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Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson’s disease, 
but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework 
for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], 
via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering 
the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of 
parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation 
and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor 
deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic 
neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of 
additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and 
the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a 
relationship between pesticide exposure and an elevated risk for Parkinson’s disease development.

Keywords Adverse outcome pathway · Mitochondrial complex I inhibitor · Parkinson’s disease · Pesticide exposure · 
Rotenone · MPTP · Regulatory decision-making

Introduction

Pesticides such as dichlorodiphenyltrichloroethane (DDT), 
dieldrin, paraquat, and rotenone have been considered as 
potential contributing factors to the development of Parkin-
son’s disease (PD) (Baltazar et al. 2014; Sandström et al. 
2014). Concerns about the contribution of environmental 
agents to parkinsonian disorders have led to epidemiological 
studies examining an association between human exposure 
to pesticides and the development of PD. Meta-analyses of 
these epidemiological studies confirmed a significant asso-
ciation between pesticide exposure and PD. Such observa-
tions are difficult to integrate into regulatory risk assess-
ments, as exposure is currently evaluated retrospectively and 
indirectly in the vast majority of epidemiological studies. 
Therefore, these studies do not allow the identification of 
causal relationships (Breckenridge et al. 2016; Hernández 
et al. 2016; Van Maele-Fabry et al. 2012). Moreover, epide-
miological observations usually do not provide a plausible 
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link to molecular processes known to be associated with PD 
pathogenesis.

The adverse outcome pathway (AOP) concept organizes 
heterogeneous biological and toxicological data to provide 
information on possible sequences of events across multi-
ple levels of biological organization (Bal-Price et al. 2017; 
Villeneuve et al. 2014a, b; Leist et al. 2017). An AOP 
represents a linear sequence of key events (KEs) causally 
connected through key event relationships (KERs) that 
provide a plausible link between a molecular initiating 
event (MIE) and an adverse outcome (AO). The MIE is 
defined as the first specific modification of a biological 
target at the molecular level by a chemical that can trig-
ger the subsequent events, leading to pathology (i.e., the 
AO). Notably, AOPs of regulatory significance describe 
a sequence of biological processes (biochemical, cellu-
lar, physiological) and not the effects (mode of action) of 
a specific compound (AOPs are “compound agnostic”). 
The most important implication of this characteristic is 
that they do not describe or take into account toxicokinet-
ics. The latter cannot be described in a generic way but is 
inseparably coupled to the molecular identity of a toxicant. 
Essential criteria for the overall evaluation of AOPs is the 
presence of a solid basis for the (1) essentiality of KEs, 
(2) the biological plausibility and empirical support for 
KERs. The empirical support for the KER is indeed com-
plementing the biological plausibility for the KER and the 
essentiality of the KEs. These principles are described in 
the Organisation for Economic Co-operation and Develop-
ment (OECD) guidance document on the development of 
an AOP (http://www.oecd-ilibrary.org). The ratings rep-
resent a comparative measure of the degree of confidence 
in the supporting weight of evidence, based on acquired 
collective experience. In the future, the AOP framework 
could contribute to an integrated approach to testing and 
assessment (IATA) that includes absorption, distribution, 
metabolism, excretion (ADME) information as well as 
quantification of effective threshold concentrations.

In a meta-analysis by Tanner et al. (Tanner et al. 2011), 
pesticides were classified by their presumed mechanism 
and not only by their chemical class. This study allowed 
the identification of significant associations between the 
inhibition of mitochondrial complex I and a parkinsonian 
phenotype. A causal role of complex I inhibition in the 
development of a parkinsonian phenotype is supported by 
broad evidence, and over the past 30 years, the complex I 
inhibitors rotenone and  MPP+ emerged as the most widely 
applied experimental toxicants in PD research (Schild-
knecht 2017). On this basis, we constructed an AOP that 
describes the link between the inhibition of mitochon-
drial complex I and the manifestation of parkinsonian 
motor deficits. The full AOP (Fig. 1) can be found in the 
AOP Wiki (https://aopwiki.org/aops/3), an AOP platform 

established as part of the 2012 OECD AOP development 
work plan.

Key events

Key events, essential for the progression of the response 
evoked by inhibitor binding to complex I (MIE) towards 
the AO, were assessed on their essentiality, based on the 
present knowledge on how a KE works, on the availability 
of robust detection methods (Table 1) and on evidence 
in the literature, indicating that experimental inhibition 
of a KE reduces or abolishes downstream KE activation. 
Weight of evidence analysis for the rating of KE essential-
ity is summarized in Table 2.

Experimental studies illustrating a direct correlation 
between two adjacent KEs were also listed in the “experi-
mental support” section of the respective KERs and in 
the respective figures. This organization of information 
is not fully in line with the recommendations of the AOP 
handbook. However, we opted for this solution for two 
reasons: (1) it allows a concise overview of the vast body 
of information included in the full version of the present 
AOP (AOP 3, AOP Wiki), as required for a journal article; 
(2) for many academic researchers, it is easier to under-
stand the importance of a KER, if not only correlative data 
around the KER are present, but if this is combined with 
experimental evidence that modulation of the KE directly 
upstream of the KER leads to a modulation of the KE 
directly downstream of the respective KER.

Key event relationships (KERs)

KER 1: relationship between “binding of an inhibitor 
to mitochondrial complex I” (MIE) and “complex I 
inhibition” (KE 1) (Fig. 2)

Biological plausibility

Oxidation of nicotinamide adenine dinucleotide (NADH) 
is catalyzed by the flavine mononucleotide moiety of com-
plex I (Vinogradov 1993; Degli and Ghelli 1994). In a 
sequential manner, the two electrons of NADH are trans-
ferred along a chain of eight Fe–S clusters to the ubiqui-
none-binding site where they reduce ubiquinone (Q), 
via ubisemiquinone (•Q) formation, to ubiquinol  (QH2) 
(Kotlyar et al. 1990; Suzuki and King 1983; van Belzen 
et al. 1997). The majority of complex I inhibitors block 
the electron transfer onto ubiquinone (Palmer et al. 1968). 
Complex I inhibitors were categorized into three classes 
based on their potential binding site (Degli Esposti 1998; 

http://www.oecd-ilibrary.org
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Friedrich et al. 1994). However, more recent research indi-
cates the presence of a single inhibitor-binding pocket in 
the hydrophobic ubiquinone-binding region of complex I 
with several binding sites for structurally diverse inhibitors 
(Okun et al. 1999). The majority of currently described 
complex I inhibitors either prevent access of ubiquinone to 
its binding site, or the inhibitors act as electron acceptors 
interfering with the Fe–S cluster electron transport chain 
(Lümmen 1998; Ohnishi 1998). In all of these inhibitor-
mediated cases, blockade causes electrons to back up, 
resulting in the full reduction of upstream Fe–S clusters 
(Brand 2010). These conditions promote an uncoordinated 
flux of electrons from reduced sites of complex I onto 
molecular oxygen to form the superoxide radical anion 
(•O2

−) (Grivennikova and Vinogradov 2006; Liu et al. 
2002), and they all prevent reduction of ubiquinone and 
thus the transfer of electrons through complexes III and 
IV to molecular oxygen. The  N2 cluster, as well as flavine 
in its fully reduced or semiquinone form, have been sug-
gested as molecular sites of superoxide formation upon 
complex I inhibition. These observations, however, are 
all dependent on the experimental system and procedures 

applied. Hence, they allow no generally accepted conclu-
sion on the precise molecular site responsible for super-
oxide formation upon complex I inhibition (Brand 2010; 
Galkin and Brandt 2005; Genova et al. 2001; Lambert and 
Brand 2004).

Empirical support

The experimental basis for a causal relationship between 
inhibitor binding and complex I inhibition is based on 
experiments performed with submitochondrial particles, 
isolated mitochondria, and neuronal cell cultures. Real-time 
displacement tests using fluorescent (e.g., aminoquinazo-
line) or radioactively labeled complex I inhibitors and their 
derivatives (e.g., 3H-dihydrorotenone, 3H-AE F119209) pro-
vide direct evidence for the binding of complex I inhibitors 
(Greenamyre et al. 1992; Higgins and Greenamyre 1996; Ino 
et al. 2003; Okun et al. 1999; Talpade et al. 2000). Complex 
I activity is assessed by detection of NADH oxidation (Gluck 
et al. 1994; Höllerhage et al. 2009; Shimomura et al. 1989). 
Time- and concentration-dependent inhibition of complex 
I in submitochondrial particles or isolated mitochondria 

Fig. 1  Schematic overview on the adverse outcome pathway (AOP) 
for the development of parkinsonian motor deficits by inhibitor bind-
ing to mitochondrial complex I. The AOP is initiated by binding of an 
inhibitor to mitochondrial complex I as the molecular initiating event 
(MIE), leading to the activation of a series of key events (KEs) that 
cover various levels of biological organization. Parkinsonian motor 
deficits were selected as the adverse outcome (AO) of the present 
AOP, based on its relevance in risk assessment. Key event relation-
ships (KER) (indicated by arrows) represent the available experi-

mental evidence in the literature, illustrating a quantitative relation-
ship between a KE and its corresponding downstream KE. Overlap 
with other AOPs: overlap of KEs integrated in the AOP “Inhibition 
of mitochondrial complex I of nigro-striatal neurons leads to par-
kinsonian motor deficits” with KEs of other AOPs of the AOP-Wiki 
(https://aopwiki.org) was examined in October 2017. Mitochondrial 
dysfunction (KE 2) is part of 9, while Neuroinflammation (KE 5) is 
part of 3 other AOPs in the AOP Wiki in different stages of develop-
ment

https://aopwiki.org
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was observed with rotenoids, piercidines, myxobacte-
rial antibiotics, and vanilloids such as capsaicin (Cleeter 
et al. 1992; Degli Esposti et al. 1993, 1994; Friedrich et al. 
1994; Greenamyre et al. 2001; Grivennikova et al. 1997; 
Höllerhage et al. 2009; Ichimaru et al. 2008; Lambert and 
Brand 2004; Miyoshi 1998; Okun et al. 1999). The inhibi-
tory action of complex I inhibitors on electron transfer onto 
ubiquinone was independently confirmed by the expression 
of the inhibitor-insensitive oxidoreductase NDI-1 from Sac-
charomyces cerevisiae in cell models, which circumvents 
complex I and allows maintenance of the normal respiratory 
chain electron flux (Seo et al. 1998; Sherer et al. 2003).

Uncertainties

The question of how electron transfer is coupled to proton 
pumping has still not been answered in a conclusive man-
ner (Hirst 2013; Sharma et al. 2009). Electron paramagnetic 
resonance (EPR) analyses indicated the presence of two ubi-
semiquinone species during electron transport (Vinogradov 
et al. 1995). However, it is not known whether these species 

represent two independent ubisemiquinone molecules or 
two forms of the same semiquinone (Albracht et al. 1997). 
Inhibitor binding studies are performed with submitochon-
drial particles, containing membranes. Due to the lipophilic-
ity of most complex I inhibitors, these investigations suffer 
from high background values as a result of unselective mem-
brane binding (Horgan and Casida 1968). Although complex 
I inhibitors prevent ubiquinol formation, the precise inhibitor 
binding site(s) have not been identified yet. Furthermore, 
it is not evident whether •O2

− generation upon complex I 
inhibition is mainly derived from F–S cluster or from semi-
quinone-dependent electron transfer onto molecular oxygen.

KER 2: relationship between “complex I inhibition” 
(KE 1) and “mitochondrial dysfunction” (KE 2) (Fig. 3)

Biological plausibility

Complex I represents the principal gateway for the entry 
of electrons into the mitochondrial respiratory chain 

Fig. 2  Key event relationship 1 (KER 1), linking inhibitor binding to 
complex I (MIE) and the inhibition of complex I (KE 1). The table 
shows the result of a qualitative assessment of KER 1 on a 3 point 
scale (weak, moderate, strong). Biological plausibility and experi-
mental support were rated “strong”, according to the available body 
of experimental support in the literature. However, the molecular 
mechanisms associated with electron transfer along the respiratory 
chain, as well as the sites of inhibitor binding and the mechanisms 
underlying inhibitor-dependent inactivation of complex I, are not 
fully elucidated yet. NADH nicotinamide adenine dinucleotide, ATP 
adenosine triphosphate, NDI-1 yeast NADH dehydrogenase. Refer-
ences: [1] Suzuki and King (1983), [2] Kotlyar et al. (1990), [3] van 
Belzen et al. (1997), [4] Palmer et al. (1968), [5] Degli Esposti et al. 

(1996), [6] Friedrich et  al. (1994), [7] Ohnishi (1998), [8] Lümmen 
(1998), [9] Brand (2010), [10] Genova et al. (2001), [11] Galkin and 
Brandt (2005), [12] Lambert and Brand (2004), [13] Schildknecht 
et al. (2009), [14] Okun et al. (1999), [15] Talpade et al. (2000), [16] 
Ino et  al. (2003), [17] Greenamyre et  al. (1992), [18] Higgins and 
Greenamyre (1996), [19] Grivennikova et  al. (1997), [20] Greena-
myre et  al. (2001), [21] Lambert and Brand (2004), [22] Ichimaru 
et al. (2008), [23] Okun et al. (1999), [24] Cleeter et al. (1992), [25] 
Friedrich et  al. (1994), [26] Degli Esposti et  al. (1993); [27] Degli 
Esposti and Ghelli (1994), Degli Esposti et  al. (1994), [28] Höller-
hage et  al. (2009), [29] Seo et  al. (1998), [30] Sherer et  al. (2003), 
[31] Sharma et  al. (2009), [32] Hirst (2013), [33] Vinogradov et  al. 
(1995), [34] Albracht et al. (1997)
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(Friedrich et al. 1994; Wirth et al. 2016). A functional 
respiratory chain generates a proton gradient across the 
inner mitochondrial membrane, exploited in a subsequent 
step by mitochondrial ATPases to generate ATP (Brandt 
1997; Mailloux 2015). Disturbances in the electron trans-
fer through complex I lead to an impaired proton gradient 
and reduced ATP generation. As a consequence of lim-
ited ATP availability, mitochondrial  Ca2+ homeostasis is 
disturbed, thus contributing to mitochondrial dysfunction 
(high energy demand of  Ca2+ ATPases) (Sheehan et al. 
1997; Willems et al. 2008). In parallel to the reduction 
in ATP generation, blockade of the electron flow along 
the respiratory chain results in an accidental reduction of 
molecular oxygen to form superoxide (•O2

−) (Mailloux 
2015). Elevated reactive oxygen species (ROS) levels 
promote oxidative damage of mitochondrial DNA, pro-
teins, and lipids, and trigger mitochondrial fragmentation 

(Koopman et al. 2007; Willems et al. 2009). The loss of 
the mitochondrial transmembrane potential, impaired 
mitochondrial ATP generation, disturbances in mitochon-
drial  Ca2+ homeostasis, as well as the production of harm-
ful ROS levels are features collectively referred to as mito-
chondrial dysfunction (Bose and Beal 2016). Deficiencies 
in complex I activity are regularly observed in associa-
tion with mutations in mtDNA or nuclear DNA-encoded 
complex I genes. Mutations in nuclear-encoded complex 
I genes have been demonstrated for 12 structural subunits 
of complex I (Berger et al. 2008; Fernandez-Moreira et al. 
2007; Hoefs et al. 2008) and for five complex I assembly 
factors (Dunning et al. 2007; Janssen et al. 2006; Lazarou 
et al. 2009; Ogilvie et al. 2005; Pagliarini et al. 2008; 
Saada et al. 2008). Fibroblasts of patients with such com-
plex I mutations exhibit a decreased mitochondrial trans-
membrane potential and mitochondrial ATP generation, as 

Fig. 3  Key event relationship 2 (KER 2), linking the inhibition of 
complex I (KE 1) and mitochondrial dysfunction (KE 2). The table 
shows the result of a qualitative assessment of KER 2 on a 3 point 
scale (weak, moderate, strong). Biological plausibility and empirical 
evidence were rated “strong”, based on the vast body of experimental 
evidence available in the literature. A threshold of complex I inhibi-
tion, necessary for the induction of mitochondrial dysfunction, has so 
far not been defined in the literature. Similar limitations apply for the 
quantitative assessment, respectively, the definition, of mitochondrial 
dysfunction. ATP adenosine triphosphate, DA dopamine, PD Parkin-
son’s disease, NDUFS subunits of NADH-ubiquinone oxidoreductase 
(complex I), ROS reactive oxygen species, NDI-1 yeast NADH dehy-
drogenase. References: [1] Wirth et  al. (2016), [2] Friedrich et  al. 
(1994), [3] Mailloux (2015), [4] Fernandez-Moreira et al. (2007), [5] 
Berger et al. (2008), [6] Hoefs et al. (2008), [7] Janssen et al. (2006), 
[8] Lazarou et al. (2009), [9] Dunning et al. (2007), [10] Ogilvie et al. 

(2005), [11] Saada et  al. (2008), [12] Pagliarini et  al. (2008), [13] 
Koopman et al. (2007), [14] Sheehan et al. (1997), [15] Willems et al. 
(2008), [16] Ye et al. (2015), [17] Han et al. (2016), [18] Dukes et al. 
(2016), [19] Wang et al. (2011), [20] Li et al. (2014), [21] Giordano 
et  al. (2012), [22] Piao et  al. (2012), [23] Wu et  al. (2009), [24] Bi 
et  al. (2008), [25] Nakai et  al. (2003), [26] Brownell et  al. (1998), 
[27] Koga et  al. (2006), [28] Seo et  al. (1998), [29] Sherer et  al. 
(2003), [30] Shults et al. (2002), [31] Moon et al. (2005), [32] Wen 
et  al. (2011), [33] Yang et  al. (2009), [34] Matthews et  al. (1999), 
[35] Beal (2011); [36] Przedborski et  al. (1992), [37] Zhang et  al. 
(2000), [38] Filomeni et al. (2012), [39] Wang et al. (2015), [40] Nat-
araj et al. (2016), [41] Lee et al. (2011), [42] Tseng et al. (2014), [43] 
Liu et al. (2015), [44] Thomas et al. (2012), [45] Pöltl et al. (2012), 
[46] Bose and Beal (2016), [47] Brownell et  al. (1998), [48] Choi 
et al. (2008), [49] Höllerhage et al. (2009)
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well as elevated •O2
− formation by complex I and hence 

meet the definition of mitochondrial dysfunction (Koop-
man et al. 2007).

Empirical support

Experimental support for a causal relationship between com-
plex I inhibition and mitochondrial dysfunction is largely 
based on observations made with the complex I inhibitors 
rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP). A rich experimental basis indicates the direct cor-
relation between complex I inhibition and the emergence 
of features of mitochondrial dysfunction in cellular and 
in vivo models exposed to rotenone or MPTP/MPP+ (Bi 
et al. 2008; Dukes et al. 2016; Giordano et al. 2012; Han 
et al. 2016; Li et al. 2014; Nakai et al. 2003; Piao et al. 
2012; Schildknecht et al. 2009; Scholz et al. 2011; Wang 
et al. 2011; Wu et al. 2009; Ye et al. 2015). Initial studies 
using proton magnetic resonance spectroscopy (1H-MRS) 
and positron emission tomography (PET) have illustrated 
the onset of mitochondrial dysfunction by live measurements 
in living animals exposed to MPTP (Brownell et al. 1998; 
Koga et al. 2006). Experimental interventions to prevent 
impaired mitochondrial ATP generation, e.g., by expres-
sion of the inhibitor-insensitive oxidoreductase NDI-1 from 
S. cerevisiae to circumvent impaired endogenous complex 
I, protect from mitochondrial dysfunction (Seo et al. 1998; 
Sherer et al. 2003). Application of alternative electron shut-
tles, such as methylene blue or coenzyme  Q10, (Moon et al. 
2005; Shults et al. 2002; Wen et al. 2011) or boosting of 
cellular ATP levels by supplementation of cells exposed to 
complex I inhibitors with creatine/phosphocreatine (Beal 
2011; Matthews et al. 1999; Yang et al. 2009) also protect 
from mitochondrial dysfunction and neuronal demise.

The second strategy to protect from impaired complex 
I-dependent mitochondrial dysfunction targets complex 
I-mediated •O2

− formation. Overexpression of superoxide 
dismutase (SOD) protects from the toxic influence of MPTP 
(Przedborski et al. 1992) whereas knockdown of endogenous 
SOD elevates the sensitivity of mice towards MPTP-depend-
ent mitochondrial dysfunction and nigrostriatal cell loss 
(Zhang et al. 2000). In cellular and in vivo models exposed 
to rotenone or MPTP, antioxidants protect from complex I 
inhibition-dependent mitochondrial dysfunction (Filomeni 
et al. 2012; Lee et al. 2011; Liu et al. 2015; Nataraj et al. 
2016; Thomas et al. 2012; Tseng et al. 2014; Sherer et al. 
2003; Wang et al. 2015).

A more detailed analysis indicates a mutual interac-
tion between ROS and complex I. While complex I acts 
as a potent source of •O2

− following its inhibition, an 
experimental decline of cellular glutathione levels (e.g., 
γ-glutamylcysteine synthetase knockdown, treatment 
with buthionine sulfoximine) (Jha et al. 2000; Chinta and 

Andersen 2006) correlates with a reduction of complex I 
activity, the onset of mitochondrial dysfunction, and ulti-
mately with the demise of dopaminergic (DA) neurons. 
All of these KEs were prevented by the application of 
thiol antioxidants such as dithiothreitol (DTT) or N-ace-
tylcysteine (NAC) (Chinta and Andersen 2006; Jha et al. 
2000). Mechanistic investigations unraveled reversible 
S-nitrosation of complex I, leading to its inhibition (Dahm 
et al. 2006; Burwell et al. 2006). Thiol antioxidants evoke 
a de-nitrosation and are associated with a re-activation 
of complex I, preventing mitochondrial dysfunction and 
protecting from neurodegeneration (Dahm et al. 2006; 
Borutaite et al. 2000).

These observations indicate that targeting either 
impaired ATP generation or elevated •O2

− formation as 
the two direct consequences of complex I inhibition, rep-
resents an effective intervention strategy, capable of pre-
venting the activation of KEs downstream of complex I 
inhibition (KE 1).

Uncertainties

Complex I inhibition results in a reduction in mitochon-
drial ATP generation and an elevation of •O2

− formation. 
To date, the respective contribution of these two factors to 
mitochondrial dysfunction has not been quantified. A cell 
model devoid of classical complex I activity (Choi 2008) 
still shows effects of rotenone or  MPP+. This may be due 
to a contribution by off-target effects, e.g., on microtubules 
(Brinkley et al. 1974; Marshall and Himes 1978), but the 
data have not been confirmed by others. The vast major-
ity of experimental evidence on the relationship between 
complex I inhibition and the onset of parkinsonian motor 
deficits is based on the use of the complex I inhibitors 
rotenone and MPTP/MPP+. A relatively wide spectrum 
of structurally different complex I inhibitors have been 
described over the course of recent decades. Prominent 
examples are acetogenins (Bermejo et al. 2005), tetrahy-
droisoquinolines (Morikawa et al. 1996), antibiotics such 
as piericidin A (Degli Esposti 1998; Friedrich et al. 1994; 
Kubota et al. 2003; Horgan et al. 1968; Singer 1979), 
insecticides such as quinazolines or acetogenins (Aham-
madsahib et al. 1993; Hollingworth et al. 1994), quinones 
(Kean et al. 1971), and vanilloids (Shimomura et al. 1989). 
All of these structurally different complex I inhibitors have 
been characterized with isolated mitochondria or with sub-
mitochondrial particles. Robust Ki values and functional 
studies involving neuronal cell cultures or in vivo models 
are rather rare. A systematic comparison of the half maxi-
mal inhibitory concentration  (IC50) values for complex I 
inhibition and half maximal binding concentration  (EC50) 
values for the reduction of ATP levels was performed with 
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rat fetal striatal neurons (Höllerhage et al. 2009). Due to 
the lipophilicity of most of the complex I inhibitors tested, 
the detected  EC50 values were in most cases lower than the 
 IC50 values detected for complex I inhibition.

KER 3: relationship between “mitochondrial 
dysfunction” (KE 2) and “impaired proteostasis” (KE 
3) (Fig. 4)

Biological plausibility

The two main systems for the removal of misfolded proteins 
are: (1) the autophagy–lysosomal pathway (ALP), which 
removes dysfunctional proteins, aggregates, and even sub-
cellular organelles; and (2) the ubiquitin proteasomal sys-
tem (UPS), which catalyzes the tagging of target proteins 
by ubiquitination, followed by their degradation via the 26S 
proteasome (Ding et al. 2003; Goldberg 2003; Komatsu 

et al. 2006; Martini-Stoica et al. 2016; Menzies et al. 2015; 
Zheng et al. 2016). The correlation between mitochondrial 
dysfunction and impaired proteostasis is based on the con-
siderations that (1) proteostasis is an energy-consuming pro-
cess requiring ATP from mitochondria, and that (2) compo-
nents of the proteasomal system are subject to inhibition by 
ROS, generated from dysfunctional mitochondria (Finley 
2009; Pickart and Cohen 2004). The 26S proteasome cata-
lyzes ATP-dependent protein degradation and consists of a 
20S core, associated with a regulatory 19S particle (Kim 
et al. 2011; Murata et al. 2009; Voges et al. 1999). Oxidative 
stress causes the dissociation of the 20S core from the regu-
latory 19S particle, leading to the loss of 26S proteasome 
activity (Wang et al. 2010). Under conditions of impaired 
ATP synthesis and elevated ROS levels, the interaction of 
the 20S core with alternative activation proteins yields a 20S 
proteasome without de-ubiquitination and ATPase activi-
ties (Schmidt et al. 2005; Ma et al. 1992). The ATP-inde-
pendent 20S proteasome is also subject to posttranslational 

Fig. 4  Key event relationship 3 (KER 3), linking mitochondrial dys-
function (KE 2) and impaired proteostasis (KE 3). The table shows 
the result of a qualitative assessment of KER 3 on a 3 point scale 
(weak, moderate, strong). While a strong experimental basis exists in 
the literature to justify the rating “strong” for the experimental sup-
port linking KE 2 and KE 3, mechanistic understanding on how mito-
chondrial dysfunction, respectively, its individual features such as a 
decline in ATP generation, or an elevated formation of free radical 
species, affect cellular proteostasis, are only incompletely understood. 
The situation is further complicated by mutual interactions between 
mitochondrial dysfunction, oxidative stress, and proteasomal stress 
that lead to self-amplifying futile cycles but allow no definition on 
an initiating event. PD Parkinson’s disease, UPS ubiquitin protea-
somal system, ALP autophagy–lysosomal pathway, ATP adenosine 
triphosphate, ROS reactive oxygen species, MPTP 1-methyl-4-phe-

nyl-1,2,3,6-tetrahydropyridine, NDI-1 single subunit NADH dehy-
drogenase of S. cerevisiae. References: [1] Betarbet et al. (2005), [2] 
McNaught et  al. (2003), [3] McNaught and Jenner (2001a, b), [4] 
Ambrosi et al. (2014), [5] Yu et al. (2009), [6] Martini-Stoica et al. 
(2016), [7] Komatsu et  al. (2006), [8] Menzies et  al. (2015), [9] 
Goldberg (2003), [10] Ding et  al. (2003), [11] Zheng et  al. (2016), 
[12] Pickart and Cohen (2004), [13] Finley (2009), [14] Voges et al. 
(1999), [15] Bose and Beal (2016), [16] Wang et al. (2010, b), [17] 
Farout et al. (2006), [18] Ishii et al. (2005), [19] Demasi et al. (2003), 
[20] Demasi et  al. (2001), [21] Butterfield and Kanski (2001), [22] 
Sayre et al. (2001), [23] Fornai et al. (2005), [24] Wu et al. (2015), 
[25] Liu et  al. (2013), [26] Yong-Kee et  al. (2012), [27] Pan et  al. 
(2009), [28] Seo et al. (2002), [29] Seo et al. (2000), [30] Seo et al. 
(1998), [31] Sherer et  al. (2003), [32] Shamoto-Nagai et  al. (2003), 
[33] Chou et al. (2010), [34] Filomeni et al. (2012)
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modifications such as hydroxynonenal modifications, car-
bonylation, or S-glutathionylation (Demasi et al. 2001, 2003; 
Farout et al. 2006; Ishii et al. 2005), but displays a higher 
resistance to oxidative stress in comparison with the 26S 
proteasome (Reinheckel et al. 1998, 2000). In parallel to the 
direct inhibition of cellular protein degeneration systems, 
oxidative stress increases the load of modified and mis-
folded proteins as substrates of the degradation machinery 
(Butterfield and Kanski 2001; Sayre et al. 2001), similar to 
what occurs in mitochondrial dysfunction. Analysis of ALP 
activity upon inhibition of complex I provides a heteroge-
neous picture, with several reports illustrating an impair-
ment of ALP activity (Lim et al. 2011; Mader et al. 2012; 
Pan et al. 2009; Sarkar et al. 2014), while others describe 
an activation (Chen et al. 2007; Chu et al. 2013; Zhu et al. 
2007a). Autophagy has been suggested as a component of 
the cellular antioxidant system, based on its removal of 
oxidatively modified proteins (Giordano et al. 2013). It is 
hence speculated that activation of ALP represents a coun-
termeasure of the cell in early stages of mitochondrial dys-
function, while later stages are characterized by a decline in 
autophagy activity and an associated decline in cell viability. 
The PD-associated protein alpha synuclein (ASYN) emerged 
as a key element connecting mitochondrial dysfunction and 
impaired proteostasis. Knockdown of ASYN protects from 
complex I inhibition-mediated neurodegeneration (Zharikov 
et al. 2015), while ASYN overexpression sensitizes neurons 
towards secondary stressors (Chartier-Harlin et al. 2004; 
Singleton et al. 2003). Mitochondrial dysfunction leads to 
an accumulation and an aggregation of oxidative modified 
ASYN (Betarbet et al. 2006; Cannon et al. 2009). Vice versa, 
elevated ASYN levels evoke mitochondrial dysfunction (Hsu 
et al. 2000). In conclusion, mitochondrial dysfunction is 
characterized by an impaired ATP generation and elevated 
levels of ROS. Oxidative stress not only increases the load 
of misfolded proteins, it also leads to an impairment in the 
cellular protein degradation machineries. These energy-con-
suming processes are further hampered by the limitations 
in ATP supply under these conditions, hence resulting in an 
inadequate removal of misfolded proteins.

Empirical support

Most empirical support comes from cellular models exposed 
to rotenone and MPTP/MPP+. Moreover, an impairment of 
the UPS activity in the nigrostriatal system parallels mito-
chondrial dysfunction in PD patients (Ambrosi et al. 2014; 
Betarbet et al. 2005; McNaught and Jenner 2001a, b, 2003; 
Yu et al. 2009). Experimental induction of mitochondrial 
dysfunction in mice and rats by rotenone or MPTP is associ-
ated with a decline in nigrostriatal UPS (Fornai et al. 2005; 
Liu et al. 2013; Wu et al. 2015). In vitro models revealed 
that complex I inhibition precedes the onset of proteasomal 

impairment and the accumulation of ubiquitinated proteins 
(Yong-Kee et al. 2012). Expression of the inhibitor-insen-
sitive single subunit NADH dehydrogenase NDI-1 protects 
from rotenone-induced loss of proteasomal function, under-
lining the contribution of ATP for proteasomal degradation 
(Seo et al. 2000, 2002). The tight dependency of proteasomal 
function on metabolic activity was demonstrated by a glu-
cose-dependent experimental boost of cellular ATP levels, 
resulting in elevated protein degradation (Höglinger et al. 
2003a, b). To avoid an involvement of complex I inhibitor-
mediated oxidative stress, ATP was alternatively lowered 
by supplementation of cell medium with 2-desoxy-glucose. 
This resulted in an accumulation of misfolded proteins 
(Sherer et al. 2003). Management of oxidative stress, as the 
second dominating feature of mitochondrial dysfunction, by 
application of antioxidants, protects from complex I inhibi-
tor-evoked proteasomal impairment and from an accumula-
tion of ubiquitinated proteins (Chou et al. 2010; Filomeni 
et al. 2012; Shamoto-Nagai et al. 2003). The ALP can be 
stimulated by pharmacological means, and ALP stimulation 
by rapamycin results in a protection of the cell from complex 
I-mediated neurotoxicity (Liu et al. 2013; Pan et al. 2009). 
Similar to the situation observed with the UPS, antioxidants 
protect from complex I inhibitor-dependent reduction in 
ALP activity (Filomeni et al. 2012).

In neurons, proteostasis is largely influenced by intra-
cellular trafficking processes. Mitochondrial and vesicular 
trafficking is affected by dysregulated cytosolic  Ca2+ levels 
(Chang et al. 2006; Saotome et al. 2008; Yi et al. 2004) 
that emerge as a consequence of complex I inhibitor-medi-
ated mitochondrial dysfunction. ASYN expression levels 
are directly correlated with microtubule instability (Chen 
et al. 2007; Esposito et al. 2007; Lee et al. 2006). Accu-
mulation of ASYN leads to elevated levels of hyperphos-
phorylated tau protein and consequently to microtubule 
depolymerization (Qureshi and Paudel 2011). As a result 
of inappropriate transport processes, misfolded proteins 
and organelles accumulate within the cell.

ASYN levels are elevated in response to complex I inhi-
bition (Betarbet et al. 2006; Cannon et al. 2009; Fornai 
et al. 2005). Elevated cytosolic levels of  Ca2+ as conse-
quence of complex I inhibition promote aggregation of 
ASYN (Follett et al. 2013; Goodwin et al. 2013; Nath et al. 
2011; Yuan et al. 2015). Mitochondrial dysfunction and 
dysfunction in cellular  Ca2+ homeostasis leads to distur-
bances in neuronal DA handling, leading to DA-mediated 
oxidative stress. DA-modified ASYN not only prevents its 
own degradation by the chaperone-mediated autophagy 
(CMA) pathway, but it also prevents the degradation of 
other proteins (Martinez-Vicente et al. 2008). ASYN fila-
ment formation, promoted by ASYN overexpression, or 
the expression of ASYN mutants, directly impairs pro-
teasomal activity (Stefanis et al. 2001). Knockdown of 
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endogenous ASYN, treatment with antioxidants, and sup-
plementation with ATP protect from mitochondrial dys-
function-mediated onset of proteasomal stress (Betarbet 
et al. 2006; Dauer et al. 2002; Drolet et al. 2004; Shamoto-
Nagai et al. 2003).

Inconsistencies

Impaired proteostasis includes an imbalance or dysfunction 
of a very large number of diverse biochemical processes. 
These are again interlinked in complex ways. While this 
is not an inconsistency as such, it can lead to inconsistent 
results in the literature, when different processes, often 
measured at different times, are used as biomarkers of 
impaired proteostasis. Inhibition of mitochondrial complex 
I is mainly characterized by impaired ATP production and 
elevated •O2

− formation. Although these processes result 
in an impairment of various proteostasis mechanisms, such 
as UPS activity, defined molecular events linking KE 2 and 
KE 3 need further investigation. The relationship between 
mitochondrial dysfunction and impaired proteostasis is 
furthermore characterized by several mutual interactions, 
ultimately leading to a self-amplifying vicious cycle. Mis-
folded ASYN, for example, accumulates as a consequence 
of impaired proteostasis, and this in turn negatively influ-
ences mitochondrial integrity and function via its binding 
to the inner mitochondrial membrane and to their import 
machinery (Devi et al. 2008; Robotta et al. 2014). DA-
modified ASYN, on the other hand, not only blocks its own 
degradation by the CMA pathway but also prevents CMA-
dependent degradation of other proteins (Martinez-Vicente 
et al. 2008). Literature provides evidence for both activation 
and inhibition of autophagy activity upon experimental com-
plex I inhibition. However, time-dependent and quantitative 
information on autophagy activity under these conditions is 
not available yet. One of the cardinal features of PD is the 
formation of Lewy bodies in the brain. While proteinaceous 
ASYN aggregates are observed in rotenone-exposed rats, 
Lewy body-like structures are not observed in MPTP models 
(Dauer et al. 2002; Drolet et al. 2004).

KER 4: relationship between “impaired proteostasis” 
(KE 3) and “degeneration of DA neurons” (KE 4) 
(Fig. 5)

Biological plausibility

Impaired proteostasis leads to an accumulation of mis-
folded and modified proteins. These protein aggregates 
influence microtubule assembly and stability, resulting in 
a reduction in axonal transport of vesicles and mitochon-
dria (Borland et al. 2008; Chen et al. 2007; O’Malley 2010) 

and a “dying back” degeneration pattern, starting in the 
periphery, ultimately leading to neurodegeneration (Braak 
et al. 2004; Grosch et al. 2016; Raff et al. 2002). ASYN is 
among the best-studied examples, linking proteostasis and 
neuronal degeneration. Accumulation of ASYN, either as 
a consequence of endogenous disturbances of proteostasis, 
experimental blockade of the proteasomal system, or by 
overexpression of its wild-type or mutant forms, leads to 
the disassembly of microtubules and, ultimately, to axonal 
damage (Esposito et al. 2007; Kirik et al. 2003; Masliah 
et al. 2000). Furthermore, ASYN protofibrils interact with 
intracellular organelles such as neurotransmitter vesicles or 
mitochondria, and lead to an uncontrolled release of DA 
and an impairment of mitochondrial function (Lotharius 
et al. 2002; Saha et al. 2004; Devi et al. 2008; Chinta et al. 
2010). As mentioned above, DA-modified ASYN not only 
blocks its own degradation by the CMA pathway but also 
prevents the degradation of other proteins (Martinez-Vicente 
et al. 2008). Aggregates of wild-type or mutant forms of 
ASYN disturb controlled axonal transport of mitochondria 
(Li et al. 2013; Melo et al. 2017; Xie and Chung 2012). In 
neurons, key steps, such as mitochondrial fission/fusion or 
mitophagy, are conducted in the cell body. Impaired axonal 
transport of mitochondria hence leads to limited ATP sup-
ply and elevated levels of ROS, generated by dysfunctional 
mitochondria. The cellular 26S proteasome is a vulnerable 
target for free radical species originating from autoxidizing 
DA and mitochondria, leading to its inhibition and hence 
reinforcing proteasomal dysfunction (Davies 2001).

Analysis of nigrostriatal tissue of patients with PD has 
suggested an impairment in the activity of the 20/26S 
proteasome (McNaught and Jenner 2001a, b; McNaught 
et al. 2003). Similar observations were made in fibroblasts 
obtained from patients with PD, which exhibited elevated 
basal levels of ubiquitinated proteins and impaired 20S pro-
teasomal activity (Ambrosi et al. 2014). The brain-region 
selective impairment of proteasomal activity correlates 
with the selective demise of DA neurons in this region 
(McNaught and Jenner 2001a, b; McNaught et al. 2003). 
Disturbances in the ubiquitin proteasomal system are also 
directly associated with prominent examples of mutations 
(e.g., parkin, ubiquitin C-terminal hydrolase L1) identified 
in genetic PD cases. Both are sufficient to cause preferential 
degeneration of nigrostriatal DA neurons (Leroy et al. 1998; 
Kitada et al. 1998).

Empirical support

Experimental evidence for a causal relationship between 
impaired proteostasis and DA neurodegeneration is based 
on in vitro and in vivo experiments involving complex I 
inhibitors and proteasome inhibitors. Several in vivo stud-
ies reported an impairment of the UPS, an accumulation 
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of polyubiquitinated proteins, and the loss of nigrostriatal 
DA neurons upon exposure to complex I inhibitors (Betar-
bet et al. 2000, 2006; Fornai et al. 2005; Wang et al. 2006; 
Yong-Kee et al. 2012). An alternative complex I inactivation 
by conditional knockout of the complex I subunit Ndufs4 
independently confirms the decrease in proteasomal activity 
and accumulation of polyubiquitinated proteins (Song and 
Cortopassi 2015). Exposure to complex I inhibitors leads 
to an accumulation of autophagosomes and a concomitant 
decrease in the number of lysosomes, as well as lysosomal 
dysfunction (Dehay et al. 2010; Mader et al. 2012). Up-regu-
lation of autophagy, e.g., by rapamycin or trehalose, protects 
from lysosomal permeability and from neurodegeneration 
(Dehay et al. 2010; Giordano et al. 2014; Wu et al. 2015). 
A direct correlation between proteasomal dysfunction and 
neurodegeneration was observed by in vivo stereotaxic injec-
tion of proteasome inhibitors such as lactacystin or MG-132. 
Intracerebral proteasome inhibitor infusion evokes a pref-
erential degeneration of nigrostriatal DA neurons, accom-
panied by the onset of PD-associated motor impairments 

(Bentea et al. 2015; Fornai et al. 2003; Li et al. 2012). Tran-
scription factor EB (TFEB) is a key transcriptional regulator 
of the autophagy–lysosome pathway. Repression of TFEB 
expression in A9 and A10 DA neurons results in their accel-
erated degeneration (Decressac et al. 2013; Decressac and 
Björklund 2013). Overexpression of ASYN in vivo leads 
to lysosomal dysfunction and to cytoplasmic retention of 
TFEB. Overexpression of TFEB in the same model pro-
tects from DA neurodegeneration by clearance of ASYN 
oligomers (Decressac et al. 2013; Decressac and Björklund 
2013; Ebrahimi-Fakhari and Wahlster 2013; Kilpatrick et al. 
2015).

Inconsistencies

Mechanistic molecular information, as well as quantitative 
data on the direct causal relationship between impaired pro-
teostasis and DA neurodegeneration is limited. Most of the 
information on the relationship of the two KEs is based on 
model systems treated with complex I inhibitors. However, 

Fig. 5  Key event relationship 4 (KER 4), linking impaired proteosta-
sis (KE 3) and DA neurodegeneration (KE 4). The table shows the 
result of a qualitative assessment of KER 4 on a 3 point scale (weak, 
moderate, strong). Literature provides conclusive empirical support 
for a causal and quantitative relationship between KE 3 and KE 4. 
Insight into the molecular events responsible for DA neurodegenera-
tion in response to impaired proteostasis, however, can only be clas-
sified “moderate” due to essential knowledge gaps. UPS ubiquitin 
proteasomal system, ALS autophagy–lysosomal system, DA dopa-
mine, UCH-L1 ubiquitin carboxy-terminal hydrolase L1, Ndufs4 
NADH:ubiquinone oxidoreductase subunit S4, TFEB transcription 
factor EB. References: [1] Martini-Stoica et  al. (2016), [2] Menzies 

et  al. (2015), [3] McNaught and Jenner (2001a, b), [4] McNaught 
et  al. (2003), [5] Ambrosi et  al. (2014), [6] Betarbet et  al. (2000), 
[7] Betarbet et al. (2006), [8] Fornai et al. (2005), [9] Davies (2001), 
[10] Wang et al. (2010), [11] Schmidt et al. (2005), [12] Kitada et al. 
(1998), [13] Leroy et  al. (1998), [14] Song and Cortopassi (2015), 
[15] Mader et  al. (2012), [16] Dehay et  al. (2010), [17] Wu et  al. 
(2015), [18] Giordano et al. (2014), [19] Bentea et al. (2015), [20] Li 
et al. (2012), [21] Fornai et al. (2003), [22] Decressac et al. (2013), 
[23] Kilpatrick et  al. (2015), [24] Decressac and Björklund (2013), 
[25] Ebrahimi-Fakhari and Wahlster  (2013), [26] Decressac et  al. 
(2012), [27] Shimoji et al. (2005), [28] Zhu et al. (2007b)
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MPTP/MPP+ does not recapitulate the formation of intracel-
lular inclusions or aggregates. An increase in autophagy is 
reported as both protective and detrimental, most likely as a 
result of different degrees of activation or different observa-
tion times. Quantitative information on potential threshold 
activation levels for autophagy and their influence on cell 
integrity is currently not available.

KER 5: relationship between “degeneration of DA 
neurons” (KE 4) and “neuroinflammation” (KE 5) 
(Fig. 6)

Biological plausibility

In patients with PD and in MPTP-exposed humans or 
non-human primates, inflammation remains persistently 
activated in the nigrostriatal system, even years or dec-
ades after removal of the initiating toxicant (McGeer et al. 
2003; Miklossy et al. 2006). The inflammatory response 
involves microgliosis and astrogliosis as well as the infil-
tration of peripheral  CD4+ T lymphocytes (Appel 2009; 

Brochard et al. 2009). Damaged neurons expose cyto-
solic or nuclear proteins or non-protein molecules, col-
lectively termed as damage-associated molecular patterns 
(DAMPs), which are capable to initiate and perpetuate 
an inflammatory response (Béraud et al. 2013; Thundyil 
and Lim 2015) by activating Toll-like receptors (TLRs) or 
receptors for advanced glycation end-products (RAGEs) 
(Chao et al. 2014). Microglial cells are equipped with 
TLRs such as TLR-2 or TLR-4 that sense targets such as 
high mobility group box 1 (HMGB1), amyloid beta pep-
tide, or alpha synuclein and hence stimulate activation 
of nuclear factor kappa B (NF-κB) (Fellner et al. 2013; 
Fossati and chiarugi 2007; Liu et al. 2012; Santoro et al. 
2016). Astrocytes are also able to sense tissue injury via 
e.g., TLR-3 (Farina et al. 2007). Moreover, neuronal injury 
promotes astrocyte activation (Efremova et al. 2015). ATP, 
released by challenged cells, is a prominent non-protein 
DAMP that stimulates an immune response by purinergic 
G protein-coupled receptors (P2Y receptors). P2Y recep-
tor activation leads to the migration and polarization of 
microglial cells (Davalos et al. 2005; Haynes et al. 2006; 
Koizumi et al. 2007). Reactive microglial cells can in turn 

Fig. 6  Key event relationship 5 (KER 5), linking DA neurodegen-
eration (KE 4) and neuroinflammation (KE 5). The table shows the 
result of a qualitative assessment of KER 5 on a 3 point scale (weak, 
moderate, strong). Both empirical support and biological plausibility 
were classified as “moderate”, based on the species-dependent varia-
bility of mediators originating from degenerating DA neurons. Exper-
imental support for a causal link of KE 4 and KE 5 is mainly based 
on in  vitro models, whereas in  vivo information is rather limited. 
DAMP damage associated molecular patterns, HMGB1 high mobility 
group box 1, CX3CR1 fractalkine receptor, MPTP 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine, RAGE receptor for advanced glycation 
end products, NF-kB nuclear factor kappa B. References: [1] McGeer 

et al. (2003), [2] Miklossy et al. (2006), [3] Béraud et al. (2013), [4] 
Thundyil and Lim (2015), [5] Chao et  al. (2014), [6] Fossati and 
Chiarugi (2007), [7] Liu et  al. (2012), [8] Fellner et  al. (2013), [9] 
Farina et al. (2007), [10] Efremova et al. (2015), [11] Davalos et al. 
(2005), [12] Haynes et  al. (2006), [13] Koizumi et  al. (2007), [14] 
Shinozaki et al. (2017), [15] Blank and Prinz (2013), [16] Chapman 
et al. (2000), [17] Streit et al. (2001), [18] Nayak et al. (2011), [19] 
Lopategui Cabezas et al. (2014), [20] Shan et al. (2011), [21] Zecca 
et al. (2008), [22] Santoro et al. (2016), [23] Sasaki et al. (2016), [24] 
Noelker et al. (2013), [25] Abdelsalam and Safar (2015), [26] Schild-
knecht et al. (2015), [27] Emmanouilidou et al. (2010), [28] Marques 
and Outeiro (2012)
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modulate astrocyte reactivity, involving P2Y receptors 
(Shinozaki et al. 2017). Neuron–microglia interactions 
are also controlled by several chemokines and chemokine 
receptors (e.g., fractalkine, CD200) and a loss of this con-
trol by challenged neurons can trigger microglial reactivity 
(Blank and Prinz 2013; Chapman et al. 2000; Streit et al. 
2001). Activation of glial cells in response to damaged 
neurons, as well as infiltration of peripheral leukocytes, is 
not confined to PD, but also observed in other chronic neu-
rodegenerative diseases (Lopategui Cabezas et al. 2014; 
Nayak et al. 2011).

Empirical support

The number of studies describing an explicit causal rela-
tionship between damaged DA neurons and the activation 
of glia is rather limited. In patients with PD, an increase in 
HMGB1—a protein released upon cell damage that signals 
danger and promotes neuroinflammation—was found in the 
substantia nigra pars compacta (SNpc) and in cerebrospi-
nal fluid (CSF) (Santoro et al. 2016). In mice treated with 
MPTP/MPP+, administration of HMGB1-neutralizing anti-
bodies partly inhibits DA cell death. The small molecule 
glycyrrhizin directly binds HMGB1 and reduces MPTP/
MPP+-dependent DA cell death (Santoro et al. 2016; Sasaki 
et al. 2016). TLR-4-deficient mice are less vulnerable to 
MPTP/MPP+ intoxication and display a decreased number 
of reactive activated glial cells compared with MPTP/MPP+-
treated wild-type animals (Noelker et al. 2013). Inhibition 
of RAGEs, which are upregulated in the striatum following 
rotenone exposure, suppresses NF-κB activation, as well 
as the expression of NF-κB-regulated inflammatory mark-
ers such as tumor necrosis factor alpha (TNF-α), inducible 
nitric oxide synthase (iNOS), and myeloperoxidase (Abdel-
salam and Safar 2015). Injection of fractalkine—normally 
released by damaged neurons—into the SNpc causes micro-
glia activation by binding to CX3C chemokine receptor 1 
(CX3CR1). Pre-administration of an anti-CX3CR1 anti-
body before  MPP+ injection into the SNpc protects from 
glial activation (Shan et al. 2011). Intracerebral injection of 
neuromelanin, a derivative of l-DOPA that accumulates in 
catecholaminergic neurons, causes an inflammatory activa-
tion of glial cells in the rat brain, indicating that degenerat-
ing DA neurons are leading to neuroinflammation (Zecca 
et al. 2008). Furthermore, DA neurons in the process of 
degeneration signal  Ca2+ waves, attracting neighboring glial 
cells, hence contributing to the well-defined accumulation of 
activated glial cells at the sites of neurodegeneration (Sieger 
et al. 2012).

Inconsistencies

Studies investigating the role of DA neurodegeneration 
on glial activation often utilize toxicants such as MPTP/
MPP+ or rotenone. Although no in vivo evidence exists, it 
cannot be ruled out that these toxicants directly influence 
glial activation, e.g., by the active conversion of the pro-
toxicant MPTP (Schildknecht et al. 2015). A rich body 
of experimental evidence indicates an outstanding role 
of extracellular ASYN in the inflammatory activation of 
glial cells (Hoenen et al. 2016; Lee et al. 2010a, b). How-
ever, these factors are not necessarily associated with a 
degeneration of DA neurons, as ASYN can be excreted by 
viable neurons (Emmanouilidou et al. 2010; Marques and 
Outeiro 2012).

KER 6: relationship between “neuroinflammation” 
(KE 5) and “degeneration of DA neurons” (KE 4) 
(Fig. 7)

Biological plausibility

Neuroinflammation, first described by McGeer et al. (1988), 
encompasses the activation of glial cells (microglia and 
astrocytes) and is regularly observed in association with 
chronic neurodegenerative diseases such as PD, Alzhei-
mer’s disease, and Huntington’s disease (Bagyinszky et al. 
2017; Falsig et al. 2004, 2006; McGeer and McGeer  2008; 
Vivekanantham et al. 2015). Both cell types contribute to 
a pro-inflammatory/neurotoxic environment by releasing 
cytokines such as interleukin (IL)-1β, TNF-α, or interferon 
gamma (IFN-γ), mediators such as nitric oxide (•NO) or 
superoxide (•O2

−), ceramide, gangliosides, and components 
of the complement system (Boka et al. 1994; Brown and 
Bal-Price 2003; Dong and Benveniste 2001; Liberatore 
et al. 1999; Norden et al. 2015). Neuroinflammation-induced 
neuronal degeneration depends to a large extent on dam-
age evoked by free radical species such as •NO, •O2

−, •OH, 
 H2O2,  N2O3, or peroxynitrite, which are actively formed by 
activated glia (Daiber et al. 2009; Hunot et al. 1996; Knott 
et al. 2000; Le et al. 1999; Mogi et al. 1994). These free 
radicals harm neuronal mitochondria and challenge neuronal 
proteostasis and redox equilibria. Once a certain threshold 
of radical-mediated damage is reached, neurodegeneration 
is observed (Chen et al. 2015; Khan et al. 2016). In addition, 
activated glial cells can alter the integrity of the blood–brain 
barrier (BBB) and hence allow an infiltration of peripheral 
immune cells into the CNS (Lopez-Ramirez et al. 2014). 
Moreover, peripheral TNF-α and IL-1α can traverse the 
BBB (Banks 2005; Pan and Kastin 2002). As a consequence 
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of their passage, chronic peripheral inflammation can con-
tribute to the selective demise of nigrostriatal DA neurons in 
the brain (Hernández-Romero et al. 2012; Pott Godoy et al. 
2008; Villarán et al. 2010).

Neuronal injury/death triggers neuroinflammation (see 
KER 5), which in turn can lead to neuronal degeneration, 
contributing to a self-perpetuating vicious circle, which is 
assumed to be a key element in the pathogenesis of several 
neurodegenerative diseases including PD (Barbeito et al. 
2010; Blasko et al. 2004; Griffin et al. 1998; Hirsch and 
Hunot 2009).

Empirical support

Nigrostriatal neurodegeneration can be evoked by stere-
otaxic injection or systemic application of lipopolysaccha-
ride (LPS), a known activator of microglia (Frank-Cannon 

et al. 2008; He et al. 2013; Herrera et al. 2000; Ramsey and 
Tansey 2014).

Strategies to dampen neuroinflammation and protect DA 
neurons have either focused on inhibiting the pro-inflam-
matory (M1) phenotype of microglia and/or on supporting 
their anti-inflammatory activation state (M2) (Hernández-
Romero et al. 2008; Lecca et al. 2015; Lu et al. 2000; Moe-
hle and West 2015; Moon et al. 2009; Pisanu et al. 2014; 
Roy et al. 2012; Wu et al. 2002). In comparison to control 
mice, intra-nigrostriatal injection of LPS largely failed to 
initiate a sustained neuroinflammatory response in an IL-1β 
knockdown mouse model that exhibits significantly less 
DA neurodegeneration (Tanaka et al. 2013). In an MPTP/
MPP+ model, IFN-γ depletion completely prevents micro-
glial activation and protects from the loss of nigrostriatal 
DA neurons (Mount et al. 2007). Deletion of TNF-α con-
fers only a partial protection from MPTP/MPP+-dependent 
neuroinflammation and DA neurodegeneration (Ferger et al. 

Fig. 7  Key event relationship 6 (KER 6), linking DA neuroinflamma-
tion (KE 5) and DA neurodegeneration (KE 4). The table shows the 
result of a qualitative assessment of KER 6 on a 3 point scale (weak, 
moderate, strong). A causal relationship between neuroinflammation 
and DA neurodegeneration has been demonstrated. Biological plau-
sibility and empirical support were both rated “moderate”, due to the 
lack of profound knowledge on the mediators that evoke neurode-
generation. Anti-inflammatory and antioxidant agents could not con-
vincingly demonstrate a neuroprotective potential. CNS central nerv-
ous system, DA dopamine, IL-1β interleukin-1β, IFN-γ interferon-γ, 
TNF-α tumor necrosis factor α; TGF: transforming growth fac-
tor, NSAID non-steroidal anti-inflammatory drugs. References: [1] 
McGeer et al. (2003), [2] Miklossy et al. (2006), [3] Liberatore et al. 
(1999), [4] Norden et  al. (2015), [5] Boka et  al. (1994), [6] Dong 
and Benveniste (2001), [7] Lopez-Ramirez et  al. (2014), [8] Pan 
and Kastin (2002), [9] Banks (2005), [10] Heráandez-Romero et  al. 

(2012), [11] Pott Godoy et al. (2008), [12] Villarán et al. (2010), [13] 
Hirsch and Hunot (2009), [14] Griffin et al. (1998), [15] Blasko et al. 
(2004), [16] Barbeito et  al. (2010), [17] Herrera et  al. (2000), [18] 
Frank-Cannon et al. (2008), [19] He et al. (2013), [20] Ramsey and 
Tansey (2014), [21] Tanaka et  al. (2013), [22] Mount et  al. (2007), 
[23] Ferger et  al. (2004), [24] Leng et  al. (2005), [25] Sriram et  al. 
(2002), [26] Sriram et al. (2006), [27] Qin et al. (2007), [28] McCoy 
et al. (2006), [29] Castaño et al. (2002), [30] Brochard et al. (2009), 
[31] Reynolds et al. (2007), [32] Laurie et al. (2007), [33] Liu et al. 
(2016), [34] Faust et al. (2009), [35] Du et al. (2001), [36] Tikka et al. 
(2001), [37] Wu et al. (2002), [38] Shults (2003), [39] NINDS NET-
PD Investigators (2006), [40] NINDS-NET-PD Investigators (2008), 
[41] Chen et  al. (2005), [42] Chen et  al. (2003), [43] Hernán et  al. 
(2006), [44] Ton et al. (2006), [45] Etminan et al. (2008), [46] Schil-
dknecht et al. (2005), [47] Hoos et al. (2014), [48] Parkinson Study 
Group (1993), [49] Shoulson (1998)
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2004), while a double knockout mouse (Leng et al. 2005) of 
TNF-α receptors 1 and 2 exhibits an almost complete protec-
tion from MPTP/MPP+-dependent glial activation and DA 
neurodegeneration (Sriram et al. 2002, 2006). Comparable 
protection in this TNF-α receptor double knockout mouse 
was also reported when LPS was applied instead of MPTP 
(Qin et al. 2007). Blocking TNF-α by expression of TNF-α 
inhibitor protein protects from DA neuron loss in animal 
models of PD (McCoy et al. 2006).

In mixed neuron/glia co-cultures, pretreatment with 
anti-inflammatory TGF-β1 prevents from neurodegenera-
tion evoked by  MPP+ (Liu et al. 2016). Genetic silencing of 
the TGF-β receptor 1 in microglia reverses this protective 
effect, indicating a significant role of pro-inflammatory glial 
activation in the observed degeneration of neurons (Liu et al. 
2016). Another example is the PPAR-γ agonist MDG548 
that decreases NF-κB activation in microglia evoked by 
LPS (Lecca et al. 2015). When mice are exposed to MPTP 
instead of LPS, MDG548 reduces microglial activation and 
protects from DA neurodegeneration (Lecca et al. 2015).

Other strategies interfering with the infiltration of periph-
eral  CD4+/CD8+ T lymphocytes, which was reported as a 
contributing factor of DA neurodegeneration (Brochard et al. 
2009; Appel 2009; Stone et al. 2009), also revealed neu-
roprotection. The corticosteroid dexamethasone, by acting 
as an inhibitor of T-cell infiltration, dampens glial activa-
tion and DA neurodegeneration (Castaño et al. 2002). In 
a MPTP/MPP+ model, a mutation in the functional recep-
tor of  CD4+ T cells protects from DA neurodegeneration 
(Brochard et al. 2009). The adoptive transfer of immunosup-
pressive  CD4+/CD25+ regulatory T cells was sufficient for 
the protection from DA neuronal death (Laurie et al. 2007; 
Reynolds et al. 2007). Besides these experimental models, 
current clinical trials involving patients with PD, strongly 
suggest minocycline, an inhibitor of microglial reactivity 
(Du et al. 2001; Faust et al. 2009; Schildknecht et al. 2011; 
Tikka et al. 2001; Wu et al. 2002), as a promising agent 
for the protection of nigrostriatal DA neurons when used 
in combination with other therapies such as antioxidants 
or MAO-B inhibitors (Galpern and Cudkowicz 2007; Mat-
thews et al. 1999; NINDS NET-PD Investigators 2006, 2008; 
Shults et al. 1997, 1999, 2002; Shults 2003, 2004; Yang 
et al. 2009).

Inconsistencies

The majority of studies focusing on the contribution of pro-
inflammatory mediators such as IL-1β, TNF-α, or IFN-γ 
were performed in MPTP models. Hence, in addition to the 
inflammatory response,  MPP+-dependent mitochondrial 
inhibition and ROS formation were still present in these 
studies. Mice with quiescent microglia are still susceptible 
to MPTP toxicity (Kinugawa et al. 2013), indicating a rather 

minor contribution of inflammation to the observed neuro-
degeneration in the MPTP models. Studies involving LPS 
injections for the induction of inflammation were almost 
exclusively conducted in rodents. In comparison to the situ-
ation in humans, rodents display greater amounts of •NO and 
•O2

− upon inflammatory activation (Bachschmid et al. 2005; 
Hoos et al. 2014; Schildknecht et al. 2004, 2005), indicat-
ing that these radical species contribute to a larger extend 
to neurodegeneration in rodents compared to the situation 
in humans. This concept received substantial support by the 
outcome of clinical studies involving antioxidant therapy 
over extended periods of time that exhibited no signs of a 
significant delay in disease progression (Chen 2003, 2005; 
Etminan et al. 2008; Hernán et al. 2006; Ton et al. 2006; 
Parkinson Study Group 1993; Shoulson 1998).

KER 7: relationship between “mitochondrial 
dysfunction” (KE 2) and “degeneration of DA 
neurons” (KE 4) (Fig. 8)

Biological plausibility

KER 7 is an extraordinary element in the present AOP inas-
much it circumvents KE 3. Impaired proteostasis (KE 3) is 
observed under conditions of moderate and chronic inhibi-
tion of complex I. In response to an instant and complete 
inhibition of complex I by high concentrations of rotenone 
or  MPP+, the instant termination of ATP supply can lead to 
a rapid (1–2 h) degeneration without significant involvement 
of impaired proteostasis. Incorporation of these time- and 
concentration-dependent differences in neurodegeneration 
upon complex I inhibition was the rationale to specify KER 
7.

Mitochondria serve as the main source of ATP in eukary-
otic cells, and they are vitally involved in the regulation of 
cellular  Ca2+ homeostasis (Baughman et al. 2011; Brini et al. 
2014; Calì et al. 2014; De Stefani et al. 2011) as well as in 
apoptotic processes (Charan et al. 2014; Hu et al. 2015; Liu 
et al. 2015; Rasheed et al. 2017). Mitochondrial dysfunc-
tion is characterized by dysfunctional cellular  Ca2+ handling 
(Orrenius et al. 2003), reduced mitochondrial ATP levels, 
and increased ROS (Banerjee et al. 2009; Bose and Beal 
2016; Subramaniam and Chesselet 2013). In contrast to other 
cell types, neurons have only a moderate capacity to upregu-
late their rate of glycolysis upon inhibition of mitochondria 
(Almeida et al. 2001, 2004; Herrero-Mendez et al. 2009). 
Therefore, they are more vulnerable towards dysfunctional 
mitochondria than other cell types. Among the different neu-
ronal types, nigrostriatal DA neurons display a preferential 
sensitivity towards complex I inhibition (Betarbet et al. 
2000; Jackson-Lewis et al. 1995) as a consequence of a set 
of unique intrinsic features. First, nigrostriatal DA neurons 
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possess autonomous pacemaking activity, relying on L-type 
 Ca2+ channel  (CaV1.3)-dependent  Ca2+ influx for membrane 
depolarization (Chan et al. 2007; Guzman et al. 2009; Ned-
ergaard et al. 1993). The relevance of  Ca2+-dependent pace-
making as a sensitizing factor becomes evident in compari-
son with DA neurons of the ventral tegmental area (VTA). 
These are significantly less sensitive to complex I inhibition, 
and they differ from nigrostriatal DA neurons by their reli-
ance on extracellular  Na+ for pacemaking (Khaliq and Bean 
2010). The constant influx of extracellular  Ca2+ represents 
an energy- demanding strategy (Surmeier et al. 2011; Sur-
meier and Schumacker 2013). The energy balance of nigros-
triatal DA neurons, and hence their dependence on proper 
mitochondrial function, is furthermore challenged by their 
unique architecture (Bolam and Pissadaki 2012; Matsuda 
et al. 2009) comprising long unmyelinated axons and higher 
numbers of energy-consuming synapses, compared with 

catecholaminergic neurons of other brain regions (Pacelli 
et al. 2015; Pissadaki and Bolam 2013). As a consequence, 
total cell surface and the energy required to maintain the 
membrane potential is higher in nigrostriatal DA neurons 
(Pacelli et al. 2015; Bolam and Pissadaki 2012; Brichta and 
Greengard 2014). In comparison with neurons of other brain 
areas, mitochondria of nigrostriatal DA neurons can hence 
barely meet the energy requirement of the cell, even under 
normal conditions. It becomes apparent that even moderate 
impairments in mitochondrial function can lead to a prefer-
ential damage and demise of nigrostriatal DA neurons, while 
other neuronal populations under the same conditions are 
still spared. An additional sensitizing factor is the presence 
of DA, which pre-disposes neuronal cells to oxidative stress 
and renders ASYN particularly cytotoxic (Pacelli et al. 2015; 
Schildknecht et al. 2009, 2013, 2017).

Fig. 8  Key event relationship 7 (KER 7), linking mitochondrial dys-
function (KE 2) and DA neurodegeneration (KE 4). The table shows 
the result of a qualitative assessment of KER 7 on a 3 point scale 
(low, moderate, strong). The literature is currently lacking a gener-
ally accepted definition of mitochondrial dysfunction. There is cur-
rently no consensus on the contribution of individual processes (e.g. 
mitochondrial membrane potential loss, ROS formation, drop in ATP 
formation, release of pro-apoptotic factors, etc.) to overall mitochon-
drial dysfunction nor a quantitative assessment of these processes for 
threshold definition. However, for some endpoints, semi-quantitative 
information is available. Notably, the support that KER 7 prevails 
over KER 3 and KER 4 is limited to few experimental situations, and 
human evidence has not been established. ATP adenosine triphos-
phate, ROS reactive oxygen species, MPP+ 1-methyl-4-phenylpyri-
dinium, NDI-1 single subunit NADH dehydrogenase of S. cerevisiae. 
References: [1] Bose and Beal (2016), [2] Banerjee et  al. (2009), 

[3] Subramaniam and Chesselet (2013), [4] Herrero-Mendez et  al. 
(2009), [5] Almeida et al. (2001), [6] Almeida et al. (2004), [7] Ned-
ergaard et al. (1993), [8] Guzman et al. (2009), [9] Chan et al. (2007), 
[10] Surmeier et  al. (2011), [11] Surmeier and Schumacker (2013), 
[12] Bolam and Pissadaki (2012), [13] Matsuda et  al. (2009), [14] 
Pissadaki and Bolam (2013), [15] Pacelli et  al. (2015), [16] Schild-
knecht et al. (2017), [17] Chan et al. (1991), [18] Fabre et al. (1999), 
[19] Hasegawa et al. (1990), [20] Nicklas et al. (1985), [21] Przedbor-
ski et al. (1996), [22] Sherer et al. (2003), [23] Sherer et al. (2007), 
[24] Marella et al. (2008), [25] Ekstrand et al. (2007), [26] Du et al. 
(2001), [27] Choi et al. (2014), [28] Hajieva et al. (2009), [29] Chen 
et al. (2015), [30] Marella et al. (2008), [31] Wen et al. (2011), [32] 
Beal et al. (1998), [33] Adhihetty and Beal (2008), [34] Cunha et al. 
(2014), [35] Seo et al. (1998, 2000, 2002), [36] Shults et al. (2002), 
[37] Moon et  al. (2005), [38] Wen et  al. (2011), [39] Wang et  al. 
(2012), [40] Leist et al. (1998), [41] Leist et al. (1997)
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Empirical support

The experimental support for the direct relationship between 
mitochondrial dysfunction and the degeneration of nigros-
triatal DA neurons is based on observations made with 
neuronal cell cultures and with genetically modified in vivo 
models. Mitochondrial dysfunction can be initiated by com-
plex I inhibitors that prevent mitochondrial ATP generation 
and concomitantly stimulate mitochondrial ROS formation 
(Chan et al. 1991; Fabre et al. 1999; Hasegawa et al. 1990; 
Nicklas et al. 1985; Przedborski et al. 1996). Alternative 
experimental means to evoke mitochondrial dysfunction are 
e.g., transfer of mtDNA from patients with PD into mtDNA-
free cells (cybrids) (Marella et al. 2008; Sherer et al. 2003, 
2007) or knockdown of the regulator of mitogenesis Tfam 
(Ekstrand et al. 2007). In all of these examples, the advent of 
mitochondrial dysfunction was directly correlated with the 
demise of neurons, and an elevated sensitivity of neurons 
harboring dysfunctional mitochondria towards secondary 
stressors. The degeneration of DA neurons is prevented by 
treatment with antioxidants (Chen et al. 2015; Choi et al. 
2014; Hajieva et al. 2009; Sherer et al. 2003, 2007). To 
exemplify the present AOP, mitochondrial dysfunction can 
be evoked by application of complex I inhibitors such as 
MPTP/MPP+ or rotenone both in vitro and in vivo. Such 
complex I inhibitor-mediated mitochondrial dysfunction 
is directly correlated with the dysfunction of nigrostriatal 
DA neurons (Hantraye et al. 1993; Langston et al. 1999; 
Moratalla et al. 1992; Varastet et al. 1994). Experimental 
expression of the inhibitor-insensitive complex I surrogate 
NDI-1, either in neuronal cell cultures or in vivo by unilat-
eral injection of adeno-associated virus into the nigrostriatal 
system (Marella et al. 2008; Sherer et al. 2003, 2007) pro-
tects against complex I inhibitor-dependent mitochondrial 
dysfunction and prevents the demise of nigrostriatal DA neu-
rons. Complex I-independent electron input into the respira-
tory chain, e.g., by application of methylene blue (Wen et al. 
2011) or coenzyme  Q10 (Beal et al. 1998), reduces mitochon-
drial dysfunction and protects from DA neurodegeneration. 
These examples illustrate that protection from the loss of 
mitochondrial ATP, or from conditions of oxidative stress, 
i.e., features of mitochondrial dysfunction, are effective 
means to prevent the demise of nigrostriatal neurons.

Uncertainties

Mitochondrial dysfunction comprises a series of adverse 
processes such as the decline of the mitochondrial mem-
brane potential, opening of the mtPTP, elevated ROS forma-
tion, or the release of cytochrome c (Gandhi et al. 2009; Heo 
et al. 2012; Irrcher et al. 2010; Leist et al. 1998; Pöltl et al. 
2012; Toulorge et al. 2016; Wang et al. 2012). Currently, 
there is no consensus on how many of these changes need to 

occur to meet the criteria for mitochondrial dysfunction. A 
decline in ATP generation and elevated •O2

− formation are 
the two main consequences of complex I inhibition (Lambert 
and Brand 2004; Schildknecht et al. 2009). Although experi-
mental restoration of ATP and management of elevated ROS 
by antioxidants have been suggested as protective means, the 
respective quantitative contribution of ATP and ROS to the 
observed neurodegeneration has not been fully addressed in 
the literature. Mitochondrial dysfunction leads to oxidative 
stress, but oxidative stress in turn also leads to mitochon-
drial dysfunction (Hasegawa et al. 1990; Jana et al. 2011; 
Khan et al. 2005). Thus, empirical support based on antioxi-
dants can be ambiguous. In KER 7, it is assumed that KE 2 
directly leads to KE 4 and KE 5, especially at high intensi-
ties of insult. However, it is unclear whether such conditions 
are found in humans exposed to toxicants.

KER 8: relationship between the “degeneration 
of DA neurons” (KE 4) and the onset 
of “parkinsonian motor deficits” (AO) (Fig. 9)

Biological plausibility

DA neurons of the substantia nigra project into the striatum, 
where they release DA (Joel and Weiner 2000; Lynd-Balta 
and Haber 1994a, b). The loss of nigrostriatal DA neurons 
observed in PD leads to a reduction in striatal DA levels 
(Bernheimer et al. 1973; Ehringer et al. 1960). All PD forms 
are characterized by the loss of striatal DA, which is directly 
correlated with the onset of PD motor symptoms (Ehringer 
et al. 1960). Striatal DA is a main regulator of motor out-
put from the cortex to the periphery. Basal ganglia modu-
late motor output information that is looped back via the 
thalamus to the motor output cortex (Alexander et al. 1986; 
Blandini et al. 2000; Obeso et al. 2008a, b). A decline in 
striatal DA leads to disturbances in this feedback loop and 
reflects key parkinsonian symptoms such as rigidity, brad-
ykinesia, and tremor (Bain 2007; Jankovic 2008; Rodriguez-
Oroz et al. 2009). An experimental knockdown of tyrosine 
hydroxylase as the key enzyme in catecholamine synthesis 
leads to reduced motor coordination (Korner et al. 2015), 
while a hyperdopaminergic tone, evoked by genetic deletion 
of the DA transporter, results in motor hyperactivity (Gainet-
dinov et al. 1999). Characteristic PD-associated motor defi-
cits are usually observed at a reduction of striatal DA by ca. 
80% (Kirik et al. 1998; Koller 1992).

Empirical support

Experimental support for a causal relationship between the 
loss of nigrostriatal DA neurons and the onset of parkinso-
nian motor deficits comes from patients with PD, humans 
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accidentally exposed to MPTP, in vivo studies with rodents 
and non-human primates, and from in vitro models.

Analysis of brains from patients with PD reveals a sig-
nificant reduction of striatal DA that correlates with the 
degeneration of nigrostriatal DA neurons (Earle 1968; 
Lloyd et al. 1975). Live assessment of DA neuron content 
in patients with PD indicates a causal correlation between 
nigrostriatal DA content and the severity of PD motor def-
icits (Benamer et al. 2000; Lin et al. 2014; Pirker 2003; 
Rakshi et al. 1999; Rinne et al. 1995; Tissingh et al. 1998). 
Substitution of endogenous striatal DA by l-DOPA leads to 
improved motor performance (Gilmour et al. 2011; Heimer 
et al. 2002; Hutchinson et al. 1997; Levy et al. 2001; Lloyd 
et al. 1975; Papa et al. 1999; Yam et al. 1998). Elevation 
of endogenous striatal DA, by application of inhibitors 

targeting its degradation enzyme MAO-B, is also correlated 
with improved motor performance (Pålhagen et al. 1998, 
2006; Olanow et al. 2008; Parkinson Study Group 1993, 
1996, 2002; Rascol et al. 2005). Case reports further indicate 
the re-innervation of the striatum with projections of trans-
planted DA neurons, a restoration of striatal DA levels, and 
a subsequent improvement of motor performance (Ben-Hur 
et al. 2004; Kordower et al. 1995, 1998; Mendez et al. 2008; 
Schumacher et al. 2000; Widner et al. 1992).

Non-human primates represent a model, highly reflective 
for the situation in humans with respect to brain architecture 
and DA motor deficits. Studies with MPTP-exposed mon-
keys reveal a correlation between striatal DA, nigrostriatal 
DA neuron numbers, and the onset of a PD motor phenotype 
(Bezard et al. 2001). Similar to the situation in humans, a 

Fig. 9  Key event relationship 8 (KER 8), linking DA neurode-
generation (KE 4) and parkinsonian motor deficits (AO). The table 
shows the result of a qualitative assessment of KER 8 on a 3 point 
scale (weak, moderate, strong). Literature provides strong evidence 
for a causal correlation between the levels of striatal dopamine and 
the onset of parkinsonian motor deficits. These correlations can be 
observed in MPTP exposed rodents, primates, including humans, and 
in human PD. A potential contribution of other brain areas, respec-
tively, their demise, to parkinsonian motor deficits, was only inad-
equately investigated so far. DA dopamine, PD Parkinson’s disease, 
l-DOPA l-3,4-dihydroxyphenylalanine, DAT dopamine transporter, 
VMAT-2 vesicular monoamine transporter 2, TH tyrosine hydroxy-
lase. References: [1] Lynd-Balta and Haber (1994a), [2] Lynd-Balta 
and Haber (1994b), [3] Joel and Weiner (2000), [4] Alexander 
et  al. (1986), [5] Obeso et  al. (2008a), [6] Blandini et  al. (2000), 
[7] Ehringer et  al. (1960), [8] Bernheimer et  al. (1973), [9] Koller 
(1992), [10] Kirik et al. (1998), [11] Earle (1968), [12] Lloyd et al. 
(1975), [13] Benamer et al. (2000), [14] Rakshi et al. (1999), [15] Lin 

et al. (2014), [16] Pirker (2003), [17] Rinne et al. (1995), [18] Tiss-
ingh et  al. (1998), [19] Lloyd et  al. (1975), [20] Yam et  al. (1998), 
[21] Gilmour et al. (2011), [22] Heimer et al. (2002), [23] Papa et al. 
(1999), [24] Hutchinson et  al. (1997), [25] Levy et  al. (2001), [26] 
Parkinson Study Group (1993), [27] Pålhagen et al. (1998), [28] Pål-
hagen et al. (2006); [29] Parkinson Study Group (1996), [30] Olanow 
et al. (2008), [31] Widner et al. (1992), [32] Kordower et al. (1998), 
[33] Kordower et  al. (1995), [34] Mendez et  al. (2008), [35] Schu-
macher et  al. (2000), [36] Ben-Hur et  al. (2004), [37] Bezard et  al. 
(2001), [38] Blesa et al. (2012), [39] Mitchell et al. (1989), [40] Fil-
ion and Tremblay (1991), [41] Bergman et al. (1990), [42] Aziz et al. 
(1991), [43] Porras et  al. (2012), [44] Jenner (2008), [45] Bédard 
et  al. (1986), [46] Clarke et  al. (1987), [47] Langston et  al. (2000), 
[48] Smith et al. (2003), [49] Kuoppamäki et al. (2007), [50] Seniuk 
et al. (1990), [51] Muthane et al. (1994), [52] Moratalla et al. (1992), 
[53] Snow et al. (2000), [54] Forno et al. (1986), [55] Petzinger et al. 
(2006), [56] Jakowec et  al. (2004), [57] Rothblat et  al. (2001), [58] 
Meredith and Kang (2006)
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reduction of striatal DA by ca. 80% leads to the manifesta-
tion of PD motor deficits (Aziz et al. 1991; Bergman et al. 
1990; Blesa et al. 2012; Filion and Tremblay 1991; Mitchell 
et al.1989; Porras et al. 2012). Supplementation of endog-
enous DA by l-DOPA application in these models reverses 
the loss of motor output performance (Bédard et al. 1986; 
Clarke et al. 1987; Jenner 2008; Kuoppamäki et al. 2007; 
Langston et al. 2000; Smith et al. 2003).

In rodents, systemic administration of rotenone leads 
to loss of striatal DA and DA neurons; this loss is associ-
ated with the onset of motor deficits, reminiscent of those 
motor impairments observed in patients with PD (Alam 
and Schmidt 2002, 2004; Cannon et  al. 2009; Fleming 
et al. 2004; Höglinger et al. 2003a, b). In mice, MPTP is 
the most widely applied experimental PD toxicant. It pro-
vides results comparable to those obtained from rotenone 
experiments in rats (Alvarez-Fischer et al. 2008; Fornai et al. 
2005; Gibrat et al. 2009; Hung and Lee 1996; Petroske et al. 
2001; Rozas et al. 1998). Application of l-DOPA, inhibi-
tion of endogenous DA degradation by MAO-B inhibitors, 
deep brain stimulation, and transplantation of precursor cells 
into the nigrostriatal system all lead to a restoration of stri-
atal DA content and an improvement of motor performance 
(Altarche-Xifro et al. 2016; Kong et al. 2015; Shaw et al. 
2010; Schierle et al. 1999; Shin et al. 2009).

Inconsistencies

Striatal DA is a key modulator of extrapyramidal motor out-
put control. Although a close correlation between striatal 
DA and the onset of motor deficits is apparent, the specificity 
of motor abnormalities observed in PD has not been fully 
explained. Neuronal loss in PD or in  MPP+/rotenone-treated 
animals is not confined to the nigrostriatal system. Other 
areas such as the locus coeruleus also undergo neurodegen-
eration (Forno et al. 1986; Moratalla et al. 1992; Muthane 
et al. 1994; Seniuk et al. 1990; Snow et al. 2000). It cannot 
be excluded that additional brain regions might significantly 
contribute to the parkinsonian motor phenotype. In subacute 
treatment schemes (rotenone, MPTP), a significant, some-
times complete, recovery of motor deficits can be observed 
(Petroske et al. 2001). For the assessment of DA neuron 
numbers, DA markers such as TH, DAT, and VMAT-2 are 
often employed using western blot, immunohistochemical 
staining, and polymerase chain reaction (PCR). However, the 
expression levels of these targets can be transiently regulated 
and might, therefore, provide misleading information on the 
survival of DA neurons (Jakowec et al. 2004; Petzinger et al. 
2006; Rothblat et al. 2001). For the assessment of motor per-
formance in rodents, a variety of different behavioral assays 
emerged in the course of recent decades. The parameters 
assessed in these assays are not directly representative for 
those features observed in human PD (Meredith and Kang 

2006). In addition, it has not been established for all end-
points whether deficits can be fully rescued by l-DOPA or 
DA agonists.

AOP uncertainties and evaluation 
in an overall context

Use of example compounds for the AOP

Per definition, AOPs are compound agnostic and conse-
quently include no ADME considerations. However, for the 
assembly of AOPs, and in particular for the empirical sup-
port of KERs, the behavior of model compounds plays a sig-
nificant role and is important for the assessment of plausibil-
ity of an AOP. Model toxicants show a distinct toxicokinetic 
behavior that needs to be taken into account for the evalua-
tion of the consistency of the AOP. In this context, the AOP 
presented herein relies very heavily on its exemplification 
by two model toxicants: rotenone and MPTP. For MPTP, the 
evaluation of the dose and KE sequence (response–response) 
consistency is particularly difficult, because: (1) MPTP 
needs to be enzymatically activated into the active toxicant 
 MPP+ by brain glial cells; (2) once the active metabolite 
 MPP+ has been formed, and the MIE occurred, the follow-
ing KE can be initiated within a very narrow time window. 
Moreover, information on its uptake, conversion rates, trans-
port within the brain, and its excretion, can have a significant 
influence on the AO, and such toxicokinetic factors might 
explain the intra- (mouse strains) and inter-species (rodents 
versus non-human primates) differences observed.

Altogether, if data are combined from multiple pub-
lished studies, both rotenone and MPTP show a good 
response–response and temporal concordance. However, 
it remains unclear for MPTP, whether there are doses that 
trigger only early KEs without activating the AO (Table 3). 
Although a wide variety of other complex I inhibitors have 
been described in the literature, these compounds were only 
rarely applied in studies linking information from isolated 
mitochondria, cell culture, and in vivo models.

Link of the MIE to the downstream events 
of the AOP

The MIE involves binding of an inhibitor to complex I, lead-
ing to the inhibition of complex I as KE 1. This appears 
as a rather unambiguous biochemical event but on closer 
inspection, these events are highly complex and a complete 
description and measurement in the context of the overall 
AOP is still missing. Mapping of the exact binding site 
would require confirmation from several independent labo-
ratories, and the same applies to the type of changes in the 
mitochondrial respiratory chain that have a direct influence 
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on downstream events of the AOP. In this context, it is 
important to stress again that complex I inhibition not only 
results in a reduction of mitochondrial electron transport, 
but also in an increase in superoxide formation. It is not 
clear whether all complex I inhibitors trigger these events 
at similar potency and efficacy ratios, and thus, whether all 
complex I inhibitors would lead to a similar activation of 
KE 2 and the AO. Low concentrations of complex I inhibi-
tors were reported to evoke elevated superoxide formation 
by isolated mitochondria without significant influence on 
mitochondrial ATP generation. This aspect is of importance 
in light of observations indicating that in vivo models best 
reflect molecular events typical for PD following low-dose 
and chronic inhibitor infusion (Crawley 1999). These exam-
ples illustrate the necessity for a quantitative assessment of 
the respective contribution of declined mitochondrial ATP 
generation and elevated mitochondrial superoxide formation 
upon complex I inhibition to neurodegeneration in models 
of different complexity (isolated mitochondria, cell cultures, 
in vivo models). The involvement of superoxide formation 
deserves even more attention, considering reports that illus-
trate a negative feedback inhibition of complex I by superox-
ide. As a consequence of the current inadequate knowledge 
on the roles of ATP and superoxide, defined no-effect levels 
for complex I inhibitors have not yet been established.

Potential branching of the AOP downstream 
of mitochondrial events

Impaired proteostasis (KE 3) comprises several complex 
biological processes involved in the formation, localiza-
tion, and removal of proteins, in protein assembly (up 
to organelles), and in the removal of misfolded protein 
aggregates. Disturbance of proteostasis may follow dif-
ferent patterns. For example, axonal transport may be dis-
turbed, while processes such as proteasomal degradation 
and removal of aggregated proteins function well. Alter-
natively, CMA may be disturbed, while other processes 
such as axonal transport maintain their functionality. At 
present, the literature provides mainly information on iso-
lated aspects of KE 3, such as UPS and CMA activities. 
In the future, studies that focus on the particular role of 
these events in the AOP and compare different proteo-
stasis processes would be desirable. At present, the KER 
linking mitochondrial dysfunction (KE 2) and impaired 
proteostasis (KE 3) and the KER linking impaired pro-
teostasis (KE 3) and degeneration of DA neurons (KE 4) 
are characterized by a lack of quantitative threshold data 
from independent laboratories and complementary model 
systems. Such quantitative data would allow a sharper 
definition of the relationship between the respective KEs 
(when  KEup triggers  KEdown). The majority of information 
on impaired proteostasis included in the present AOP is 

Table 3  Response–response and temporal concordance table for rotenone and MPTP/MPP+

Overview on the sequential concentration and time-dependent initiation of the individual key events. +, low severity score; ++, intermediate 
severity score; +++, high severity score. References: [1] Choi et al. (2008), [2] Betarbet et al. (2006), [3] Chou et al. (2010), [4] Barrientos and 
Moraes (1999), [5] Okun et al. (1999), [6] Betarbet et al. (2000), [7] Fornai et al. (2005), [8] Thomas et al. (2012)

Rotenone concentration KE 1 inhibition of C I KE 2 mitochon-
drial dysfunction

KE 3 impaired 
proteostasis

KE 4 degen-
eration of DA 
neurons

AO Parkinsonian motor 
deficits

5–10 nM in vitro [1] [+]
4–72 h [1]

[+]
4–72 h [4]

[+]
24 h [3]

– –

20–30 nM ex vivo, rat 
brain concentration 
[4–5–2–6]

[++]
4–72 h (4–5)

[++]
4–72 h [4–5]

[++]
24 h [3–2–6]

[++]
5 weeks [2–6]

[+++]
5 weeks [2–6]

100 nM in vitro [4] [+++]
4–72 h [4]

[+++]
4–72 h [4]

[+++]
24 h [3]

Above the maxi-
mum tolerated 
dose in vivo

[2-6]

Above the maximum
tolerated dose in vivo
[2-6]

MPTP administered 
dose

MPP+ brain concen-
tration

KE 1 inhibition 
of C I

KE 2 Mitochon-
drial dysfunc-
tion

KE 3 impaired 
proteostasis

KE 4 degeneration of 
DA neurons of nigros-
triatal pathway

AO Parkinsonian 
motor symptoms

1 mg/kg sc infusion [1] – – – [+]
4 weeks[1]

[+]
4 weeks [1]

No effect

5 mg/kg sc infusion [1] – – – [++]
4 weeks [1]

[++]
4 weeks [1]

[+++]
4 weeks [1]

20–30 mg/kg sporadic 
ip injection (4 times 
every 2 h) [2, 1]

47 μM [2]
12 μM [1]

[+++]
4 h [2]

[+++]
4 h [2]

[+++]
4 weeks [1]

[+++]
1–4 weeks [2,1]

[+++]
4 weeks [1]
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based on studies with an explicit focus on the PD-associ-
ated protein ASYN, but not on the global cellular imbal-
ance between the formation and degradation of misfolded 
proteins.

A further notable aspect is that KER 7 provides a direct 
link between mitochondrial dysfunction (KE 2) and the 
degeneration of DA neurons (KE 4), hereby circumvent-
ing KE 3 (impaired proteostasis). The rationale for KER 7 
is based on observations indicating a direct link between 
KE 2 and KE 4 under conditions of severe mitochondrial 
dysfunction, e.g., evoked by an almost complete inhibition 
of complex I.

Feed‑forward loop involving neuroinflammation

In contrast to the standard unidirectional chain of events 
requested by OECD guidelines for the organization of an 
AOP, the present AOP included a positive feed-forward 
loop involving neuroinflammation (KE 5). The inclusion 
of neuroinflammation as an independent KE was neces-
sary and justified, as neuroinflammation alone is sufficient 
to evoke DA neurodegeneration, and neuroinflammation 
can be triggered by complex I inhibitors. However, quan-
titative information on the extent and type of neuroinflam-
mation is currently not available. Furthermore, significant 
species differences with respect to the quantitative contri-
bution of neuroinflammation and the mediators involved 
in DA neurodegeneration have been reported. In rodents, 
MPTP/MPP+-evoked neuroinflammation is mainly self-
limiting after the acute phase of neurodegeneration, while 
it persists for years and even decades in monkey models 
and in humans. Despite serious attempts, it has not been 
possible to determine whether neuroinflammation occurs 
before or after neurodegeneration. The most likely reason 
for this is that low levels of neurodegeneration trigger neu-
roinflammation, and that neuroinflammation then triggers 
more neurodegeneration, so that these two events form a 
self-perpetuating vicious cycle (Schildknecht et al. 2017). 
The feed-forward loop depicted in the AOP is the best rep-
resentation of this pathogenic situation. In this context, it is 
important to note that other feed-forward loops play a role 
in this AOP. They are somewhat less prominent and have not 
been graphically represented, as they could be considered as 
modulatory events that are covered in the text descriptions. 
For instance, a self-amplifying feed-forward loop includes 
mutual interactions between mitochondrial dysfunction and 
impaired proteostasis. Experimental evidence suggests that 
disturbed proteostasis affects mitochondrial function (Sherer 
et al. 2002). Such effects require more attention, if this AOP 
is used as basis for construction of a quantitative AOP or for 
a systems biology model.

Human disease symptom as AO

It is important to distinguish between PD (a complex human 
disease with multiple symptoms and most likely multiple 
etiologic factors) and parkinsonian motor deficits (one dis-
tinct and sharply circumscribed feature of PD, but also of 
poisoning). A disease cannot be an AO, but a defined defect, 
just as a certain type of motor disturbance can be an AO. The 
type of motor dysfunction of interest here is characterized by 
problems with movement initiation and termination, much 
more than problems with the movement process as such. It is 
called here ‘parkinsonian’ as it is observed in PD, but similar 
defects are also found in other, not PD-related situations. PD 
is considered as a multifactorial disease. Consequently, the 
phenotype (pattern of symptoms) of individuals affected by 
parkinsonian motor deficits can vary significantly. There-
fore, the AO of the present AOP does not cover the entire 
spectrum of PD-associated phenotypes. Other AOP would 
need to cover these, and they may have entirely different 
MIE and KEs.

Overall judgment and incorporation in larger 
networks

One of the cardinal aspects in the evaluation of an AOP 
is the question whether activation of downstream KEs, or 
the AO, can be prevented by experimental interference with 
an upstream KE. The essentiality evidence is important to 
assess the relative level of confidence of the AOP and, when 
considering all the elements on a rank order, it is secondary 
only to the biological plausibility for the KERs. Evidence 
of essentiality was considered “strong” if direct evidence 
was available in the literature from specifically designed 
experimental studies illustrating that  KEup was essential for 
at least one  KEdown or the AO. Evidence was considered 
“moderate” if only indirect observations were available in 
the literature, illustrating that  KEup was essential for at least 
one  KEdown or the AO. In this case, the experiments could 
not directly address the essentiality of  KEup, but instead e.g., 
a modulatory factor for  KEup. In other cases, a  KEup was 
directly modified, but the tool used was somehow ambigu-
ous or only shown to work by correlation (not intervention). 
For instance, different approaches to block events associ-
ated with (or modulating) neuroinflammation by knockout 
of mediators (e.g., TNF-α) or by enzyme inhibition (e.g., 
cyclooxygenase) were found to prevent neurodegeneration. 
Evidence was considered “weak” if the available observa-
tions were contradicting, or if the approaches chosen were 
indirect and could be interpreted in different ways. Descrip-
tion of the elements supporting essentiality are here embed-
ded in the text for empirical support, a summary of the key 
evidence and the trend for their weight is reported in Table 2. 
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According to this rule-set, the evidence for essentiality of 
KEs 1, 2, and 4 was considered “strong”, while the evidence 
for essentiality of KEs 3 and 5 was considered “moderate” 
(Table 2).

Although an AOP is an independent unit of information, 
networks of AOP formed by overlapping KEs are envisaged 
as a foundation for toxicological evaluations in the future. 
Quantitative information provided by the individual AOPs 
of an integrated network could provide a valuable basis for 
in silico modeling of cellular networks. For this reason, it is 
important to consider where the present AOP overlaps with 
other AOPs. KE 2 (mitochondrial dysfunction) was identi-
fied in nine other AOPs, where it plays different roles com-
pared with the one described herein. KE 5 (neuroinflamma-
tion) is shared by three other AOPs (Fig. 1). Notably, none 
of these other AOPs has the same AO as described herein.

Regulatory and scientific context

One of the primary objectives of the AOP framework is 
knowledge assembly, i.e., gathering information, attained 
through scientific research by subject-matter experts, for 
its accessibility to regulators during the decision-making 
process. To avoid any misunderstanding, it is important to 
clarify misconceptions about AOPs: (1) risk assessments 
cannot be based on AOPs alone, as they do not address expo-
sure and toxicokinetic issues. AOPs inform on a potential 
hazard, and in this sense, AOP information can be integrated 
together with ADME information in an IATA approach; (2) 
AOPs are not testing strategies. AOPs are mainly assem-
blies of knowledge. This structured and quality-controlled 
information can aid the interpretation of high-throughput 
testing or pathway-based data, in the context of relevant api-
cal hazards; (3) AOPs are not mode of action (MoA) analy-
ses. The MoA framework, as applied in human health risk 
assessment, represents a systematic description and analysis 
of the means through which a specific chemical elicits an 
adverse effect in an organism. AOPs, which are intended to 
be generalizable to any chemical acting on a particular MIE 
(chemical agnostic) can be applied to MoA analysis, but the 
terms are not synonymous; (4) AOPs are not computational 
models. Rather, they are intended to promote qualitative 
understanding of how an alteration in a  KEupstream impacts 
downstream KEs, and consequently provide information that 
may be represented in the form of one or more computa-
tional models (Wittwehr et al. 2017).

With regard to safety evaluation, AOPs may not com-
prehensively predict all toxicological outcomes. They do 
not solve all the challenges of in vitro to in vivo extrapo-
lation. AOPs do not describe every detail of adverse and 
adaptive biology underlying an organism’s response to a 
stressor. They cannot account for every aspect of individual 

variability nor for every environmental or life-history vari-
able that may affect a toxicological outcome in real-world 
settings. They are, in short, simply a means to help organ-
ize what we know about how biological perturbations can 
lead to apical adverse outcomes, and use that information 
to aid regulatory decision-making. In this context, this 
would mean that the present AOP is useful as guidance to 
judge the action of complex I inhibitors, but it cannot help 
to understand other neurotoxicants or pathways that cause 
motor degeneration. As for any complex tool, there is a main 
intended application, which one needs to be aware of. Use 
of the tool for other purposes may yield bad results, but this 
does not mean that the tool is bad for its original purpose.

The regulatory implications of this AOP have already 
been discussed in detail (Ockleford et al. 2017). Based on 
this AOP, it was concluded that if a chemical/pesticide 
triggers the MIE, it should be considered a risk factor for 
the development of PD.

Outlook

The inclusion of an AOP into the AOP Wiki platform 
allows an integration of novel findings into an existing 
AOP. However, this flexibility requires the commitment 
not only from the original authors but also from other 
experts in the field, to continuously adjust the existing 
AOPs. Due to the laborious and time-consuming update 
process, without the “reward” in form of a publication 
authorship, a realistic approach to ensure a contemporary 
integration of novel observations into existing AOPs needs 
to involve a funding program to motivate comprehensive 
and qualified updates in defined intervals. For the moti-
vation of scientists to participate in the development of 
new, or in the update of existing AOPs, promotion of the 
AOP concept to boost its reputation and awareness by the 
scientific community is another essential prerequisite for 
the successful establishment of AOPs as an integral tool in 
modern toxicology. As a consequence of this, regular revi-
sion of AOPs should be envisioned to keep them updated 
in line with the progress made in science, knowledge, and 
methodologies. Without such measures, there is a high risk 
that scientific development and regulatory needs advance 
while individual AOPs become outdated. As this may 
affect regulatory decision-making, it is a serious concern 
that needs to be considered in the future.
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