.18, 22 and 25°C). Probably thanks to checkpoint
activity, we appreciated a population of viable tub2-401 cells after 2 days from their spotting. This
population was not present for restrictive temperatures (lower than 18°C), where tub2-401 and tub2-

401mad2Δ exhibited similar impaired growth (Figure 4.18, 18 and 15°C). In conclusion, we identified
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as 21-25°C a range of semi-permissive conditions for tub2-401, in which the SAC is engaged and cells
are capable to proliferate after adaptation.
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Figure 4.18: Evaluating viability of tub2-401 adapted cells upon different temperatures - WT (yAC3568), mad2Δ
(yAC3372), tub2-401 (yAC3220) and tub2-401 mad2Δ cells (yAC2946) were grown in YEPD liquid medium at 30°C.
Then, they were diluted to ∼ 5e+7 cells/ml and serial dilutions were performed. Strains were spotted on YEPD agar plates,
which were incubated at 30, 25, 22, 18 and 15°C and monitored.

4.2.1.2 Cellular growth in liquid medium at 21°C

We next analyzed cellular growth in liquid medium, choosing 21°C as semi-restrictive temperature.
Cells were grown at 30°C and then shifted to 21 (Figure 4.19a). During the first 4h after the shift,
no differences were detectable, maybe because strains needed to get used to low temperature (delay
in Figure 4.19b). However, after 4h tub2-401 and tub2-401 mad2Δ cells grew slower than the other
strains (Figure 4.19b), while increasing their volume (Figure 4.19d). During the second day, differ-
ences were clearer: tub2-401 mad2Δ cells stopped to grow, likely due to massive missegregation
(Figure 4.19c). On the other hand, tub2-401 cells continued to grow, with a doubling time of ∼ 4h
(Figure 4.19c, Table 4.1), while maintaining a size that was 2.5 bigger than WT (Figure 4.19e, f).
Moreover, we noticed that doubling time of tub2-401 cells decreased by one hour from day 1 to day 2
(Table 4.1), suggesting the presence of a faster cell cycle 22h after the decrease of temperature. Taken
together, our data suggest the presence of a viable population of adapted cells, which proliferate faster
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after a slow transient at low temperature, and with a constant volume. These properties remind those
observed in the previous section, in cells adapting to Mad2 overexpression.
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Figure 4.19: Growth of tub2-401 cells at 21°C - (a) Experimental Setup. WT (yAC3717), mad2Δ (yAC3372), tub2-401
(yAC3220) and tub2-401 mad2Δ (yAC2946) cells were inoculated in liquid YEPD, allowing them to grow overnight at
30°C. The day after (day 1), they were diluted to ∼ 1e6 cell/ml and monitored every 2h, for 10h. At the end of day 1, cells
were diluted to ∼ 1.5e6 cell/ml, allowing them to grow overnight at 21°C. In the following day (day 2), cells were diluted
to ∼ 1.8e6 cell/ml and monitored every 2h, again for 10h. (b-c) Growth curves of the reported strains. Number of cells per
ml was normalized to the initial concentration at the beginning of monitoring (time 0). (d-e) Behavior of mean cell volume
of the reported strains. (f) Histogram of cell volumes of the reported strains at the end of the experiment. Informations
about cellular concentration and volume were recorded with Scepter ™ Handheld Automated Cell Counter (© Millipore
Corporation).

4.2.2 Single-cell analysis of tub2-401 adapted cells

To confirm the presence of a refractory state in tub2-401 cells, we then performed a single-cell analysis
of tub2-401 cells growing at low temperature. We synchronizedWT, mad2Δ, tub2-401 and tub2-401
mad2Δ cells in G1 and released them in a microfluidic chamber, which was incubated at ∼ 19.5-
20°C for the entire experiment (Figure 4.20a - see Material and Methods for details). tub2-401 cells
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WT mad2Δ tub2-401 tub2-401 mad2Δ
Day1 Day2 Day1 Day2 Day1 Day2 Day1 Day2

growth rate (1∕min) 0.2215 0.2179 0.2212 0.2298 0.1262 0.1576 0.1458 0.0590
doubling time (min) 3.130 3.181 3.282 3.017 5.493 4.399 4.755 11.74
adjusted R2 0.9903 0.9976 0.9930 0.9976 0.9837 0.9944 0.9837 0.9509

Table 4.1: Fitting of growth curves at 21°C with an exponential law - Raw data coming from Figure 4.19b-c were
fitted with the following mathematical law: N = exp(kt), where N represents normalized number of cell per ml, t time
and k growth rate. From the fitting, an estimation of doubling time ln(2)∕k was performed, together with adjusted R2 for
goodness of fit. Fitting was performed with GraphPad Prism ®.

exhibited a first mitotic arrest, followed by at least another cell cycle for ∼ 56% of the monitored cells.
Similarly to what was observed in Section 4.1, we refer to the first mitosis as "adapting" cells, and to
the subsequent ones as "adapted" cells.

The mitotic duration was evaluated in each condition, according to the increase and decrease of
Clb2-GFP levels (Bonaiuti et al. 2017). Mitotic length ofWT cells was comparable to that of mad2Δ
cells, showing that low temperature per se did not activate the SAC in wild-type cells. Adapting cells,
instead, exhibited a mitotic duration that was longer compared to WT cells (Figure 4.20b); the delay
was due to the SAC activity, since checkpoint deficient tub2-401 mad2Δ cells showed a wild-type
mitotic duration (Figure 4.20b). Once adapted to the SAC, cells resumed proliferation with a mitotic
duration that was not significantly different from that of adapting cells (Figure 4.20b, adapted). There
was not a clear prevalence of adapted cells with a shorter mitotic duration (Figure 4.20c). This result
is different to that of adapted cells upon Mad2 overexpression (see Section 4.1, Figure 4.2) and does
not support the presence of a refractory state in tub2-401 adapted cells.

The absence of a refractory state is in contrast with the decreased doubling time that was observed
in liquid medium (see the experiment of Subsection 4.2.1.2). This discordance could be explained by a
difference in proliferation between cells growing in liquid medium and those monitored in microfluidic
chambers. Indeed, in the microfluidic chamber (Figure 4.20d) the doubling time of tub2-401 cells was
∼ 3-4 times slower than that measured in liquid medium experiment. Once adapted, most of tub2-401
cells resumed proliferation without cytokinesis, forming a cluster of 3 cell bodies (Figure 4.20d).
Eventually, cellular proliferation decreased, since most of cells underwent to death. This result is
in accordance with a previous study (Sullivan & Huffaker 1992), in which tub2-401 cells produced
microcolonies with at least 3-4 cells at semi-restrictive temperature (18°C). In those microcolonies,
daughter cells were anucleated, because the absence of cytoplasmic microtubules allowedmother cells
to detain DNA.

The disagreement between these data and those obtained with the GAL1-MAD2(3x) system is
likely to be due to the missegregation that comes with adaptation in the tub2-401 system. To produce
comparable results, we may have to reduce the extent of missegregation, possibly by increasing the
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Figure 4.20: Single cell analysis for tub2-401 cells at∼ 20°C -MATa CLB2-GFP (yAC3491),MATa CLB2-GFPmad2Δ
(yAC3041), MATa CLB2-GFP tub2-401 (yAC2970), MATa CLB2-GFP tub2-401 mad2Δ (yAC3034) cells were grown in
synthetic medium, synchronized in G1 and then released in microfluidic chamber at low temperature. Cells were monitored
for 40h. (a) Temperature was constantly maintained and monitored during the entire timelapse, as described in Material and
Methods (see Chapter 3 for details). (b) Evaluation of mitotic duration for each condition, following the same procedure that
was reported in Section 4.1 - Figure 4.2. Statistical analysis were performed with GraphPad Prism ®, using Kruskal-Wallis
test with Dunn’s Multiple Comparison Test (significance level 0.05). N: number of observation. m: median of population.
For each population, median and interquartile range were reported. In adapting population (in red), white circle correspond
to that cells that did not proliferate after adaptation during the 40 hours. (c) Monitoring mitotic duration in the progeny of
each adapting cell. For each adapting cell that exhibit at least one adapted cell cycle, mitotic duration of adapted cell was
normalized to mitotic duration of the ancestral adapting cell and plotted as a function of generation number after adaptation
to the SAC. Quantification of fold changes higher or lower than 1 is reported. (d) For each of the ten monitored tub2-401
colonies during the live cell imaging experiment, the number of cell bodies was measured. The resulting trajectories were
normalized to the initial number of cells and plotted versus time. Examples of 1, 2, 3 cell bodies are reported.
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4.2.3 A preliminary estimate of missegregation rates in tub2-401 cells

Differently from cells adapted upon Mad2 overexpression (Section 4.1), cells adapting to spindle
depolymerization could missegregate chromosome, with deleterious effects on cellular proliferation
(Santaguida & Amon 2015). To estimate the extent of missegregation, we evaluated the loss rate
of a Chromosome III Fragment (CFIII) (Spencer et al. 1990; Warren et al. 2002). This fragmented
chromosome carries SUP11, an ochre-suppressing tRNA that suppresses the red pigment phenotype
of W303 strains carrying ade2-101 mutation. After crossing our WT, mad2Δ, tub2-401 and tub2-

401 mad2Δ strains with CFIII URA3 SUP11, we grew double mutants at 30°C in synthetic medium
without uracile, in order to prevent spontaneous loss of CFIII. Then, cells were diluted and plated on
agar plates with low concentration of adenine. Plates were then incubated at different temperatures,
monitoring colonies growth. While colonies carrying CFIII chromosome were white, cells that lost
the fragmented chromosome became red. Following (Warren et al. 2002), we counted the number of
colonies that were at least one-half red as a readout for chromosome loss events during the first cell
division upon plating. By normalizing this number by the total number of colonies in each plate, we
obtained an estimation of loss-rate. As expected, tub2-401 mad2Δ cells exhibited a higher loss-
rate than the other strains (Figure 4.21). On the other hand, loss rate of CFIII in tub2-401 cells was
lower than 5% for 23-25°C (Figure 4.21). An increase of loss rate was appreciable at 20°C (Figure
4.21), even if the total number of colonies was less than in the other conditions (Table 4.2), probably
due to a higher sensitivity to temperature. These preliminary data suggest the presence of a nega-
tive correlation between CFIII loss rate and viability of adapted cells. These data could explain the
reduced viability that was monitored in tub2-401 adapted cells grown in the microfluidic chamber
(Figure 4.20d).
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WT mad2Δ tub2-401 tub2-401 mad2Δ

30°C
# ≥ half-sectored colonies 0 11 4 16
# total colonies 27 121 97 115
loss-rate % 0 9,1 4,1 13,9

25°C
# ≥ half-sectored colonies 0 2 2 36
# total colonies 66 95 121 155
loss-rate % 0 2,1 1,7 23,2

23°C
# ≥ half-sectored colonies 4 5 3 31
# total colonies 111 159 119 122
loss-rate % 3,6 3,1 2,5 25,4

20°C
# ≥ half-sectored colonies 0 7 3 n.a.
# total colonies 98 171 12 n.a.
loss-rate % 0 4,1 25 n.a.

18°C
n.a.# ≥ half-sectored colonies 0 16 n.a. n.a.
# total colonies 83 123 n.a. n.a.
loss-rate % 0 13 n.a. n.a.

15°C
# ≥ half-sectored colonies 0 13 n.a. n.a.
# total colonies 80 151 n.a. n.a.
loss-rate % 0 8,6 n.a. n.a

Table 4.2: Evaluation of CFIII chromosome loss for tub2-401 mutants - Evaluation of loss-rate of CFIII chromosome
in the experiment described in Section 4.2.3 (see also Figure 4.21). "n.a." stands for "not-available", due to the absence of
viable colonies on plates.
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Figure 4.21: Chromosome loss assay for tub2-401 mutants - URA3 SUP11 (yAC1749), mad2Δ URA3 SUP11
(yAC3252), tub2-401 URA3 SUP11 (yAC3228) and tub2-401 mad2Δ URA3 SUP11 (yAC3251) cells were grown in syn-
thetic medium lacking uracile. Then, they were diluted to ∼ 1e3 cells/ml, and 200 �l were plated on agar plates with low
amount of adenine. Plates were incubated at 30, 25, 23, 20, 18 and 15°C and monitored. Loss-rate were evaluated (see
Table 4.2), as shown in (Warren et al. 2002) and reported in the plot.
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4.3 Proteomic Screening of Adapted cells

HAving defined different phenotypic properties of adapted/adapted refractory vs cycling cells,
we aimed at providing a molecular rationale for these differences. To this purpose, we per-

formed a Shotgun Label-Free LC/MS-MS (Matafora et al. 2014; Matafora et al. 2017) of the adapted
proteome, inducing the checkpoint via Mad2 overexpression or tub2-401 mutants. This analysis al-
lowed us to evaluate which part of the proteome is up- or down-regulated compared to a control con-
dition. In this section, we report our results.

4.3.1 Proteomic Analysis of GAL1-MAD2(3x) Adapted refractory cells

As discussed in Section 4.1, expression of CDC20 allele cdc20-127 is able to uncouple Mad2 over-
expression from checkpoint activity, introducing a population of cycling cells (Adapting W/O SAC,
see Section 4.1, Subsection 4.1.4.2) that overexpress Mad2 as Adapted refractory cells. We used
these cells as our negative control, and compared them to cells overexpressing Mad2 and wild-type
Cdc20 only. tetO2-CDC20-127(1x), GAL1-MAD2(3x) cells were inoculated in YEPR liquid medium
(no Mad2 overexpression) and subsequently shifted in galactose supplemented or not with doxycy-
cline, in order to modulate cdc20-127 synthesis. We will refer to cells expressing cdc20-127 as "not
Adapted", and to cells that not express cdc20-127 as "Adapted refractory". After ∼19h from the shift,
cells were collected and processed for LC/MS-MS analysis. Adapted refractory and not Adapted cells
are identical in terms of carbon source shift, but different in their SAC response (as discussed in Sec-
tion 4.1).
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Figure 4.22: Heatmap of the identified proteome in Adapted refractory cells - Out of∼ 3800 proteins, 562 exhibited a
significant increase (in red) or decrease (in green) in Adapted refractory cells. The analysis was performed on two biological
replicates, with two technical replicates, by Vittoria Matafora - Lab of Functional Proteomics (A. Bachi) - IFOM, Milan -
IT.

92



We identified about 3800 proteins, of which 562 showed significant differences between Adapted
refractory and not Adapted cells (Figure 4.22). By a hierarchical cluster analysis, we detected two sets
of genes differentially expressed in the two conditions. In the next subsections we describe them.

4.3.1.1 Upregulated proteome of Adapted refractory cells

We identified 341 proteins upregulated in Adapted refractory cells. Via a Gene Ontology and Pathway
enrichment analysis, we observed that most of them belong to metabolic pathways (Figure 4.23),
suggesting that Adapted refractory cells rewire their metabolism while proliferating in the continuous
presence of SAC-inducing stimuli. In particular, we observed a ∼ 2 fold enrichment of "phosphate-
containing compound metabolic processes" (Figure 4.23a). Since this Gene Ontology (GO) entry
refers to the chemical reactions and pathways involving phosphate groups, Adapted refractory cell
cycle may require a high consumption of phosphate. Moreover, the significant enrichment of the chitin
biosynthesis pathway (Figure 4.23b) suggests a high requirement of cell wall components. This is in
accordance with the fact that Adapted refractory cells are larger than not Adapted ones, as discussed
in Section 4.1.
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Figure 4.23: Analysis of Enriched Biological Processes and Pathways in the upregulated proteome of Adapted re-
fractory cells - (a) Statistical Overrepresentation Test of upregulated proteome in Adapted refractory cells was performed
on PANTHER GO-Slim Biological Process Entries (Mi et al. 2013; Mi et al. 2017) (www.pantherdb.org). Entries signif-
icantly enriched (adjusted p-value < 0.05) are reported, in terms of fold-enrichment compared to the reference list. For each
term, the ratio between protein identified in our study and protein in the reference list is reported. (b) - Statistical Overrepre-
sentation Test of upregulated proteome in Adapted refractory cells was performed on ConsensusPathDB-yeast (Herwig et al.
2016; Kamburov et al. 2013; Kamburov et al. 2011; Pentchev et al. 2010) Pathway Entries (cpdb.molgen.mpg.de/YCPDB).
Pathways significantly enriched (q-value < 0.05) are reported, together with the genes obtained from our study.

Beyond metabolism, we focused our attention on the GO entry "enriched cellular process". Inside
this entry, we noticed several upregulated proteins belonging to cell cycle-related processes (Figure
4.24b). Most of them are involved in the mitotic cell cycle, DNA replication and DNA Damage Re-
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sponse (DDR). Moreover, some proteins are member of the GO term "Protein Phosphorylation", in
accordance with what mentioned above (Figure 4.23a). Interestingly, physical interactions of these
proteins gives rise to a well-defined topological network (Figure 4.24a), in which Cyclin dependent
kinase 1 Cdc28 has the highest number of interactions. Polo-like Kinase Cdc5 was also present in the
same network. Given the constant arrest in mitosis experienced by these cells, the result is maybe not
so surprising. However, levels of Cdc5 are cell cycle regulated, while Cdc28 levels are not. More-
over, asynchronous Adapted refractory Cells are more enriched in G2/M phase than not Adapted asyn-
chronous cells, as revealed by FACS analysis (see Section 4.1, Figure 4.4, asynchronous timepoint -
asyn). Therefore, while Cdc5 upregulation may be due to a significant enrichment of mitotic cells in
Adapted refractory population, Cdc28 upregulation may be independent from the cell cycle phase.

Concluding, these data suggest a high requirement of phosphate for Adapted refractory cells, and
an increased abundance of key mitotic regulators like Cdc28 and Cdc5 kinases.

CEP3TTI2 EPL1 SUB1 SUV3 CLA4 SIT4 MIP1DAM1

POL3 MAG1POL1 CHS5WTM2BUD3

DYN1PTP3 RPO21 CHS2 HSM3 SDS22 GID8 SWI5MGM101

MSC1IOC3 RPD3CDC53 MKT1PEF1 NUP170TEL1CTK3

SPT16

YAK1

DPB2

NPL4

DOA1

ELM1

CMK2

TPK1

CAK1
RFC2

CDC28

YPL150W

MCM2
KSP1 DBF2

PRR1

GIN4

MCM5

ESS1

CDC5

YPK2ALK1

Gene Ontology term Genes

Protein phosphorylation

Mitotic cell cycle

Cellular Response to
DNA damage stimulus

DNA repair

Regulation of cell cycle

DNA replication

Chromosome
segregation

DNA recombination

Cytokinesis

Cell budding

TEL1,CDC28,GIN4,PTP3,CAK1,ALK1,DBF2,KSP1,YAK1,TPK1,
ESS1,ELM1,PRR1,CTK3,CDC5,YPK2,CLA4,CMK2,YPL150W

CDC28,NPL4,BUD3,SIT4,CDC53,SWI5,GIN4,CAK1,ALK1,
PEF1,ESS1,ELM1,DYN1,CHS5,CDC5,GID8,CEP3,CLA4,RPD3

MCM2,TEL1,CDC28,HSM3,SIT4,RPO21,MAG1,EPL1,RFC2,
TTI2,MGM101,DOA1,MCM5,SUB1,MKT1,POL1,WTM2,DPB2

MCM2,TEL1,CDC28,HSM3,SIT4,RPO21,MAG1,EPL1,RFC2,
MGM101,DOA1,MCM5,SUB1,POL1,DPB2

CDC28,GIN4,DBF2,DAM1,RFC2,CDC5,SUB1,GID8,CEP3,
CLA4,RPD3

MCM2,CDC28,POL3,SPT16,RFC2,MCM5,POL1,RPD3,MIP1,
SUV3,DPB2

NUP170,CDC28,IOC3,DAM1,RFC2,SDS22,DYN1,CDC5,CEP3

MCM2,CDC28,MGM101,MCM5,MSC1,CDC5,RPD3

CHS2,BUD3,PEF1,DBF2,ELM1,CHS5

CDC28,BUD3,GIN4,PEF1,ELM1

a) b)

Figure 4.24: Network analysis of upregulated cell cycle proteins in Adapted refractory cells - (a) Network of the
identified proteins involved in cell cycle processes. Edges are related to physical interaction between proteins, and their
width correlates with consensus number in interaction databases. The network was created with Cytoscape (Cline et al.
2007; Saito et al. 2012; Shannon et al. 2003; Smoot et al. 2011), using GeneMANIA plugin (Montojo et al. 2010) and only
referring to physical interactions among protein. (b) Selection of cell cycle protein in Adapted refractory cells. The list
was obtained by performing SGD (Cherry et al. 2012) Gene Ontology Slim Mapper (https://www.yeastgenome.org/
cgi-bin/GO/goSlimMapper.pl) on upregulated proteome of Adapted refractory cells.

4.3.1.2 Downregulated proteome of Adapted refractory cells

In the same proteomic screening, we identified 221 proteins with a decreased protein abundance in
Adapted refractory cells compared to not Adapted ones. Here, we noticed again an involvement of
metabolic pathways, but the major enrichment was observed in translational processes (Figure 4.25a):
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cytoplasmic translation, rRNA processing, translational control and protein folding (Figure 4.25b and
4.26b). In particular, the protein with the maximum number of physical interaction was Ssb1, a
ribosome-associated molecular chaperone (Figure 4.26a). Downregulation of these component could
suggest the presence of defects in translational processes of Adapted refractory cells, possibly con-
cerning not only protein biosynthesis, but also protein quality control mechanisms. The experienced
stressful condition during a prolonged mitotic arrest may lead to this phenomenon. Otherwise, since
it is known that transcription is strongly inhibited during mitosis, the observed downregulation may
be explained by a significant enrichment of mitotic cells.
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Figure 4.25: Analysis of Enriched Biological Processes and Pathways in the downregulated proteome of Adapted
refractory cells - (a) Statistical Overrepresentation Test of downregulated proteome in Adapted refractory cells was per-
formed on PANTHER GO-Slim Biological Process entries (Mi et al. 2013; Mi et al. 2017) (www.pantherdb.org).
Entries significantly enriched (adjusted p-value < 0.05) are reported, in terms of fold-enrichment compared to the ref-
erence list. For each term, the ratio between protein identified in our study and protein in the reference list is re-
ported. (b) - Statistical Overrepresentation Test of downregulated proteome in Adapted refractory cells was performed on
ConsensusPathDB-yeast (Herwig et al. 2016; Kamburov et al. 2013; Kamburov et al. 2011; Pentchev et al. 2010) Pathway
Entries (cpdb.molgen.mpg.de/YCPDB). Pathways significantly enriched (q-value < 0.05) are reported.

Beyond translational processes, we also detected downregulation of several cell cycle proteins
(Figure 4.27b). Among them, Mad2 was identified. The presence of Cdc20 is due to the expression
of cdc20-127 from an exogenous promoter in not Adapted cells. Finally, we observed several proteins
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involved in nuclear transport, chromatin organization, mitosis andDNAdamage (Figure 4.27b). In this
network, the molecular chaperone Ssb1 was again the protein with the maximum number of physical
interactions (Figure 4.27a).
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Figure 4.26: Network analysis of downregulated and translational-related proteins in Adapted refractory cells -
(a) Network of the identified proteins involved in translation. Edges are related to physical interaction between proteins,
and their width correlates with consensus number in interaction databases. The network was created with Cytoscape (Cline
et al. 2007; Saito et al. 2012; Shannon et al. 2003; Smoot et al. 2011), using GeneMANIA plugin (Montojo et al. 2010)
and only referring to physical interactions among protein. (b) Selection of ribosome and translational proteins in Adapted
refractory cells. The list was obtained by performing SGD (Cherry et al. 2012) Gene Ontology Slim Mapper (https:
//www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl) on downregulated proteome of Adapted Cells.

4.3.2 Proteomic Analysis of tub2-401 Adapted cells

Once we analyzed the proteome of Adapted refractory cells upon Mad2 overexpression, a similar
screen was performed for tub2-401 Adapted cells, whose phenotype was described in Section 4.2. As
a control we used WT cells, which do not depolymerize microtubules upon semi-restrictive tempera-
ture. WT and tub2-401 cells were inoculated in liquid medium at 30°C, and shifted to 21/22°C. After
∼20 hours from the shift, cells were collected and processed for LC/MS-MS analysis. In principle,
cold-stress response should be the same in both conditions, allowing to appreciate specific up/down-
regulations due to the constant SAC activity of tub2-401 cells.

About 3500 proteins were identified. Unlike the Mad2 overexpression experiment, here we ob-
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Figure 4.27: Network analysis of downregulated and cell cycle-related proteins in Adapted refractory cells - (a)
Network of the identified proteins involved in the cell cycle. Edges are related to physical interactions among proteins, and
their width correlates with consensus number in interaction databases. The network was created with Cytoscape (Cline et al.
2007; Saito et al. 2012; Shannon et al. 2003; Smoot et al. 2011), using GeneMANIA plugin (Montojo et al. 2010) and only
referring to physical interactions among protein. (b) Selection of cell cycle proteins in Adapted refractory cells. The list
was obtained by performing SGD (Cherry et al. 2012) Gene Ontology Slim Mapper (https://www.yeastgenome.org/
cgi-bin/GO/goSlimMapper.pl) on downregulated proteome of Adapted refractory cells.
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Figure 4.28: Heatmap of the identified proteome in tub2-401 Adapted cells - Out of ∼ 3500 proteins, 441 exhibited a
significant increase (in red) or decrease (in green) protein abundance in Adapted cells. The analysis was performed on two
biological replicates, with two technical replicates, by Vittoria Matafora - Lab of Functional Proteomics (A. Bachi) - IFOM,
Milan - IT.
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served an increased heterogeneity between different biological replicates, probably reflecting the het-
erogeneity of spindle depolymerization upon semi-restrictive temperature. Nevertheless, relaxing the
False Discovery Rate from 0.01 to 0.05, 441 protein showed significant differences between WT and
Adapted cells (Figure 4.28). Again, we identified an upregulated and a downregulated proteome.

4.3.2.1 Upregulated proteome of Adapted cells

204 out of 441 detected proteins exhibited an increased protein abundance in Adapted cells as opposed
toWT. Most of them are involved in metabolic processes (Figure 4.29a), in particular in the TCA cycle
and fatty acid biosynthesis (Figure 4.29b). Beyond metabolic effects, we identified proteins involved
in the cell cycle (Figure 4.30b). As for GAL1-MAD2(3x) Adapted refractory cells, we observed the
Gene Ontology terms "mitotic cell cycle", "protein phosphorylation", "DDR". Looking at physical
interactions among cell cycle proteins, three of them showed the highest number of interactions: Cdc5,
Cdc7, Mcm6 (Figure 4.30a). The first two are kinases, while Mcm6 is a DNA helicase involved in
DNA replication. Cdc28, which was detected in Adapted refractory GAL1-MAD2(3x) cells, could not
be identified here. In general, while the GO categories are similar in both analysis, many individual
proteins seem to be typical of the specific approach used to activate the SAC (see Subsection 4.3.3 for
details).
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Figure 4.29: Analysis of Enriched Biological Processes and Pathways in the upregulated proteome of Adapted
cells - (a) Statistical Overrepresentation Test of upregulated proteome in Adapted cells was performed on PANTHER GO-
Slim Biological Process entries (Mi et al. 2013; Mi et al. 2017) (www.pantherdb.org). Entries significantly enriched
(adjusted p-value < 0.05) are reported, in terms of fold-enrichment compared to the reference list. For each term, the ratio
between protein identified in our study and protein in the reference list is reported. (b) - Statistical Overrepresentation
Test of upregulated proteome in Adapted cells was performed on ConsensusPathDB-yeast (Herwig et al. 2016; Kamburov
et al. 2013; Kamburov et al. 2011; Pentchev et al. 2010) Pathway Entries (cpdb.molgen.mpg.de/YCPDB). Pathways
significantly enriched (q-value < 0.05) are reported, together with the genes obtained from our study.
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Figure 4.30: Network analysis of upregulated cell cycle proteins in Adapted cells - (a) Network of the identified
proteins involved in cell cycle processes. Edges are related to physical interaction between proteins, and their width correlates
with consensus number in interaction databases. The network was created with Cytoscape (Cline et al. 2007; Saito et al.
2012; Shannon et al. 2003; Smoot et al. 2011), usingGeneMANIAplugin (Montojo et al. 2010) and only referring to physical
interactions among protein. (b) Selection of cell cycle protein in Adapted cells. The list was obtained by performing SGD
(Cherry et al. 2012) Gene Ontology Slim Mapper (https://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl)
on upregulated proteome of Adapted cells.

4.3.2.2 Downregulated proteome of Adapted cells

We also found 237 proteins downregulated in Adapted cells. Despite the absence of significantly en-
riched pathways, we were able to observe significant enriched GO terms (Figure 4.31). The major
enrichments were observed in cellular component biogenesis and, similarly to Mad2 overexpression
(Section 4.3.1.2), in RNA metabolic process. Indeed, several proteins were involved in rRNA pro-
cessing, biogenesis of ribosomal subunits and protein folding (Figure 4.32).

Among cell cycle components, we identified proteins involved in mitosis, protein phosphorylation,
DNA damage and DNA replication (Figure 4.33b). In particular, we identified �-tubulin Tub1 and its
paralog Tub3, together with �-tubulin Tub2, suggesting a general decrease in tubulin levels upon
microtubule depolymerization. Decrease of Tub1 levels was also confirmed by Western Blot analysis
(Figure 4.35b). Tub1 and Tub2 were the proteins with the highest number of physical interactions in
the network (Figure 4.33a).
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Figure 4.31: Analysis of Enriched Biological Processes and Pathways in the downregulated proteome of Adapted
cells - Statistical Overrepresentation Test of downregulated proteome in Adapted cells was performed on PANTHER GO-
Slim Biological Process entries (Mi et al. 2013; Mi et al. 2017) (www.pantherdb.org). Entries significantly enriched
(adjusted p-value < 0.05) are reported, in terms of fold-enrichment compared to the reference list. For each term, the ratio
between protein identified in our study and protein in the reference list is reported.
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Figure 4.32: Network analysis of downregulated and translational-related proteins in Adapted cells - (a) Network
of the identified proteins involved in translation. Edges are related to physical interaction between proteins, and their width
correlates with consensus number in interaction databases. The network was created with Cytoscape (Cline et al. 2007;
Saito et al. 2012; Shannon et al. 2003; Smoot et al. 2011), using GeneMANIA plugin (Montojo et al. 2010) and only
referring to physical interactions among protein. (b) Selection of ribosome and translational proteins in Adapted cells. The
list was obtained by performing SGD (Cherry et al. 2012) Gene Ontology Slim Mapper (https://www.yeastgenome.
org/cgi-bin/GO/goSlimMapper.pl) on downregulated proteome of Adapted cells.
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Figure 4.33: Network analysis of downregulated and cell cycle-related proteins in Adapted cells - (a) Network of the
identified proteins involved in cell cycle. Edges are related to physical interaction between proteins, and their width correlates
with consensus number in interaction databases. The network was created with Cytoscape (Cline et al. 2007; Saito et al.
2012; Shannon et al. 2003; Smoot et al. 2011), usingGeneMANIAplugin (Montojo et al. 2010) and only referring to physical
interactions among protein. (b) Selection of cell cycle proteins in Adapted cells. The list was obtained by performing SGD
(Cherry et al. 2012) Gene Ontology Slim Mapper (https://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl)
on downregulated proteome of Adapted cells.

4.3.3 Towards general properties of Adapted refractory cells

We asked whether general properties of refractoriness to the checkpoint can be found, independently
from the type of SAC-inducing stimulus. To this purpose, we merged the sets of proteins obtained
with the two experimental approaches (Figure 4.34). The resulting intersections do not exhibit sig-
nificant enrichment of GO entries or pathways, maybe due to the low number of proteins for each
subset. However, many GO entries and pathways are similar in the two upregulated and the downreg-
ulated proteomes. In particular, we saw a decreased protein abundance of protein involved in ribosome
biogenesis or translational control in both system. On the other hand, the upregulated proteome was
enriched not only in metabolic processes, but also in cell cycle genes, related to DDR or mitosis.

Even if we could not retrieve Cdc28 among the proteins upregulated in both the experimental
approaches, by Western Blot we confirmed the increased protein abundance of Cdc28 in GAL1-

MAD2(3x)Adapted refractory cells (Figure 4.35a), and we confirmed this result on tub2-401Adapted
cells (Figure 4.35b).
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At this stage, there are different aspects of Adapted refractory cells to be characterized. In the
next section, we focus our analysis on Cdc28, trying to understand how its activity could promote
Refractoriness to the Mitotic Checkpoint.
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Figure 4.34: Merging data from GAL1-MAD2(3x) and tub2-401 Adapted cells - Upregulated (UP) and downregulated
(DOWN) proteomes coming from GAL1-MAD2(3x) adapted refractory and tub2-401 adapted cells were merged. For each
intersection, number of protein was reported, together with the resulting list.
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Figure 4.35: Western Blot analysis on some candidates - (a) Checking levels of Cdc28 in GAL1-MAD2(3x) Adapted
refractory cells. tetO2-CDC20-127(1x), GAL1-MAD2(3x) (yAC2807) cells were grown as Adapted refractory, not Adapted
and Withdraw(3h) and Withdraw(12h), as reported in Section 4.1 (Subsection 4.1.4, Figure 4.8a). Cells were sampled for
Western Blot analysis. Cdc28 signal was then normalized to the housekeeping protein Tub1, and compared between the four
conditions. (b) Checking levels of Cdc28 and Tub1 in tub2-401 Adapted cells. MATa WT (yAC3717) and MATa tub2-401
(yAC3220) cells were inoculated in liquid medium at 30°C, and after 9.5h they were shift to 22°C. After 21h, cells were
collected for Western Blot analysis. Using Mad1 as housekeeping proteins, levels of Cdc28 and Tub1 were revealed and
quantified. For each dot plot of a) and b), each dot correspond to a technical replica, while the line represent the mean value
of replicates. These Western Blot were performed by Elena Chiroli.
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4.4 Testing the Role of Cdc28 and APC/C activity in Adapted

refractory cells

AMong the possible candidates emerged in the MS screening (Section 4.3), we were intrigued by
the role of Cdc28 in adapted refractory cells. In budding yeast, an active Cdc28 is essential for

exit from mitosis (Rudner et al. 2000), and in particular Cdc28-mediated phosphorylation of APC/C
is required for stimulation of Cdc20-dependent APC/C activity during anaphase onset (Rudner &
Murray 2000). Since APC/C phosphorylation is required for adaptation to the SAC (Vernieri et al.
2013; Rudner&Murray 2000), we speculate that increased levels of Cdc28may correlate with a hyper-
phosphorylation of APC/C after adaptation, establishing a hyperactive APC/C in adapted refractory
cells. This hypothesis would explain the faster mitotic timing of GAL1-MAD2(3x) adapted refractory
cells. In this section, we report preliminary experiments performed to validate this hypothesis.

WT GAL1-CDC28-HA
0

120

240

360

480

600

720

840

m
ito

tic
 d

ur
at

io
n 

(m
in

)

**

N = 44
m = 335

N = 74
m = 275

GAL1-CDC28-HA
cdc16-6A cdc27-5A

GAL1-CDC28-HA

Adapting
Cells

Cell with high levels of
Clb2 at the end of

the movie

Cells dying with
high levels of Clb2

130 1 3

66 58 68

0 25 50 75 100
Percentage of cells

Adapting Cells
Cell with high levels of Clb2 at the end of the movie
Cells dying with high levels of Clb2

GAL1-CDC28-HA
cdc16-6A cdc27-5A

GAL1-CDC28-HA

Total
Cell

Number

134

192

**
**

a)

b)

c)

Figure 4.36: Overexpression of Cdc28 promotes APC/C:Cdc20 activity in nocodazole-arrested cells - (a) Compar-
ison between mitotic timings. MATa, MAD2-GFP, CLB2-mCherry (yAC3538) and MATa, MAD2-GFP, CLB2-mCherry,
GAL1-CDC28-HA (yAC3723) cells were synchronized in G1 in liquid YEPR, and then released in microfluidic chamber in
YEPRG supplemented with nocodazole 15 �g∕ml. After 1.5h from release, �-factor was readded, in order to re-synchronize
cells in G1 after their adaptation. Cells were monitored for 18h. For both conditions, timespan between Clb2 increase and
decrease was estimated and defined as mitotic duration, in a similar way as described in Section 4.1, but using an automatic
procedure in MATLAB® setup by Paolo Bonaiuti (Bonaiuti et al. 2017). Statistical analysis was performed with GraphPad
Prism ®, usingWilcoxon-Mann-Whitney Test (significance level 0.05). N: number of observation. m: median of population.
For each population, median and interquartile range were reported. The significant difference between these two popula-
tion was observed in two biological replicates. (b) MATa, MAD2-GFP, CLB2-mCherry, GAL1-CDC28-HA (yAC3723)
and MAT�, MAD2-GFP, CLB2-mCherry, GAL1-CDC28-HA, cdc16-6A, cdc27-5A (yAC3810) cells were grown in YEPR.
Then, from asynchronous conditions they were released in microfluidic chamber in YEPRG supplemented with nocodazole
15 �g∕ml. Cells were monitored for 18h. For each strain, we count the number of cells undergoing these events: adapting
cells, cells with high levels of Clb2 after 18h, cells that were dying with high levels of Clb2. In the contingency table, num-
ber of these events is reported. (c) Bar plot of the observed phenomenon in b), reported as percentage. Statistical analysis
was performed with GraphPad Prism ®, using �-square Test (significance level 0.05).
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4.4.1 Overexpression ofCdc28 anticipates adaptation to the SAC in nocodazole-arrested
cells

We reasoned that if increased Cdc28 levels correspond to an increased activity of APC/CCdc20, then
cells with extra-amount of this kinase will anticipate adaptation to the SAC. We thus ectopically in-
duced overexpression of Cdc28 under a galactose-inducible promoter (GAL1-CDC28-HA (Rudner et
al. 2000)) in nocodazole arrested cells, and we tested whether adaptation was anticipated in these
cells respect to WT. We also proved that overexpression of Cdc28 was not altering an unperturbed
cell cycle (see Appendix). WT and GAL1-CDC28-HA were grown in raffinose, synchronized in G1,
and grown in microfluidic chamber under a constant flow of medium supplemented with galactose
and nocodazole 15 �g∕ml. We measured in single cells the degradation timing of a tagged version of
mitotic cyclin B (Clb2-mCherry) as a readout for APC/CCdc20 activity. We defined adaptation as the
condition of Clb2 degradation in the presence of localized Mad2, which we also followed at the single
cell level (Bonaiuti et al. 2017). We found that adaptation to the SAC is anticipated in the presence
of ectopic CDC28 overexpression (Figure 4.36a). In order to test whether APC/CCdc20 was the tar-
get of high levels of Cdc28, we introduced in GAL1-CDC28-HA cells a non-phosphorylatable mutant
of APC/C (cdc16-6A cdc27-5A), which has defects in binding Cdc20 (Rudner & Murray 2000). In
these cells, the proportion of cells dying in mitosis with high levels of Clb2 or without performing
adaptation after 18h of imaging increased significantly compared to GAL1-CDC28-HA cells with a
functional APC/C (Figure 4.36b). Taken together, these data suggest a role of high levels of Cdc28 in
promoting APC/C phosphorylation and thus APC/CCdc20 activity during a mitotic arrest.

4.4.2 Evaluating APC/C phosphorylation in the presence of high levels of Cdc28

To confirm that high Cdc28 levels facilitate adaptation by phosphorylating APC/C, we looked at
APC/C phosphorylation. We expectGAL1-CDC28-HA to have APC/C more phosphorylated thanWT

cells in a nocodazole-arrest. Moreover, adapted refractory cells should have already reached a high
APC/C phosphorylated levels, and thus in adapted refractory cells APC/C phosphorylation should be
higher than adapting cells. In the next subsections, we investigate APC/C phosphorylation, and in par-
ticular that of two APC/C subunits, Cdc16 and Cdc27, which play a key role in activating APC/CCdc20

and promoting adaptation to the SAC (Vernieri et al. 2013; Rudner et al. 2000; Rudner & Murray
2000), as mentioned in the Introduction.
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4.4.2.1 Phosphorylation of Cdc16 and Cdc27 in adapted refractory cells

Since our preliminary observation of an active APC/CCdc20 comes from adapted refractory cells upon
Mad2 overexpression (Section 4.1), we evaluated phosphorylation of Cdc16 and Cdc27 in these cells,
using Phos-Tag Western Blot (Kinoshita et al. 2006; Kinoshita et al. 2009).
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Figure 4.37: Experimental setup for evaluation of phosphorylated APC/C in adapted refractory cells - MATa,
tetO2-CDC20-127(1x), GAL1-MAD2(3x), CDC27-MYC (yAC3754) and MATa, tetO2-CDC20-127(1x), GAL1-MAD2(3x),
CDC16-MYC (yAC3770) were grown as cycling, adapted refractory and first arrest. For each condition, the corresponding
name related to the experimental setup discussed in Section 4.1 is reported (see Subsection 4.1.4 for details). Cells were syn-
chronized in G1 by �-factor and released to galactose-containing medium, supplemented or not with doxycycline 10 �g∕ml
in order to repress or allow cdc20-127 synthesis. After 90’ from release, �-factor was readded, in order to resynchronize
cells in the subsequent G1. Cells were monitored for 4 hours.

From tetO2-CDC20-127(1x) GAL1-MAD2(3x) CDC27-MYC cells, we reproduced three popula-
tion (Figure 4.37): Cycling, corresponding to cells that overexpress Mad2 without arresting in mitosis;
Adapted refractory / later arrest, representing a population of adapted refractory cells; First arrest, in
which a first mitotic block was induced. These populations refer to the corresponding conditions of
Adapting W/O SAC, Adapted refractory WITH SAC and Adapting WITH SAC cells (Figure 4.37),
like described in Section 4.1 (see Subsection 4.1.4).

Cells were synchronized in G1 and released in the continuousMad2 overexpression. We identified
critical timepoints for describing the metaphase-to-anaphase transition, keeping track of the percent-
age of metaphase and anaphase spindles (Figure 4.38a). In particular, the proportion of anaphase
spindles in Adapted refractory cells increased between 1 and 2 hours from G1 release (Figure 4.38a,
Adapted refractory/later arrest, green box). These data suggest that APC/CCdc20 activity should take
place in this timespan. During a first arrest, instead, cells slowly progressed into anaphase (Figure
4.38a, First Arrest), with about 80% of them being arrested in metaphase after 2h from G1 release. In
view of these observations, we expected Cdc27 phosphorylation to be higher in Adapted refractory
cells than in First arrest cells, between 1 and 2 hours from G1 release. Phos-TagWestern Blot analysis
however showed a different result (Figure 4.38b-c). Cycling cells showed the highest phosphorylation
at 60’, while Adapted refractory cells 90’ after G1 release (Figure 4.38b). This result is in agreement
with the fact the Adapted refractory cells have a slower mitosis than Cycling cells, as was previously
reported on Section 4.1. When we compared Adapted refractory cells to cells experiencing the arrest
for the first time, the minimum amount of mitotic Cdc27 phosphorylation was observed in Adapted re-
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fractory cells (Figure 4.38c). Taken together, these data suggest the absence of a hyperphosphorylated
Cdc27 in Adapted refractory cells, which rather seem to need to reach a lower APC/C phosphorylated
state to trigger adaptation.

Figure 4.38: Evaluating Cdc27 phosphorylation in Adapted refractory cells - tetO2-CDC20-127(1x), GAL1-
MAD2(3x), CDC27-MYC (yAC3754) cells were grown as indicated in Figure 4.37, and samples were taken for Western
Blot analysis (b-c) and for immunofluorescence (IF,a) against �-tubulin. (a) IF analysis. 100 cells were counted for each
condition and for each timepoint, evaluating proportion of cells with interphase, metaphase or anaphase spindles. Propor-
tion of metaphase and anaphase spindle is plotted versus time, and the green box represents the timespan between peaks of
metaphase and anaphase spindles. (b-c) Western Blot analysis. Regular 10% and Phos-Tag 7.5%Western Blot were run, in
order to compare (b) Adapted refractory versus Cycling cells and (c) Adapted refractory versus First Arrest cells.

Next, we performed a similar analysis on Adapted refractory cells for Cdc16. Compared to the
previous case, here we encountered more technical difficulties in performing Phos-Tag Western Blot:
we could not clearly distinguish different phosphorylated forms like in the previous case. However,
a smear can be appreciated in the presence of phosphorylated Cdc16, in particular by adjusting gel
composition (see Material and Methods) and modulating chemiluminescence exposure time. Based
on the time of metaphase-to-anaphase transition as detected by spindle percentages, we expected to
see Cdc16 phosphorylation higher in Adapted refractory than First arrest cells between 90’ and 135’
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from G1 release (Figure 4.39a). Unfortunately, due to technical reasons, the comparison between
Cycling and Adapted refractory cells could not be performed. Nevertheless, Adapted refractory cells
reach the highest phosphorylation of Cdc16 at 90’, while First arrest cells at 120’/150’ (Figure 4.39b).
Moreover, at 90’ we could appreciate a slight increase of Cdc16 phosphorylation in Adapted refractory
cells compared to that of cells during a First arrest, by long exposure time (Figure 4.39b-c) or by
increasing the loading volume in Phos-Tag Western Blot (Figure 4.39c). These results suggest that
Adapted refractory cells reach a slight increased phosphorylation of Cdc16 in a faster way respect to
cells experiencing a first mitotic arrest (Figure 4.39b).

Figure 4.39: Evaluating Cdc16 phosphorylation in Adapted refractory cells - MATa, tetO2-CDC20-127(1x), GAL1-
MAD2(3x), CDC16-MYC (yAC3770) cells were grown as indicated in Figure 4.37, and samples were taken for Western
Blot analysis (b-c) and for immunofluorescence (IF,a) against �-tubulin. (a) IF analysis. 100 cells were counted for each
condition and for each timepoint, evaluating proportion of cells with interphase, metaphase or anaphase spindles. Proportion
of metaphase and anaphase spindle is plotted versus time, and the green box represents the timespan between peaks of
metaphase and anaphase spindles. (b-c) Western Blot analysis. Regular 10% and Phos-Tag 7.5%Western Blot were run, in
order to compare Adapted refractory versus First arrest cells.

In summary, we could not see any increased phosphorylation for Cdc27, and a slight one for Cdc16.
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4.4.2.2 Ectopic overexpression ofCDC28 does not increase the amount of phosphorylatedCdc16

Experimental data suggest the presence of high levels of Cdc28 and slightly increased phosphorylation
of APC/C (Cdc16) in Adapted refractory cells uponMad2 overexpression. These results could explain
the shorter mitotic arrest of adapted refractory cells. We thus tested whether high doses of Cdc28
increased Cdc16 phosphorylation. To this purpose, we measured Cdc16 phosphorylation in GAL1-

CDC28-HA cells arrested in nocodazole (Figure 4.40a). Preliminary data rather show that WT cells
have a larger amount of phosphorylated Cdc16 than GAL1-CDC28-HA cells after 3h of nocodazole
arrest.

These results are somehow hard to reconcile with our previous observation. GAL1-CDC28-HA

may have started to exit from mitosis after 3h of nocodazole, therefore reducing the average mitotic
phosphorylation of Cdc16. Otherwise, high levels of Cdc28 per se may not be sufficient to increase
mitotic APC/C phosphorylation. We are going to discuss these results in the Discussion.
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Figure 4.40: Evaluating Cdc16 phosphorylation in GAL1-CDC28-HA cells arrested in nocodazole -MATa, CDC16-
MYC (yAC1936) and MATa, CDC16-MYC, GAL1-CDC28-HA (yAC3854) cells were grown in raffinose, synchronized in
G1 and released in medium containing galactose and nocodazole 15 �g∕ml. Cells were monitored for 3 hours, and every
hour sample for FACS analysis (a) and Western Blot (b) were taken. (a) FACS profiles of the experiment (b) Regular 10%
and Phos-Tag 7.5%Western Blot related to the experiment.

4.4.3 High levels of Cdc28 and viability of adapted cells: Mitotic Exit Network may
play a role

High Cdc28 levels may help cells to perform the metaphase-to-anaphase transition during an active
SAC, anticipating the anaphase onset (though we have not demonstrated it). However, they may hinder
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mitotic exit. It has been shown that high levels of Cdc28 activity do not allow cells to exit (Cross 2003).
Hence, we asked whether the condition of adapted cells would make them sensitive on the mechanisms
that control Clb2 degradation after anaphase.

Figure 4.41: MEN plays a role in ensuring viability of Adapted cells - (a) A possible working model for Mitotic Exit
Network (MEN) in ensuring viability of Adapted cells. While a first inhibition of Clb2:Cdc28 is performed by APC/CCdc20,
a second one is performed by APC/CCdh1 and Sic1 activity. (b) MATa WT (yAC3568), MATa cdh1Δ (yAC1533), MATa
SIC1(10x) (yAC3650), MATa cdh1Δ SIC1(10x) (yAC3683), MATa GAL1-MAD2(3x) (yAC2465), MATa GAL1-MAD2(3x)
cdh1Δ (yAC3582), MATa GAL1-MAD2(3x) SIC1(10x) (yAC3654), MATa GAL1-MAD2(3x) cdh1Δ SIC1(10x) (yAC3659)
cells were grown in liquid medium containing raffinose. Then, they were diluted to ∼ 2e+8 cell/ml and serial dilutions and
spotting were performed on agar plates, which were incubated at 30°C and monitored. (c) MATa WT (yAC3568), MATa
cdh1Δ (yAC1533), MATa SIC1(10x) (yAC3650), MATa cdh1Δ SIC1(10x) (yAC3683), MATa tub2-401 (yAC3220), MATa
tub2-401 cdh1Δ (yAC3686), MATa tub2-401 SIC1(10x) (yAC3685), MATa tub2-401 cdh1Δ SIC1(10x) (yAC3694) cells
were grown in liquid medium. Then, they were diluted to ∼ 2e+8 cell/ml and serial dilutions and spotting were performed
on agar plates, which were incubated at 30, 20 and 18°C and monitored.

Cdh1 is a co-factor of APC/C that plays a key role in the process. When we deleted it, viability of
GAL1-MAD2(3x) adapted refractory cells was reduced (Figure 4.41b), even if they adapt similarly to
GAL1-MAD2(3x) CDH1 (Vernieri et al. 2013) . Viability of adapted refractory cells was rescued by
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the overexpression of the cyclin-dependent kinase inhibitor Sic1 - SIC1(10x) (Thornton & Toczyski
2003) - (Figure 4.41b), suggesting that proliferation of Adapted refractory cells is affected when high
levels of Clb2:Cdc28 are present after the anaphase onset. This result is also reproduced by activating
SAC in tub2-401mutants at restrictive temperatures (Figure 4.41c), exhibiting a property which seems
to be independent from the SAC-inducing stimulus. Data show a role for Mitotic Exit Network (MEN)
in the cell cycle of adapted cells (Figure 4.41a).
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5
Discussion

Cells resume proliferation after adaptation

Upon prolonged SAC activation, cells perform metaphase-to-anaphase transition in the presence of
an active SAC. We call this event adaptation (Bonaiuti et al. 2017; Vernieri et al. 2013), and cells
experiencing it as adapting (Figure 5.1, red box). Cells arrest in mitosis and adapt after several hours
(Bonaiuti et al. 2017; Vernieri et al. 2013; Rossio et al. 2010b), thanks to APC/CCdc20 activation.

G1/S Metaphase Anaphase Mitotic
Exit

SAC

Adaptation

Adapting Cells
Adapted Cells

Adapted Refractory Cells

Clb2

...

...

SAC

SAC

Figure 5.1: Cells resume proliferation after adaptation - When cells sense the SAC stimulus for the first time, a mitotic
arrest is introduced, after which cells eventually adapt (red box), inducing degradation of key mitotic substrates (for instance,
Clb2 in green). We call these cells "adapting". Then, adapting cells perform mitotic exit and resume proliferation in the
continuous presence of the SAC stimulus. This population of cells is called "adapted". Within this progeny, some cells may
proliferate with a decreased mitotic timing: we call them "Adapted refractory cells".

If cells perform a successful mitotic exit, they could enter in the subsequent G1 and resume cellu-
lar division, establishing a progeny of proliferating cells in the continuous presence of an operational
SAC. We call these cells adapted (Figure 5.1, light green box).

Mitotic duration of adapted cells could vary, according to the type of the SAC-inducing stimulus.
In cells adapted to microtubules depolymerization induced by the tub2-401 mutations, mitotic length
is similar or even higher than that of adapting cells. In this case, missegregation events are likely to
occur. An incorrect inheritance of DNA is likely to influence the proliferative capacity and the via-
bility of adapted cells (Sullivan & Huffaker 1992), as was also suggested by a preliminary live-cell
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imaging experiment (Figure 4.20). Here, 56% of the monitored adapting cells resumed proliferation
after adaptation within the 40 hours of imaging. However, cellular viability seemed to decrease after
20/30 hours from the beginning of the experiment, probably because of the deleterious effects intro-
duced by missegregation events (Santaguida &Amon 2015). At the present stage, however, we cannot
absolutely conclude that cell death was due to missegregation.

Upon Mad2 overexpression, on the contrary, adapted cells spend less time in mitosis compared to
adapting cells, suggesting that they entry into a refractory state. These cells are defined as adapted
refractory (Figure 5.1, dark green box). In this thesis we followed a population of adapted refractory
cells for 24 hours from GAL1pr induction. These cells do not missegregates chromosomes and live
without alteration of viability. This property is quite peculiar for budding yeast, since Mad2 over-
expression has wider effects in mammals, where it introduces chromosomes misalignment, lagging
chromosomes and micronuclei (Rowald et al. 2016). If the SAC stimulus is transiently removed and
reintroduced after a certain timespan, adapted cells may remain refractory. If so, we say that adapted
refractory cells keep a memory of their adaptation to the SAC.

In this thesis we characterized adapted and adapted refractory progenies in S. cerevisiae, in re-
sponse to tub2-401 and Mad2 overexpression, respectively.

Metabolic alterations occur in adapted cells

Our analysis suggests that adapted cells rewire their metabolic processes. These alterations are due
to adaptation, and not to galactose (for GAL1-MAD2(3x)) or cold-stress response (for tub2-401). Our
results could reflect the energy demand of adapted cells for proliferating under a constant SAC stim-
ulus. In line with this hypothesis, alterations in TCA cycle and glycolysis/gluconeogenesis could
be associated to a rewiring in the carbon source uptake and processing; fatty acid biosynthesis and
chitin biosynthesis could be required for supporting the increased cellular volume of adapted cells.
Finally, upregulation of metabolic processes involving phosphate-containing compounds takes place
in adapted refractory cells upon Mad2 overexpression. This may suggest a high requirement of phos-
phate groups for several phosphorylation reactions.

Refractoriness in adaptation to the SAC induced by Mad2 overexpression

When the SAC is induced byMad2 overexpression, cells develop a refractoriness to the SAC. Adapted
refractory cells spend less time in mitosis in the following cycles, despite the continuous SAC activity.
This refractory state is imperfect, since the mitotic duration of adapted refractory cells is significantly
delayed compared to wild-type cells (Figure 4.2). This could be due to a persistent partial inhibitory
effect of MCC, of which we expect a continuous production. Indeed, we proved that adapted refrac-
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tory cells, although less prone to arrest, produce enough MCC to induce a mitotic arrest, both under
continuous Mad2 overexpression (Figure 4.4) and under nocodazole treatment (Figure 4.5). Adapted
refractory cells retained memory in adaptation to the SAC for 3h, but not for 12h. This implies that
the molecular mechanism underlying refractoriness is lost between 3h and 12h, discarding the possi-
bility that memory is due to genetic alterations, and favoring the hypothesis that adapted refractory
cells have rewired their cell cycle network to become less responsive to the SAC. In support of this
hypothesis, proteome analysis shows extensive alterations of protein abundances in adapted refractory
cells compared to not adapted.

Is refractoriness explained by a decrease of SAC stimulus?

If there is a refractory state, we would expect a molecular mechanism that elaborates a response (Lyon
2015) towards a prolonged SAC activity. One simple possibility is that, despite the continuous MCC
assembly, adapted refractory cells could reduce the SAC signal, favoring cell survival (Weaver &
Cleveland 2005).

Transcriptional/translational defects of the SAC genes One of the possible scenarios could in-
clude decreasing levels of SAC proteins with time. In the case of Mad2 overexpression, adapted
refractory cells exhibit a slight decrease in Mad2 levels compared to adapting cells (Figure 4.3, west-
ern blot analysis). A downregulation of Mad2 levels would imply a defective activity of GAL1pr in
adapted refractory cells. Although we proved that the time of GAL1pr activation cannot explain the
difference between adapting and adapted refractory cells (Figure 4.4), we cannot exclude that a reduc-
tion in transcriptional/translational activity is taking place during a prolonged mitotic arrest. Indeed,
several proteins involved in transcription and translation were identified in the downregulated pro-
teome of adapted refractory cells (see Results, Section 4.3). We have not thoroughly explored this
possibility yet, but it is clear that a detailed investigation of the SAC protein levels and their synthesis
is required: not only for Mad2, but also for the other MCC components, Bub3 and Mad3.

Cellular size does not trigger refractoriness to the SAC We also investigated whether cellular size
is involved in reducing the effectiveness of the SAC signal in adapted cells, by diluting MCC when a
critical size is reached. In GAL1-MAD2(3x) cells, occurrence of refractoriness to the SAC positively
correlates with an increased cellular size. Here, cells adapt to the SAC and undergo anaphase with a
median volume that is twice that of cycling cells. This volume is then constantly maintained during
the anaphase onset of adapted refractory cells, suggesting a size homeostasis during the refractory
state. A positive correlation between adaptation time and size exclude the presence of a critical vol-
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ume of refractoriness. Adapted refractory cells, instead, resume a peculiar growth with an increased
growth rate. In these cells, the prominent growth is given by daughter cells, which exhibit a hyperpo-
larization in most of the cases. A pronounced apical growth could be explained by a higher activity of
Clns:Cdc28 complex (Lew & Reed 1993), which could correlate with the observed increase of Cdc28
levels in refractory adapted cells.

Also in the case of spindle depolymerization, size and mitotic duration positively correlates dur-
ing a nocodazole arrest (Paolo Bonaiuti, data not shown), suggesting the absence of a critical size of
refractoriness during spindle depolymerization. To test this hypothesis more thoroughly, a detailed
analysis on cellular size of tub2-401 cells has to be performed.

In conclusion, our data show that size is not responsible for the refractory period, and in general
our (incomplete) data also suggest that silencing of the SAC is also unlikely. We thus investigated
other molecular mechanisms to explain the presence of memory.

Increase of Cdc28 may explain refractoriness to the SAC

Our proteomic analysis of adapted cells reveals several alterations of cell cycle proteins, which usually
represent the low-abundant portion of the S. cerevisiae proteome (Matafora et al. 2014). Label-free
shotgun proteomics provides an increased proteome coverage respect to the labelling approaches (Pa-
tel et al. 2009; Bantscheff et al. 2007), allowing the detection of low-abundant proteins. However,
accuracy of the quantification is reduced, and the data coming from the analysis have to be validated,
for instance by Western Blot. We identified several key mitotic regulators upon Mad2 overexpression
and/or spindle depolymerization. Among these proteins, the increased abundance of kinases could
correlate with the upregulation of metabolic processes concerning phosphates, suggesting a high ki-
nase activity in adapted cells. In particular, levels of Cyclin-dependent Kinase 1 Cdc28 - the master
regulator of the budding yeast cell cycle - increase in adapted cells both induced by GAL1-MAD2(3x)

and tub2-401. Cdc28 is required for APC/CCdc20 activity in adaptation to the SAC (Rudner & Murray
2000; Vernieri et al. 2013), and according to this notion we showed that overexpression of Cdc28 in
nocodazole-arrested cells (GAL1-CDC28-HA) anticipates the anaphase onset (Figure 4.36).

Both GAL1-CDC28-HA and adapted refractory cells have in common two properties: high lev-
els of Cdc28 and presumably high activity of APC/CCdc20 in promoting the anaphase onset. If the
former has an effect on the latter, then we should observe an increased phosphorylation of APC/C
(Vernieri et al. 2013; Rudner & Murray 2000). Indeed, the phosphorylation of the APC/C subunit
Cdc16 slightly increases in adapted refractory cells upon Mad2 overexpression (Figure 4.39), but not
in GAL1-CDC28-HA cells arrested in nocodazole (Figure 4.40). In the second case, cells might exit
from mitosis after 3h of nocodazole, reversing Cdc28-mediated phosphorylations. This result may
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imply that high Cdc28 levels are necessary but not sufficient for increasing APC/C phosphorylation
in adapted refractory cells. In discordance with this hypothesis, Cdc28 overexpression is sufficient to
anticipate the anaphase onset during a nocodazole arrest (Figure 4.36a), even if the range of mitotic
duration of these cells quite overlaps to that of wild-type. Moreover, we observed that cells overex-
pressing Cdc28 still need a functional APC/C in order to adapt (Figure 4.36b). We know for sure that
overexpression of Cdc28 is not entirely recapitulating adapted refractory cells from a molecular point
of view, since many other alterations take place. Thus, Cdc28 may cooperate with other kinase(s) in
APC/C phosphorylation. For instance, Cdc5 is upregulated in adapted cells and it could be one of the
possible candidates (Rudner & Murray 2000).

Finally, for a complete comprehension of APC/CCdc20 regulation, we need to explore other mecha-
nisms. Phosphorylation of Apc1 and Cdc20 play key roles in the activation of APC/CCdc20 inmammals
(Qiao et al. 2016; Zhang et al. 2016; Hein &Nilsson 2016; Hein et al. 2017) (see Introduction, Section
1.1). Cdc28 may also strongly inhibit the transcriptional repressor Yox1 (Liang et al. 2012), therefore
bursting Cdc20 synthesis in adapted cells.

In conclusion, Cdc28 overexpression (confirmed in both tub2-401 and GAL1-MAD2(3x)) could
explain the refractoriness to the SAC, possibly via hyper activation of APC/C. The final molecular
mechanism, however, needs to be fully understood. Our preliminary data do not totally reconcile with
the hypothesis of Cdc28 as a driver of refractoriness, and further experiments are required.

SAC stimuli and refractoriness: an open question

Mad2 overexpression is quite artificial, and suffers from the obvious problem of overexpressing one
protein that is part of the same network we propose to analyze. For this reason, we have tested whether
the refractory state would be maintained with stimuli that prevent microtubule polymerization (i.e.,
proper activators of the SAC). Unfortunately, we could not confirm the refractory state when adapted
cells upon Mad2 overexpression were treated with high dosage of nocodazole. Knowing that the
spontaneous Mad2:Cdc20 binding is slow (Simonetta et al. 2009; Faesen et al. 2017), the mere Mad2
overexpression requires approximately 60 times the endogenous Mad2 levels in order to induce a mi-
totic arrest via MCC assembly (Mariani et al. 2012). Instead, the presence of unattached kinetochores
via nocodazole treatment supports the conversion of O-Mad2 in C-Mad2 conformation (De Antoni et
al. 2005; Simonetta et al. 2009), which can easily bind Cdc20 and therefore assembly MCC in a faster
way. When nocodazole was given to GAL1-MAD2(3x) adapted refractory cells, the conformational
switch of the overexpressed Mad2 could provide a better MCC assembly, therefore arresting cells in
mitosis and masking the acquired refractoriness to the SAC.

We then used tub2-401 cold-sensitive mutants (Huffaker et al. 1988; Sullivan & Huffaker 1992) to
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induce a "physiological" activation of the SAC. These cells arrest for several hours in prometaphase,
after which they adapt and establish a viable population of adapted cells on agar plates and liquid
medium, with decreased doubling time after 22h from the temperature shift (Figure 4.19b-c). These
results support the presence of a refractory state also in this setting. When proliferation was moni-
tored in a microfluidic chamber, however, only 50% of the adapted cells spent less time in mitosis when
compared to their ancestral adapting cells (Figure 4.20c). Moreover, the difference between the dis-
tributions of mitotic arrest in adapting (first arrest) and adapted (later arrests) cells was not significant
(Figure 4.20b). One possible explanation is that, although there is a refractoriness to the SAC, cells
are delayed here in metaphase by the large genetic errors caused by missegregation. Indeed, adapted
cells also exhibit wide alterations in proteins related to DNA repair, replication, recombination and
damage response (see Results, Chapter 4.3). We did not investigate whether adapted cells also show
a rewiring of these enriched pathways, but this is something we propose to do. Interestingly, the pro-
teome of tub2-401 adapted cells exhibits changes which are similar to Mad2 overexpression, in terms
of Gene Ontology entries and pathways. This last evidence suggests a quite comparable rewiring
of the cell cycle under both inducing SAC stimuli. Thus, it may be worth repeating the experiment
with tub2-401 cells with an increased semi-permissive temperature, and monitoring viability on liq-
uid medium (for instance by staining with methylene blue). Finally, investigating the extent of DNA
damage in M phase of tub2-401 adapted cells is also something worth following.

Cdh1 and MEN are required for viability of adapted cells

While an increased kinase activity could facilitate the metaphase-to-anaphase transition, it may be
deleterious for cellular viability. In adapted cells, inhibition of APC/CCdc20 by MCC introduces an ac-
cumulation of mitotic cyclin Clb2, making Cdh1 essential for viability (Figure 4.41). Even if CDH1
deletion does not impair the anaphase onset in GAL1-MAD2(3x) adapting cells (Vernieri et al. 2013),
it leads to the accumulation of Clb2 in the subsequent G1 phase, altering the cell cycle progression and
the viability of adapted refractory cells (Claudio Vernieri, data not shown). Overexpression of Sic1
- the functional homolog of mammalian p27Kip1 - rescues the viability (Figure 4.41), by inhibiting
the residual Clb2:Cdc28. Therefore, adapted cells need a functional Cdh1 in order to abolish kinase
activity in anaphase (Cross 2003).

Cdh1 is phosphorylated and inhibited by Cdc28, and a reversal of its phosphorylation state al-
lows its binding with APC/C (Höckner et al. 2016). Here, FEAR and MEN pathways could play
an important role, by mediating Cfi1/Net1 phosphorylation and releasing Cdc14 phosphatase. In
this framework, several players could be evaluated. For instance, Cdc28 kinase activity could be
required for Net1 phosphorylation (Azzam et al. 2004; Queralt et al. 2006), as well as Polo like kinase
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Cdc5 (Visintin et al. 2003; Rodriguez-Rodriguez et al. 2016), which has been identified upregulated
in adapted cells. On the other hand, activation of APC/CCdc20 during adaptation may inhibit phos-
phatase PP2ACdc55, a repressor of Cdc14 release (Queralt et al. 2006). In agreement with a role of
MEN in promoting viability of adapted cells, we noticed in a SGA screening for synthetic lethality
with Mad2 overexpression (in collaboration with Marco Foiani, IFOM - Milan, IT) that deletion of
MEN-inhibiting genes - such as BUB2, BFA1 - enhances viability of adapted refractory cells, while
deletion of MEN-promoting genes - such as CLA4, LTE1 - strongly reduces viability (data not shown).

Refractoriness to the SAC and missegregations: the Ying and Yang of adapted cells

In summary, our data support the existence of a global cellular response upon a prolonged SAC activity
(Figure 5.2). During a mitotic arrest, cells experience a stressful condition. If they do not die, they
will learn how to deal with the stress, adapting to the SAC and becoming refractory to it. Adaptation
may also lead to missegregation events (C. Rieder & Maiato 2004), which could introduce genetic
alterations. The balance between refractoriness and missegregation will dictate the cellular fate after
adaptation: proliferation or death (Figure 5.2). Differently from tub2-401, GAL1-MAD2(3x) cells do
not experience missegregation defects, a fortunate case that allows us to evaluate the properties of
the refractory state in a viable and not genetically-altered context (Figure 5.2, yellow box). In this
framework, adapted refractory cells modify their cell cycle, metabolism, translation and cellular size
and growth. Among these properties, we would expect some of them being driver of the refractory
state, while others as supporters/enhancers. Here, we proposed Cdc28 as a candidate driver, whose
levels correlate with the presence of memory (Figure 4.35). We discared cellular size as the source of
refractoriness.

Genetic alterations are likely to occur during adaptation of tub2-401 cells. In this case, cells could
experience DNA damage, which would increase mitotic duration and the proportion of not viable cells
after adaptation (Figure 5.2). Proteome analysis on tub2-401 adapted cells showed rewirings similar
to that of GAL1-MAD2(3x) cells, supporting the idea that the refractory state is present and masked
by genetic alterations.

Our working model is based on short-term effects of adaptation to the SAC, since we observed
no more than 3/4 generations of adapted cells. We still do not know the long-term consequences of
adaptation, which are currently under study in our lab. Preliminary data on tub2-401 adapted cells
grown at 18°C for ∼ 100 generations shows a significant enrichment of single nucleotide variants in
genes involved in cytoskeleton organization and cell cycle (Federica Natali, Elena Chiroli - data not
shown), maybe due to the missegregation events that could favor genetic alterations.
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Figure 5.2: A possible working model for proliferating cells after adaptation - When SAC is activated, cells arrest in
mitosis and eventually adapt to the mitotic checkpoint. In this case, cells learn how to manage with the experienced stressful
conditions and become refractory to the SAC, allowing cells to live and proliferate in the presence of the SAC stimulus, with
certain properties (green box). Any missegregation event coming from adaptation will negatively influence proliferation,
and cellular death would be one of the outcomes. The interplay between refractoriness and missegregations provides the
response regulator in adaptation to the SAC.

Clinical perspectives: how to inhibit proliferation after adaptation?

"Differentiation" of adapted cells may establish a variety of features, whose activity could be essential
for the maintenance of viability. In particular, cellular refractoriness promotes cellular division even
in the presence of genetic alterations. As such, it might introduce irreversible and deleterious effects
in the progeny. From the point of view of cancer evolution, thus, inhibition of "differentiation" may
abolish proliferation and prevent the inheritance of genetic defects. In this view, our results could
suggests possible targets for inhibiting the relapse of cellular proliferation under a constant treatment
with antimitotic drugs.

Cdk1 In this thesis we proposed Cdk1 as a driver for refractoriness. If so, wewould expect to abolish
the refractory state and viability of adapted cells via Cdk1 inhibition. This idea could also be relevant
from a clinical point of view. Indeed, high levels of Cdk1 were identified in several cancers with
unfavorable prognosis (Uhlen et al. 2017). Among them, lung cancer which is treated with taxanes
and vinca alkaloids (Chabner & Longo 2014). We do not know whether the proliferative capacity of
these cancer cells correlates with high levels of Cdk1; if it is true, Cdk1 inhibition would suppress
cellular memory, restoring an efficient activity of the chemotherapeutic agents. However, Cdk1 could
cover an important role in SAC activity of mammalian cells (Vincenzo et al. 2003; Vázquez-Novelle
et al. 2014), and its downregulation could alleviate the APC/CCdc20 inhibition, therefore allowing
cellular proliferation.
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Mitotic exit / Cdh1 The progeny of adapted refractory cells we analyzed shows synthetic lethality
with genes involved in the mitotic exit. Deletion of these genes is not lethal in cycling cells, suggesting
that they are strongly required only for continued growth in adapted cells. Among these genes, Cdh1
could be one possible target. However, it has been shown that inhibition of Cdh1 might not induce
cell death in mammals. After a defective mitotic exit, cells might resume proliferation with a preco-
cious entry in S-phase, introducing defects in chromosome separation and cytokinesis, and facilitating
genomic instability (Greil et al. 2015; Engelbert et al. 2008).

APC/C Finally, APC/C inhibition could prevent proliferation of adapted cells. To this purpose, it
has been shown that the drug proTAME (Zeng et al. 2010) induces a SAC-dependent mitotic arrest,
by preventing binding between Cdc20/Cdh1 and APC/C. Indeed, proTAME administration to hTERT
RPE-1 cells during a nocodazole arrest increases mitotic duration and cell death (Tiziana Lischetti -
preliminary data not shown).

Completing the decoding of proliferating cells after adaptation to the SAC: future plans

Several experiments have to be performed in order to confirm and strengthen the hypothesis of refrac-
toriness in adaptation to the SAC.

• Proteomic analysis reveals several rewirings in tub2-401 cells, suggesting the presence of a
refractory state. However, its effect on the mitotic duration of adapted cells may be hidden
by the deleterious effects introduced by missegregation. To this purpose, we will monitor tub2-
401 cells in semi-permissive conditions, reducingmissegregation events andmonitoring cellular
viability.

• Measurements of SAC protein levels would be useful for understanding the MCC strength in
adapted cells. Here, a single-cell analysis would clarify the presence of a correlation between
mitotic duration and SAC protein levels. To this purpose, we will monitor Mad2, Bub3 and
Mad3 tagged with fluorescent reporter. Moreover, a qPCR analysis of their transcript levels
could clarify the existence of transcriptional/translational defects.

• The correlation between the high activity of APC/CCdc20 and high levels of Clb2:Cdc28 of
adapted cells is still incomplete, and it needs to be further investigated. As reported above,
phosphorylation of Cdc20 and/or Apc1 could represent two additional regulators of the anaphase
onset to be taken into account. Moreover, polo like kinase Cdc5 could have a role in promot-
ing APC/C activity, by phosphorylating APC/C (Rudner & Murray 2000) and/or by promoting
release of Cdc14 in FEAR/MEN pathways (Visintin et al. 2003; Rodriguez-Rodriguez et al.
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2016). Indeed, Cdc5 is upregulated in adapted cells upon Mad2 overexpression or spindle de-
polymerization (tub2-401), and overexpression of the kinase anticipates Cdc14 release during
metaphase (Visintin et al. 2003).

• We will re-examine the results coming from the SGA screen for synthetic lethality with Mad2
overexpression. The gene list we obtained might be useful for detection of additional targets
for inhibiting proliferation after adaptation to the SAC. By examining the list with the same
tools used for the proteomic analysis (see Results, Section 4.3), we noticed a significant enrich-
ment of genes involved in the regulation of catalytic activity, regulation of phosphate metabolic
processes and cell cycle.
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6
Appendix

6.1 Expression of cdc20-127 bypasses the mitotic arrest induced

by Mad2 overexpression

As described in the Results (see Section 4.1), the expression of cdc20-127 was used in order to uncou-
ple the SAC activity from Mad2 overexpression. Before using this tool for the evaluation of GAL1pr
activity and memory in adaptation, we evaluated its ability to overcome the checkpoint arrest inGAL1-
MAD2(3x) cells. To this purpose, tetO2-CDC20-127(1x) GAL1-MAD2(3x) cells were grown in two
conditions. Both of them grew overnight without Mad2 overexpression and, after G1 synchronization,
they were released in galactose containing medium. However, one condition was experiencing Mad2
overexpression in the presence of cdc20-127 (Figure 6.1a, Cycling), while the other did not (Figure
6.1a, Adapting). As control, GAL1-MAD2(3x) and GAL1-MAD2(3x) mad3Δ were grown in parallel,
without doxycycline treatment.

Expression of cdc20-127 in Cycling cells triggered a synchronous mitotic exit after 2h from the
release, behaving like the checkpoint-deficient condition (Figure 6.1b, Cycling vs GAL1-MAD2(3x)

mad3Δ). Adapting cells entered asynchronously in the subsequent G1, with a delay of 1h compared
to Cycling condition (Figure 6.1b, Cycling vs Adapting), due to the absence of cdc20-127. We no-
ticed that Adapted cells were slightly faster than GAL1-MAD2(3x) cells, in which the expression of
cdc20-127 was totally absent, suggesting the presence of a slight leakage on tetO2pr upon doxycycline
treatment.

We conclude that the expression of cdc20-127 allows to bypass the mitotic arrest induced byMad2
overexpression.
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Figure 6.1: Expression of cdc20-127 bypasses the SAC induced by Mad2 overexpression - MATa GAL1-MAD2(3x)
(yAC2465), MATa tetO2-CDC20-127(1x) GAL1-MAD2(3x) (yAC2807) and MATa GAL1-MAD2(3x) mad3Δ (yAC436)
were grown overnight in raffinose, synchronized in G1 and released in galactose containing medium. After 1h30min from
the release, �-factor was readded in order to resynchronize cells in the subsequent G1. Cells were monitored until 7h from
G1 release. (a) yAC2807 cells were grown in two different conditions. They were identical during the overnight, but during
the YEPRG phase (i.e., during Mad2 overexpression) one strain was expressing cdc20-127 (cycling), while the other did not
(adapting). Repression of cdc20-127 synthesis was achieved by treating cells with doxycycline hyclate 10 �g∕ml (Barnhart
et al. 2011). (b) FACS analysis of the experiment.

6.2 Overexpression of Cdc28 does not alter an unperturbed cell

cycle
Before studying the effects of high levels of Cdc28 during a nocodazole arrest (see Results, Section
4.4), we aimed to evaluate whether these levels influenced an unperturbed cell cycle. To this purpose,
WT and GAL1-CDC28-HA were synchronized in G1 and released in galactose containing medium,
without activating the SAC. Both strains assumed a similar cellular progression, in terms of DNA
replication and segregation (Figure 6.2a) and in terms of metaphase and anaphase onset (Figure 6.2b).
Maximum levels of mitotic cyclin Clb2 were observed after 60’ from release (Figure 6.2c), in corre-
spondence to the maximum proportion of metaphase cells. Our results suggest the absence of a cell
cycle perturbation due to the mere overexpression of Cdc28.
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Figure 6.2: Overexpression of Cdc28 does not alter an unperturbed cell cycle - MATa, WT (yAC3568) and MATa,
GAL1-CDC28-HA (3716) cells were grown in YEPR, synchronized in G1 and released in YEPRG. After 1h10min from the
release, �-factor was readded in order to resynchronize cells in the subsequent G1. Cells were monitored until 3h from the
release, collecting samples for FACS, IF and Western Blot analysis. (a) FACS profiles of the experiment. (b) IF analysis.
100 cells were counted for each condition and for each timepoint, evaluating proportion of cells with interphase, metaphase
or anaphase spindles. Proportion of metaphase and anaphase spindle is plotted versus time. (c) Regular 10% Western Blot
related to the experiment.
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6.3 Proteome of Adapted Cells

We report the screened proteome ofAdaptedCells, whichwas obtained by Shotgun Label-Free LC/MS-
MS (see Results, Section 4.3).

Upregulated proteome of GAL1-MAD2(3x) adapted refractory cells
3-dehydroquinate synthase, 3-hydroxyacyl-[acyl-carrier-protein] dehydratase, 4-alpha-glucanotransferase, AAP1,

ABP140, ABZ1, ACF2, ACO2, ADE1, ADE12, ADR1, AFG3, AGX1, AIM14, AIM17, AIM24, ALD2, ALG9, ALK1,

ALR1, ALY1, AMD1, AMS1, Anthranilate synthase component 2, APD1, ARA2, ARE1, ARE2, ARG1, ARG2, ARG4,

ARI1, ARO7, ARO8, ARP2, AST2, ATG19, ATG3, ATP-dependent (S)-NAD(P)H-hydrate dehydratase, AVT7, BAT1,

BBC1, BCD1, BET3, BNA2, BUD3, CAB4, CAK1, CAT2, CDC28, CDC5, CDC53, CEP3, CHC1, CHS1, CHS2,

CHS5, CLA4, CMK2, COP1, COQ3, CPA2, CPS1, CRG1, CRM1, CST26, CTK3, CTP1, CTR86, CUP2, CYC3,

CYC7, DAM1, DAP1, DBF2, DBP10, DBP9, DBR1, DCS1, DOA1, DOP1, DPB2, DRS2, DSS1, DYN1, ECM22,

ELM1, ELP6, EPL1, ERG24, ERG26, ERG7, ERJ5, ESS1, ETR1, FAT1, FIS1, FKS1, FMP27, FPR1, FRD1, FSH3,

GAD1, GCD1, GCN1, GCN3, GCV1, GDE1, GDH2, GDI1, GEP4, GGC1, GID7, GID8, GIN4, GLC3, GLT1, Glu-

tamate N-acetyltransferase, Glutamine-dependent carbamoyl-phosphate synthase, GNA1, GPB1, GPM2, GRS2,

GSC2, GSY2, GYP7, HBT1, HER1, HIS1, HIS5, HOM3, HRD3, HSH155, HSM3, HSP12, ICL1, IDP2, ILV3, ILV5,

IMA1, IMG1, IML2, INM1, IOC3, ISM1, KAP95, KOG1, KSP1, KTI12, KTR4, LEU9, LPX1, LSM6, LST8, LYS1,

LYS2, LYS9, MAE1, MAG1, MAG2, MAK3, MAP2, MCM2, MCM5, MDN1, MDR1, MET10, MET5, Methylenete-

trahydrofolate dehydrogenase, MEX67, MGM101, MIP1, MKT1, MON2, MRP1, MRPL15, MRPL37, MSC1,

MSC2, MTC3, MTD1, MYO4, NADPH-dependent alpha-keto amide reductase, NBP35, NDI1, NMA111, NPL4,

NQM1, NRK1, NTF2, NTH1, NUP157, NUP159, NUP170, NUP192, NVJ1, ODC2, OPY1, Orotate phosphoribo-

syltransferase 1, OXP1, DSF1, SNZ3, COS5, PAC10, PAN6, PCK1, PDC2, PDC5, PDH1, PDR1, PDR12, PEF1,

PEX4, PHB1, PHO3, PHO86, Phosphoribosyl-AMP cyclohydrolase, PIH1, PIN3, PLP1, PMC1, PMR1, POL1,

POL3, POP1, PRR1, PRS2, PTA1, PTP3, PUF4, PUT1, PXL1, IMA2, QRI1, REG1, RER2, RFC2, RIA1, RIM13,

RLI1, RLM1, RNA15, ROD1, RPA14, RPD3, RPL33A, RPN2, RPN6, RPO21, RSM18, RSM26, RTG2, RTG3,

RVB1, SAC7, SAM50, SBA1, SDS22, SEC18, SED4, SER3, SER33, SIT4, SLM5, SMM1, SNZ1, SOV1, SPS19,

SPT16, SRB8, SRY1, SSA4, SSE2, STE23, STT4, STV1, SUB1, SUV3, SWA2, SWI5, TEL1, TEL2, TFC7, THI80,

TPK1, TPS2, TPS3, TRM3, TRP1, TRP5, TRS130, TRX3, TSL1, TTI2, TYW1, UBP15, UBP2, UBP3, UBR2, UFD2,

Urea carboxylase, UTP10, VAN1, VAR1, VPS13, VPS28, VPS30, VPS35, VPS62, WTM2, YAK1, YAT2, YBR225W,

YCF1, YDR391C, YFL042C, YGP1, YGR126W, YHR202W, YIL108W, YIR024C, YJL016W, YJL132W, YJL218W,

YJR011C, YJR111C, YJR142W, YLR149C, YLR446W, YML087W, YMR111C, YMR196W, YNR065C, YOL098C,

YPK2, YPL088W, YPL150W, YPL260W, YUR1, ZRG17, ZRT3
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Downregulated proteome of GAL1-MAD2(3x) adapted refractory cells
ABF2, ACP1, AIM23, AIM25, AIM32, ARO10, ARO2, ASC1, AXL2, AZF1, BFR1, BFR2, BMH1, BRE2, BRF1,

BTS1, BUD31, CAF20, CAR2, CBF2, CBP3, CCC2, CDC20, CDC33, CFT2, CIT3, CLU1, CMD1, CNM67,

CTR1, CTS2, CUL3, CYS3, CYS4, DBP2, DEF1, DLD1, DMA1, DPB3, DYS1, EBP2, EGD1, EMP24, ENO2,

ERO1, FAR3, FET3, FRS1, FSH2, FUI1, FZO1, GAL1, GAL2, GAL7, GAS1, GDA1, GIS2, GIT1, GLR1,

GND1, GRS1, GUT1, HHF1, HHO1, HIR2, HMT1, HSC82, HXT6, IES5, KAR2, KRI1, LIA1, LPD1, MAD2,

MAK10, MAL33, MAM33, MBP1, MCD1, MEC1, MET4, MHT1, MIC27, MLP2, MNR2, NDE1, NHP6A, NMT1,

NNT1, NOP10, NOP13, NOP56, NSR1, NTH2, NUG1, OLA1, OLE1, HTB1, HTA1, RPS25B, RPS22A, RPL20A,

RPS23A, RPS24A, RPS4A, RPS6A, RPS8A, RPL2A, RPL18A, RPS16A, RPS18A, RPL19A, PMA2, HXT13, PAB1,

PDI1, PET111, PEX8, PHO90, PKH1, PMU1, POP8, PRO2, PRP46, PSA1, PUS9, RAS2, RAX1, RBG2, RGI1,

RNA1, RPA135, RPB3, RPG1, RPL10, RPL13A, RPL16A, RPL16B, RPL24A, RPL26B, RPL3, RPL36A, RPL36B,

RPL37A, RPL37B, RPL5, RPL6A, RPL9A, RPP2B, RPS10A, RPS14A, RPS1B, RPS9B, RRP42, RUD3, SAF1,

SCP160, SCS2, SDA1, SDH4, SEC53, SEC9, SES1, SKG6, SLM2, SOD1, SPC3, SPL2, SRO9, SRP40, SSA1, SSA2,

SSB1, SSB2, SSC1, SSK1, STM1, STU1, SUP35, SWI4, SWS2, TAL1, TBF1, TCD2, TDA10, TDA11, TDH2, TEF1,

TID3, TIF11, TIF3, TIF34, TMA19, TPI1, TPM1, TPM2, TRR1, TRX1, TSA1, TYR1, Ubiquitin-40S ribosomal pro-

tein S31, VAS1, VFA1, VPS52, YBL010C, YBR271W, YCP4, YCR015C, YDJ1, YDL109C, YDL121C, YEF3, YEH2,

YGL041W, YIF1, YIP5, YJU2, YNL010W, YNL050C, ZEO1, ZUO1

Upregulated proteome of tub2-401 adapted cells
ACC1, ACK1, ADP1, AFG3, AGP1, AGX1, AIM19, AIM45, ALE1, ALG6, ALT2, ART5, ATG7, ATP11, ATP2,

ATP3, ATP4, ATP7, BAR1, BCS1, "bI2, COB, bI3, bI4", BIK1, BRE5, BRO1, BUL1, CBF1, CCW14, CDC25,

CDC5, CDC7, COA3, COQ2, COR1, CPS1, CST26, CTF19, CUE1, CUP2, CWC2, CWC27, CYC1, CYT2, DIA4,

DNF1, DOS2, DPP1, DSK2, DUR1,2, EAF3, ECM2, ECM38, EDC1, END3, ENV7, EXG1, FAA1, FAS1, FAS2,

FMP25, GAP1, GCV2, GDH1, GEF1, GEM1, GGA2, GLT1, GRS2, GRX2, GRX5, GTT1, GYP6, HEH2, HER1,

HER2, HFI1, HOF1, HSE1, HSH49, HSL1, HSP12, HXT6, HYM1, HYP2, HYR1, IDH1, IDH2, IES6, ILV2, IRA2,

ISN1, KAR3, LAC1, LDB19, LPD1, LSC2, MAG1, MCM5, MCM6, MDH1, MDM35, MDV1, MED7, MED8,

MEF1, MEH1, MHT1, MIC60, MMR1, MPM1, MPS3, MRP21, MRP8, MRPL10, MRPL20, MRPL37, MRPS16,

MRPS17, MRPS18, MTD1, NCE102, NDE2, NDI1, NHP2, NKP1, NNF2, NPC2, NUP49, OMA1, PAH1, PBI2,

PET10, PET112, PET54, PEX13, PHB2, PHM8, PHO12, PHO5, PHO84, PHO89, PMT7, PRE3, PRP40, PSD1,

PSP2, PSR2, PUT1, RAF1, RAV2, RCF1, RHB1, RIM15, RKM2, "RPL12B, RPL12A", RPL15B, RPL36B, RPL9B,

RPM2, RPP1B, RPT4, RSM19, RSM28, RTN2, RUB1, SAM35, SAM37, SAP30, SBE22, SER3, SFH5, SNF6, SNX3,

SNX41, SPO71, SRY1, SST2, SUS1, SWI6, TAF8, TAH11, TGL1, TMA10, TOF1, TOM71, TPO3, UBC12, UGO1,

UMP1, URA2, VPS27, VPS54, VPS60, VTC2, VTC3, VTC4, WHI4, YCS4, YDR109C, YHR202W, YIL161W, YIM1,

YOR1, YRB2
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Downregulated proteome of tub2-401 adapted cells
AAT1, ABF1, ABP140, ADI1, AGC1, ALG1, ALG11, ALG12, ALG5, ALR1, ARB1, ARO10, ARO9, ASC1, AST2,

ATG11, ATG19, BEM1, BET4, BNA4, BOI1, BOI2, BRX1, BUD32, BUD4, BUR6, CAK1, CCA1, CCT5, CCT8,

CDC16, CDC73, CFD1, CHA1, CHD1, CHS3, CHS6, CIC1, CIN1, COQ8, CTR86, CWH41, CYC8, DBP2, DBP8,

DHH1, DMA2, DOM34, DYN1, EBS1, ECT1, EDC3, EMC2, EMC4, ENP1, ENP2, ERB1, ERG1, ERG11, ERG27,

ERO1, ERV14, FES1, FIP1, FKH1, FLC1, FLC3, FMP30, GCN5, GEA1, GIN4, GLN4, GLY1, GRC3, GYP1,

HAT2, HNT2, HSP104, HUA1, ICT1, IFH1, IOC3, IRA1, IRC5, IRC6, JEM1, JIP5, JJJ1, KAR2, KEL1, KEX1,

KRE6, KRR1, KTI12, KTR6, LIP2, LPP1, LRO1, LSM1, LSM7, LTP1, LUC7, MAD2, MCT1, MDM20, MMF1,

MNN5, MNN9, MNR2, MOG1, MRPL16, MSW1, MVP1, NAB2, NAB3, NGL2, NHA1, NNF1, NOC2, NOC3,

NOC4, NOG1, NOP14, NOP4, NRP1, OPY1, ORC3, OSH3, PAB1, PAN3, PCT1, PEX4, PHO87, PMT2, PMT5,

PNT1, POP1, PPH3, PPZ1, "PRM8, PRM9", PSK1, PTP3, RAD16, RAD52, RAX2, RBG1, RCO1, RDS3, REX4,

RFS1, RIO1, RNR3, RPA135, RPB3, RPL22B, RPL6A, RPS0A, RPS12, RPS1B, RPS3, RRP1, RTG3, RTT101,

SAH1, SAN1, SAR1, SCW11, SDA1, SDO1, SEC4, SEC63, SET2, SET5, SIA1, SKS1, SNF12, SNP1, SNU56, SOF1,

SPB1, SPC42, SPE4, SPT4, SRL2, SRP72, SSA3, SSO1, SSO2, STB3, STE12, STE6, SYF1, SYN8, TAF4, TDA2,

TFC3, TFG2, TGL3, THR4, TIF4631, TNA1, TPA1, TSC10, TUB1, TUB2, TUB3, TVP23, UIP3, URE2, VID24,

VMA8, VPS5, WTM2, YAP1801, YDR415C, YER156C, YGL036W, YGL101W, YHR112C, YLL007C, YLR225C,

YOL019W, YOR289W, YPS7, YVH1
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Table 6.1: Yeast Strains used in this study
strain genotype source
yAC39 MATa, mad2::TRP1 our lab
yAC41 MATa, leu2-3::LEU2::GAL1-MAD2(3x) our lab
yAC309 MATalpha, leu2-3::LEU2::GAL1-MAD2(3x) our lab
yAC436 MATa, leu2-3::LEU2::GAL1-MAD2(3x), mad3::TRP1 our lab
yAC783 MATalpha, CFIII (CEN3.L.YPH278) URA3SUP11 our lab
yAC792 MATalpha, MAD2-3GFP-KanMX6 our lab
yAC802 MATa, trp1::tetO2-CDC20-127::TRP1 our lab
yAC1001 MATa our lab
yAC1011 MATalpha our lab
yAC1013 MATa, TUB2-mCherry::URA3 R. Visintin
yAC1156 MATalpha, mad2::TRP1 our lab
yAC1513 MATa, MAD2-3GFP-KanMX6 T. Tanaka
yAC1533 MATa, cdh1::HIS3 our lab
yAC1546 MATa, cdc16::CDC16-6A-TRP1, bar1:HISG A. Murray
yAC1571 MATa, cdc27::CDC27-5A-KAN A. Murray
yAC1619 MATalpha, cdc16:CDC16-6A-TRP1, cdc27::CDC27-5A-KAN our lab
yAC1700 MATa, CLB2-GFP::LEU2 (isogenic to S288C) P.A. Silver
yAC1749 MATa, CFIII (CEN3.L.YPH278) URA3SUP11 P. D. Wulf
yAC1863 MATa, CDC27-myc9::TRP1 J.M. Peters
yAC1864 MATalpha, CDC16-myc6::URA3 J.M. Peters
yAC1906 MATa, leu2-3::LEU2::GAL1-MAD2(3x), CDC27-myc9::TRP1 our lab
yAC1933 MATa, leu2-3::LEU2::GAL1-MAD2(3x), CDC16-myc6:URA3 our lab
yAC1936 MATa, CDC16-myc6::URA3 our lab
yAC2006 MATa, TUB2-mCherry::URA3, CLB2-GFP::LEU2 our lab
yAC2465 MATa, leu2-3::LEU2::GAL1-MAD2(3x) our lab
yAC2671 MATa, TUB2-mCherry::URA3, leu2-3::LEU2::GAL1-MAD2(3x), CLB2-GFP::LEU2 our lab
yAC2782 MATalpha, leu2-3::LEU2::GAL1-MAD2(3x) our lab
yAC2807 MATa, leu2-3::LEU2::GAL1-MAD2(3x), tetO2-CDC20-127::TRP1 (single copy) our lab
yAC2809 MATalpha, trp1::tetO2-CDC20-127::TRP1 our lab
yAC2926 MATa, tub2-401 our lab
yAC2946 MATa, tub2-401, mad2::TRP1 our lab
yAC2970 MATa, CLB2-GFP::LEU2, tub2-401 our lab
yAC3021 MATa our lab
yAC3034 MATa, mad2::TRP1, CLB2-GFP::LEU2, tub2-401 our lab
yAC3041 MATa, mad2::TRP1, CLB2-GFP::LEU2 our lab
yAC3202 MATa our lab
yAC3220 MATa, tub2-401 our lab
yAC3228 MATa, tub2-401, CFIII (CEN3.L.YPH278) URA3SUP11 our lab
yAC3251 MATa, tub2-401, mad2::TRP1, CFIII (CEN3.L.YPH278) URA3SUP11 our lab
yAC3252 MATa, mad2::TRP1, CFIII (CEN3.L.YPH278) URA3SUP11 our lab
yAC3372 MATa, mad2::TRP1 our lab
yAC3491 MATa, CLB2-GFP::LEU2 our lab
yAC3509 MATa clb2::CLB2-3mCherry-dcu-hphNT1 our lab
yAC3538 MATa MAD2-3GFP-KanMX6, clb2::CLB2-3mCherry-dcu-hphNT1 our lab
yAC3539 MATalpha MAD2-3GFP-KanMX6, clb2::CLB2-3mCherry-dcu-hphNT1 our lab
yAC3568 MATa our lab
yAC3582 MATa, leu2-3::LEU2::GAL1-MAD2(3x), cdh1::HIS3 our lab
yAC3650 MATa, (TRP1::SIC1)10x D. P. Toczyski
yAC3651 MATalpha, SIC1(10x) our lab
yAC3654 MATa, leu2-3::LEU2::GAL1-MAD2(3x), (TRP1::SIC1)10x our lab
yAC3659 MATa, leu2-3::LEU2::GAL1-MAD2(3x), cdh1::HIS3, (TRP1::SIC1)10x our lab
yAC3682 MATalpha, cdh1::HIS3, (TRP1::SIC1)10x our lab
yAC3683 MATa, cdh1::HIS3, (TRP1::SIC1)10x our lab
yAC3685 MATa, tub2-401, (TRP1::SIC1)10x our lab
yAC3686 MATa, tub2-401, cdh1::HIS3 our lab
yAC3694 MATa, tub2-401, cdh1::HIS3, (TRP1::SIC1)10x our lab
yAC3699 MATa, ura3::pGAL-MPS1-myc::URA3, trp1::pGAL-CDC28-HA::TRP1 A. Murray
yAC3716 MATa, trp1::pGAL-CDC28-HA::TRP1 our lab
yAC3717 MATa our lab
yAC3723 MATa, trp1::pGAL-CDC28-HA::TRP1, MAD2-3GFP-KanMX6,

clb2::CLB2-3mCherry-dcu-hphNT1 our lab
yAC3754 MATa, leu2-3::LEU2::GAL1-MAD2(3x),

tetO2-CDC20-127::TRP1 (single copy), CDC27-myc9::TRP1 our lab
yAC3770 MATa, leu2-3::LEU2::GAL1-MAD2(3x), CDC16-myc6::URA3,

tetO2-CDC20-127::TRP1 (single copy) our lab

yAC3810
MATalpha, trp1::pGAL-CDC28-HA::TRP1, cdc16:CDC16-6A-TRP1,
cdc27::CDC27-5A-KAN, MAD2-3GFP-KanMX6,
clb2::CLB2-3mCherry-dcu-hphNT1

our lab
yAC3854 MATa, CDC16-myc6::URA3, trp1::pGAL-CDC28-HA::TRP1 our lab
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