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Abstract 1 

Space-time variability of precipitation plays a key role as driver of many environmental 2 

processes. The objective of this study is to evaluate a spatiotemporal (STG) Neyman-Scott 3 

Rectangular Pulses (NSRP) generator over orographically complex terrain for statistical 4 

downscaling of climate models. Data from 145 rain gauges over a 5,760-km2 area of Cyprus 5 

for 1980-2010 were used for this study. The STG was evaluated for its capacity to reproduce 6 

basic rainfall statistical properties, spatial intermittency, and extremes. The results were 7 

compared with a multi-single site NRSP generator (MSG). The STG performed well in terms 8 

of average annual rainfall (+1.5% in comparison with the 1980-2010 observations), but does 9 

not capture spatial intermittency over the study area and extremes well. Daily events above 10 

50 mm were underestimated by 61%. The MSG produced a similar error (+1.1%) in terms of 11 

average annual rainfall, while the daily extremes (>50-mm) were underestimated by 11%. A 12 

gridding scheme based on scaling coefficients was used to interpolate the MSG data. 13 

Projections of three Regional Climate Models, downscaled by MSG, indicate a 1.5% to 12% 14 

decrease in the mean annual rainfall over Cyprus for 2020-2050. Furthermore, the number of 15 

extremes (>50-mm) for the 145 stations is projected to change between -24% and +2% for 16 

the three models. The MSG modelling approach maintained the daily rainfall statistics at all 17 

grid cells, but cannot create spatially consistent daily precipitation maps, limiting its 18 

application to spatially disconnected applications. Further research is needed for the 19 

development of spatial non-stationary NRSP models. 20 

Keywords: gridded data sets; meteorological data; rainfall generator; statistical downscaling  21 
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1 Introduction 1 

To downscale General Circulation Models (GCMs), two general approaches are available: 2 

dynamical downscaling and statistical downscaling. Dynamical downscaling involves the use 3 

of Regional Climate Models (RCMs), forced at the boundaries by GCM outputs, but 4 

characterized by a more detailed resolution, a limited area domain (e.g., Europe), and a 5 

higher capability in reproducing the physics of the processes (Rummukainen 2010). Recent 6 

projects such as ENSEMBLES (van der Linden and Mitchell 2009) brought the horizontal 7 

resolution of these models down to 25 km, and the CORDEX project (http://wcrp-8 

cordex.ipsl.jussieu.fr/) is currently producing climate model results at 12.5 km resolution. On 9 

small domains (e.g., Western or Eastern Mediterranean Basin), experiments have already 10 

been carried out with resolutions of 10 km or lower (Gonçalves et al. 2014). However, these 11 

downscaling methods are computationally very intensive and may still not obtain a 12 

sufficiently high resolution (~1 km2) for all applications (e.g. hydrological, agricultural and 13 

natural ecosystems studies, Avellan et al. 2012; Kizza et al. 2012; Supit et al. 2012; Parkes et 14 

al. 2013). Statistical downscaling links GCMs or RCMs to local climate by means of 15 

statistical models. According to Fowler et al. (2007), statistical downscaling approaches can 16 

be divided into three main groups - regression models, weather typing schemes, and weather 17 

generators – all relying on the assumption that local climate variables are a function of large 18 

scale atmospheric variables. These downscaling methods do not consider the physics of the 19 

processes but they can usually be applied for impact studies without the need of an additional 20 

bias correction step (Boé et al. 2007; Fowler et al. 2007); also, they are computationally less 21 

expensive, and allow working with finer resolutions. In particular, studies developing and 22 

applying weather generators are becoming increasingly common (e.g., Kilsby et al. 2007; 23 

Burton et al. 2008; Morlan and Burlando 2008; Wilks 2009; Burton et al. 2010a; Kleiber et 24 

al. 2012; Mehrotra et al. 2015).  25 

Rainfall generators exist for both single site and spatial applications and three main 26 

categories of rainfall generators can be recognized (Bordoy and Burlando 2014). The first 27 

category is the one of the Markovian models, in which rainfall occurrence and rainfall 28 

amount are modelled separately in a two-step approach (Wilks 1998; Mehrotra et al. 2006; 29 

Kim et al. 2008; Wilks 2009). Rainfall occurrence is conditioned on the wet/dry state of the 30 

previous time steps, while rainfall amounts can be calculated with parametric methods based 31 

on rainfall probability distribution functions (Brisette et al. 2007; Khalili et al. 2009; 32 

Baigorria and Jones 2010), and non-parametric approaches employing resampling techniques 33 
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like kernel density estimators (Harrold et al. 2003; Mehrotra et al. 2015) and k-nearest 1 

neighbour bootstrapping (Yates et al. 2003; Apipattanavis et al. 2007; Caraway et al. 2014). 2 

Particular parametric approaches, which allow incorporating covariates and large scale 3 

information into the stochastic generation process, are those based on the Generalized Linear 4 

Model (GLM) theory (Chandler and Wheater 2002; Yang et al. 2005; Kleiber et al. 2012), 5 

and weather states (hidden Markov chain models, e.g. Mehrotra et al. 2004; Moron et al. 6 

2008). Most of the spatial (multi-site) approaches in this category of rainfall generators are 7 

based on transformations of the multivariate Gaussian distribution with the inclusion of a site 8 

to site correlation structure (e.g., Ailliot et al. 2009). Mehrotra et al. (2015) proposed an 9 

alternative approach to model the spatial dependence based on uniform random variates 10 

independent in time, but correlated in space. Specific problems of the Markovian approaches 11 

are the limits in reproducing extended drought periods due to the short memory (few time 12 

steps) of the occurrence modelling scheme (Maraun et al. 2010); and for the resampling 13 

schemes, to generate rainfall patterns outside the observation domain (Burton et al. 2010a) 14 

The second category is that of models based on cluster processes such as Barlett-Lewis 15 

Rectangular Pulses (BLRP) models and Neyman-Scott Rectangular Pulses (NSRP) models 16 

(Rodriguez-Iturbe et al. 1987; Cowpertwait 1995; Cowpertwait et al. 2013). These models 17 

handle occurrence and amount in a single process. BLRP and NSRP (parametric) models are 18 

based on the arrival of storms as Poisson processes with characteristic timescales. Each storm 19 

is made up of a cluster of (a random number of) rain cells. The difference between the two 20 

models is the way in which a time position is attributed to the cells (Rodriguez-Iturbe et al. 21 

1987). When modelling rainfall as a spatial phenomenon, the cluster of cells is built as a 22 

uniform Poisson process in space with a certain density of cell centres. Given their 23 

formulation, the models are not expected to exhibit scaling behaviour (e.g., Marani 2003). 24 

However, Olsson and Burlando (2002), Bordoy and Burlando (2014) empirically 25 

demonstrated that a NSRP model can well reproduce rainfall properties at different 26 

timescales, applying both its single site (20 min – 1 week) and spatial-temporal configuration 27 

(1h – 45 days). Another advantage of this type of models is the possibility to include third-28 

order moments in the simulation algorithm to better model extremes (Burton et al. 2008). 29 

Conversely, a limitation of these models is that rainfall properties, excluding mean and 30 

variance, are invariant (Fowler et al. 2005). To overcome spatial stationarity issues, Burton et 31 

al. (2010a) presented an extension of the spatiotemporal NSRP model that allows a non-32 

homogeneous spatial activation of rain cells. This modelling scheme is a good instrument to 33 
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reproduce the spatial heterogeneity of rainfall statistics over complex terrains. However, the 1 

model is not easily adaptable to case studies with a large number of observational stations. 2 

Another spatiotemporal model based on rain cells and cell cluster processes for generating 3 

rainfall timeseries at the small spatial scale (100 to 1,000 km2) has been proposed by Willems 4 

(2001). This model has mainly been applied for urban flood studies (e.g. Simões et al. 2015) 5 

and has been recently adapted to work with radar data (McRobie et al. 2013).  6 

The third category is the one of disaggregation models, which couple the stochastic approach 7 

(e.g., log-Poisson stochastic generator in Mascaro et al. 2013) with scale invariant or 8 

multiscale properties recognized in the spatial-temporal pattern of precipitation (Veneziano et 9 

al. 2006; Morlan and Burlando 2008; Groppelli et al. 2011). Disaggregation methods are 10 

based on the assumption that rainfall is a multifractal scale invariant process inheriting its 11 

scaling properties from external forcing, usually atmospheric turbulence (Perica and 12 

Foufoula-Georgiou 1996; Deidda et al. 1999; Badas et al. 2006; Venugopal et al. 2006). The 13 

spatial variability of rainfall is modelled through multifractal cascades (Groppelli et al. 2011; 14 

Gires et al. 2012; Langousis et al. 2013; Mascaro et al. 2013). If multifractality is 15 

demonstrated, the major advantages are related to the light parameterization and a rather 16 

simple probabilistic structure of the model (Veneziano et al. 2006). However, these authors 17 

demonstrated that a multifractal, scale invariant, spatial-temporal pattern of rainfall cannot 18 

always be recognized, implying the necessity of an extensively parameterized scaling 19 

approach for rainfall or the need to define the link to atmospheric turbulence in a different 20 

manner (e.g., passing through water vapour condensation rates).  21 

In general, the major challenges related to rainfall generators consist in developing efficient, 22 

easy to parameterize, spatial models able to work in any topographic environment (Burton et 23 

al. 2010a; Caraway et al. 2014) and to capture the properties of the extremes (Hashimi et al. 24 

2011; Costa et al. 2015; Verdin et al. 2015). 25 

The focus of the present study is on NSRP models. The choice was driven by the advantages 26 

related to the elegance of the model (limited number of parameters and fitting through 27 

observed time series), the inclusion of third order moments to model extremes, and the wide 28 

use of this type of models in the literature, which has demonstrated their robustness and 29 

adaptability to work in different climates and environments (e.g., Van Vliet et al. 2012; 30 

Borgomeo et al. 2014; Forsythe et al. 2014). The only study, which has made a thorough 31 

evaluation of a spatiotemporal NSRP model over a mountainous area, is the one of Bordoy 32 

and Burlando (2014). These authors tested the model in an alpine catchment in Switzerland 33 
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(5,244 km2) for 10 reference rain gauges. Their conclusions suggest that the model can 1 

reproduce the main spatial and temporal rainfall characteristics well, with some limitations 2 

regarding the dry and wet spells durations and the modelling of extremes in the driest regions. 3 

In addition, no particular weaknesses appear in comparison with the single site version of the 4 

same model, as evaluated in Olsson and Burlando (2002).  5 

The main goal of this study is to evaluate the performance of a spatiotemporal NRSP rainfall 6 

generator for the downscaling of precipitation from RCMs over orographically complex 7 

terrain with a dense rain gauge network. We apply the spatiotemporal NSRP model (RainSim 8 

V3.1.1, Burton et. 2008) for 145 rain gauges (period 1980-2010) over the 5,760 km2 area 9 

under the effective control of the government of the Republic of Cyprus. The evaluation 10 

considers basic rainfall statistical properties, rainfall spatial and temporal (lag 1) 11 

intermittency, and indices of extremes. While our study area size is almost the same as that of 12 

Borday and Burlando (2014), the analysis of 145 gauges, as compared to their 10 stations, 13 

allows a much better analysis of the capacity of the spatiotemporal model to simulate spatial 14 

differences as well as a quantification of the loss of model capacity under specific 15 

geographical conditions. We also conduct a direct comparison between the output of the 16 

spatiotemporal model and the output of a single site generator for the 145 gauges. Two 17 

different spatial interpolation methods are used to create high-resolution gridded datasets (1 x 18 

1 km2) for the two model applications. Finally, climate change projections of three RCMs 19 

(A1B scenario) are downscaled and interpolated for Cyprus (2020-2050). 20 

The area under the control of the Republic of Cyprus (5,760 km2) is an interesting case study 21 

because its complex topography strongly affects the spatial patterns of the different 22 

meteorological variables. It has also experienced an increase in the number of drought years 23 

in the recent past (Michaelides et al. 2009). In addition, it is also expected to be a hot spot for 24 

climate change (Lelieveld et al. 2012).  25 

2 Methods 26 

The present study consists of the following steps: i) the evaluation of a spatiotemporal NSRP 27 

rainfall generator (STG) and its gridded product for the period 1980-2010 and comparison 28 

with outputs obtained from a multi-single site version (MSG) of the same model; ii) a 29 

precipitation downscaling application for Cyprus with the creation of gridded projections (1 x 30 

1 km2) for the period 2020-2050. These steps are presented in the following sub-sections. 31 
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2.1 Evaluation of the spatial-temporal rainfall generator 1 

The RainSim V3.1.1 software (Burton et al. 2008) was used to generate rainfall time series. 2 

RainSim is an NSRP model based software, applicable both at a single site and in spatial- 3 

temporal mode. It takes into consideration third moment properties, which are important to 4 

calculate extremes. The model includes two parts: i) a spatially homogeneous and time 5 

stationary Poisson process that models the arrival of rainfall events and their mean 6 

characteristics (duration and intensity); ii) a spatially non-homogeneous field, proportional to 7 

the mean rainfall, describing intensity scaling factors. The software has three main steps: i) 8 

analysis of the observed data to calculate the statistics to fit the model; ii) fitting of the model 9 

parameters based on the observed rainfall statistics; iii) generation of time series. Five 10 

parameters must be fitted by the model for point applications and seven for spatial-temporal 11 

applications (Table 1).  12 

Seven daily statistics were used to fit the model parameters for each month (both 13 

spatiotemporal and single site): mean, variance, skew, lag-1 autocorrelation, probability of 14 

dry days (threshold 0.2 mm), probability of consecutive dry days, and probability of 15 

consecutive wet days. The statistics were calculated for all 145 rainfall stations. To use the 16 

software in its spatial-temporal configuration, a matrix of lag-0 cross-correlation coefficients 17 

between each pair of stations was also calculated. The statistics were derived using the 18 

analytical module of RainSim for each of the 12 months of the year.  19 

 20 

Table 1. Parameters of the Neymann-Scott Rectangular Pulses model for rainfall time series generation 21 

(Burton et al., 2008).  22 

Parameter Description Model Units 

λ-1 Mean time between adjacent storm origins Point/Spatial [h] 

β-1 Mean waiting time for raincell origins after storm origins Point/Spatial [h] 

η-1 Mean duration of raincell Point/Spatial [h] 

Ν Mean number of raincells per storm Point [-] 

γ-1 Mean radius of raincells Spatial [km] 

Ρ Spatial density of raincell centres Spatial [km-2] 

ξ-1 Mean intensity of a raincell Point/Spatial [mm/h] 

Φ A vector of scale factors, one for each raingauge Spatial [-] 

 23 
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To get the best set of model parameters, the fitting procedure implemented in RainSim 1 

V3.1.1 uses a numerical optimization algorithm to minimize the following objective function 2 

(Burton et al. 2008):  3 

   
2

2

2

)(ˆ,...,, 
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g gg
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w
D          (1) 4 

where Ω is the vector including the previously listed seven statistics, g denotes one of the 5 

statistics, wg is the vector of the weights that can be used to assign a different importance to 6 

the statistics, gs is the mean annual value of statistic g, ḡ is the observed sample estimate, and 7 

ĝ is the analytical expression of statistic g as a function of the model parameters 8 

(Cowpertwait et al. 2002; Bordoy and Burlando 2014). The value of gs is set to 1 for the 9 

probability of a dry day, for the probability of consecutive dry/wet days, and for the spatial 10 

and temporal correlation. For further details about the software see Burton et al. (2008). 11 

The STG was subsequently run to obtain daily simulated time series, 31-year long, for the 12 

past (1980-2010). To evaluate the general performance of the rainfall generator, the fitted and 13 

simulated statistics of the generated time series were compared to the statistics from 14 

observations. In addition, Kolmogorov-Smirnov and Anderson-Darling tests were performed 15 

to test the null hypothesis that the generated rainfall time series were samples from the same 16 

distributions of the observations. The first test gives an indication of the goodness of fit 17 

between two entire distributions (simulated and observed daily rainfall in this case), while the 18 

second test is designed to detect discrepancies in the tails of the distributions (Law and 19 

Kelton 1991). Specifically for extremes, some indices, independent from the rainfall 20 

simulation (i.e., statistics not used to fit the model), were calculated. The indices were 21 

selected and slightly modified from those presented by Zhang et al. (2005):  22 

R20: the number of days (annual average) with precipitation higher than 20 mm;  23 

R50: as R20 but with a threshold of 50 mm; 24 

RT95: the threshold value (mm rain) at the 95th percentile of days with precipitation higher 25 

than 1 mm, for the whole 31-year long time series;  26 

RT99: as RT95 but for the 99th percentile; 27 

RA95: the annual mean of the total precipitation fallen on days with precipitation above 28 

RT95; 29 

RA 99: as RA95 but for the 99th percentile. 30 
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In addition, for a further evaluation of the STG, the spatial intermittency (expressed as the 1 

number of wet rain gauges over the study area on a single day) of daily rainfall (precipitation 2 

> 0.2 mm) was calculated and compared for both the simulated and the observed time series. 3 

Summary statistics are presented for all 145 stations and more detailed comparisons for five 4 

representative stations. These stations (Figure 1) were selected on the basis of their 5 

geographical and topographical position, to cover regions with different rainfall regimes: 6 

station 41, Polis, representative of the north and west coast region; station 225, Prodromos, 7 

representative of the mountainous region of the Troodos; station 660, Kornos, representative 8 

of the foothills region; station 666, Athalassa-Nicosia, representative of the Mesaoria Plain 9 

region; and station 731, Larnaka, representative of the south and eastern coast. 10 

 11 

 12 

Fig. 1. The island of Cyprus with its main physical characteristics. The study area is located south of the 13 

buffer zone (shown by dashed lines). The location of the 145 rainfall stations is also shown, with the five 14 

stations used for the more detailed evaluation marked with triangles. 15 

 16 
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2.2 Gridding schemes 1 

The spatial-temporal version of RainSim V3.1.1 (STG) accounts for spatial correlation, 2 

therefore, the daily time series simulated with this configuration can be spatially interpolated 3 

with common methods. The method developed and tested by Camera et al. (2014) to derive 1 4 

x 1 km2 daily gridded data sets of precipitation for Cyprus (1980-2010) was applied. The 5 

method involves inverse distance weighting (IDW) to interpolate local events, while a 6 

combination of step-wise geographically weighted regression and IDW is used for large scale 7 

events. The method was evaluated through a recursive cross validation scheme. The mean 8 

absolute error ranged from 0.08 mm for very low rainfall events (below the 30th percentile), 9 

to 4.50 mm for extreme events (above the 85th percentile). This gridding method, in the 10 

following text, is referred to as the two-step interpolation scheme (TSI). 11 

The daily time series generated with the multi-single site version of RainSim (MSG) are not 12 

spatially correlated; therefore they cannot be interpolated with standard neighbouring 13 

techniques. Hence, a simplified gridding scheme is developed. Thiessen polygons are 14 

established around each observational station and raster cells, from the 1 x 1 km2 mask map 15 

of the gridded data sets (Camera et al. 2014), are assigned to the different polygons. A scaling 16 

coefficient is calculated for each cell as the ratio between the mean annual rainfall (from 17 

observations 1980-2010) of the cell itself and the same value of the reference station, for the 18 

Thiessen polygon in which they fall. Each daily value is then calculated at each cell by 19 

multiplying the value from the generated time series at the station of reference for the scaling 20 

coefficient. Because the rainfall generator is parameterized on a monthly basis, accumulated 21 

monthly and annual precipitation values are spatially consistent. However, daily precipitation 22 

is not. In the following, this gridding method is referred to as the scaling coefficient 23 

interpolation scheme (SCI). 24 

2.3 Future projections 25 

Six different RCMs from the EU ENSEMBLE project database (http://ensemblesrt3.dmi.dk/), 26 

the same as in Hadjinicolaou et al. (2011), were selected as sources for future precipitation 27 

data. The models were evaluated for their capabilities of reproducing Cyprus climatology 28 

before being downscaled. The downscaling was carried out with a two-step approach: first 29 

change factors (Prudhomme et al. 2002) were calculated from the RCMs for daily rainfall 30 

statistics on a monthly base and then used to derive projected future time series at the rain 31 

gauges locations (Kilsby et al. 2007; Burton et al. 2010b). In the second step, these statistics 32 
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were used as input in RainSim V3.1.1 to simulate future time series. The methods for the 1 

evaluation of the RCMs and the downscaling equations are presented in the supplementary 2 

material (Online Resource 1). 3 

To evaluate changes in the rainfall regime between the future time-span (2020-2050) and the 4 

reference period (1980-2010), average annual rainfall values were compared. In addition, 5 

changes in the same indices of extremes used in the rainfall generator evaluation step (R20, 6 

R50, RT95, RT99, RA95, and RA99) were computed.  7 

3 Results 8 

3.1 Evaluation of the rainfall generator 9 

In Fig. 2 and Fig. 3 scatter plots are displayed showing the comparison between observed and 10 

simulated mean daily rainfall (mean), daily variance (var), daily skew (skew), lag-1 11 

autocorrelation (autocorr), percentage of dry days (pdry), and percentage of consecutive wet 12 

days (pww) for STG and MSG. The daily mean is very well modelled by both configurations 13 

of the rainfall generator, as the values aligned along the bisector show. Variance is fairly well 14 

modelled by both configurations as well. During wet winter months, the STG shows a little 15 

higher dispersion of the points around the bisector than the MSG, while both configurations 16 

show a clustering around very low values during the dry summer months. Skew is, on the 17 

contrary, much better modelled by the MSG than by the STG. The STG shows a horizontal 18 

clustering of the skewness values almost for every month, indicating that the model is 19 

smoothing out skew characteristics over the study area. In addition, for both configurations of 20 

the rainfall generator, the skew shows its largest dispersion in the very dry period (June-21 

August). This is obviously due to the few events that characterize the summer months and the 22 

resulting high influence of these events on this statistic. However, considering that there are 23 

few rainy days and generally low rainfall amounts in summer, these errors can be considered 24 

negligible.  25 

For the STG, lag-1 autocorrelation is showing a mixture of horizontal clustering (prevalent in 26 

wet months) and high dispersion (prevalent in dry months) resulting in a fairly poor 27 

modelling of this statistic. Conversely, although still showing some errors in the driest 28 

months (May-September), the MSG is generally able to reproduce lag-1 autocorrelations 29 

well. Percentage of dry days, consecutive dry days (not shown because it is very similar to 30 

pdry), and consecutive wet days are very well modelled by the MSG, while the spatial 31 
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 1 

Fig. 2. Comparison of observed and simulated rainfall statistics for single site (a, b, c) and spatial rainfall 2 

generator (d, e, f) for 145 stations: mean daily rainfall (a, d); daily variance (b, e); daily skew (c, f). The 3 

statistics are calculated and presented on a monthly basis.  4 
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 1 

Fig. 3. Comparison of observed and simulated rainfall statistics for single site (a, b, c) and spatial rainfall 2 

generator (d, e, f) for 145 stations: lag-1 autocorrelation (a, d); percentage of dry days (b, e); and 3 

percentage of consecutive wet days (c, f). The statistics are calculated and presented on a monthly basis. 4 

 5 
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version shows a tendency to cluster all the modelled stations for a given month around the 1 

same value (horizontal clusters like for skew and autocorrelation). This poor differentiation 2 

between the stations’ simulated statistics is the result of the fitting procedure of the model 3 

parameters. As briefly explained in the introduction, the spatiotemporal model is based on a 4 

homogeneous Poisson’s process, which leads to constant fitted values, over the whole study 5 

area, of all the statistics except the mean and variance. Rainfall mean and variance vary 6 

across the study area, but the coefficient of variation remains uniform, as well as all the other 7 

rainfall statistics. The result is that mean and variance are usually well modelled at each 8 

location of interest but the other statistics (probability of a dry day, probability of consecutive 9 

dry and wet days, skew, and autocorrelation) remain constant all over the study area (Fowler 10 

et al., 2005). In a topographically uniform area, this may be an acceptable assumption, but in 11 

orographically complex regions, with different rainfall regimes, it can lead to large errors in 12 

the simulation of the statistics.  13 

In Fig. 4, an example of the percentage of consecutive wet days is presented for the five 14 

representative stations. Observed, fitted and simulated statistic values for the 12 months are 15 

shown for both MSG and STG. The fitted statistics are calculated by the model while fitting 16 

its internal parameters (Table 1). The simulated statistics are calculated from the generated 17 

time series. Theoretically, the generation of an infinite long time series should give statistics 18 

equal to their fitted values. For the STG, all statistics, with the exception of mean and 19 

variance, are fitted on the average value of the study area for each month. This means, for 20 

example, that the value of the generic statistic S for month M at station Nx is equal to the 21 

value of the same statistic S, for the same month M, at any other station Ny over the study 22 

area. This simplification in the model fitting scheme influences also the simulated statistics 23 

(Fig. 4b) and therefore the distribution functions of the generated time series.  24 
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 1 

Fig. 4. Observed, fitted, and simulated percentage of consecutive wet days for the five stations of Fig. 1 2 

plotted on a monthly basis: a) single site and b) spatial-temporal rainfall generator. 3 

In Fig. 5, the results of the Kolmogorov-Smirnov and Anderson-Darling tests are shown. We 4 

rejected the null hypothesis of similarity of the distributions of simulated and observed time 5 

series for p-values lower than 0.01. The spatial analysis of the results of these tests shows two 6 

main outcomes. For the STG, for both tests, the null hypothesis is usually accepted at stations 7 

located in the foothills of the mountains, i.e. at those stations that are expected to have an 8 

average behaviour, and that can be better modelled by the average values of the statistics. The 9 

Anderson-Darling test (null hypothesis rejected at 118 stations for STG, and at 43 stations for 10 

MSG) appears more selective than the Kolmogorov-Smirnov test (null hypothesis rejected at 11 

94 stations for STG, and at 10 stations for MSG) and emphasizes the weakness of the NSRP 12 

model (in its single site as well) in capturing extremes, especially in dry areas. With a p-value 13 

threshold of 0.05, the same general trend can be observed, with the only difference of the 14 

rejection of the null hypothesis, for the Anderson-Darling test, at all the stations located on 15 

the northern foothills of the Troodos Mountains for the STG model. 16 

 17 
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 1 

Fig. 5. Results of the Kolmogorov-Smirnov and Anderson-Darling tests performed to verify the null 2 

hypothesis of similarity of the distribution functions of simulated (through spatial temporal and single 3 

rainfall generator) and observed time series. The null hypothesis is rejected for p-values lower than 0.01. 4 

 5 

This is demonstrated in Table 2 as well, where the indices R20, R50, RT95, RA95, RT99 and 6 

RA99 are plotted for both rainfall generator configurations, at the five representative stations. 7 

Also, Fig. 6 presents boxplots for every index (R20, R50, RT95, RT99, RA95, and RA99) 8 

showing the distribution of the relative error as calculated at the 145 rain gauges. The MSG 9 

performs very well in reproducing the values of the RT95 and RA95 indices, with mean and 10 

median errors over the 145 rain gauges between -2% and -3%, and errors at single stations 11 

usually lower than 10%, as it is testified by the very short inter quantile range (IQR). 12 

Conversely, the STG shows mean and median errors around -15% for the RT95 and around -13 

20% for the RA95, also with much wider IQRs. The behaviour in terms of RT99 and RA99 is 14 

similar, for both model configurations, to the one shown for RT95 and RA95, with slightly 15 

higher mean and median errors and wider IQRs. Regarding the R20 and R50 indices, the two 16 
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configurations perform similarly and sufficiently well over the wettest regions of the study 1 

area (e.g., Polis and Prodromos in Table 2), but the STG completely misses to reproduce 2 

these rainfall characteristics in the dry region (e.g. Kornos, Nicosia, Larnaka in Table 2). This 3 

reflects also in the shape of the boxplots in Fig. 6. In fact, the R20 and R50 inter quantile 4 

ranges calculated from the time series simulated with the STG are much wider than those 5 

calculated from the MSG time series, showing larger differences in the quality of the 6 

modelling at different rain gauges. Bordoy and Burlando (2014) observed a general good 7 

representation of extremes modelled by the STG over a 5,244 km2 Swiss mountain 8 

catchment, with some limitations over the driest region. According to our results, the STG 9 

completely failed to model extremes over dry regions of an orographically complex study 10 

area. Therefore, extreme event modelling remains a crucial issue to be solved in the 11 

implementation of a spatiotemporal (NSRP) model, although the analysed observed and 12 

simulated 30-year periods may be too short to capture and represent extremes adequately. 13 

The introduction of the non-homogeneous spatial activation of rain cells (NSAR-NSRP) 14 

model by Burton et al. (2010a) can certainly bring advantages in terms of better modelling of 15 

rainfall statistics, overcoming the issue of spatial invariance. However, it still has to be 16 

demonstrated that this will result in better modelling of the extremes. Deriving a method 17 

combining the separate modelling of low values and extremes, as proposed by Costa et al. 18 

(2015), could be a valuable solution to try implementing in ST-NSRP models as well. 19 

Finally, the observed and simulated mean annual rainfall for 1980-2010 was compared at all 20 

145 stations. The normalized mean absolute errors (simulated in comparison to observed 21 

values) are 3.6% and 1.4% for the MSG and the STG data, respectively.  22 

  23 
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 1 

Table 2. Comparison of observed (obs) and simulated (1980-2020) rainfall extremes (R20, R50, RT95, 2 
RA95, RT99, RA99) for single site (MSG) and spatial rainfall generator (STG) at five representative rain 3 
gauges.  4 

Station ID: 41 225 660 666 731 

Location: Polis Prodromos Kornos Athalassa Larnaka 

Elevation [m a.s.l.] 15 1380 370 162 1 

R20obs [day/yr] 4.5 11.5 5.8 3.3 4.0 

R20MSG [day/yr] 4.5 11.3 6.1 3.4 4.0 

R20STG [day/yr] 4.2 13 4.2 1.7 1.9 

R50obs [day/yr] 0.3 1.8 1.0 0.5 0.5 

R50MSG [day/yr] 0.2 1.5 0.9 0.5 0.6 

R50STG [day/yr] 0.2 1.6 0.2 0.0 0.0 

RT95obs [mm] 26 39 34 26 29 

RT95MSG [mm] 26 38 31 25 29 

RT95STG [mm] 25 42 24 18 18 

RA95obs [mm] 88 200 123 86 84 

RA95MSG [mm] 83 186 120 84 100 

RA95STG [mm] 84 161 92 60 59 

RT99obs [mm] 44 72 69 53 52 

RT99MSG [mm] 39 59 57 51 55 

RT99STG [mm] 36 63 40 26 27 

RA99obs [mm] 26 63 38 27 24 

RA99MSG [mm] 24 57 37 28 36 

RA99STG [mm] 23 46 28 16 17 

 5 

 6 

 7 

Fig. 6. Boxplots showing the distribution of the relative error [(simulated – observed)/observed] of the 8 

extreme rainfall indices (R20, R50, RT95, RT99, RA95, and RA99) at 145 rain gauges for a) single site 9 

rainfall generator, and b) spatial temporal rainfall generator. The boxes represent the interquartile range 10 

(IQR), the black dot inside the box is the median, whiskers extend 1.5·IQRs, the circles are the outliers. 11 
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The comparison between the spatial rainfall intermittency of the observed and simulated time 1 

series is plotted in Fig.7, showing the probability of having a certain number N of wet 2 

stations (≥ 0.2 mm) on any single day. The two distributions are bimodal, with the highest 3 

peak at the value of 0 stations, representing dry days all over the study area, and a second 4 

peak at the value of 145 stations, representing rainfall events that cover the whole study area. 5 

Both peaks are more pronounced for the simulated than for the observed data. Conversely, 6 

the STG produces much fewer small and medium scale events (< 80 rain gauges) than the 7 

observed series. Especially, the number of daily events occurring at a small number of 8 

stations (< 10) is much lower for the simulated than for the observed time series. In fact, it is 9 

easy to relate this evidence with the clustering, around the same value for all the stations, of 10 

the statistics reproducing the wet/dry state of the days. Thus, the main problem of the STG is 11 

its incapability to simulate small scale events. 12 

 13 

 14 

Fig. 7. Probability density functions of the number of stations that receive rain on any single day, for the 15 

observed and the simulated (spatial generator only) time series (1980-2010). A logarithmic scale is used. 16 

  17 
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3.2 Evaluation of gridded data sets 1 

An example of two daily rainfall maps obtained with the two different combinations of 2 

downscaling and gridding methods is presented in Fig. 8. It is evident that the map obtained 3 

with the STG and a traditional interpolation scheme creates outputs that are spatially 4 

consistent and exhibit continuity in the precipitation over the study area. However, due to the 5 

demonstrated limitations of STG in reproducing extremes, these maps can be used only for 6 

application aiming at studying long term mean climatological characteristics (e.g., long-term 7 

mean annual runoff but not floods) and also in these cases the possible influence of extreme 8 

values on the average processes must be taken into consideration. On the contrary, the output 9 

calculated using the MSG and the simplified gridding schemes looks patchy and 10 

disconnected, clearly showing how cells are spatially continuous only within single Thiessen 11 

polygons. This means that the created daily data set can be used for any application in which 12 

cells can be analysed singularly (or as a group inside a single Thiessen polygon) but are not 13 

suitable for applications that require spatial connectivity. The use of this output is therefore 14 

limited to applications that do not involve spatial connection of areas located across different 15 

Thiessen polygons, such as distributed hydrologic modelling. In addition, the method is 16 

smoothing out rainfall variability inside each Thiessen polygon but it allows keeping the 17 

water balance over a monthly and annual scale. For plot-based applications such as crop 18 

modelling or ecological assessments, the MSG output is very useful and much better than the 19 

STG, due to its capacity to reproduce all precipitation statistics and properties.  20 

 21 

Fig. 8. Daily rainfall maps obtained with the two different methods: MSG-SCI (single site rainfall 22 

generator and scaling coefficients interpolation scheme), and STG-TSI (spatial temporal rainfall 23 

generator and two-step interpolation scheme). Both maps represent a winter day. 24 
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In Fig. 9, the gridded values of mean annual rainfall, calculated from observation and two 1 

groups of 145 simulated time series, are shown for the period 1980-2010. Observations are 2 

interpolated on a daily basis, with the two-step interpolation scheme (TSI). Simulated daily 3 

time series are obtained by running both a STG and a MSG and gridding is performed 4 

accordingly. The same general spatial variation of mean annual precipitation can be observed 5 

in the three maps, and confirmed by the very similar mean annual values over the whole 6 

country of the three data sets. The deviations from the observed mean annual rainfall are 1% 7 

and 1.5% for the MSG-SCI and the STG-TSI methods, respectively. However, increased 8 

short distance variability (e.g., higher mean annual rainfall values in the middle of an area 9 

characterized by very low values, as along the northern border of the study area) can be 10 

noticed for the MSG-SCI method, due to the independent generation of 145 – 31 years long – 11 

stochastic time series, and the resulting small, random (positive or negative) deviations from 12 

the input. However, the mean annual rainfall maps calculated with the two methods can be 13 

considered consistent with each other and with the observations. Therefore, both methods can 14 

be considered reliable and robust for projecting future changes of mean annual rainfall. 15 

 16 

Fig. 9. Mean annual rainfall maps (hydrological years, October-September) calculated for the period 17 

1981-2010 for observations and simulated time series. Observations are interpolated with the two-step 18 

method (TSI), as well as the time series simulated with the spatial rainfall generator. Data from the single 19 

site generator are interpolated with the scaling coefficient scheme (SCI). 20 



22 
 

3.3 Evaluation of future changes 1 

Because of the failure of the STG method to represent the daily rainfall statistics, future 2 

gridded data sets generated with the MSG- TSI method only are presented. The mean annual 3 

rainfall values over the country for the reference and future periods are displayed in Fig. 10.  4 

Results obtained with the input data from the three RCMs (CNRM, KNMI, and METO-HC) 5 

are shown. For the CNRM model the projected change, for rain gauges, ranges between -189 6 

and +8 mm. The most affected areas, in terms of percentage of rainfall decrease, are the core 7 

of the Troodos Mountains and the East coast, while only two stations show a projected 8 

increase of mean annual rainfall, in any case lower than 5%. For the KNMI model, the 9 

projected changes fall between -101 and +38 mm. In this case, 25 stations project an increase 10 

in mean annual rainfall and they are mainly located in the south-eastern foothills of the 11 

 12 

Fig. 10. Mean annual rainfall values for observations (1981-2010) and future projections (2021-2050) 13 

calculated from the generated gridded daily data sets (1 x 1 km2) for hydrological years (October-14 

September). The mean annual precipitation value calculated over the whole country is presented next to 15 

each map. TSI refers to the two step interpolation scheme; MSG-SCI indicates the single site rainfall 16 

generator and the scaling coefficient interpolation scheme.  17 
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Troodos Mountains. The Mesaoria Plain and the East Coast are the areas with the higher 1 

projected decreases in mean annual rainfall. Future time series generated with data from the 2 

METO-HC model show a very different trend. Indeed, rainfall is projected to increase 3 

slightly in the area of the Troodos Mountains and its south-western foothills (maximum 4 

increase 77 mm) and to decrease in the Mesaoria Plain (maximum decrease around 68 mm). 5 

The projected changes for the five representative stations and the three RCMs are presented 6 

in Table 3. 7 

The relative change in the indices R50, RT95, and RA95 for the three future data sets, 8 

compared to past observations are presented in Fig. 11. All three downscaled models are 9 

generally projecting a decrease in the number of heavy precipitation days (R20) over the 10 

country, with an average range between -4% (METO-HC) and -19% (CNRM), therefore 11 

beyond the model error, which is (-2%). Projections of two models (CNRM and METO-HC) 12 

predict a decreasing R50 as well, while the KNMI model projects a very small increase (2%). 13 

It is worth noticing how the IQRs of all future simulations for the R50 index are wider than 14 

the IQR for the simulation of the period 1980-2020, indicating different changes in different 15 

regions of the country. According to the CNRM model the highest decrease in the number of 16 

extremes should occur in the wettest regions, while the other two models project this decrease 17 

to be higher in the dry part of the country. Considering that the mean error for this index for 18 

the simulation of the control period was around -11%, only the CNRM model projects a 19 

change outside the error range of the model (-24%), as well as the KNMI model (+2%)  20 

RT95, RA95, RT99, and RA99 are generally projected to remain fairly constant in 21 

comparison with the past. In particular, the METO-HC model projects a future more similar 22 

to the past than the other two models. In general, a little higher variability (wider IQRs, 23 

longer whiskers and more outliers) can be expected for the RT99 and RA99 indices in 24 

comparison to RT95 and RA95. The RA95 and RA99 indices have been derived considering 25 

Table 3 Observed mean annual rainfall (hydrological years, 1981-2010) at 145 rain gauges and projected 26 
future (2021-2050) differences (∆) as for the downscaling of three different RCMs through a multi-single 27 
site rainfall generator. 28 

Station ID: 41 225 660 666 731 

Location: Polis Prodromos Kornos Athalassa Larnaka 

Elevation [m a.s.l.] 15 1380 370 162 1 

Observed [mm] 415 800 455 319 333 

∆CNRM [mm] -43 -107 -64 -22 -15 

∆KNMI [mm] 4 -4 -61 -37 -20 

∆METOHC [mm] 15 -43 -23 6 -2 
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 1 

  2 

Fig. 11. Relative change in the extremes indices of the observed (1980-2010) and simulated (2020-2050) 3 
time series at the 145 rain gauges of a) CNRM, b) KNMI, c) and METO-HC models downscaled with the 4 
MSG. 5 

the RT95 and RT99 values calculated for each data set independently. Therefore, a lower RT 6 

leads to include, in the calculation of future RA, rainfall events that would not have been 7 

considered in the control period. However, the CNRM and METO-HC models project a 8 

decrease of these indices: -14% and -9% for CNRM, and -26% and -3% for METO-HC for 9 
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RA95 and RA99, respectively. The KNMI model projects no changes in terms of RA95 and a 1 

slight increase in RA99 (12%). This last value, together with the CNRM projection for RA95, 2 

is the only average over the study area projecting a change beyond the simulation error for 3 

the past. 4 

4 Conclusion 5 

Two approaches to generate future time series of daily rainfall based on the statistical 6 

downscaling of RCMs outputs were presented. An analysis of projected future climate 7 

changes for Cyprus (2020-2050) was carried out as well. 8 

Both a multi-single site and a spatial-temporal rainfall generator (MSG and STG, 9 

respectively) were tested. The STG, based on the NSRP model, creates spatially consistent 10 

daily maps but is not able to reproduce small scale events (involving less than 10 stations) 11 

and underestimates extremes. In particular, the model is completely unable to capture the 12 

extreme behaviour of the driest regions of the study area. The problems originate from the 13 

orographic complexity of the study area, which leads to very different rainfall regimes over 14 

neighbouring regions, and the assumptions and simplifications (rainfall coming as a 15 

homogeneous Poisson process) implicit in the model. The NSAR-NSRP model proposed by 16 

Burton et al. (2010a), which includes a non-homogeneous spatial activation of rain cells, 17 

looks like a promising instrument. On one hand, such a model was proven to be able to well 18 

model both non-homogeneous rainfall occurrences, rainfall intermittency, and mean rainfall 19 

amounts (Burton et al. 2010a). On the other hand, the modelling of extremes has not yet been 20 

thoroughly assessed and further development of the model might be needed. In this sense, 21 

alternative approaches like the Bayesian model coupled with an upper-bounded distribution 22 

function proposed by Costa et al. (2015), in which the authors simulate extremes separately 23 

from the other part of the time series, could be taken into consideration. 24 

In this study, the issue related to the downscaling of precipitation over a complex topographic 25 

area has been overcome by the use of a multi-single site generator, which generally models 26 

well all the input rainfall statistics and properties, including those related to extremes. 27 

However, the main disadvantage of the multi-single site approach is that time series 28 

generated at different locations are not correlated to each other. Thus, the downscaled time 29 

series are good for the single location but problems arise for the development of spatial data 30 

sets. Here, a simplified gridding scheme based on Thiessen polygons and scaling coefficients 31 

was presented. The method keeps the water balance over monthly and annual scales for each 32 
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grid cell and it simulates extremes. The resulting daily maps have no spatial consistency 1 

between rainfall amounts falling in different polygons and they cannot be used for 2 

applications that need spatial continuity such as distributed hydrological modelling.  3 

Climate change projections were downscaled and gridded with the MSG approach for three 4 

different RCMs. In comparison to the control period (1980-2010), mean annual rainfall over 5 

the study area is projected to decrease by 1.5% - 12%, according to the three downscaled 6 

RCMs. A slight reduction in the number and intensity of extremes is also projected all over 7 

the study area. The created data sets are currently being used for climate change impact and 8 

adaptation studies for agricultural and environmental applications. 9 
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