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Abstract
We specify a general methodological framework for sys-

temic risk measures via multidimensional acceptance sets

and aggregation functions. Existing systemic risk measures

can usually be interpreted as the minimal amount of cash

needed to secure the system after aggregating individual

risks. In contrast, our approach also includes systemic risk

measures that can be interpreted as the minimal amount of

cash that secures the aggregated system by allocating capi-

tal to the single institutions before aggregating the individ-

ual risks. An important feature of our approach is the possi-

bility of allocating cash according to the future state of the

system (scenario-dependent allocation). We also provide

conditions that ensure monotonicity, convexity, or quasi-

convexity of our systemic risk measures.
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1 INTRODUCTION

The financial crisis has dramatically demonstrated that traditional risk management strategies of finan-

cial systems, which predominantly focus on the solvency of individual institutions as if they were

in isolation, insufficiently capture the perilous systemic risk that is generated by the interconnected-

ness of the system entities and the corresponding contagion effects. This has brought awareness of

the urgent need for novel approaches that capture systemic riskiness. A large part of the current lit-

erature on systemic financial risk is concerned with the modeling structure of financial networks, the

analysis of the contagion, and the spread of a potential exogenous (or even endogenous) shock into

the system. For a given financial (possibly random) network and a given random shock, one then
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determines the “cascade” mechanism that generates possibly many defaults. This mechanism often

requires a detailed description of the balance sheet of each institution; assumptions on the interbank

network and exposures, on the recovery rate at default, on the liquidation policy; the analysis of direct

liabilities, bankruptcy costs, cross-holdings, leverage structures, fire sales, and liquidity freezes.

These approaches may also be relevant from the viewpoint of a policy maker that has to intervene

and regulate the banking system to reduce the risk that, in case of an adverse (local) shock, a substantial

part or even the complete system breaks down. However, once such a model for the financial network

has been identified and the mechanism for the spread of the contagion determined, one still has to

understand how to compare the possible final outcomes in a reasonable way or, in other words, how

to measure the risk carried by the global financial system. This is the focus of our approach, as we

measure the risk embedded in a financial system taking as primitive the vector 𝐗 = (𝑋1,… , 𝑋𝑁 ) of

changes in the value to the horizon 𝑇 , where 𝑋𝑖 is interpreted as the future gain if 𝑋𝑖 is positive or as

the future loss if𝑋𝑖 is negative of institution 𝑖. Such profit and loss1 is typically uncertain and therefore

it will be modeled by a random variable 𝑋𝑖(𝜔) on some space of possible scenarios 𝜔 ∈ Ω.

Our approach is close in spirit to the “classical” conceptual framework of univariate monetary risk

measures initiated by the seminal paper by Artzner et al. (1999) and the aim of this paper is to extend

and generalize such univariate framework to a multivariate setting that takes into account not only one

single institution but a complete system. More precisely, we specify a general methodological frame-

work to design systemic risk measures via multivariate acceptance sets, which is very flexible and

comprises most of the existing systemic risk measures proposed in the literature. In particular, it con-

tains the popular class of systemic risk measures that can be interpreted as the minimal amount of cash

needed to secure the system after aggregating the 𝑁 individual risks 𝐗 into some univariate system-

wide risk by some aggregation rule; see Chen, Iyengar, and Moallemi (2013), Kromer, Overbeck, and

Zilch (2013), and Hoffmann, Meyer-Brandis, and Svindland (2016, 2018) for a structural analysis of

this class. However, beyond this class, our approach offers various other interesting ways and exten-

sions to design systemic risk measures. In particular, one of its most interesting features is that it also

includes systemic risk measures that can be interpreted as the minimal amount of cash that secures

the aggregated system by allocating capital to the single institutions before aggregating the individual

risks. Further, we include the possibility of generalized (random) admissible assets to secure the system

that allows for the allocation of cash according to the future state of the system (scenario-dependent

allocation). This is particularly interesting from the viewpoint of a lender of last resort who might be

interested in determining today the total capital needed to secure the system, and then, in the future, can

inject the capital where it serves the most in response to which scenario has been realized. Through-

out the paper, we will pay special attention to the analysis and examples of this family of systemic risk

measures. The examples will also show that scenario-dependent allocations permit to take into account

in a natural way the dependence structure of the risk vector 𝐗.

There is a huge literature on systemic risk, which takes into account different points of view on

the subject. For empirical studies on banking networks, we refer, for example, to Craig and von Peter

(2014), Boss, Elsinger, Summer, and Thurner (2004), and Cont, Moussa, and Santos (2013). Inter-

bank lending has been studied via interacting diffusions and mean field approach in several papers

such as Fouque and Sun (2013), Fouque and Ichiba (2013), Carmona, Fouque, and Sun (2015), Kley,

Klüppelberg, and Reichel (2015), and Battiston, Delli Gatti, Gallegati, Greenwald, and Stiglitz (2012).

Among the many contributions on systemic risk modeling, we mention here the classical contagion

model proposed by Eisenberg and Noe (2001); the default model of Gai and Kapadia (2010b); the

illiquidity cascade models of Gai and Kapadia (2010a), Hurd, Cellai, Melnik, and Shao (2014), and

Lee (2013); the asset fire-sale cascade model by Cifuentes, Ferrucci, and Shin (2005) and Cacci-

oli, Shrestha, Moore, and Farmer (2014); as well as the model in Weber and Weske (2017) that
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additionally includes cross-holdings. Further works on network modeling are Amini, Cont, and Minca

(2016), Rogers and Veraart (2013), Amini, Filipovic, and Minca (2014), Gleeson, Hurd, Melnik, and

Hackett (2013), Battiston and Caldarelli (2013), Detering, Meyer-Brandis, and Panagiotou (2016), and

Detering, Meyer-Brandis, Panagiotou, and Ritter (2016). See also the references therein. For an exhaus-

tive overview on the literature on systemic risk, we refer the reader to the recent volumes of Hurd (2016)

and of Fouque and Langsam (2013).

The structure of the paper is the following. In Section 2, starting from the well-known formulation

of univariate risk measures, we gradually motivate and develop our framework for systemic risk mea-

sures defined via multivariate acceptance sets. In Section 3, we lay the theoretical foundations of our

approach. In particular, we study the properties of monotonicity and quasi-convexity (or convexity) of

systemic risk measures. In Section 4, we analyze various families of systemic risk measures where the

risk measurement is defined by aggregating the vector of risk factors into some system-wide univariate

risk and then testing acceptability with respect to some one-dimensional acceptance set as in (2.16).

Section 5 investigates the interesting class of systemic risk measures that are defined in terms of a

set  of scenario-dependent allocations as in (2.10). Then, we present two concrete examples within

this class of systemic risk measures in Sections 6 and 7. In Section 6, we look at Gaussian systems

and consider both deterministic cash allocations as well as a certain class of random cash allocations.

In Section 7, we introduce an example on a finite probability space, where we are able to compute

explicitly systemic risk measures for very general scenario-dependent cash allocations.

2 SYSTEMIC RISK MEASURES

2.1 From one-dimensional to 𝑵-dimensional risk profiles
In this subsection, we review the literature on risk measurement based on acceptance sets, both in

the traditional one-dimensional setting and in the case of 𝑁 interacting financial institutions. Here,

we denote with 0(ℝ𝑁 ) ∶= 0(Ω, ;ℝ𝑁 ), 𝑁 ∈ ℕ, the space of ℝ𝑁 -valued random variables on the

probability space (Ω, ,ℙ).
Traditional risk management strategies evaluate the risk 𝜂(𝑋𝑖) of each institution 𝑖 ∈ {1,…𝑁} by

applying a univariate monetary risk measure 𝜂 to the single financial position 𝑋𝑖. A monetary risk

measure (see Föllmer & Schied, 2004) is a map 𝜂 ∶ 0(ℝ) → ℝ that can be interpreted as the minimal

capital needed to secure a financial position with payoff 𝑋 ∈ 0(ℝ), i.e., the minimal amount 𝑚 ∈ ℝ
that must be added to 𝑋 in order to make the resulting (discounted) payoff at time 𝑇 acceptable

𝜂(𝑋) ∶= inf{𝑚 ∈ ℝ ∣ 𝑋 + 𝑚 ∈ 𝔸}, (2.1)

where the acceptance set 𝔸 ⊆ 0(ℝ) is assumed to be monotone; i.e., 𝑋 ≥ 𝑌 ∈ 𝔸 implies 𝑋 ∈ 𝔸.

In addition to decreasing monotonicity, the characterizing feature of these maps is the cash additivity

property

𝜂(𝑋 + 𝑚) = 𝜂(𝑋) − 𝑚, for all 𝑚 ∈ ℝ. (2.2)

Under the assumption that the set 𝔸 is convex (respectively, is a convex cone) the maps in (2.1) are con-

vex (respectively, convex and positively homogeneous) and are called convex (respectively, coherent)

risk measures; see Artzner et al. (1999), Föllmer and Schied (2002), and Frittelli and Rosazza Gianin
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(2002). The principle that diversification should not increase the risk is mathematically translated not

necessarily with the convexity property but with the weaker condition of quasi-convexity

𝜂(𝜆𝑋 + (1 − 𝜆)𝑌 ) ≤ 𝜂(𝑋) ∨ 𝜂(𝑌 ).

As a result, in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2010) and Frittelli and Mag-

gis (2014), the only properties assumed in the definition of a quasi-convex risk measure are monotonic-

ity and quasi-convexity. Such risk measures can always be written as

𝜂(𝑋) ∶= inf{𝑚 ∈ ℝ ∣ 𝑋 ∈ 𝔸𝑚}, (2.3)

where each set 𝔸𝑚 ⊆ 0(ℝ) is monotone and convex, for each𝑚. Here, 𝔸𝑚 is interpreted as the class of

payoffs carrying the same risk level 𝑚. Contrary to the convex, cash additive case where each random

variable is binary cataloged as acceptable or as not acceptable, in the quasi-convex case one admits

various degrees of acceptability, described by the risk level 𝑚; see Cherny and Madan (2009). Further-

more, in the quasi-convex case, the cash additivity property will not hold in general and one loses a

direct interpretation of𝑚 as the minimal capital required to secure the payoff𝑋, but preserves the inter-

pretation of 𝔸𝑚 as the set of positions acceptable for the given risk level 𝑚. By selecting 𝔸𝑚 ∶= 𝔸−𝑚,

the risk measure in (2.1) is clearly a particular case of the one in (2.3).

However, as mentioned in the introduction, traditional risk management by univariate risk measures

insufficiently captures systemic risk, and a rapidly growing literature is concerned with designing more

appropriate risk measures for financial systems. A systemic risk measure is then a map 𝜌 ∶ 0(ℝ𝑁 ) →
ℝ that evaluates the risk 𝜌(𝐗) of the complete system 𝐗 = (𝑋1,… , 𝑋𝑁 ). Most of the systemic risk

measures in the existing literature are of the form

𝜌(𝐗) = 𝜂(Λ(𝐗)), (2.4)

where 𝜂 ∶ 0(ℝ) → ℝ is a univariate risk measure and

Λ ∶ ℝ𝑁 → ℝ

is an aggregation rule that aggregates the 𝑁-dimensional risk factor 𝐗 into a univariate risk factor

Λ(𝐗). Some examples of aggregation rules found in the literature are the following:

(i) One of the most common ways to aggregate multivariate risk is to simply sum the single risk fac-

tors: Λ(𝐱) = ∑𝑁
𝑖=1 𝑥𝑖, 𝐱 = (𝑥1,… , 𝑥𝑁 ) ∈ ℝ𝑁 . Also, in the literature on systemic risk measures,

there are examples using this aggregation rule, like, for example, the systemic expected shortfall
introduced in Acharya, Pedersen, Philippon, and Richardson (2010), or the contagion value at risk
(CoVaR) introduced in Adrian and Brunnermeier (2011). However, while summing up profit and

loss positions might be reasonable from the viewpoint of a portfolio manager where the portfolio

components compensate each other, this aggregation rule seems inappropriate for a financial sys-

tem where cross-subsidization between institutions is rather unrealistic. Further, if the sum was

a suitable aggregation of risk in financial systems, then the traditional approach of applying a

univariate coherent risk measure 𝜂 to the single risk factors would be sufficiently prudent in the

sense that by sublinearity it holds that 𝜂(
∑𝑁
𝑖=1𝑋𝑖) ≤ ∑𝑁

𝑖=1 𝜂(𝑋𝑖).
(ii) One possible aggregation that takes the lack of cross-subsidization between financial institutions

into account is to sum up losses over a threshold only: Λ(𝐱) = ∑𝑁
𝑖=1 −(𝑥𝑖 − 𝑑𝑖)

−, where 𝑥− ∶=
−min(𝑥, 0). This kind of aggregation is for example used in Huang, Zhou, and Zhu (2009) and
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BIAGINI ET AL. 333

Lehar (2005). See also Brunnermeier and Cheridito (2013) for an extension of this type of aggre-

gation rule that also considers a certain effect of gains, asΛ(𝐱) = ∑𝑁
𝑖=1 −𝛼𝑖𝑥

−
𝑖
+
∑𝑁
𝑖=1 𝛽𝑖(𝑥𝑖 − 𝑣𝑖)

+

for some 𝛼𝑖, 𝛽𝑖, 𝑣𝑖 ∈ ℝ+, 𝑖 = 1,… , 𝑁 .

(iii) Beside the lack of cross-subsidization in a financial system, the aggregation rule may also account

for contagion effects that can considerably accelerate system-wide losses resulting from an initial

shock. Motivated by the structural contagion model of Eisenberg and Noe (2001), Chen et al.

(2013) introduce an aggregation function that explicitly models the net systemic cost of the con-

tagion in a financial system by defining the aggregation rule

Λ𝐶𝑀 (𝑥) = min
𝑦𝑖≥𝑥𝑖+∑𝑁

𝑗=1 Π𝑖𝑗𝑦𝑗 ,∀𝑖=1,…,𝑁, 𝑦∈ℝ𝑁+

{
𝑁∑
𝑖=1

𝑦𝑖

}
.

Here, Π = (Π𝑖𝑗)𝑖,𝑗=1,…,𝑁 represents the relative liability matrix; i.e., firm 𝑖 has to pay the propor-

tion Π𝑖𝑗 of its total liabilities to firm 𝑗.

An axiomatic characterization of systemic risk measures of the form (2.4) on a finite state space

is provided in Chen et al. (2013); see also Kromer et al. (2013) for the extension to a general proba-

bility space and Hoffmann et al. (2016) for a further extension to a conditional setting. Also, in these

references, further examples of possible aggregation functions can be found.

Remark 2.1. The above examples of aggregation functions clarify that, depending on the model and

aggregation approach, the primitive 𝐗 in our systemic risk measure might be interpreted as future

profit and loss positions. In the context of the first two aggregation rules, 𝐗 denotes the vector that

already includes the potential risk of a contagion spread into the system. Thus, in this situation, 𝐗
already includes a reduced-form modeling of the potential contagion channels. On the other hand, in

the context of the third aggregation rule, 𝐗 is interpreted as the future profit and loss positions before

the contagion takes place and the contagion mechanism will explicitly be embedded in the risk measure

via the aggregation function. Either way, our scope is to provide a consistent criterion to assess whether

one possible vector 𝐗 is riskier than another.

If 𝜂 in (2.4) is a monetary risk measure, it follows from (2.1) that we can rewrite the systemic risk

measure 𝜌 in (2.4) as

𝜌(𝐗) ∶= inf{𝑚 ∈ ℝ ∣ Λ(𝐗) + 𝑚 ∈ 𝔸} . (2.5)

Thus, presuming Λ(𝐗) represents some loss, systemic risk can again be interpreted as the minimal

cash amount that secures the system when it is added to the total aggregated system loss Λ(𝐗). If Λ(𝐗)
does not allow for an interpretation as cash, the risk measure in (2.5) has to be understood as some

general risk level of the system rather than some capital requirement. Similarly, from (2.3), if 𝜂 is a

quasi-convex risk measure, the systemic risk measure 𝜌 in (2.4) can be rewritten as

𝜌(𝐗) ∶= inf{𝑚 ∈ ℝ ∣ Λ(𝐗) ∈ 𝔸𝑚}. (2.6)

Again, one first aggregates the risk factors via the function Λ and in a second step one computes the

minimal risk level associated to Λ(𝐗).

Example 2.2. Most of the existing systemic risk measures in the literature can be embedded in

our framework by the formulation (2.5) (first aggregation, then applying a univariate risk mea-

sure). For example, the distress insurance premium (DIP; Black, Correa, Huang, & Zhou, 2016;
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see also Huang et al., 2009) given by 𝐸𝑄[
∑
𝑖 𝑋𝑖𝟙{∑𝑖 𝑋𝑖≤𝐿𝑚𝑖𝑛}] is obtained from (2.5) by putting

Λ(𝐱) = ∑
𝑖 𝑥𝑖𝟙{∑𝑖 𝑥𝑖≤𝐿𝑚𝑖𝑛} and taking 𝔸 as the acceptance set associated to the univariate risk mea-

sure 𝜂 given by the expected shortfall with respect to the risk-neutral measure 𝑄. So, DIP measures

the risk-neutral expected systemic losses that exceed a certain threshold 𝐿𝑚𝑖𝑛.

The CoVar (Adrian & Brunnermeier, 2011) with respect to institution 𝑗 is given by

𝑉 𝑎𝑅(
∑
𝑖 𝑋𝑖|𝑋𝑗 = 𝑉 𝑎𝑅(𝑋𝑗)). This can be computed for (𝑋1,… , 𝑋𝑛) from (2.5) by putting Λ(𝐱) =∑

𝑖 𝑥𝑖 and taking 𝔸 as the acceptance set associated to the univariate risk measure 𝜂 given by the VaR

with respect to the conditional probability distribution given the event {𝑋𝑗 = 𝑉 𝑎𝑅(𝑋𝑗)}.

The marginal expected shortfall (MES; Acharya et al., 2010) with respect to institution 𝑗 is defined

as 𝐸[𝑋𝑗|∑𝑖 𝑋𝑖 ≤ 𝑉 𝑎𝑅(∑𝑖 𝑋𝑖)]. Here, Λ(𝐱) = 𝑥𝑗 and 𝔸 is the acceptance set associated with the uni-

variate risk measure 𝜂 given by the expectation with respect to the condition probability distribution

given the event {
∑
𝑖 𝑋𝑖 ≤ 𝑉 𝑎𝑅(∑𝑖 𝑋𝑖)}. Note that DIP measures systemic risk in an unconditional

setting; i.e., it takes the probability of a systemic loss into account, while CoVar and MES measure

systemic risk conditional on the event that a loss has occurred. More precisely, CoVar measures the

impact of realized distress of institution 𝑗 on the system, while MES measures the impact of realized

distress of the system on institution 𝑗. For other examples of systemic risk measures, we also refer to

Benoit, Colliard, Hurlin, and Perignon (2017).

While the approach prescribed in (2.5) and (2.6) defines an interesting class of systemic risk mea-

sures, one could think about meaningful alternative or extended procedures of measuring systemic risk

not captured by (2.5) or (2.6). In the following subsections, we extend the conceptual framework for

systemic risk measures via acceptance sets step by step in order to gradually include certain novel key

features before we reach our general formulation of systemic risk measures via multivariate acceptance

sets.

2.2 First add capital, then aggregate
The interpretation of (2.5) to measure systemic risk as minimal capital needed to secure the system after
aggregating individual risks is, for example, meaningful in the situation where some kind of rescue

fund will be installed to repair damage from systemic loss. However, for instance, from the viewpoint

of a regulator who has the possibility to intervene at the level of the single institutions before contagion

effects generate further losses, it might be more relevant to measure systemic risk as the minimal capital

that secures the aggregated system by injecting the capital into the single institutions before aggregating
the individual risks. This way of measuring systemic risk can be expressed by

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑚𝑖

|||||| 𝐦 = (𝑚1,… , 𝑚𝑁 ) ∈ ℝ𝑁, Λ(𝐗 +𝐦) ∈ 𝔸

}
. (2.7)

Here, the amount 𝑚𝑖 is added to the financial position 𝑋𝑖 of institution 𝑖 ∈ {1,… , 𝑁} before the cor-

responding total loss Λ(𝐗 +𝐦) is computed. For example, considering the aggregation function Λ𝐶𝑀
from above it becomes clear that injecting cash first might prevent further losses that would be gen-

erated by contagion effects. The systemic risk is then measured as the minimal total amount
∑𝑁
𝑖=1 𝑚𝑖

injected into the institutions to secure the system.

Independently, a related concept in the context of set-valued systemic risk measures has been devel-

oped in Feinstein, Rudloff, and Weber (2017). They also use acceptance sets in building the notion of

systemic risk measures and admit the possibility of injecting capital before aggregating individual risks

(aggregation mechanism sensitive to capital levels, in the language of Feinstein et al., 2017). However,
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the two approaches are difficult to compare essentially because they rely on different risk measures

(set-valued risk measures in Feinstein et al., 2017, vs. real-valued risk measures in our paper). Fur-

thermore, only deterministic allocations are allowed in Feinstein et al. (2017), while we also admit

scenario-dependent allocations. Notice also that Feinstein et al. (2017) recognize the need for extract-

ing a real-valued risk measure with minimal properties (called “orthant risk measure”) from a set-

valued risk measure. Even in this form, such orthant risk measure cannot include our formulation of

risk measures, for the reason explained above. As illustrated in the examples of Sections 6 and 7, one

of the consequences of our approach is that the dependence structure of the risk vector 𝐗 can be taken

into account due to the flexibility of selecting scenario-dependent allocations, a feature illustrated in

the next section and absent in Feinstein et al. (2017).

Remark 2.3. Mainly, the literature on systemic risk can be divided into contributions to two dif-

ferent challenges: The first one concerns the definition and identification of an appropriate mea-

sure of the overall systemic risk in a financial system. Having identified the systemic risk, a

second question is then how to allocate fair shares of the total systemic risk to the individual insti-

tutions and to establish a ranking of the institutions in terms of systemic relevance. The main pur-

pose of this paper is to contribute to the former question and to introduce a general methodology to

design systemic risk measures. However, an interesting question that arises for a systemic risk mea-

sure defined as in (2.7) is whether it delivers, in addition to a measure of total systemic risk, also

a potential ranking of the institutions. Indeed, if 𝐦∗ = (𝑚∗
1,… , 𝑚∗

𝑁
) is such that 𝜌(𝐗) = ∑𝑁

𝑖=1 𝑚
∗
𝑖
,

one could be tempted to interpret the ordered cash allocations 𝑚∗
𝑖1
≥ ⋯ ≥ 𝑚∗

𝑖𝑁
as a ranking of indi-

vidual risk shares, and the essential question is whether this ranking can be justified as being fair.

We will touch on this aspect in the examples in Sections 6 and 7, but a comprehensive analysis

of this interesting and challenging question is beyond the scope of this paper and is left for future

research.

2.3 First add scenario-dependent allocation, then aggregate
One main novelty of this paper is that we want to allow for the possibility of adding to 𝐗 not merely a

vector 𝐦 = (𝑚1,… , 𝑚𝑁 ) ∈ ℝ𝑁 of cash but a random vector

𝐘 ∈  ⊆ 0(ℝ𝑁 ),

which represents admissible assets with possibly random payoffs at time 𝑇 , in the spirit of Frittelli and

Scandolo (2006). To each 𝐘 ∈ , we assign a measure 𝜋(𝐘) of the risk (or cost) associated with 𝐘
determined by a monotone increasing map

𝜋 ∶  → ℝ . (2.8)

This leads to the following extension of (2.7):

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Λ(𝐗 + 𝐘) ∈ 𝔸} . (2.9)

Considering a general set  in (2.9) allows for more general measurement of systemic risk than the

cash needed today for each institution to secure the system. For example,  could be a set of (vectors

of) general admissible financial assets that can be used to secure a system by adding 𝐘 to 𝐗 component-

wise, and 𝜋(𝐘) is a valuation of 𝐘. Another example that we analyze in more detail in this paper and
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336 BIAGINI ET AL.

that is particularly interesting from the viewpoint of a lender of last resort is the following class of sets

:

 ⊆
{

𝐘 ∈ 0(ℝ𝑁 )
||||||
𝑁∑
𝑛=1

𝑌 𝑛 ∈ ℝ

}
=∶ ℝ, (2.10)

and 𝜋(𝐘) = ∑𝑁
𝑛=1 𝑌

𝑛. Here, the notation
∑𝑁
𝑛=1 𝑌

𝑛 ∈ ℝ means that
∑𝑁
𝑛=1 𝑌

𝑛 is equal to some determin-

istic constant in ℝ, even though each single 𝑌 𝑛, 𝑛 = 1,… , 𝑁 , is a random variable. Then, as in (2.7),

the systemic risk measure

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑛=1

𝑌 𝑛
|||||| 𝐘 ∈ , Λ(𝐗 + 𝐘) ∈ 𝔸

}
(2.11)

can still be interpreted as the minimal total cash amount
∑𝑁
𝑛=1 𝑌

𝑛 ∈ ℝ needed today to secure the sys-

tem by distributing the cash at the future time 𝑇 among the components of the risk vector 𝐗. However,

contrary to (2.7), in general, the allocation 𝑌 𝑖(𝜔) to institution 𝑖 does not need to be decided today, but

depends on the scenario𝜔 that has been realized at time 𝑇 . This corresponds to the situation of a lender

of last resort who is equipped with a certain amount of cash today and who will allocate it according

to where it serves the most depending on the scenario that has been realized at 𝑇 . Restrictions on the

possible distributions of cash are given by the set . For example, for  = ℝ𝑁 , the situation corre-

sponds to (2.7) where the distribution is already determined today, while for  = ℝ, the distribution

can be chosen completely freely depending on the scenario𝜔 that has been realized (including negative

amounts, i.e., withdrawals of cash from certain components).

Sections 5–7 will be devoted to the analysis and concrete examples of the class of systemic risk

measures using a set  as in (2.10). We will see that in the case  = ℝ where unrestricted cross-

subsidization is possible, the canonical way of measuring systemic risk measure is of the form (2.4)

with aggregation rule Λ(𝐱) = ∑𝑁
𝑖=1 𝑥𝑖, 𝐱 ∈ ℝ𝑁 , i.e., to apply a univariate risk measure to the sum

of the risk factors. Another interesting feature of allowing scenarios depending allocations of cash

𝐘 ∈  ⊆ ℝ is that, in general, the systemic risk measure will take the dependence structure of

the components of 𝐗 into account even though acceptable positions might be defined in terms of

the marginal distributions of𝑋𝑖, 𝑖 = 1,… , 𝑁 only. For instance, the example in Section 6 employs the

aggregation rule Λ(𝐱) = ∑𝑁
𝑖=1 −(𝑥𝑖 − 𝑑𝑖)

−, 𝐱 ∈ ℝ𝑁, 𝑑𝑖 ∈ ℝ, for 𝑖 = 1,… , 𝑁 , and the acceptance set

𝔸𝛾 ∶= {𝑍 ∈ 0(ℝ) ∣ 𝐸[𝑍] ≥ 𝛾} , 𝛾 ∈ ℝ. Then, a risk vector 𝐙 = (𝑍1,… , 𝑍𝑁 ) ∈ 0(ℝ𝑁 ) is accept-

able if and only if Λ(𝐙) ∈ 𝔸, i.e.,

𝑁∑
𝑖=1

−𝐸[(𝑍𝑖 − 𝑑𝑖)−] ≥ 𝛾 ,

which only depends on the marginal distributions of 𝐙. Thus, if we choose  = ℝ𝑁 , then it is obvi-

ous that in this case also the systemic risk measure 𝜌(𝐗) in (2.11) depends on the marginal dis-

tributions of 𝐗 only. If, however, one allows for more general allocations 𝐘 ∈  ⊆ ℝ that might

differ from scenario to scenario, the systemic risk measure will, in general, depend on the multi-

variate distribution of 𝐗, as it can play on the dependence of the components of 𝐗 to minimize

the costs. In the examples of Sections 6 and 7, this feature is explicitly shown, as we provide a

comparison between the risk measure computed with deterministic and with scenario-dependent

allocation.
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BIAGINI ET AL. 337

2.4 Multidimensional acceptance sets
Until now, we have always defined systemic risk measures in terms of acceptability of an aggregated,

one-dimensional system-wide risk. However, not necessarily every relevant systemic risk measure is

of this aggregated type. Consider, for instance, the popular approach (though possibly problematic for

financial systems as explained above) to add single univariate monetary risk measures 𝜂𝑖, 𝑖 = 1,… , 𝑁 ,

i.e.,

𝜌(𝐗) ∶=
𝑁∑
𝑖=1

𝜂𝑖(𝑋𝑖) . (2.12)

In general, the systemic risk measure in (2.12) cannot be expressed in the form (2.9). Denoting by

𝔸𝑖 ⊆ 0(ℝ) the acceptance set of 𝜂𝑖, 𝑖 = 1,… , 𝑁 , one easily sees from (2.1), however, that 𝜌 in (2.12)

can be written in terms of the multivariate acceptance set 𝔸1 ×⋯ ×𝔸𝑁

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑚𝑖

|||||| 𝐦 = (𝑚1,… , 𝑚𝑁 ) ∈ ℝ𝑁, 𝐗 +𝐦 ∈ 𝔸1 ×⋯ × 𝔸𝑁

}
.

Motivated by this example, we extend (2.9) to the formulation of systemic risk measures as the minimal

cost of admissible asset vectors 𝐘 ∈  that, when added to the vector of financial positions 𝐗, makes

the augmented financial positions 𝐗 + 𝐘 acceptable in terms of a general multidimensional acceptance

set  ⊆ 0(ℝ𝑁 )

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , 𝐗 + 𝐘 ∈ } . (2.13)

Note that by putting  ∶= {𝐙 ∈ 0(ℝ𝑁 ) ∣ Λ(𝐙) ∈ 𝔸}, Definition (2.9) is a special case of (2.13).

Also, in analogy to (2.2), we remark that for linear valuation rules 𝜋, the systemic risk measure given

in (2.13) exhibits an extended type of cash invariance in the sense that

𝜌(𝐗 + 𝐘) = 𝜌(𝐗) + 𝜋(𝐘) (2.14)

for 𝐘 ∈  such that 𝐘′ ± 𝐘 ∈  for all 𝐘′ ∈ ; see Frittelli and Scandolo (2006).

2.5 Degree of acceptability
In order to reach the final, most general formulation of systemic risk measures, we assign, in analogy

to (2.3), to each 𝐘 ∈  a set 𝐘 ⊆ 0(ℝ𝑁 ) of risk vectors that are acceptable for the given (random)

vector 𝐘, and define the systemic risk measure by

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , 𝐗 ∈ 𝐘} . (2.15)

Note that analogously to the one-dimensional quasi-convex case (2.3), the systemic risk measures

(2.15) cannot necessarily be interpreted as cash added to the system but, in general, represent some

minimal aggregated risk level 𝜋(𝐘) at which the system 𝐗 is acceptable. The approach in (2.15) is very

flexible and unifies a variety of different features in the design of systemic risk measures. In particular,

it includes all previous cases if we set

𝐘 ∶=  − 𝐘,
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338 BIAGINI ET AL.

where the set  ⊆ 0(ℝ𝑁 ) represents acceptable risk vectors. Then, obviously, (2.13) is obtained from

(2.15).

Another advantage of the formulation in terms of general acceptance sets is the possibility to design

systemic risk measures via general aggregation rules. Indeed, formulation (2.15) includes the case

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Θ(𝐗,𝐘) ∈ 𝔸}, (2.16)

where Θ ∶ 0(ℝ𝑁 ) ×  → 0(ℝ) denotes some aggregation function jointly in 𝐗 and 𝐘. Just select

𝐘 ∶= {𝐙 ∈ 0(ℝ𝑁 ) ∣ Θ(𝐙,𝐘) ∈ 𝔸}. In particular, (2.16) includes both the case “injecting capi-

tal before aggregation” as in (2.7) and (2.9) by putting Θ(𝐗,𝐘) =Λ(𝐗 + 𝐘), and the case “aggrega-

tion before injecting capital” as in (2.5) by putting Θ(𝐗,𝐘) ∶=Λ1(𝐗)+Λ2(𝐘), where Λ1 ∶ 0(ℝ𝑁 ) →
0(ℝ) is an aggregation function and Λ2 ∶  → 0(ℝ) could be, for example, the discounted cost of

𝐘.

Also, again, in analogy to the one-dimensional case (2.3), the more general dependence of the accep-

tance set on 𝐘 in (2.15) allows for multidimensional quasi-convex risk measures. Note that the cash

additivity property (2.14) is then lost in general.

3 DEFINITION OF SYSTEMIC RISK MEASURES
AND PROPERTIES

In this section, we provide the definitions and properties of the systemic risk measures in our setting.

As in Section 2, we consider the set of random vectors

0(ℝ𝑁 ) ∶= {𝐗 = (𝑋1,… , 𝑋𝑁 ) ∣ 𝑋𝑛 ∈ 0(Ω, ,ℙ), 𝑛 = 1,… , 𝑁},

on the probability space (Ω, ,ℙ). We assume that 0(ℝ𝑁 ) is equipped with an order relation ⪰ such

that it is a vector lattice. One such example is provided by the order relation: 𝐗1 ⪰ 𝐗2 if 𝑋𝑖
1 ≥ 𝑋𝑖

2 for

all components 𝑖 = 1,… , 𝑁 , where for random variables in 0(ℝ), the order relation is determined by

ℙ−a.s inequality.

Definition 3.1. Let 𝐗1, 𝐗2 ∈ 0(ℝ𝑁 ).

1. A set  ⊂ 0(ℝ𝑁 ) is ⪰-monotone if 𝐗1 ∈  and 𝐗2 ⪰ 𝐗1 implies 𝐗2 ∈ .

2. A map 𝑓 ∶ 0(ℝ𝑁 ) → 0(ℝ) is ⪰-monotone decreasing if 𝐗2 ⪰ 𝐗1 implies 𝑓 (𝐗1) ≥ 𝑓 (𝐗2). Anal-

ogously for functions 𝑓 ∶ 0(ℝ𝑁 ) → ℝ.

3. A map 𝑓 ∶ 0(ℝ𝑁 ) → ℝ is quasi-convex if

𝑓 (𝜆𝐗1 + (1 − 𝜆)𝐗2) ≤ 𝑓 (𝐗1) ∨ 𝑓 (𝐗2).

A vector 𝐗 = (𝑋1,… , 𝑋𝑁 ) ∈ 0(ℝ𝑁 ) denotes a configuration of risky factors at a future time 𝑇

associated with a system of 𝑁 entities. Let

 ⊆ 0(ℝ𝑁 ).

To each 𝐘 ∈ , we assign a set 𝐘 ⊆ 0(ℝ𝑁 ). The set 𝐘 represents the risk vectors 𝐗 that are

acceptable for the given random vector 𝐘. Let also consider a map

𝜋 ∶  → ℝ ,

so that 𝜋(𝐘) represents the risk (or cost) associated with 𝐘.
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BIAGINI ET AL. 339

We now introduce the concept of monotone and (quasi-) convex systemic risk measure.

Definition 3.2. The systemic risk measure associated with ,𝐘 and 𝜋 is a map 𝜌 ∶ 0(ℝ𝑁 ) → ℝ ∶=
ℝ ∪ {−∞} ∪ {∞}, defined by

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , 𝐗 ∈ 𝐘} . (3.1)

Moreover 𝜌 is called a quasi-convex (respectively, convex) systemic risk measure if it is ⪰-monotone

decreasing and quasi-convex (respectively, convex on {𝜌(𝐗) < +∞}).

In other words, the systemic risk of a random vector 𝐗 is measured by the minimal risk (cost) of

those random vectors 𝐘 that make 𝐗 acceptable.

We now focus on several examples of systemic risk measures of the type (3.1). To guarantee that

such maps are finite-valued, one could consider their restriction to some vector subspaces of 0(ℝ𝑁 )
(for examples 𝑝(ℝ𝑁 ), 𝑝 ∈ [1,∞]) and impose further conditions on the defining ingredients (𝜋, ,

𝐘) of 𝜌. For example, suppose that  and 𝐘 satisfy the two conditions

1. {𝑚𝟏 ∈ℝ𝐍 ∣ 𝑚 ∈ ℝ+, 𝟏 ∶= (1,… , 1)} ⊆ ,

2. −𝑚𝟏 ∈ 𝑚𝟏 and 𝑚𝟏 is a monotone set for each 𝑚 ∈ ℝ+,

then 𝜌 ∶ ∞(ℝ𝑁 ) → ℝ defined by (3.1) satisfies 𝜌(𝐗) < +∞ for all 𝐗 ∈ ∞(ℝ𝑁 ). Indeed, for 𝑚 ∶=
max𝑖 ‖𝑋𝑖‖∞, 𝐗 ≥ −𝑚𝟏 ∈ 𝑚𝟏 implies that 𝐗 ∈𝑚𝟏 and 𝜋(𝑚𝟏) < +∞.

Clearly, other sufficient conditions may be obtained in each specific example of systemic risk mea-

sures considered in the subsequent sections.

We opt to accept the possibility that such maps 𝜌 may assume values ±∞. However, it is not diffi-

cult to find simple sufficient conditions assuring that the systemic risk measure in (3.1) is proper (not

identically equal to +∞). One such example is the condition

if 𝟎 ∈  and 𝟎 ∈ 𝟎 then 𝜌(𝟎) ≤ 𝜋(𝟎) < +∞,

and in this case, we can always obtain 𝜌(𝟎) = 0 by replacing 𝜌(⋅) with 𝜌(⋅) − 𝜌(𝟎). We now consider the

“structural properties” (i.e., monotonicity, quasi-convexity, convexity) of our systemic risk measures

and introduce two sets of conditions (properties (P1), (P2), and (P3) below and the alternative properties

(P2a) and (P3a)) that guarantee that the map in (3.1) is a quasi-convex (or convex) risk measure. In

Section 4, we show that these sets of conditions can be easily checked in some relevant examples

of maps in the form (3.1), where the set 𝐘 is determined from aggregation and one-dimensional

acceptance sets.

We introduce the following properties:

(P1) For all 𝐘 ∈ , the set 𝐘 ⊂ 0(ℝ𝑁 ) is ⪰-monotone.

(P2) For all 𝑚 ∈ ℝ, for all 𝐘1,𝐘2 ∈  such that 𝜋(𝐘1) ≤ 𝑚 and 𝜋(𝐘2) ≤ 𝑚 and for all 𝐗1 ∈ 𝐘1 ,

𝐗2 ∈ 𝐘2 and all 𝜆 ∈ [0, 1], there exists 𝐘 ∈  such that 𝜋(𝐘) ≤ 𝑚 and 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝐘.

(P3) For all 𝐘1,𝐘2 ∈  and all 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and all 𝜆 ∈ [0, 1], there exists 𝐘 ∈  such that

𝜋(𝐘) ≤ 𝜆𝜋(𝐘𝟏) + (1 − 𝜆)𝜋(𝐘𝟐) and 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝐘.

It is clear that property (P3) implies property (P2). Moreover, we have

Lemma 3.3.

(i) If the systemic risk measure 𝜌 defined in (3.1) satisfies the properties (P1) and (P2), then 𝜌 is
⪰-monotone decreasing and quasi-convex.
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340 BIAGINI ET AL.

(ii) If the systemic risk measure 𝜌 defined in (3.1) satisfies the properties (P1) and (P3), then 𝜌 is
⪰-monotone decreasing and convex on {𝜌(𝐗) < +∞}.

Proof. Set

𝐵(𝐗) ∶=
{
𝐘 ∈ 𝐶 ∣ 𝐗 ∈ 𝐘} .

First assume that property (P1) holds and w.l.o.g. suppose 𝐗2 ⪰ 𝐗1 and 𝐵(𝐗1) ≠ ∅. Then, property

(P1) implies that if 𝐗1 ∈ 𝑌 and 𝐗2 ⪰ 𝐗1, then: 𝐵(𝐗1) ⊆ 𝐵(𝐗2). Hence,

𝜌(𝐗1) = inf{𝜋(𝐘) ∣ 𝐘 ∈ 𝐵(𝐗1)} ≥ inf{𝜋(𝐘) ∣ 𝐘 ∈ 𝐵(𝐗2)} = 𝜌(𝐗2),

so that 𝜌 is ⪰-monotone decreasing.

(i) Now assume that property (P2) holds and let 𝐗1,𝐗2 ∈ 0(ℝ𝑁 ) be arbitrarily chosen. For the

quasi-convexity, we need to prove, for any 𝑚 ∈ ℝ, that

𝜌(𝐗1) ≤ 𝑚 and 𝜌(𝐗2) ≤ 𝑚 ⇒ 𝜌(𝜆𝐗1 + (1 − 𝜆)𝐗2) ≤ 𝑚.
By definition of the infimum in the definition of 𝜌(𝐗𝑖), ∀𝜀 > 0, there exist 𝐘𝑖 ∈  such that 𝐗𝑖 ∈𝐘𝑖 and

𝜋(𝐘𝑖) ≤ 𝜌(𝐗𝑖) + 𝜀 ≤ 𝑚 + 𝜀, 𝑖 = 1, 2.

Take any 𝜆 ∈ [0, 1]. Property (P2) guarantees the existence of 𝐙 ∈  such that 𝜋(𝐙) ≤ 𝑚 + 𝜀 and

𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈𝐙. Hence,

𝜌(𝜆𝐗1 + (1 − 𝜆)𝐗2) = inf{𝜋(𝐘) ∣ 𝐘 ∈ , 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝐘}

≤ 𝜋(𝐙) ≤ 𝑚 + 𝜀.

As this holds for any 𝜀 > 0, we obtain the quasi-convexity.

(ii) Assume that property (P3) holds and that𝐗1,𝐗2 ∈ 0(ℝ𝑁 ) satisfy 𝜌(𝐗𝑖) < +∞. Then,𝐵(𝐗𝑖) ≠ ∅
and, as before, ∀𝜀 > 0, there exists 𝐘𝑖 ∈ 0(ℝ𝑁 ) such that 𝐘𝑖 ∈ , 𝐗𝑖 ∈ 𝐘𝑖 and

𝜋(𝐘𝑖) ≤ 𝜌(𝐗𝑖) + 𝜀, 𝑖 = 1, 2. (3.2)

By property (P3), there exists 𝐙 ∈  such that 𝜋(𝐙) ≤ 𝜆𝜋(𝐘𝟏) + (1 − 𝜆)𝜋(𝐘𝟐) and 𝜆𝐗1 + (1 −
𝜆)𝐗2 ∈𝐙. Hence,

𝜌(𝜆𝐗1 + (1 − 𝜆)𝐗2) = inf{𝜋(𝐘) ∣ 𝐘 ∈ , 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝐘}

≤ 𝜋(𝐙) ≤ 𝜆𝜋(𝐘1) + (1 − 𝜆)𝜋(𝐘2)

≤ 𝜆𝜌(𝐗1) + (1 − 𝜆)𝜌(𝐗2) + 𝜖,

from (3.2). As this holds for any 𝜀 > 0, the map 𝜌 is convex on {𝜌(𝐗) < +∞}. □

We now consider the following alternative properties:

(P2a) For all𝐘1,𝐘2 ∈ ,𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1], there exists 𝛼 ∈ [0, 1] such that 𝜆𝐗1 +
(1 − 𝜆)𝐗2 ∈𝛼𝐘1+(1−𝛼)𝐘2 .
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BIAGINI ET AL. 341

(P3a) For all 𝐘1,𝐘2 ∈ , 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1], it holds that 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈𝜆𝐘1+(1−𝜆)𝐘2 .

It is clear that property (P3a) implies property (P2a). Furthermore, we introduce the following prop-

erties for  and 𝜋:

(P4)  is convex,

(P5) 𝜋 is quasi-convex, and

(P6) 𝜋 is convex.

We have the following:

Lemma 3.4.

(i) Under the conditions (P1), (P2a), (P4), and (P5), the map 𝜌 defined in (3.1) is a quasi-convex
systemic risk measure.

(ii) Under the conditions (P1), (P3a), (P4), and (P6), the map 𝜌 defined in (3.1) is a convex systemic
risk measure.

Proof.

(i) It follows from Lemma 3.3 and the fact that the properties (P2a), (P4), and (P5) imply (P2). Indeed,

let 𝐘1,𝐘2 ∈  such that 𝜋(𝐘1) ≤ 𝑚, 𝜋(𝐘2) ≤ 𝑚 and let 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1].
Then there exists 𝛼 ∈ [0, 1] such that 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝛼𝐘1+(1−𝛼)𝐘2 . If we set: 𝐘 ∶=𝛼𝐘1 +
(1 − 𝛼)𝐘2 ∈ , then 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈𝐘 and 𝜋(𝛼𝐘1 + (1 − 𝛼)𝐘2) ≤ max(𝜋(𝐘1), 𝜋(𝐘2)) ≤ 𝑚.

(ii) It follows from Lemma 3.3 and the fact that the properties (P3a), (P4), and (P6) imply (P3). Indeed,

let 𝐘1,𝐘2 ∈  and let 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1]. If we set: 𝐘 ∶=𝜆𝐘1 + (1 − 𝜆)𝐘2 ∈ ,

then 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈𝐘 and 𝜋(𝐘) ≤ 𝜆𝜋(𝐘𝟏) + (1 − 𝜆)𝜋(𝐘𝟐). □

4 SYSTEMIC RISK MEASURES VIA AGGREGATION
AND ONE-DIMENSIONAL ACCEPTANCE SETS

In this section, we study four classes of systemic risk measures in the form (3.1), which differ from each

other by the definition of their aggregation functions and their acceptance sets. However, these four

classes, defined in equations (4.2), (4.3), (4.6), and (4.7), all satisfy the structural properties of mono-

tonicity and quasi-convexity (or convexity). We consider the following definitions and assumptions,

which will hold true throughout this section:

1. the aggregation functions are

Λ ∶ 0(ℝ𝑁 ) ×  → 0(ℝ),

Λ1 ∶ 0(ℝ𝑁 ) → 0(ℝ),

and we assume that Λ1 is ⪰-increasing and concave;

2. the acceptance family

(𝑥)𝑥∈ℝ
is an increasing family with respect to 𝑥 and each set 𝑥 ⊆ 0(ℝ) is assumed monotone and convex;

 14679965, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12170 by U
niversita D

i M
ilano, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



342 BIAGINI ET AL.

3. the acceptance subset

𝔸 ⊆ 0(ℝ)

is assumed monotone and convex.

The convexity of the acceptance set 𝔸 ⊆ 0(ℝ) (or of the acceptance family (𝑥)𝑥∈ℝ) are the stan-

dard conditions that have been assumed as the origin of the theory of risk measures. The concavity of

the aggregation functions is justified, not only from the many relevant examples in the literature, but

also by the preservation of the convexity from one-dimensional acceptance sets to multidimensional

ones. Indeed, let Θ ∶ 0(ℝ𝑁 ) → 0(ℝ) be an aggregation function, 𝔸 ⊆ 0(ℝ) a one-dimensional

acceptance set, and define  ⊆ 0(ℝ𝑁 ) as the inverse image  ∶= Θ−1(𝔸). Suppose that Θ is increas-

ing and concave. It can be easily checked that if 𝔸 is monotone and convex, then  is monotone and

convex.

We note that in all results of this section, the selection of the set  ⊆ 0(ℝ𝑁 ) of permitted vectors is

left as general as possible (in some cases, we require the convexity of  and only in Proposition 4.6, we

further ask that  +ℝ𝑁+ ∈ ). Therefore, we are very flexible in the choice of  and we may interpret

its elements as vectors of admissible or safe financial assets, or merely as cash vectors. Only in the next

section, we attribute a particular structure to .

In the conclusive statements of the following propositions in this section, we apply Lemmas 3.3 and

3.4 without explicit mention.

Proposition 4.1. Let

𝐘 ∶=
{
𝐙 ∈ 0(ℝ𝑁 ) ∣ Λ(𝐙,𝐘) ∈ 𝔸

}
, 𝐘 ∈, (4.1)

where Λ be concave and Λ(⋅,𝐘) be ⪰-increasing for all 𝐘 ∈ . Then, 𝐘 satisfies properties (P1) and
(P3a) (and (P2a) ). The map 𝜌 defined in (3.1) is given by

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Λ(𝐗,𝐘) ∈ 𝔸} , (4.2)

and is a quasi-convex systemic risk measure, under the assumptions (P4) and (P5); it is a convex
systemic risk measure under the assumptions (P4) and (P6).

Proof. Property (P1): Let 𝐗1 ∈ 𝐘 and 𝐗2 ⪰ 𝐗1. Note that 𝐗1 ∈ 𝐘 implies Λ(𝐗1,𝐘) ∈ 𝔸 and 𝐗2 ⪰
𝐗1 implies Λ(𝐗2,𝐘) ≥Λ(𝐗1,𝐘). Because 𝔸 is monotone, we have Λ(𝐗2,𝐘) ∈ 𝔸 and 𝐗2 ∈ 𝐘.

Property (P3a): Let 𝐘1,𝐘2 ∈ , 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 , and 𝜆 ∈ [0, 1]. Then, Λ(𝐗1,𝐘1) ∈ 𝔸 and

Λ(𝐗2,𝐘2) ∈ 𝔸 and the convexity of 𝔸 guarantees

𝜆Λ(𝐗1,𝐘1) + (1 − 𝜆)Λ(𝐗2,𝐘2) ∈ 𝔸.

From the concavity of Λ(⋅, ⋅) we obtain

Λ(𝜆(𝐗1,𝐘1) + (1 − 𝜆)(𝐗2,𝐘2)) ≥ 𝜆Λ(𝐗1,𝐘1) + (1 − 𝜆)Λ(𝐗2,𝐘2) ∈ 𝔸.

The monotonicity of 𝔸 implies

Λ(𝜆𝐗1+(1 − 𝜆)𝐗2, 𝜆𝐘1+(1 − 𝜆)𝐘2) =Λ(𝜆(𝐗1,𝐘1) + (1 − 𝜆)(𝐗2,𝐘2)) ∈ 𝔸,

and therefore, 𝜆𝐗1+(1 − 𝜆)𝐗2 ∈ 𝜆𝐘1+(1−𝜆)𝐘2 . □
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BIAGINI ET AL. 343

The class of systemic risk measures defined in (4.2) is a fairly general representation as the aggre-

gation function Λ only needs to be concave and increasing in one of its arguments and the acceptance

set 𝔸 is only required to be monotone and convex. As shown in the following Corollary 4.2, such a

risk measure may describe either the possibility of “first aggregate and second add the capital” (e.g., if

Λ(𝐗,𝐘) ∶=Λ1(𝐗)+Λ2(𝐘), where Λ2(𝐘) could be interpreted as the discounted cost of 𝐘) or the case

of “first add and second aggregate” (e.g., if Λ(𝐗,𝐘) ∶=Λ1(𝐗 + 𝐘)).

Corollary 4.2. Let Λ2 ∶  → 0(ℝ) be concave, let 𝐘 be defined in (4.1), where the function Λ has
one of the following forms:

Λ(𝐙,𝐘) = Λ1(𝐙) + Λ2(𝐘),

Λ(𝐙,𝐘) = Λ1(𝐙 + 𝐘).

Then, 𝐘 fulfills properties (P1) and (P3a). Therefore, the map 𝜌 defined in (4.2) is a quasi-convex
systemic risk measure under the assumptions (P4) and (P5); it is a convex systemic risk measure under
the assumptions (P4) and (P6).

We now turn to the class of truly quasi-convex systemic risk measures defined by (4.3), which rep-

resents the generalization of the quasi-convex risk measure in (2.6) in the one-dimensional case.

Proposition 4.3. Let 𝜃 ∶  → ℝ. Then, the set

𝐘 ∶= {𝐙 ∈ 0(ℝ𝑁 ) ∣ Λ1(𝐙) ∈ 𝜃(𝐘)}, 𝐘 ∈,
satisfies properties (P1) and (P2a). The map 𝜌 defined in (3.1) is given by

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Λ1(𝐗) ∈ 𝜃(𝐘)} , (4.3)

and under the assumptions (P4) and (P5), it is a quasi-convex systemic risk measure.

Proof. Property (P1): Let 𝐗1 ∈ 𝐘 and 𝐗2 ⪰ 𝐗1. Note that 𝐗1 ∈ 𝐘 implies Λ1(𝐗1) ∈ 𝜃(𝐘) and

𝐗2 ⪰ 𝐗1 implies Λ1(𝐗2) ≥Λ1(𝐗1). As 𝑥 is a monotone set for all 𝑥, we have Λ1(𝐗2) ∈ 𝜃(𝐘) and

𝐗2 ∈ 𝐘.

Property (P2a): Fix 𝐘1,𝐘2 ∈ , 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1]. Then, Λ1(𝐗1) ∈ 𝜃(𝐘1) and

Λ1(𝐗2) ∈ 𝜃(𝐘2). From the concavity of Λ1, we obtain

Λ1(𝜆𝐗1+(1 − 𝜆)𝐗2) ≥ 𝜆Λ1(𝐗1) + (1 − 𝜆)Λ1(𝐗2) ∈ 𝜆𝜃(𝐘1) + (1 − 𝜆)𝜃(𝐘2).

As (𝑥)𝑥∈ℝ is an increasing family and each 𝑥 is convex, we deduce

𝜆𝜃(𝐘1) + (1 − 𝜆)𝜃(𝐘2) ⊆ max{𝜃(𝐘1),𝜃(𝐘2)}. (4.4)

Suppose that max(𝜃(𝐘1),𝜃(𝐘2)) = 𝜃(𝐘1), using the monotonicity of the set 𝜃(𝐘1), we deduce

Λ1(𝜆𝐗1+(1 − 𝜆)𝐗2) ∈ 𝜃(𝐘1),

and 𝜆𝐗1+(1 − 𝜆)𝐗2 ∈ 𝐘1 , so that property (P2a) is satisfied with 𝛼 = 1. □

In the risk measure (4.3), we are not allowing to add capital to 𝐗 before the aggregation takes place,
as the quasi-convexity property of 𝜌would be lost in general. Next, we contemplate this possibility (i.e.,

we consider conditions of the type Λ(𝐗,𝐘) ∈ 𝜃(𝐘)) in the systemic risk measures (4.6) and (4.7) but

only under some nontrivial restrictions: For the case (4.6), we impose conditions on the aggregation
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344 BIAGINI ET AL.

function Λ that are made explicit in equation (4.5) and in Example 4.5. In contrast, for the case (4.7),

we consider a general aggregation function Λ, but we restrict the family of acceptance sets to 𝜋(𝐘),
where 𝜋 is positively linear and represents the risk level of the acceptance family.

Proposition 4.4. Let 𝜃 ∶  → ℝ and

𝐘 ∶= {𝐙 ∈ 0(ℝ𝑁 ) ∣ Λ(𝐙,𝐘) ∈ 𝜃(𝐘)}, 𝐘 ∈,
where Λ(⋅,𝐘) ∶ 0(ℝ𝑁 ) → 0(ℝ) is ⪰-increasing and concave for all 𝐘 ∈. Assume in addition that

𝜃(𝐘2) ≥ 𝜃(𝐘1) ⇒ Λ(𝐗,𝐘2) ≥Λ(𝐗,𝐘1) for all 𝐗 ∈0(ℝ𝑁 ) . (4.5)

Then properties (P1) and (P2) hold. The map 𝜌 defined in (3.1) is given by

𝜌(𝐗) ∶= inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Λ(𝐗,𝐘) ∈ 𝜃(𝐘)} (4.6)

and is a quasi-convex systemic risk measure.

Proof. Property (P1): Let 𝐗1 ∈ 𝐘 and 𝐗2 ⪰ 𝐗1. Note that 𝐗1 ∈ 𝐘 implies Λ(𝐗1,𝐘) ∈ 𝜃(𝐘) and

𝐗2 ⪰ 𝐗1 implies Λ(𝐗2,𝐘) ≥Λ(𝐗1,𝐘). As 𝜃(𝐘) is a monotone set, we have Λ(𝐗2,𝐘) ∈ 𝜃(𝐘) and

𝐗2 ∈ 𝐘.

Property (P2): Fix𝑚 ∈ ℝ,𝐘1,𝐘2 ∈  such that 𝜋(𝐘1) ≤ 𝑚 and 𝜋(𝐘2) ≤ 𝑚, 𝜆 ∈ [0, 1] and take𝐗1 ∈𝐘1 and 𝐗2 ∈ 𝐘2 . Then, Λ(𝐗1,𝐘1) ∈ 𝜃(𝐘1) and Λ(𝐗2,𝐘2) ∈ 𝜃(𝐘2). Then, w.l.o.g. we may assume

that 𝜃(𝐘2) ≥ 𝜃(𝐘1). As (𝑥)𝑥∈ℝ is an increasing family, we have 𝜃(𝐘1) ⊆ 𝜃(𝐘2). Condition (4.5)

implies Λ(𝐗1,𝐘2) ≥Λ(𝐗1,𝐘1) ∈ 𝜃(𝐘1) ⊆ 𝜃(𝐘2), so that Λ(𝐗1,𝐘2) ∈ 𝜃(𝐘2). From the concavity of

Λ(⋅,𝐘2) and the convexity of 𝜃(𝐘2), we obtain

Λ(𝜆𝐗1+(1 − 𝜆)𝐗2,𝐘2) ≥ 𝜆𝚲(𝐗1,𝐘2) + (1 − 𝜆)𝚲(𝐗2,𝐘2) ∈ 𝜃(𝐘2).

Hence, Λ(𝜆𝐗1+(1 − 𝜆)𝐗2,𝐘2) ∈ 𝜃(𝐘2), which means that 𝜆𝐗1+(1 − 𝜆)𝐗2 ∈ 𝐘2 . As 𝜋(𝐘2) ≤ 𝑚,

property (P2) holds with 𝐘 = 𝐘2. □

Example 4.5. Let 𝜃 ∶  → ℝ and let Λ be defined by

Λ(𝐗,𝐘) = 𝑔(𝐗, 𝜃(𝐘)),

where 𝑔(⋅, 𝑧) ∶ ℝ𝑁 → ℝ is increasing and concave for all 𝑧 ∈ ℝ and 𝑔(𝑥, ⋅) ∶ ℝ → ℝ is increasing for

all 𝑥 ∈ ℝ𝑁 . Then, Λ satisfies all the assumptions in Proposition 4.4. Examples of functions 𝑔 satisfying

these conditions are

𝑔(𝑥, 𝑧) = 𝑓 (𝑥) + ℎ(𝑧),

with 𝑓 increasing and concave and ℎ increasing, or

𝑔(𝑥, 𝑧) = 𝑓 (𝑥)ℎ(𝑧)

with 𝑓 increasing, concave, and positive and ℎ increasing and positive.

Proposition 4.6. Suppose that  ⊆ 0(ℝ𝑁 ) is a convex set such 𝟎 ∈ and  +ℝ𝑁+ ∈ . Assume in
addition that 𝜋 ∶  → ℝ satisfies 𝜋(𝑢) = 1 for a given 𝑢 ∈ ℝ𝑁+ , 𝑢 ≠ 𝟎, and

𝜋(𝛼1𝑌1 + 𝛼2𝑌2) = 𝛼1𝜋(𝑌1) + 𝛼2𝜋(𝑌2)
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BIAGINI ET AL. 345

for all 𝛼𝑖 ∈ ℝ+ and 𝑌𝑖 ∈ . Let

𝐘 ∶= {𝐙 ∈ 0(ℝ𝑁 ) ∣ Λ(𝐙,𝐘) ∈ 𝜋(𝐘)},
where Λ is concave and Λ(𝐗, ⋅) ∶  → 0(ℝ) is increasing (with respect to the componentwise order-
ing) for all 𝐗 ∈ 0(ℝ𝑁 ). Then, the family of sets 𝐘 fulfill properties (P1) and (P2). The map 𝜌 defined
in (3.1) is given by

𝜌(𝐗) = inf{𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , Λ(𝐗,𝐘) ∈ 𝜋(𝐘)} (4.7)

and is a quasi-convex systemic risk measure.

Proof. Property (P1): it follows immediately from the monotonicity of 𝑥, 𝑥 ∈ ℝ.

Property (P2): Let 𝐘1,𝐘2 ∈ , 𝑚 ∈ ℝ and assume w.l.o.g. that 𝜋(𝐘1) ≤ 𝜋(𝐘2) ≤ 𝑚. Let 𝐗1 ∈ 𝐘1 ,

𝐗2 ∈ 𝐘2 and 𝜆 ∈ [0, 1]. Then, Λ(𝐗1,𝐘1) ∈ 𝜋(𝐘1) and Λ(𝐗2,𝐘2) ∈ 𝜋(𝐘2). Because (𝑥)𝑥∈ℝ is

increasing, we get Λ(𝐗1,𝐘1) ∈ 𝜋(𝐘2). Set

�̂�1 ∶= 𝐘1 + (𝜋(𝐘2) − 𝜋(𝐘1))𝑢 ∈ .
Then, �̂�1 ≥ 𝐘1 and, as Λ(𝐗, ⋅) is increasing, Λ(𝐗1, �̂�1) ≥ Λ(𝐗1,𝐘1) ∈𝜋(𝐘2) and

Λ(𝐗1, �̂�1) ∈ 𝜋(𝐘2)

because of the monotonicity of 𝜋(𝐘2) . Letting

𝐘 ∶= 𝜆�̂�1 + (1 − 𝜆)𝐘2 ∈  ,
and using the properties of 𝜋, we obtain

𝜋(𝐘) = 𝜋(𝜆[𝐘1 + (𝜋(𝐘2) − 𝜋(𝐘1))𝑢] + (1 − 𝜆)𝐘2)

= 𝜆𝜋(𝐘1 + (𝜋(𝐘2) − 𝜋(𝐘1))𝑢) + (1 − 𝜆)𝜋(𝐘2) = 𝜋(𝐘𝟐) ≤ 𝑚.
From the concavity of Λ(⋅, ⋅) and the convexity of 𝜋(𝐘2), we obtain

Λ(𝜆𝐗1+(1 − 𝜆)𝐗2,𝐘) = Λ(𝜆𝐗1+(1 − 𝜆)𝐗2, 𝜆�̂�1 + (1 − 𝜆)𝐘2)

= Λ(𝜆(𝐗1, �̂�1) + (1 − 𝜆)(𝐗2,𝐘2))

≥ 𝜆Λ(𝐗1, �̂�1) + (1 − 𝜆)𝚲(𝐗2,𝐘2)

∈ 𝜋(𝐘2) = 𝜋(𝐘),
and the monotonicity of 𝜋(𝐘) implies

Λ(𝜆𝐗1+(1 − 𝜆)𝐗2,𝐘) ∈ 𝜋(𝐘),
which means: 𝜆𝐗1+(1 − 𝜆)𝐗2 ∈ 𝐘. Hence, property (P2) is satisfied. □

Remark 4.7. Suppose that an aggregation function Λ0 ∶ 0(ℝ𝑁 ) → 0(ℝ) is assigned and set

Λ𝑑(𝐗) ∶= Λ0(𝐗 − 𝐝), for a vector 𝐝 ∈ ℝ𝑁 . Consider the associated risk measures, as in (2.9)

𝜌𝑑(𝐗) ∶ = inf{𝜋(𝐘) ∣ 𝐘 ∈ , Λ𝑑(𝐗 + 𝐘) ∈ 𝔸}, 𝐝 ∈ ℝ𝑁,

 14679965, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12170 by U
niversita D

i M
ilano, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



346 BIAGINI ET AL.

𝜌0(𝐗) ∶ = inf{𝜋(𝐘) ∣ 𝐘 ∈ , Λ0(𝐗 + 𝐘) ∈ 𝔸}, 𝐝 = (0,… , 0).

Then,

𝜌𝑑(𝐗) = 𝜌0(𝐗 − 𝐝).

Indeed, setting 𝐖 ∶= 𝐗 − 𝐝, one obtains

𝜌𝑑(𝐗) = inf{𝜋(𝐘) ∣ 𝐘 ∈ , Λ𝑑(𝐗 + 𝐘) ∈ 𝔸}

= inf{𝜋(𝐘) ∣ 𝐘 ∈ , Λ0(𝐖 + 𝐘) ∈ 𝔸} = 𝜌0(𝐖) = 𝜌0(𝐗 − 𝐝).

5 SCENARIO-DEPENDENT ALLOCATIONS

We will now focus on the particularly interesting family of sets  of risk-level vectors 𝐘 defined by

 ⊆
{

𝐘 ∈ 0(ℝ𝑁 )
||||||
𝑁∑
𝑛=1

𝑌 𝑛 ∈ ℝ

}
=∶ ℝ. (5.1)

A vector 𝐘 ∈  as in (5.1) can be interpreted as the cash amount
∑𝑁
𝑛=1 𝑌

𝑛 ∈ ℝ (which is known today

because it is deterministic) that at the future time horizon 𝑇 is allocated to the financial institutions

according to the realized scenario. That is, for 𝑖 = 1,… , 𝑁 , 𝑌 𝑖(𝜔) is allocated to institution 𝑖 in case

scenario 𝜔 has been realized at 𝑇 , but the total allocated cash amount
∑𝑁
𝑛=1 𝑌

𝑛 stays constant over the

different scenarios. One could think about a lender of last resort or a regulator who at time 𝑇 has a cer-

tain amount of cash at disposal to distribute among financial institutions in the most efficient way (with

respect to systemic risk) according to the scenario that has been realized. Restrictions on the admissible

distributions of cash are implied by the choice of set . For example, choosing  = ℝ𝑁 corresponds

to the fact that the distribution is deterministic, i.e., the allocation to each institution is already deter-

mined today, whereas for  = ℝ, the distribution can be chosen completely freely depending on the

scenario 𝜔 that has been realized. Note that the latter case includes potential negative cash alloca-

tions, i.e., withdrawals of cash from certain components, which allows for cross-subsidization between

financial institutions. The (more realistic) situation of scenario-dependent cash distribution without

cross-subsidization is represented by the set

 ∶= {𝐘 ∈ ℝ ∣ 𝑌 𝑖 ≥ 0, 𝑖 = 1,…𝑁}.

In this section, we give some structural results and examples concerning systemic risk measures defined

in terms of sets  as in (5.1). In Sections 6 and 7, we then present two more extensive examples of

systemic risk measures that employ specific sets  of type (5.1).

In the following, we always assume the componentwise order relation on 0(ℝ𝑁 ), i.e., 𝐗1 ⪰ 𝐗2 if

𝐗𝑖1 ≥ 𝐗𝑖2 for all components 𝑖 = 1,… , 𝑁 , and we start by specifying a general class of quasi-convex

systemic risk measures that allow the interpretation of the minimal total amount needed to secure the

system by scenario-dependent cash allocations as described above. To this end, let  ⊆ ℝ be such that

 +ℝ𝑁+ ∈ . (5.2)
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BIAGINI ET AL. 347

Let the valuation 𝜋(𝐘) of a 𝐘 ∈  be given by 𝜋(
∑𝑁
𝑛=1 𝑌

𝑛) for 𝜋 ∶ ℝ → ℝ increasing (e.g., the present

value of the total cash amount
∑𝑁
𝑛=1 𝑌

𝑛 at time 𝑇 ). Further, let (𝑥)𝑥∈ℝ be an increasing family (w.r.t.

𝑥) of monotone, convex subsets 𝑥 ⊆ 0(ℝℕ), and let 𝜃 ∶ ℝ → ℝ be an increasing function. We can

then define the following family of systemic risk measures:

𝜌(𝐗) ∶= inf
{
𝜋(𝐘) ∈ ℝ ∣ 𝐘 ∈ , 𝐗 + 𝐘 ∈ 𝜃(∑ 𝑌 𝑛)

}
; (5.3)

i.e., the risk measure can be interpreted as the valuation of the minimal total amount needed at time

𝑇 to secure the system by distributing the cash in the most effective way among institutions. Note that

here, the criteria whether a system is safe or not after injecting a vector 𝐘 is given by the acceptance set

𝜃(
∑
𝑌 𝑛) that itself depends on the total amount

∑𝑁
𝑛=1 𝑌

𝑛. This gives, for example, the possibility of

modeling an increasing level of prudence when defining safe systems for higher amounts of the required

total cash. This effect will lead to truly quasi-convex systemic risk measures as the next proposition

shows.

Proposition 5.1. The family of sets

𝐘 ∶= 𝜃(∑ 𝑌 𝑛) − 𝐘, 𝐘 ∈ ,
fulfills properties (P1) and (P2) with respect to the componentwise order relation on 0(ℝ𝑁 ). Hence,
the map (5.3) is a quasi-convex risk measure. If, furthermore, 𝜋 is convex and 𝜃 is constant, then the
map (5.3) is even a convex risk measure.

Proof. Property (P1) follows immediately from the monotonicity of𝑥, 𝑥 ∈ ℝ. To show property (P2),

let 𝐘1,𝐘2 ∈ , 𝑚 ∈ ℝ, and 𝜋(
∑𝑁
𝑛=1 𝑌

𝑛
1 ) ≤ 𝜋(∑𝑁

𝑛=1 𝑌
𝑛
2 ) ≤ 𝑚, where w.l.o.g.

∑
𝑌 𝑛1 ≤ ∑

𝑌 𝑛2 . Further,

let 𝐗1 ∈ 𝐘1 , 𝐗2 ∈ 𝐘2 , and 𝜆 ∈ [0, 1]. Because (𝑥)𝑥∈ℝ and 𝜃 are increasing, we get 𝐗1 + 𝐘1 ∈𝜃(
∑
𝑌 𝑛2 ). Set

�̂�1 ∶= 𝐘1 +
(∑

𝑌 𝑛2 −
∑

𝑌 𝑛1 , 0,… , 0
)
∈  .

Then,

𝐗1 + �̂�1 ∈ 𝜃(
∑
𝑌 𝑛2 )

because of the monotonicity of 𝜃(
∑
𝑌 𝑛2 ), and

𝜆(𝐗1 + �̂�1) + (1 − 𝜆)(𝐗2 + 𝐘2) ∈ 𝜃(
∑
𝑌 𝑛2 )

because of the convexity of 𝜃(
∑
𝑌 𝑛2 ). Furthermore, with

𝐘 ∶= 𝜆�̂�1 + (1 − 𝜆)𝐘2 ,

we get 𝜆𝐗1 + (1 − 𝜆)𝐗2 ∈ 𝐘 and 𝜋(𝐘) = 𝜋(𝐘𝟐) ≤ 𝑚 as
∑𝑁
𝑛=1 𝑌

𝑛 =
∑𝑁
𝑛=1 𝑌

𝑛
2 . Hence, property (P2)

is satisfied. The final statement follows from Frittelli and Scandolo (2006). □

Note that the quasi-convex risk measures in (5.3) are obtained in a similar way as the ones in (4.6), the

main difference being that the risk measures in (4.6) are defined on an aggregated level in terms of one-

dimensional acceptance sets, while the ones in (5.3) are defined in terms of general multidimensional

acceptance sets. However, in the case  = ℝ, the next proposition shows that every systemic risk

measure of type (5.3) can be written as a univariate quasi-convex risk measure applied to the sum of
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348 BIAGINI ET AL.

the risk factors. That is, when free scenario-dependent allocations with unlimited cross-subsidization

between the financial institutions are possible, the sum as aggregation rule not only is acceptable as

mentioned in Section 1 but also is the canonical way to aggregate and the canonical way to measure

systemic risk of type (2.4). However, while this situation and in sight is relevant for a portfolio manager,

the typical financial system does not allow for unlimited cross-subsidization and more restricted sets

 together with more appropriate aggregation rules have to be considered.

Proposition 5.2. Let  = ℝ. Then 𝜌 in (5.3) is of the form

𝜌(𝐗) = 𝜌
(

𝑁∑
𝑛=1

𝑋𝑛

)
(5.4)

for some quasi-convex risk measure

𝜌 ∶ 0(ℝ) → ℝ ∶= ℝ ∪ {−∞} ∪ {∞} .

Proof. Let 𝐗1,𝐗1 ∈ 0(ℝ𝑁 ) be such that
∑𝑁
𝑛=1𝑋

𝑛
1 =

∑𝑁
𝑛=1𝑋

𝑛
2 . In the notation of the proof of

Lemma 3.3, let 𝐘𝟏 ∈ 𝐵(𝐗𝟏) and set

𝐘𝟐 ∶= 𝐘𝟏 + (𝐗𝟏 − 𝐗𝟐) ∈  .
Then, 𝐗𝟏 + 𝐘𝟏 = 𝐗𝟐 + 𝐘𝟐, and thus 𝐘𝟐 ∈ 𝐵(𝐗𝟐) because

∑
𝑌 𝑛1 =

∑
𝑌 𝑛2 , which implies 𝜃(

∑
𝑌 𝑛1 ) =

𝜃(
∑
𝑌 𝑛2 ). As 𝜋(𝐘𝟏) = 𝜋(𝐘𝟐), this implies 𝜌(𝐗𝟏) ≥ 𝜌(𝐗𝟐). Interchanging the roles of 𝐗𝟏 and 𝐗𝟐 yields

𝜌(𝐗𝟏) = 𝜌(𝐗𝟐), and the map 𝜌 ∶ 0(ℝ) → ℝ given by

𝜌(𝑋) ∶= 𝜌(𝐗) ,

where 𝐗 ∈ 0(ℝℕ) is such that 𝑋 =
∑𝑁
𝑛=1𝑋

𝑛 is well defined. For 𝑋1, 𝑋2 ∈ 0(ℝ), define

𝐗𝐢 ∶= (𝑋𝑖, 0,… , 0) ∈ 0(ℝℕ) , 𝑖 = 1, 2 .

Then,

𝜌(𝜆𝑋1 + (1 − 𝜆)𝑋2) = 𝜌(𝜆𝐗𝟏 + (1 − 𝜆)𝐗𝟐) ≤ max{𝜌(𝐗𝟏), 𝜌(𝐗𝟐)}

= max{𝜌(𝑋1), 𝜌(𝑋2)} .

Further, if 𝑋1 ≤ 𝑋2, then 𝐗𝟏 ≤ 𝐗𝟐 and

𝜌(𝑋1) = 𝜌(𝐗𝟏) ≥ 𝜌(𝐗𝟐) = 𝜌(𝑋2) .

So, 𝜌 ∶ 0(ℝ) → ℝ is a quasi-convex risk measure and 𝜌(𝐗) = 𝜌(∑𝑁
𝑛=1𝑋

𝑛). □

We conclude this section by two examples that compare the risk measurement by “injecting after

aggregation” as in (2.5) versus the risk measurement by “injecting before aggregation” as in (2.9)

for different sets  ⊂ ℝ in the situation of the worst case and the expected shortfall acceptance sets,

respectively.
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BIAGINI ET AL. 349

5.1 Example: Worst-case acceptance set
In this example, we measure systemic risk by considering aggregated risk factors defined in terms of

the aggregation rule

Λ𝑑(𝐗) ∶=
𝑁∑
𝑖=1

−(𝑋𝑖 − 𝑑𝑖)−. (5.5)

When we derive explicit formulas for 𝜌0(𝑋), for example, for 𝜌𝑎𝑔(𝐗), 𝜌ℝ𝑁 (𝐗), 𝜌𝛾 (𝐗) in this and the

next section, we can immediately compute 𝜌𝑑(𝑋) = 𝜌0(𝑋 − 𝑑), as noted in Remark 4.7, and obtain

explicitly the dependence of the risk measure on the capital buffer 𝑑. Therefore, in the sequel, we will

only consider 𝐝 = (0,… , 0) and use the aggregate function Λ0. Further, we consider the acceptance

set 𝔸𝑊 associated with the worst case risk measure, that is, a system 𝐗 is acceptable (or safe) if∑𝑁
𝑖=1 −(𝑋𝑖)

− ∈ 𝔸𝑊 where 𝔸𝑊 ∶= 0
+(ℝ), and we denote by 𝜌𝑊 ∶ 0(ℝ) → ℝ the univariate worst

case risk measure defined by

𝜌𝑊 (𝑋) ∶= inf{𝑚 ∈ ℝ | 𝑋 + 𝑚 ∈ 𝔸𝑊 } .

The possible sets  are, on the one hand, the deterministic allocations  = ℝ𝑁 and, on the other hand,

the family of constrained scenario-dependent cash allocations of the form

𝛾 ∶= {𝐘 ∈ ℝ | 𝑌𝑖 ≥ 𝛾𝑖 , 𝑖 = 1,…𝑁} ,

where 𝛾 ∶= (𝛾1,… , 𝛾𝑁 ), 𝛾𝑖 ∈ [−∞, 0]. Note that for 𝛾 ∶= (−∞,… ,−∞), this family of subsets

includes ∞ = ℝ. Finally, we let the valuation be

𝜋(𝐘) ∶=
𝑛∑
𝑖=1

𝑌𝑖.

The objective of the following proposition is to analyze and relate the systemic risk measurement by

“injecting cash after aggregation”

𝜌𝑎𝑔(𝐗) ∶= inf{𝑦 ∈ ℝ | Λ0(𝐗) + 𝑦 ∈ 𝔸𝑊 } = 𝜌𝑊

(
𝑁∑
𝑖=1

−(𝑋𝑖)−
)
,

to the systemic risk measurement by “injecting cash before aggregation,” both in the case of determin-

istic cash allocations

𝜌ℝ
𝑁 (𝐗) ∶= inf{𝜋(𝐘)| 𝐘 ∈ ℝ𝑁 ,Λ0(𝐗 + 𝐘) ∈ 𝔸𝑊 } ,

as well as in the case of scenario-dependent cash allocations

𝜌𝛾 (𝐗) ∶= inf
{
𝜋(𝐘)| 𝐘 ∈ 𝛾 ,Λ0(𝐗 + 𝐘) ∈ 𝔸𝑊

}
.

Proposition 5.3. It holds that

𝜌ℝ
𝑁 (𝐗) =

𝑁∑
𝑖=1

𝜌𝑊 (𝑋𝑖) ≥ 𝜌𝑎𝑔(𝐗)

𝜌𝛾 (𝐗) = 𝜌𝑊

(
𝑁∑
𝑖=1

(
𝑋𝑖𝕀{𝑋𝑖≤−𝛾𝑖} − 𝛾𝑖𝕀{𝑋𝑖≥−𝛾𝑖}

)) ≤ 𝜌𝑎𝑔(𝐗) .
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350 BIAGINI ET AL.

In particular, for 𝛾 = 0 ∶= (0,… , 0), we get 𝜌0(𝐗) = 𝜌𝑎𝑔(𝐗), and for 𝛾 = −∞ ∶= (−∞,… ,−∞), we
get 𝜌−∞(𝐗) = 𝜌𝑊 (

∑𝑁
𝑖=1𝑋

𝑖).

Before we prove the proposition, we make some comments on the results. We see that if we inter-

pret the risk measure as capital requirement (which in this situation also is possible for 𝜌𝑎𝑔 as the

aggregation Λ0(𝐗) can be interpreted as a monetary amount), the capital requirement when “injecting

before aggregation” with deterministic allocations is higher than the one when “injecting after aggre-

gation.” When allowing for “injecting before aggregation” with scenario-dependent cash allocations,

the flexibility gained in allocating the cash leads to decreasing capital requirements. For fully flexi-

ble allocations, the minimum amount 𝜌−∞(𝐗) = 𝜌𝑊 (
∑𝑁
𝑖=1𝑋

𝑖) is obtained, which corresponds to the

representation given in Proposition 5.2 in terms of the sum as aggregation rule. Obviously, here, the

relations between 𝜌𝑎𝑔 , 𝜌ℝ
𝑁

, and 𝜌𝛾 depend on the choice of the acceptance set in conjunction with the

aggregation function as it is illustrated in the next example.

Further, from the proof below, it follows that in the case  = ℝ𝑁 , there exists a unique allocation

𝐘∗ ∈ ℝ𝑁 for a given 𝐗 ∈ 0(ℝ𝑁 ) such that 𝜌ℝ
𝑁 (𝐗) = 𝜋(𝐘∗). On the other hand, in the case  = 𝛾 ,

there generically exist infinitely many scenario-dependent allocations𝐘∗ ∈ 𝛾 for a given𝐗 ∈ 0(ℝ𝑁 )
for which the infimum of the risk measure 𝜌𝛾 (𝐗) = 𝜋(𝐘∗) is obtained.

Proof. Note that for 𝐗 ∈ 0(ℝ𝑁 ), it holds that Λ0(𝐗) ∈ 𝔸𝑊 iff 𝑋𝑖 ∈ 𝔸𝑊 , 𝑖 = 1,… , 𝑁 . Thus, we

can rewrite

𝜌ℝ
𝑁 (𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑌 𝑖|𝐘 ∈ ℝ𝑁 ,𝐗 + 𝐘 ∈ (𝔸𝑊 )𝑁
}

,

and obviously get

𝜌ℝ
𝑁 (𝐗) =

𝑁∑
𝑖=1

−ess.inf(𝑋𝑖) =
𝑁∑
𝑖=1

𝜌𝑊 (𝑋𝑖),

and for 𝐗 ∈ 0(ℝ𝑁 ) the allocation �̂� ∶= (ess.inf(𝑋1),… , ess.inf(𝑋𝑁 )) is the unique �̂� ∈ ℝ𝑁 such

that 𝜌ℝ
𝑁 (𝐗) = 𝜋(�̂�).

For 𝜌𝛾 , we analogously rewrite

𝜌𝛾 (𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑌 𝑖
|||||| 𝐘 ∈ 𝛾 ,𝐗 + 𝐘 ∈ (𝔸𝑊 )𝑁

}
.

Now consider first the optimization problem

𝜌(𝐗) ∶= inf

{
ess.sup

(
𝑁∑
𝑖=1

𝑌 𝑖

) |||||| 𝐘 ∈ 0(ℝ𝑁 ), 𝑌 𝑖 ≥ 𝛾𝑖 ,𝐗 + 𝐘 ∈ (𝔸𝑊 )𝑁
}
. (5.6)

Then, clearly, 𝜌 ≤ 𝜌𝛾 and 𝐘∗ ∶= −(𝑋𝑖𝕀{𝑋𝑖≤−𝛾𝑖} − 𝛾𝑖𝕀{𝑋𝑖≥−𝛾𝑖})𝑖=1,…𝑁 is an optimal solution of (5.6).

Now define

�̃� ∶= 𝐘∗ +

(
ess.sup

(
𝑁∑
𝑖=1

𝑌 ∗
𝑖

)
−

𝑁∑
𝑖=1

𝑌 ∗
𝑖 , 0,… , 0

)
.
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BIAGINI ET AL. 351

Then, �̃� ∈ 𝛾 and 𝜌𝛾 (𝐗) ≤ 𝜋(�̃�) = ess.sup(
∑𝑁
𝑖=1 𝑌

∗
𝑖
) = 𝜌(𝐗) ≤ 𝜌𝛾 (𝐗), and thus

𝜌𝛾 (𝐗) =
𝑁∑
𝑖=1

𝑌𝑖 = ess.sup

(
𝑁∑
𝑖=1

𝑌 ∗
𝑖

)

= ess.sup

(
𝑁∑
𝑖=1

−
(
𝑋𝑖𝕀{𝑋𝑖≤−𝛾𝑖} − 𝛾𝑖𝕀{𝑋𝑖≥−𝛾𝑖}

))
.

Finally, we remark that generically for a given 𝐗 ∈ 0(ℝ𝑁 ), the above allocation �̃� ∈ 𝛾 is not unique

such that 𝜌𝛾 (𝐗) = 𝜋(�̃�). In fact, any allocation of the form

𝐘∗ + (𝑍1,… , 𝑍𝑁 )

with (𝑍1,… , 𝑍𝑁 ) ∈ 0(ℝ𝑁 ) such that
∑𝑁
𝑖=1𝑍𝑖 = ess.sup(

∑𝑁
𝑖=1 𝑌

∗
𝑖
) −

∑𝑁
𝑖=1 𝑌

∗
𝑖

will satisfy the

desired property. □

5.2 Example: Expected shortfall acceptance set
We now consider the “expected shortfall” risk measure 𝜌𝐸𝑆 (at some given quantile level 𝛼 ∈ (0, 1])
given by 𝜌ES(𝑋) ∶= 1

𝛼
∫ 𝛼0 VaR𝛾 (𝑋)𝑑𝛾 , where VaR𝛾 denotes the value at risk of order 𝛾 ∈ [0, 1]; see,

e.g., Föllmer and Schied (2004) for further details. The acceptance set associated with 𝜌ES is

𝔸ES ∶= {𝑋 ∈ 0(ℝ) | 𝜌ES(𝑋) ≤ 0}.

Everything else is assumed to be as in Example 5.1. Then,

𝜌ag(𝐗) = 𝜌ES

(
𝑁∑
𝑖=1

−(𝑋𝑖)−
)
.

For 𝜌ℝ
𝑁

and 𝜌𝛾 , however, 𝔸ES gives the same result as 𝔸𝑊 , i.e.,

𝜌ℝ
𝑁 (𝐗) =

𝑁∑
𝑖=1

𝜌𝑊 (𝑋𝑖) ≥ 𝜌ag(𝐗), (5.7)

𝜌𝛾 (𝐗) = 𝜌𝑊

(
𝑁∑
𝑖=1

(
𝑋𝑖𝕀{𝑋𝑖≤−𝛾𝑖} − 𝛾𝑖𝕀{𝑋𝑖≥−𝛾𝑖}

))
. (5.8)

Indeed, by the definition of 𝜌ES, it immediately follows that
∑𝑁
𝑖=1 −(𝑋

𝑖)− ∈ 𝔸𝐸𝑆 if and only if 𝑋𝑖 ∈
𝔸𝑊 , 𝑖 = 1,… , 𝑁 , and (5.7) and (5.8) are then obtained from Proposition 5.3. So, opposite to the

situation in Example 5.1, here the risk measure when “injecting before aggregation” even with scenario-

dependent allocations might be higher than the one when “injecting after aggregation.” Indeed, we

easily see that we always have 𝜌0 ≥ 𝜌𝑎𝑔 , and generically even 𝜌−∞ ≥ 𝜌𝑎𝑔 holds. This illustrates that

these kinds of relations highly depend on the interplay between aggregation and acceptance set.

 14679965, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12170 by U
niversita D

i M
ilano, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



352 BIAGINI ET AL.

6 GAUSSIAN SYSTEMS

In this section, we assume a Gaussian financial system; i.e., we let 𝐗 = (𝑋1,… , 𝑋𝑁 ) be an 𝑁-

dimensional Gaussian random vector with covariance matrix 𝑄, where [𝑄]𝑖𝑖 ∶= 𝜎2𝑖 , 𝑖 = 1,… , 𝑁 , and

[𝑄]𝑖𝑗 ∶= 𝜌𝑖,𝑗 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝑁 , and mean vector 𝜇 ∶= (𝜇1,… , 𝜇𝑁 ) , i.e., 𝐗 ∼ 𝑁(𝜇,𝑄). The

systemic risk measure we consider is given by

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑌 𝑖
|||||| 𝐘 ∈  ⊆ ℝ , Λ(𝐗 + 𝐘) ∈ 𝔸𝛾

}
, (6.1)

where the set ℝ of scenario-dependent cash allocations is defined in (5.1), the aggregation rule is

given by Λ(𝐗) ∶= ∑𝑁
𝑖=1 −(𝑋

𝑖 − 𝑑𝑖)− for 𝑑𝑖 ∈ ℝ, and the acceptance set is

𝔸𝛾 ∶=
{
𝑍 ∈ 0(ℝ) | 𝔼 [𝑍] ≥ −𝛾

}
(6.2)

for some 𝛾 ∈ ℝ+. Here, 𝑑𝑖 in the aggregation rule denotes the capital buffer of institution 𝑖, 𝑖 = 1,…𝑁 ,

and the risk measure is concerned with the expected total shortfall below these levels in the system.

In Subsection 6.1, we compute the allocations and the systemic risk measure in case of deterministic

cash allocations  ∶= ℝℕ. This computation serves several purposes:

(i) it illustrates the allocations 𝑚𝑖s in a case where an explicit computation is possible,

(ii) it allows us to show that these allocations are fair in the sense that an increase in the mean 𝜇𝑖
(respectively, in the volatility 𝜎𝑖) would decrease (respectively, increase) the corresponding 𝑚𝑖,

and

(iii) it gives a benchmark for comparison with the case with scenario-dependent allocations as intro-

duced in Subsection 6.2.

In Subsection 6.2, we allow for more flexible scenario-dependent allocations of the form

 ∶=

{
𝐘 ∈ 0(ℝ𝑛)

|||||| 𝐘 = 𝐦 + 𝛼𝐼𝐷, 𝐦, 𝛼 ∈ ℝ𝑁,
𝑁∑
𝑖=1

𝛼𝑖 = 0

}
⊆ ℝ, (6.3)

where 𝐼𝐷 is the indicator function of the event 𝐷 ∶= {
∑𝑁
𝑖=1𝑋

𝑖 ≤ 𝑑} for some 𝑑 ∈ ℝ. Note that the

condition
∑𝑁
𝑖=1 𝛼𝑖 = 0 implies that

∑𝑁
𝑖=1 𝑌

𝑖 is constant almost surely. Cash allocations in (6.3) can be

interpreted as the flexibility to let the allocation depend on whether the system at time 𝑇 is in trouble

or not, represented by the events that
∑𝑁
𝑖=1𝑋

𝑖 is less or greater than some critical level 𝑑, respectively.

The correlation structure 𝑄 enters in the computation of the allocations and in Table 6.1, we illustrate

this dependence with a numerical example. As expected, the systemic risk measure with scenario-

dependence is lower than with deterministic allocations, and that is more pronounced in the case of

small or negative correlation between banks.

Note that such “naive” Gaussian systems arise as Nash equilibria of specific linear-quadratic stochas-

tic differential games in the context of interbank borrowing and lending models studied in Carmona

et al. (2015).
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BIAGINI ET AL. 353

T A B L E 6.1 Systemic risk measures for Gaussian systems (dependence on the correlation)

𝝆𝟏,𝟐 ↓ Deterministic Random
𝑚1 0.5772 0.1597

𝑚2 1.7316 1.7230

−0.8 𝛼 0 2.8704

𝜌 = 𝑚1 + 𝑚2 2.3088 1.8827

𝑚1 0.5772 0.2908

𝑚2 1.7316 1.7776

−0.5 𝛼 0 2.3161

𝜌 = 𝑚1 + 𝑚2 2.3088 2.0683

𝑚1 0.5772 0.4490

𝑚2 1.7316 1.7796

0 𝛼 0 1.7208

𝜌 = 𝑚1 + 𝑚2 2.3088 2.2286

𝑚1 0.5772 0.5463

𝑚2 1.7316 1.7461

0.5 𝛼 0 1.3389

𝜌 = 𝑚1 + 𝑚2 2.3088 2.2924

𝑚1 0.5772 0.5737

𝑚2 1.7316 1.7314

0.8 𝛼 0 0.7905

𝜌 = 𝑚1 + 𝑚2 2.3088 2.3053

Notes: In this table, we compare the risk measures with deterministic and scenario-dependent (or random) allocations, discussed, respec-

tively, in Subsections 6.1 and 6.2, for different values of the correlation coefficient 𝜌1,2. We report the optimal values 𝑚1 and 𝑚2 of the

allocations as well as their sum 𝜌. The parameters are: means 𝜇𝑖 = 0 for 𝑖 = 1, 2, standard deviations 𝜎1 = 1, 𝜎2 = 3, acceptance level

𝛾 = 0.7, and critical level 𝑑 = 2.

6.1 Deterministic cash allocations
We now consider the case  = ℝℕ and compute the systemic risk measure

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑚𝑖

|||||| 𝐦 = (𝑚1,… , 𝑚𝑁 ) ∈ ℝℕ , Λ(𝐗 +𝐦) ∈ 𝔸𝛾

}
, (6.4)

where for notational clarity, we write 𝐦 instead of 𝐘 for deterministic cash allocations. We thus need to

minimize the objective function
∑𝑁
𝑖=1 𝑚𝑖 over ℝℕ under the constrained Λ(𝐗 +𝐦) ∈ 𝔸𝛾 , which clearly

is equivalent to the constraint

𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
= 𝛾 . (6.5)

This constrained optimization problem can be solved with the associated Lagrangian

𝐿(𝑚1,… , 𝑚𝑁, 𝜆) ∶=
𝑁∑
𝑖=1

𝑚𝑖 + 𝜆

(
𝑁∑
𝑖=1

𝜓𝑖(𝑚𝑖) − 𝛾

)
, (6.6)
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354 BIAGINI ET AL.

where 𝜓𝑖(𝑚𝑖) ∶= 𝔼[(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−]. As 𝑋𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ), one obtains for 𝑖 = 1,… , 𝑁 that

𝜓𝑖(𝑚𝑖) =
𝜎𝑖√
2𝜋

exp

[
−
(𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖)2

2𝜎2
𝑖

]
− (𝑚𝑖 + 𝜇𝑖 − 𝑑𝑖)Φ

(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖

)
, (6.7)

where Φ(𝑥) = ∫ 𝑥−∞ 1√
2𝜋
𝑒−𝑡

2∕2𝑑𝑡. By direct computation, this leads to

𝜕𝐿(𝑚1,… , 𝑚𝑁, 𝜆)
𝜕𝑚𝑖

= 1 − 𝜆Φ
(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖

)
. (6.8)

By solving the Lagrangian system, we then obtain the critical point 𝐦∗ = (𝑚∗
1,… , 𝑚∗

𝑁
) given by

𝑚∗
𝑖 = 𝑑𝑖 − 𝜇𝑖 − 𝜎𝑖𝑅,

where 𝑅 solves the equation

𝑃 (𝑅) ∶= 𝑅Φ(𝑅) + 1√
2𝜋

exp
[
−𝑅

2

2

]
= 𝛾∑𝑁

𝑖=1 𝜎𝑖
. (6.9)

It is easily verified that 𝐦∗ is indeed a global minimum and thus the optimal cash allocation associated

with the risk measure (6.4).

We now investigate the sensitivity of the optimal solution 𝑚∗
𝑖

to changes in the underlying drift

and volatility. From now on, we assume that
𝛾∑𝑁
𝑖=1 𝜎𝑖

< 𝑃 (0) = 1√
2𝜋

, which ensures that 𝑅 < 0. This

condition is satisfied as soon as 𝛾 is small enough or 𝑁 is large enough if volatilities are uniformly

bounded away from zero, for instance. In particular, we obtain the following:

1. 𝜕𝑚∗
𝑖

𝜕𝜇𝑖
= −1: the systemic riskiness decreases with increasing mean.

2. 𝜕𝑚∗
𝑖

𝜕𝜎𝑖
> 0: the systemic riskiness increases with increasing volatility. This is obtained as follows. We

have

𝜕𝑚∗
𝑖

𝜕𝜎𝑖
= −𝑅 − 𝜎𝑖

𝜕𝑅

𝜕𝜎𝑖
. (6.10)

By differentiating (6.9), we obtain

𝜕𝑃

𝜕𝜎𝑖
= 𝜕𝑃

𝜕𝑅

𝜕𝑅

𝜕𝜎𝑖
= − 𝛾(∑𝑁

𝑘=1 𝜎𝑘

)2 . (6.11)

As
𝜕𝑃

𝜕𝑅
= Φ(𝑅), we can compute

𝜕𝑅

𝜕𝜎𝑖
and substitute it in (6.10)

𝜕𝑚∗
𝑖

𝜕𝜎𝑖
= −𝑅 +

𝜎𝑖𝛾(∑𝑁
𝑘=1 𝜎𝑘

)2 1
Φ(𝑅)

= −𝑅 +
𝜎𝑖

(∑𝑁
𝑘=1 𝜎𝑘

)
𝑃 (𝑅)(∑𝑁

𝑘=1 𝜎𝑘

)2
Φ(𝑅)
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BIAGINI ET AL. 355

= −𝑅 +
𝜎𝑖

(
𝑅Φ(𝑅) + 1√

2𝜋
exp

[
−𝑅2

2

])
(∑𝑁

𝑘=1 𝜎𝑘

)
Φ(𝑅)

=

(
𝜎𝑖∑𝑁
𝑘=1 𝜎𝑘

− 1

)
𝑅 +

𝜎𝑖∑𝑁
𝑘=1 𝜎𝑘

1√
2𝜋Φ(𝑅)

exp
[
−𝑅

2

2

]
,

which is positive as 𝑅 < 0.

6.2 A class of scenario-dependent allocations
We now allow for different allocations of the total capital at disposal depending on which state the

system is in. More precisely, we differentiate between the two states that 𝐷 ∶= {𝑆 ≤ 𝑑} and 𝐷𝑐 =
{𝑆 > 𝑑} for some level 𝑑 ∈ ℝ and 𝑆 ∶=

∑𝑁
𝑖=1𝑋

𝑖, and consider allocations  given in (6.3). The

systemic risk measure now becomes

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑚𝑖

|||||| 𝐦 + 𝛼𝐼𝐷 ∈  , Λ(𝐗 +𝐦 + 𝛼𝐼𝐷) ∈ 𝔸𝛾

}
.

To compute the risk measure in this case, we now need to minimize the objective function
∑𝑁
𝑖=1 𝑚𝑖

over (𝐦, 𝛼) ∈ ℝ2𝑁 under the constraints

𝑁∑
𝑖=1

𝛼𝑖 = 0 and

𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖𝐼𝐷 − 𝑑𝑖)−

]
= 𝛾 .

In analogy to the Subsection 6.1, we apply the method of Lagrange multipliers to minimize the func-

tion

𝐿(𝑚1,… , 𝑚𝑁, 𝛼1,… , 𝛼𝑁−1, 𝜆) =

𝑁∑
𝑖=1

𝑚𝑖 + 𝜆
(
Ψ(𝑚1,… , 𝑚𝑁, 𝛼1,… , 𝛼𝑁−1) − 𝛾

)
, (6.12)

where

Ψ(𝑚1,… , 𝑚𝑁, 𝛼1,… , 𝛼𝑁−1) ∶=

𝑁−1∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖𝐼𝐷 − 𝑑𝑖)−

]
+ 𝔼

[(
𝑋𝑁 + 𝑚𝑁 −

𝑁−1∑
𝑗=1

𝛼𝑗𝐼𝐷 − 𝑑𝑁

)−]
,

as follows.

1. By computing the derivatives with respect to 𝛼𝑖, 𝑖 = 1,… , 𝑁 − 1:
𝜕𝐿

𝜕𝛼𝑖
= 0 if and only if

𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑) = 𝐹𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)
(6.13)
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356 BIAGINI ET AL.

for 𝑖 = 1,… , 𝑁 − 1, where 𝐹𝑖,𝑆 and 𝐹𝑁,𝑆 are the joint distribution functions of (𝑋𝑖, 𝑆) and

(𝑋𝑁,𝑆), respectively.

2. By computing the derivatives with respect to 𝑚𝑖, for 𝑖 = 1,… , 𝑁 − 1:
𝜕𝐿

𝜕𝑚𝑖
= 0 if and only if

Φ
(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖

)
+ 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) = Φ

(
𝑑𝑁 − 𝜇𝑛 − 𝑚𝑁

𝜎𝑛

)
+ 𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁, 𝑑), (6.14)

for 𝑖 = 1,… , 𝑁 − 1.

3. By computing the derivatives with respect to 𝜆: we have
𝜕𝐿

𝜕𝜆
= 0 if and only if

Ψ(𝑚1,… , 𝑚𝑁, 𝛼1,… , 𝛼𝑁−1) = 𝛾 , where

Ψ(𝑚1,… , 𝑚𝑁, 𝛼1,… , 𝛼𝑁−1) =
𝑁∑
𝑖=1

𝜓𝑖(𝑚𝑖)

+
𝑁−1∑
𝑖=1

[
(𝑚𝑖 − 𝑑𝑖)𝐹𝑁,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝐹𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

]
+ (𝑚𝑁 − 𝑑𝑁 )𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁, 𝑑)

−

(
𝑚𝑁 −

𝑁−1∑
𝑗=1

𝛼𝑗 − 𝑑𝑁

)
𝐹𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)

+ ∫
𝑑𝑁−𝑚𝑁

𝑑𝑁−𝑚𝑁+
∑𝑁−1
𝑗=1 𝛼𝑗

∫
𝑑

−∞
𝑥𝐹𝑁,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥,

and 𝜓𝑖, 𝑖 = 1,… , 𝑁 , are defined in (6.7).

From (6.12) and (6.13), we immediately obtain that if the 𝑋𝑖, 𝑖 = 1,… , 𝑁 , are identically dis-

tributed, then the optimal solution is obtained for 𝛼𝑖 = 0, 𝑖 = 1,… , 𝑁 , and corresponds to the one

obtained explicitly in Subsection 6.1 for deterministic injections.

We now present numerical illustrations of our results in the simple case with two banks. In

Table 6.1, we set the means 𝜇𝑖 = 0 for 𝑖 = 1, 2, the standard deviations 𝜎1 = 1, 𝜎2 = 3, the acceptance

level 𝛾 = 0.7, and the critical level 𝑑 = 2. The last two columns show the sensitivities with respect to

the correlation for deterministic allocation (case 𝛼 = 0, computed in Subsection 6.1) and for scenario-

dependent allocation, respectively. We observe that for highly positively correlated banks, the scenario-

dependent allocation does not change the total capital requirement𝑚1 + 𝑚2. Indeed, as expected, if the

banks are moving together, one may have to subsidize both of them. However, when they are negatively

correlated, one benefits from scenario-dependent allocation as the total allocation 𝑚1 + 𝑚2 is lower in

that case.

In Table 6.2 with means 𝜇𝑖 = 0 for 𝑖 = 1, 2, correlation 𝜌 = −0.5, standard deviation 𝜎1 = 1, accep-

tance level 𝛾 = 0.7, and critical level 𝑑 = 2, we investigate the sensitivity with respect to the standard

deviation 𝜎2 of the second bank. We note here that the assumption of negative correlation is of theoret-

ical interest, but difficult to be justified empirically,2 as in this case, systemic risk would have a much

smaller impact on the system. We observe that for equal marginals (𝜎1 = 𝜎2 = 1), random allocation

does not change the total capital requirement, as already stated in Subsection 6.2. As 𝜎2 increases, the

systemic risk measure as well as the allocation increase with increasing standard deviation in agreement
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BIAGINI ET AL. 357

T A B L E 6.2 Systemic risk measures for Gaussian systems (dependence on the standard deviation)

𝝈𝟐 ↓ Deterministic Random
𝑚1 0.1008 0.1008

𝑚2 0.1031 0.1031

1 𝛼 0 0.0002

𝜌 = 𝑚1 + 𝑚2 0.2039 0.2039

𝑚1 0.8168 0.3167

𝑚2 4.0816 4.1295

5 𝛼 0 3.5987

𝜌 = 𝑚1 + 𝑚2 4.8984 4.4462

𝑚1 1.1417 0.4631

𝑚2 11.3964 11.4333

10 𝛼 0 6.9909

𝜌 = 𝑚1 + 𝑚2 12.5381 11.8963

Notes: In this table, we report the optimal values of the risk measures with deterministic and scenario-dependent (or random) allocations

for different values of the standard deviation. The parameters are: means 𝜇𝑖 = 0 for 𝑖 = 1, 2, correlation 𝜌 = −0.5, standard deviation

𝜎1 = 1, acceptance level 𝛾 = 0.7, and critical level 𝑑 = 2.

with the sensitivity analysis presented in Subsection 6.1 for the deterministic case. Also, we observe

that scenario-dependent allocation allows for smaller total capital requirement 𝑚1 + 𝑚2.

7 EXAMPLE ON A FINITE PROBABILITY SPACE

We now consider a financial system 𝐗 = (𝑋1,… , 𝑋𝑁 ) that is defined on a finite probability space

(Ω, ,ℙ)withΩ = {𝜔1,… , 𝜔𝑀}, = 2Ω,ℙ(𝜔𝑗) = 𝑝𝑗 ∈ (0, 1), 𝑗 = 1,… ,𝑀 . The systemic risk mea-

sure we are interested in here is given by

𝜌(𝐗) ∶= inf

{
𝑁∑
𝑖=1

𝑌 𝑖
|||||| 𝐘 = (𝑌 1,… , 𝑌 𝑁 ) ∈ ℎ ,Λ(𝐗 + 𝐘) ∈ 𝔸𝛾

}
, (7.1)

where as in Section 6, the acceptance set is 𝔸𝛾 = {𝑍 ∈ 0(ℝ)| 𝔼[𝑍] ≥ −𝛾} for 𝛾 > 0 and the admis-

sible allocations ℎ are introduced below. The aggregation is defined by

Λ(𝑥1,… , 𝑥𝑁 ) ∶=
𝑁∑
𝑖=1

− exp (−𝛼𝑖𝑥𝑖) (7.2)

for 𝛼𝑖 > 0, 𝑖 = 1,… , 𝑁 . Compared to the aggregation in Section 6, the aggregation in (7.2) is more

risk averse with respect to bigger losses but also takes benefits of gains into account.

Due to the finite probability space, the computation of the optimal allocation associated with the

risk measure (7.1) reduces to solving a finite-dimensional system of equations even for most general

scenario-dependent allocation. More precisely, let 𝑛0 = 0 and, for a given ℎ ∈ {1,… , 𝑁}, let 𝐧 ∶=
(𝑛1,… , 𝑛ℎ), with 𝑛𝑚−1 < 𝑛𝑚 for all𝑚 = 1,… , ℎ and 𝑛ℎ ∶= 𝑁 , represent some partition of {1,… , 𝑁}.

We then introduce the following family of allocations:

ℎ =

{
𝐘 ∈ 0(ℝ𝑁 )

|||||| ∃ 𝑑 = (𝑑1,… , 𝑑ℎ) ∈ ℝℎ such that

𝑛1∑
𝑖=1

𝑌 𝑖(𝑤𝑗) = 𝑑1,
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358 BIAGINI ET AL.

𝑛2∑
𝑖=𝑛1+1

𝑌 𝑖(𝑤𝑗) = 𝑑2,… ,

𝑛ℎ∑
𝑖=𝑛ℎ−1+1

𝑌 𝑖(𝑤𝑗) = 𝑑ℎ, for 𝑗 = 1,… ,𝑀

}
⊆ ℝ. (7.3)

This corresponds to the situation when the regulator is constrained in the way that she cannot distribute

cash freely among all financial institutions but only within ℎ subgroups that are induced by the partition

𝐧. In other words, the risk measure is the sum of ℎminimal cash amounts 𝑑1,… , 𝑑ℎ determined today,

which at time 𝑇 can be allocated within the ℎ subgroups in order to make the system safe. Note that

this family spans from deterministic allocations  = ℝ𝑁 for ℎ = 𝑁 to ℝ for ℎ = 1.

For a given partition of ℎ subgroups, one can now explicitly compute a unique optimal allocation 𝐘
and the corresponding systemic risk 𝜌(𝐗) = ∑𝑁

𝑖=1 𝑌
𝑖 =

∑ℎ
𝑚=1 𝑑𝑚 in (7.1) by solving the correspond-

ing Lagrangian system. Let 𝑗 ∈ {1,… ,𝑀}, 𝑖 ∈ {1,… , 𝑁} and set 𝑦𝑖
𝑗
∶= 𝑌 𝑖(𝑤𝑗), 𝑥𝑖𝑗 ∶= 𝑋

𝑖(𝑤𝑗). The

optimal values are given by

𝑑𝑚 ∶= −𝛽𝑚 log

(
𝛾

𝛽𝜁𝑚𝛼𝑛𝑚−1+1

)
, for 𝑚 = 1,… , ℎ, (7.4)

𝑦𝑘𝑗 ∶= −𝑥𝑘𝑗 +
1

𝛽𝑚𝛼𝑘

[
𝑥𝑗,𝑚 + 𝐴𝑚 + 𝑑𝑚

]
− 𝐴𝑘𝑚, for 𝑘 = 𝑛𝑚−1 + 1,… , 𝑛𝑚, (7.5)

where, for 𝑚 = 1,… , ℎ,

𝛽𝑚 ∶=
𝑛𝑚∑

𝑖=𝑛𝑚−1+1

1
𝛼𝑖
, 𝛽 ∶=

𝑁∑
𝑖=1

1
𝛼𝑖
,

𝑥𝑗,𝑚 ∶=
𝑛𝑚∑

𝑘=𝑛𝑚−1+1
𝑥𝑘𝑗 , 𝜁𝑚 ∶=

𝑀∑
𝑗=1

𝑝𝑗exp

{
−
𝑥𝑗,𝑚 + 𝐴𝑚

𝛽𝑚

}
,

𝐴𝑘𝑚 ∶= 1
𝛼𝑘

log
𝛼𝑛𝑚−1+1

𝛼𝑘
, 𝐴𝑚 ∶=

𝑛𝑚∑
𝑘=𝑛𝑚−1+1

𝐴𝑘𝑚.

The proof relies on a straightforward but tedious verification that the formulas (7.4) and (7.5) are the

solutions of the system ∇𝐿 = 0, where the Lagrangian is given by

𝐿

(
𝑑1,… , 𝑑ℎ,

(
𝑦𝑘𝑗

)
𝑗,𝑘
, 𝜆, 𝛿

)
= 𝑑 + 𝜆

[
𝑀∑
𝑗=1

𝑝𝑗

ℎ∑
𝑚=1

(
𝑛𝑚∑

𝑘=𝑛𝑚−1+1
𝑒
−𝛼𝑘

(
𝑥𝑘
𝑗
+𝑦𝑘

𝑗

)
− 𝛾

)]
+ 𝛿

(
𝑁∑
𝑖=1

𝑌 𝑖 − 𝑑

)
,

with 𝜆 = 𝛽

𝛾
and 𝑑 =

∑ℎ
𝑚=1 𝑑𝑚.

The value of the risk measure 𝜌(𝐗) explicitly depends on the values 𝛼𝑖 > 0, 𝑖 = 1,… , 𝑁 , on the

parameter 𝛾 , on the probability ℙ, and on 𝑥𝑖
𝑗
, 𝑖 = 1,… , 𝑁 , 𝑗 = 1,… ,𝑀 . These computations are

useful to compare the risk measure 𝜌𝑁 (𝐗)with deterministic allocations (ℎ = 𝑁) with the risk measure

𝜌1(𝐗) with fully unconstrained scenario-dependent allocations (ℎ = 1). The difference 𝜌𝑁 (𝐗) − 𝜌1(𝐗)
represents the potential amount that can be saved by adopting the scenario-dependent allocations that

we propose in this paper, in contrast to the standard practice of deterministic allotments. In addition,

with the above formulas, we can show that the risk measure with scenario-dependent allocations is

very sensible to the dependence structure of the components of the vector 𝐗 = (𝑋1,… , 𝑋𝑁 ), even

though the set 𝔸𝛾 of acceptable positions is defined via the marginal distributions of𝑋𝑖, 𝑖 = 1,… , 𝑁 ,

only. This fact is pointed out in the next simple example, where we compare the values of the risk
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BIAGINI ET AL. 359

T A B L E 7.1 Systemic risk measures for Example 7.1

Systemic Risk Measure Case Systemic Risk Measure Case
−26.36 ℎ = 1
−0.56 ℎ = 3, {𝑋1, 𝑋3} −15.86 ℎ = 2, {𝑋1, 𝑋3}, {𝑋2, 𝑋4}
4.44 ℎ = 3, {𝑋2, 𝑋3} −5.13 ℎ = 2, {𝑋2, 𝑋3}, {𝑋1, 𝑋4}
63.71 ℎ = 3, {𝑋2, 𝑋4}
68.36 ℎ = 3, {𝑋1, 𝑋4}
72.96 ℎ = 3, {𝑋3, 𝑋4} 68.37 ℎ = 2, {𝑋3, 𝑋4}, {𝑋1, 𝑋2}
74.48 ℎ = 3, {𝑋1, 𝑋2}
79.02 ℎ = 4

Notes: In this table, we report the values of the systemic risk measure (first and third columns) for different grouping of the four banks

of the Example 7.1. The cases ℎ = 1 and ℎ = 4 correspond, respectively, to one large group and to the four individual banks. In the case

ℎ = 3, there are three groups, two of which consist of a single bank and the third one is composed of the two banks shown in the second

column. For ℎ = 2, the two groups are shown in the fourth column and the corresponding risk measure in the third one.

measures 𝜌(𝐗) for the six possible different choices of grouping four given banks 𝑋1,… , 𝑋4 into

three subgroups (ℎ = 3), as, for example, {𝑋1}, {𝑋2, 𝑋3}, {𝑋4}. The outcome strongly depends on

whether the two banks that we group together are independent, comonotone, or countermonotone.

Example 7.1. We consider a system of four banks represented by the random variables

𝑋1, 𝑋2, 𝑋3, and 𝑋4 on the probability space (Ω, ,ℙ), where Ω = (𝜔1, 𝜔2, 𝜔3, 𝜔4),  = 2Ω, and

ℙ(𝜔1) = 0.64, ℙ(𝜔2) = ℙ(𝜔3) = 0.16, and ℙ(𝜔4) = 0.04. We assume that 𝑋4 is independent of

𝑋1, 𝑋2, 𝑋3, that 𝑋2 is comonotone with 𝑋1 and that 𝑋3 is countermonotone with 𝑋1. Furthermore,

𝑋1(𝑤1) = 𝑋1(𝑤3) = 100, 𝑋1(𝑤2) = 𝑋1(𝑤4) = −50, 𝑋2(𝑤1) = 𝑋2(𝑤3) = 50, 𝑋2(𝑤2) = 𝑋2(𝑤4) =
−25, 𝑋3(𝑤1) = 𝑋3(𝑤3) = −25, 𝑋3(𝑤2) = 𝑋3(𝑤4) = 50 and 𝑋4(𝑤1) = 𝑋4(𝑤2) = 50, 𝑋4(𝑤3) =
𝑋4(𝑤4) = −25. We set 𝛼𝑖 = 0.3 for 𝑖 = 1,… , 4 and 𝛾 = 50 and consider the set ℎ defined above.

Note that here 𝜌(𝟎) is not zero, but it could be normalized by replacing 𝜌(⋅) with 𝜌(⋅) − 𝜌(𝟎).
In Table 7.1, we provide the systemic risk measures when the number of subgroups is ℎ = 1 or ℎ = 2

or ℎ = 3 or ℎ = 4. From Table 7.1, we note that the maximum and minimum values of 𝜌 are obtained,

respectively, in the deterministic (ℎ = 4) and the fully unconstrained scenario-dependent (ℎ = 1) cases.

For ℎ = 3, we always have three groups, where two are singleton and one is composed of two banks

(which are shown in the table). In this case, whenever one groups 𝑋1 and 𝑋3, or 𝑋2 and 𝑋3, 𝜌 is

substantially reduced (−0.56 or 4.44), compared to the deterministic case (79.02), as these couples of

vectors are countermonotone; whenever one groups 𝑋4 with any of the 𝑋1, 𝑋2, and 𝑋3, there is little

difference (68.36,63.71,72.96) with respect to the deterministic case (79.02), as 𝑋4 is independent

from the others; grouping 𝑋1 and 𝑋2 has very little effect (74.48) compared to the deterministic case

(79.02), as 𝑋1 and 𝑋2 are comonotone.

For ℎ = 2, we have two groups each one with two banks. We always obtain a reduction of 𝜌 when

compared to grouping the same two banks but leaving the other two as singleton (compare the cases ℎ =
3 and ℎ = 2 on the same line). As expected, the size of the reduction is associated with the dependence

structure of the component of 𝑋.

Remark 7.2. One could extend the above setting further by considering the possibility to limit cross-

subsidization in the allocations. This can be done by adding the constraint 𝑌 𝑖 ≥ 𝑏𝑖, 𝑖 = 1,… , 𝑁 ,

into the family (7.3) of cash allocations, where (𝑏1,… , 𝑏𝑁 ) ∈ ℝ𝑁 . For example, putting 𝑏 ∶=
(0,… , 0) excludes cash withdrawals from institutions and in this sense, does not allow for any cross-

subsidization. The systemic risk measure and corresponding optimal allocations solution can now be
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360 BIAGINI ET AL.

computed by resorting to the Karush Kuhn Tucker conditions (Boyd & Vandenberghe, 2009); see the

computations in Pastore (2014).

7.1 Allocating systemic risk shares
In this subsection, we propose to determine an allocation of systemic risk by computing the expecta-

tions 𝐸ℚ[𝑌 𝑖], 𝑖 = 1,… , 𝑁 , of the scenario-dependent cash allocations in (7.5). When the probability

measure ℚ is appropriately selected, such allocation has some nice fairness properties that are illus-

trated below in (7.10), (7.11), and (7.12).

To ease notation, we consider the case of one single group (ℎ = 1) and we assume that 𝛼𝑖 = 𝛼 for

some 𝛼 > 0, 𝑖 = 1,… , 𝑁 , but the analysis can be generalized to any other grouping and heterogeneous

𝛼𝑖. Then, (7.5) reduces to

𝑦𝑖𝑗 ∶=

[
𝑥𝑗

𝑁
− 𝑥𝑖𝑗

]
+ 𝑑

𝑁
, 𝑖 = 1,… , 𝑁 , (7.6)

where 𝑦𝑖
𝑗
∶= 𝑌 𝑖(𝜔𝑗), 𝑥𝑖𝑗 ∶= 𝑋

𝑖(𝜔𝑗), 𝑥𝑗 ∶=
∑𝑁
𝑖=1 𝑥

𝑖
𝑗

and

𝑑 ∶= 𝜌(𝐗) = 𝑁

𝛼
log

(
𝑁

𝛾
𝐸

[
exp

(
−𝛼 𝑋
𝑁

)])
(7.7)

with𝑋 ∶=
∑𝑁
𝑖=1𝑋

𝑖. The term 𝑑∕𝑁 in (7.6) represents the scenario-independent part of allocation 𝑦𝑖
𝑗
,

while the first parenthesis can be interpreted as some scenario-dependent mean-field term that increases

or decreases allocation 𝑦𝑖
𝑗

according to how much the individual risk 𝑥𝑖
𝑗

is below or above the group

average 𝑥𝑗∕𝑁 .

Let ℚ be a probability measure and let 𝑌 𝑖 ∈ 0(ℝ) be the scenario-dependent cash allocations given

in (7.6). We may define the systemic risk share of bank 𝑖 by the real number 𝐸ℚ[𝑌 𝑖]. Then, for each

ℚ, (𝐸ℚ[𝑌 𝑖])𝑖=1,…,𝑁 , constitutes an allocation of the total systemic risk

𝑁∑
𝑖=1

𝐸ℚ[𝑌 𝑖] = 𝐸ℚ

[
𝑁∑
𝑖=1

𝑌 𝑖

]
= 𝐸ℚ[𝜌(𝐗)] = 𝜌(𝐗).

Now let us consider a change in the vector 𝐗 by adding another vector 𝜖𝐙, for some 𝜖 ∈ ℝ and

𝐙 = (𝑍1,… , 𝑍𝑁 ) ∈ 0(ℝ𝑁 ). We put 𝑋𝑖,𝜖 ∶= 𝑋𝑖 + 𝜖𝑍𝑖, 𝑖 = 1,… , 𝑁 , and 𝐗𝜖 ∶= (𝑋1,𝜖 ,… , 𝑋𝑁,𝜖).
We then compare the optimal solutions 𝑦𝑖

𝑗
(𝐗+𝜖𝐙), given in equation (7.6), with 𝑦𝑖

𝑗
(𝐗) and the risk

measure 𝜌(𝐗+𝜖𝐙) with 𝜌(𝐗), respectively.

(i) We first consider the situation in which the institutions add some cash amounts to their positions,

i.e., we set 𝐙 = 𝐜 = (𝑐1,… , 𝑐𝑁 ) ∈ ℝ𝑁 and 𝜖 = 1. A straightforward computation then gives the

following cash invariance of both the risk measure 𝜌 (see also (2.14)) and the components 𝑦𝑖
𝑗

for

all 𝑖 = 1, .., 𝑁 and 𝑗 = 1,… ,𝑀

𝜌(𝐗 + 𝐜) = 𝜌(𝐗) −
𝑁∑
𝑖=1

𝑐𝑖, 𝑦𝑖𝑗(𝐗 + 𝐜) = 𝑦𝑖𝑗(𝐗) − 𝑐
𝑖, 𝐜 ∈ ℝ𝑁 . (7.8)

In particular, if only institution 𝑙 ∈ {1,… , 𝑁} changes its position by a cash amount, i.e., 𝑐𝑖 = 0 for

𝑖 ≠ 𝑙, the change 𝜌(𝐗 + 𝐜) − 𝜌(𝐗) = −𝑐𝑙 in total systemic risk is exactly covered by the change in

the risk allocation𝐸ℚ[𝑌 𝑙(𝐗 + 𝐜)] − 𝐸ℚ[𝑌 𝑙(𝐗)] = −𝑐𝑙 of institution 𝑙, whereas the risk allocations
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BIAGINI ET AL. 361

of the other institutions are unchanged: 𝐸ℚ[𝑌 𝑖(𝐗 + 𝐜)] − 𝐸ℚ[𝑌 𝑖(𝐗)] = 0 for 𝑖 ≠ 𝑙 (whatever ℚ
might be). This full responsibility for one's own changes in the financial position is an allocation

property referred to as causal responsibility (CR) in the literature; see Brunnermeier and Cheridito

(2013). In particular, for an institution the incentive to change its financial position (by cash) is

with respect to its own risk allocation only and not with respect to possible manipulation of the

other institutions' risk allocations.

(ii) Motivated by the these considerations, the objective now is to identify a probability measure ℚ
such that the corresponding risk allocations (𝐸ℚ[𝑌 𝑖])𝑖=1,…,𝑁 fulfill the (CR) property not only for

changes in the underlying financial positions in the direction of cash 𝐙 = 𝐜 but in the direction of

general changes 𝐙 ∈ 0(ℝ𝑁 ), at least in some local sense. To this end, we consider the sensitivity

of the total systemic risk with respect to the change of the system in the direction of 𝐙. From (7.7),

we obtain

𝑑

𝑑𝜖
𝜌(𝐗𝜖)|𝜖=0 = −

∑𝑁
𝑖=1 𝐸

[
exp

(
−𝛼 𝑋

𝑁

)
𝑍𝑖
]

𝐸
[
exp

(
−𝛼 𝑋

𝑁

)] .

We then define the probability measure ℚ ∼ ℙ by

ℚ[𝜔𝑗] ∶= 𝑝𝑗
exp

(
−𝛼 𝑥𝑗

𝑁

)
𝐸
[
exp

(
−𝛼 𝑋

𝑁

)] , (7.9)

and note that we can rewrite

𝑑

𝑑𝜖
𝜌(𝐗𝜖)|𝜖=0 = −

𝑁∑
𝑖=1

𝐸ℚ[𝑍𝑖]. (7.10)

Now we define the systemic risk allocation by assigning the systemic risk share𝐸ℚ[𝑌 𝑖(𝐗)] to insti-

tution 𝑖, for each 𝑖 = 1,… , 𝑁 . From (7.6), we then compute the sensitivities of the risk allocations

with respect to the change of the system in the direction of 𝐙

𝑑

𝑑𝜖
𝐸ℚ[𝑌 𝑖(𝐗𝜖)]|𝜖=0 = −𝐸ℚ[𝑍𝑖] for 𝑖 = 1,… , 𝑁 . (7.11)

Thus, employing the measure ℚ, defined in (7.9), to compute the risk allocation, we have derived

in (7.10) and (7.11) for general changes 𝐙 a marginal version of what we have derived for cash

changes in (7.8). In particular, if only institution 𝑙 ∈ {1,… , 𝑁} changes its position in the direction

𝑍𝑙, i.e., 𝑍𝑖 = 0 for 𝑖 ≠ 𝑙, we (marginally) get CR of institution 𝑙 for this change

𝑑

𝑑𝜖
𝐸ℚ[𝑌 𝑙(𝐗𝜖)]|𝜖=0 = −𝐸ℚ[𝑍𝑙] = 𝑑

𝑑𝜖
𝜌(𝐗𝜖)|𝜖=0,

𝑑

𝑑𝜖
𝐸ℚ[𝑌 𝑖(𝐗𝜖)]|𝜖=0 = 0, for 𝑖 ≠ 𝑙.

We conclude this section by comparing the risk allocations (𝐸ℚ[𝑌 𝑖(𝐗)])𝑖=1,…,𝑁 , obtained in the

scenario-dependent setting (𝑌 𝑖(𝐗) ∈ 0(ℝ)) and using the probability ℚ defined in (7.9), with the

cash allocation 𝑦𝑖(𝐗) ∈ ℝ in the deterministic setting (ℎ = 𝑁), which is now interpreted as risk

allocation to institution 𝑖. It is easily verified from (7.5), taking ℎ = 𝑁 , that the deterministic risk
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362 BIAGINI ET AL.

allocation of institution 𝑖 is given by 𝑦𝑖(𝐗) = 1
𝛼
log(𝑁

𝛾
𝐸ℙ[𝑒−𝛼𝑋

𝑖]). We also know that when going

from deterministic to scenario-dependent allocations, the total systemic risk decreases. It is then

desirable that each institution profits from this decrease in total systemic risk in the sense that its

individual risk share also decreases

𝐸ℚ[𝑌 𝑖(𝐗)] ≤ 𝑦𝑖(𝐗), for each 𝑖 = 1,… , 𝑁. (7.12)

The opposite would clearly be perceived as unfair. The following computation shows that our

allocation fulfills this property. Indeed, from (7.6) and (7.7), Jensen's inequality, and (7.9), we

obtain

𝐸ℚ[𝑌 𝑖(𝐗)] = 𝐸ℚ

[
𝑋

𝑁
−𝑋𝑖

]
+ 1
𝛼
log

(
𝑁

𝛾
𝐸ℙ

[
𝑒
−𝛼 𝑋

𝑁

])
= 1
𝛼
log ◦ exp

{
𝛼𝐸ℚ

[
𝑋

𝑁
−𝑋𝑖

]}
+ 1
𝛼
log

(
𝑁

𝛾
𝐸ℙ

[
𝑒
−𝛼 𝑋

𝑁

])

≤ 1
𝛼
log

⎧⎪⎨⎪⎩𝐸ℚ

⎡⎢⎢⎣𝑒
𝛼

(
𝑋

𝑁
−𝑋𝑖

)⎤⎥⎥⎦
⎫⎪⎬⎪⎭ + 1

𝛼
log

(
𝑁

𝛾
𝐸ℙ

[
𝑒
−𝛼 𝑋

𝑁

])

= 1
𝛼
log

(
𝑁

𝛾
𝐸ℙ

[
𝑒−𝛼𝑋

𝑖
])

= 𝑦𝑖(𝐗).
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ENDNOTES
1 Even though we defined 𝑋𝑖 as the change in the portfolio's 𝑖th value, one may also interpret 𝑋𝑖 as the future value of

firm 𝑖, as done, for example, in the seminal paper Artzner, Delbaen, Eber, and Heath (1999).

2 We note that the Basel II/III internal-ratings-based approach to bank capital assumes that𝑋1 and𝑋2 are comonotonic;

see, for example, Gordy (2003).
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APPENDIX
A.1 Gaussian case with random injections
We provide here the computations necessary to minimize the function (6.12). We first consider

𝔼[(𝑋𝑖 + 𝑌 𝑖 − 𝑑𝑖)−] = 𝔼[(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖𝐼𝐷 − 𝑑𝑖)−]
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= 𝔼[(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)−𝐼𝐷] + 𝔼[(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−𝐼𝐴𝑐 ]

= 𝔼[{(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)− − (𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−}𝐼𝐷] + 𝔼[(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−] (A.1)

for 𝑖 = 1,… , 𝑁 . To compute (A.1), we distinguish between the cases 𝛼𝑖 > 0 and 𝛼𝑖 < 0. Note that by

the definition of , we cannot a priori argue on the sign of 𝛼. For 𝛼𝑖 > 0, we have that {𝑋𝑖 ≤ 𝑑𝑖 − 𝑚𝑖} =
{𝑋𝑖 ≤ 𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖} ∪ {𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖 < 𝑋𝑖 ≤ 𝑑𝑖 − 𝑚𝑖}. Here, we set 𝐴1 ∶= {𝑋𝑖 ≤ 𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖} and

𝐴2 ∶= {𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖 < 𝑋𝑖 ≤ 𝑑𝑖 − 𝑚𝑖}. Then,

(𝑋𝑖 + 𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)− − (𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)− = −𝛼𝑖𝐼𝐴1
+ (𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)𝐼𝐴2

,

and

𝔼[(𝑋𝑖 + 𝑌 𝑖 − 𝑑𝑖)−]

= −𝛼𝑖𝔼
[
𝐼𝐴1

𝐼𝐷

]
+ 𝔼

[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)𝐼𝐴2

𝐼𝐷

]
+ 𝔼

[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
= (𝑚𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+ ∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝑓𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥 + 𝔼

[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
,

where 𝐹𝑖,𝑆 and 𝑓𝑖,𝑆 are the joint distribution function and the density of (𝑋𝑖, 𝑆), respectively. Recall

that in our setting (𝑋𝑖, 𝑆) ∼ 𝑁2(�̄�𝑖, �̄�𝑖) with mean vector �̄�𝑖 = (𝜇𝑖,
∑𝑛
𝑗=1 𝜇𝑗) and covariance matrix

�̄�𝑖 =

(
𝜎2
𝑖

𝜎2
𝑖
+
∑
𝑗≠𝑖 𝜌𝑖,𝑗

𝜎2
𝑖
+
∑
𝑗≠𝑖 𝜌𝑖,𝑗

∑𝑛
𝑗=1 𝜎

2
𝑗
+
∑𝑛
𝑗,𝑘=1 𝜌𝑗,𝑘

)
.

Analogous computations hold in the case 𝛼𝑖 < 0. Summing up, we obtain that

𝔼

[
𝑁∑
𝑖=1

(𝑋𝑖 + 𝑌 𝑖 − 𝑑𝑖)−
]
=

𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑌 𝑖 − 𝑑𝑖)−

]
=

𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
+

𝑁∑
𝑖=1

𝐼𝛼𝑖≥0
[
(𝑚𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝑓𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

]

+
𝑁∑
𝑖=1

𝐼𝛼𝑖<0

[
(𝑚𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝑓𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

]
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366 BIAGINI ET AL.

=
𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
+

𝑁∑
𝑖=1

[
(𝑚𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝑓𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

]

=
𝑁∑
𝑖=1

𝔼
[
(𝑋𝑖 + 𝑚𝑖 − 𝑑𝑖)−

]
+
𝑁−1∑
𝑖=1

[
(𝑚𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+∫
𝑑𝑖−𝑚𝑖

𝑑𝑖−𝑚𝑖−𝛼𝑖 ∫
𝑑

−∞
𝑥𝑓𝑖,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

]

+ (𝑚𝑁 − 𝑑𝑁 )𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁, 𝑑) −

(
𝑚𝑁 −

𝑁−1∑
𝑗=1

𝛼𝑗 − 𝑑𝑁

)
𝐹𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁

+
𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)
+ ∫

𝑑𝑁−𝑚𝑁

𝑑𝑁−𝑚𝑁+
∑𝑁−1
𝑗=1 𝛼𝑗

∫
𝑑

−∞
𝑥𝑓𝑁,𝑆 (𝑥, 𝑦)𝑑𝑦𝑑𝑥,

where in the last equality, we have used the constraint
∑𝑁
𝑗=1 𝛼𝑗 = 0. We now denote by 𝜇𝑖, 𝜎𝑖 the

mean and the quadratic variation of 𝑋𝑖, 𝑖 = 1,… , 𝑁 , and Φ(𝑥) = ∫ 𝑥+∞ 1√
2𝜋
𝑒−𝑡

2∕2𝑑𝑡. Set 𝑓𝑖,𝑆 (𝑥, 𝑦) =

∫ 𝑦−∞ 𝑓𝑖,𝑆 (𝑥, 𝑠)𝑑𝑠.
1. By computing the derivatives with respect to 𝛼𝑖, 𝑖 = 1,… , 𝑁 − 1, we obtain

𝜕𝐿

𝜕𝛼𝑖
= 0 if and only if

0 = 𝜆

[
(𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑) − 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+ (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖)∫
𝑑

−∞
𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑦)𝑑𝑦

+ 𝐹𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)

−

(
𝑚𝑁 −

𝑁−1∑
𝑗=1

𝛼𝑗 − 𝑑𝑁

)
𝑓𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)

+

(
𝑚𝑁 −

𝑁−1∑
𝑗=1

𝛼𝑗 − 𝑑𝑁

)
∫

𝑑

−∞
𝑓𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑦

)
𝑑𝑦

]
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= 𝜆

(
𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑) − 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

)
.

We then obtain that the equation above has a solution if 𝜆 = 0 or when

𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑) = 𝐹𝑁,𝑆

(
𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑

)
(A.2)

for 𝑖 = 1,… , 𝑁 − 1.

2. By computing the derivatives with respect to 𝑚𝑖, for 𝑖 = 1,… , 𝑁 , we obtain
𝜕𝐿

𝜕𝑚𝑖
= 0 if and only if

0 = 1 + 𝜆
(
Φ(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖
) − (𝑚𝑖 − 𝑑𝑖)𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) + 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑)

−𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑) + (𝑚𝑖 + 𝛼𝑖 − 𝑑𝑖)𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑑)

+ (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖)∫
𝑑

−∞
𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖 − 𝛼𝑖, 𝑦) − (𝑑𝑖 − 𝑚𝑖)∫

𝑑

−∞
𝑓𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑦)𝑑𝑦

)

= 1 + 𝜆

(
Φ(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖
) + 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑) − 𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑)

)
,

where we have used (6.8), (A.2), and the notation above. In particular,

𝜆 = −

(
Φ(
𝑑𝑁 − 𝜇𝑁 − 𝑚𝑁

𝜎𝑁
) + 𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁, 𝑑) − 𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁 +

𝑁−1∑
𝑗=1

𝛼𝑗, 𝑑)

)−1

, (A.2)

if the denominator is different from zero. By (A.2), we then obtain

Φ
(
𝑑𝑖 − 𝜇𝑖 − 𝑚𝑖

𝜎𝑖

)
+ 𝐹𝑖,𝑆 (𝑑𝑖 − 𝑚𝑖, 𝑑)

= Φ
(
𝑑𝑁 − 𝜇𝑁 − 𝑚𝑁

𝜎𝑁

)
+ 𝐹𝑁,𝑆 (𝑑𝑁 − 𝑚𝑁, 𝑑), (A.4)

for 𝑖 = 1,… , 𝑁 − 1.
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