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Abstract

Physical frailty and sarcopenia are two common and largely overlapping geriatric conditions upstream of the disabling cascade.
The lack of a unique operational definition for physical frailty and sarcopenia and the complex underlying pathophysiology
make the development of biomarkers for these conditions extremely challenging. Indeed, the current definitional ambiguities
of physical frailty and sarcopenia, together with their heterogeneous clinical manifestations, impact the accuracy, specificity,
and sensitivity of individual biomarkers proposed so far. In this review, the current state of the art in the development of
biomarkers for physical frailty and sarcopenia is presented. A novel approach for biomarker identification and validation is also
introduced that moves from the ‘one fits all’ paradigm to a multivariate methodology.
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Physical frailty and sarcopenia: the two
sides of the same ‘impaired’ coin

One of the most notable changes in body composition that
accompanies ageing is the loss of skeletal muscle mass, orig-
inally termed sarcopenia by Rosenberg in 1989.1 Sarcopenia
and its clinical correlates involve impairments in strength,
limitations in function, and ultimately physical disability, insti-
tutionalization, and mortality.2,3 Frailty is the term used to in-
dicate a geriatric syndrome characterized by reduced
homeostatic reserves, which exposes the individual at in-
creased risk of negative health-related events.4,5 In particular,
the physical frailty (PF) phenotype operationalized by Fried
et al.6 has shown to well serve as a predictor of major nega-
tive outcomes. It is noteworthy that the PF phenotype shows
substantial overlaps with sarcopenia. Indeed, many of the ad-
verse outcomes of PF are believed to be mediated by the
muscle decline.7 From this perspective, sarcopenia may be

considered both the biological substrate for the development
of PF and the pathway through which the negative health
outcomes of PF ensue.8,9 PF and sarcopenia are, therefore,
intimately interconnected and characterized by a unique core
condition, that is, physical function impairment.7

Over the last decades, geriatrics and gerontology re-
searchers have devoted an increasing amount of efforts in
the attempt of designing, developing, and implementing pre-
ventive interventions against these ‘twin’ conditions. The ac-
complishment of such task has been hampered by the lack of
a unique, standardized, and universally agreed operational
definition for both PF and sarcopenia. These definitional am-
biguities are also reflected by the absence of reliable bio-
markers that could be utilized in clinical and research
settings to identify the two conditions, track their progression
over time, and monitor their response to interventions.10 An-
other critical issue in the field of biomarker development re-
sides in the intrinsic complexity of PF and sarcopenia, as
evidenced by the large spectrum of phenotypes they
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encompass. This aspect has considerable impact on the accu-
racy, specificity and sensitivity of the parameters that have so
far been proposed as biomarkers for the two conditions.

This review presents the current state of the art in the field
of biomarkers for PF and sarcopenia. A novel approach for
biomarker identification and validation is also proposed that
moves from the ‘one fits all’ paradigm to a multivariate
methodology.

Biomarkers for PF and sarcopenia:
seeing the tree for the forest?

A biomarker is defined as ‘a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention’.11 Hence, an ideal biomarker
should support the diagnosis, facilitate the tracking of the
condition of interest over time, and assist healthcare profes-
sionals in clinical and therapeutic decision-making.12

Taking these considerations into account, candidate bio-
markers for PF and sarcopenia may be distinguished in four
major classes: (i) antecedent biomarkers to estimate the risk
of developing these conditions; (ii) diagnostic biomarkers to
detect clinically manifest PF and sarcopenia; (iii) staging bio-
markers to describe categories or severity of PF and
sarcopenia; and (iv) prognostic biomarkers to predict the risk
of developing adverse health outcomes related to PF and
sarcopenia (e.g. mobility disability).11

As suggested by the International Working Group on
Sarcopenia,12 several imaging, functional, and biological param-
eters are potentially able to track single aspects of PF and
sarcopenia. The intrinsic (e.g. accuracy, specificity, and sensitiv-
ity) and extrinsic (e.g. cost, availability, and time to be per-
formed) properties of each biomarker depend on its specific
characteristics (e.g. the mechanisms/processes/parameters
measured) and largely drive its potential implementation in
screening, baseline evaluation, and/or definition of outcomes.12

With respect to imaging biomarkers, although a ‘gold stan-
dard’ technique for the quantification of muscle mass is
currently lacking, magnetic resonance imaging (MRI), com-
puted tomography (CT), and dual energy X-ray absorptiometry
(DXA) provide an objective and sufficiently reliable measure of
muscle or fat-free mass of which muscle comprises the
majority.12 Unfortunately, such imaging equipments are not
immediately available in primary care (e.g. the general practi-
tioner’s office), which represents the first diagnostic contact
for the majority of sarcopenic elderly. In addition, MRI and
CT are rather expensive and technically difficult tests. Each of
these techniques also provides different estimates of the body
composition profile in terms of explored anatomical regions,
applied methods and units, and accuracy in defining thresh-
olds of risk, making difficult (if not impossible) direct

comparisons across their results. These and other drawbacks
limit their use in routine clinical applications.

Noticeably, the muscle mass represents only one of the
multiple dimensions of PF and sarcopenia.13 Mobility decline
(resulting from the improper functioning of muscles, coordi-
nation, and balance) and, at a broader level, physical function
impairment are clear manifestations of ageing that signifi-
cantly affect the quality of life.14 Physical function can easily
be measured in an objective way through validated assess-
ment tools.15 Such instruments include the short physical
performance battery,16 the 4-m usual gait speed,17 the hand-
grip strength,18 and the lower extremity muscle power.2

These tests, however, can be markedly influenced by comor-
bidities that are often present in older persons, including
degenerative or inflammatory diseases of the musculoskeletal
system.19

While the combined assessment of muscle mass and
function is an essential requirement for the identification
of sarcopenia, one of the current biggest uncertainties
resides in the definition of the thresholds for distinguishing
‘physiologic’ from ‘pathologic’ muscle ageing.13 This limits
the applicability of imaging and functional biomarkers in
clinic and research settings. In this scenario, the develop-
ment of biological markers that can be measured in biofluids
and used in a cost-effective manner to guide the diagnosis
and facilitate the monitoring of PF and sarcopenia would
mark a substantial step forward in the healthcare manage-
ment of older people.12,20

The next sections provide a brief overview of several bio-
logical markers that have been proposed for PF and
sarcopenia, and a critical appraisal of the strengths and weak-
nesses of the traditional procedures for biomarker develop-
ment in this field.

The ins and outs of a complex
condition

The syndromic nature of PF and sarcopenia as well as the
wide range of pathogenic processes that contribute to their
development and progression poses major challenges for
the identification of specific biological markers. Indeed, the
presently available biomarkers for PF and sarcopenia are
typically related to specific pathogenic mechanisms and/or
phenotypes. As such, they only describe single aspects of
the conditions and are weakly associated with clinically
relevant outcomes.

Tissular vs. circulating biomarkers

A vast literature exists reporting the involvement of muscle-
specific cellular processes in the pathogenesis of sarcopenia
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(reviewed in21). Examples include deregulation of myocyte
apoptosis,22 derangements in mitochondrial function and
quality control,23,24 oxidative/nitrosative stress,25 iron
dyshomeostasis,26 and alterations in protein synthesis and
breakdown.27,28 The investigation of such pathways, although
providing valuable information on sarcopenia pathophysiol-
ogy, shows limited clinical applicability.29 Indeed, the access
to muscle tissue requires an invasive procedure (muscle
biopsy), which may be perceived as unacceptable by most
older persons. This is especially true when considering that
biospecimens have to be collected at least at two time-points
to determine the progression of the condition or the effects of
an intervention. In addition, the dissection of the cellular
pathways listed above relies on sophisticated analyses that
are not sufficiently standardized and expensive, besides
requiring dedicated laboratory equipment and experienced
personnel. Moreover, some measurements, such as mito-
chondrial bioenergetics, need to be performed on fresh tissue
and are highly laborious.

Considerable research efforts have therefore been diverted
towards the development and validation of blood-borne
biomarkers for PF and sarcopenia.30 The most popular circulat-
ing markers are those related to the inflammatory response
(e.g. C-reactive protein,31,32 interleukin 6,31–34 and tumour ne-
crosis factor α31,33,35), clinical parameters (e.g. hemoglobin31,36

and serum albumin37), hormones (e.g. dehydroepiandrosterone
sulfate,38 testosterone,39 insulin-like growth factor 1,40 and vita-
min D41), products of oxidative damage (e.g. advanced glycation
end products,42 protein carbonyls,43 and oxidized low-density
lipoproteins44), or antioxidants (e.g. carotenoids45,46 and α-
tocopherol45).

Recently, our group demonstrated that telomeres from pe-
ripheral blood mononuclear cells were shorter in sarcopenic
older persons relative to non-sarcopenic peers, after adjust-
ment for several potential confounders.47 The relationship
between telomere length and sarcopenia appeared to be
mainly driven by muscle mass, which may be indicative of a
common pathogenic ground for telomere erosion and age-
related muscle atrophy. Notably, telomere length was unre-
lated to either measures of muscle function or the frailty
status.

Several circulating biomarkers have been identified in
the last years, which may serve as useful parameters to
more directly explore skeletal muscle changes in relation
to physiological and pathological states. For instance,
plasma concentrations of procollagen type III N-terminal
peptide (P3NP) may serve as a marker for muscle remodel-
ling elicited by behavioral48 or pharmacological interven-
tions.49,50 P3NP is a fragment released by the cleavage of
procollagen type III to generate collagen III (a protein pro-
duced in soft connective tissues, skin, and muscle), and its
levels have been associated with changes in lean mass during
testosterone and GH treatment49,50 or exercise training.48

In a recent cross-sectional study, linear regression analyses

were used to estimate the association between plasma
P3NP levels and muscle mass and strength in 687 men
and women from the Framingham Offspring Study.51

Plasma concentrations of P3NP were found to be inversely
related to total and appendicular lean mass in postmeno-
pausal women, but not in old men, therefore potentially
restricting the use of P3NP as a gender-specific biomarker
for muscle mass.

Several studies suggest a role for the circulating C-terminal
agrin fragment (CAF) as a marker for skeletal muscle mass
and function.48,52–55 Agrin is a heparan sulfate proteoglycan
synthesized in motor neurons, transported along axons and
released into the synaptic basal lamina of the neuromuscular
junction. Here, it induces the assembly of the postsynaptic
apparatus, including the clustering of acetylcholine receptors
and the stabilization of presynaptic structures.56 Increases in
circulating CAF concentrations are related to neuromuscular
junction disruption, which in turn is involved in muscle fibre
denervation, atrophy, and dysfunction.57

Similar to CAF, plasma levels of extracellular heat shock
protein 72 (eHsp72) are inversely associated with muscle
mass and function.58 The production of eHsp72 has been
linked with inflammation59 and motor neuron apoptosis/
survival pathways.60 However, the underlying pathophysiol-
ogy in the context of sarcopenia is presently unclear.

It is widely recognized that the skeletal muscle acts as a
secretory organ through the production and release of cyto-
kines and other peptides (collectively known as ‘myokines’)
with autocrine, paracrine, or endocrine effects.61 The
muscle-cell secretome consists of several hundreds of se-
creted products. Identified myokines include myostatin, leu-
kaemia inhibitory factor, interleukins 6 and 7, brain-derived
neurotrophic factor, insulin-like growth factor 1, fibroblast
growth factor 2, follistatin-related protein 1, and irisin.61

Because the release of myokines from the skeletal muscle
might be altered during the development of PF and
sarcopenia, these biomolecules could serve as biomarkers
for muscle (dys)function.19 This possibility warrants further
investigation.

A novel approach, based on the dilution of an oral dose
of creatinine-(methyl-d(3)) (D3-creatine) determined by
urine D3-creatinine enrichment, is receiving increasing at-
tention for its potential application as a means to quantify
muscle mass.62 The method has been tested in laboratory
rodents63 and humans62 and provides estimates of total
muscle mass that well correlate with MRI measurements.
Under ideal conditions, the performance of the D3-creatine
method has the potential to be superior to DXA.62 Unfortu-
nately, the detection of D3-creatine requires isotope ratio
mass spectrometry or liquid chromatography/tandem mass
spectrometry technologies, therefore limiting its assessment
to well-equipped medical and research centres. In addition,
the method only provides estimates of total muscle mass
with no information on muscle function.
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Single biomarkers for complex conditions: the blind
men and the elephant?

The quite long list of candidate circulating biomarkers and
their weak association with relevant clinical outcomes high-
light the concept that there might not be one single biologi-
cal marker that reliably tracks the multitude of different
contributors and phenotypes of PF and sarcopenia. It is con-
ceivable that a given phenotype (e.g. muscle atrophy and
weakness) might be the resultant of distinct pathogenic pro-
cesses. Furthermore, the environment might play a role as
well, by potentially triggering different pathophysiologic
mechanisms at the basis of the studied phenomenon.
Comorbidities (e.g. cardiovascular disease, chronic kidney
disease, diabetes mellitus, lung disease, and cancer) may
also require consideration when analysing biomarker levels
and trajectories. It follows that a single biomarker may not
be equally valid from person to person. In addition, PF and
sarcopenia develop over years and pathogenic processes
may not necessarily be the same during their whole course.
Hence, individual biomarkers may be relevant only within
limited timeframes.

Bearing these considerations in mind, a shift of paradigm is
needed, moving from the quest for a single biomarker to the
development of multivariate/multidimensional modelling of
a panel of complementary biomarkers (likely within multiple
classes: imaging, circulating biomolecules, and functional
tests). This approach may promote (i) the early detection of
otherwise subclinical conditions; (ii) the diagnostic assess-
ment of clinically manifest PF and sarcopenia; (iii) the risk
stratification of subjects with a suspected or confirmed
diagnosis; (iv) the tracking of the conditions over time; (v) the
selection of an appropriate therapeutic intervention; and
(vi) the monitoring of the response to treatment.64

The aim, methodology, and characteristics of this novel ap-
proach are described in the next sections. We are aware that
the following dissertation might result challenging for readers
who are not expert in biostatistics. Nevertheless, a fairly de-
tailed description of the methodology is necessary to intro-
duce a new strategy for biomarker development.

A strategy for multivariate biomarker
discovery

Given the complex phenotypical and pathophysiological
frames of PF and sarcopenia, the single and isolated inspec-
tion of variables can result in a partial or incorrect picture.
On the other hand, mainly through the implementation of
‘omics’ disciplines, multivariate analyses have been gaining
a more and more relevant role in clinical practice65 and
may easily be extended to the search for PF and sarcopenia
biomarkers.

When more than a single index (variable, biomarker) is re-
corded for each subject, the clinical data can be arranged in a
m*nmatrix X, wherem is the number of individuals and n the
number of monitored variables (e.g. biomarker(s), age, and
gender). Starting from this data matrix, multivariate bio-
marker discovery relies on the formulation of models, which,
depending on the knowledge of subjects and study design,
can be exploratory or predictive. The exploratory approach
is the only one feasible when (i) the dimension of the studied
cohorts is too small to formulate and validate a reliable pre-
dictive model or (ii) the interest is focused on the phenome-
nological characterization of the disease and/or the
identification of signatures in the measured variables. To this
purpose, many of the tools for multivariate exploratory anal-
ysis are based on the concept of ‘bilinear modelling’. This im-
plies the possibility that the experimental data matrix X can
be decomposed into the product of two matrices T and P,
which in turn are chosen to facilitate interpretation and hy-
pothesis generation:

X ¼ TPT (1)

The meaning of equation (1) is that one can search for a
better representation of the data by projecting them onto a
low-dimensional space, the directions of which are selected
to meet specific criteria. This allows visualizing similarities
and dissimilarities among the individuals by means of two-
or three-dimensional scatterplots (the so-called scores matrix
T collects the values of these new variables calculated for
each person). At the same time, the interpretation in terms
of the measured indices remains possible through the inspec-
tion of the loadings matrix P, which is made of the coeffi-
cients of the linear transformation relating the original
representation to the new one. In particular, when the new
directions are chosen so to retain as much as possible of
the information contained in the original data matrix X
(i.e. in mathematical language, to provide the best low-
dimensional representation in a least squares sense), the
corresponding method is called principal component analysis
(PCA).66 PCA is a widely applicable method also suitable for
dealing with the interpretation of clinical data.

However, when multiple sources of variability are present
(for instance, because of whether the person is ill or healthy,
whether the study is longitudinal, and therefore includes
some form of time course or not, or to the presence of age
or gender groups), their individual effect can be confounded
in the overall PCA model. To overcome this interpretational
problem, in the last years, a strategy based on coupling the
concepts of analysis of variance with the exploratory power
of PCA has been proposed. The method, called ANOVA-
simultaneous component analysis (ASCA), is based on the
decomposition of the experimental data matrix into the indi-
vidual contribution related to the main factors controlled in
the study design and their interactions, and to further
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interpret each of the resulting matrices using a PCA model.67

For instance, if the data were collected in a population includ-
ing healthy and sarcopenic frail persons of both genders at dif-
ferent times, the ASCA analysis would proceed by decomposing
the resulting data matrix X into the contributions:

X ¼ Xdisease þ Xgender þ Xtime þ Xdisease�gender

þXdisease�time þ Xtime�gender

þXdisease�gender�time þ Xres

(2)

In equation (2), the various terms indicate the matrices ac-
counting for the effect of the different factors and interac-
tions on the experimental indices measured, and Xres the
matrix associated with the variance not explained by the
study design. Each of these matrices can then be analysed
by PCA, in order to find out how a particular factor (or inter-
action) may affect the clinical parameters.

When the dimension of the cohort and the study design al-
low building a reliable predictive model, biomarker discovery
can be accomplished through the construction and validation
of an appropriate classification model.68 The aim of classifica-
tion methods is to build a model that, based on the values of
the measured variables, allows assigning an individual to one
or more categories, the category being described as a group
of (in this case) people, sharing similar characteristics. In par-
ticular, for the sake of biomarker discovery, one would prob-
ably consider a setup comprising two categories: healthy and
sarcopenic frail elderly. Accordingly, building a classifier
would mean using the available data to formulate a predic-
tive model that should be able to forecast, based on a set
of measurements collected on the subject, whether he/she
presents or not the condition of interest. In order for the
model to be of any relevance, a key role is played by the val-
idation step. In the validation phase, the model is applied to a
set of individuals whose real category is known but that are
treated in a blind fashion. By comparing the real to the pre-
dicted outcome, it is indeed possible to estimate the reliabil-
ity and accuracy of the model. If the model is validated, the
inspection of the model parameters allows the formulation
of hypotheses about possible biomarker candidates and their
mutual correlation.69

Here, it can be stressed that, also in the context of predic-
tive model building, the possibility of using methods based on
the bilinear concept described previously (e.g. partial least
squares-discriminant analysis, PLS-DA) allows coupling the re-
liability and accuracy of the prediction with the possibility of
a low-dimensional representation of the data, which in turn
permits an easier and more straightforward interpretation.

Recently, we provided a preliminary example of the analyt-
ical approach proposed in the present manuscript. Specifi-
cally, a multivariate strategy was applied to explore the
relationship between a panel of inflammatory biomarkers

and gait speed in a sample of older community dwellers.70

A panel of 14 inflammatory markers, growth factors, and
vascular adhesion molecules, related to systemic and/or vas-
cular inflammation, was measured via a multiplex, magnetic
bead-based immunoassay. PLS-DA was subsequently used to
identify the patterns of inflammatory mediators associated
with gait speed categories. This approach allowed identifying
specific profiles of circulating inflammatory markers charac-
terizing older persons with different levels of physical perfor-
mance. Specifically, participants with gait speed above the
critical threshold of 0.8m�s�1 were characterized by higher
circulating levels of P-selectin, interferon γ, and granulocyte
macrophage colony-stimulating factor. Conversely, higher
levels of interleukin 8, myeloperoxidase, and tumour necrosis
factor α defined the inflammatory profile of older persons
walking slower than 0.8m�s�1. A robust double cross-
validation procedure confirmed the reliability of the PLS-DA
model and of the obtained results.

‘Emotion recollected in tranquility’

In the previous sections, we briefly described the state of the
art and some of the unaddressed issues in the quest for bio-
markers for PF and sarcopenia. But what would be the ideal
strategy to identify biomarkers that could be utilized in the
clinical realm? As stated by Cesari et al.12 in the recommen-
dations from the International Working Group on Sarcopenia
for the use of biomarkers in clinical trials, ‘it is currently diffi-
cult to provide long-lasting statements, recommendations,
and guidelines’, because the study of sarcopenia and frailty
still represents a ‘work in progress’, always amenable to
changes and redirections.

The first unavoidable step is the adoption of a unique, ob-
jective, standardized, and clinically relevant definition of PF
and sarcopenia that is able to capture the multifaceted na-
ture of these geriatric syndromes and facilitate their transla-
tion in the clinical arena. As recently suggested by our
group,7 the physical function impairment that occurs in the
absence of disability may represent the shared core of PF
and sarcopenia. Such a functional deterioration, involving
deficits in gait speed, balance, and muscle strength, can be
objectively assessed through the short physical performance
battery.16 This conceptualization may optimally serve for (i)
a univocal/unambiguous assessment of PF and sarcopenia
to be adopted also by public health authorities and regula-
tory agencies; (ii) the implementation of standardized screen-
ing and diagnostic procedures; (iii) the definition of novel
targets for interventions against disability; and obviously,
(iv) the development of reliable biomarkers. This
operationalization of PF and sarcopenia could then allow
the selection of a specific ‘target’ population to tailor treat-
ments and interventions and to assess the validity of
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candidate biomarkers. In the multivariate setting proposed in
the previous sections, a definite clinical entity could provide
clear and measurable outcomes against which to test the sen-
sitivity, specificity, and accuracy of biomarkers, which should
be evaluated on an adequate timeframe.

Another point to be addressed concerns the early identifi-
cation of PF and sarcopenia and the development of primary
prevention strategies. When PF and sarcopenia will be defi-
nitely framed and reliable biomarkers developed, would it
be possible to identify subjects who are at risk to become
sarcopenic/physically frail and in whom interventions could
be started earlier in life? In this regard, it has been shown
that lifestyle habits and physical health during adulthood
could determine the rate of muscle strength decline and
the development of functional limitations in advanced
age.18,71 For instance, Stenholm et al.71 found that midlife
physically strenuous work, excess body weight, smoking, car-
diovascular disease, hypertension, diabetes mellitus, and
asthma predicted muscle strength decline over 22 years of
follow-up. In addition, significant weight loss, becoming phys-
ically sedentary, persistent smoking, incident coronary heart
disease, diabetes mellitus, chronic bronchitis, chronic low-
back pain, long-lasting cardiovascular disease, hypertension,
and asthma have been associated in the same study with ac-
celerated decline in handgrip strength.71 Interestingly, birth
weight and pre-pubertal and pubertal growth may affect
muscle mass and strength as well as physical performance
in late life.72–74

Taken together, these findings suggest that individuals at
risk of PF and sarcopenia could be identified well before
the decline in physical function reaches a critical threshold
(Figure 1). In this scenario, the multivariate strategy proposed
could be used to model imaging, functional, biological, path-
ological, and pharmacological parameters. At the same time,
it might support the computation of a ‘sarcopenia and frailty
risk score’ or a ‘sarcopenia and frailty risk chart’, similar to
what is routinely carried out for other medical conditions
(e.g. cardiovascular disease and osteoporosis).75 Such an ap-
proach could allow defining and monitoring the health trajec-
tory and the timely implementation of primary preventive
strategies, including nutritional interventions and physical
exercise.

Borrowing the language and toolboxes of multivariate sta-
tistical process control,76,77 it could be possible to build a
multivariate model of the homeostatic conditions of a person
[his/her ‘normal operating conditions (NOC)’], which would
provide a picture of how all the monitored parameters co-
vary when nothing anomalous is occurring. Then, a longitudi-
nal analysis of the individual time trajectories of the subject
could be carried out by inspecting multivariate control charts.
An example of such an approach is depicted in Figure 2,
which shows the trend of squared prediction error (the sum
of squares of the difference between the actual values of X
and those predicted by the model) as a function of time.

The data recorded under NOC are used to define the confi-
dence limits of the statistics (dashed lines in Figure 2). These
pre-set control limits would allow detecting at an early stage
the possible onset of a critical condition (e.g. mobility

Figure 1 Possible trajectories of physiological reserve during ageing. In
the case of accelerated ageing, the decline in physiological reserve is
steeper relative to the successful aging scenario. In this latter case,
the development of physical frailty and sarcopenia may be compressed
towards the end of life. Critical events (e.g. intercurrent illnesses, hos-
pitalizations, and falls) may cause sudden decreases in physiological re-
serve, which correspond to proportional changes in biomarker levels.
The dashed lines identify the diagnostic cutoffs of biomarkers. The yel-
low and the red areas correspond to clinically manifest physical frailty/
sarcopenia and disability, respectively.

Figure 2 Example of a multivariate control chart (based on PCA or PLS
squared X-residuals). The circles depict the resultant of multidimen-
sional assessments over time. The dashed lines correspond to the
95% and 99% confidence limits of the corresponding statistics. Circles
above the control limits indicate that the subject is departing from
his/her ‘normal operating conditions’ and may account for the onset
of an adverse health-related event (e.g. mobility disability). The build-
ing and inspection of a multivariate control chart could allow detecting
the onset of a critical condition at a very early stage and the planning of
timely interventions.
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disability). One main advantage of such multivariate strategy
is that it can detect not only anomalous values of specific pa-
rameters, but also, and more importantly, even subtle
changes in the overall correlation structure among all the
measured indices.

Conclusion

Current available biomarkers for PF and sarcopenia are only
able to capture single aspects of the conditions and are
weakly associated with clinically meaningful outcomes. The
adoption of multidimensional/multivariate approaches could
help cope with the complex phenotypical and pathophysio-
logical nature of PF and sarcopenia and allow (i) capturing
the different domains of the syndromes, (ii) obtaining infor-
mation about the underlying pathophysiology, and (iii) identi-
fying novel biological targets for preventive or therapeutic
interventions.

In a famous passage of the poem ‘Little Gidding’, T. S. Eliot
wrote that ‘We shall not cease from exploration and the end
of all our exploring will be to arrive where we began and to
know the place for the first time’.78 The quest for biomarkers
resembles this ‘exploration’, at the end of which we may pos-
sess the tools necessary to finally decipher the complexity of
PF and sarcopenia.
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