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ABSTRACT 

 

The eukaryotic cell nucleus is characterized by a defined spatial organization of the 

chromatin, which relies on the physical tethering of many genomic loci to the inner surface 

of the nuclear envelope. This interaction is mainly mediated by lamins and lamin-associated 

proteins, which create a protein network at the nuclear periphery called nuclear lamina. 

Man1 is a member of a lamin-associated protein family known as LEM-domain proteins, 

which are characterized by the presence of a highly conserved domain, called LEM, that 

mediates the interaction with the chromatin. Data obtained with the yeast Man1 homolog 

Src1 underline the importance of this protein in different processes of the cell cycle, such as 

chromosome segregation, nuclear pores assembly, gene expression, chromatin organization 

and maintenance of genome stability, while in animal models, the function of Man1 has been 

associated to the regulation of developmental signalling pathways during embryogenesis. In 

this study, truncated recombinant mutants of Man1, containing the LEM domain, were 

shown to inhibit nuclear assembly and alter nuclear pore formation when added to Xenopus 

laevis cell-free extracts. Moreover, Xenopus nuclei assembled in the presence of Man1 

truncated fragments were characterized by defects in chromatin organization, DNA 

replication and accumulation of DNA damage and, as a consequence, they failed to progress 

through mitosis. Furthermore, mouse embryonic stem cells (mESCs) depleted for Man1 

showed evident signs of spontaneous differentiation, indicating inability in the maintenance 

of stem cell features. Intriguingly, preliminary analysis of Man1-knockout mESCs 

transcriptional profile showed an alteration of gene expression at the level of pericentromeric 

and telomeric regions, underlining a potential link between Man1 and genomic stability of 

these particular regions. In conclusion, this study illustrates the importance of Man1 in 

ensuring the proper chromatin organization necessary to support different cellular and DNA 

metabolic processes. 
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INTRODUCTION 

 

1. THE EUKARYOTIC CELL NUCLEUS  

The acquisition of an intracellular membranous system marked the transition from 

prokaryotic to eukaryotic cells that occurred over a billion and a half years ago1. Since then, 

the complexity of the internal compartmentalization of cellular functions has increased in 

response to changes in environmental conditions, driving the evolution of modern eukaryotic 

organisms2. 

As suggested by the origin of their name “Eukarya” (from ancient Greek εὖ “good" and 

κάρυον “nucleus”), the most striking feature of eukaryotic internal organization is the 

presence of the nucleus, which segregates the DNA from the cytoplasm, providing a more 

sophisticated control over gene expression and DNA metabolism. 

The nucleus of eukaryotic cells is defined by the Nuclear Envelope (NE), that is constituted 

by two parallel membranes, the Inner and the Outer Nuclear Membranes (INM and ONM, 

respectively), separated by an aqueous perinuclear lumen. The ONM is dotted with 

ribosomes, it is continuous with the Rough Endoplasmic Reticulum and shares some 

functions with the latter. On the other side, the INM carries unique integral membrane 

proteins that are specific to the nucleus. The INM and the ONM are fused together at the 

nuclear pores, forming 100 nm-diameter channels associated to multiprotein complexes, 

named Nuclear Pore Complexes (NPCs), which regulate the bidirectional flux of molecules 

across the nuclear envelope3 (Figure 1). 

Although the nucleus is often represented as round-shaped, it has been observed that the 

nuclear envelope can reach the nuclear interior, forming a reticulum of membrane 

invaginations that can even cross the entire nucleus4. It is thought that these structures might 

increase the surface of interaction between the chromatin and the nuclear envelope, allowing 

the accomplishment of NE-specific functions in more internal regions5. 
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In animal cells, the molecular interactions occurring at the level of the nuclear periphery are 

mainly mediated by lamins, a family of proteins that create a mesh network (called nuclear 

lamina) linking the chromatin to the nuclear membrane6-9. Despite lamins are absent in plants 

and fungi, other proteins of the nuclear envelope and of NPCs exert their functions10,11. 

The extensive interaction with the chromatin mediated by lamins together with proteins of 

the INM is crucial for the spatial organization of the genome, which is considered to have 

important regulatory roles in all the cell functions6,12. 

 

Figure 1. The eukaryotic cell nucleus.  

Eukaryotic genome is enclosed in the nuclear envelope, which separates the chromatin from 

the cytoplasm. The nuclear envelope is formed by the Inner and Outer Nuclear Membranes 

and it is constellated by nuclear pores. The internal surface of the nuclear envelope is also 

covered by the nuclear lamina, which creates a filamentous network that connects the 

chromatin to the nuclear periphery. (Picture taken from book chapter “Campbell biology-A 

tour to the cell”, Pearsons education, 200613). 
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2. EUKARYOTIC CHROMATIN ORGANIZATION 

Despite the absence of internal compartments, the eukaryotic nucleus is characterized by a 

defined spatial organization, which allows cells to balance the extensive level of DNA 

folding with the regulation of gene expression. As cells progress through the cell cycle or as 

they differentiate into specialized cell types, their chromosomes undergo structural re-

organizations that influence cell behaviour and function. Increasing evidences relate contacts 

between specific chromatin regions with gene expression and other important DNA 

transactions such as replication, recombination and repair14-18. Moreover, several human 

diseases are characterized by defects in nuclear architecture, underscoring a link between 

proper nuclear organization and normal cell function19,20. 

Inside the eukaryotic nucleus, during the interphase of the cell cycle, the DNA is organized 

into chromosomes, that are packaged and folded through various mechanisms and occupy 

discrete positions called “chromosome territories”21,22 (Figure 2). The three-dimensional 

disposition of chromosome territories is not random inside the nucleus, but they are 

organized into patterns. Interestingly, analysis of chromosome territories in many cell types 

and tissues revealed that patterns of relative chromosome arrangement are both cell- and 

tissue-specific23,24.  

The first evidence of the non-random organization of the chromatin was described by Carl 

Rabl, which noticed that centromeres, which are the chromatin structures required for proper 

segregation of chromosomes during mitosis and meiosis, were often associated to the nuclear 

envelope in some cell types25. The same configuration has also been described for telomeres, 

that are DNA sequences covered by nucleoprotein structures which protect the ends of 

eukaryotic chromosomes. Telomeres are often found clustered at one pole of the nucleus in 

mitotic cells and in some interphase cells. This “Rabl-like” configuration has been observed 

in fungi, plants and mammals, though it is more often occurring transiently before or during 

mitosis and meiosis26,27.  
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Since many studies suggest that both centromeres and telomeres play important roles in 

aging and cancer28-31, the evidence of nuclear tethering of these elements provides important 

links between the spatial disposition of the genome and the maintenance of its stability. 

Moreover, chromosome territories repositioning has been observed in some clinical 

conditions, as Alzheimer’s disease and cancer32-35, providing novel insights into the 

relationship between chromatin organization and the alteration of gene expression that 

occurs in pathology. 

Analysis of chromatin structure by Chromosome Conformation Capture (3C) technique 

revealed that chromosome territories can be further divided in “Topological Associated 

Domains” (TADs), which are genomic regions that are enriched with intra-domain 

interactions generated by the multiple levels of DNA folding36. 

Given the high degree of conservation between different cell types and species, it has been 

proposed that TADs represent the fundamental unit of physical organization of the genome37.  

 

 

Figure 2. Chromosome territories.  

Visualization of human chromosome territories in an interphase nucleus by fluorescence 

microscopy (left panel) and automated karyotyping (right panel) of all the 23 chromosomes. 

Dark spots represent unstained nucleoli. (Image from Speicher et al.38). 
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3. NUCLEAR TETHERING 

Nuclear organization of the DNA is achieved through generic factors, like the physical 

properties of chromosomes (considered as semi-flexible polymers confined in a restricted 

space), as well as through more specific factors, as protein complexes which mediate discrete 

interactions between the DNA and other nuclear compartments or between different genomic 

regions. 

Among the processes that determine the three-dimensional disposition of the genome inside 

the nucleus, one of the most important is the physical tethering of many genomic loci to the 

inner surface of the nuclear envelope39,40. This mechanism, called “nuclear tethering”, is 

thought to have important implications in different DNA metabolism transactions. For 

instance, nuclear tethered sequences have been described to be late-replicating DNA 

regions41,42.  

Nuclear tethering has been mainly described as a process associated with transcriptional 

repression. In fact, early studies showed that the radial distribution of chromosome territories 

correlates with gene activity, associating proximity to the nuclear periphery with lower levels 

of gene expression41,43. An example is the inactive-X chromosome territory, which is located 

closer to the nuclear envelope respect to its active counterpart44. As a matter of fact, major 

silent heterochromatin domains are located at the nuclear periphery in different organisms45-

47. However, the effect of the re-localization of genes toward the NE can lead either to their 

silencing or activation or it can have no effects on gene expression. In fact, the destiny of a 

certain genomic region localized at the nuclear periphery depends on different factors, such 

as its position towards other genes, the presence or the absence of transcriptional repressors 

or activators in a determined nuclear microenvironment, or the nature of its regulatory 

elements. 

 

3.1. NUCLEAR TETHERING AND GENOMIC STABILITY 

Recent studies conducted in lower eukaryotes, suggest that nuclear tethering can influence 
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many other processes beyond chromatin silencing and transcription.  

Indeed, the perinuclear positioning of certain genomic loci and the physical connection with 

the inner nuclear membrane are thought to be crucial for the maintenance of genomic 

stability, since they can influence processes such as DNA replication, repair and 

recombination12,48,49. Also, nuclear tethering has been related to the ability of restarting 

stalled replication forks that is pivotal to maintain genome stability upon endogenous or 

exogenous DNA replication stress sources50.  

 

3.1.1. NUCLEAR ORGANIZATION AND DNA REPAIR 

Several studies link nuclear organization to DNA repair mechanisms51-53. Recent 

experiments based on 3-C technique and fluorescence microscopy demonstrated that 

artificial induction of Double Strand Breaks (DSBs) at the level of internal chromosomic 

regions causes the re-localization of the damaged locus toward the nuclear periphery, 

associated with slow kinetics of repair54. Moreover, it has been demonstrated that such re-

localization is dependent on Rad51, a factor involved in the Homologous Recombination 

(HR) pathway, which promotes the mobility of damaged DNA strands and the search for 

homologous sequences to use as templates55,56. The authors of this study hypothesized that 

such re-localization takes place when major repair pathway are inefficient or too slow in 

resolving the lesion. The damaged DNA would then be moved to another environment in 

which alternative pathways could operate in order to repair the broken chromosome. 

The close correlation between DNA repair and nuclear periphery has been confirmed in other 

studies in which microarray analysis of immunoprecipitated chromatin showed that the DNA 

adjacent to DBSs is frequently bound by factors associated to the nuclear envelope, as NPC 

components and integral nuclear membrane proteins53,54. 

Also, it has been demonstrated that, in yeast, persistent DSBs translocate from the nuclear 

interior toward the periphery and associate to nuclear pores. This association seems to be 

fundamental for DNA repair since mutations in some NPC components were shown to be 
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synthetic lethal with mutations in genes required for double strand break repair57 and 

produced increased sensitivity to DNA damaging agents58. 

Moreover, in Drosophila, it has been shown that heterochromatic DSBs are re-localized to 

the nuclear periphery, in order to accomplish efficient repair and prevent ectopic 

recombination, through a mechanism that involves NPC components and INM proteins59. 

Studies conducted in mammalian cells did not give evidence of re-localization of lesions at 

the nuclear periphery60. However, it has been shown that depletion of nucleoporin Nup153 

leads to a defective recruitment of DNA repair factor 53BP1 at damaged loci and to a hyper-

activation of HR pathway61. 

All the observations reported until now indicate that there is a great selectivity in the 

recruitment of damaged loci to the nuclear periphery, since not all the DSBs and stalled 

replication forks are localized at the nuclear envelope53,54,62. For this reason, it has been 

proposed that the nuclear tethering of damaged loci is required for the repair of lesion 

generated at the level of particular genomic regions, which need the action of specific repair 

pathways. 

 

3.1.2. NUCLEAR TETHERING AND HOMOLOGY DIRECTED REPAIR 

The proper repair of damaged chromosomes is mediated by different pathways, which are 

differentially regulated depending on the kind of lesion and the cell cycle phase in which the 

damage has occurred. The main mechanism of DNA DSBs repair is mediated by HR factors, 

through a mechanism that implies the exchange of nucleotidic sequences between sister 

chromatids. This mechanism is critical for different aspects of genome integrity maintenance 

and many types of cancers are related to genes involved in HR such as BRCA genes, which 

are often find mutated in prostate, ovary and breast cancer63. 

In eukaryotes, the majority of HR events are induced by programmed DSB that occur mainly 

during meiosis through reciprocal exchange of entire chromosomal regions between 

homologous chromosomes, known as crossovers. Such process is critical both to ensure a 
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correct chromosome segregation and to promote the evolutionary divergence between 

species64. 

During mitosis, despite some cases of programmed HR events, such as mating type 

switching in S. cerevisiae and immunoglobulin locus rearrangement in mammals, the events 

of HR are rarer and mainly occur to repair spontaneous DNA breaks65,66. 

The exchange of genetic information preferentially takes place between sister chromatids, 

because they can provide an identical copy of the damaged sequence to be used as a template, 

allowing an error-free repair of the lesion. For this reason HR-mediated repair is favoured 

during S and G2 phases, when the DNA has been already replicated, while during G1, when 

this copy is not available yet, DNA breaks are mainly repaired through other mechanisms 

such as Non Homologous End Joining (NHEJ) and Single Strand Annealing (SSA), that are 

error-prone67-69.  

An important aspect to take into account is that, differently from what happens during 

meiosis, during mitosis crossover events are strongly suppressed because they could have 

deleterious effects on genomic stability like loss of genetic material in diploid cells (Loss of 

Heterozygosis, LOH) or aberrant rearrangements between identical non-allelic sequences, 

(such as repetitive sequences)70,71. 

The kind of damage that trigger homology directed repair includes a large variety of lesions 

such as DSBs, ssDNA gaps or structures generated by DNA metabolism (like stalled or 

collapsed replication forks)72. Moreover, HR can be stimulated by unconventional DNA 

structures. For example, it has been proposed that in regions containing redundant sequences, 

the denaturation of the DNA that occurs at the level of the replication fork can cause the 

alignment of repetitive sequences and the formation of hairpin or cruciform structures, which 

generate DSB and stimulate contraction or expansion of the repeats68,73,74. 

The basic mechanism of HR initially includes a resection step, in which the broken DNA 

filaments are partially degraded at the 5’- ends. Therefore, the two protruding 3’- overhangs 

that are generated by resection are used as recruitment site for Rad51 recombinase, an 
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enzyme that can polymerize onto ssDNA forming a nucleoprotein complex called 

presynaptic filament75.  

The presynaptic filament can bind another DNA molecule and “search” on it a sequence 

which is identical to its own one. Subsequently, the ssDNA invades the homologous region 

onto the “donor” DNA forming a three-stranded structure called Displacement-loop (D-

loop)76. Formation of the D-loop allows the DNA polymerases to repair the lesion, using the 

3’- overhangs as primers for the synthesis of a new DNA filament and the homologous 

sequence as template. After formation of the D-loop, there are two predominant models 

proposed for homology directed repair of DSBs77,78(Figure 3). The first one, called 

Synthesis-Dependent Strand Annealing (SDSA) pathway, is achieved through the extension 

and annealing of the invading strand to the broken molecule, leaving a small gap that is 

subsequently repaired by ligation of the broken ends. The second model, called Double 

Strand Break Repair (DSBR) pathway, involves the formation of a structure containing two 

four-filament cruciform junctions called double Holliday Junctions (dHJ)79. Processing of 

dHJs is mainly accomplished through two mechanisms. The first one is called “dissolution” 

and is achieved through the migration of the two cruciform junctions toward each other and 

resolution of the so formed “hemicatenane” by Type I topoisomerase, restoring the original 

layout of chromosomes. Alternatively, dHJ are processed through a second mechanism, 

called “resolution”, in which specific nucleases cut the DNA strands at the level of the 

junctions, generating either crossover or non-crossover products depending on the cut 

orientation80 (Figure 3). 
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Figure 3. Pathways of Homologous Recombination.  

Repair of DSBs begins with resection of the DNA broken ends, generating two ssDNA 

overhangs (A). One of these undergoes strand invasion in a homologous DNA molecule 

generating a D-loop. In SDSA pathway, the D-loop migrates causing the re-annealing of the 

newly-synthetized strand to the broken molecule, which will be further repaired by ligation, 

generating a non-crossover product (A). 

Alternatively, additional synthesis of DNA leads to the formation of a double Holliday 

Junction (dHJ), which is further processed through resolution (D), generating either 

crossover or non-crossover products. Otherwise dHJs can be processed through dissolution 

(E), generating non crossover products. (Image taken from Zapotoczny et al78.)  

 

As mentioned above, the effect of nuclear tethering on genome stability is particularly 

relevant for genomic loci containing redundant sequences, which are particularly abundant 

in eukaryotes81. Indeed, those sequences can undergo aberrant recombination events, which 

promote loss or gain of entire chromosomal regions. Such phenomenon, if not restrained, 

can ultimately lead to genomic instability, which in eukaryotes is one of the main hallmarks 

of cancer cells82,83. On the other side, the disposition of repetitive sequences at the same 

location, like ribosomal DNA (rDNA) or clustered centromeres and telomeres, allows the 

co-regulation of genes and could also facilitate the occurrence of faithful recombination 

events required to promote genetic diversity in a cell population under stress conditions84,85. 
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In the last years, numerous experimental data indicate how the connection of specific 

sequences or genomic regions to the nuclear envelope can be determinant for the 

maintenance of genomic stability. In fact, it is believed that the localization of the DNA to 

the nuclear periphery could limit aberrant recombination which can lead, if not properly 

carried out, to a variation in the nucleotide sequence of specific DNA segments resulting in 

loss or gain of genetic information. In particular, it has been proposed that the inhibition of 

recombination could be due to a poor concentration of recombination factors at the level of 

nuclear periphery and to the exclusion of specific chromosomal loci from the bulk of nuclear 

DNA86. 

One important mechanism that leads to genomic instability is the loss of telomeres87,88. In 

fact, in the absence of such control, chromosomes become prone to undergo deleterious 

recombination events as chromosome ends fusion89. Moreover, another characteristic that 

make telomeres susceptible to aberrant recombination is the high content of repetitive 

sequences, that can reach up to several thousand units in the human telomeres90. For these 

reasons, cells have evolved a number of mechanisms to protect telomeres and maintain 

genome stability. One of these mechanisms is accomplished through the interaction of 

telomeres and sub-telomeric regions with NE components.  

Nuclear positioning of telomeres is not random but it varies among organism, tissues and 

cell cycle stages. Despite this, they are often found connected to the nuclear envelope91, and 

during meiosis, the attachment of telomeres at the nuclear periphery is a widely conserved 

feature of all the cells92.  

In yeast, telomeres are stably anchored to the NE through multiple redundant pathways that 

involve several INM and NPC components. It has been proposed that such perinuclear 

localization could be needed to limit unequal recombination at telomeres by keeping 

telomeric repeats away from recombination factors, to maintain proper alignment of sister 

chromatids during DNA replication and to promote efficient repair of DSBs86,93,94. 

In mammalians, although telomeres are mostly localized in the nuclear interior, it has been 



	 22	

found that several sub-telomeric regions are associated to the nuclear lamina95 and that 

human telomeres contain a specific repeated sequence which acts as a perinuclear 

positioning element through physical interaction with type-A lamins45. Accordingly, it has 

been demonstrated that loss of type-A lamins in mouse cells is associated with changes in 

nuclear localization of telomeres, telomere shortening, alteration of telomere chromatin 

structure and, ultimately, genomic instability96. 

 

3.1.3. NUCLEAR TETHERING AND DNA REPLICATION STRESS 

The maintenance of genome integrity at “critical” chromosomal loci, like telomeres, is 

especially relevant during the S phase of the cell cycle, which is a time span of great 

vulnerability for the genome.  

In eukaryotic organisms the presence of multiple origins of replication implies the possibility 

that during S phase, replication forks can encounter elements that block or slow down their 

progression, a condition known as “replication stress”97. Stalled replication forks are very 

fragile structures that must be stabilized and re-started in order to prevent breakage of the 

DNA double strand and aberrant recombination, ultimately leading to genomic instability. 

In the majority of the cases, the primary cellular response to replication stress aims to the 

protection of the stalled fork and replisome components for the time necessary to remove or 

overcome the obstacle. However, in case of a persistent obstruction or a collapse of the 

replicative fork due to replisome components detachment, the recombination apparatus is 

employed to restart DNA replication98,99. Usually, during S phase, recombination takes place 

between identical DNA sequences located on sister chromatids but it can also occur between 

allelic or ectopic regions, leading to deleterious events like loss of heterozygosis or Gross 

Chromosomal Rearrangements (GCRs)100,101. 

Numerous observations suggest that defects in replication fork progression are associated to 

the presence of chromosome fragile sites, which are defined as sequences prone to show 

chromosomal breaks or gaps during mitosis102-104. The use of genome-wide approaches led 
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to the identification of conserved fragile sites, which were found to concentrate nearby 

elements such as telomeres, centromeres, replication origins, transposable elements, tRNA 

genes and G-quadruplexes105,106. Some studies correlated those particular regions to peculiar 

physical properties of the DNA, as high flexibility, elevated A/T content and tendency to 

adopt secondary conformations (cruciform or hairpin structures) promoted by nucleotide 

repeats, negative supercoiling given by purin-pyrimidine alternance or quadruplex 

conformation formed by planar pairing of four guanine residues (known as G-

quadruplexes)102,106-109. 

A huge amount of data suggests that the regulation of chromatin association to the nuclear 

periphery has a critical role in both the prevention and the repair of replication stress 

associated DNA lesions110,111.  

Interestingly, recent published data obtained in mammalian cells show that fragile sites are 

moved toward the nuclear periphery and experience crossover recombination upon DSB112. 

Moreover, it has been demonstrated that, in yeast, the dissociation of actively transcribed 

genes from the nuclear pores during S phase is required to avoid collision between the 

replication fork and the transcription machinery, which otherwise could result in fork stalling 

and generation of DSBs50. Together with common fragile sites, transcribed genes are also 

associated with the pausing of the replication forks113. It has been hypothesized that the 

mechanism beyond this phenomenon cannot be attributed only to the physical collision of 

the replisome and the transcriptional machinery113. Instead it seems more appropriate to 

correlate the interference between DNA replication and transcription to the fact that 

transcribed genes may act as topological barriers, because they can limit the free rotation of 

the DNA molecule on its own axis. In fact, the unwinding of the DNA double helix that takes 

place during the replication generates some conformational variations of the DNA (such as 

catenation or supercoiling) that can lead to accumulation of torsional energy in the proximity 

of elements anchored to fixed structures, like the nuclear envelope114,115. Genes transcribed 

by RNA polymerase II belong to this group of elements, since complexes that couple 
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transcription with mRNA export create a physical continuity between the DNA and the 

nuclear pores. It has been proposed that, during the passage of the replication fork, the 

disassembly of the transcriptional apparatus and the alleviation of torsional stress are 

required to prevent deleterious events like fork collapse, formation of DNA-RNA hybrids 

(also known as R-loops), chromosome breakage and genomic instability. 

For this reason, the control of DNA nuclear tethering could have crucial role in the 

maintenance of genomic stability in a context in which chromosomal replication has to face 

a deregulated transcription, as it occurs during oncogenesis.  

 

3.2. CELL CYCLE AND CHROMATIN ORGANIZATION 

Although highly organized, the structure of the nucleus is dynamic and nuclear structure and 

functions change as cells progress through the cell cycle and/or differentiate. 

During G0 and G1 phases of the cell cycle, the organization of chromatin displays a bivalent 

status: at the centre of the nucleus, the chromatin is mainly found in a relaxed conformation 

(euchromatin), which is associated with active gene expression, while at the nuclear 

periphery it is preferentially arranged in a condensed and silent form (heterochromatin). This 

organization is completely remodelled when the cell cycle progress towards the cell division: 

during the DNA replication phase chromatin progressively condenses, reaching a compact 

heterochromatic status at the end of S phase. During G2 phase, the chromosomes condense 

and undergo significant topological changes in order to be properly segregated during the 

next stage of cell division.  

 

3.2.1. EFFECT OF NUCLEAR TETHERING ON DNA REPLICATION 

Accurate and complete duplication of eukaryotic genome is of crucial importance for the 

faithful inheritance of the genetic information required for cell survival and proliferation. 

This process, termed as DNA replication, takes place during the S phase of the cell cycle, 

and it starts at the level of specialized chromosomal regions called replication origins116. 
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In eukaryotes, replication origins are set by a three-step process: recognition of the origin, 

assembly of pre-Replication Complex (pre-RC), which contains DNA helicases, and 

activation of the pre-RC. The first factor that binds DNA is the Origin Recognition Complex 

(ORC), which is the only initiation factor thought to directly recognize replication origins. 

After ORC binds to the DNA, other two factors (Cdc6 and Cdt1) are recruited, promoting 

the loading of the MiniChromosome Maintenance (MCM) complex, which determines the 

licensing of the replication origin. The pre-RC is then activated by several other factors (such 

as Cdc45) which further enable the association of DNA polymerases machinery and the 

traveling of MCM complex ahead of the polymerases to open the double stranded DNA, 

allowing the synthesis of the complementary strand116 (Figure 4). 

 

 

Figure 4. Pre-Replication Complex (Pre-RC) assembly on DNA replication origin.  

After Origin of Replication Complex (ORC) binds to DNA, it recruits other two factors (Cdt1 

and Cdc6) which have the role of loading the MiniChromosome Maintenance (MCM2-7) 
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complex onto the replication origin, forming the Pre-RC. Conversion of the Pre-RC into an 

Initiation complex, through the recruitment of replicative polymerases, leads to the initiation 

of DNA synthesis. (Image adapted from Mechali117) 

 

Numerous studies have evidenced that genome organization and nuclear tethering take part 

in the regulation of DNA replication. A clear example of how genome architecture 

influences the origin recognition can be found during the early stages of embryo 

development, when nuclear structure is adapted to support rapid cell cycles and fast DNA 

replication. In fact, it has been proposed that the nuclei of fertilized eggs are organized into 

short loops of chromatin at S phase entry, allowing the recruitment of a large amount of 

ORC. This situation is in deep contrast to the temporal and spatial regulation of origin 

activation that takes place in differentiated cells, where a striking increase in loop size 

correlates with a decreased ability of the chromatin to bind ORC118,119. 

Moreover, it has been demonstrated that genome organization plays an important role in 

defining the temporal order in which chromosomes are replicated, which is known as 

“replication timing”. In fact, it has been evidenced that different chromosomal regions that 

occupy the same discrete location (defined as TADs, described above), share the same DNA 

replication timing. Moreover, it has been demonstrated that regions associated to the nuclear 

lamina (known as Lamin Associated Domains, LADS) have a late replication timing120, 

underlining the role of the nuclear lamina in assisting DNA replication through the physical 

organization of the genome. 

Accordingly, it has been shown that nuclei assembled in the absence of lamins fail to 

replicate their DNA121,122, while the expression of lamin mutants, which causes 

reorganization of endogenous lamins inhibits DNA replication in Xenopus leavis egg 

extracts123,124. 

Apart from lamins, other structural nuclear proteins have been demonstrated to be involved 

in DNA replication. For example, nuclear Xenopus laevis cell-free extracts supplemented 

with a portion of lamin-binding protein Lap2β containing its chromatin-binding domain fail 
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to replicate the DNA125. Similarly, ectopic expression of recombinant Lap2β polypeptides 

deprived of transmembrane region has been shown to inhibit the progression into S-phase of 

mammalian cells126.  

Recent evidences also suggest an active role for nuclear pore complexes in the regulation of 

DNA replication. Experiments performed in Xenopus egg extracts, showed a physical 

interaction of the NPC component Elys/Mel-28 with the MCM2–7 complex, the main 

component of the eukaryotic replicative helicase127. In addition, the authors showed that 

inhibition of MCM2-7 chromatin loading was able to delay nucleoporins chromatin 

association and nuclear size growth, highlighting a strict coordination between nuclear 

envelope assembly and DNA replication. This interaction appears conserved in vertebrates 

since it has been observed that mutation of ELYS gene can reduce Mcm2 levels on chromatin 

in Zebrafish128 and inactivation of a conditional elys allele in mouse progenitor cells promote 

apoptosis under replication stress conditions129.  

 

3.2.2. NUCLEAR ASSEMBLY AND DISASSEMBLY DURING MITOSIS 

While lower eukaryotes engage “closed” or “semi-closed” mitosis, in which the nuclear 

envelope remains (completely or partially) intact during all the cell division, in vertebrates 

the disassembly of the NE marks the transition between the prophase and metaphase of the 

mitosis. During the “open” mitosis, the nuclear architecture is destroyed and the whole 

genome is partitioned before segregation of sister chromatids. Nuclear envelope breakdown 

involves lamina depolymerisation, cleavage and removal of nuclear membrane from the 

chromatin surface and disassembly of NPCs130. During this process, the chromosomes 

remain associated with the disassembling lamina, suggesting that the lamina could play an 

important role in chromosome segregation131,132. 

After anaphase is completed, lamins, NPC components and ONM and INM proteins are 

recruited on the chromatin surface and nuclear reformation takes place. 
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The nuclear assembly process is very fast and relies on rapid sub-sequential steps133: first 

membrane vesicles are targeted to the chromatin, through a mechanism that requires both 

lamins and lamin associated proteins. As the membrane vesicles merge, NPCs are assembled 

at sites of intralumenal fusion between the INM and the ONM, in a process that does not 

seem to require lamins or chromatin. The first NPCs are assembled before nuclear envelope 

is sealed and, as soon as transport-competence is acquired, they accelerate nuclear assembly 

by locally concentrating nuclear envelope proteins next to the chromatin surface. 

As soon as nuclear envelope assembly is complete, nuclear growth takes place. The 

mechanism of nuclear membrane expansion seems to be regulated by processes that depend 

on nuclear import, such as lamina assembly and chromatin decondensation. 

All this process is critical, because nuclear structure reassembly has to proceed in a tightly 

coordinated manner during nuclei reformation, ensuring that the interphase organization of 

chromatin can be re-established in daughter cells134. 

 

3.3. ROLE OF NUCLEAR TETHERING IN GENE REGULATION AND CELL 

DIFFERENTIATION 

The radial disposition of the genome inside the nucleus correlates with cell type and 

differentiation status, suggesting that is either an outcome of the transcriptional state or it 

has a role in the regulation of gene expression135,136. In fact, the nuclear periphery is mostly 

occupied by silent heterochromatin, which is characterized by a low density of genes and 

low levels of transcription. During the differentiation process, which relies on a radical 

change in the gene expression profiles of the cell, the three-dimensional arrangement of the 

chromatin is reorganized and thousands of genes are moved towards or away from the 

nuclear periphery136. 

High-resolution mapping of chromatin-nuclear lamina interactions allowed to describe the 

reorganization of chromosome architecture that happens during lineage commitment and 

differentiation of mouse embryonic stem cells (mESCs)137. Such remodelling involves both 
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single transcriptional units as well as entire genomic regions and to affect many genes 

involved in cellular identity. Similar changes in nuclear architecture were also observed 

during reprogramming and disease138-140. 

Analysis of the genomic sequences lying close to the nuclear envelope has shown that 

interaction with the nuclear lamina was often associated to transcriptional repression141.  

Moreover, it has been demonstrated that artificial tethering of endogenous or reporter genes 

to the nuclear envelope can induce their transcriptional downregulation in mouse and human 

somatic cells141,142.  

Among the genes that are relocalized at the nuclear periphery during differentiation the most 

abundant class is represented by pluripotency genes and tissue-specific genes, which become 

repressed as cells differentiate. However, only 30% of those genes actually change their 

expression as they are bound by nuclear lamina, suggesting that the nuclear periphery does 

not necessarily induce transcriptional downregulation. Moreover, it was shown that many of 

the genes that were released from the nuclear lamina upon differentiation were not actually 

showing active transcription, suggesting that the relationship between association to the 

nuclear envelope and transcriptional repression is not fully univocal137. 

Surprisingly, it seems that chromatin tethering to the nuclear periphery is not dependent on 

lamins in mouse embryonic stem cells, as silencing of both A and B-type lamins have no 

detectable effects on the genome-wide interaction pattern of chromatin with the nuclear 

envelope, suggesting that other components of the nuclear lamina may mediate these 

interactions143. 

A wide number of studies showed that lamina components interact with signalling factors 

belonging to pathways which regulate cell proliferation and differentiation144-147. This 

interaction can have a role in transcription regulation, since it can be required for the 

recruitment of transcription factors or to mediate the activation of signalling molecules. For 

example, the interaction between Lamin A/C and INM proteins Lap2α and Lap2ß has been 

shown to be important for the stabilization of Retinoblastoma protein (pRb), a tumour 
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suppressor and cell proliferation regulator148,149. 

Moreover, several lamin-associated proteins of the INM have been shown to negatively 

regulate transcription by blocking the action of signalling components which regulate stem 

cell differentiation150-153. 

 

4.  THE NUCLEAR LAMINA 

The nuclear lamina is present in all metazoans and it is composed by a group of intermediate 

filaments (called lamins) and lamin associated proteins154. The genes encoding for this 

factors are absent from plants and fungi, as it has been hypothesized that the first appearance 

of nuclear lamina during evolution has occurred during the transition from “open” to 

“closed” mitosis130.  

Nuclear lamina forms a filamentous layer that is predominantly found close to the INM, 

providing structural support to the nuclear envelope and regulating nuclear size and shape. 

Moreover, the position of the lamina at the interface between the nuclear membrane and the 

chromatin suggests that it is involved in chromatin organization. 

Interestingly, there is strong evidence that lamins and lamin-binding proteins are not 

restricted to the nuclear periphery but can localize also at the nuclear interior155. However, 

their molecular structure and functions are still poorly defined. 

 

4.1. LAMINS 

Lamins represent the major structural component of the nucleus, as they contribute to its 

physical and mechanical properties.  

In animal cells there are two types of lamins: type-A lamins (which include Lamin A and 

Lamin C) and type-B lamins (which include Lamin B1 and Lamin B2). Contrary to B-type 

lamins, lamin A has also been suggested to localize to the nuclear interior in some cell 

types155.  
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It has been observed that mutation or downregulation of either A- or B-type lamin genes 

lead to changes in nuclear shape, as formation of membrane invaginations or protrusions, in 

different organisms156-160. 

In the past years, mutations in lamin and lamin-binding proteins were found to be linked to 

a large spectrum of diseases, called laminopathies or nuclear envelopathies19,161,162. Among 

laminopathies, the vast majority is associated to mutations of the Lamin A/C gene (LMNA), 

which give rise to multiple phenotypes including striated muscle distrophy, lipodystropy, 

peripheral neuropathy and accelerated ageing19,163.  

The broad range of cellular phenotypes associated to laminopathies mostly arise by a 

combination of various effects, including structural abnormalities of the nuclear lamina and 

subsequent defects in chromatin organization and signalling pathways. 

One of the most characterized LMNA mutations, associated with the premature aging 

disease Hutchinson Gilford Progeria Syndrome (HGPS)164,165, leads to the accumulation in 

the nuclear periphery of a defective dominant negative variant of Lamin A precursor that is 

called progerin163. Cells affected by progerin accumulation reveal dramatic defects in 

nuclear envelope structure, nuclear morphology and heterochromatin organization166,167. 

Moreover, they are characterized by genomic instability and replication stress as result of 

defective recruitment of DNA replication and repair factors168-170. For this reasons HPGS 

cells are ultimately characterized by a reduction in the proliferative capacity, induction of 

DNA damage and acceleration of senescence168. 

Interestingly, progerin production has been also found in normal cells171, uncovering a 

possible relationship between normal aging and progerin production in “healthy” 

individuals. 

 

4.2. LAMIN-ASSOCIATED PROTEINS: LEM DOMAIN FAMILY 

Among lamin-associated proteins, one of the most abundant class is represented by a large 

family of proteins, called LEM-Domain (LEM-D) proteins172,173, characterized by the 
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presence of a highly conserved ~40 aa domain called LEM (Lap2β-Emerin-Man1) that 

allows the attachment of chromatin to the nuclear periphery through a direct interaction with 

the chromatin remodelling complex BAF (Barrier-to-Autointegration-Factor)172,174-176. In 

addition to BAF, LEM-D proteins are also able to directly bind A and B-type lamins through 

a separate domain177. 

Interestingly, INM proteins with LEM domain are conserved also in lower eukaryotes, like 

yeast, which lack both lamins and BAF174. This observation suggests that this protein family 

have evolved from an ancestral DNA binding protein involved in tethering the DNA to the 

nuclear envelope. 

LEM-D proteins can be divided in three groups, based on their structure and subnuclear 

localization172 (Figure 5). Group I, to which belong Emerin and Lap2ß, include mostly 

integral membrane proteins that carry one amino-terminal LEM domain and one large 

nucleoplasmic domain. These proteins are mostly integral of the INM, but can also localize 

in the nucleoplasm. Group II proteins, which representatives are Man1 and Lem2, are 

characterized by the presence of one N-terminal LEM domain, two central transmembrane 

regions and one DNA-binding C-terminal domain and are only localized in the nuclear 

envelope. Finally, proteins belonging to Group III (like Ankle1 and Ankle2), carry one 

internal LEM domain and multiple ankyrin repeats, a feature that is shared by many 

signalling molecules. Group III proteins differ from the other LEM-D proteins because of 

their sub-nuclear localization, since they have been found also in the cytoplasm and in the 

endoplasmic reticulum172. 

The great variability in structure and subcellular localization of the different LEM-D proteins 

underlies their functional diversity. In fact, several studies showed how this family of 

proteins is involved in different cellular processes including DNA replication, cell cycle 

control, chromatin organization, nuclear assembly and regulation of gene expression and 

signalling pathways125,126,178,179.  

The principal function of LEM-D proteins is to provide a link between the chromatin and 
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the nuclear envelope. In yeast, which only has Group II proteins, it has been shown that 

LEM-D proteins are required to connect telomeres and rDNA repeats to the INM and their 

loss can cause genomic instability at the level of this particular regions180,181.  

Similarly, in metazoans, which present at least one representative for each of the three 

groups, LEM-D proteins seem to have a role in the nuclear tethering of high repetitive 

regions and “gene poor” repressive loci182.  

Because of their direct interaction to chromatin remodelling factors, such as histone 

deacetylases and BAF, it has been hypothesized that LEM-D proteins might have a role in 

the establishment of repressive heterochromatin at the nuclear periphery and, therefore, in 

the regulation of global genome organization183,184. 

Most of the roles of LEM-D proteins rely on their interaction with their molecular partners, 

among which the most relevant is BAF (which will be described in the next paragraph).  

Mutations in members of the LEM-D protein family have been linked to several tissue-

restricted human laminopathies. Among them, the most characterized ones are Emery-

Dreyfuss Muscular Distrophy (EDMD), caused by mutation in Emerin gene, and bone 

disorder Bushke-Ollendorf Syndrome, caused by Man1 mutations. Altered tissue 

development and homeostasis in LEM-D associated diseases has been also attributed to 

misregulation of developmental signalling pathways, as several LEM-D proteins have a role 

in the regulation of nuclear envelope localization of transcription factors involved in tissue 

differentiation150,152,153,185. 

The fact that loss of LEM-D proteins gives rise to similar tissue-specific defect suggests that 

these proteins may have overlapping functions. This hypothesis is also supported by the 

evidence that loss of two LEM-D proteins has more severe effects than loss of a single 

one186,187. For this reason, it is possible to believe that the impact of the loss of a single LEM-

D protein will greatly depend on the ability of other members of the family to compensate, 

or not, the lost function in a specific tissue. 
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Figure 5. LEM-domain protein family.  

The picture shows the features and subcellular localization of human LEM-D proteins which 

represent all the three family subgroups (I, II and III).  Picture taken from Barton et al.172 

 

4.3.  BARRIER TO AUTOINTEGRATION FACTOR (BAF) 

BAF is a small protein of 10 kDa which is highly conserved in all metazoans188. In vitro, it 

has been demonstrated to form stable homodimers which can bind double stranded DNA 

without apparent sequence-specificity189. It has been proposed that one major role of BAF is 

in the regulation of nuclear assembly after mitosis by recruiting LEM-D proteins onto 

chromatin surface. In fact, experiments carried out in Xenopus cell-free extracts 

demonstrated that an excess of BAF can slow down membrane recruitment, block lamina 

assembly and cause hypercompaction of chromatin. Moreover, addition of BAF mutants 

unable to bind Emerin LEM-D protein causes physical detachment of the DNA from the 

nuclear envelope and condensation of the chromatin mass190. 

In vivo, it has been shown that loss of BAF causes embryonic lethality, defects in 

chromosome segregation and abnormalities in interphase chromatin organization189,191,192. 
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In addition to its role in nuclear assembly in mitosis, several studies indicate that BAF is 

also important for gene regulation during interphase.  

In fact, it has been shown that BAF depletion in C. elegans negatively interferes with the 

transcriptional silencing of heterochromatic loci193. Moreover, depletion of BAF in mouse 

embryonic stem cells causes a global downregulation of known stem cell markers (such as 

Sox2, Oct4 and Nanog) and, on the other hand, enhances the expression of differentiation 

factors146, suggesting that BAF could be required to maintain ESC pluripotency by 

influencing high-order chromatin structure.  

Mutation of BAF in humans has also been linked to a rare premature aging disease called 

Nestor-Guillermo Progeria Syndrome (NGPS)194, which shares many clinical features with 

the lamin-associated disease HGPS.  

 

4.4.  MAN1 

Man1, also known as Lemd3, is a LEM-domain and an integral nuclear membrane protein 

which is conserved from lower to higher eukaryotes and it is ubiquitously expressed188. Its 

secondary structure displays a large amino-terminal domain which include the LEM domain 

as well as the binding sites for lamins and other LEM-D proteins and it is required for the 

INM targeting of Man1195. On the opposite side, the carboxy-terminal region exhibit two 

conserved domains called MSC (Man1-Src1p-C-terminal), required for direct DNA 

interaction196, and RRM (RNA-Recognition-Motif), which mediates interaction with Smads 

transcriptional regulators (described below)197,198. 

While lamins and most of the LEM-D protein are present only in metazoan, hortologues of 

Man1 and its paralog Lem2 have also been found in yeast (S. cerevisiae Src1/Heh2 and S. 

pombe Man1/Lem2) and are characterized by the presence of a LEM-like domain and a 

conserved MSC, which both are thought to mediate the direct interaction with the DNA.  

Data obtained by studying the yeast Man1 homolog Src1 underline the importance of this 

protein in different processes of the cell cycle. In fact, src1Δ mutants are characterized by 
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premature sister chromatids separation during mitosis181 and genomic instability at rDNA 

and telomeric loci86,180. Moreover, gene expression misregulation180, deformation of 

chromatin mass199 and alteration of NPCs distribution along the nuclear envelope200 can be 

observed in the absence of Src1.  

In the fission yeast S. japonicus, Man1 is required for the equal distribution of NPCs in 

daughter nuclei and for proper segregation of nucleoli201, whereas in S. pombe it is involved 

in nuclear tethering of heterochromatic and subtelomeric regions202. 

In animal models, the function of Man1 has been the subject of developmental studies, for 

its role in antagonizing Smad-mediated signalling pathway during embryogenesis185.  

Smad proteins are a family of signal transducing factors which are involved in the 

modulation of signalling by Transforming Growth Factor ß (TGFß), a family of cytokines 

involved in several cellular processes such as proliferation and differentiation203. Upon 

activation by TGFß receptors, Smads are translocated in the nucleus and associate with 

transcription factors to modulate the expression of target genes. Involvement of Man1 in 

TGFß signalling has been evidenced in different organisms, where it has been shown that 

Man1 has a role in antagonizing the pathway of Bone Morphogenetic Protein (BMP), a 

subgroup of TGFß cytokines involved in the dose-dependent regulation of embryonic 

patterning, by inhibiting Smads activity151,176,197,204. It has been proposed that the mechanism 

beyond such inhibition could be addressed to the sequestration of Smads proteins to the 

nuclear envelope by Man1, disrupting their association with target genes151,197. 

Consistently, Man1 appeared to be important for neuroectoderm differentiation of Xenopus 

embryo185 and its expression was shown to promote osteogenesis in human mesenchymal 

stem cells205. On the other hand, it was observed that Man1 depletion in Drosophila embryos 

reduced animal viability and led to sterility and neuromuscular defects in surviving adults206, 

while it appeared to cause lethality in early stage mouse embryos151. 

In humans, heterozygous mutation in the Man1 gene has been found to be associated with 

genetic diseases related to tissue development such as Bushcke-Ollendorf syndrome, 
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osteopoikilosis and melorheostosis207,208. These diseases are characterised by increased bone 

density, probably due to hyperactivation of TGFß/BMP pathway205. 

However, despite the large amount of data that underlie the importance of Man1 in signalling 

pathways during animal development, still there are few informations about its role in the 

whole genome organization of the large and complex vertebrate nucleus. For this reason, 

further characterization of vertebrate Man1 could provide novel insight into the role of 

nuclear tethering mediated by Man1 in the maintenance and regulation of chromatin 

organization and its possible implications in different cell processes. 

 

5. XENOPUS CELL-FREE EXTRACT AS MODEL SYSTEM TO STUDY 

NUCLEAR ASSEMBLY AND DNA METABOLISM 

In this study the Xenopus cell-free extract system was used in order to investigate the 

function of Man1 in the nuclear organization and DNA metabolism.  

This particular in vitro system can efficiently reproduce the key nuclear transitions taking 

place during the cell cycle with the same dynamics and under the same controls that occur 

in vivo209-211. The ability of Xenopus egg extracts to support cell cycle progression in vitro 

relies on the fact that most of the material required for nuclear assembly and DNA replication 

is already present inside the egg at high concentrations. In order to obtain cell-free extracts 

of good quality, unfertilized Xenopus eggs, which are arrested at the metaphase of second 

meiotic division, are activated by the addition of calcium ionophore, which mimics the 

calcium wave generated during the fertilization and promotes the entry into the first mitotic 

interphase212. The release of extracts from metaphase arrest activates the replication 

licensing system, enabling the replication of exogenous DNA. After the activation, eggs are 

crushed and the extracts are generated by a series of centrifugation steps in order to collect 

cytoplasmic and membrane fractions deprived of lipids and organelles. The incubation of 

interphase extract with DNA is sufficient to induce formation of functional structures 

corresponding to interphase nuclei competent for DNA replication. A great benefit of the 
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Xenopus cell-free system is the possibility to supplement the extract with recombinant 

proteins, drugs or antibodies in order to study the role of particular factors intervening in 

different processes. Moreover, it is also possible to generate extracts deprived of specific 

factors by immunodepletion of the target protein using specific antibodies. In a different 

strategy it is also possible to overload the extract with recombinant mutant proteins, which 

displace or outcompete the endogenous proteins in the molecular steps and complexes in 

which they are involved.  
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MATERIALS AND METHODS 

1.  SOLUTIONS 

PBS (Phosphate Buffered Saline) 

0,13 M NaCl 

7 mM Na2HPO4 

3 mM NaH2PO4 

pH adjusted to 7.5 

 

TBS (Tris Buffered Saline) and TBST 

10 mM Tris-base 

150 mM NaCl 

0,05 % Tween-20 (only for TBST) 

pH adjusted to 7.5 with HCl 

 

TAE (Tris Acetate EDTA) 

0,04 M Tris-Acetate 

0,01M EDTA  

pH 8 

 

SDS-page running buffer 

25 mM Tris base 

192 mM Glycine 

0,1 % SDS 

 

RIPA Buffer:  

50 mM Tris-HCl pH 7.5 
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150 mM NaCl 

1 % NP-40 

1 mM EDTA 

0,5% Na-deoxycholate 

0,1 mM NaOVan  

10 mM NaF 

20 mM β-Glycerophosphate 

 

LAEMMLI BUFFER 2X 

100 mM Tris pH 6.8 

4 % SDS 

30 % Glycerol  

0,2 % Bromophenol Blue 

10 % ß-Mercaptoethanol 

 

2. GROWTH MEDIA 

2.1. ESCHERICHIA COLI GROWTH MEDIA 

LURIA-BERTANI BROTH (LB) 

1 % w/v bacto-tryptone (DIFCO)  

0,5 % w/v yeast extract (DIFCO) 

0,1 M NaCl 

pH adjusted to ~7 

 

LB AGAR 

LB broth + 2 % (w/v) Bacto agar 
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2.2 MOUSE EMBRYONIC STEM CELL MEDIA 

ESC PROLIFERATION MEDIUM 

    Knockout DMEM (Invitrogen) 

    10 % FBS ES-tested (Invitrogen)  

    1 mM Na-Pyruvate 

    0,1 mM Non-essential amminoacids 

    0,1 mM ß-Mercaptoethanol 

    2 mM L-Glutamine  

    2 U/ml LIF 

    3 µM PD0325901 (Sigma Aldrich) 

    1 µM CHIR99021 (Sigma Aldrich) 

 

ESC DIFFERENTIATION MEDIUM 

    High glucose DMEM w/o Hepes (Lonza) 

    20 % FBS, US origin (Gibco) 

    2 mM L-Glutamine  

    1 mM Na-Pyruvate 

    0,1 mM Non-essential amminoacids 

    50 U/ml Penicillin–Streptomycin mix (Microtech) 

    0,01 mM ß-Mercaptoethanol 

 

3. MOLECULAR BIOLOGY TECHNIQUES  

3.1 AGAROSE GEL ELECTROPHORESIS 

Horizontal agarose gels were routinely used for the separation of DNA fragments. All 

agarose gels were 0,8 % w/v agarose in 1xTAE. The samples were loaded in 1x loading dye 

(6x stock: 0,25 % bromophenol blue; 0,25 xylene cyanol; 30 % v/v glycerol). Gels also 
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contained 1µg/ml ethidium bromide to allow visualisation of the DNA under UV light. 1Kb 

ladder (New England Biolabs) was used for fragment size determination. 

 

3.2 TRANSFORMATION OF E. COLI 

Plasmid transformation into E. coli 100 µl of competent cells were mixed with 

transformation DNA and incubated on ice for 30 minutes. The cells were then heat-shocked 

at 42 °C for 30 seconds, and cooled on ice. 1ml of warm LB was then added and the tubes 

were incubated at 37 °C with shaking for 1 hour. Lastly, the cells were spun down and plated 

onto selective plates. 

 

3.3. CLONING OF XENOPUS MAN1  

Total RNA was extracted from Xenopus leavis eggs with RNaeasy kit (Qiagen) according 

to manufacturer’s protocol. 

cDNA inserts coding for either residues 1-45 (LEM domain), 1-345 (N-terminal) and 520-

782 (C-terminal) of Xenopus Man1 were obtained by reverse transcription and PCR 

amplification from total Xenopus mRNA using specific primers (Table 1). 

Name Sequence (5’-3’) 

xMan1_1-345_Forward CGCGAACAGATTGGAGGTGCGGCCGCTCAGTTAACGGAT 

xMan1_1-345_Reverse GTGGCGGCCGCTCTATTAGAATCTCCCTGCAGCAGACAC 

xMan1_520-782_Forward CGCGAACAGATTGGAGGTTGGCGATACATAAAATATCGT 

xMan1_520-782_Reverse GTGGCGGCCGCTCTATTAAGAGCATGACTGAGAATTTGA 

xMan1_1-45_Forward CGCGAACAGATTGGAGGTGCGGCCGCTCAGTTAACGGAT 

xMan1_1-45_Reverse GTGGCGGCCGCTCTATTATCTTTGCTCTTCCCTCAACTT 

 

Table 1. List of PCR primers used for Xenopus Man1 cloning. 
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Inserts were then cloned in pETite N-His SUMO vector (Lucigen) according to 

manufacturer’s protocol and transformed into HiControl 10G completent cells (Lucigen) to 

obtain stable clones and into HiControl BL21(DE3) competent cells (Lucigen) to induce 

protein expression. 

 

3.4. PREPARATION OF RECOMBINANT XMAN1 PROTEINS 

Expression of the protein was induced with 1 mM IPTG for 3 hours at 37 °C (for recombinant 

LEM domain) or overnight at 16 °C (for N- and C-terminal fragments). Proteins were 

affinity-purified with Ni-NTA resin (Quiagen) and further cleaned by gel filtration 

(Superdex S200, GE Healthcare). Finally, proteins were concentrated and stored at -80°C in 

50 mM Tris-HCl pH 8, 300 mM KCl, 10 % glycerol, 2 mM ßmercaptoethanol.  

 

3.5. SDS-PAGE 

Proteins were separated according to their molecular weight by reducing sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using CRITERION TGX precast 

gels (BioRad). Gels were run in SDS-PAGE running buffer 1X at 150V until the desired 

molecular weight marker exit from the gel. Precision Plus dual colour protein markers 

(BioRad) or Broad range (175.7 kDa) prestained protein marker (New England Biolabs) 

were used as molecular weight standards. 

 

3.6. WESTERN BLOT ANALYSIS 

Proteins run on SDS-PAGE gels were transferred to Protran PVDF membranes (Whatman) 

for 2 hours at 200 mA in cold transfer buffer. Membranes were then washed with deionised 

water and quickly stained with Ponceau S solution in order to assess transfer efficiency. 

Membranes were washed in TBST and incubated for 1 hour in 5% (w/v) non-fat powder 

milk in TBST at room temperature to allow saturation (blocking). Primary antibodies were 

prepared at dilutions indicated in Table 2 in 5% milk in TBST. Membranes were incubated 
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2-3 hours at room temperature or overnight at 4 °C. After three washes in TBST, 10 minutes 

each, primary antibodies were detected using HRP-conjugated secondary antibodies (Dako) 

in 5% milk in TBST. Membranes were washed again for three times and antibody complexes 

were detected using ECL substrate (GE Healthcare) or WesternBrightTM ECL (Advansta), 

and visualised on Carestream Kodak BioMax MR film (Sigma Aldrich). 

 

3.6.1. ANTIBODIES 

The following antibodies were used in this study (Table 2): 

Antigen/Name Provider Concentration 

Xenopus Cdc45 J. Gannon (Clare Hall laboratories) 1:1000 

Xenopus Cyclin B2 J. Gannon (Clare Hall laboratories) 1:5000 

Mcm7 (sc9966) Santa Cruz 1:5000 

Orc1 (sc53391) Santa Cruz 1:3000 

PCNA (PC10) BioRad 1:1000 

H2B (07-371) Millipore 1:1000 

Pol Alpha p180 (ab31777) Abcam 1:1000 

Man1 (A305-251A) Bethyl 1:2000 

GAPDH (G8795) Sigma Aldrich 1:5000 

Alpha-Tubulin (ab6160) Abcam 1:1000 

 

Table 2. List of primary antibodies used for Western Blot analysis 

 

4. XENOPUS TECHNIQUES 

4.1. XENOPUS SPERM AND EGG EXTRACTS 

Mature X. laevis females were primed about 1 week in advance with 50 U of pregnant mare 

serum gonadotropin per animal. To induce ovulation, 400 U of human chorionic 

gonadotropin per animal was used.  
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All steps were carried out at room temperature (approximately 22 °C); all centrifugations 

were carried out at 4 °C and all steps after crushing of the eggs were carried out on ice. 

During all wash steps care was taken not to pour solutions onto the eggs directly, but on the 

side of the beaker. Eggs with spontaneous necrosis or pigment variegation were removed 

using a 1.5 ml Pasteur pipette during all wash steps as and when necessary. 

 

4.1.1. INTERPHASE EXTRACTS  

S-phase extracts was prepared as described213. Briefly, freshly laid Xenopus eggs were 

collected in 90 mM NaCl. Eggs were incubated for 5 minutes in dejellying buffer (10 mM 

Tris pH 8.5, 110 mM NaCl, 5 mM DTT), washed with Marc’s Modified Ringer (MMR; 100 

mM HEPES-KOH, pH 7.5, 2 M NaCl, 10 mM KCl, 5 mM MgSO4, 10 mM CaCl2, 0,5 mM 

EDTA) and activated with 1 µg/ml calcium ionophore A23187 (Sigma Aldrich) for 5 min. 

The activated eggs were washed with MMR and then washed three times with ice-cold S-

buffer (50 mM HEPES–KOH pH 7.5, 250 mM sucrose, 50 mM KCl, 2,5 mM MgCl2, 2 mM 

β-mercaptoethanol, 15 µg/ml leupeptin). The eggs were packed by spinning and then crushed 

at 13000 rpm for 15 min. The cytoplasmic fraction between lipid cap and pellet was 

collected, supplemented with cytochalasin B (40 µg/ml) and centrifuged at 70000 rpm for 

15 minutes to remove residual debris. The cytosolic and membrane fractions were collected 

and supplemented with 30 mM Creatine Phosphate (CP) and 150 mg/ml Creatine 

Phosphokinase (CPK). Extracts were then snap-frozen with 3% glycerol in beads of 20 µl.  

 

4.1.2. MITOTIC (CSF-ARRESTED) EXTRACTS 

Mitotic extracts were prepared as described214. Briefly, Xenopus laevis eggs were laid and 

collected in 1X MMR solution (0,1 M NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0,1 

mM EDTA, 5 mM HEPES, pH 7.8) and extract was prepared in the absence of calcium ions 

in order to maintain the cytostatic factor (CSF) mediated arrest in metaphase of meiosis II. 

The jelly coat of eggs was removed by incubation in 2% cysteine in salt solution (2% 
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cysteine, 2 M KCl, 100 mM EGTA, 40 mM MgCl2, 1N NaOH) for not longer than 10 min. 

The dejellied eggs were then washed 3 times with XB wash buffer (100 mM HEPES, pH 

7.8, 500 mM sucrose). XB wash buffer was then poured off and 14 µl of 10 mg/ml 

cytochalasin B (in DMSO) and LPC protease inhibitors (10 µg/ml Leupeptin, 10 µg/ml 

Pepstatin, 10 µg/ml Chymostatin). The eggs were poured into a 15 ml polypropylene round-

bottomed tube (Falcon 2059) and packed by centrifuging for 1 minute at 300 x g in a swing 

bucket rotor (rotor 4250, Beckman Allegra X-22R). Excess liquid on top of the packed eggs 

was removed and the eggs were crushed by centrifugation in a swing rotor at 22500 x g for 

20 minutes (Beckman; rotor JS 13.1 12000 rpm). The resulting cytoplasmic extract (middle 

golden yellow layer) was removed by puncturing the side of the tube with a 19-gauge needle 

and slowly removing the cytoplasmic layer with a 2 ml syringe. This extract was placed in 

a 5 ml polypropylene round-bottomed tube (Falcon 2063). Energy mix (375 mM CP, 50 mM 

ATP, 10 mM EGTA, 50 mM MgCl2) (1:50 dilution), LPC protease inhibitors (30 mg/ml 

each of leupeptin, pepstatin and chymostatin in DMSO) and cytochalasin B (10 mg/ml) were 

added (1:1000 dilution). The extract was then mixed gently using a 1.5 ml Pasteur pipette 

and then centrifuged at the same conditions for a further 15 min. In order to fit the 5 ml tubes 

in the JS 13.1 rotor, they were placed inside a 15 ml Falcon tube with 1 ml water to act as a 

cushion. The resulting extract was also removed by needle and syringe as above, and the 

extract placed in a fresh tube ready for use. Extract was kept on ice until use and was 

incubated at 23 °C during assays. For long term storage the extract was mixed with 2 M 

sucrose (10% in the extract) and frozen in liquid nitrogen in 20 µl aliquots, which form small 

balls when added to the liquid nitrogen. CSF egg extracts were induced to enter interphase 

by a final concentration of 0,4 mM CaCl2 and supplemented further with 0,2 mg/ml 

Cycloheximide (Calbiochem). 

After extract preparation, 20 µl aliquots were snap-frozen and stored in liquid nitrogen. Just 

before use, aliquots were thawed in ice and supplemented with 30 mM CP and 0,15 mg/ml 

CPK as energy regenerator system and with 0,1 mg/ml Cycloheximide (Calbiochem). 
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4.1.3. CYCLING EXTRACTS 

Mitotic extracts were prepared as described214. Xenopus laevis eggs were laid and collected 

in 1X MMR solution (0,1 M NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0,1 mM EDTA, 

5 mM HEPES, pH 7.8). Eggs were first rinsed in MilliQ water for 10 minutes to improve 

further activation step. After that, the jelly coat of eggs was removed by incubation in 2% 

cysteine in salt solution (2% cysteine, 2 M KCl, 100 mM EGTA, 40 mM MgCl2, 1N NaOH) 

for not longer than 10 min. The dejellied eggs were then washed two times with 0,2X MMR 

and activated with 1 µg/ml calcium ionophore A23187 for 5 min. MMR buffer was then 

poured off and eggs were washed 4 times with XB buffer (0,1 M KCl, 5 mM Hepes-KOH 

pH 7.7, 2,5 mM sucrose) and two times with XB plus 10 µg/ml LPC protease inhibitors. 

Eggs were poured into a 15 ml polypropylene round-bottomed tube (Falcon 2059) and 

packed by centrifuging for 1 minute at 150 x g and then 30 seconds at 600 x g in a swing 

bucket rotor (rotor 4250, Beckman Allegra X-22R) at 16 °C. Excess liquid on top of the 

packed eggs was removed and eggs were incubated in ice for 15 minutes. After that, eggs 

were crushed by centrifugation in a swing rotor at 10000 x g for 15 minutes (Beckman; rotor 

JS 13.1 12000 rpm) at 15 °C. The resulting cytoplasmic extract (middle golden yellow layer) 

was removed by puncturing the side of the tube with a 19-gauge needle and slowly removing 

the cytoplasmic layer with a 2 ml syringe. This extract was placed in a 5 ml polypropylene 

round-bottomed tube (Falcon 2063) and supplemented with 1:50 Energy mix and 

cytochalasin B (10 µg/ml). Extract was kept on ice until use and was incubated at 23 °C 

during assays.  

 

4.1.4. DEMEMBRANATED SPERM PREPARATION 

Xenopus laevis demembranated sperm was prepared as described213. Xenopus male frogs 

were primed with 50 U Folligon seven days in advance. Testes were extracted and rinsed 

three times in cold 1x MMR buffer (0,1 M NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 

0,1 mM EDTA, 5 mM HEPES, pH 7.8), twice in cold NPB buffer (250 mM sucrose, 15 mM 
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HEPES pH 7.4, 1 mM EDTA, 0,5 mM spermidine trichloride, 0,2 mM spermidine 

tetrachloride, 1 mM DTT) and finely chopped with a razor. The obtained material was 

homogenized in a homogenizer, filtered through 25 µm Nylon membrane and centrifuged at 

3000 rpm for 10 minutes at 4 °C in HB-4 swing-out rotor. The pellet was resuspended in 1 

ml of NPB buffer at room temperature and 50 µl of 10 mg/ml lysolecithin was added. The 

samples were incubated at room temperature for 5 min. Sperm demembranation was tested 

by mixing 1 µl of sample with 1 µl of Hoechst stain (1µl/ml). Following demembranation 

greater than 95%, 10 ml of cold NPB buffer supplemented with 3% BSA was added to 1 ml 

sample and centrifuged at 3000 rpm for 10 minutes at 4 °C in HB-4 swing –out rotor. 

Obtained pellet was resuspended in 500µl of cold NPB buffer supplemented with 0.3% BSA 

and 30% glycerol. The sperm density was then counted and aliquots were quickly frozen in 

liquid nitrogen. 

 

4.2. NUCLEAR ASSEMBLY IN INTERPHASE EXTRACTS 

Demembranated sperm nuclei (3000 nuclei/µl) were added to interphase egg extract 

supplemented with 1 µM Cy3-dCTP (GE Healthcare) and the desired amount of recombinant 

protein and incubated in 1.5 ml tubes at 23 °C. At the desired time-point, 3 µl samples were 

taken from the tube and fixed with 3 µl of fixing solution (10 % formalin, 15 mM PIPES pH 

7.2, 15 mM NaCl, 80 mM KCl, 50 % glycerol, 2 µg/ml Hoechst 33258 (Sigma-Aldrich), 2 

µg/ml DHCC (3,3′-Dihexyloxacarbocyanine iodide, Sigma- Aldrich)). Samples were 

mounted on glass slides and visualized with a fluorescence microscope (Axioplan). 

 

4.3. ASSAY FOR THE NUCLEAR ENVELOPE INTEGRITY 

Nuclear assembly reactions were incubated at 23 °C in the presence of recombinant Man1 

N-terminal fragment or BSA. After 1 hour, reactions were supplemented with 2,5 µg of 

Rhodamine-Dextran (Sigma-Aldrich), incubated for other 30 minutes at 23 °C and then 
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stopped on ice for 15 minutes. Samples were fixed with fixing solution and visualized using 

a fluorescence microscope. 

 

4.4. NUCLEAR PORE ASSEMBLY ASSAY 

Pore-free nuclear intermediates were reconstituted by incubation of demembranated sperm 

nuclei (3000 nuclei/µl) in interphase egg extract in the presence of 5 mM BAPTA (Sigma-

Aldrich) and 1 µM Cy3-dCTP (GE Healthcare) at 23 °C. After 60 minutes, reactions were 

diluted in 10 volumes of fresh interphase egg extract in the presence of 1 µM Cy3-dCTP and 

either BSA or Man1 N-terminal fragment.  

 

4.5. IMMUNOFLUORESCENCE ON ISOLATED XENOPUS NUCLEI 

Nuclear assembly reactions were incubated for 1 hour at 23 °C in the presence of 

recombinant Man1 N-terminal fragment or BSA. Reactions were stopped by dilution in ten 

volumes of dilution buffer (10 mM Hepes-KOH, 100 mM KCl, 2 mM MgCl2, 0,1 mM CaCl2, 

5 mM EGTA) and fixed for 10 minutes at room temperature in presence of 1 % 

formaldehyde. Samples were gently laid on a 30 % glycerol cushion in tubes containing 

round coverslips at the bottom. Isolated nuclei were attached to the coverslips by 

centrifuging the samples at 5500 rpm for 20 minutes at 18 °C in a swinging-bucket rotor. 

Coverslips were then washed with TBST, blocked for 30 minutes with 3 % BSA and 

incubated overnight with primary antibody (listed in Table 3). After two 5-minutes washes 

with TBST, samples were incubated with fluorescent secondary antibodies for 1 hour, 

washed again with TBS-T and finally incubated for 5 minutes with TBST containing 1 µg/ml 

Hoechst. Coverslips were mounted on glass slides with mounting medium (Vectashield, 

Vectorlabs) and visualized at the fluorescence microscope. 
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Antigen/Name Provider Concentration 

Nup153 (sc292438) Santa Cruz 1:1000 

PhosphoH2A.X (Ser139) (05636) Millipore 1:1000 

 

Table 3. List of primary antibodies used for immunofluorescence on Xenopus nuclei 

 

4.6. REPLICATION ASSAY 

Demembranated sperm nuclei (3000 nuclei/µl) were added to interphase egg extract 

supplemented with 50 nCi/µl [𝛼-32P]-dCTP and incubated at 23 °C. For agarose gel 

replication assay, aliquots were stopped in Stop buffer (8 mM EDTA, 80 mM Tris HCl pH 

8.0, 0,13 % Phosphoric Acid, 10 % Ficoll, 5 % SDS, 0,2 % bromophenol blue, 1 mg/ml 

Proteinase K (Roche)) and incubated at 50 °C for 2 hours. The obtained mixtures were then 

resolved by electrophoresis on agarose gel (0,8% in TAE buffer) and analysed by 

autoradiography (Typhoon scanner). The acquired signals were then quantified using 

ImageJ. For replication efficiency quantification, replication reactions were stopped in Stop-

C buffer (5 mM EGTA, 20 mM Tris HCl pH 7.5, 0,5 % SDS) supplemented with 0,2 mg/ml 

Proteinase K and incubated at 37 °C for 30 minutes. Nucleic acids were precipitated with 5 

% Trichloroacetic Acid (TCA), 2 % Sodium Pyrophosphate and spotted on 25 mM Glass 

microfiber filter discs (Whatman). Filters were washed once with 5 % TCA, 0,5 % Sodium 

Pyrophosphate and twice with 100 % ethanol on a vacuum manifold and dried. The 

incorporated radioactivity was counted in a scintillation counter and the amount of replicated 

DNA was evaluated as described 211. 

 

4.7. VISUALIZATION OF NASCENT SINGLE STRANDED DNA ON ALKALINE 

AGAROSE GEL 

Replication reactions were prepared as described in section 4.6. and incubated at 23 °C for 

30 minutes. At that point, each 20 µl reaction was supplemented with 0,5 µl of [𝛼-32P]-dCTP 
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(3000 Ci/mmol) and after 2 minutes they were chased with 2,5 mM of unlabelled dCTP plus 

0,5 mM roscovitine (Sigma-Aldrich). Reactions were then incubated again at 23 °C and 

stopped at the desired time-points with 10 volumes of stop buffer (2% SDS, 80 mM EDTA, 

600 mM NaCl). After adding 0,2 mg/ml Proteinase K (Roche), samples were digested at 37 

°C for 1 hour. The DNA was precipitated by adding to each sample 7,5 µl of NaAc 5M and 

purified by performing two rounds of phenol/chlorophorm/isoamylalcol extraction followed 

by ethanol precipitation. Finally, the DNA pellets were resuspended in 20 µl of 1x alkaline 

gel running buffer (50 mM NaOH, 1 mM EDTA pH 8.0) and then mixed with 4 µl of 6x 

alkaline loading buffer (300 mM NaOH, 6 mM EDTA, 18% ficoll, 0,15 % bromophenol 

blue, 0,25 % xylene cyanol). 

To prepare the alkaline agarose gel, 1,2 g of agarose were dissolved in 135 ml of bidistillated 

water. Melted agarose was cooled down at 55 °C and then mixed with 15 ml of 10x alkaline 

gel running buffer (500 mM NaOH, 10 mM EDTA pH 8.0). 

The samples were first separated at 45 V until complete migration outside of the gel wells, 

then the voltage of the electric field was lowered at 32 V and applied for 16 hours at 4 °C. 

After that, the gel was submerged in neutralizing solution (1 M Tris-HCl pH 7.6, 1,5 M 

NaCl) for 45 minutes and precipitation of nucleic acids was performed by immerging the gel 

into TCA 30%. Finally, the agarose gel was dried and subjected to autoradiography. 

 

4.8. CHROMATIN BINDING EXPERIMENT 

To isolate chromatin fractions, demembranated sperm nuclei (4000 nuclei/µl) were added to 

interphase extract together with BSA or Man1 N-terminal fragment and incubated at 23 °C. 

Samples were stopped on ice at the indicated times and diluted in ten volumes of EB (100 

mM KCl, 2,5 mM MgCl2, 50 mM Hepes-KOH pH 7.5) containing 0,25 % NP-40 (Nonidet-

40). The diluted extract was carefully layered onto an equal volume of EB-NP-40 -30 % 

sucrose cushion. Chromatin and chromatin-bound proteins were subsequently spun through 

the sucrose cushion for 5 minutes at 8,300 x g at 4 °C in a swinging-bucket rotor. Chromatin 
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pellets were washed once in EB and resuspended in Laemmli loading buffer. Proteins were 

resolved by SDS-Page on a 4-15 % acrylamide gel and analyzed by Western Blotting. 

 

4.9. HALO ASSAY 

Nuclear assembly reactions were incubated for 1 hour at 23 °C in the presence of 

recombinant Man1 N-terminal fragment or BSA. Reactions were stopped by dilution in ten 

volumes of EB-NP40 and kept in ice for 5 minutes. Isolated nuclei were attached to round 

coverslips by centrifuging the samples through a sucrose cushion in a 16-well plate with 

coverslips placed at the bottom. Nuclei were stabilized for 10 minutes at 4 °C with 

stabilization solution (1 mM CuCl2, 10 mM MgCl2, 0,5 mM CaCl2, 25 mM Tris-HCl pH 8, 

1 mM PMSF) and then they were sequentially dipped for 30 seconds in a solution containing 

0,2 mM MgCl2, 25 mM Tris-HCl pH 8, 1 mM PMSF with 0,5 M, 1 M, 1,5 M and 2 M NaCl. 

The last solution was also supplemented with 50 µg/ml Ethidium Bromide. After that, 

coverslips were exposed for 2 minutes to short-wave UV light (UV Stratalinker, Stratagene) 

to induce release of the chromatin loops and then mounted on glass slides with mounting 

medium (Vectashield, Vectorlabs) before observation at the fluorescence microscope. 

Images were analysed with ImageJ and halo size was calculated taking into account that the 

chromatin loop size is twice the maximum distance between the margins of the fluorescent 

halo and of the nuclear matrix (Maximum Fluorescence Halo Radius, MFHR). The length 

of linear DNA was calculated using the correspondence of 1 µm to 2,3 Kbp118. 

 

4.10. NUCLEAR ASSEMBLY IN CSF EXTRACTS 

Demembranated sperm nuclei (3000 nuclei/µl) were added to CSF extract supplemented 

with the desired amount of recombinant protein and incubated at 23 °C. After 20 minutes, 

extract activation was induced by adding 0,2-0,8 mM CaCl2 (depending on the extract). At 

the desired time-points, 3 µl of the samples were fixed with an equal amount of fixing 

solution and observed at the fluorescence microscope. 
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4.11. ANALYSIS OF THE CELL CYCLE USING XENOPUS CYCLING EXTRACTS 

Demembranated sperm nuclei (500 nuclei/µl) were added to cycling extract supplemented 

with the desired amount of recombinant protein and 50 µg/ml of porcine Tubulin HiLyte 488 

(Tebu-Bio) and incubated at 23 °C. At the desired time-points, 3 µl of the samples were fixed 

with an equal amount of fixing solution and observed at the fluorescence microscope. 

For monitoring Cyclin B2 levels, 1 µl of the samples were taken from the reaction at different 

time-points, diluted 1:10 in 2x Laemmli loading buffer and resolved by SDS-Page on a 10 

% acrylamide gel followed by Western Blotting. 

 

5. CELL CULTURE TECHNIQUES 

5.1 ESC CELL LINES 

The following mESC cell lines were used in this study: 

Name Source 

D1 Mus musculus embryonic stem cells derived from embryo inner cell mass of 

Rosa26-Cas9 knockin mice Gt(ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/J (The 

Jackson Laboratory) 

Cells were produced and provided by IFOM transgenic facility 

E14 Mus musculus embryonic stem cells derived from embryo inner cell mass of 

12910la strain (Austin Smith’s laboratory).  

Cells were provided  by IFOM transgenic facility 

 

Table 4. List of ESC cell lines used in this study 

 

5.2. GENERATION OF CRISPR-CAS9 MAN1 KO CLONES 

To obtain stable mES Man1-knockout cell lines, CrispR/Cas9 genome editing tool was used. 

This system is based on a bacterial CRISPR-associated protein-nuclease 9 (Cas9) and two 
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RNAs: the CRISPR RNA (crRNA) and trans-acting CRISPR RNA (tracrRNA), which can 

anneal together forming a duplex called guide RNA (gRNA). These two RNAs can both 

bind to the Cas9 nuclease, which is guided to the sequence complementary to the crRNA 

and cleaves the DNA, inducing a DSB. The DSB generated by CRISPR/Cas9 leads to the 

activation of endogenous cellular DNA repair mechanisms, including Non-Homologous End 

Joining (NHEJ)-mediated error-prone DNA repair and Homologous Recombination (HR)-

mediated error-free DNA repair. Insertion and deletion mutations generated either by NHEJ 

and HR allow the disruption or the abolishment of the functions of the target gene.  

To knockout mouse Man1, three crRNAs (Table 5) were designed using Target Finder 

software (Zhang Lab). 

Name Sequence (5’-3’) Targeted Man1 exon 

crMan1_1 TAACGAATCTAGAGTCCGTACGG 9 

crMan1_2 CCGCCGTTACGGCTTATCTCCGG 1 

crMan1_3 GCTTGCCGTAGGCGGTTTTCAGG 1 

 

Table 5. List of crRNA oligos used to knockout Man1 by CRISPR/Cas9 

 

To produce Man1 gRNAs, annealing of crRNAs and trcrRNAs was performed as described: 

for each annealing reaction, 10 µl of each 50 µM gRNA were mixed with 10 µl of 25 µM 

ATTO550-trcrRNA (IDT) and 80 µl of nuclease-free duplex buffer (IDT). The reactions were 

incubated at 100 °C for 2 minutes and let cool down at room temperature. 

Transient transfection of the gRNAs was first performed on D1 mESCs, which are 

constitutively expressing the Cas9 nuclease.  

The day before transfection, cells were seeded on gelatin-coated 100 mm dishes at a 

concentration of 5x104 cells for each plate. Next day, lipofectamine complexes were 

prepared as described: for the transfection of single guides 16,5 µl of annealing reactions 

were mixed with 500 µl of Optimem (Thermofisher) and, separately, 15 µl of Lipofectamine 
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RNAiMAX reagent (Thermofisher) were added to 500 µl of Optimem. The two solutions 

were then mixed together and incubated at room temperature for 15 minutes. 

For the transfection of the three guides, 16,5 µl of the three annealing reactions were pooled 

together and mixed with 1,5 ml of Optimem. Separately, 45 µl of Lipofectamine RNAiMAX 

reagent were added to other 1,5 ml of Optimem. The two solutions were then mixed together 

and incubated at room temperature for 15 minutes. 

After the incubation of the complexes, fresh medium was added (to reach a final volume of 

10 ml for each reaction) and everything was added to the plated cells. After 24 hours, 

transfection efficiency was evaluated at the microscope by visualization of ATTO550 

fluorescent signal. After 48 hours from the transfection, cells were harvested to perform RT-

qPCR and Western blot analysis. 

To perform Man1 KO on E14 mESCs, cells were transfected with the Cas9. For each 100 

mm dish, 24 µg of plasmid pSpCas9(BB)-2A-Puro (Addgene) were mixed with 500 µl of 

Optimem and, separately, 60 µl of Lipofectamine 2000 reagent (Thermofisher) were added 

to other 500 µl of Optimem. The two solution were mixed and incubated for 15 minutes at 

room temperature. The reaction was added to 100 mm dishes together with 8x106 cells in a 

total volume of 10 ml of medium. After one day, the medium was changed and puromycin 

was added at a concentration of 2 µg/ml. 

For the transfection of the three gRNAs, lipofectamine complexes were prepared as 

described above. The complexes were plated together with cells in suspension (10x103 cells 

for each 100 mm dish) in a total volume of 10 ml of medium supplemented with puromycin. 

After few days, puromycin selection was removed to allow better growth of the colonies. 

One week after, isolated colonies were picked and transferred in 96-well plates. 

 

5.3. PCR SCREENING OF CRISPR-CAS9 CLONES 

To extract genomic DNA, 100 µl of 0,25 M NaOH were added to each well of the 96-well 

plate and incubated at 100 °C for 10 minutes.  
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PCR mix was prepared as following: 

Buffer Go-Taq Flexi (Promega) 5 µl 

100 µM dNTPs                                0,5 µl 

100 µM Forward primer 0,1 µl 

100 µM Reverse primer 0,1 µl 

GoTaq Hot Start (Promega) 0,2 µl 

Genomic DNA 5 µl 

25 mM MgCl2 1,5 µl 

ddH20 Up to 20 µl  

The following primers were used: 

36B4 Forward: 5’-ACTGGTCTAGGACCCGAGAAG-3’ 

36B4 Reverse: 5’-TCAATGGTGCCTCTGGAGATT-3’ 

Man1 Forward: 5’-GGAGAGCACCCCGGCCCGTCT-3’ 

Man1 Reverse: 5’-GCCTCCTGCCACGGGGCTCT-3’ 

PCR was performed with the following program: 

98 °C 5’  

98 °C 15’’ 

} 35 59 °C 20’’ 

72 °C 30’’ 

72 °C  5’  

4 °C ∞  

 

5.4. PREPARATION OF WHOLE CELL EXTRACTS FOR WESTERN BLOTTING 

Cell pellets were washed twice in ice-cold PBS 1x, harvested and resuspended in 10 volumes 

of RIPA buffer supplemented with Protease Inhibitor Cocktail (Roche). After incubation on 

ice for 10 minutes, smples were sonicated using a Bioruptor® Standard sonication device 

(Diagenode) for 8 minutes (30 seconds high intensity pulse-30 seconds wait) in cold water 

supplemented with small amounts of crushed ice. Insoluble material was collected by 

centrifugation at 16,000 x g for 15 minutes. Protein concentrations were determined using 



	 57	

Bradford method215. Required amount was mixed with loading buffer and incubated for 4 

minutes at 100 °C before loading. 

 

5.5. TOTAL RNA EXTRACTION 

Total RNA extraction was performed by mechanical rupture of cell pellets with an insulin 

syringe with 1 ml of Trizol (Thermofisher), according to manufacturer’s protocol. Briefly, 

homogenates were incubated at 30 °C for 5 minutes and, after that, 200 µl of Chlorophorm 

were added. Tubes were vortexed and incubated at 30 °C for 2 minutes. Tubes were 

centrifuged at 12000 xg for 15 minutes at 4 °C to allow separation of aqueous and organic 

phase. The upper aqueous phase was collected and mixed with 0,5 ml of isopropanol to allow 

RNA precipitation. Tubes were incubated at 30 °C for 10 minutes and then centrifuged 

12000 xg for 10 minutes at 4 °C. The supernatant was removed and the pellets were washed 

with 1 ml of 75% ethanol. The tubes were centrifuged again at 7500 x g for 5 minutes at 4 

°C and the pellets were air-dried on ice. Finally, the RNA pellets were resuspended in MilliQ 

water and quantified at the Nanodrop.  

 

5.6. REVERSE-TRANSCRIPTASE QUANTITATIVE PCR (RT-QPCR) 

One microgram of total RNA was first reverse-transcribed into first-strand cDNA in the 

presence of random primers using SuperScriptTM III Reverse Transcriptase (Invitrogen) 

according to manufacturer’s protocol. Then real time-PCRs were performed in triplicate in 

LigthCycler® 480 Semi skirted 96-well plates (Roche) using LightCycler 96 Real time 

system (Roche). A master mix was prepared adding the following reagents to each reaction: 

ddH2O 10 µl 

100 µM Forward primer  0,1 µl 

100 µM Reverse primer  0,1 µl 

LightCycler 480 SYBR Green I Master 10 µl 
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Each well was filled with 19 µl of Master mix and 1 µl of 1:4 cDNA dilution in water were 

added to each well. Plates were then sealed using Microseal® B Adhesive Sealer (BIO-

RAD) and centrifuged for 5 minutes at 4000 rpm before program starting. 

The cycle parameters used were: 

 
Preincubation 95 °C 300’’   

 
 

2-step amplification 

 
95 °C 

 
10’’ 

 

} 
 

 

60° C 30’’ x 45 

 
Melting 

95 °C 10’’  

 
65 °C 

 
60’’ 

  

97 °C 1’’   

 

Fluorescence was measured at the end of the annealing period of each cycle to monitor the 

amplification. Immediately after the amplification, melting curves were recorded in order to 

verify that a single product was amplified in all reactions. 

Expression levels of target genes were determined by comparison with the housekeeping 

gene GAPDH. For each PCR run, the relative mRNA level was determined by the 

expression: 

Fold change= 2 –ΔΔCt 

ΔΔCt = ΔCt Control or treated − ΔCtcontrol 

ΔCt=Cttarget gene – CtGAPDH  

Ct=Cycle Threshold 

The RT-qPCR experiments were conducted 3 times and averaged. Primers used are listed 

below (Table 6): 
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Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

Man1 CGGAATATGCTGGGAAGGCT AGGGAGTGTTGCAAGTGAGG 

Nanog CAGGTGTTTGAGGGTAGCTC CGGTTCATCATGGTACAGTC 

Oct4 CCGTGTGAGGTGGAGTCTGAGA GCGATGTGAGTGATCTGCTGTAGG  

Sox2 TAGAGCTAGACTCCGGGCGATGA TTGCCTTAAACAAGACCACGAAA 

Rex1 ACGAGTGGCAGTTTCTTCTTGGGA TATGACTCACTTCCAGGGGGCACT 

GAPDH ACCCAGAAGACTGTGGATG CACATTGGGGGTAGGAACAC 

PcRNA TGGCGAGAAACTGAAAATCACG TCTTGCCATATTCCACGTCCTAC 

TERRA CGGTTTGTTTGGGTTTGGGTTTGG- 

-GTTTGGGTTTGGGTT 

GGCTTGCCTTACCCTTACCCTTACCC- 

-TTACCCTTACCCT 

 

Table 6. List of primers used for Reverse-Transcription quantitative PCR (RT-qPCR) 

 

5.7. ALKALINE PHOSPATASE STAINING  

Alkaline phosphatase staining was performed with Leukocyte Alkaline Phosphatase Kit 

(Sigma Aldrich) according to manufacturer’s protocol. Cells were seeded on gelatin-coated 

6-well plates at a concentration of 3x105 cells/well. 

 

5.8. EMBRYOID BODIES FORMATION 

When cultured in suspension and in absence of LIF, mES cells differentiate spontaneously, 

forming spherical aggregates called Embryoid Bodies (EBs), which can differentiate giving 

rise to cells of all three germ layers. 

For EB formation, 5x104 cells were harvested and transferred in single-cell suspension into 

a low-attachment culture dishes. EBs were cultured ESC differentiation medium. After 5-7 

days in floating culture, EBs were collected by sedimentation and transferred onto gelatin-

coated 6-well plates and cultured with fresh medium for other three days to induce further 

differentiation in all the cell types. 
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RESULTS 

 

1. MAN1 CHARACTERIZATION USING THE XENOPUS CELL-FREE 

EXTRACT SYSTEM 

To investigate the function of Man1 in nuclear assembly and DNA replication, recombinant 

mutant proteins derived from Xenopus Man1 were added to the extracts. 

Studying Xenopus Man1 function using immunodepletion was excluded as a strategy for the 

following reasons: first, removing integral membrane proteins from eggs membranes is 

technically challenging, as this procedure includes membranes solubilisation and a final 

reconstitution of the depleted membranes, besides the specific immunodepletion. A second 

complication arises from the functional redundancy of LEM proteins and other nuclear 

envelope factors, which could compensate the loss of Man1. 

To overcome these problems a “dominant negative strategy” was chosen, as a similar 

experimental setup has been already used to study the effect of nuclear envelope protein 

Lap2ß on nuclear architecture125. Truncated mutants of Man1 were generated to compete 

with the endogenous wild-type protein and interfere with the tethering of the chromatin to 

the nuclear envelope. 

 

1.2. ANALYSIS OF X. LEAVIS MAN1 SEQUENCE AND STRUCTURE 

X. laevis Man1 (xMan1) cDNA sequence was obtained from Xenopus IMAGE cDNA library 

(clone name: IMAGE:9093697). The translated sequence was aligned to human Man1 

(NCBI Reference Sequence: NP_055134) using Geneious Software in order to identify 

conserved functional domains.  

Full length X. laevis Man1 protein sequence is composed by 782 amminoacids and shares 

around 50% overall similarity with the human hortolog. The most conserved regions are the 
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LEM domain (>80% similarity) located in the N-terminal extremity and the C-terminal RRM 

motif (87% similarity), whereas other regions are less conserved (Figure 6).  

Structurally, xMan1 is composed by a N-terminal and a C-terminal regions separated by two 

transmembrane domains. The entire N-terminal region (residues 1-345) contains, beyond the 

LEM domain (residues 4-33), other putative polypeptide binding sites. In fact, even if the 

entire N-terminal region shares only 30% of homology with the human counterpart, it was 

possible to identify some highly conserved sites which most likely represent binding 

consensus sequences for lamins and other nuclear envelope proteins. The first 

transmembrane domain is predicted to be located in the region between residues 352 and 

372 and it is highly conserved between human and Xenopus (90% of identity) whereas the 

second transmembrane region is predicted to be located at residues 498-518 with a lower 

degree of conservation (38 % of identity). The residues between the two transmembrane 

domains constitute the lumenal domain, which is still uncharacterized in vertebrates, but is 

known to contain in the yeast hortolog protein Src1 some interaction sites with NPC 

components200.  

The C-terminal region (residues 520-782) contains other two main functional domains. The 

first one is the MSC domain (residues 392-622), which shares 20% of sequence homology 

with the yeast protein Src1 and is predicted to adopt a secondary conformation capable of 

directly bind DNA. The second domain is called RRM (residues 657-736) and is shared with 

many RNA interacting factors. In fact, it contains an DNA/RNA binding site (residues 704-

706) and a polypeptide binding site (residues 734-736). These residues are likely to mediate 

the interaction with Smads transcription factors, even if the identification of a specific 

consensus motif on the Xenopus sequence was not successful. 
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Figure 6. Sequence alignment between X. laevis (top) and human (bottom) Man1 proteins. 

The alignment analysis was performed using MegAlign software. Red arrows represent 

conserved domains. A detailed description of Man1 sequence is available in the text. 

 

1.3. GENERATION OF MAN1 DERIVATIVE MUTANTS 

As previously described, wild-type Man1 spans twice the inner nuclear membrane, exposing 

to the nucleoplasm two putative DNA-interaction sites, located in the amino and carboxy-

terminal extremities (Figure 7A). Two truncated mutants of Man1, corresponding to the 

entire N-terminal and C-terminal regions deprived of the transmembrane domains, were 
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generated (Figure 7B). The N-terminal fragment (corresponding to residues 1-345) is 

predicted to have lamin-binding properties and, more importantly, it contains the LEM 

domain, which mediates the interaction with the chromatin. On the other hand the C-terminal 

fragment (corresponding residues 520-782) includes the RRM domain, essential for the 

regulation of transcription factor activity during embryo development150,185, and a putative 

DNA binding domain called MSC, which function is still uncharacterized. 

Such mutants are predicted to compete with the binding of the endogenous wild-type protein 

with its targets (in particular, DNA and chromatin). 

Man1 truncated mutants were generated by cloning Man1 cDNA into a bacterial expression 

vector carrying a SUMO-histidine tag. Recombinant proteins were obtained by affinity 

purification from induced E. coli cultures (Figure 7C). Due to the intrinsic instability of the 

free N-terminal fragment it was not possible to remove the His-SUMO tag without causing 

precipitation of the recombinant protein. Anyway it is possible to exclude that the 

phenotypes observed in this study was given by the SUMO-tag since it wasn’t either 

removed from the C-terminal fragment which seemed to have no phenotype (as shown in 

the next section). 
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Figure 7. Structure and functional domains of Xenopus Man1 and its recombinant 

derivatives.  

A) Endogenous Xenopus Man1 spans the inner nuclear membrane twice, exposing to the 

nucleoplasm functional domains of interaction: the LEM domain (in blue), the two 

transmembrane domains (in yellow), the MSC domain (light blue) and the RRM domain (in 

black and red). Black asterisks indicated the position of Nuclear Localization Signals. B) 

Recombinant Xenopus Man1 mutants used in this project. C) Coomassie staining of purified 

recombinant proteins (5 µg of each protein were loaded on the gel). Prestained protein 

marker, Broad range (New England Biolabs) and Precision plus dual color marker (BioRad) 

were used as protein standards. 

The image was adapted from Osada et al185. 

 

1.4. THE N-TERMINAL FRAGMENT OF MAN1 IMPAIRS NUCLEAR ASSEMBLY 

AND CHROMATIN DECONDENSATION 

To characterize Man1 function in nuclear assembly dynamics, SUMO-HIS tagged versions 

of both the N-terminal and C-terminal domains from Xenopus laevis Man1 protein were 

produced in bacterial cells and purified to homogeneity. In order to compete with the activity 
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of the endogenous Man1 factor, these recombinant protein mutants were added to Xenopus 

nuclear assembly at a concentration of 3 µM. 

To exclude any possible non-specific effect given by simple addition of proteins into the 

extract, control reactions were prepared by adding an equal molar amount of Bovine Serum 

Albumin (BSA). 

As shown in the middle panel of Figure 8A, nuclei assembled in the presence of the C-

terminal fragment appeared similar to the control ones, with no detectable defects in 

envelope expansion and chromatin decondensation, monitored by fluorescent staining with, 

respectively, a lipophilic fluorescent dye DHCC and Hoechst. 

Moreover, they appeared to be competent for DNA replication, as indicated by efficient 

incorporation of a fluorescence-labelled nucleotide (Cy3-dCTP). 

On the other hand, extract supplemented with the N-terminal fragment were unable to 

assemble normal shaped nuclei (Figure 8A and B, bottom panels). In particular, addition of 

purified N-terminal fragment to the extract determined an evident delay in nuclear expansion 

at 3 µM protein concentration while at higher concentrations (12 µM) almost completely 

arrested nuclear formation (Figure 9).  

This result is consistent with the effect of Lap2ß-truncated mutants on nuclear assembly in 

Xenopus extracts reported in a study in which a similar dominant negative strategy was 

used125. 
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Figure 8. Effect of Man1 mutants on nuclear assembly and nucleotide incorporation.  

A) Demembranated sperm nuclei assembled for 1 hour in Xenopus interphase extract 

containing the same molar amount (3 µM) of BSA, C-terminal or N-terminal fragment were 

fixed on coverslips and observed by fluorescence microscopy. Left panels show DNA 

staining (Hoechst), central panels show membrane staining (DHCC) and right panels show 

nucleotide incorporation (Cy3-dCTP). B) Representative time-course of the effect of N-

terminal fragment on nuclear formation (Hoechst staining). Images are representative of at 

least 10 independent experiments. 
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Figure 9. Dose-dependent effect of Man1 N-terminal fragment on nuclear assembly over 

time.  

The histograms show the percentage of decondensed nuclei assembled in presence of BSA 

or N-terminal fragment either at 3 (A) or 12 (B) µM concentration over time. At least 100 

nuclei were counted for each experimental point. 

 

These results indicate that the addition of the N-terminal fragment, containing the putative 

chromatin-binding domain of Man1 but lacking connection with the nuclear membrane 

might interfere with envelope expansion and chromatin decondensation. 

The same effect was obtained also by using a shorter 45 aa peptide corresponding to the 

sequence of the LEM domain of Man1 alone (Figure 10), suggesting that the observed 

impairment in nuclear assembly could be mediated by this specific domain.  

 

 

Figure 10. Effect of recombinant LEM domain on nuclear assembly.  

Percentage of decondensed nuclei assembled for 1 hour in presence of BSA or recombinant 

LEM domain, either at 3 or 12 µM concentration. The histogram shows mean values ± 

standard deviation (error bars) of three independent experiments. At least 100 nuclei were 

counted for each experimental point. 
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1.5. MAN1 N-TERMINAL FRAGMENT DOES NOT IMPAIR NUCLEAR ENVELOPE 

INTEGRITY BUT IT AFFECTS NUCLEAR PORE FORMATION 

Given the results mentioned above, it is possible to think that the truncated N-terminal 

mutant of Man1 could interfere with nuclear envelope assembly. For this reason, the 

functional properties of the NE were assayed with different methods upon treatment with 

the N-terminal fragment. A possible reason for the observed defects in nuclei formation 

could be that the N-terminal fragment can interfere with membrane fusion. In order to assess 

whether addition of the N-terminal domain could disrupt the integrity of the nuclear 

envelope, the ability of nuclei to exclude large 70 kDa dextran molecules was tested. 

Since the size of such molecule is above the limit for diffusion through nuclear pores (that 

is considered to be around 60 kDa)216, it can enter into nuclei only if there are gaps in the 

nuclear envelope or if nuclear membrane assembly process is incomplete. 

In these assays rhodamine-labelled dextran was added to the extract containing either control 

(BSA) or the N-terminal and nuclei were let assemble for 1 hour. After 30 minutes, samples 

were fixed in presence of Hoechst and DHCC and observed by fluorescence microscopy. As 

shown in Figure 11, the results of these analyses demonstrated that the large majority of 

control nuclei and N-terminal treated nuclei were efficient in excluding 70 kDa dextran 

molecules, indicating that they were both able to assemble intact nuclear membranes. 

Such result indicates that Man1 N-terminal fragment is not interfering with the fusion of 

nuclear membrane vesicles. 
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 Figure 11. Effect of Man1 N-terminal mutant on nuclear envelope integrity.  

A) Nuclei were assembled for 1 hour in the presence of BSA or N-terminal fragment and 

then incubated for 30 minutes in presence of rhodamine-labelled 70 KDa Dextran. The 

histogram shows percentage of nuclei able to exclude 70 KDa Dextran from the lumen. The 

histogram shows mean values (bar) ± standard deviation (error bars) of three independent 

experiments. At least 100 nuclei were counted for each experimental point. 

 

Given this observation, the effect of the N-terminal fragment on nuclear assembly and 

expansion could be also explained by defects in active nuclear import, since 

nucleocytoplasmic transport mediated by NPCs is required for NE expansion and nuclear 

growth121,217. For this reason, nuclei assembled in presence of N-terminal domain were tested 

for the ability to actively import a Nuclear Localization Signal (NLS)-tagged fluorescent 

substrate (NLS-GFP). As shown in Figure 12, it was not possible to detect any significant 

difference in the import ability between control and N-terminal treated nuclei, suggesting 

that the observed phenotype was not caused by defects in bulk import of proteins inside the 

nuclei. 
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Figure 12. Effect of Man1 N-terminal mutant on nuclear import.  

A) Nuclei were assembled for 1 hour in the presence of BSA or N-terminal fragment and 

then incubated for 30 minutes in presence of recombinant NLS-GFP. B) The histogram 

shows percentage of nuclei able to actively import NLS-GFP. The histogram shows mean 

values ± standard deviation (error bars) of three independent experiments. To obtain 

percentages, at least 100 nuclei were counted for each experimental point. 

 

Another possible explanation of the observed impairment in nuclear assembly could be that 

Man1 N-terminal fragment impairs NPC assembly without affecting dramatically the bulk 

nuclear import of proteins. In order to answer to this question, the effect of Man1 N-terminal 

fragment on NPC assembly was tested, by adding it to pore-free nuclear intermediate 

structures, that were previously assembled in Xenopus extracts by using the calcium chelator 

BAPTA (Figure 13A and 13B). In fact the addition of BAPTA in nuclear assembly reactions 

is able to inhibit the assembly of mature NPCs, resulting in the formation of nuclei with fully 

sealed nuclear membranes deprived of nuclear pores217 (Figure 13A). 

As shown in Figure 13, addition of BAPTA in the egg extract led to the formation of small 

condensed nuclei with a continuous DHCC staining and unable to incorporate Cy3-dCTP, 

indicating impaired DNA replication. The rescue of NPC assembly and proper nuclear 

functions could be achieved by subsequent dilution of BAPTA intermediates in fresh egg 

extract, leading to the maturation of NPCs, chromatin decondensation and DNA replication 

(Figure 13B, BSA panel). However, incubation of BAPTA intermediates in fresh extract 
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containing N-terminal Man1 fragment was not able to completely restore nuclear functions. 

In fact, the resulting nuclei were not able to recover complete chromatin decondensation and 

nuclear growth, while they were still able to incorporate labelled nucleotides (Figure 13, N-

ter panel).  

 
 

Figure 13. Nuclear pore assembly assay.  
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A) Schematic representation of the experiment (Adapted from Bernis et al.218). To assemble 

pore-free nuclear intermediates, sperm nuclei (3000 nuclei/µl) were incubated in interphase 

extract in the presence of 8 mM BAPTA and Cy3-dCTP for 60 min. Pore-free nuclei were 

subsequently diluted in 10 volumes of fresh extract containing either BSA or N-terminal 

fragment and incubated for further 60 minutes. B) Representative pictures of assembled 

nuclei fixed and visualized at the fluorescence microscope. C) The graph shows the 

percentage of fully decondensed nuclei. The histogram shows mean values (bar) ± standard 

deviation (error bars) of three independent experiments. At least 100 nuclei were counted 

for each experimental point. 

 

In parallel, immunofluorescence staining of nucleoporins performed on nuclei assembled in 

the presence of Man1 N-terminal fragment showed an abnormal pattern of NPCs on the 

surface of the NE (Figure 14). This data is also supported by a study in which specific defects 

in nucleoporin distribution were associated to deletion of gene encoding for yeast Man1 

hortolog Scr1200,219. 

 

 

 

 Figure 14. Nup-153 immunostaining of assembled nuclei.  

Sperm nuclei were assembled for 1 hour in interphase extract in presence of either BSA or 

N-terminal fragment. Isolated nuclei were attached to glass coverslips and stained with anti-

Nup153 mouse primary antibody followed by anti-mouse alexa488-conjugated secondary 
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antibody. DNA staining was performed with Hoechst. Images are representative of 3 

independent experiments. 

 

1.6.  MAN1 N-TERMINAL DOMAIN INHIBITS DNA REPLICATION AND CAUSES 

ACCUMULATION OF DNA DAMAGE 

Rate and kinetics of DNA replication in Xenopus extracts are absolutely dependant on the 

efficiency of nuclear assembly220. The length of S phase, as well as the time of nuclear 

assembly, vary from extract to extract and can be affected by high concentrations of DNA 

or dilution of the extract. In a typical replication assay, with DNA concentrations of around 

3000 nuclei/µl, Xenopus sperm nuclei enter S phase approximately 30 minutes after addition 

to the extract and complete DNA replication within 1 or 2 hours. 

As previously shown, nuclei assembled in the presence of Man1 N-terminal fragment 

appeared to be deficient for DNA replication, as they failed to incorporate Cy3-dCTP. To 

better confirm the effect of the two Man1 mutants on DNA replication, sperm nuclei were 

assembled in presence of [𝛼-32P]-dCTP, with or without the C- and N- terminal fragments 

of Man1 and the replicated DNA was quantified both by agarose gel electrophoresis 

followed by autoradiography and by precipitation of nucleic acids followed by scintillation 

counting. 

As shown in Figure 15, nuclei assembled in the presence of Man1 C-terminal domain 

replicated at levels as high as control nuclei. On the opposite side, the addition of the N-

terminal fragment caused a strong decrease in the replication efficiency, with more than a 

60 % reduction of [𝛼-32P]-dCTP incorporation after 2 hours compared to the control. 
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Figure 15. Effect of Man1 mutants on DNA replication.  

A) Nuclei were assembled for 60 or 120 minutes with BSA, C-terminal or N-terminal domain 

of Man1, in the presence [𝛼-32P]-dCTP. Reactions were digested with proteinase K, resolved 

on agarose gel and the incorporation of radiolabelled dCTP was visualized by 

autoradiography. B) Signal intensities of 5 independent experiments as in panel A were 

quantified using ImageJ and relative incorporation rates were expressed as a percentage 

relative to control sample at 120 minutes. The histogram shows mean values ± standard 

deviation (error bars) of 5 independent experiments. C) For replication efficiency 

quantification, nucleic acids were precipitated with trichloroacetic acid and the exact 

amount of newly synthesized DNA was calculated by scintillation counting. Results are the 

mean of 3 independent experiments. Error bars represent the standard deviation. 
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Replication dynamics were also monitored through the analysis of nascent DNA elongation 

by alkaline electrophoresis of replicating chromatin. To do so, replication reactions were 

constituted in presence of Man1 N-terminal fragment or BSA and the replicating DNA was 

pulse-labelled with [𝛼-32P]-dCTP at different time-points and resolved on agarose gel in 

denaturing conditions. In order to prevent further initiation of replication, 0,5 mM of Cyclin 

Dependent Kinases (CDK) inhibitor roscovitine221 was added after 5 minutes from the [𝛼-

32P]-dCTP pulses.  

As shown in Figure 16, rates of growth of labelled ssDNA fragments are comparable 

between control and treated nuclei, indicating that the N-terminal fragment does not inhibit 

the elongation of newly synthetized DNA. On the other hand, the overall amount of [𝛼-32P]-

dCTP was strongly reduced in N-terminal inhibited nuclei compared to the control, possibly 

correlating with a lower number of ongoing replication forks. 

 

 

Figure 16. Visualization of nascent ssDNA strands by alkaline gel electrophoresis.  
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A) Sperm nuclei were incubated at 1000 nuclei/µ in interphase extract. At 30 minutes, 

replication reactions were supplemented with [𝛼-32P]-dCTP plus 0,5 mM roscovitine221. At 

the indicated times, samples were chased with unlabelled dCTP. The DNA was isolated and 

analysed by alkaline electrophoresis followed by autoradiography. B) The signals were 

acquired with Typhoon scanner and analysed with ImageJ. The graph shows a comparison 

between the signals profiles of control (grey) and the N-terminal treated reactions (red). 

 

Given the previous observations about the effect of Man1 N-terminal fragment on nuclear 

assembly, it was speculated that the lower detected replication rates could be dependent on 

the chromatin architecture inside the nucleus. In order to test this hypothesis, the ability of 

N-terminal treated extract to inhibit the replication of a small circular template (M13mp18 

ssDNA), which does not require the formation of nuclear structures222, was tested. As 

expected, the replication efficiency of M13 ssDNA in the presence of Man1 N-terminal 

fragment was similar to the control, in deep contrast to the strong inhibition that occurred 

when using sperm DNA as template (Figure 17). These results confirmed that the basic 

replication machineries are not interfered by the presence of Man1 N-terminal domain and 

that the low chromatin replication efficiency previously observed only relies on an aberrant 

chromatin architecture. 

 

 

Figure 17. Effect of Man1 N-terminal fragment on M13ssDNA replication.  

A) Xenopus interphase extracts containing BSA or Man1 N-terminal fragment were 

incubated in presence of [𝛼-32P]-dCTP and sperm nuclei or an equal amount of M13mp18 
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ssDNA. Reactions stopped at 60 or 120 minutes were digested with proteinase K, resolved 

on agarose gel and visualized by autoradiography. B) Signal intensities were acquired using 

ImageJ analysis software and relative incorporation rates were calculated considering the 

signal of sperm control sample at 120 minutes as absolute value. The histogram shows mean 

values (bar) ± standard deviation (error bars) of three independent experiments. 

 

In order to completely monitor the DNA replication dynamics in nuclei assembled in the 

presence of Man1 N-terminal fragment, the binding of major DNA replication factors to the 

chromatin was analysed by chromatin isolation followed by SDS-page and immunoblotting. 

The result of this analysis (Figure 18) confirmed a general reduction of replication factors 

involved in the establishment of replication origins, known as the pre-replication complex. 

This data suggests that addition of Man1 N-terminal fragment at the beginning of nuclear 

assembly process strongly impairs the formation of the pre-RC, causing a subsequent 

perturbation of the overall DNA replication mechanism. 

 

 

 

Figure 18. Chromatin binding of DNA replication factors on nuclei assembled in the 

presence of Man1 N-terminal fragment.  

Sperm nuclei were assembled in presence of BSA or Man1 N-terminal fragment and aliquots 

of the reaction were stopped at different time-points in order to monitor the loading of 
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replication factors on chromatin. Chromatin-bound proteins isolated from replicating nuclei 

were separated on SDS-PAGE and immunoblotted with antibodies against the indicated 

replication factors. Lower portion of the filter was blotted with anti-histone H2B antibody 

as loading control. First lane of the gel shows total Xenopus extract (XE) used as positive 

control for the antibody detection. The figure shows one representative result among 3 

independent experiments. 

 

Since defects in DNA replication are often associated with generation of lesions and 

activation of the DNA damage response223, replicating nuclei were stained with an antibody 

raised against phosphorylated histone H2A.X (𝛾H2A.X), in order to understand if the 

observed reduction in replication efficiency was also associated with accumulation of DNA 

damage. In fact, such chromatin modification, conserved in all eukaryotes, occurs after 

spontaneous DSBs or replication stress-associated lesions, in a mechanism dependent on 

apical checkpoint kinases ATR and ATM224,225. 

As expected, the addition of Man1 N-terminal fragment in the replication reaction led to a 

dramatic increase of 𝛾H2A.X foci on the chromatin, which also appeared to increase over 

the time (Figure 19). This result indicates that nuclei assembled in the presence of N-terminal 

fragment accumulate DNA damage during the progression of DNA replication.  

It is possible to speculate that the observed accumulation of lesions could be either due to an 

increase in DBSs generation during DNA replication or to a reduced ability in the repair of 

breaks that are spontaneously generated during S phase, likely due to defects in recruiting 

repair factors on the chromatin. 
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Figure 19. 𝛾H2A.X immunostaining of replicating nuclei.  

A) Sperm nuclei were assembled for 1 or 2 hours in interphase extract in presence of either 

BSA or N-terminal fragment. Isolated nuclei were attached to glass coverslips and stained 

with anti-𝛾H2A.X mouse primary antibody followed by anti-mouse alexa488-conjugated 

secondary antibody. DNA staining was performed with DAPI. B) The histogram shows the 

average number of alexa-488 positive foci that was detected in each nucleus. The histogram 

shows mean values ± standard deviation (error bars) of three independent experiments. At 

least 100 nuclei were counted for each experimental point. 

 

1.7. MAN1 N-TERMINAL FRAGMENT ALTERS THE CHROMATIN 

ORGANIZATION INSIDE THE NUCLEUS 

The association of DNA with the nuclear envelope is necessary to maintain the spatial 

arrangement of the chromatin inside interphase nucleus. Such “high order organization”, 

typical of eukaryotic organisms, depends on the fact that the chromatin is arranged in radial 

DNA loops with periodical attachments to the nuclear matrix226. 

It is possible to reveal this organization using the “maximum fluorescence halo assay”, in 

which nuclei are extracted with high salt concentration, in order to remove the outer layer of 

histones and most of the other nuclear and chromatin proteins, and stained with ethidium 
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bromide, which introduces positive supercoils that relax the DNA loops227. These loops can 

be further visualized at the microscope as a fluorescent halo around the residual nuclear 

structure, which radius length (Maximum Fluorescence Halo Radius, MFHR) directly 

correlates with the loop size. The measurement of loop sizes in control nuclei and nuclei 

assembled in presence of the Man1 N-terminal fragment, revealed a substantial difference 

in chromatin organization between the two conditions (Figure 20A). In fact, while control 

nuclei showed a typical symmetric distribution of MFHR values, nuclei assembled in the 

presence of Man1 N-terminal fragment showed a more random one. Moreover, measuring 

the minimum and the maximum halo radius lengths for each nucleus, a significant difference 

between these values was observed in N-terminal treated nuclei respect to the control, 

meaning that in those nuclei there was a more variable distribution of loop sizes (Figure 

20B). 

 

Figure 20. High order chromatin organization in nuclei assembled in presence of Man1 

N-terminal fragment. 
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A) Isolated nuclei were recovered on coverslips and processed with the Maximum 

Fluorescence Halo Radius technique. Histograms show distribution of individual loop size 

measurements. Image shows one representative experiment. B) Difference between the 

minimum and maximum loop size measurement for each single nucleus. The box plot 

represents first and third quartiles separated by the median (central horizontal line) ± 

maximum and minimum values (error bars) of 2 independent experiments. For each sample, 

at least 200 halos were counted. 

 

1.8. MAN1 N-TERMINAL FRAGMENT ALTERS CELL CYCLE PROGRESSION BY 

INHIBITING THE EXIT FROM MITOSIS 

Since LEM-D proteins are also involved in the control of cell cycle progression172,173, Man1 

truncation mutants were added to CSF-arrested Xenopus extract, which allows to follow both 

the exit of nuclei from mitosis and the subsequent progression into interphase214. Such 

extracts are naturally synchronized in metaphase and can be driven into interphase by 

addition of free Ca++, which mimics egg fertilization. 

As showed in Figure 21, incubation of sperm DNA with Man1 N-terminal fragment in CSF 

extract completely inhibited nuclear formation after extract activation (middle panel), while 

control reaction showed efficient formation of interphase nuclei (top panel). In fact, sperm 

nuclei failed to fully decondense the chromatin and to assemble enclosed nuclear envelopes 

when assembled in the presence of Man1 N-terminal fragment. Remarkably, 2 hours after 

extract activation, they still shown shapes typical of mitotic chromosomes. The same 

phenotype was observed when recombinant LEM domain fragment alone was added instead 

of the full N-terminus. 
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Figure 21. Effect of Man1 N-terminal recombinant fragment and LEM domain on 

nuclear reformation after mitosis.  

Demembranated sperm nuclei were incubated for 20 minutes in CSF extract together with 

BSA (top), N-terminal fragment (middle) or LEM domain (bottom) and then driven into 

interphase by activation with CaCl2 (t=0’). Samples were fixed on coverslips and analysed 

by fluorescence microscopy. Pictures represent merged signals acquired with blue filter 

(Hoechst) and green filter (DHCC). Image shows one representative result out of 3 

independent experiments. 

 

In order to have a wider view on the role of Man1 during cell cycle, the effect of N-terminal 

fragment was also tested using Xenopus “cycling” extract. This kind of extracts have the 

ability to perform multiple rounds of DNA replication in a short range of time, allowing to 

monitor all the phases of the cell cycle progression214. 

Since the efficiency of this particular extracts is very sensitive to any kind of stress, such as 

extract dilution, it was chosen to test first the effect of recombinant LEM domain, which was 

more stable and less difficult to produce in more concentrated stock solution. The effect of 

the entire N-terminal fragment still remains to be tested. 

Hence, recombinant LEM domain was added to cycling extract at interphase, together with 

sperm DNA, Cy3-dCTP and 488-tubulin, in order to visualize mitotic spindles. Aliquots 

from the reactions were sampled at short intervals and monitored by fluorescence 

microscopy. As shown in Figure 22, while control nuclei were able to perform multiple 
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cycles, nuclei assembled in the presence of recombinant LEM domain failed to progress 

through the first mitosis and arrested at metaphase. 

The cell cycle progression of extracts containing Man1 LEM domain was also assessed by 

immunoblotting of the mitotic-specific protein Cyclin B2 which disruption and synthesis 

mark, respectively, exit and entry into mitosis. As shown in Figure 23, at time-points in 

which control sample displayed complete degradation of Cyclin B2, corresponding to 

efficient exit from mitosis, extracts containing recombinant LEM domain showed only 

partial degradation followed by accumulation of Cyclin B2 over the time, possibly 

correlating a persistence of the nuclei in a mitotic-arrested state. 

All the observed defects in cell cycle progression could be explained by several mechanisms, 

not mutually exclusive respect to each other. On one hand, it is possible to think that the 

phenotype observed in CSF-arrested extracts was due to an inability of reforming the nuclear 

envelope after mitosis. This hypothesis is supported by a published study in which a delay 

in NE reformation after mitosis was observed after silencing of Man1 gene in mammalian 

cells228. On the other hand, results obtained using cycling extracts suggest that interference 

with Man1 could also affect other pathways that occur prior to mitotic exit and that can cause 

arrest into mitosis. Such hypothesis is also supported by a study in which ablation of Man1 

function was found to be associated with blocked cytokinesis and accumulation of anaphase-

bridged chromatin in C. elegans186. 
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Figure 22. Effect of recombinant LEM domain on cell cycle progression.  

Demembranated sperm nuclei were incubated in freshly prepared cycling extracts 

supplemented either with BSA or LEM domain, in the presence of Cy3-dCTP and 488-

tubulin. The figure shows one representative result out of 3 independent experiments. A) A 

fraction of the samples was fixed on coverslips and observed by fluorescence microscopy. 

Pictures represent merged signals acquired with blue (Hoechst), green (DHCC and 488-
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tubulin) and red (Cy3-dCTP) filters. B) The other fraction of the samples was mixed with 

Laemmli loading buffer and processed for SDS-page and Western Blotting with antibody 

against Cyclin B2. 
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2. CHARACTERIZATION OF MAN1 IN MOUSE EMBRYONIC STEM 

CELLS 

To extend the characterization of Man1 function in mammalian cells, knockout of MAN1 

gene was performed in mouse Embryonic Stem Cells (mESCs). One of the main reasons 

behind the choice of this particular model system is that embryonic stem cells behave in a 

similar way to the Xenopus cell-free extract, as both system recapitulate the cellular 

mechanisms that occur during the first zygotic divisions. 

mESCs are stem cells derived from the inner mass of the mouse embryo that can be 

maintained in culture in an undifferentiated state in the presence of Leukaemia Inhibitory 

Factor (LIF), a differentiation-inhibiting cytokine. An important feature of these cells is their 

peculiar cell cycle organization which provide them a high proliferative capacity. In fact, 

mESCs spend most of their time in S phase, thanks to the fact that their G1 phase is strikingly 

shorter compared to differentiated cells229,230. This feature is shared by the Xenopus cell-free 

extract, which can sustain rapid and multiple cycles of transition between S phase and 

mitosis231. 

Moreover, ESCs have the distinctive property to be pluripotent, meaning that they have the 

ability to differentiate into all somatic cell types found in the adult organism. Therefore, their 

pluripotency and their ability to replicate indefinitely renders them a very powerful tool for 

research. Interestingly, few years ago it was discovered that differentiated mammalian cells 

incubated in Xenopus extract are efficiently reprogrammed into an embryonic state and 

reactivate expression of pluripotency genes232, underlining the similarity between Xenopus 

oocyte extract and embryonic stem cells. 

 

2.1.  GENERATION OF STABLE MAN1-KNOCKOUT CELL LINES  

The disruption of Man1 gene was achieved using CRISPR-Cas9 system, a genome editing 

tool233 that takes advantage of the RNA-guided bacterial endonuclease Cas9 which can 

cleave double stranded DNA in a site-specific manner, leading to the disruption of the locus 
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of interest. In order to target Man1, three guide RNAs (gRNAs) were designed, directed to 

the 1st and the 9th exon of the mouse gene.  

A first attempt to generate Man1-KO cells was made using ESCs derived from Cas9 knock-

in mice (Rosa26-Cas9 knockin). The three guides were used both for single transfections 

and used in combination, in order to determine the most efficient way to delete the gene. As 

shown in Figure 23, single gRNAs were not sufficient to downregulate Man1 gene in a 

significant way, while the combination of the three guides was able to cause a decrease in 

Man1 expression of about 50%, as revealed by Reverse Transcriptase quantitative PCR (RT-

qPCR). This result was also confirmed by western blot analysis (Figure 24). 

 

 

Figure 23. Expression levels of Man1 in D1 Man1-Knockout mESCs. The image shows 

the levels of expression of mouse Man1 (mMan1) in control (not transfected, NT) and cells 

transfected with different combinations of gRNAs against Man1. Total mRNA was extracted 

from control and transfected cells and analyzed by RT-qPCR. The histogram shows the 

relative expression levels of Man1 normalized t GAPDH levels. 
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Figure 24. Western blot analysis of D1 Man1-KO cells.  

The western lot analysis was performed on total cell lysates (30 µg of lysate was loaded for 

each lane). GAPDH levels are shown as loading control.  

 

However, since it has been shown that constitutive expression of Cas9 can increase the 

number of off-target mutations234, it was chosen to perform the transfection of the three 

gRNAs together with Cas9 gene transient transfection in mESCs.. 

In order to obtain homogeneous clones, E14 mESCs were first transfected with a Cas9 

expressing construct carrying a puromycin resistance. Cells were then transfected at a single-

cell state with the combination of the three gRNAs. After that, puromycin selection was 

removed. 

Isolated colonies were screened by PCR (Figure 25). Three positive clones were selected 

and the absence of the proteic product of the deleted gene was assessed by western blot 

analysis (Figure 26).  
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Figure 25. PCR screening for E14 Man1-KO positive clones. After CRISPR transfection, 

colonies were isolated and expanded. For each colony, a sample of genomic DNA was 

extracted and amplified by PCR with mMan1 specific primers to check the deletion of the 

gene (top panel). As control, primers specific for an unrelated housekeeping gene (36B4) 

were also used in parallel (bottom panel). 

 

 

 

Figure 26. Western blot analysis of E14 Man1-KO clones.  

Western blot analysis of mMan1 of clones 1F1, 1A2 and 1D2 was performed on total cell 

lysates (30 µg of lysate was loaded for each lane). Wild type mESCs with the same genetic 

background (E14 wt) were used as control. GAPDH and alpha-tubulin were used as loading 

control.  
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2.2. MAN1-KNOCKOUT MESCS DISPLAY FEATURES OF DIFFERENTIATING 

CELLS 

mESCs colony appearance is explanatory of their health status. Typical mESC colonies are 

characterized by smooth and translucent borders and a compact and three-dimensional round 

shape, as sign of fast growth rate and undifferentiated status235. In contrast to this standard, 

colonies derived by Man1-KO clones appeared flat and with uneven and sharp borders, 

which are common features of differentiation (Figure 27). Moreover, all the three clones 

showed slower growth rates compared to the wild type cells (data not shown), another 

characteristic typical of differentiating cells. 

 

Figure 27. Phase-contrast microscopic analysis of E14 Man1-KO colonies morphology. 

Cells were cultured on gelatin-coated plates to reach 50% confluency. Images were taken 

at the inverted microscope with two different magnifications, 4x (top) and 20x (bottom). 

 

To confirm that Man1 KO cells have a defect in the maintenance of stem cells status, 

colonies were subjected to Alkaline Phosphatase (AP) staining, a common marker of 

undifferentiated ESCs. As shown in Figure 28, wild type colonies appeared round and 

uniformly stained. On the opposite side, Man1-KO clones showed several cells emerging 

from the colonies with variable loss of staining, which likely represented differentiating 

cells.  
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Figure 28. Alkaline Phosphatase staining of E14 Man1 KO colonies.  

Cells were cultured on gelatin-coated 6-well plates until 50% confluency. Colonies were 

then fixed and stained for AP. 

 

The phenotype of Man1-KO mESCs was further confirmed by measuring the expression of 

common pluripotency markers by RT-qPCR. As shown in Figure 29, all the three clones 

showed a downregulation of genes involved in stem cell pluripotency and self-renewal as 

Sox2, Oct4, Nanog and Rex1. 

 

 

Figure 29. Expression of common stem cell markers in E14 Man1-KO clones.  

Total mRNA was extracted from wild type and Man1-KO clones and analysed by RT-qPCR. 

The expression fold change of the analysed genes is expressed as double delta Ct (∆∆Ct) 
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calculated considering GAPDH as housekeeping gene. The histogram shows mean values ± 

standard deviation (error bars) of two independent experiments. 

 

To extend the characterization of Man1-KO clones, ES cells were tested for the in vitro 

differentiation capacity. To do that, dissociated cells were cultured in suspension in a 

medium lacking LIF and other anti-differentiation factors. In these conditions, mESCs 

spontaneously aggregated into spherical Embryoid Bodies (EB), which are structures that 

recapitulate the early stages of embryonal cells differentiation into the three germ lineages 

(endoderm ectoderm and mesoderm). The EBs were then attached to a gelatin-coated surface 

to induce further differentiation into various cell types. 

As shown in Figure 30, Man1-KO clones did not show any evident defect in EB formation 

or differentiation, suggesting that even if Man1 downregulation seems to affect self-renewal 

of ESC promoting differentiation, it does not seem to interfere with their pluripotency 

features. 

 

Figure 30. Embryoid Bodies formation.  

Phase contrast microscopy micrographs at day 6 (A) of EB cultured in suspension and 

subsequently attached to a gelatin-coated surface at day 9 (B).  

 

Furthermore, other preliminary results obtained so far show that Man1-KO mESCs have an 

altered proliferation rate (data not shown) and a tendency to differentiate, but have the 

capability to form EBs. These results may be explained by the described role of Man1 in 

downregulating the BMP4 pathway. In fact, as already mentioned, Man1 takes part to the 
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signal transduction pathway of BMP4 cytokine by inhibiting the action of its mediator 

factors, Smads150,185,197. A possible link between Man1 and the BMP4/Smads pathway will 

be discussed in the next section. 

 

2.3. MAN1-KNOCKOUT MESCS SHOW AN ALTERATION OF 

PERICENTROMERIC AND TELOMERIC RNA EXPRESSION 

Finally, some preliminary data obtained from gene expression analysis by RT-qPCR indicate 

that Man1-KO cells have a deregulated expression of pericentromeric and telomeric non-

coding transcripts (Figure 31). In particular, Man1-KO cells showed a downregulation of 

pericentromeric satellite-repeat transcript while, on the other side, an increase in the 

expression of telomeric repeat-containing RNA TERRA. Since both of these elements are 

known to be located in heterochromatic loci236,237, the observed alteration in the 

transcriptional status could be due to an alteration of chromatin organization at those specific 

regions.  

 

 

Figure 31. Expression of pericentromeric and telomeric transcripts. 

Total mRNA was extracted from wild type and Man1-KO clones and analysed by RT-qPCR 

using primer pairs corresponding to pericentromeric satellite-repeats transcript (pcRNA) 

and telomeric repeat-containg RNA (TERRA). The expression fold change of pcRNA and 
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TERRA is expressed as double delta Ct (∆∆Ct) calculated considering Gapdh as 

housekeeping transcript. The histogram shows mean values ± standard deviation (error 

bars) of two independent experiments. 
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DISCUSSION 

Man1 is an integral nuclear membrane protein involved in the spatial organization of the 

chromatin inside the nucleus. Xenopus cell-free extracts supplemented with a fragment of 

Man1 corresponding to its entire N-terminal region fail to assemble normal nuclei, with 

evident defects in nuclear envelope expansion, NPCs assembly, chromatin decondensation, 

nuclear growth and DNA replication. Man1 N-terminal fragment contains a domain 

responsible for the tethering to chromatin through the chromatin remodelling factor BAF 

(known as LEM domain172), but it lacks the transmembrane regions, which are necessary for 

Man1 anchoring to the nuclear envelope. For this reason, it is hypothesized that an excess of 

recombinant Man1 N-terminal fragment during the nuclear assembly reaction may interfere 

with the binding of the endogenous protein to the chromatin and, therefore, with the physical 

attachment of the DNA to the nuclear envelope (Figure 32).  

 

 

Figure 32. Schematic representation of the proposed mechanism of action of Xenopus 

Man1 N-terminal fragment.  

A) In normal conditions, Man1 anchors the chromatin to the nuclear envelope, through the 

interaction with BAF. B) In the presence of an excessive concentration of the N-terminal 

fragment, the latter could saturate the binding sites of endogenous Man1 to BAF and the 

chromatin, causing a physical detachment of the DNA from the nuclear envelope.  (Image 

adapted from Segura-Totten et al.174). 
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Addition of Man1 N-terminal fragment to Xenopus interphase extract leads to a delay in 

nuclear growth and interferes with the assembly of nuclear envelope. The same effect was 

reproduced by adding to the extract the recombinant LEM domain alone, which, is essential 

to bind the chromatin remodelling factor BAF and BAF-DNA complexes188. These 

experiments suggested that the physical interaction between Man1, BAF and the DNA is 

required to regulate the assembly of functional nuclei. This hypothesis is consistent with a 

previous study in which it has been demonstrated that misregulation of BAF concentration 

can alter membrane recruitment and chromatin decondensation during nuclear assembly in 

X. laevis egg extract190. 

Addition of Man1 N-terminal domain into Xenopus extracts seemed to interfere also with 

the assembly of nuclear pore complexes. In fact, nuclei assembled in the presence of Man1 

N-terminal fragment show defects in NPCs assembly and distribution along the nuclear 

envelope. This result is in concordance with published data that linked LEM-D proteins to 

the early steps of nuclear pore assembly regulation. Data obtained with Man1 S. cerevisiae 

hortologs Src1/Heh1 and Heh2 addressed for them a role in NPC assembly 

surveillance200,219. In particular, it has been proposed that such LEM-D proteins may be 

required to recruit factors of the endosomal sorting complex ESCRT to defective NPCs in 

order to remove them from the nuclear envelope. For these reasons, it is possible to speculate 

that an impairment in Man1 function could promote the accumulation of malformed NPC 

intermediates, lowering the overall distribution of complete and functioning NPCs. 

Consequently, the observed impairment in chromatin decondensation and nuclear growth 

can be addressed to the mislocalization of nuclear pores, since it has already been 

demonstrated that several NPC components can influence chromatin architecture inside the 

nucleus127,238. Accordingly, nuclei assembled in the presence of Man1 N-terminal fragment 

show an abnormal pattern of chromatin organization, as revealed by measurement of 

chromatin loops size distribution by Halo assay. 
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Man1 function impairment also seems to have an impact on DNA replication, consistently 

with the notion that efficient and complete nuclear envelope assembly is essential for the 

initiation of replication in Xenopus extracts239. In fact, the data reported in this study show 

that the presence of Man1 N-terminal fragment causes a dramatic inhibition of DNA 

replication in a nuclear-assembly dependent manner, correlating with a failure in pre-

Replication Complex assembly onto the chromatin. This result is consistent with numerous 

evidences that link other factors of the nuclear lamina to DNA replication regulation. For 

example, it has been shown that nuclei assembled in the absence of lamins fail to replicate 

their DNA121,122 and the expression of lamin mutants, that cause a reorganization of the 

endogenous lamin network, inhibits DNA replication123,124. Moreover, it has been shown 

that Xenopus extracts supplemented with a portion of LEM-D protein Lap2β containing the 

chromatin-binding domain fail to replicate the DNA125 and that ectopic expression of 

recombinant Lap2β polypeptides deprived of the transmembrane region inhibits the 

progression into S-phase of mammalian cells126. To test wether the decrease in replication 

efficiency was associated to increase of DNA damage, nuclei assembled in the presence of 

Man1 N-terminal fragment were subjected to immunofluorescence analysis, monitoring the 

expression of 𝛾H2A.X, a known DNA damage marker224. The result of this analysis showed 

that Xenopus nuclei assembled in presence of Man1 N-terminal fragment showed an 

accumulation of 𝛾H2A.X foci, indicating either an increase of DNA lesions during the 

replication process or an inefficient DNA damage repair. The first hypothesis is supported 

by the observation that inhibition of DNA replication initiation can result in DNA damage 

that bypasses the intra S-phase checkpoint240, while, the second hypothesis is consistent with 

the observation that disruption of nuclear lamina architecture in progeria cells leads to a 

defective recruitment of repair proteins onto the chromatin, resulting in accumulation of 

persistent 𝛾H2A.X foci inside the nucleus241. 
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At this point, to further assess the potential role of Man1 in cell cycle progression, the N-

terminal fragment was added, together with demembranated sperm DNA, to Xenopus 

cycling extracts. 

From this experiment it was shown that nuclei assembled in the presence of the recombinant 

LEM fragment of Man1 fail to progress into mitosis and arrest at the metaphase stage while 

control nuclei performed several cell cycles. Taken together, all this data support the idea 

that the dramatic inhibition of DNA replication that was previously described may lead to 

the entry into mitosis with under-replicated DNA, ultimately causing a block in mitotic 

progression. In fact, it has been proposed that the separation of intertwined chromosomes 

that arise after unfinished replication or  unresolved DNA repair generates an increasing 

mechanical tension, which can induce the activation of mitotic checkpoint and a prolonged 

metaphase arrest242. 

Moreover, using Xenopus mitotic extracts, it was shown that Man1 N-terminal fragment 

inhibits the nuclear envelope reassembly after mitosis. In fact, it was shown that addition of 

N-terminal fragment to mitotic extract before activation with calcium, impaired the nuclear 

reassembly, with subsequent degradation of the partially reformed nuclear envelope and 

return of the nuclei to a mitotic-like state. One possible explanation of this phenomenon 

could be that the presence of the Man1 N-terminal fragment causes a residual  activation of 

the Spindle Assembly Checkpoint (SAC), which results in inefficient degradation of mitotic 

cyclins and reversion of mitotic exit243. Otherwise, it is possible to hypothesize that the N-

terminal fragment inhibits the reformation of nuclear envelope in a similar way to what has 

been observed using interphase extracts, while, independently, residual levels of mitotic 

cyclins promote the reversion into mitosis. 

The investigation of the role of Man1 using the Xenopus cell-free extract system shows that 

inhibition of Man1 function by its own N-terminal fragment has a pleiotropic effect, since it 

influences different nuclear dynamics which normally rely on the proper spatial arrangement 

of the chromatin inside the nucleus. The data presented here show that nuclear membrane 
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tethering of chromatin mediated by Man1 is important for nuclear envelope assembly as well 

as for DNA replication dynamics and faithful progression of the cell cycle (Figure 33).  

 

 

Figure 33. Schematic representation of the role of Man1 in Xenopus nuclear assembly, 

DNA replication and mitosis. 

The function of Man1 is required to regulate different cellular processes that rely on the 

physical organization of the chromatin inside the nucleus, such as nuclear assembly, 

chromatin decondensation, DNA replication, chromosome segregation and nuclear 

reformation after mitosis. See text for details. 

 

In order to extend the observations obtained in Xenopus to a mammalian system, knockout 

of mouse Man1 gene was performed in mESCs by CRISPR-Cas9. Preliminary data obtained 

with this system show that Man1-knockout cells have typical features of differentiating cells, 

indicating a decrease in stem cell self-renewal potential. As anticipated in the previous 

section, this phenotype can be addressed to the already described role of Man1 in 

antagonizing BMP4 pathway150,185. Interestingly, it has recently been shown that BMP4 

collaborate with LIF in controlling the fate of ESCs. In fact, it has been found that these two 

factors are important for the suppression of, respectively, neural and 

mesodermal/endodermal differentiation and therefore, a perfect balance between these two 

signalling pathways is critical for the maintenance of ESCs pluripotency state244-246. For this 

reason, it can be speculated that loss of Man1 would cause an upregulation of BMP4 pathway 

and a subsequent perturbation of LIF-BMP equilibrium, which would result in a loss of 

stability of ES self-renewal state.  
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On the other side, no evident defects in nuclear shape and cell viability were observed in 

Man1 KO cells, indicating that loss of Man1 has no dramatic impact on the overall nuclear 

organization. However, preliminary RT-PCR data show that loss of Man1 could causes an 

alteration in the expression levels of pericentromeric and telomeric transcripts. This result 

suggests that Man1 could be important for the chromatin organization of particular regions, 

as centromeres and telomeres. Given the repetitive nature of the DNA sequences composing 

these particular regions, it is possible to speculate that Man1 could be necessary to prevent 

aberrant recombination at the level of these loci, which would result in chromatin 

disorganization and genomic instability. This hypothesis is consistent with the role of Man1 

S. cerevisiae hortolog Src1 and its C. elegans paralog Lem2 in the stability of telomeres, 

centromeres and rDNA180,181,247. 

Given the impact of centromeres, telomeres and rDNA instability in detrimental clinical 

conditions such as aging and cancer28,30,248, it could be of great interest to investigate the 

potential role of Man1 in the maintenance of genomic stability at the level of these, and 

possible other, particularly unstable genomic regions.  
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