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ENGLISH ABSTRACT 

Clinical prediction tools have failed in the correct risk stratification of syncope patients in the emergency 

department. To assess the possible strengths and weaknesses and to compare the different statistical 

methodologies to derive prediction tools, we decided to derive both a multivariate logistic regression 

model and an artificial neural network (ANN) on a large retrospective database and to prospectively 

validate them in a new dataset of 354 patients. The area under the ROC curve of multivariate regression 

and ANN in the validation cohort were 0.726 and 0.694, respectively. Since the poor predictive accuracy of 

the analyzed models, we tried to identify alternative methods. We hypothesized that accurate pretest 

probability assessments can be obtained by matching an individual patient to a group of previously studied 

patients who shared the same clinical characteristic and determining the percentage of these previously 

studied patients who had the outcome of interest. In theory, the ideal attribute matching system would 

allow a very detailed clinical profile to be matched against a very large reference database to provide 

accurate risk estimates. Therefore, we do not offer a clinically useful prediction tool at this stage, but this 

method seems promising. Future studies should focus on building large prospective datasets to assess if 

attribute matching adds any value to both the traditional clinical decision tools and the implicit estimate of 

probability from clinicians. Moreover, the introduction of new and more complex input attributes and the 

possibility to provide as output a detailed risk assessment will create a more specific and potentially more 

accurate clinical profile.  
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ITALIAN ABSTRACT 

Gli strumenti fino ad ora disponibili hanno fallito nel tentativo di predire gli eventi avversi dei pazienti con 

sincope in pronto soccorso. Per valutare i possibili punti di forza e di debolezza e confrontare i diversi 

metodi statistici usati per la derivazione di score e scale di rischio, abbiamo deciso di derivare dei modelli 

basati su regressione logistica multivariata e reti neurali artificiali (ANN) a partire da un database 

retrospettivo e di validarli in un nuovo dataset di 354 pazienti. L’area sotto la curva ROC di regressione 

multivariata e ANN è risultata rispettivamente di 0.726 e 0.694 nella coorte di validazione. Vista la bassa 

accuratezza predittiva dei modelli analizzati, abbiamo provato a identificare metodi alternativi per predire il 

rischio di eventi avversi dei pazienti con sincope. Abbiamo ipotizzato che si potesse stimare una probabilità 

pre-test accurata appaiando ogni singolo paziente ad un gruppo di pazienti con le stesse caratteristiche 

cliniche, e valutando la proporzione che aveva sviluppato l’outcome di interesse (attribute matching). In 

teoria, il funzionamento ideale di tale sistema consentirebbe di confrontare un profilo clinico tanto più 

dettagliato e di avere stime di rischio molto precise quanto più il database di riferimento è ampio. Pertanto, 

questo strumento non è ancora utilizzabile nella pratica clinica, ma sembra un metodo promettente. Studi 

futuri dovrebbero costruire database prospettici che arruolino un gran numero di pazienti per valutare se 

l’attibute matching possa aggiungere informazioni agli strumenti predittivi tradizionali e alla stima del 

rischio da parte di medici esperti. Inoltre, la possibilità di introdurre variabili nuove e sempre più complesse 

e di poter predire nel dettaglio diversi tipi di outcome, potrebbe creare un profilo clinico più specifico e 

potenzialmente sempre più accurato.
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BACKGROUND 

Syncope 

Definition 

Syncope is defined as a transient loss of consciousness (T-LOC) characterized by rapid onset, short 

duration, and spontaneous complete recovery. The underlying pathophysiological mechanism is transient 

global cerebral hypoperfusion. In some forms of syncope there may be a prodromal period in which various 

symptoms (e.g. lightheadedness, nausea, sweating, weakness, and visual disturbances) warn that syncope 

is imminent. Often, however, LOC occurs without warning. The noun “pre-syncope” or “near-syncope” is 

used often to describe a state that resembles the prodrome of syncope but which is not followed by LOC 

[1]. 

Several disorders may resemble syncope in two different ways. In some, consciousness is truly lost, 

but the mechanism is something other than global cerebral hypoperfusion. Examples are epilepsy, several 

metabolic disorders (including hypoxia and hypoglycaemia), intoxication, and vertebrobasilar transient 

ischaemic attack (TIA). In other disorders, consciousness is only apparently lost; this is the case in cataplexy, 

drop attacks, falls, psychogenic pseudosyncope, and TIA of carotid origin (Figure 1). 

Figure 1 - Syncope in the context of T-LOC 

 

Classification and pathophysiology 

The European Society of Cardiology suggests a pathophysiological classification of the main causes 

of syncope (Table 1) [1].  
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Table 1 - Pathophysiological classification of the main causes of syncope 

Classification of syncope 

Reflex (neuromediated) syncope 

 Vasovagal  

  Mediated by emotional stress (fear, pain, blood, instrumentation)  

  Mediated by orthostatic stress 

 Situational 

  Cough, sneeze 

  Gastrointestinal stimulation (swallow, defecation, visceral pain) 

  Micturition 

  Post-exercise 

  Post-prandial 

  Others (i.e. laugh, brass instrument playing, weightlifting) 

 Carotid sinus syncope 

 Atypical forms (without apparent triggers and/or atypical presentation) 

Syncope due to orthostatic hypotension 

 Primary autonomic failure 

  
Pure autonomic failure, multiple system atrophy, Parkinson’s disease with autonomic 
failure, Lewy body dementia 

 Secondary autonomic failure 

  Diabetes, amyloidosis, uremia, spinal cord injuries 

 Drug-induced orthostatic hypotension 

  Alcohol, vasodilators, diuretics, phenotiazines, antidepressants 

 Volume depletion 

  Hemorrhage, diarrhea, vomiting, etc 

Cardiac syncope (cardiovascular) 

 Arrhythmia as primary cause 

  Bradycardia 

   Sinus node dysfunction (including bradycardia/tachycardia syndrome) 

   Atrioventricular conduction system disease 

   Implanted device malfunction 

  Tachycardia 

   Supraventricular 

   
Ventricular (idiopathic, secondary to structural heart disease or 
channelopathies) 

  Drug-induced bradycardia and tachyarrhythmias 
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 Structural disease 

  
Cardiac: cardiac valvular disease, acute myocardial infarction/ischemia, hypertrophic 
cardiomyopathy, cardiac masses, pericardial disease/tamponade, congenital 
abnormalities of coronary arteries, prosthetic valves dysfunction 

  Others: pulmonary embolus, acute aortic dissection, pulmonary hypertension 

Modified from: “Moya A, et al. Guidelines for the diagnosis and management of syncope (version 2009)” 

From a pathophysiological point of view, syncope is caused by a reduction global cerebral perfusion 

provoked by a drop in systemic blood pressure. A sudden cessation of cerebral blood flow for as short as 6–

8 s or a decrease in systolic blood pressure to 60 mmHg or lower has been shown to be sufficient to cause 

complete LOC. Systemic blood pressure is determined by cardiac output and total peripheral vascular 

resistance, and a fall in either can cause syncope, but a combination of both mechanisms is often present, 

even if their relative contributions vary considerably [2]. 

A low or inadequate peripheral resistance can be due to inappropriate reflex activity, causing 

vasodilatation and bradycardia manifesting as vasodepressor, mixed, or cardioinhibitory reflex syncope. 

Other causes of a low or inadequate peripheral resistance are functional and structural impairments of the 

autonomic nervous system with drug-induced, primary and secondary autonomic failure. In autonomic 

failure, sympathetic vasomotor pathways are unable to increase total peripheral vascular resistance in 

response to the upright position. Gravitational stress, in combination with vasomotor failure, results in 

venous pooling of blood below the diaphragm, causing a decrease in venous return and consequently in 

cardiac output.  

The causes of transient low cardiac output are 3-fold. The first is a reflex causing bradycardia, 

known as cardioinhibitory type of reflex syncope. The second is cardiovascular causes, due to arrhythmia 

and structural disease including pulmonary embolism/hypertension. The third is inadequate venous return, 

due to volume depletion or venous pooling.  

Epidemiology and prognosis 

Syncope is a common and generally benign symptom. However, the high incidence of mortality and 

adverse events in patients with cardiovascular causes of syncope warrants the important use of resources 

to try to identify high risk patients [3,4]. Moreover, the risk of trauma following the loss of postural tone, 

and the psychological impact of multiple recurrences increase the disabling potential of syncope at low risk 

from a clinical standpoint [5]. 

Syncope true incidence is difficult to estimate because only a small percentage of patients with 

syncope seek medical advice [6]. The estimated prevalence varies according to the setting and the 

population studied, but it is likely that up to 40% of people faint at least once in a life and prevalence is 

higher in females. Syncope incidence shows a bimodal distribution, with two peaks: before 20 and after 65 
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years old. While vasovagal syncope is the more likely cause of syncope in young people, cardiovascular 

diseases, orthostatic hypotension and multiple causes (reflecting a higher frailty) are more prevalent in the 

elderly [7–10]. 

Syncope is a frequent cause of emergency department (ED) admission: about 1%-3% of ED visits 

occur after a syncopal episode and an extremely variable percentage of patients (13%-83%) is hospitalized 

[11–17]. Hence the need for tools to properly assess and risk stratify patient in order to both reduce 

inappropriate admissions and avoid adverse events following discharge. 

Risk stratification 

If the cause of syncope remains unexplained after the first clinical evaluation, the physician should 

assess the risk of major cardiovascular event or sudden cardiac death. To help the clinician, many clinical 

decision tools (CDT) have been created in the last years. 

The currently available CDT for risk stratification of syncope patients are the San Francisco Syncope 

Rule (SFSR), the OESIL (Osservatorio Epidemiologico sulla Sincope del Lazio) risk score, the ROSE (Risk 

Stratification of Syncope in the Emergency Department) rule, the EGSYS (Evaluation of Guidelines in 

Syncope Study) risk score, the Boston Syncope Criteria, and the Canadian Syncope Risk Score.[12–14,18–20]  

Prognostic models 

A CDT can be defined as a clinical tool that quantifies the individual contributions that various 

components of the history, physical examination, and basic laboratory results make toward the diagnosis, 

prognosis, or likely response to treatment in an individual patient. This estimate relies either on the total 

points scored by the patient (score) or on the binary yes/no classification (rule) based on the presence of at 

least one predictor. Clinical decision rules attempt to formally test, simplify, and increase the accuracy of 

clinicians' diagnostic and prognostic assessments and are most likely to be useful in situations where 

decision making is complex, the clinical stakes are high, or there are opportunities to achieve cost savings 

without compromising patient care. Available CDTs include guides for establishing a pretest probability, 

providing screening tests for common problems that frequently go undetected, estimating the risk of 

developing a disease or complication [21].  

Developing and testing a CDT involves 3 steps: creating or deriving the rule, testing or validating the 

rule, and assessing the impact of the rule on clinical behavior (impact analysis). The validation process may 

require several studies to fully test the accuracy of the rule at different clinical sites. Table 2 presents a 

hierarchy that can guide clinicians in assessing the full range of evidence supporting use of a CDR in their 

practice.  
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Table 2 - Hierarchy of evidence for clinical decision tools 

Level 1 

Rules that can be used in a wide variety of 
settings with confidence that they can change 
clinical behavior and improve patient 
outcome 

At least 1 prospective validation and 1 impact 
analysis, demonstrating change in clinician 
behavior with beneficial consequences 

Level 2 
Rules that can be used in various settings 
with confidence in their accuracy 

Demonstrated accuracy in either 1 large 
prospective study including a broad spectrum 
of patients and clinicians or validated in 
several smaller settings that differed from 
one another 

Level 3 

Rules that clinicians may consider using with 
caution and only in patients in the study are 
similar to those in the clinician’s clinical 
setting 

Validated in 1 narrow prospective sample 

Level 4 
Rules that need further evaluation before 
they can be applied in the clinical setting 

Derived but not validated or validated in split 
samples, large retrospective databases, or by 
statistical techniques 

From: “McGinn T, et al. Users' Guides to the Medical Literature XXII: How to Use Articles About Clinical Decision Rules. 
JAMA 2000” 

Investigators who develop a CDT begin by constructing a list of potential predictors of the outcome 

of interest. The list typically includes items from the history, physical examination, and basic laboratory 

tests. The investigators then examine a group of patients and determine if the candidate clinical predictors 

are present and the patient's status on the outcome of interest. Statistical analysis reveals which predictors 

are most powerful and which predictors can be omitted from the rule without loss of predictive power. 

Typically, the statistical techniques used in this process are based on logistic regression [22]. Other 

techniques that investigators sometimes use include discriminant analysis, which produces equations 

similar to regression analysis; recursive partitioning analysis, which builds a tree in which the patient 

populations are split into smaller and smaller categories based on risk factors; and neural networks [23–

25]. 

Even rigorously derived CDT should not be used in clinical practice without further validation. 

Indeed, CDT may reflect associations between given predictors and outcomes that are due primarily to 

chance. If that is so, a different set of predictors will emerge in a different group of patients, even if the 

patients come from the same setting. Moreover, predictors may be peculiar to the population or to the 

clinicians using the tool, and the rule may fail in a new setting. Finally, clinicians may, because of problems 

in the feasibility of rule application in the clinical setting, fail to implement a rule comprehensively or 

accurately. The result would be that a rule succeeds in theory but fails in practice. Statistical methods can 

deal with the first of these problems. For instance, investigators may split their population into 2 groups 

and use one to develop the rule and the other to test it. Alternatively, they may use more sophisticated 

statistical methods built on the same logic. Conceptually, these approaches involve removing 1 patient 
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from the sample, generating the rule using the remainder of the patients, and testing it on the patient who 

was removed from the sample. This procedure, sometimes referred to as a bootstrap technique, is 

repeated in sequence for every patient being studied [26]. 

While statistical validation within the same setting or group of subjects reduces the likelihood that 

the rule reflects the play of chance rather than true associations, it fails to address the other 2 threats to 

validity. The success of the CDT may be peculiar to the populations of patients and clinicians involved in the 

derivation study. Even if this is not so, clinicians may have difficulties using the rule in practice, difficulties 

that compromise its predictive power. Validation of a CDT involves demonstrating that its repeated 

application as part of the process of clinical care leads to the same results. Ideally, a validation entails the 

investigators applying the rule prospectively in a new population with a different prevalence and spectrum 

of disease from that of the patients in whom the rule was derived. One key issue is to be sure that the CDT 

performs similarly in a variety of populations and in the hands of a variety of clinicians working in a variety 

of institutions. A second issue is to be sure that the CDT works well when clinicians are applying it 

consciously as a rule, as opposed to a purely statistical validation. 

Use of a CDT involves remembering predictor variables and often entails making calculations to 

determine a patient's probability of having the CDT's target outcome. Pocket cards and computer 

algorithms can facilitate the task of using complex CDTs. Nonetheless, CDTs demand clinician time and 

energy, and their use is warranted only if they change physician behavior and if that behavior change 

results in improved patient outcomes or reduced costs while maintaining quality of care. If these conditions 

are not met, whatever the accuracy of a CDT, attempts to use it systematically will be a waste of time. 

Many reasons might explain why an accurate CDT may not produce a change in behavior or an 

improvement in outcomes. First, clinical judgement may be as good as, if not better than, the CDT. If this is 

so, CDT information will not improve practice. Second, application of the tool might not be straightforward, 

and clinicians may, as a result, not use it. Finally, there may be practical barriers to acting on the results of 

the CDT.  

Ideally, an impact study would randomize patients, or larger administrative units, to the application 

or nonapplication of the CDT and follow up patients for all relevant outcomes (including quality of life, 

morbidity, and resource utilization).  

Logistic regression 

The logistic regression model is the most widely used statistical technique to find the best fitting 

(yet biologically reasonable) model to describe the relationship between the dichotomous characteristic of 

interest (dependent variable = response or outcome variable) and a set of independent (predictor or 

explanatory) variables. The model is flexible as it can incorporate categorical and continuous predictors, 
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non-linear transformations, and interaction terms. Logistic regression generates the coefficients  (and its 

standard errors and significance levels) of a formula to predict a logit transformation of the probability of 

presence of the characteristic of interest [27]. 

In medical and epidemiological studies, the Cox proportional hazard model is the most often used 

method for survival outcomes. It is the natural extension of the logistic model to the survival setting. 

Indeed, the Cox model is equivalent to conditional logistic regression, with conditioning at times where 

events occur. In the logistic model, we use an intercept in the linear predictor, while in the Cox model a 

baseline hazard function is used. The hazard function indicates the risk of the outcome during follow-up 

[28].  

Recursive partitioning 

Recursive partitioning or Classification And Regression Tree (“CART”) are statistical methods to 

construct binary trees [29,30]. The method is based on statistically optimal splitting (“partitioning”) of the 

patients into pairs of smaller subgroups. Splits are based on cut-off levels of the predictors, which produce 

maximum separation among two subgroups and a minimum variability with these subgroups with respect 

to the outcome. The predictor causing the largest separation is situated at the top of the tree, followed by 

the predictor causing the next largest separation, and so on. Splitting continues until the subgroups reach a 

minimum size or until no improvement can be obtained. Several variants of recursive partitioning 

algorithms are available which use different criteria to construct a tree [31,32].  

An advantage of a tree is its simple presentation. Some claim that a tree represents how physicians 

think: starting with the most important characteristic, followed by another characteristic depending on the 

answer on the first, etc. Indeed, humans are remarkably quick in pattern recognition based on a few clues. 

A true advantage may be that interaction effects are naturally incorporated in a tree, while a standard 

logistic regression model usually starts with main effects. So, when multiple, high-order interactions are 

expected in a huge data set, and only categorical predictors are considered, a tree might be a good choice 

[33].  

Disadvantages of trees can be noted by considering a tree as a special case of linear logistic 

regression. First, all continuous variables have to be categorized, which implies a loss of information. Also, 

the tree assumes interactions between all predictors. In regression analysis, it is common practice to 

include main effects of predictors when interactions are considered; this principle is not followed in tree 

modelling. A higher-order interaction term is included to model the effect of a predictor in a specific 

branch, and simply omitted from the other branches. A predictor is typically selected in one branch of the 

tree and not in another. This poses a clear risk of bias: predictors are selectively considered when their 

effects are relatively large, and not if their effects are small. 
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Even if we could use a stepwise selection method in a logistic model, a tree needs to be selective in 

the inclusion of predictors, as it might quickly run out of cases within branches. Limited power and model 

instability is a major problem in the development of trees. 

Artificial neural networks 

Artificial neural networks (ANNs) are complex non-linear models inspired by the working of 

biological neural networks (i.e. the central nervous system). They are used to estimate complex functions 

(i.e. non-linear) that require a large number of inputs [34]. ANNs are presented as systems of layers 

(multilayer) composed of neurons (also called perceptrons) which exchange messages between each other 

by synapsis (weights). The values of input variables (patient characteristics) are imported into the network 

via the input layer and multiplied with the weights of the connections. These multiplied values constitute 

the input of the next (hidden) layer, from where the process is continued to produce the output variables in 

the output layer. The synapses have numeric weights that can be tuned based on experience, making 

neural nets adaptive to inputs and capable of learning to minimize the error [35]. The number of hidden 

layers and number of nodes are chosen by the analyst [36].  

The use of ANNs has already shown promising results in emergency medicine. For example, ANNs 

have been developed to reduce computed tomography imaging for suspected craniocervical junction injury 

in major head trauma patients [37]. Artificial neural networks have also been used to predict the risk of 

myocardial infarction in patients with chest pain [38]. As one of the major problems in syncope risk 

stratification is that syncope itself can be the final common presentation of several conditions which are 

very heterogeneous in terms of prognosis, the absence of linearity in such a context could make the 

application of ANNs appealing. 

Clinical decision tools in syncope 

OESIL risk score 

The OESIL risk score was derived and validated in an Italian prospective multicenter study to 

identify predictors of 12-month death [12] The derivation cohort included 270 patients. To find 

independent predictors of mortality, 9 variables from history, physical examination and ECG were analyzed 

with t test (continuous variables) and 2 (categorical variables). 8 of them were found to be significantly 

associated with the outcome (p<0.10) and further analyzed with a Cox proportional hazards regression 

method. Hence the authors identified 4 independent predictors (with similar Hazard Ratios): age >65 years, 

absence of prodromes, abnormal ECG and history of cardiovascular disease. Each predictor was assigned 1 

point. Death rate increased proportionally with ascending OESIL risk score, ranging from 0% among those 

patients with a score of 0 to 57.1% among those with a score of 4. The Area Under the Receiver Operating 

Characteristics (ROC) curve (AUC) in the derivation cohort was 0.897. 
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Although the authors used a robust methodology to derive the rule, the 1-year follow-up limits its 

practical utility in the ED. Indeed, the emergency physician is interested in identifying, and possibly avoiding, 

short-term adverse events. Also, how the 9 predictors were chosen by the authors is unclear. 

EGSYS score 

The EGSYS score was derived and validated in an Italian prospective multicenter study to identify 

predictors of 24 months cardiogenic syncope [18]. The derivation cohort included 260 patients, 44 of which 

had a diagnosis of cardiogenic syncope at follow-up. To find the independent predictors of cardiogenic 

syncope, 52 predictors were analyzed with a 2 test. 14 of them were found to be significantly associated 

with the outcome (p<0.10) and further analyzed with logistic regression. Each of the 6 independent 

predictors identified was assigned a score between -1 and 4 based on the multivariate logistic regression 

coefficient. A score ≥3 had a sensitivity, specificity and AUC of 95%, 61% and 0.904, respectively. 

EGSYS score has never been externally validated, therefore its use cannot be recommended in 

clinical practice. Moreover, the subjectivity of the outcome considered and its distance from the index 

event make the score less relevant to the emergency physician.  

San Francisco Syncope Rule 

The SFSR was derived in a prospective monocenter study in the United States [14]. The aim of the 

study was to find predictors of 7-day adverse events and death. The derivation cohort included 684 

patients, 79 of whom had serious outcomes. To find independent predictors of death or adverse events, 50 

candidate predictors were analyzed with the Mann-Whitney (continuous variables) and 2 (categorical 

variables) test. The 26 predictors that were found to be significantly related the outcome (p<0.10) and with 

a Cohen's kappa coefficient >0.5 (for subjectively assessed variables) were analyzed with recursive 

partitioning. The aim was to develop a model that would maximize the prediction of serious outcomes. 5 

independent predictors were selected: abnormal ECG, a complaint of shortness of breath, hematocrit less 

than 30%, systolic blood pressure less than 90 mm Hg, and a history of congestive heart failure. The rule is 

considered as positive in the presence of at least one predictor. Sensitivity and specificity were 96% and 

62%, respectively in the derivation cohort. 

SFSR is the most externally validated among syncope CDTs. Validation studies did not confirm the 

promising data of the rule derivation and this might be due to the use of recursive partitioning that could 

have led to overfitting and poor external validity. Moreover, after the publication of the study, the 

definition of “abnormal ECG” was much discussed. The authors stated that they considered all the ECGs 

performed in the ED, including telemetry. However, the detection of an arrhythmia during ECG monitoring 

should be considered a diagnosis, rather than an abnormal ECG.  
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ROSE rule 

The ROSE rule was derived and validated in a prospective monocenter UK study [13]. The aim was 

to find predictors of 30-day death and adverse events. The derivation cohort included 550 patients, 40 of 

which had serious outcomes. To find the independent predictors of death and adverse events variables 

from history, physical examination and ECG were analyzed with t test (continuous variables) and 2 

(categorical variables). Those found to be significantly correlated with the outcome (p<0.10) were analyzed 

with logistic regression. 9 independent predictors were therefore identified and subsequently analyzed 

with recursive partitioning, thus leaving 7 predictors for inclusion in the rule. The ROSE rule was considered 

as positive in the presence of at least 1 predictor. Sensitivity and specificity in the derivation cohort were 

93% and 74%, respectively. 

ROSE was the first syncope CDT considering a biomarker (the Brain Natriuretic Peptide) among the 

predictors. However, we must acknowledge some weaknesses: 1) the rule has never externally validated; 2) 

the sample size was calculated based on the planned multivariate regression analysis. However, the 

authors decided to further reduce the number of predictors with recursive partitioning. As this had not 

been planned in advance, the methodological validity of the study might be compromised. 

Boston syncope criteria 

The authors of this score did not derive it based on prospectively collected data, but they 

considered as predictors, variables identified by guidelines or experts in the field [19]. The Boston syncope 

criteria have indeed scarce clinical utility, as it is based on a high number of variables. Also, some of them 

(i.e. brain ischemia) are considered both risk factors and outcome measures. 

Canadian Syncope Risk Score  

The Canadian Syncope Risk Score was derived and internally validated in a prospective multicenter 

Canadian study [20]. The aim was to find predictors of 30-day adverse events and death. Of the 4030 

patients enrolled, 254 had serious outcomes. To find independent predictors of death or adverse events 43 

variables from history, physical examination, ECG, vitals, and blood tests were assessed. Those with less 

than 5 associate events, a variance inflation factor for multicollinearity >5, more than 25% of missing 

values, and a low interrater agreement (κ <0.4) were excluded. Then a univariate analysis with 2 of Fisher 

exact test (categorical variables) and t test (continuous variables) was performed. Continuous predictors 

were dichotomized using a combination of clinical rationale and analysis of receiver operating characteristic 

curves, which identified the optimal cut-off point based on measures of sensitivity, specificity and the 

Youden Index. After categorization, the 23 predictors selected by bivariable analysis were included in a 

multivariable logistic regression model, which was reduced by stepwise backward elimination with a 5% 

significance level to stay in the model. The score was created multiplying the regression coefficients by the 
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shrinkage factor. The score ranges from −3 to 11, with a shrinkage-adjusted expected risk ranging from 

0.4% to 83.6%, respectively. Internal validation was carried out with the use of 500 bootstrap samples. The 

sensitivity and specificity were 99.2% and 25.4%, respectively with a cut-off ≥-2, and 97.7% and 45.1%, 

respectively with a cut-off ≥-1. The AUC was 0.88. 

The Canadian Syncope Risk Score is the CDT on syncope that was derived in the largest available 

dataset, therefore the high number of serious outcomes should give stability to the multivariate model. 

Moreover, the choice not to establish an arbitrary cut-off, but rather to provide the probability of adverse 

events based on the score, could increase its clinical utility. However, we must acknowledge some 

limitations: 1) as no external validation exists, it should not be used in clinical practice; 2) data on one of 

the predictors (troponin) is missing in about a half of the enrolled patients and the authors arbitrarily 

supposed that a missing value implied a normal value; 3) although the observation of serious outcomes in 

the ED was one of the exclusion criteria, two of the predictors included in the model were an ED diagnosis 

of vasovagal or cardiogenic syncope. 

Limits of the currently available CDTs 

Although the derivation studies showed promising results for a possible use of the above CDT in 

patients presenting to the ED for syncope, some limitations have to be acknowledged. Only two scores 

(SFSR and OESIL) have been externally validated, and no CDT should be used in clinical practice without an 

external validation [21]. External validation studies and systematic reviews have failed to confirm the data 

of derivation studies [16,39]. Moreover, an individual-patient data meta-analysis showed that the 

sensitivity, specificity or prognostic yield of the currently available CDTs is not better than clinical judgment 

in predicting short-term serious outcome after syncope [40]. Therefore, the use of CDT is no more 

recommended in the assessment of ED syncope patients [41]. 
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AIMS 

Aim of the present work was to compare multivariate logistic regression and ANN to analyze the 

possible similarities, differences, strengths and weaknesses of the two methods in predicting serious 

adverse events in patients presenting with syncope to the ED. In case none of such methods succeeded in 

an accurate prediction, we aimed at finding possible alternative methods to risk stratify syncope patients. 
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MATERIALS AND METHODS 

Data collection 

Individual patients’ dataset 

To retrospectively derive and compare a multivariate logistic regression model and a ANN, we built 

an individual-patient dataset of patients prospectively included in studies enrolling syncope patients in the 

ED and for whom a 7-10 days follow-up was available. 

Therefore, we performed a systematic literature search in Embase and PubMed looking for the 

words “syncope”, “emergency service” and “clinical prediction guides” and their synonyms. We imposed no 

language restriction. We then wrote the corresponding author of each study to ask for individual patients’ 

data. 

Prospective dataset 

Patients for the prospective validation of the above tools were enrolled in a prospective 

multicenter study that was held in 6 hospitals in northern Italy: Niguarda, Policlinico and Sacco Hospitals in 

Milano, Humanitas Research Hospital in Rozzano, Alessandria Hospital and Santa Croce Hospital in 

Moncalieri. 

Inclusion criteria 

We enrolled adult (i.e. >18 years) patients that were admitted after syncope in the ED of one of the 

participating centers between September 2015 and February 2017. 

Exclusion criteria 

 LOC following head trauma; 

 Non-spontaneous consciousness recovery; 

 Episodes of ground fall, dizziness or lightheadedness without LOC; 

 LOC associated with alcohol or drugs abuse; 

 Pregnancy or breastfeeding; 

 Inability to provide informed consent to the study or to complete follow-up; 

 Syncope as underlying symptom of acute conditions that were diagnosed in the ED or requiring 

therapeutic intervention irrespective of syncope (acute myocardial infarction, pulmonary embolism, 

aortic dissection, cerebral hemorrhage, arrhythmias diagnosed before ECG monitoring in the ED); 

 Non-syncopal LOC (i.e. history of epilepsy); 

 Poor prognosis in the next 30 days.  
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Data collection 

Personal data, past medical history and features of the syncopal episode were collected for each 

patient according to a previous consensus [42]. The ED physicians managed the patients irrespective of the 

study inclusion and were asked about the perceived risk of adverse events (based on clinical judgement). In 

case of admission, a copy of the hospital discharge letter was retrieved. A 7 and 30-day telephone follow-up 

was performed to assess the occurrence of any adverse events. 

The study was approved by the Ethical Committee on Human Research of the Coordinating Centre 

(Ospedale “L.Sacco”), and participants provided written consent. Oral consent was obtained in patients 

discharged from ED that were interviewed by phone. 

Definitions 

Syncope was defined as a transient loss of consciousness with loss of postural tone, likely due to 

transient global cerebral hypoperfusion and characterized by rapid onset, short duration, and spontaneous 

complete recovery [1]. 

ECG monitoring was considered positive in the presence of any of the following [41]: 

 Sinus arrest with cardiac pause >3 seconds; 

 Sustained or non-sustained ventricular tachycardia, whether symptomatic or asymptomatic; 

 High grade atrioventricular (AV) block (second-degree type 2 or third-degree AV block); 

 Bradycardia <30 beats per minute (bpm) whether symptomatic or asymptomatic; 

 Bradycardia <50 bpm in a symptomatic patient; 

 Tachycardia >120 bpm in a symptomatic patient. 

We defined as abnormal ECG the presence of any of the following abnormalities at ED presentation [41,42]:  

 Non-sinus rhythm (including paced rhythm); 

 Sinus bradycardia ≤40 bpm; 

 Left bundle branch block; 

 Delta waives; 

 Prolonged QRS (>120 milliseconds); 

 Prolonged QTc (>450 milliseconds); 

 Brugada pattern; 

 Q⁄ST⁄T changes consistent with acute or chronic ischemia. 

We considered as adverse events any of the following [42]: 

 Cardiac death and syncope-related death; 
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 Ventricular fibrillation; 

 Sustained ventricular tachycardia and symptomatic non-sustained ventricular tachycardia; 

 Paroxysmal or new onset atrial fibrillation; 

 Sinus arrest with cardiac pause >3 seconds; 

 Sick sinus syndrome with alternating bradycardia and tachycardia; 

 Second-degree type 2 or third-degree AV block; 

 Permanent pacemaker (PM) or implantable cardioverter defibrillator (ICD) with cardiac pauses; 

 Aortic stenosis with valve area ≤1 cm2; 

 Hypertrophic cardiomyopathy with outflow tract obstruction; 

 Left atrial myxoma or thrombus with outflow tract obstruction; 

 Myocardial infarction; 

 Pulmonary embolism; 

 Aortic dissection; 

 Occult hemorrhage or anemia requiring transfusion; 

 Syncope or fall resulting in major traumatic injury (trauma that requires admission or 

procedural⁄surgical interven�on); 

 PM or ICD implantation; 

 Cardiopulmonary resuscitation; 

 Syncope recurrence and syncope recurrence with hospital admission; 

 Cerebrovascular events. 

Data analysis 

Descriptive statistics for continuous and categorical variables were used to summarize the baseline 

characteristics of patients enrolled. 

Logistic regression analysis 

Potential predictors of short-term severe outcomes were first individually evaluated and then 

analyzed by multivariate logistic regression analysis with and without interaction variables with a stepwise 

selection strategy. In case of one predictor was missing in one patient, it was considered as absent. 

Artificial neural networks 

Prior to ANN development, we set optimal desired values of sensitivity and specificity for ANN 

training. To improve the robustness of results, a bootstrap resampling procedure for 100 iterations was 

performed on the full data set. Each random resampling was divided into training and validation sets. In the 

first phase, elements from the training samples (both clinical and demographic characteristics, and outcome 

information) were introduced into the model using the back-propagation supervised training algorithm. The 
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ANN calculated weight matrices until a predefined error threshold was reached and the best weight matrix 

(in terms of sensitivity and specificity) was identified. Once the weights and ANN framework were defined 

(i.e. type of activation functions between layers; number of hidden layers and their nodes; other technical 

parameters, such as the search function for the optimal gradient), these parameters were applied to the 

validation samples, which were introduced into the ANN without any information on the outcomes. The ANN 

applied the framework to the new data in order to test the ability of the model to provide the correct 

classification (in our case, to correctly identify patients with a high risk of a serious outcome). We used a 

conventional approach which used 4/5 of the population for the training set and 1/5 for the validation set. 

In the derivation setting, both the sensitivity and specificity thresholds were set to 1. 

 

The overall diagnostic performance of both multivariate logistic regression and ANN was assessed 

with ROC curves and their AUC. To test the predictive accuracy of the models if used to either discharge or 

admit patients, we pre-defined three cut-offs: 2% (probability of adverse events below which a patient 

should be discharged), 30% and 50% (probabilities of adverse events above which a patient should be 

considered for admission). For each cut-off we calculated sensitivity, specificity, positive and negative 

predictive values. 

Analyses were performed using the SAS (release 9.4) and MATLAB (release R2012b, 64bit) statistical 

software. 
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RESULTS 

Retrospective analysis 

Individual patient data dataset 

We selected 13 studies (published by 11 authors) meeting our inclusion criteria. Six authors agreed 

to provide data, for a total of 3681 patients [13,14,18,43–46]. Here the details of the included studies: 

 Grossman 2007: 293 patients, prospective validation of the Boston Syncope criteria [43]; 

 Del Rosso 2008/Ungar 2010: 465 patients, EGSYS derivation and internal validation/prognosis of the 

patients enrolled in the EGSYS study [18,44]; 

 Reed 2010: 1067 patients, derivation and validation of the ROSE rule [13]; 

 Quinn 2004: 684 patients, derivation of the SFSR [14]; 

 Costantino 2008: 695 patients, STePS study to analyze the short and long-term prognosis of syncope 

[45]; 

 Sun 2007: 477 patients, external validation of the SFSR [46]. 

Each database was assessed to make data homogeneous. Abnormal ECG and short-term (i.e. 7-10 

days) adverse events were codified according to the above criteria [42]. Outcomes happening in the ED were 

also included. 

The common dataset included all the following variables: 

 Age; 

 Sex; 

 Peripheral oxygen saturation; 

 Hematocrit; 

 Syncope during exertion, in supine or sitting position; 

 Syncope associated with chest discomfort; 

 Syncope associated with shortness of breath; 

 Syncope associated with palpitations; 

 Syncope associated with trauma; 

 Syncope without any prodromes; 

 History of congestive heart failure; 

 History of cardiovascular disease; 

 History of cerebrovascular disease; 

 History of arterial hypertension 

 Systolic blood pressure below 90 mmHg; 
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 Abnormal ECG; 

 Admission to hospital vs ED discharge; 

 Death and adverse events in the ED, at 10 and 30 days. 

We selected as candidate predictors the variables that were present in at least 5 of the 6 datasets. 

We identified 10 common variables: age, sex, syncope during exertion, syncope associated with trauma, 

abnormal ECG, history of cardiovascular disease, history of cerebrovascular disease, history of previous 

syncope, absence of prodromes, and history of arterial hypertension. 

Due to the lack of data on some of the predictors, one dataset was subsequently excluded [43], 

leaving 3388 patients for the analysis. Table 3 shows the main characteristics of the included patients.
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Table 3 - Characteristics of the included patients 

Variables EGSYS SFSR STePS ROSE Sun 2007 Total 

Total number of patients 465 684 695 1067 477 3388 

Age, median (IQR) 70 (45-81) 70 (42-81) 64 (41-78) 69 (48-81) 58 (35-79) 67 (43-80) 

N of admitted patients (%) 178 (38) 364 (53) 265(38) 538 (50) 286 (60) 1631 (48) 

N of men (%) 253 (54) 281 (41) 306 (44) 480 (45) 210 (44) 1530 (45) 

N of patients with history of syncope (%) 195 (42) 124 (18) 389 (56) 176 (16) 160/457 1044/2931 (36) 

N of patients affected by hypertension 
(%) 

184 (40) 204 (30) 276 (40) 409 (38) 185/470 (37) 1258/2918 (43) 

N of patients without prodromes (%) 122 (26) 260 (38) 195 (28) 410 (38) 141 (30) 1128 (33) 

N of patients with syncope during 
exertion (%) 

15 (3) 53 (8) 15 (2) 61 (6) 74/466 (16) 218/2922 (7) 

N of patients with trauma following 
syncope (%) 

133 (29) 45 (7) 162 (23) 316 (30) n.a. 656/2911 (23) 

N of patients with abnormal ECG (%) 178 (38) 222 (32) 202 (29) 665 (62) 170 (36) 1437 (42) 

N of patients with a history of 
cardiovascular disease (%) 

153 (33) 139 (20) 178 (26) 284 (27) 150 (31) 904 (27) 

N of patients with a history of 
cerebrovascular disease (%) 

166 (36) 115(17) 227(33) n.a. 169 (35) 677/2321 (29) 
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N of patients with serious outcomes at 10 
days (%)* 

93 (20) 81 (12) 44 (6) 49 (5) 62 (13) 329 (10) 

N of deaths 6 6 7 6 1 26 (1) 

N of arrhythmias 31 30  20 32  

N of cardiopulmonary 
resuscitations 

  5 2   

N of myocardial infarctions 6 33   1  

N of structural cardiopulmonary 
diseases 

9 10  14 6  

N of PM insertions or malfunctions 43  25 11 2  

N of ICD insertions or malfunctions 5  2    

N of haemorrhages  24  7 8  

Table legend: IQR: interquartile range; ECG: electrocardiogram; PM: pacemaker; ICD: Implantable Cardioverter Defibrillator; n.a.: not available. *Some patients had more than one outcome.
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Logistic regression 

At univariate analysis, the risk factors significantly associated with severe short-term outcomes 

were: age, male gender, syncope during exertion, abnormal ECG, history of cardiovascular disease, history 

of cerebrovascular disease, absence of prodromes, and history of arterial hypertension (Table 4). 

Table 4 - Risk factors for severe short-term outcomes within 10 days (univariate analysis) 

 Severe Outcomes 

 Yes (%) (n=329) No (%) (n=3059) p-value* 

Male gender, n (%) 196 (60) 1334 (44) <0.0001 

Age, n (%)   <0.0001 

< 45 years 24 (7) 869 (28)  

≥ 45 and < 65 years 56 (17) 658 (22)  

≥ 65 years 249 (76) 1532 (50)  

Syncope during exertion, n (%) 31 (9) 187 (6) 0.0211 

Trauma following syncope, n (%) 64 (19) 592 (19) 0.9651 

Abnormal ECG, n (%) 229 (70) 1208 (39) <0.0001 

Medical history, n (%)    

Cardiovascular disease 161 (49) 743 (24) <0.0001 

Cerebrovascular disease 132 (40) 545 (18) <0.0001 

Arterial hypertension 154 (47) 1104 (36) 0.0001 

Previous syncope 109 (33) 964 (31) 0.5491 

Absence of prodromes, n (%) 126 (38) 1002 (33) 0.0430 

*Chi-square test; ECG: electrocardiogram 

At multivariate analysis, male gender (adjusted odds ratio [OR] 1.6; 95% confidence interval [CI] 1.3 

to 2.0), age between 45 and 65 years (OR 2.3, 95% CI 1.4 to 3.8), age over 65 years (OR 3.5, 95% CI 2.3 to 

5.5), an abnormal ECG (OR 2.6, 95% CI 2.0 to 3.3), and a past medical history of cerebrovascular disease (OR 

1.9, 95% CI 1.5 to 2.5) were independent risk factors for the development of severe adverse outcomes in 

the short term (Table 5). The area under the Receiver Operating Characteristics (ROC) curve (AUC) for the 

multivariate model was 0.736 (Figure 2).  



Results 

24 
 

Table 5 - Risk factors for severe short-term outcomes within 10 days at logistic multivariate regression (stepwise 
selection) 

 
Adjusted Odds Ratio 

95% Confidence 
Interval 

p-value* 

Male gender 1.6 1.3 – 2.0 0.0001 

Age   <0.0001 

< 45 years 1.0   

≥ 45 and < 65 years 2.3 1.4 – 3.8  

≥ 65 years 3.5 2.3 – 5.5  

Abnormal ECG 2.6 2.0 – 3.3 <0.0001 

Medical history of cerebrovascular 
disease 

1.9 1.5 – 2.5 <0.0001 

*Chi-square test; ECG: electrocardiogram 

Figure 2 - ROC curve for the multivariate model 

 

The multivariate model with interaction variables showed a similar predictive accuracy, with an 

AUC of 0.745. The risk factors for severe short-term outcomes within 10 days at logistic multivariate 

regression with interaction variables are reported in Table 6.  
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Table 6 - Risk factors for severe short-term outcomes within 10 days at logistic multivariate regression with interaction 
variables (stepwise selection) 

 p-value* 

Age class <0.0001 

Sex 0.0002 

Abnormal ECG <0.0001 

Medical history of cerebrovascular disease <0.0001 

Age class x medical history of cerebrovascular disease 0.0004 

Abnormal ECG x medical history of cerebrovascular disease 0.0373 

*Chi-square test; ECG: electrocardiogram 

Artificial Neural Networks 

For the purpose of the derivation of ANN, two datasets were excluded from the analysis because of 

the absence of at least one of the above predictor variables [13,46]. The remaining three datasets had 19 

patients with missing data, therefore the final analytic cohort included 1825 patients [14,18,45]. 4/5 of the 

population (1460 patients) were used for the ANN training, and 1/5 (365 patients) for the internal 

validation of the ANN. At the optimal cut-off of 0.064 identified during the training phase, the sensitivity, 

specificity and AUC of ANN in identifying short-term adverse events were 93%, 67% and 0.786, respectively 

(Table 7 and Figure 3) [47]. 

Table 7 - Predictive accuracy of the ANN  

Validation 
Patients 

(n) 
Events 

(n) 
FP (n) FN (n) Sensitivity Specificity AUC 

1/5 of the 
population 

365 41 100 7 0.83 0.69 0.786 

Table legend: FP: false positives; FN: false negatives; AUC: Area Under the Curve 

  



Results 

26 
 

Figure 3 - ROC curve for the ANN (1/5 of the population) 

 

Prospective validation 

Prospective database 

From September 2015 to February 2017 we enrolled 354 patients who presented to the ED for 

syncope. 179 (51%) were males and 175 (49%) females. Median age was 72 years (Interquartile range, IQR 

52 to 81 years). 11 patients were enrolled at Alessandria hospital, 81 at Humanitas Research Hospital 

(Rozzano), 15 at Moncalieri Hospital, 62 at Niguarda Ca’ Granda Hospital (Milano), 119 at Ospedale Maggiore 

Policlinico (Milano), and 66 at Sacco Hospital (Milano). The patients judged at low, intermediate and high risk 

by the ED physician were 98, 183 and 73, respectively. 107 patients were admitted, 246 were discharged and 

1 patient was discharged against medical advice. As the ED physician disposition would have been the 

patient’s admission, we considered this patient as if he/she was admitted to hospital. Therefore, the 

admission rate was 30.5% 

The main characteristics of the population are reported in Table 8. ECG was not performed in 8 

patients.  
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Table 8 - Characteristics of the enrolled patients 

 n (%) 

Patients enrolled 354 

Patients’ characteristics  

Male sex 179 (51) 

Median age (IQR) 72 (52-81) 

Median systolic blood pressure, mmHg (IQR) 130 (115-150) 

Median heart rate, bpm (IQR) 76 (66-86) 

Characteristics of the syncopal episode 

Syncope during working activity 20/350 (6) 

Syncope during exertion 5 (1) 

Syncope during driving 2 (1) 

In supine position 8 (2) 

In sitting position 103 (29) 

In orthostatic position 211 (60) 

While standing from the sitting position 35 (10) 

Postprandial syncope 40 (11) 

Trauma following syncope 132 (37) 

Syncope without prodromes 110 (31) 

Syncope associated with:  

Chest pain 22 (6) 

Shortness of breath 19 (5) 

Palpitations 16 (5) 

Lightheadedness 84 (24) 

Nausea/vomiting 70 (20) 

Sensation of warmth 31 (9) 

Sweating 70 (20) 

Blurred vision 68 (19) 

Triggered by pain/stressors 24 (7) 

Triggered by cough/micturition/defecation 24 (7) 

Hematocrit <30% 12/350 (3) 

Hemoglobin <9 g/dl 10/351 (3) 

Systolic arterial blood pressure <90 mmHg 11/353 (3) 

Past medical history 

Syncope in the previous year 94 (27) 

Congestive heart failure 9 (3) 
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Ischemic cardiomiopathy 53 (15) 

Structural heart disease 24 (7) 

Aortic stenosis 7 (2) 

Left ventricular outflow obstruction 1 (0) 

Left ventricular hypertrophy 6 (2) 

Left ventricular ejection fraction <40% 9 (3) 

Pulmonary hypertension 11 (3) 

Valvular heart disease 10 (3) 

Arrhythmias 37 (10) 

Previous PM implant 12 (3) 

Previous ICD implant 2 (1) 

Sick sinus syndrome 1 (0) 

Mobitz 2 second- or third-degree AV block 3 (1) 

Arterial hypertension 189 (53) 

Stroke/TIA 28 (8) 

Neoplasm 45 (13) 

Cronic kidney disease (serum creatinine ≥2 mg/dl) 14 (4) 

COPD 20 (6) 

ECG findings (346 patients with ECG results available) 

Bradycardia <50 bpm 14 (4) 

First-degree AV block 35 (10) 

Mobitz 1 second-degree AV block 3 (1) 

Right bundle branch block 37 (11) 

Left bundle branch block 11 (3) 

Left anterior fascicular block 26 (8) 

Previous myocardial infarction 23 (7) 

Left ventricular hypertrophy 5 (1) 

Ventricular ectopic beats 13 (4) 

Supraventricular ectopic beats 14 (4) 

Atrial fibrillation 24 (7) 

Sinus bradycardia <60 bpm 40 (12) 

Sinus tachycardia >100 bpm 23 (7) 

Prolonged QT interval 7 (2) 

Table legend: n: number; IQR: interquartile range; PM: pacemaker; ICD: Implantable Cardioverter Defibrillator; AV: atrioventricular; 
COPD: chronic obstructive pulmonary disease; TIA: transient ischemic attack; ECG: electrocardiogram. 

After 7 days of follow-up 48 patients (13.6%) had serious outcomes, 2 of whom died (Table 9).  
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Table 9 – Serious outcomes at the 7-day follow-up 

7-day serious outcomes n 

Total patients with events 48 (14%) 

Death 2 

Ventricular fibrillation 1 

Sustained ventricular tachycardia 1 

Non-sustained ventricular tachycardia 2 

Atrial fibrillation 12 

Cardiac pause 7 

Sick sinus syndrome 3 

Mobitz 2 second-degree AV block 1 

Third-degree AV block 4 

PM disfunction with pause 2 

Acute myocardial infarction 2 

Pulmonary embolism 1 

Acute hemorrhage 4 

Syncope with trauma 1 

Syncope with hospitalization 2 

PM or ICD implant 20 

Cerebrovascular events 1 

Table legend: n: number; PM: pacemaker; ICD: Implantable Cardioverter Defibrillator; AV: atrioventricular. 

The prevalence of predictors in patients with and without 7-day serious outcomes is reported in 

Table 10. 

Table 10 - Prevalence of predictors in patients with and without 7-day adverse events 

 Serious outcomes 

 Yes (%) (n=48) No (%) (n=306) 

Male gender, n (%) 25 (52) 154 (50) 

Age, n (%)   

< 45 years 2 (4) 59 (19) 

≥ 45 and < 65 years 6 (12) 71 (23) 

≥ 65 years 40 (83) 176 (58) 

Syncope during exertion, n (%) 1 (2) 4 (1) 

Trauma following syncope, n (%) 21 (44) 111 (36) 

Abnormal ECG, n (%)* 37 (77) 120 (39) 

Medical history, n (%)   
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Cardiovascular disease 20 (42) 88 (29) 

Cerebrovascular disease 5 (10) 23 (8) 

Arterial hypertension 30 (62) 159 (52) 

Previous syncope 27 (56) 233 (76) 

Absence of prodromes, n (%) 21 (44) 89 (29) 

Table legend: *ECG was not performed in 8 patients, 1 with and 7 without outcomes; ECG: electrocardiogram; n: number. 

Logistic regression 

The AUC of the multivariate regression model in the prospective cohort was 0.726 (Figure 4). The 

predictive accuracy of the model according to the three pre-defined cut-offs is reported in Table 11. 

Figure 4 - ROC curve for the validation of the multivariate model 

 

Table 11 - Predictive accuracy of the multivariate regression model according to different cut-offs 

Cut-off FP (n) FN (n) Sensitivity Specificity PPV NPV 
Patients with 
a decision§ (n) 

2% 282 1 0.98 0.78 0.14 0.96 25 (7%) 

30% 6 45 0.63 0.98 0.33 0.87 9 (3%) 

50%* n.e. n.e. n.e. n.e. n.e. n.e. 0 

Table legend: n: number; FP: false positives; FN: false negatives; PPV: positive predictive value; NPV: negative predictive value; n.e.: 
not estimable; *no patient had an estimated probability above 50%; §: proportion of patients below the 2% or above the 30% and 
50% thresholds for discharge and admission on the total number of patients (i.e. 354). 
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Artificial Neural Networks 

The AUC of the ANN in the prospective cohort was 0.694 (Figure 5). The predictive accuracy of the 

model according to the three pre-defined cut-offs is reported in Table 12. 

Figure 5 - ROC curve for the validation of ANN 

 

Table 12 - Predictive accuracy of ANNs according to different cut-offs 

Cut-off FP (n) FN (n) Sensitivity Specificity PPV NPV 
Patients with 
a decision§ (n) 

2% 297 1 0.98 0.29 0.14 0.90 10 (3%) 

30% 49 33 0.31 0.84 0.23 0.89 64 (18%) 

50% 18 41 0.15 0.94 0.28 0.88 25 (7%) 

Table legend: n: number; FP: false positives; FN: false negatives; PPV: positive predictive value; NPV: negative predictive value; §: 
proportion of patients below the 2% or above the 30% and 50% thresholds for discharge and admission on the total number of 
patients (i.e. 354). 

Possible future perspectives: attribute matching 

Since the poor predictive accuracy of the analyzed models, we tried to identify alternative methods 

to provide an estimate of the risk of adverse events. 

We hypothesized that accurate pretest probability assessments can be obtained by matching an 

individual patient to a group of previously studied patients who shared the same clinical characteristic, and 

determining the percentage of these previously studied patients who had the outcome of interest. This 

hypothesis proposes a method of inference that differs substantially from both the logistic regression and 

ANNs. Instead of treating each clinical characteristic as an independent value and adding up the 
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coefficients, this method proposes a system that forces the probability to be computed from a dependent 

set of clinical characteristics. In other words, all chosen characteristics of a patient of interest (or attributes) 

must be matched to an identical profile of attributes shared by a group of patients with known outcomes 

contained in a large derivation database. This approach has already been described to assess the pre-test 

probability of acute coronary syndrome and pulmonary embolism in patients with chest pain [48–50]. This 

process results in a denominator of all matched patients and numerator of patients with serious outcomes, 

and the quotient reveals the pretest probability that can be expressed as a percentage value. 

We used as derivation database the retrospective cohort or 3388 patients who were evaluated for 

syncope and for whom outcomes were known. And we considered as predictors the same 10 variables that 

were assessed in the derivation of the logistic and ANN models. 

The attribute matching method used 515 of the 1536 possible unique pre-test probability 

estimates. No patient in the derivation database matched the remaining 1021 combinations of predictors. 

The median match size (or denominator, i.e. the number of patients with the same combination of 

predictors) used to compute the pretest probability from the attribute matching method was 2 (IQR 1 to 7, 

range 1 to 128). Only 9 of the 515 (2%) pre-test probability estimates had a match size ≥50 patients, 19 (4%) 

had a match size ≥30 patients, and most (420, 82%) had a match size <10 patients. The top 10 most 

frequent matching profiles are shown in Table 13.



Results 

33 
 

Table 13 - Top 10 most frequent matching profiles 
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138 3 2.2% F <45 no no no yes no no no no 

112 0 0% F <45 no no no no no no no no 

83 2 2.4% M <45 no no no yes no no no no 

64 1 1.6% F <45 no no yes yes no no no no 

63 2 3.2% F ≥65 no no no yes no no no no 

59 1 1.7% F 45-64 no no no yes no no no no 

55 7 12.8% F ≥65 no no no yes no no yes yes 

50 3 6.0% F ≥65 no no no yes no no yes no 

50 3 6.0% M 45-64 no no no yes no no no no 

46 9 19.6% M ≥65 no no no yes no no no yes 

Table legend: n: number; ECG: electrocardiogram; *number of patients in the derivation dataset matched to the profile.
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Comparison with the previously derived methods 

We compared attribute matching to the previously derived prediction models. First, we calculated 

the Intraclass Correlation Coefficient (ICC) and its 95% confident intervals based on a mixed-effects model 

on the 1825 patients included in all the ANN, logistic regression and attribute matching derivation datasets 

[51]. The results are reported in Table 14. Figure 6, Figure 7 and Figure 8 represent the scatter plots to 

visually assess the correlation between the probability of adverse events predicted by logistic regression, 

ANN, and attribute matching. 

Table 14 – ICC and their 95% Confidence Intervals between attribute matching, logistic regression and ANN  

  95% CI 

Comparison 
Intraclass 

Correlation 
Lower bound Upper bound 

logistic regression and ANN 0.758 0.738 0.777 

logistic regression and attribute matching 0.457 0.420 0.493 

ANN and attribute matching 0.520 0.486 0.553 

Table legend: CI: Confidence Interval; ANN: Artificial Neural Network. 

Figure 6 – Scatter plot of the probability of adverse events predicted by logistic regression and ANN 
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Figure 7 - Scatter plot of the probability of adverse events predicted by logistic regression and attribute matching 

 

Figure 8 - Scatter plot of the probability of adverse events predicted by ANN and attribute matching 

 

Then, we performed the same analysis including only the 630 patients with a match size 

(denominator) of at least 30 patients. The results are reported in   
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Table 15. Figure 9 represents the scatter plots to visually assess the correlation between the 

probability of adverse events predicted by logistic regression, ANN, and attribute matching. 
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Table 15 - ICC and their 95% Confidence Intervals between attribute matching, logistic regression and ANN for the 
patients with a match size of at least 30 patients 

  95% CI 

Comparison 
Intraclass 

Correlation 
Lower bound Upper bound 

logistic regression and ANN 0.873 0.853 0.891 

logistic regression and attribute matching 0.962 0.958 0.965 

ANN and attribute matching 0.917 0.910 0.924 

Table legend: CI: Confidence Interval; ANN: Artificial Neural Network. 

Figure 9 - Scatter plot of the probability of adverse events predicted by logistic regression and ANN for the patients 
with a match size of at least 30 patients 
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Figure 10 - Scatter plot of the probability of adverse events predicted by logistic regression and attribute matching for 
the patients with a match size of at least 30 patients 

 

Figure 11 - Scatter plot of the probability of adverse events predicted by ANN and attribute matching for the patients 
with a match size of at least 30 patients 
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Prospective validation of the attribute matching 

Even if the small number of patients in the derivation dataset does not allow to draw conclusions 

on the selected predictors or the estimate precision, we applied attribute matching to the patients of the 

prospective database to understand the possible strengths and weaknesses of this approach. 

Among the 354 patients of the prospective database, we identified 179 unique pre-test probability 

estimates. As expected, only 2 of the 179 (1%) pre-test probability estimates had a match size ≥10 patients 

and most of them had a match size of 1 patient. 

Among the 515 unique combinations of predictors of the derivation database, 363 had no match in 

the validation dataset, while 33 patients (27 unique combinations of predictors) in the validation database 

had no match in the derivation one. Therefore, 33 patients (9%) could not be provided with a risk estimate 

with attribute matching. For the remaining 321 patients, the median estimated probability of serious 

outcomes was 2% (IQR 0% to 14%). The median probability estimates of logistic regression and ANNs were 

8% (IQR 5% to 12%) and 9% (IQR 5% to 25%), respectively. 

To assess the correlation between the attribute matching predicted probabilities in the derivation 

and validation cohort, we calculated the Spearman's rank correlation coefficient. The coefficient was 0.13, 

thus suggesting a very weak correlation between the probabilities predicted by different combinations of 

predictors. This can be due to the small number of subjects in both the derivation and validation cohorts 

and needs to be verified. 

The AUC of attribute matching in the prospective cohort was 0.589 (Figure 4). The predictive 

accuracy according to the three pre-defined cut-offs is reported in Table 16. 
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Figure 12 - ROC curve for the validation of attribute matching 

 

Table 16 - Predictive accuracy of attribute matching according to different cut-offs 

Cut-off FP# (n) FN# (n) Sensitivity# Specificity# PPV# NPV# 
Patients with 
a decision§ (n) 

2% 139 17 0.58 0.50 0.15 0.89 158 (45%) 

30% 18 36 0.12 0.94 0.22 0.88 23 (7%) 

50% 12 37 0.10 0.96 0.25 0.88 16 (5%) 

Table legend: n: number; FP: false positives; FN: false negatives; PPV: positive predictive value; NPV: negative predictive value; §: 
proportion of patients below the 2% or above the 30% and 50% thresholds for discharge and admission on the total number of 
patients (i.e. 354); #: 321 patients considered in this estimate. 

Considering only patients for whom the match size in the derivation cohort was ≥10 patients (the 

most represented combinations of predictors), we could provide a probability estimate in 157 patients 

(44%). The predictive accuracy according to the three pre-defined cut-offs is reported in Table 17. 

Table 17 - Predictive accuracy of attribute matching according to different cut-offs in 157 patients with at least 10 
matched patients in the derivation cohort 

Cut-off FP# (n) FN# (n) Sensitivity# Specificity# PPV# NPV# 
Patients with 
a decision§ (n) 

2% 93 3 0.77 0.35 0.10 0.94 54 (15%) 

30% 0 12 0.08 1 1 0.92 1 (0.3%) 

50%* n.e. n.e. n.e. n.e. n.e. n.e. 0 

Table legend: n: number; FP: false positives; FN: false negatives; PPV: positive predictive value; NPV: negative predictive value; *no 
patient had an estimated probability above 50%; §: proportion of patients below the 2% or above the 30% and 50% thresholds for 
discharge and admission on the total number of patients (i.e. 354); #: 157 patients considered in this estimate. 
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Considering only patients for whom the match size in the derivation cohort was ≥30 patients, we 

could provide a probability estimate in 52 patients (15%). The predictive accuracy according to the three 

pre-defined cut-offs is reported in Table 18. 

Table 18 - Predictive accuracy of attribute matching according to different cut-offs in 52 patients with at least 30 
matched patients in the derivation cohort 

Cut-off FP# (n) FN# (n) Sensitivity# Specificity# PPV# NPV# 
Patients with 
a decision§ (n) 

2% 27 1 0.68 0.45 0.08 0.97 23 (6%) 

30%* n.e. n.e. n.e. n.e. n.e. n.e. 0 

50%* n.e. n.e. n.e. n.e. n.e. n.e. 0 

Table legend: n: number; FP: false positives; FN: false negatives; PPV: positive predictive value; NPV: negative predictive value; *no 
patient had an estimated probability above 30% and 50%; §: proportion of patients below the 2% or above the 30% and 50% 
thresholds for discharge and admission on the total number of patients (i.e. 354); #: 52 patients considered in this estimate. 

Some practical examples 

To understand the possible strengths and weaknesses of all the existing risk prediction tools, 

logistic regression, ANN and attribute matching, we randomly selected 10 patients from the prospective 

database and applied all the above tools to estimate the predicted probability of adverse events. The cases 

descriptions and predicted probabilities for each patient, together with the ED physician’s perceived risk 

are reported in Table 19. 

Table 19 - Example clinical cases with the probabilities predicted by the single tools and clinical judgement 

Case Predicted probabilities 

69 years-old man 

Previous myocardial infarction with 
preserved left ventricular ejection 
fraction 

Postprandial syncope without prodromes 
while sitting 

BP 160/80 mmHg, HR 80, peripheral 
oxygen saturation 98%, respiratory rate 
14, normal body temperature 

ECG: Q waives in the inferior leads 

OESIL: 4 (high risk) – 57.1% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: 1 (medium risk) – 3.1% 30-day serious adverse 
events 

Neural networks: 48% of 10-day serious adverse events 

Multivariate analysis: 30% of 10-day serious adverse events 

Attribute matching: 20/3388, 10/20 events, 50% (95% CI 30-
70%) 10-day serious adverse events (2 deaths) 

ED physician risk assessment: high 

47 years-old man 

Unremarkable past medical history 

Syncope while sitting with prodromes 
(lightheadedness) 

BP 110/70 mmHg, HR 58, peripheral 
oxygen saturation 100%, respiratory rate 
14, normal body temperature 

ECG: sinus rhythm 54 bpm 

OESIL: 0 (low risk) – 0% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 29% of 10-day serious adverse events 

Multivariate analysis: 6% of 10-day serious adverse events 

Attribute matching: 50/3388, 3/50 events, 6% (95% CI 2-
16%) of 10-day serious adverse events, 0 deaths 
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ED physician risk assessment: intermediate 

72 years-old man 

Affected by arterial hypertension 

Syncope without prodromes while 
standing 

BP 110/80 mmHg, HR 62, peripheral 
oxygen saturation 96%, respiratory rate 
12, normal body temperature 

ECG: sinus rhythm 54 bpm 

OESIL: 2 (high risk) – 19.6% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 24% of 10-day serious adverse events 

Multivariate analysis: 8% of 10-day serious adverse events 

Attribute matching: 14/3388, 2/14 events, 14% (95% CI 4-
40%) of 10-day serious adverse events, 0 deaths 

ED physician risk assessment: intermediate 

21 years-old man 

Unremarkable past medical history 

Syncope without prodromes while 
standing with trauma 

BP 100/60 mmHg, HR 90, peripheral 
oxygen saturation 100%, respiratory rate 
16, normal body temperature 

ECG: sinus rhythm 65 bpm 

OESIL: 1 (low risk) – 0.8% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 5% of 10-day serious adverse events 

Multivariate analysis: 2% of 10-day serious adverse events 

Attribute matching: 11/3388, 0/11 events, 0% (95% CI 0-
26%) of 10-day serious adverse events, 0 deaths 

ED physician risk assessment: intermediate 

47 years-old woman 

Unremarkable past medical history 

Syncope with prodromes while sitting 

BP 120/75 mmHg, HR 92, peripheral 
oxygen saturation 98% 

ECG: sinus rhythm 62 bpm 

OESIL: 0 (low risk) – 0% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 2% of 10-day serious adverse events 

Multivariate analysis: 4% of 10-day serious adverse events 

Attribute matching: 59/3388, 1/59 events, 1.7% (95% CI 0.3-
9%) of 10-day serious adverse events, 0 deaths 

ED physician risk assessment: intermediate 

32 years-old man 

Unremarkable past medical history 

Syncope without prodromes while 
standing preceded by a painful stimulus 

BP 95/65 mmHg, HR 48, peripheral 
oxygen saturation 99%, respiratory rate 
16 

ECG: sinus rhythm 43 bpm with signs of 
vagal activity 

OESIL: 1 (low risk) – 0.8% 1-year all-cause mortality 

SFSR: 0 (low risk) – 0.8% of 7-day serious adverse events 
(negative LR 0.06 with a pre-test probability of 11.5%) 

Canadian: -1 (low risk) – 1.2% 30-day serious adverse events 

Neural networks: 10% of 10-day serious adverse events 

Multivariate analysis: 6% of 10-day serious adverse events 

Attribute matching: 9/3388, 0/9 events, 0% (95% CI 0-30%) 
of 10-day serious adverse events, 0 deaths 

ED physician risk assessment: low 

79 years-old man 

Unremarkable past medical history 

Syncope without prodromes while 
standing preceded by shortness of breath 

BP 125/80 mmHg, HR 80, peripheral 
oxygen saturation 100%, respiratory rate 
20, normal body temperature 

OESIL: 2 (high risk) – 19.6% 1-year all-cause mortality 

SFSR: 1 (high risk) – 24.7% of 7-day serious adverse events 
(positive LR 2.53 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 25% of 10-day serious adverse events 

Multivariate analysis: 8% of 10-day serious adverse events 
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ECG: sinus rhythm 56 bpm Attribute matching: 26/3388, 0/26 events, 0% (95% CI 0-13) 
of 10-day serious adverse events, 0 deaths 

ED physician risk assessment: high 

75 years-old woman 

Affected by atrial fibrillation 

Syncope while standing with trauma 
preceded by shortness of breath, 
lightheadedness, nausea and vomiting 

BP 70/40 mmHg, HR 74, peripheral 
oxygen saturation 93%, respiratory rate 
20, body temperature 37.7°C 

ECG: sinus rhythm 84 bpm, negative T 
waives in V3-V5 

OESIL: 2 (high risk) – 19.6% 1-year all-cause mortality 

SFSR: 3 (high risk) – 24.7% of 7-day serious adverse events 
(positive LR 2.53 with a pre-test probability of 11.5%) 

Canadian: 3 (medium risk) – 8.1% 30-day serious adverse 
events 

Neural networks: 14% of 10-day serious adverse events 

Multivariate analysis: 21% of 10-day serious adverse events 

Attribute matching: 1/3388, 0/1 events, 0% (95% CI 0-79) of 
10-day serious adverse events, 0 deaths 

ED physician risk assessment: high 

66 years-old woman 

Previous syncope the year before 

Syncope while standing with trauma 
preceded by chest pain, shortness of 
breath and lightheadedness 

BP 120/70 mmHg, HR 88, peripheral 
oxygen saturation 97%, respiratory rate 
23, normal body temperature 

ECG: sinus rhythm 82 bpm, V1 and V2 
leads compatible with Brugada pattern 

OESIL: 2 (high risk) – 19.6% 1-year all-cause mortality 

SFSR: 1 (high risk) – 24.7% of 7-day serious adverse events 
(positive LR 2.53 with a pre-test probability of 11.5%) 

Canadian: 0 (low risk) – 1.9% 30-day serious adverse events 

Neural networks: 33% of 10-day serious adverse events 

Multivariate analysis: 21% of 10-day serious adverse events 

Attribute matching: 0/3388, 0 events, 0% of 10-day serious 
adverse events, 0 deaths 

ED physician risk assessment: high 

90 years-old man 

Previous syncope the year before. Known 
ischemic cardiomyopathy with reduce 
ejection fraction, congestive heart failure, 
pulmonary hypertension, valvular heart 
disease and arterial hypertension 

Syncope while sitting with trauma 
preceded by lightheadedness 

BP 120/70 mmHg, HR 80, peripheral 
oxygen saturation 91%, respiratory rate 
24, normal body temperature 

ECG: sinus rhythm 84 bpm, negative T 
waives in the anterior and lateral leads 

OESIL: 3 (high risk) – 34.7% 1-year all-cause mortality 

SFSR: 1 (high risk) – 24.7% of 7-day serious adverse events 
(positive LR 2.53 with a pre-test probability of 11.5%) 

Canadian: 1 (medium risk) – 3.1% 30-day serious adverse 
events 

Neural networks: 10% of 10-day serious adverse events 

Multivariate analysis: 30% of 10-day serious adverse events 

Attribute matching: 27/3388, 6/27 events, 22% (95% CI 11-
41%) of 10-day serious adverse events, 1 death 

ED physician risk assessment: high 

Table legend: BP: blood pressure; HR: heart rate; ECG: electrocardiogram; ED: Emergency Department; CI: Confidence Interval; 
OESIL: Osservatorio Epidemiologico sulla Sincope nel Lazio risk score; SFSR: San Francisco Syncope Rule. 

The comparison of the risk predicted by different clinical decision tools, logistic regression, ANN, 

and attribute matching shows that there is a high heterogeneity within the same patient (Table 20). 
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Table 20 - Predicted probabilities according to different prediction tools, ANN, attribute matching and clinical judgement in the 10 example patients 

Case n 

OESIL SFSR 
Canadian Syncope Risk 

Score 
ANN 10-day 

SAE (%) 

Regression 
10-day SAE 

(%) 

Attribute matching 

ED physician 

score 
1-year 

mortality 
(%) 

score 
7-day 

SAE (%) 
score 

30-day 
SAE (%) 

patients at 
risk* 

10-day SAE 
(%) 

1 
4  

(high risk) 
57.1 

0  

(low risk) 
0.8 

1  

(medium risk) 
3.1 48 30 20 50 High risk 

2 
0  

(low risk) 
0 

0  

(low risk) 
0.8 

0  

(low risk) 
1.9 25 6 50 6 

Intermediate 
risk 

3 
2  

(high risk) 
19.6 

0  

(low risk) 
0.8 

0  

(low risk) 
1.9 24 8 14 14 

Intermediate 
risk 

4 
1  

(low risk) 
0.8 

0  

(low risk) 
0.8 

0  

(low risk) 
1.9 5 2 11 0 

Intermediate 
risk 

5 
0  

(low risk) 
0 

0  

(low risk) 
0.8 

0  

(low risk) 
1.9 2 4 59 1.7 

Intermediate 
risk 

6 
1  

(low risk) 
0.8 

0  

(low risk) 
0.8 

-1  

(low risk) 
1.2 10 6 9 0 Low risk 

7 
2  

(high risk) 
19.6 

1  

(high risk) 
24.7 

0  

(low risk) 
1.9 25 8 26 0 High risk 

8 
2  

(high risk) 
19.6 

3 

 (high risk) 
24.7 

3  

(medium risk) 
8.1 14 2 1 0 High risk 

9 
2  

(high risk) 
19.6 

1  

(high risk) 
24.7 

0  

(low risk) 
1.9 33 21 0 n.a. High risk 

10 
3  

(high risk) 
34.7 

1  

(high risk) 
24.7 

1  

(medium risk) 
3.1 10 30 27 22 High risk 

Table legend: OESIL: Osservatorio Epidemiologico sulla Sincope nel Lazio risk score; SFSR: San Francisco Syncope Rule; ANN: Artificial Neural Network; ED: Emergency 
Department; SAE: serious adverse events; *: number of patients with the same combination of risk factors; n.a.: non applicable. 
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DISCUSSION 

Risk stratification and appropriate disposition are challenging in the management of syncope 

patients in the ED. Syncope is a common symptom for a large number of conditions spanning from benign 

to life-threatening diseases, and its prognosis is highly heterogeneous [1,52].  

Recent evidence showed that clinical prediction tools have failed in identifying the risk associated 

with the conditions underlying syncope [16,39,40]. This could be due to different causes. First, the 

heterogeneity in syncope etiologies makes it difficult to find a single tool to identify all of them. Moreover, 

as syncope-related serious adverse events are relatively uncommon, the traditionally derived risk 

stratification tools may be overfit. For example, to be reliable in the short-term prediction of adverse 

events, multivariate analysis would need a high number of outcomes (about 10 every predictor identified). 

To overcome this problem, some of the available clinical prediction tools have considered a long-lasting 

time scale, i.e. 1 year, instead of a more useful but shorter one, for example 7–30 days. The use of a 1 year 

time scale gave the possibility to obtain a larger number of unfavorable events making the multivariate 

analysis approach robust enough [41,53]. Otherwise, the required sample size would be very large, and no 

currently available study has the required statistical power. Conversely, other studies considering short-

term adverse events used a recursive partitioning model to derive a ‘yes/no’ rule. However, continuous risk 

estimates may be more clinically relevant for making disposition (i.e. admit or discharge) decisions.  

Artificial neural networks could have overcome the limitations of the traditionally derived clinical 

prediction tools given their capability to approximate any type of functions, especially the non-linear ones. 

Indeed, the possibility to set more layers linked together with different functions results in both the 

possibility to generalize results and to improve the effectiveness of input data analysis.  

To assess the possible strengths and weaknesses and to compare the different statistical 

methodologies to derive prediction tools, we decided to derive both a multivariate logistic regression 

model and an ANN on the same large retrospective database and to prospectively validate them in a new 

dataset of 354 patients. Our data show that both the logistic model and ANN have a poor predictive 

accuracy in identifying serious adverse events in patients presenting with syncope to the ED and its use 

should be discouraged for both admission and discharge disposition. Moreover, the 10 example patients 

show how heterogeneously the risk of adverse events is estimated by the different tools. This means that, 

even if their accuracy is fair in the mean patient, we do not know what tool performs better in the single 

patient. Therefore, when assessing a specific patient, we know that some of them are probably correctly 

estimating the risk, but we do not know which ones.  

This report introduces a method to estimate of the probability of serious adverse based upon 

computer assisted, database-derived, attribute matching. The system operates by allowing the clinician to 



Discussion 

46 
 

input a predefined set of clinical attributes for a subject for whom the probability of a serious outcome is 

desired. When executed, a computer program queries a large patient database, and returns only the 

patients who share the identical attribute profile as the new patient being evaluated. The proportion of 

these attribute-matched subjects who had a clinical outcome of interest comprises the point estimate of 

the probability. This process is similar to the definition of pre-test probability by an expert clinician, which, 

having seen many patients who had similar clinical characteristics as the patient under consideration, could 

provide an estimate of the probability of something bad happening. 

We recognize that as the number and complexity of the input attributes increases, this will create a 

more specific and potentially more accurate clinical profile, but at a cost of reduced match size if the 

reference database remains the same size. In theory, the ideal attribute matching system would allow a 

very detailed clinical profile to be matched against a very large reference database. In the present work, we 

used a ten-attribute profile and a 3388-patient database. Only 1052 (31%) of them had a combination of 

predictors with a match size of 30 or more. Therefore, our data do not allow to offer a clinically useful 

prediction tool at this stage, but this method seems promising, as it has some advantages as compared to 

model-derived clinical decision tools. Indeed, the successful use of a model to predict the probability of a 

serious outcome requires that the results are reproduced in an external validation so that both the external 

validity and robustness of the model are verified. Moreover, models require that the predictors are 

assigned a weight that allow to estimate the risk of adverse events in every patient, also in those that had 

no matching subject in the derivation database (for example for patients that have a rare condition). 

Attribute matching differs from scoring systems derived from logistic regression or ANN, which use 

predictor variables expressed by an individual patient under consideration to guide that patient into a 

predefined category that predicts a probability. This outcome probability is estimated from knowledge (i.e., 

the magnitude of importance of predictor variables) manifested by the patients that were used to construct 

the logit equation or ANN. On the other hand, attribute matching works in reverse fashion. Instead of 

placing the patient under consideration into a category, the computer program finds the patients from a 

reference database who ‘‘look like’’ the patient insofar as they are identical on the binary predictor 

variables. Therefore, the risk of patients with an uncommon combination of predictors, might not be able 

at all to find a match in the derivation dataset. However, being aware that the patient’s estimated 

probability might be based on very limited evidence, will allow both the clinician and the patient to take a 

decision conscious that it might be based on uncertainty, rather than deciding on the false confidence 

provided by models.  

Attribute matching has some other advantages: 1) The possibility to have as output not only the 

probability of a composite serious outcome, but a detailed risk profile based on the probability of different 

outcomes, will allow a more personalized decision making. Also, the possibility to make the risk profile 
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explicit could allow to share the decision with the patient. 2) The need for a large dataset should make 

external validity not a problem, because the collection of patients from multiple contexts is essential to 

reach the required dataset size. 3) As there is no need for calculations and model creations, patients could 

be always added to the dataset thus increasing the probability estimate precision. 4) The flexibility of 

attribute matching would allow to consider different predictors in different patients, thus allowing a more 

precise estimate. 

Study limitations 

Some limitations of this study should be acknowledged. Besides the above peculiar characteristics of 

syncope, that make it difficult to derive accurate prediction tools, the choice of appropriate predictors and 

the correct identification of outcomes is crucial. The database we used for derivation was collected for 

different purposes. Moreover, the included studies differed as to endpoints and clinical variables considered. 

In addition, there is heterogeneity in health system organizations, data collection forms, and ECG 

interpretation. However, as a large syncope database does not exist, we did our best to collect a large number 

of patients and to make the data as homogeneous as possible so that they could be analyzed together. 

Moreover, the optimal database size and number of attributes that can be used to create valuable 

probability estimates remains uncertain. It remains unknown how many patients in the reference database 

must be returned for any given profile to provide a reliable estimate. Indeed, despite the large size of the 

reference database, several profiles returned zero patients, suggesting that patients with these patterns will 

be rarely encountered, but otherwise providing little inference into the probability of the outcome with this 

uncommon presentation. We could argue that increasing the match size by 10-times (thus enrolling about 

34000 patients) will provide a precise estimate for the combinations of predictors that already had matching 

patients in the derivation dataset. However, the number of subjects to enroll to observe patients with all the 

possible unique pre-test probability estimates cannot be calculated, as some of them could be extremely rare 

or even unreal.  

Finally, the use of attribute matching might be perceived as rudimental as compared to mathematical 

models. However, the current possibility to collect large datasets through international collaborations, big 

data and internet might overtake the need for models, that have been created to overcome the problem of 

making an estimate with limited observations. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

As the model-derived clinical decision tools have failed in the accurate identifications of patients 

that will experience serious outcomes, the attribute matching could provide an alternative solution to the 

risk stratification of patients with syncope. Indeed, the prediction tools based on models, such as logistic 

regression and neural networks provide a risk estimate in every case, also in patients whose clinical 

characteristics are different from each patient’s characteristics in the derivation cohort. Conversely, the 

attribute matching would need tremendously large datasets to provide accurate risk estimates, especially 

in patients with an uncommon combination of predictors, and might not be able at all to find a match in the 

derivation dataset. However, being aware of the patient’s estimated probability based on previous 

experience will allow both the clinician and the patient to take a decision conscious that it might be based 

on uncertainty, rather than deciding on the false confidence provided by models. This is crucial in the 

perspective of a modern medicine increasingly based on personalized medicine and shared decision 

making. 

Future studies should focus on international collaborations to build large prospective datasets. 

However, even if some steps towards the definition of standardized inclusion criteria, data collection and 

outcome assessment have already been made [42,53], the low inter-rater agreement in the assessment of 

both predictors and outcome measures could undermine the predictive accuracy of CDTs [20]. After facing 

these problems, efforts should be made to assess if attribute matching adds any value to both the CDTs 

based on statistical models and the implicit estimate of probability from clinicians with variable experience. 

Moreover, the introduction of new and more complex input attributes (for example the specific ECG 

abnormality) and the possibility to provide as output a detailed risk profile (i.e. the risk of different adverse 

events) rather than the probability of a composite outcome will create a more specific and potentially more 

accurate clinical profile. 
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