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A high resolution map of soil types and physical properties for 1 

Cyprus: a digital soil mapping optimization 2 

1 Introduction 3 

Environmental factors such as climate, organisms, relief, parent material, and time (clorpt) 4 

drive soil genesis (Jenny, 1941). Following this hypothesis, traditional soil survey maps are 5 

developed based on an empirical model (the soil-landscape model) derived from inductive 6 

reasoning from field and laboratory data, which represent the interchangeable relationships 7 

between soils and environmental factors. Digital soil mapping (DSM) techniques (McBratney 8 

et al., 2003) are based on the same hypotheses and aim at predicting soil types and properties 9 

linking field soil observations to environmental predictors. In DSM, inductive reasoning for 10 

developing the relationships among the soil-landscape model factors is replaced by different 11 

machine learning techniques (i.e., decision tree, fuzzy logic, neural network etc.) (Lagacherie 12 

et al., 1995; Scull et al., 2003; Lagacherie et al., 2007; Grinand et al., 2008; Heung et al., 13 

2016). However, pedological expert knowledge remains a key factor in model building to 14 

ensure both statistically and pedologically sound outputs (Kempen et al., 2009).  15 

Digital soil mapping as a discipline has experienced a continuous expansion in the last two 16 

decades, mainly due to its increased efficiency in comparison to conventional field soil 17 

mapping techniques (Kempen et al., 2012). Reasons are the ever growing computational 18 

capacities coupled with the development of data-mining algorithm and GIS tools, and the 19 

increased availability of spatial remote-sensing data (Minasny and McBratney, 2016). Due to 20 

their numerical nature, digital soil maps also allow handling continuous spatial variations of 21 

soils, for example through class membership values, as presented by Burrough et al. (1997). 22 

This overcomes the problem of soil spatial patterns being traditionally captured and displayed 23 

as choropleth maps with discrete lines representing the boundaries between soil map units, 24 
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which implies homogeneity within map units (Burrough, 1986; Bolstad et al., 1990). Digital 1 

soil mapping expands the notion of the soil-forming equation to that of a soil-mapping 2 

equation, the scorpan equation, which adds preexisting soil information and spatial location 3 

into Jenny’s clorpt equation.  4 

Random Forest (RF) is a fairly recent data mining algorithm (Breiman, 2001) that has been 5 

increasingly used for digital soil mapping applications in recent years. Its success is related to 6 

several advantages over other statistical (e.g. linear regression or generalized linear models), 7 

geo-statistical (e.g. regression or co-kriging), and machine learning (e.g. neural networks, 8 

logistic regression, support vector machines, classification trees) techniques. These 9 

advantages have been summarized by Grimm et al. (2008): ability of modeling high 10 

dimensional non-linear relationships; simultaneous handling of categorical and continuous 11 

predictors; robustness against over-fitting; measures of error rate and variable importance; 12 

requirement of only three user-defined input parameters; and relatively low sensitivity to 13 

parameter values. In particular, the measure of variable importance has proved to be, in many 14 

circumstances, a useful tool for enlightening soil-environment relationships to allow authors 15 

to infer the effects of possible future environmental changes on soil characteristics (e.g. 16 

Barthold et al., 2013). 17 

Among its many applications, RF has been used for predicting the spatial distribution of 18 

various soil properties, such as soil organic and/or inorganic carbon (e.g. Grimm et al., 2008; 19 

Wiesmeier et al., 2011; Poggio et al., 2013; Akpa et al., 2016; Sreenivas et al., 2016); soil 20 

texture and cation--exchange capacity (e.g. Lagacherie et al., 2013; Chagas et al., 2016); and 21 

soil taxonomic units in unmapped areas (Stum et al., 2010; Barthold et al., 2013; Pahlavan 22 

Rad et al., 2014; Brungard et al., 2015; Taghizadeh-Mehrjardi et al., 2015; Heung et al., 23 

2016; Láng et al., 2016). Heung et al. (2014) pointed out that few studies have applied RF for 24 
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mapping categorical soil properties, specifically referring to soil taxonomic units. In the last 1 

3-4 years this gap has started to get filled.  2 

Recent soil classification studies mainly deal with the comparison of the performance of 3 

many different algorithms (including RF) and sampling techniques (e.g. Brungard et al., 4 

2015; Taghizadeh-Mehrjardi et al., 2015; Heung et al., 2016), partially disregarding model 5 

building and model optimization. Models often include continuous variables representing 6 

topography, climate, vegetation or land use from remote sensing products (e.g. Pahlavan Rad 7 

et al., 2014; Brungard et al., 2015; Heung et al., 2016), sometimes categorical variables 8 

representing parent material (e.g. Berthold et al., 2013; Taghizadeh-Mehrjardi et al., 2015), 9 

but only Taghizadeh-Mehrjardi et al. (2015) and Láng et al. (2016) also consider soil 10 

information and properties. However, none of these authors clearly quantifies the role and the 11 

importance of these different predictors in the model. An optimization of the number of trees 12 

in the forest and of the number of variables to be used to split branches is quite typical for RF 13 

(e.g. Grimm et al., 2008; Barthold et al., 2013; Heung et al., 2016). Conversely, the 14 

investigation of the effect of tree pruning, which is common for classification tree and 15 

boosted classification tree modelling approaches (Scull et al., 2005; Schmidt et al., 2008; 16 

Lemercier et al., 2012), has not been extensively reported in RF soil mapping applications. 17 

Finally, Barthold et al. (2013) and Taghizadeh-Mehrjardi et al. (2015) are the only authors 18 

explicitly relating soil groups to major soil properties such as soil depth and soil texture, 19 

although they do not derive each of them independently. These properties are of major 20 

importance for application studies such as agricultural crop modelling and soil erosion (Bird 21 

et al., 2016; Djuma et al., under review). There is also a paucity of studies dealing with soil 22 

prediction in complex topographical and pedological environments and in the Eastern 23 

Mediterranean region.  24 

 25 
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The main aim of this study is to develop digital soil maps of the soil groups, depth and 1 

texture classes of a topographical and pedological complex area of the eastern Mediterranean, 2 

namely the island of Cyprus, based on extensive soil legacy data. Specific objectives are: (i) 3 

to analyze the role and importance of a large data set of environmental predictors, covering 4 

all the soil formation factors considered in the scorpan formula, both for single and groups of 5 

predictors; (ii) to investigate the effect of number of training points, forest size (number of 6 

trees), number of predictors sampled at each node, and tree size (terminal node) in RF; (iii) to 7 

compare RF-derived maps with maps derived with a Multinomial Logistic Regression model, 8 

in terms of validation error and map uncertainty, using the confusion index and a newly 9 

developed reliability index.  10 

2 Materials and Methods 11 

2.1 Study area 12 

Cyprus is the third largest island in the Mediterranean and is located between 34-36ºN and 13 

32-35ºE. The main physical characteristics of the island are represented by the two mountain 14 

chains, the Troodos, located in the central-west part with the highest peak at Mount Olympus 15 

(1951 m a.s.l.), and the Pentadaktylos Range along the north coast with its highest peak at 16 

Mount Kyparissovouno (1,024 m a.s.l.). The main agricultural area of the country is the 17 

Mesaoria Plain, which lies in between the two mountain ranges and the coastal lowlands.  18 

Soils on Cyprus are exceptional due to the geological complexity of the island, the 19 

Mediterranean climate and the long presence of man on the landscape. The Troodos 20 

Ophiolite, a fragment of fully developed oceanic crust, consisting of Turonian plutonic, 21 

intrusive and volcanic rocks and chemical sediments dominates the central topographic high 22 

of the island. Older allochthonous rocks are juxtaposed in the southwest (Mamonia Terrane, 23 

Middle Triassic – Middle Cretaceous) and the long east-west Pentadaktylos range in the north 24 
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coast (Keryneia Terrane, Carboniferous – Middle Miocene). Autochthonous carbonate 1 

sediments cover the slopes and plains. Quaternary deposits are predominately of gravity and 2 

fluvial origins inland and of marine and aeolian origins on the coast. The soils on Cyprus 3 

vary between leptosols, regosols, solonchaks, solonetz, vertisols, luvisols, fluvisols, and 4 

cambisols based on the World Reference Base of the FAO (Food and Agriculture 5 

Organization of the United Nations) soil classification system (IUSS, 2015). They are 6 

generally poor in organic matter (Koudounas and Makin, 1978; Grivas, 1988) and closely 7 

associated to parent material and landscape position (Zomeni, 2012; Zomeni and Bruggeman, 8 

2013). Thin (leptic) and stony (lithic) soils dominate the mountainous areas developing 9 

mostly as residuum. Other soils form on transported materials such as alluvial deposits 10 

(alluvial fans, fluvial terraces and deltas), colluvial deposits, aeolian deposits, marine deposits 11 

(sands and gravels) and lake and estuarine deposits (hydromorphic silts and clays). 12 

The geochemistry of the island also reflects the geological complexity and the impact of 13 

humans. A recent high sampling density (5,350 sites on a 1 km2 grid), multi-element (60 14 

elements) and multi-method analysis soil geochemical survey has resulted in the compilation 15 

of the Geochemical Atlas of Cyprus (Cohen et al., 2011, 2012a). The survey was carried out 16 

at two depths. Surface soil samples were collected at a depth of 0-20 cm and bottom samples 17 

at a depth of 50-70 cm. The survey has demonstrated that chemical processes and element 18 

concentrations are dominated by parent lithology. Other processes such as the physical 19 

concentration of heavy minerals (Ren et al., 2015), ocean influences along the coastal plains, 20 

and human activities also affect the spatial geochemical patterns of the soils on the island 21 

(Cohen et al., 2012b; Zissimos et al., 2014). For the purpose of this study we have calculated 22 

geochemical parameters using data from surface soil samples. 23 
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The present study covers the areas under the effective control of the government of the 1 

Republic of Cyprus, with the addition of the UN buffer zone (tot. 5,979 km2), where data are 2 

available (Fig. 1).  3 

 4 

Fig. 1. The island of Cyprus with its main physical characteristics and the location of the study area. 5 

 6 

2.2 Soil data 7 

The most detailed soil references on the island are ten 1:25,000 scale soil sheets prepared 8 

between 1967 and 1985 by the Soil Section of the Department of Agriculture, using 9 

traditional survey methods (Soteriades and Georgiades, 1967, Soteriades and Grivas, 1968, 10 

Soteriades et al. 1968, Soteriades and Markides, 1969, Grivas and Georgiades, 1972, 11 

Markides, 1975, Koumis, 1980a, Koumis, 1980b, Koumis, 1980c, Markides, 1985a). The 12 

soils were mapped and classified based on their development stage, origin and parent 13 

material. These sheets are always accompanied by an agricultural land suitability map and 14 

two of them - the Pafos sheet (Soteriades and Koudounas, 1968) and the Polemi sheet 15 

(Markides, 1973) - have an extensive soil memoir.  16 

The 10 sheets cover around 1,600 km2, classified in 369 soil sub-series (52 soil series with 17 

local soil names). Based on soil-profile descriptions, provided in the legend of the map sheets 18 

or in the available soil memoirs, we independently harmonized soil (sub)series, soil depth, 19 

and soil texture. The harmonization of the soil series was based on the World Reference Base 20 

(WRB) for soil resources (IUSS, 2015) and led to recognize 31 soil classes (soil groups 21 

accompanied by one or two qualifiers) and two miscellaneous classes, namely Water Bodies 22 

and No Data (e.g. quarries and excavated areas ). Soil depth was harmonized in four classes, 23 

based on the depth ranges available in the original maps (Table 1). Soil texture (Table 2) was 24 
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harmonized in four classes (None, Coarse, Medium, Fine) following the guidelines provided 1 

by FAO (2008). As only differences, we grouped all sandy loams as coarse textured and all 2 

clay loams as medium textured. In FAO (2008) these two classes were split between coarse-3 

medium and medium-fine, based on the relative abundance of sand and clay, which 4 

information is rarely available in our legacy data. The soil profiles usually included: depth 5 

class; texture class; color; lithic properties and their quantity and composition; bedrock 6 

geology; horizon descriptions; and chemical properties (the latter two available only in the 7 

two soil memoirs). The soil classes, soil depth and soil texture maps were digitised and 8 

converted to raster format with cell size of 25x25 m2 (2,561,849 cells in total) and used as 9 

training data for DSM purposes. The training areas, shown in Fig. 2, cover 17% of the island 10 

and 27% of the study area.  11 

Additional mapping activities were carried for different sheets (Morphou, Polis-Tylliria, 12 

Krasochoria, Pissouri-Paramali, Limassol, and Larnaka) of the Land Suitability Map of 13 

Cyprus (Grivas, 1969; Markides, 1969; 1985b; Koumis, 1970a; 1970b; 1970c). These studies 14 

provided 126 profiles, described in terms of both soil depth and soil texture, outside the 15 

training areas that we used as independent validation observations (see Section 2.4.4 - Map 16 

extrapolation, prediction uncertainty, map reliability, and independent profile evaluation). 17 

Additional 199 validation profiles, reporting data only on soil depth, were derived from 18 

Robins (2004). The author assessed the soil depth variability of the Troodos Mountains at 19 

road cuts in three valleys on the north slope of the mountain chain. The location of the 20 

validation profiles are presented in Fig. 2. 21 

 22 

Fig. 2. Location of the study area, the existing 1:25,000 scale soil sheets used for training, the 126 soil 23 

profiles derived from Land Suitability Maps (LSM), and the 199 soil profiles from Robins (2004) used to 24 

evaluate the digital soil map of Cyprus.  25 
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 1 

Since Water Bodies and No Data are not proper soils and represent mainly human 2 

modification of the environment, we superimposed these data layers (of known location) on 3 

the map resulting from the applied computational methods (see section 2.4). For both Water 4 

Bodies and No Data, soil depth and soil texture were considered not applicable (N/A). 5 

 6 

Table 1. Soil depth classes identified from the 1:25,000 scale soil sheets and reclassified in four consistent 7 

classes. 8 

  9 

Table 2. Soil texture classes identified from the 1:25,000 scale soil sheets and reclassified in four consistent 10 

classes. The harmonization has been performed using the guidelines provided in FAO (2008). 11 

 12 

2.3 Environmental covariates 13 

A general summary of the methodology applied in this study is presented in this and the 14 

following sections (Fig. 3). For the present study, predictors are environmental covariates that 15 

have been selected based on the scorpan formula (McBratney et al., 2003). The selected 20 16 

variables (17 continuous, 3 categorical) are described in the following paragraphs. A 17 

correlation analysis was performed on the 17 continuous predictors to reduce the 18 

dimensionality of the input dataset by removing redundant features. Building a parsimonious 19 

model brings two different advantages, as explained by Behrens et al. (2010). First, it helps 20 

recognize soil formation processes more clearly, and second it usually yields more reliable 21 

predictions. 22 
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 1 

Fig. 3. Summary of the methods used in the study. OOB is the Out Of Bag error, MESS is the 2 

Multivariate Environmental Similarity Surface, and CI is the Confusion Index. 3 

 4 

2.3.1 Soil chemistry and organism covariates 5 

To describe soil chemistry we selected Electrical Conductivity (EC), pH, Total Carbon 6 

(TotC), Organic Carbon (OrgC), Loss on Ignition (LOI), Mafic Index of Alteration (MIA), 7 

Chemical Index of Alteration (CIA), and Vogt Ratio (VR). All these covariates were obtained 8 

from the Geochemical Atlas of Cyprus (Cohen et al., 2011; 2012a) by using the raw data, 9 

which were collected on a regular 1 km2 grid, and re-interpolating them by Inverse Distance 10 

Weighting (IDW) over the 25 x 25 m2 grid. Both TotC and OrgC were measured using an 11 

Eltra CS-800 automatic Carbon–Sulfur analyser, while LOI was measured on soil sub 12 

samples at 1000° C. The Mafic Index of Alteration (MIA) was selected to account for the 13 

chemical changes during weathering of mafic lithologies (Babechuk et al., 2014), while the 14 

CIA and the VR are ratios that quantify the loss of mobile major elements relative to 15 

immobile elements during weathering. The three indices were calculated as follows: 16 

    OKONaCaOMgOOFeOAlOAlMIA 22323232 /100    (1) 17 

)/( 223232 CaOOKONaOAlOAlCIA        (2) 18 

)/()( 2232 ONaCaOMgOOKOAlVR        (3) 19 

For further information on the analytical methods used to obtain the geochemical data as well 20 

as the spatial variability of the used soil chemistry covariates see Cohen et al. (2011, 2012a) 21 

and Zissimos et al. (2014). 22 
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OrgC data can be considered a proxy for the presence of soil biota like micro-organisms and 1 

plants (Yeomans 1988; Soon 1991; Panagos et al 2008), In addition, we considered land use 2 

as an organism covariate. We derived this parameter from the CORINE land cover data set of 3 

2006, which has a 1:250,000 scale (Büttner and Kosztra, 2007). We use categories from the 4 

Level 1 of the database except for “Forest and semi-natural areas”, which have been 5 

differentiated to Level 2. 6 

2.3.2 Climate covariates 7 

As climate covariates, we included minimum, maximum and average temperature (Tmin, Tmax, 8 

Tave). We calculated these parameters over each 25 x 25 m2 cell from the daily gridded 9 

temperature data set developed by Camera et al. (2013). The data set has a horizontal 10 

resolution of 1 km and covers the period 1980-2010. Therefore, the smaller cells of the 11 

present study were assigned the value of the coarser cell by nearest neighbour resampling. 12 

Tmin and Tmax were calculated as the mean of the daily minimum and maximum temperatures 13 

recorded in January and July, respectively. They represent the influence of the hottest and 14 

coldest temperatures on soil genesis (Scull et al., 2005). Tave is the mean annual average 15 

temperature. 16 

2.3.3 Relief covariates  17 

Relief covariates included: elevation from a Digital Elevation Model (DEM); aspect; 18 

curvature; planar curvature; profile curvature; slope; and landscape units. The DEM has a 19 

horizontal resolution of 25 x 25 m2 and was created from digitised contour and point data of 20 

published 1:50,000 scale topographical maps using the Topogrid command in ArcGIS®, 21 

which is based on the ANUDEM gridding application by Hutchinson (1993). Landscape units 22 

were derived on the basis of the DEM, by generating the Shary classes (Shary, 2008) of 23 

topographic curvature and form, wetness index, topographic complexity index, in order to 24 
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classify the landscape in 21,794 polygons and 13 categorical landscape units based only on 1 

surface morphology. We calculated all the other covariates from this digital elevation model 2 

by also using ArcGIS® functions.  3 

2.3.4 Parent material and age covariates 4 

In this group of covariates we selected to use a map of geological formation grouped in 10 5 

classes based on lithology, depositional environment and relative age. This map was prepared 6 

specifically for this study as a summary of two different layers: bedrock geology, as derived 7 

from a number of geological maps of the Cyprus Geological Survey, of various scales, 8 

published and unpublished, digitised, merged and harmonised; and quaternary geology, as 9 

derived from recent field, aerial images and satellite remote mapping (Noller, 2009).  10 

2.4 Computational methods 11 

The soil groups and soil property maps were derived for the study area using RF, as 12 

implemented in R (www.r-project.org) within the randomForest package (Liaw and Wiener, 13 

2014) and multinomial logistic regression, as implemented in package nnet (Venables and 14 

Ripley, 2002). All the random subsets used as model input were created using the caret 15 

package (Khun, 2008), preserving the original class distribution of the soil classes. All 16 

computations were performed on a single node of the CyTera HPC facility 17 

(http://cytera.cyi.ac.cy/) consisting of 12 cores with 4 GB RAM each. 18 

2.4.1 The Random Forest algorithm 19 

Random Forest is a multiple tree classification and regression algorithm (Breiman, 2001) that 20 

can be used to predict a target variable at locations where it is unknown, on the basis of 21 

previously defined relationships between the target variable itself and identified predictors. In 22 

this study, we applied RF as a classification tool. A clear overview of the method’s 23 

functioning is presented by Diaz-Uriate and de Anders (2006) and Boulesteix et al. (2012). 24 
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To construct the relationships between the target variable and the predictors, many 1 

classification trees are grown. Besides the number of trees (ntree), only two other parameters 2 

can be defined by the user before running a RF classification: the minimum size of terminal 3 

nodes (nodesize), and the number of variables randomly sampled as candidates at each split 4 

(mtry). Each tree is a standard classification tree. At each node the code randomly samples a 5 

number (mtry) of predictors and among these it picks the predictor that ensures the best split. 6 

Each target point is then classified by aggregating the trees and picking the class that received 7 

the maximum number of votes.  8 

Bootstrap samples from the original data set are used to build the trees; this means that some 9 

observational values are not used to construct the trees and can be grouped to form the out-of-10 

bag (OOB) sample. This sample can be used for validation purposes by comparing it to the 11 

model outputs and calculating the corresponding relative error (OOB error). An additional 12 

feature of RF is the capacity to rank the relative importance of the variables in the prediction. 13 

In particular, we used the Mean Decrease of Accuracy (MDA) value. It is calculated as 14 

follows: first, the original OOB sample is run down a tree and the number of votes for the 15 

correct target class is kept. Second, the values of a variable are randomly permuted in the 16 

OOB sample, which is then run down a tree, saving the number of votes of the correct class. 17 

Finally, the difference between the two vote numbers is calculated, and the results from the 18 

different trees are averaged (Breiman, 2001). 19 

2.4.2 Random Forest model parameterization and optimization 20 

The RF classification model optimization was carried out in four steps. In the first step, we 21 

identified the best combination of number of trees to be grown and number of training points 22 

(raster cells) to be used, considering the evolution of the average OOB error and the 23 

computational resources available. The number of training points was expressed in terms of 24 

percentage of the total number of observation points from the 10 available maps.  25 
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As a second step, we quantified the role of each predictor and group of predictors. Firstly, we 1 

evaluated the importance matrix (MDA) calculated by the RF algorithm run using all the 2 

covariates not excluded in the correlation analysis. For this purpose we did not scale the 3 

variable importance (as default in RF), since this can affect the interpretability of the MDA 4 

investigation, as suggested in Strobl et al. (2007). Secondly, we calculated the modification in 5 

the OBB error when removing predictors one by one, and group by group (e.g. relief, climate, 6 

geochemistry predictors etc.), from the complete set. In addition, similar to Xiong et al. 7 

(2014) and Brungard et al. (2015), we used recursive co-variable elimination (based on 8 

importance and OOB error modification) to derive the subset of covariates leading to the 9 

lowest OOB error. The nodesize and mtry parameters were kept to their default values for the 10 

first two steps.  11 

In the third step, we calibrated the mtry parameter leaving again nodesize to its default value. 12 

We attributed to mtry all the odd values between 1 and the maximum number of predictors 13 

coming from the optimized subset of covariates and selected the value giving the minimum 14 

OOB error.  15 

In the fourth step, we investigated the effect of tree pruning by modifying the value of the 16 

nodesize parameter setting it to 1 (default), 4, 12, and 20. We selected the best value based on 17 

the minimum OOB error, minimum average uncertainty value, and minimum independent 18 

validation error. The computation of uncertainty value and validation error is explained in 19 

section 2.4.4 (Map extrapolation, prediction uncertainty, map reliability, and independent 20 

profile evaluation). 21 

2.4.3 Multinomial Logistic Regression model 22 

To determine the quality of the maps derived with RF, we compared its outputs with those of 23 

an alternative, more standard technique from the generalized linear model family. We 24 



 

15 
 

selected a multinomial logistic regression (MLR) model, since it has been proven a reliable 1 

method by many authors (Debella-Gilo and Etzelmüller, 2009; Kempen et al., 2009; Jafari et 2 

al., 2012; Collard et al., 2014).  3 

MLR is the generalization of the binomial logistic regression, where multiple possible 4 

outcomes are derived from a set of predictors to which coefficients are applied. In the 5 

binomial case, two possible outcomes (A1, A2) are given and the probability of occurrence (π) 6 

of the second outcome is π2 = 1 – π1. Logistic regression relates probability π1 to a set of 7 

predictors using the logit link function: 8 
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where x is the vector of predictors and β is the vector of model coefficients. In case of 10 

categorical variables, every class level is fitted with a different coefficient. Model coefficients 11 

are usually estimated through maximum likelihood. From eq. 4 it is possible to obtain: 12 
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which can be generalized, for a multinomial case with K target classes, to: 14 
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One class is selected as reference and logits are then calculated that compare other classes to 16 

it. The constraint is that the summation of the probabilities of the K classes must add up to 1.  17 

In this study, for MLR model building we used the same training points and set of predictors 18 

optimized for RF. To compare the two methods we analyzed prediction error in comparison 19 

to original soil map data, prediction error based on independent soil profiles, and prediction 20 

uncertainty. Map errors were calculated based on a test set of points not used for model 21 

generation for MLR and based on OOB errors for RF, since OOB errors can be considered a 22 
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valid alternative to independent validating data sets (Grimm et al., 2008). The computation of 1 

the predictive uncertainty and independent validation of both maps are described in the next 2 

section. 3 

2.4.4 Map extrapolation, prediction uncertainty, map reliability, and independent profile 4 

evaluation 5 

We analysed different indices to evaluate and discuss the quality of the obtained soil maps. 6 

Firstly, we calculated the Multivariate Environmental Similarity Surface (MESS), as 7 

presented by Elith et al. (2010), based on all continuous predictors and using the dismo R 8 

package (Hijmans, 2013). MESS identifies and quantifies the areas where model predictions 9 

are extrapolations by measuring the similarity of any prediction point to the used training 10 

points, with respect to the chosen predictor variables. The higher the score, the more common 11 

the environment of the point is. Negative values indicate a novel environment, i.e. the 12 

presence of at least one variable outside its range in the training points. Categorical predictors 13 

are not handled by the MESS algorithm. However, they would not have affected the resulting 14 

map, because we had reclassified all categorical variables to have all classes represented in 15 

the training areas. Secondly, we evaluated the uncertainty of the prediction with the 16 

confusion index (CI) as presented in Burrough et al. (1997): 17 

  iiCI )1(maxmax1           (7) 18 

where μmax represent the probability value of the class with the maximum odds at cell i and 19 

μmax-1 is the second largest probability at the same cell. The higher the CI is, the higher is the 20 

confusion, i.e. increasing similar probabilities for the two classes. For RF the probabilities 21 

were calculated from the number of tree votes, while for MLR they came from a probability 22 

prediction. 23 
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We developed a reliability index for the created soil maps (groups, depth, texture) with the 1 

aim of qualitatively evaluating a combination of model error and extent of extrapolation 2 

limited to original data density. The reliability index we derived is based on the ratio of the 3 

number of training points and the number of points in the final map per class (unknown areas 4 

potential extrapolation error), and the error in the training map areas not used for model 5 

construction (OOB error for RF and test set error for MLR). We implemented a two-step 6 

approach to derive three reliability classes (High, Medium, Low). We calculated a reliability 7 

index for each class of the three maps produced, according to the following equation: 8 

 
Mij

Tij
ijij P

P
MAPR 21          (8) 9 

where R is the reliability index, MAP is the error in the training map areas not used for model 10 

construction, PT is the number of training points, PM is the number of predicted cells in the 11 

derived maps, i is one of the three maps (soil groups, soil depth, soil texture), and j is a class 12 

of one of the three maps. The coefficient 2 is introduced because only half the points in the 13 

training map areas were used to train the models. A perfect reliability of 1 would therefore be 14 

achieved with a MAP error equal to zero and a PMij value double PTij, meaning that all the 15 

points inside the training area were well predicted, and the specific class is not extrapolated to 16 

unknown areas. We decided to limit the value of Rij between 0 (minimum reliability) and 1 17 

(maximum reliability), meaning that also classes under-represented by the prediction in 18 

comparison with the training areas have a maximum reliability of 1. For mapping purposes, 19 

we then classified the R values into three classes: Low (R < 0.25), Medium (0.25 ≤ R ≤ 0.50), 20 

High (R > 0.50).  21 

The created soil depth and soil texture maps were also evaluated through 325 and 126 22 

independent soil profiles (Fig. 2), respectively. The profiles are those described in Section 2.2 23 

(Soil data). For each profile from the Land Suitability Map, we identified the maximum depth 24 
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and then we attributed it a soil depth class according to Table 1. In these profiles, clay, silt, 1 

fine sand, and coarse sand percentages were specified for three or four depth intervals. We 2 

classified the texture of each depth according to the soil textural triangle (FAO, 2006; IUSS, 3 

2015), and then we attributed texture classes, according to Table 2. Robins (2004) provides 4 

depth ranges for each road cut analysed. In case the range fell in two or more depth classes as 5 

presented in Table 1, we assigned a range of classes to the validation point. Depth and texture 6 

of the profile were than compared with those of the predicted maps, at the exact location. For 7 

soil depth from Land Suitability map profiles, we evaluate the point as a perfect match (1) or 8 

a complete miss (0). For texture we evaluated the point as a perfect match (1) if the prevailing 9 

texture was correctly mapped, a partial match (0.5) if the predicted texture matched the 10 

texture of at least one of the depth intervals, and a complete miss (0) in case of no match at 11 

all. Similarly, for soil depth over the profiles of Robins (2004) we evaluated a perfect match 12 

(1) if the average depth of the range was falling in the predicted depth class, a partial match 13 

(0.5) if the mapped depth class covered, at least partially, the depth range, and a complete 14 

miss (0), if the predicted class was out of range. An average hit ratio (HR) was then derived 15 

summing the contribution of each profile and dividing by their total number. 16 

  17 

3 Results and discussion 18 

3.1 Covariates correlation analysis 19 

An assessment of a 17 x 16 matrix of correlation scatter plots and Pearson correlation 20 

coefficients led to the discard of seven out of the 17 continuous covariates presented in 21 

Section 2.3. We removed single covariates out of couples presenting a correlation coefficient 22 

higher than 0.6. Loss on Ignition, Total Carbon, the Chemical Index of Alteration, the Vogt 23 

Ratio and the Mafic Index of Alteration (MIA) are all highly correlated with each other. We 24 
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preferred keeping only the MIA because it allowed a broader differentiation of the main 1 

lithologies of the study area. We removed planar curvature and profile curvature because they 2 

were both highly correlated with curvature. Finally, we removed average temperature 3 

because it was highly correlated with minimum temperature and showing a larger correlation 4 

coefficient with Tmax (0.56) than Tmin (0.24). Fig. 4 shows six out of the seven pairs of 5 

correlations just described. The relation between TotC and MIA is not shown because very 6 

similar to that of LOI and MIA, also in terms of correlation coefficient (-0.88). 7 

 8 

Fig. 4. Scatter plots, drawn with a 0.05% subset of the original input dataset, showing highly correlated 9 

covariates. The R value shown in each graph is the Pearson correlation coefficient calculated using the 10 

full input dataset. The covariates on the x-axis were removed from the data set used as input for the 11 

digital mapping techniques. CIA is the chemical index of alteration; MIA is the Mafic Index of 12 

Alteration; VR is the Vogt Ratio; and LOI is the Loss on Ignition. 13 

 14 

3.2 Model parameterization and optimization 15 

The results of the first optimization step (number of target points and number of trees) are 16 

presented in Fig. 5. The results concern the soil groups model. On the one hand, the graph 17 

shows how the error depends mainly on the number of target points rather than on the number 18 

of trees, especially for forests larger than 200-250 trees. On the other hand, using too many 19 

training points (>50%) reduces the maximum number of trees that we can calculate without a 20 

memory failure of the system to less than 300. For this reason, we performed our analysis 21 

using 50% of the training points and building forests of 350 trees. This guaranteed a 22 

satisfactory low average OOB error (around 10%) and a certain robustness of the 23 

classification model.  24 

 25 
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Fig. 5. Average OOB error for increasing number of trees in the Random Forest classification model and 1 

different number (% of the total) of training points as derived from the rasterized 1:25,000 scale soil 2 

maps. 3 

 4 

The results of the second step, for the systematic removal of single covariates are reported in 5 

Table 3. Table 3 shows that there is generally a good agreement between the MDA value 6 

calculated by the RF algorithm for each variable and the decrease/increase of the average 7 

OOB error when removing a certain predictor. The most illustrative case is that of the 8 

elevation (DEM) covariate. In fact, it appears as the most important covariate in terms of 9 

MDA, and the predictor causing the largest increase of OOB error when removed for all the 10 

three maps. However, a high decrease/increase in the OOB error does not always correspond 11 

to a low/high value of MDA. The most enlightening case (soil groups prediction) is the one 12 

of the pH, which ranked seventh based on the MDA results, while being the variable causing 13 

the third highest increase of OOB average error when removed. The opposite can be seen for 14 

Maximum Temperature, which was for all the three maps among the four most important 15 

variables for MDA. However, if removed it caused a decrease in the OOB error.  16 

 17 

Table 3. Average OOB error for forests (350 trees, 50% data) built removing single variables, and 18 

importance value (Mean Decrease of Accuracy - MDA) calculated by removing the variable from the 19 

complete model. OOB values are presented as differences from the model derived with the complete set of 20 

variables. Between parenthesis the rank of each variable. 21 

 22 

Mean Decrease of Accuracy has a great advantage over the analysis of the OOB error 23 

variations due to variable removal; it can cover the impact of each predictor also in terms of 24 

multivariate interactions with the other variables (Strobl et al., 2008). However, the same 25 
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authors point out how often the MDA of correlated variables is overestimated due to a 1 

preference for correlated predictors in the early splits. This can explain why Maximum 2 

Temperature, which from the previously performed correlation analysis showed a Pearson’s 3 

correlation coefficient with elevation of -0.46, presents such differences in behaviour in Table 4 

3. When using the original RF algorithm as implemented in the randomForest package in R, 5 

it is therefore very useful combining an analysis of the MDA values with a correlation 6 

analysis of the predictors involved and an analysis of OOB errors following single variable 7 

removal, to identify potential anomalies.  8 

Table 4 shows the importance of the group of soil chemical covariates. The removal of the 9 

five selected soil chemical properties from the complete model caused an increase in the error 10 

of more than 9% for soil groups, 12% for soil depth, and 9% for soil texture. The removal of 11 

the other four groups of covariates leads to maximum error increases of 3.5%, 3.6%, and 12 

2.9% for soil groups, soil depth and soil texture, respectively. However, it is worth noting 13 

how the second most important group is always relief and the rank of the groups of variables 14 

is consistent for the three maps. In addition, the removal of the climate covariates (Tmin and 15 

Tmax) leads to a decrease in the OOB error, for all the maps, of around 0.5%. This is probably 16 

due to an overfitting of the model, when temperatures are included, which can be related to 17 

correlation with other covariates (e.g. elevation).  18 

The relatively high importance of relief (terrain) attributes was not a surprise. Many authors 19 

conducting DSM studies using different algorithms defined them, or demonstrated them to be 20 

useful predictors (e.g. Lemercier et al., 2012; Barthold et al., 2013; Taghizadeh-Mehrjardi et 21 

al., 2015). Additionally, the impact of their scale and resolution has been extensively studied 22 

(Behrens et al., 2010). The high impact of the soil geochemical properties is more surprising. 23 

Lawley and Smith (2008) discussed how geochemical surveys can help to describe some soil 24 

and weathered-zone characteristics and so be used to improve geological maps, which was 25 
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their final aim. The results of our study confirm that differences in soil characteristics can be 1 

spotted and highlighted by these variables. Láng et al. (2016) used similar variables (organic 2 

carbon content, pH, electric conductivity, sand, silt, clay and gravel content, bulk density, and 3 

cation exchange capacity) to derive major soil types (WRG soil groups) in Africa. These 4 

variables allowed a RF prediction with 68% classification success, thus confirming again the 5 

reliability of this type of variables for soil type prediction. However, their study does not use 6 

any other environmental predictor and therefore it is not possible to define a relative 7 

importance for soil properties predictors. Taghizadeh-Mehrjardi et al. (2015) used variables 8 

such as clay index, carbonate index, gypsum index and salinity ratio to predict USDA-family 9 

soil groups in Iran. These variables were derived from Landsat 8 products along with other 10 

indices. They conclude that Landsat spectral data and terrain parameters are the most useful 11 

auxiliary variables, although no specific reference is made to the soil property indices. 12 

Considering our results and those of these recent studies, we suggest further investigation of 13 

the role of soil properties (geochemical in particular) in the prediction of soil groups, in 14 

comparison with other categories of variables, and across different environments.  15 

 16 

Table 4. Average OOB error for forests (350 trees, 50% data) built removing groups of variables 17 

according to the scorpan formula. Values are presented as differences from the model derived with the 18 

complete set of variables. Between parenthesis the rank of each group. 19 

  20 

Based on the recursive elimination analysis, we removed Curvature, Aspect, and Slope for 21 

the soil groups map. The resulting 10-variable classification model had an average OOB error 22 

of 8.7%. Thus, the three covariates with the lowest MDA - and three out of the five covariates 23 

that gave a decrease of the OOB average error when singularly removed - were excluded 24 

(Table 3). For soil depth and soil texture recursive elimination led to a classification model 25 
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with 10 covariates each. The removed variables were the same for both maps: slope, 1 

curvature, and minimum temperature. Using only the remaining predictors the OOB error 2 

was reduced to 10.7% and 9.0% for soil depth and soil texture, respectively. These results 3 

demonstrate that a quick analysis of the model errors derived from single variable removal 4 

can provide more insight for the construction of the most parsimonious model than a simple 5 

analysis of MDA. In fact, a removal of variables based only on the MDA values of covariates 6 

could lead to keeping uninformative predictors in the model (due to preference for correlated 7 

variables, as discussed before) or removing layers with useful information. 8 

In the third step of the model optimization, we defined the best mtry parameter value. In 9 

Table 5, we present the OOB errors calculated for the different classification models built 10 

with varying mtry values, 50% of the target points, and 350 trees. Besides an mtry value 11 

equal to 1, which gives fairly poor results for all the maps, all other mtry values give very 12 

similar OOB error. Poor performances with low mtry values are likely to be expected due to 13 

reduced probabilities of a relevant variable to be selected at each split (Hastie et al., 2008). 14 

As discussed in Breiman (2001), the forest error rate decreases with decreasing correlation 15 

between trees and increasing strength of each individual tree. Both correlation and strength 16 

depend on the mtry parameter and increase with it. The optimum range of the mtry parameter 17 

can be quite wide (Breiman 2001) as is also demonstrated by the results in Table 6 and 18 

previous literature (e.g., Grimm et al., 2008; Barthold et al., 2013; Heung et al., 2014). For 19 

the prediction of all maps, an mtry value of 5 was selected, being the one giving the lowest 20 

OOB error and ensuring  a good balance between correlation among trees and strength of the 21 

trees.  22 

 23 

Table 5. Average OOB errors calculated using different mtry values. The forest is made up of 350 trees. 24 

 25 
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In the fourth step the effect of tree pruning, through the setting of the nodesize parameter 1 

was investigated. The results are presented in Table 6. An increase in nodesize led to an 2 

increase in the OOB error for all the three maps, while it almost did not affect map 3 

uncertainty, expressed in terms of CI, and validation HR calculated using independent 4 

profiles. Hastie et al. (2009), in a general introduction of the RF algorithm, discussed that 5 

fully grown trees (nodesize equal to 1) can lead to model unnecessary variance (i.e. to 6 

overfitting), although in their experience no relevant performance increase is obtained from 7 

nodesize tuning. They showed an example in which the tuning of the nodesize parameter 8 

slightly reduced the model error, having used RF in its regression form. Our results confirm 9 

those of Hastie et al. (2009) and add an example for RF used as a classifier. For our final RF 10 

prediction, we kept nodesize to the default value (1).  11 

 12 

Table 6. Average OOB (for Random Forest, RF) or MAP (for Multinomial Logistic Regression, MLR, 13 

from 50% unused points in 1:25,000 soil maps) errors, validation hit rate (HR) from profiles (not 14 

applicable to soil groups for lack of profile data) and confusion index (CI) calculated using different 15 

nodesize values (n). The forest is made up of 350 trees and the mtry parameter is fixed to 5. 16 

 17 

The OOB errors of the optimized models are 8.6%, 10.5% and 8.8% for soil groups, soil 18 

depth, and soil texture respectively. Compared with other studies, these can be considered 19 

very low values: Stum et al. (2010) obtained an OOB error of 55.2% in predicting soil series; 20 

Barthold et al. (2013) reported an OOB error of 51.6%; Pahlavan Rad et al. (2014) calculated 21 

OOB errors of 48.5%, 51.5% and 56.5% for great group, subgroup and series levels, 22 

respectively; Taghizadeh-Mehrjardi et al. (2015) obtained a OOB error of 78% for family soil 23 

groups. OOB error values closer to the ones obtained by our study were obtained in other 24 

research fields. As an example Peters et al. (2008) achieved a minimum OOB error of 19% 25 

while modelling wetland vegetation distribution. 26 
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 1 

3.3 Comparison with Multinomial Logistic Regression 2 

Consistent with many other studies (e.g., Brungard et al., 2015; Taghizadeh-Mehrjardi et al., 3 

2015; Heung et al., 2016), RF provided a better predictive model than MLR for all three 4 

maps, based on average scores. The validation error calculated for MLR using the 50% of the 5 

1:25,000 map points are much larger than the comparable OOB errors obtained from the final 6 

RF models, as presented in Table 6. Coversely, the HR from independent validation of soil 7 

depth and soil texture from profiles is comparable with RF, which performs a little better for 8 

soil depth and a little worse for soil texture (Table 6). 9 

A spatial comparison of CI results is presented in Fig. 6. The average CI values are usually 10 

lower for RF than MLR, with the exception of soil groups where MLR performs comparably. 11 

However, average values in this case do not explain all, especially for soil depth and soil 12 

texture. The CIs calculated from the RF output for these two maps show generally low CIs in 13 

the training areas (< 0.4) and higher values (> 0.4) in the rest of the study area. Zooming in, 14 

we can see large areas with low CIs bordered by narrow bands with higher CI values, 15 

perfectly representing diffuse boundaries among classes. Since this level of detail is not kept 16 

in all the prediction areas, it can be interpreted as an overfitting of the RF model, although no 17 

benefit appeared from tree pruning. CI maps derived from the RF built with nodesize equal to 18 

20 (not presented here) show exactly the same pattern. Conversely, The CIs calculated from 19 

MLR are more homogeneous throughout the study area. Additional visual comparison 20 

between RF and MLR shows, in any case, similar trends of CI over the areas not included in 21 

training maps, with rather low values over the Troodos Mountains, in the centre of the island, 22 

and higher value along the borders of the study area. Considering these results, and above all 23 

the large difference in the validation from independent map values, we decided to present as 24 

final maps those predicted using RF. 25 
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 1 

Fig. 6. Confusion Index (CI) maps calculated for soil groups, soil depth and soil texture prediction from 2 

both Random Forest (left) and Multinomial Logistic Regression (right). 3 

 4 

3.4 Final maps, map extrapolation, map reliability, and evaluation  5 

Fig. 7, shows the final map of soil groups, whereas Fig. 8 shows the soil depth and the soil 6 

texture maps.  Three main areas can be recognized: the very shallow (< 10 cm), lithic, and 7 

poorly developed soils of the Troodos Mountains; the young, (weakly) developed, shallow to 8 

moderately deep (between 10 cm and 100 cm), calcaric soils of the southern flank of the 9 

Troodos Mountains; and the well-developed, deep to very deep (> 100 cm), fertile soils of the 10 

western Mesaoria Plain and coastal plains in the southeast. Among the latter, it is worth 11 

mentioning the characteristic red soils here classified as Chromic Luvisols (with additional 12 

qualifiers according to the substrate). The good detail of the predicted maps is demonstrated 13 

along the southern coast, where differences between valley bottoms (Calcaric Cambisols) and 14 

slopes (Calcaric Regosols) can be recognized, and the most fertile soils of the country, 15 

located in the area of Pafos, can be spotted as Calcaric and Eutric Fluvisols. However, small 16 

errors, especially over the Troodos Mountains, can be found. Here, small lenses of Gypsiric 17 

and Calcaric Regosols have been predicted although, considering the igneous, mafic and 18 

ultramafic nature of the bedrock, these can be considered impossible soil types for the region. 19 

 20 

Fig. 7. Digital soil map of Cyprus. The map is presented with WRB soil group names accompanied by one 21 

or two qualifiers as predicted using Random Forest. 22 

 23 

Fig. 8. Digital soil depth and soil texture maps of Cyprus as derived from Random Forest. 24 

 25 
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 1 

The MESS and the reliability of the produced maps are presented in Fig. 9 and Fig. 10, 2 

respectively. Although slightly different set of predictors were used for soil groups, soil depth 3 

and soil texture, only the MESS related to soil groups is presented, since the differences 4 

between these maps were minimal. It is worth noting how both in terms of MESS and 5 

reliability the study area can be roughly split into two main regions. On one hand, the MESS 6 

and the reliability of the predicted soils in the main agricultural areas of the country 7 

(Mesaoria plain, southeastern coast, and mountain foothills) show medium to high values, 8 

confirming that the RF prediction is legitimate (not an extrapolation) and its quality is good. 9 

On the other hand, the predominant soils of the Troodos Mountains show a low reliability and 10 

are located over areas with a highly negative MESS. This low reliability is driven by the large 11 

size of the extrapolated area rather than a high OOB error. An important limiting factor for 12 

the prediction of soils over the Troodos region is the lack of a training area covering the 13 

highest elevations of the mountains. Limited training areas are only available along the 14 

foothills of the mountains, where the typical mountain soils start to form, but none of these 15 

areas cover regions characterized by steep valleys, as this terrain is found at higher elevations 16 

only. In addition, some of these valleys are rather peculiar, because they have been modified 17 

by human activities since the Bronze Age, especially by the construction of dry stone terraces 18 

to favour agricultural practices (Fall et al., 2012). Thus, while based on the topographic, 19 

geological, geomorphological, and climatic conditions, the predicted prevalent soil depth (0-20 

10 cm) and soil texture (none) of the Troodos region (Fig. 8) can be considered reasonable, 21 

some of the natural variability and the human modifications of the terrain are not captured. 22 

The produced soil depth and soil texture maps generally fail to represent the peculiarities of 23 

the mountainous agricultural land, which could be also of interest for applied environmental 24 

studies (e.g. water needs for agriculture, soil erosion). 25 
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 1 

Fig. 9. Multivariate Environmental Similarity Surface (MESS) showing areas where model predictions 2 

are extrapolations in comparison to the training data set (values lower than zero). 3 

 4 

Fig. 10. Reliability maps derived for the soil groups, soil depth, and soil texture maps of Cyprus predicted 5 

with Random Forest. 6 

 7 

Table 7 summarizes the validation HRs based on independent profiles for each soil depth and 8 

soil texture class and for areas where the MESS values is larger or lower than zero (i.e.non 9 

extrapolation or extrapolation). The soil profiles cover all soil depth and soil texture classes, 10 

although with a non-uniform distribution. For soil depth, the moderate to deep (50-100 cm) 11 

class is highly under-represented in comparison with the other three, while the class shallow 12 

(10-50 cm) has the largest number of profiles. For soil texture, the two classes Medium and 13 

Fine are similarly represented and comprise 83% of all the profiles.  14 

At the profile locations, the calculated overall validation HR for soil depth and soil texture 15 

are 55% and 49%, respectively. Heung et al. (2016) obtained a 54% HR predicting soil great 16 

groups with RF using the same method for training data sampling. Barthold et al. (2013) got 17 

much better results mapping WRB soil groups in the Mongolian grasslands, having a 18 

misclassification error of 29%. Comparably with the latter authors, Lang et al. (2016) 19 

obtained a 32% classification error for WRB soil groups in Africa. Considering that the error 20 

rate is a little higher than typical literature value, it is worth some discussion.  21 

Table 7 shows that there is not much difference in the results of points predicted in the known 22 

or the extrapolated areas, but that there are large differences in the error between different 23 

classes, which have different reliabilities. In terms of soil depth, we can state that the model 24 
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is masking short distance heterogeneity, which is represented by the profiles. For example, 1 

the whole area of the Troodos Mountains is represented as a zero depth soil. This is due to the 2 

fact that 90% of the limited training areas presenting the main environmental characteristic of 3 

the Troodos is mapped as zero depth soil. Variability in this region exists, as testified by the 4 

soil-profile analyses of Robins (2004), who found a soil depth range between 0 and 0.96 m, 5 

with a median of 0.15 m and an average value of 0.18 m. Our model has not been trained to 6 

match Robins’ soil depth data, as this would require larger training areas in the Troodos 7 

Region and a significantly finer resolved terrain model. Similarly, very-deep soils are more 8 

common than moderate-to-deep soils in the training areas and are better represented in the 9 

prediction, with less error. For texture, the smallest HR is associated with the class Coarse, 10 

which is the least represented in the training data set (6%). The texture class Medium, which 11 

is the most represented with 45% of the training points, is also the one with the best HR. The 12 

model therefore shows a tendency to predict the classes that occur more frequently in the 13 

training areas. 14 

 15 

Table 7. Number of independent soil profiles (N. prof.) and validation hit rate (HR), calculated based on 16 

positive or negative Multivariate Environmental Surface Similarity (MESS), for soil depth classes and soil 17 

texture classes. 18 

 19 

4 Conclusions 20 

This study produced a digital soil map of Cyprus (including soil groups, soil depth classes 21 

and soil texture classes) with RF using training areas from ten 1:25,000 published soil maps 22 

(27% of the study area). The study also focused on the optimization of the RF model in terms 23 

of environmental variables used as predictors and of the model’s adjustable parameters 24 
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(number of training points, number of trees in the forest, and number of variables sampled at 1 

each branch split). The study proved how the average OOB error, calculated by the RF 2 

model, increases at a higher rate with the reduction of the number of training points than with 3 

the reduction of the number of trees grown in the forest. This can be especially noticed for 4 

forests larger than 200-250 trees (when an asymptotic behaviour of the OOB error is 5 

reached). Considering this asymptotic behaviour, in this study forests of 350 trees were 6 

calculated.  7 

For the selection of the optimal set of environmental variables to run the model (lowest error 8 

and lowest number of predictors), the recursive feature elimination based on OOB error was 9 

found to be generally superior to elimination based on the lowest Mean Decrease of Accuracy 10 

(MDA) value per predictor, as calculated by the RF algorithm. This is mainly due to MDA 11 

being influenced by variable correlation. In the optimum models derived for the prediction of 12 

soil groups, soil depth and soil texture, a prevalent role in keeping a low model error is 13 

played by the variables linked with the geochemistry of the soil. They appeared as the most 14 

important group of variables in our models. The importance of these variables should be 15 

further investigated in different geographic and pedological areas to confirm their quality as 16 

soil group predictors.  17 

The calibration of the mtry parameter (number of variables sampled at each branch split) 18 

revealed a wide range of optimum values, distributed around half the number of 19 

environmental variables used to drive the prediction. The calibration of the nodesize 20 

parameter showed no relevant performance increase and was kept at its default value (1).  21 

The produced soil groups, soil depth and soil texture maps showed very low OOB error: 22 

8.6%, 10.5%, and 8.8%, respectively. However, when evaluated for soil depth and soil 23 

texture outside the training areas by means of independent soil profiles, the average error 24 

shows values equals to 45% and 51%, respectively. In particular, the maps show a medium to 25 
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high reliability over the major agricultural areas of the country (plain and mountain foothills) 1 

but a low reliability over the mountainous region. This low reliability is mainly due to a lack 2 

of training data over the mountains, whose soils are largely extrapolated from few training 3 

areas on the mountain foothills. Despite low OOB errors, peculiar characteristics of steep 4 

mountain environments, like medium to deep soils typical of terraced agricultural land, are 5 

missed by the model. Also, the model showed a tendency to predict more commonly the 6 

classes that occur more frequently in the training areas, therefore masking local variance in 7 

soil properties.  8 

Maps derived with MLR had comparable prediction uncertainty and higher validation error 9 

than RF, indicating the better performance of the latter for DSM in topographical and 10 

pedological complex regions. If properly applied, RF was found to be a reliable instrument 11 

for DSM activities. Future research will focus on the development of a specific digital soil 12 

map for the Troodos Mountains of Cyprus, including both field and modelling studies.  13 
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 1 

Fig. 1.The island of Cyprus with its main physical characteristics and the location of the study area. 2 

 3 

 4 

 5 

Fig. 2. Location of the study area, the existing 1:25,000 scale soil sheets used for training, the 126 soil 6 

profiles derived from Land Suitability Maps (LSM), and the 199 soil profiles from Robins (2004) used to 7 

evaluate the digital soil map of Cyprus. 8 
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 1 

 2 

Fig. 3. Summary of the methods used in the study. OOB is the Out Of Bag error, MESS is the 3 

Multivariate Environmental Similarity Surface, and CI is the Confusion Index. 4 
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 1 

 2 

Fig. 4. Scatter plots, drawn with a 0.05% subset of the original input dataset, showing highly correlated 3 

covariates. The R value shown in each graph is the Pearson correlation coefficient calculated using the 4 

full input dataset. The covariates on the x-axis were removed from the data set used as input for the 5 

digital mapping techniques. CIA is the chemical index of alteration; MIA is the Mafic Index of 6 

Alteration; VR is the Vogt Ratio; and LOI is the Loss on Ignition. 7 
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 1 

Fig. 5. Average OOB error for increasing number of trees in the Random Forest classification model and 2 

different number (% of the total) of training points as derived from the rasterized 1:25,000 scale soil 3 

maps. 4 
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 1 

Fig. 6. Confusion Index (CI) maps calculated for soil groups, soil depth and soil texture prediction from 2 

both Random Forest (left) and Multinomial Logistic Regression (right). 3 

 4 

 5 

 6 
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 1 

Fig. 7. Digital soil map of Cyprus. The map is presented with WRB soil group names accompanied by one 2 

or two qualifiers, as predicted using Random Forest. 3 
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 1 

Fig. 8. Digital soil depth and soil texture maps of Cyprus, as derived using Random Forest. 2 

 3 

 4 

 5 

 6 

 7 
Fig. 9. Multivariate Environmental Similarity Surface (MESS) showing areas where model predictions 8 

are extrapolations in comparison to the training data set (values lower than zero). 9 

 10 
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 1 

 2 

Fig. 10. Reliability maps derived for the soil groups, soil depth, and soil texture maps of Cyprus predicted 3 

with Random Forest. 4 
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Table 1. Soil depth classes identified from the 1:25,000 scale soil sheets and reclassified in four consistent 1 

classes.. 2 

Depth class 

(from soil maps) 

Depth [cm] 

(from soil maps) 

Depth [cm] 

(new class) 

Zero 0-10 

0-10 

Zero 

Very shallow 10-25 10-50 

Very shallow to shallow 10-50  

Shallow 25-50 Shallow 

Shallow to moderate 25-75 50-100 

Moderately deep 50-75  

Deep 75-100  Moderate to Deep 

Very deep > 100  

> 100 

Very Deep 

 3 

  4 



 

51 
 

Table 2. Soil texture classes identified from the 1:25,000 scale soil sheets and reclassified in four consistent 1 

classes. The harmonization has been performed using the guidelines provided in FAO (2008). 2 

Texture classes 

(from soil maps) 

Texture 4 classes 

(reclassified FAO, 2008) 

AWC1 

[%] 

Rock None  

Gravel Stony and gravelly  

Sand   

Light to medium   

Coarse to medium   

Coarse Coarse 5-15 

Light Sand and loamy sand, and sandy loam  

Sandy loam gravelly   

Sandy loam   

Clay loam Medium  

Medium Sandy clay loam, loam, clay loam,  10-20 

Medium to fine silty clay loam, silt loam, silt  

Moderately heavy   

Medium heavy   

Heavy Fine 11-20 

Fine Clay, sandy clay, silty clay       

Clayee   

1AWC: Available water capacity, range of values taken from Saxton and Rawls (2006) and Allen et al. (1998).  3 
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Table 3. Average OOB error for forests (350 trees, 50% data) built removing single variables, and 1 

importance value (Mean Decrease of Accuracy - MDA) calculated by removing the variable from the 2 

complete model. OOB values are presented as differences from the model derived with the complete set of 3 

variables. Between parenthesis the rank of each variable. 4 

 Soil groups Soil depth Soil texture 

Removed variable OOB 

error [%] 

MDA OOB 

error [%] 

MDA OOB 

error [%] 

MDA 

None 9.4  N/A 12.0 N/A 9.9 N/A 

Electrical conductivity +0.5 (5) 0.22 (6) +0.6 (5) 0.19 (5) +0.5 (5) 0.18 (5) 

pH +0.7 (3) 0.20 (7) +0.8 (3) 0.17 (7) +0.7 (3) 0.17 (7) 

Organic Carbon +0.9 (2) 0.25 (5) +1.1 (2) 0.22 (2) +1.0 (2) 0.21 (3) 

Mafic Index of Alteration +0.7 (3) 0.31 (3) +0.8 (3) 0.22 (2) +0.7 (3) 0.24 (2) 

Maximum Temperature -0.3 (12) 0.33 (2) -0.2 (10) 0.20 (4) -0.1 (10) 0.21 (3) 

Minimum Temperature -0.2 (10) 0.18 (8) -0.2 (10) 0.16 (10) -0.1 (10) 0.15 (9) 

Land Use +0.3 (7) 0.18 (8) +1.2 (7) 0.17 (7) +0.2 (7) 0.17 (7) 

Elevation (DEM) +1.9 (1) 0.38 (1) +2.0 (1) 0.29 (1) +1.6 (1) 0.26 (1) 

Aspect +0.0 (8) 0.07 (12) +0.1 (8) 0.07 (12) +0.1 (8) 0.06 (12) 

Curvature -0.2 (10) 0.01 (13) -0.2 (10) 0.02 (13) -0.1 (10) 0.01 (13) 

Slope -0.6 (13) 0.17 (11) -0.7 (13) 0.17 (7) -0.4 (13) 0.12 (11) 

Landscape Units +0.4 (6) 0.18 (8) +0.4 (6) 0.16 (10) +0.3 (6) 0.14 (10) 

Geology +0.0 (8) 0.27 (4) +0.1 (8) 0.19 (5) +0.1 (8) 0.18 (5) 

 5 
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Table 4. Average OOB error for forests (350 trees, 50% data) built removing groups of variables 1 

according to the scorpan formula. Values are presented as differences from the model derived with the 2 

complete set of variables. Between parenthesis the rank of each group. 3 

Removed group Removed variables Soil groups 

OOB error 

[%] 

Soil depth 

OOB error 

[%] 

Soil texture 

OOB error 

[%] 

None None 9.4 12.0 9.9 

Soil chemistry EC, pH, OrgC, MIA +13.6 (1) +13.0 (1) +11.6 (1) 

Climate Tmin, Tmax -0.5 (5) -0.4 (5) -0.4 (5) 

Organisms Land use, OrgC +1.3 (3) +1.5 (3) +1.3 (3) 

Relief Elevation, aspect, curvature, slope, 

landscape units 

+3.5 (2) +3.6 (2) +2.9 (2) 

Parent material (Age) Geology +0.0 (4) +0.1 (4) +0.1 (4) 

 4 

Table 5. Average OOB errors calculated using different mtry values. The forest is made up of 350 trees. 5 

mtry Soil groups 

OOB error [%] 

Soil depth 

OOB error [%] 

Soil texture 

OOB error [%] 

1 22.5 26.2 23.0 

3 8.7 10.7 9.0 

5 8.6 10.5 8.8 

7 8.7 10.6 8.9 

9 8.8 10.7 9.1 
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Table 6. Average OOB (for Random Forest, RF) or MAP (for Multinomial Logistic Regression, MLR, 1 

from 50% unused points in 1:25,000 soil maps) errors, validation hit rate (HR) from profiles (not 2 

applicable to soil groups for lack of profile data) and confusion index (CI) calculated using different 3 

nodesize values (n). The forest is made up of 350 trees and the mtry parameter is fixed to 5. 4 

 Soil groups Soil depth Soil texture 

Method OOB/MAP 

[%] 

CI [-] HR 

[%] 

OOB/MAP 

[%] 

CI [-] HR 

[%] 

OOB/MAP 

[%] 

CI [-] HR 

[%] 

RF n1 8.6 0.63 N/A 10.5 0.55 55 8.8 0.51 49 

RF n4 8.7 0.64 N/A 10.7 0.56 55 9.0 0.51 49 

RF n12 9.7 0.63 N/A 11.8 0.57 53 9.9 0.52 46 

RF n20 10.6 0.63 N/A 12.8 0.57 54 10.6 0.53 53 

MLR 48 0.61 N/A 52 0.71 58 44 0.60 46 

 5 

 6 

 7 

  8 
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Table 7. Number of independent soil profiles (N. prof.) and validation hit rate (HR), calculated based on 1 

positive or negative Multivariate Environmental Surface Similarity (MESS), for soil depth classes and soil 2 

texture classes.  3 

Soil depth Soil texture 

Class 

[cm] 

N. prof. 

MESS+ 

N. prof. 

MESS- 

HR 

MESS+ 

HR 

MESS- 
Class 

N. prof. 

MESS+ 

N. prof. 

MESS- 

HR 

MESS+ 

HR 

MESS- 

0-10 80 2 0.97 1.00 None 5 0 1.00 N/A 

10-50 129 1 0.43 0.50 Coarse 11 5 0.09 0.20 

50-100 17 1 0.03 0.00 Medium 47 8 0.74 0.50 

> 100 76 19 0.43 0.42 Fine 42 8 0.31 0.37 

 4 

 5 

 6 


