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Abstract: Since the introduction of SPPS by Merrifield in the 60s, peptide chemists have 

considered the possibility of preparing large proteins. The introduction of native chemical 

ligation in the 90s and then of expressed protein ligation have opened the way to the preparation 

of synthetic proteins without size limitations. This review focuses on semi-synthetic strategies 

useful to prepare proteins decorated with spectroscopic probes, like fluorescent labels and 

stable isotopes, and their biophysical applications. We show that expressed protein ligation, 

combining the advantages of organic chemistry with the easy and size limitless recombinant 

protein expression, is an excellent strategy for the chemical synthesis of labeled proteins, 

enabling a single protein to be functionalized at one or even more distinct positions with 

different probes. 

Keywords: expressed protein ligation; intein; Förster resonance energy transfer; segmental 

labeling; NMR; protein labeling 

 

1. Introduction 

Protein structure, folding dynamics, function and interactions with other macromolecules can be widely 

explored and characterized by biophysical techniques such as fluorescence and NMR spectroscopies. 

Spectroscopic techniques rely tightly on protein labeling strategies by which the chemical structure of 

a protein is modified through the introduction of biophysical probes, such as fluorophores or isotopes. 

OPEN ACCESS



Molecules 2013, 18 441 

 

 

A wide collection of protein labeling approaches have been developed in recent years [1–4], leading to 

great discoveries and innovations. In particular, the introduction of native chemical ligation (NCL) 

methodologies for chemical synthesis of proteins marked a breakthrough in protein and peptide 

chemistry, with a strong impact on chemical biology and biophysical applications [5,6]. Here, we 

review the semi-synthetic strategies employed for the preparation of labeled proteins and their 

spectroscopic applications. 

1.1. Total Synthesis of Proteins: SPPS and Chemical Ligation 

The great advantage of chemical protein synthesis and semi-synthesis over traditional recombinant 

protein expression refers to the precise control over the kind and number of modifications that can be 

introduced into a protein molecule, enabling one to realize any desired change of its covalent structure 

with surgical precision. Since the introduction in 1963 of the stepwise solid-phase peptide synthesis 

(SPPS) by Merrifield [7], chemical synthesis of proteins greatly expanded and culminated with the 

development of chemical ligation approaches [8]. Chemical ligation methods allow one to overcome 

the size-limit of SPPS, mainly due to incomplete coupling and deprotection reactions (Figure 1), 

affording the synthesis of large proteins by stitching together short synthetic segments to give a 

polypeptide chain of any desired length and harboring a plethora of possible chemical modifications. 

Figure 1. Dependence of stepwise SPPS yield on coupling efficiency (A) and number of 

coupling steps (B). 

 

In this scope, ligation strategies are based on chemoselective reactions between two functional 

groups respectively placed at N- and C-terminus of two contiguous peptide segments which react by 

forming a stable chemical bond. The type of chemical bond made at the site of junction between two 

peptide fragments depends on the reactive groups employed (Figure 2). For instance, the reaction 

between an hydrazide or an aminooxy group with an aldehyde or a ketone gives rise to hydrazones or 

oximes (Figure 2A,B); a pseudoproline analog results from the reaction between a peptide bearing a  

C-terminal glycolaldehyde ester and a second peptide starting with Cys, Ser or Thr [9,10] (Figure 2C); 

a peptide-thiocarboxylate reacts with a Nα-bromoacetyl-peptide to give a thioester-linked polypeptide 

product (Figure 2D) [8]; the reaction between a thiol and a bromoacetyl group yields a polypeptide 
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joined by thioether linkage (Figure 2E) [11]; thiol and maleimide groups react through a Michael 

addition (Figure 2F) [12]; Cu(I)-catalyzed azide-alkine [3+2] cycloaddition leads to the formation of a 

triazole ring (Figure 2G) [13,14]; Diels-Alder cycloaddition reaction, which involves a diene and a 

dienophile, yields a six member carbocycle (Figure 2H) [15]. 

Figure 2. Schematic representation of chemoselective reactions useful for non-native 

chemical ligation. (A) and (B) R = H, CH3; (C) R = SH, OH. 

 

Even though numerous proteins have been successfully prepared by chemical ligation strategies 

yielding a non-native bond at the junction sites [16,17], such unnatural structures are not always 

compatible with the assumption of correct protein folding. Thus, great efforts were directed towards 

the development of traceless chemical ligation approaches, ending up in the introduction of the NCL 

by Kent and coworkers [18]. This method leads to the formation of a single polypeptide chain bearing 

a native peptide bond at the ligation site after coupling of two peptide segments, one containing a 

carboxy-terminal α-thioester group and the other bearing a 1,2 aminothiol, like an amino-terminal Cys 

residue (Figure 3). The reaction occurs, even under mild conditions (aqueous solution at pH around 

neutrality), through a trans-thioesterification reaction which leads to the formation of a thioester 

intermediate rapidly evolving toward the desired stable amide-linked product through a spontaneous 

intramolecular S-to-N acyl shift. This reaction is orthogonal with respect to functional groups present 

in a protein and also proceeds selectively in the presence of internal Cys residues. Another powerful 

chemical ligation method is the traceless Staudinger ligation, which relies on the selective reaction 

between a phosphinothioester and an azide to form an amide bond [19]. This method does not 
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necessitate of a Cys residue at the junction between two peptide fragments and, thus, appears as a 

strategy complementary to NCL. 

Figure 3. Mechanism of the NCL reaction. 

 

The efficacy of the NCL has been significantly broadened by the introduction of a “recombinant” 

version, named Expressed Protein Ligation (EPL) [20,21]. In this case one or more of the peptide 

building blocks are prepared by recombinant DNA technology and ligated through a NCL reaction 

between a carboxy-terminal α-thioester and 1,2 aminothiol groups. For this reason, EPL is referred to 

as a semi-synthetic approach. To achieve C-terminal thioester or N-terminal Cys containing protein 

segments, EPL exploits a class of proteins called inteins, which are auto-cleavable elements able to 

catalyze their self-removal from flanking polypeptides [21,22]. EPL, as well as NCL, has been employed 

for the introduction into proteins of unnatural amino acids, post-translational modifications [6,20,23,24] 

and covalent dimers formation [25,26]. Furthermore, EPL, combining the advantages of organic chemistry 

with the easy and size limitless recombinant protein expression, allows for the preparation of modified 

large proteins. 

1.2. Protein Synthesis via Intein Chemistry (EPL and PTS) 

The mechanism by which an intein is removed from a pre-mature polypeptide chain is known as 

protein splicing (Figure 4). Protein splicing proceeds through an N→S (or N→O) acyl shift in which 

the N-extein is transferred to the side chain -SH or -OH of a Cys/Ser residue, located at N-terminus of 

the intein. The N-extein is then transferred to a second Cys/Ser residue located at the N-terminus of the 

C-extein through a trans(thio)esterification reaction. A cyclization reaction involving a conserved Asn 

residue at the intein C-terminus leads to intein excision and to the formation of a new peptide bond 

between the two exteins, giving the mature polypeptide chain. A wide number of genetically engineered 

inteins able to catalyze their self-cleavage from only a N- or C-extein have been obtained, providing a 

powerful tool to prepare recombinant C-terminal thioester or N-terminal cysteinyl polypeptides 

required to perform EPL. 
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Figure 4. Mechanism of the intein protein splicing reaction. 

 

To prepare C-terminal thioester proteins, inteins harboring the mutation of the C-terminal Asn into 

an Ala have been designed [22]. Such mutant inteins are unable to evolve from the thioester 

intermediate to the final spliced product. In this case, the thioester intermediate can be cleaved off by 

addition of thiols releasing the N-extein as C-terminal thioester protein (Figure 5A). Several E. coli 

expression vectors are commercially available that allow the recombinant expression of fusion 

constructs with engineered inteins, such as the Saccharomyces cerevisiae vacuolar ATPase subunit 

(Sce VMA) intein, Methanobacterium thermo-autotrophicum ribonucleoside diphosphate reductase 

(Mth RIR1) intein or the Mycobacterium xenopi DNA gyrase A (Mxe GyrA) intein [27]. The Mxe 

GyrA intein [28] is the most widely used as Mxe GyrA intein is small (198 amino acids), expresses at 

high level in bacteria, is able to efficiently refold from inclusion bodies and is cleaved by a variety of 

thiols, even in the presence of low concentration of denaturants (i.e., 2 M urea), detergents or organic 

solvents [29]. Special care has to be devoted to the choice of the -1 residue at the junction extein-intein, 

as the efficiency of splicing is intein and N-extein sequence dependent. Furthermore, the extein sequence 

modulates the kinetic of protein splicing. Notably, a -1 Asp residue induces high levels of premature 

cleavage in vivo, whereas a -1 Pro should be avoided as completely inhibits the cleavage [20,27]. 

The thiol sodium 2-mercaptoethanesulfonate (MESNA) is often employed to mediate intein 

thiolysis. In fact, while thioalkyl-esters, obtained, for example, from ethanedithiol (EDT) and 

ethanethiol (ET), are quite stable, but not reactive enough in NCL, whereas thioaryl-esters, which 

result from the use of benzylmercaptan and thiophenol as splicing inducing agents, are much more 

reactive but even more susceptible to hydrolysis. Usually, an alkyl-thioester is preferred during the 

preparation and purification steps, while during NCL, the addition of aryl-thiols to the reaction mixture 
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allows for conversion of the thioester species into a more reactive thioaryl-ester through trans-

thioesterification. The thiol MESNA allows a good compromise between stability and reactivity of the 

thioester protein obtained. Furthermore, MESNA is a non-malodourous thiol, facilitating thioester protein 

handling and purification. A complete characterization of the reactivity of a wide series of thiols was 

performed by Johnson and Kent [30]. They also reported another useful non-maleodorous thiol, the  

p-mercaptophenylacetic acid (MPAA), which can be added to the NCL mixture to promote the in-situ 

generation of a very reactive thioester, resulting in a sensible improvement in the efficiency both in terms 

of yield and time of reaction. 

Figure 5. Schematic representation of reactions performed by engineered inteins yielding 

α-thioester proteins (A) or N-terminal cysteinyl-proteins (B). 

 

Protein splicing can also be exploited to prepare amino-terminal Cys proteins. In this case, inteins 

have been mutated in order to induce the cleavage at the C-terminal splice junction, between the intein 

and a C-extein starting with Cys, through pH and temperature changes (Figure 5B). Splicing of such 

modified inteins allows for the release of an amino-terminal cysteinyl protein. The Mxe GyrA intein 

was also adapted to this application [27], as well as the Synechocystis sp. PCC6803 DnaB helicase  

(Ssp DnaB) intein [31]. A drawback of this intein-based approach refers to the spontaneous cleavage at 

the intein-extein junction which can occur during expression and purification of the fusion protein. 

Finally, due to their self-removing nature, inteins have been exploited as auto-cleavable fusion partner 

in protease-free purification schemes [32–34]. 

Similarly to EPL, another process called Protein Trans-splicing (PTS) can be employed for the  

site-specific labeling of a protein. Such an approach relies on the use of a particular class of inteins 

which are naturally split or can be split into two pieces and, upon mixing, reassemble into a functional 

intein able to splice. Ligation of the proteins, which can be decorated with functional probes, fused to 

the split inteins occurs after the intein has been reconstituted (Figure 6) [35]. Natural or artificially split 

inteins have been examined to identify different possible sites of splitting. Interestingly, such 

investigations showed that in some inteins, such as Mxe GyrA, Ssp DnaB and Ssp GyrB inteins, the 
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splitting site can be shifted very close to intein termini [36–39], rendering N-terminal or C-terminal 

split intein fragments so short that the preparation of this segments and their exteins can be 

accomplished by SPPS, expanding the repertoire of possible chemical modifications that can be 

introduced into a protein. 

Figure 6. Schematic representation of the protein trans splicing reaction. Target proteins 

(yellow and gray) are fused to N- (IntN, red) and C-terminal (IntC, green) split intein 

fragments. After reconstitution, intein splices releasing the two target proteins linked 

through an amide bond. 

 

2. Fluorescent Labeling 

Tagging proteins with fluorescent probes provides a tool to study proteins both in vivo and in vitro 

by confocal microscopy and fluorescence techniques, such as Förster resonance energy transfer 

(FRET), fluorescence correlation spectroscopy (FCS) and fluorescence polarization (FP). Genetic fusion 

to green fluorescent protein (GFP) and its color burst of spectral variants has allowed elucidation of the 

function of many proteins by mapping their intracellular localization and trafficking [40–44]. 

However, due to their large size, fluorescent fusion partners may interfere with protein folding and 

function. Moreover, fluorescent proteins quantum yield and photostability are quite limited [45]. Thus, 

it could be convenient to replace fluorescent partners with organic dyes [1,46]. Conventional methods 

for protein derivatization with fluorophores exploit the reactivity of native or engineered Lys or  

Cys side chains, as numerous dyes are commercially available as N-hydroxysuccinimide esters, 

isothiocyanates, iodoacetamides, vinyl sulfonones, maleimides and bromo-maleimides that react 

selectively with amino or thiol group [47,48]. However, this approach could be hampered by the 

presence of more than one Cys or Lys in the protein sequence, resulting in multiple labeling and 

heterogeneous protein preparations. Furthermore, many of such approaches suffer of a poor versatility, 

being tailored on a specific protein target [49,50]. Other approaches described are limited to the 

labeling of extra-protein sequence signal peptides, such as the reaction with FlASH, CrAsH or ReASH 

(biarsenical derivatives of fluorescein and resorufin) [51–53], which bind non-covalently to a short 
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hexapeptide containing a tetracysteine motif (CCXXCC, were X stands for any amino acid, preferentially 

Pro or Gly), rhodamine-derived bisboronic acid (RhoBo) dye, which reacts with a tetraserine tag 

sequence (SSPGSS) [54], nickel-nitriloacetic acid derivatized chromophores [55,56], which interact 

with hexa or decahistidine tags, fluorophores complexed to Zn2+-2,2'-dipicoylamine based on L-tyrosine 

scaffold (Zn2+-DpaTyr), which bind to oligoaspartic acid sequence [57]. Enzymatic approaches for 

protein labeling were also described, such as the SNAP-tag [58], CLIP-tag [59] and Halo-tag [60] 

technologies. Other enzymatic strategies require the fusion of the target protein to a short signal 

peptide, such as the reaction catalyzed by sortase [61], transglutaminase [62], biotin-ligase [63], 

phosphopantetheine transferase [64], lipoic acid ligase, myristoyl-CoA:protein N-myristoyltransferase [65]. 

Although of great originality and inventiveness, the above mentioned labeling procedures are limited 

to N- or C-protein termini and generally do not allow incorporation of multiple, different molecular 

probes into a protein. The drawbacks of these fluorescent labeling strategies are successfully overcome 

using chemical ligation approaches, which do not require the addition to the protein of extra-sequence 

signal peptides or labeling domains and ensure open access to any site of any protein sequence with 

unique level of specificity. 

2.1. Protein Labeling with Fluorescent Probes for FRET Studies 

A large number of fluorescent proteins have been prepared by EPL and employed for the 

conduction of structural and functional studies by FRET. FRET can be used to monitor dynamic 

processes involving protein structural changes, protein interaction or oligomerization through the 

variation of the spatial distance between two fluorophores. Relevant examples were reported by Muir, 

who pioneered the field with outstanding works [66–69]. Of great interest is his description of a  

solid-phase expressed protein ligation (SPPL) strategy that enabled the semi-synthesis of a large 

protein on a solid support. The designed approach was exploited to label the N and C termini of the 

Crk-II protein with the fluorescein and tetramethylrhodamine FRET pair. Crk-II was expressed in 

bacteria as fusion construct with the yeast vacuolar membrane ATPase (VMA) intein and with the 

affinity tag chitin binding domain (CBD). The fusion construct harbored an N-terminal Cys masked by the 

proteolysis site recognized by the factor Xa protease. The chimeric protein Xa site-Crk-II-intein-CBD 

was purified from cytosolic extract using a chitin affinity resin. The protein was incubated on the solid 

matrix with a synthetic peptide containing an N-terminal Cys residue and the probes fluorescein (Fl) 

and biotin, separated by the PreScission protease cleavage site (PS). The peptide reacted in an one pot 

reaction with the C-terminal thioester derivative of Crk-II protein, released from VMA intein splicing, 

affording the C-terminal Crk-II labeling with the first dye (Fl). The biotin handle was exploited to 

isolate the EPL product by an affinity chromatography step on an avidin-resin. Once bound to the 

resin, the Xa site-Crk-II-Fl PS biotin was incubated with factor Xa protease, in order to expose the  

N-terminal Cys while leaving the fusion construct attached to the resin. The protein underwent a 

second ligation reaction with a synthethic C-terminal-thioester peptide labeled with tetramethylrhodamine 

(Rd), affording the introduction of the second label. The doubly-labeled construct was cleaved from 

the resin upon incubation with biotin or with the PreScission protease. The latter method allowed the 

removing of the affinity biotin handle, giving the doubly-labeled species Rd-Crk-II-Fl. FRET 

experiments performed on dual labeled Crk-II construct before and after its phosphorylation by the 
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nonreceptor protein tyrosine kinase c-Abl resulted in a variation of FRET efficiency between the dyes 

pair, suggesting conformational changes upon phosphorylation [67]. In a successive work, a doubly 

labeled truncated version of Crk-II that worked as fluorescent biosensor was synthesized, enabling 

real-time monitoring of c-Abl kinase activity and provided a rapid tool for screening potential c-Abl 

kinase inhibitors [68]. A combination of EPL and selective Cys-labeling was employed by the 

Ebright’s group to introduce the FRET pair tetramethylrhodamine and fluorescein into different 

subunits of the E. coli RNA polymerase holoenzyme [70,71]. FRET studies led to the elaboration of a 

structural model for the holoenzyme complex. More recently, Xie et al. used EPL to label the histone 

acetyltransferases (HATs) PCAF and p300 with Dabcyl as FRET acceptor, while HAT substrate 

analogues were labeled with the acceptor dye methoxycoumarin through SPPS. The molecules were 

subjected to FRET and fluorescence anisotropy assays to detect HATs inhibitors [72]. A FRET based 

approach to observe protein oligomerization was described by Scheibner et al. [73]. A synthetic 

dipeptide Cys-Lys(ε-fluorescein) (donor) or Cys-Lys(ε-rhodamine) (acceptor) was attached via EPL to 

the C-terminus of three recombinant proteins (glutathione S-transferase, SH2 domain phosphatase-1 

and serotonin N-acetyltransferase) and a mixture of the two singly-labeled proteins, carrying the donor 

or the acceptor fluorophore, was analyzed by FRET. A similar labeling strategy was adopted in a study 

performed on two GTPases from the superfamily of Ras-like small GTPases, H-Ras and Ypt1, and two 

of their interacting partners, the Ras-binding domain (RBD) of c-Raf1 and MRS6. Target proteins 

were prepared as C-terminal thioester derivatives using intein fusion technology. Thioester proteins 

were reacted with synthetic decapeptides labeled in the solid phase with a flurophore and containing 

six His residues, the latter being useful to purify the ligation products. Labeled proteins were subjected to 

protein-protein and protein-nucleotide interaction studies by FRET and fluorescence cross-correlation 

spectroscopy (FCCS) [74]. Multicolor protein labeling is a useful way for the characterization of 

protein structure and folding by FRET studies. These studies require the attachment of a donor and an 

acceptor dye inside the same polypeptide chain at specific positions. An example of semi-synthetic 

protein doubly labeled with fluorescent dyes was reported by Yi et al. [75]. The described approach is 

limited to protein N- and C-termini and uses a combination of EPL and oxime ligation [76]. Rab7 

GTPase protein was obtained as C-terminal thioester after intein splicing. The thioester protein was 

reacted with (bis)oxyamine moiety. The C-terminal oxamino-modified protein derivative selectively 

reacts with fluorophores containing a ketone functional group. To afford the second labeling, an  

N-terminal Cys residue was exposed by Tobacco Etch Virus (TEV) protease digestion of the protein 

which was then reacted by EPL with the second dye supplied as thioester derivative. The use of TEV 

protease to release an amino-terminal cysteinyl protein was introduced by Tolbert & Wong, who 

demonstrated that TEV protease could accept Cys in the P1 position of its proteolytic site rather than 

the usual Gly [77], enabling the use of TEV recognition site as “protecting group” for the N-terminal 

Cys of a recombinant protein in alternative to the factor Xa recognition site introduced by Muir [67]. 

In another example, Iakovenko and co-workers incorporated a fluorescent probe into a semisynthetic 

version of Rab7, a small GTPase [78]. The fluorophore was incorporated at the C-terminus of the 

protein, a region that is known to be post-translation prenylated by Rab geranylgeranyl transferase 

(RabGGTase). Using this approach, a library of 46 Rab7 analogs conjugated to different fluorophores 

was constructed and the molecules were used as sensors that report on the interaction of Rab7 with 

RabGGTase and the escort protein REP-1 [79]. Recently, we contributed to widen the applications of 
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EPL describing a general method for the incorporation of two molecular probes at different, specific 

positions along the protein framework [80]. The approach is schematically illustrated in Figure 7 and 

combines protein semi-synthesis by EPL with the labeling in solution of a convenient functional group 

(a thiol in our case). 

Figure 7. Schematic procedure to prepare double/triple modified proteins combining EPL 

and chemoselective labeling in solution [80]. 

 

The protein of interest is split in two fragments (N- and C-terminal), possessing a single Cys 

residue. The N-terminal fragment fused to an intein is expressed in E. coli and spliced in presence of 

MESNA, affording the thioester derivative. Then the thioester protein is selectively labeled on its 

unique Cys residue, for example using a probe conjugated with the maleimide. Successively, the 

mono-labeled thioester fragment is reacted with an N-terminal Cys residue by a NCL reaction to afford 

full-length mono-labeled protein. Finally, the Cys residue involved in NCL reaction is exploited to 

introduce the second probe (Figure 7A). Unlike previously reported [81], both labeling reactions are 

performed in solution, enabling the use of mild excess of fluorophores and probes with a chemical 

structure that is not compatible with the harsh conditions of solid phase synthesis. A simpler version of 

our approach can be adopted when the second probe is located at the C-terminus (Figure 7B). In this 

case, the full-length protein containing a single Cys is prepared as thioester derivative and, after the 

first labeling in solution, is reacted with a Cys in an EPL reaction and then labeled with the second 

probe. As proof of concept, we successfully applied our synthetic approach to prepare four fluorescent 

variants of the repeat protein CTPR3 with different probes distances, confirming its efficacy and 

versatility. The protein variants were analyzed by CD and by ensemble-FRET. As the doubly-labeling 

strategy described requires RP-HPLC purification steps, the fluorescent proteins obtained are 

characterized by high purity and homogeneity, thus resulting amenable for single-molecule studies. 

This strategy could be also applied to prepare triple labeled proteins. In fact, the C-terminal fragment 

ending with a Cys residue could be chemically synthesized and selectively labeled on solid phase in a 

specific position. Then, it could be ligated to a labeled protein-thioester fragment to afford a doubly 

labeled species harboring a Cys residue exploitable for the introduction of the third probe (Figure 7C). 
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Semi-synthesis of fluorescent proteins can be also accomplished by PTS. Useful strategies have 

been described to tag the N- or C-terminus of a protein of interest with a chemical probe using specific 

split inteins characterized by a splitting site near to one end of the amino acid sequence, allowing for 

the preparation of the shortest domain of the intein by SPPS. For example, an engineered version of the 

Ssp DnaB intein was used by Ludwig et al. [38]. In this case the split site has been shifted at the amino 

acid 11, which is compatible with the chemical synthesis of the IntN fragment and its extein. This 

approach was used to synthesize two fluorescein labeled proteins, the thioredoxin (Trx) and the  

β-lactamase (βLac). For the preparation of fluoresceinated Trx, the IntC domain of Ssp DnaB intein 

(143 aa) was fused to Trx and an His6tag (IntC-Trx-His6). The construct was mixed in equimolar 

amount with a synthetic IntN domain (11 aa) carrying a peptide labeled with a fluorescein as N-extein 

(Fl-extein-IntN). PTS yielded the fluorescent product Fl-Trx-His6 with a reaction rate of about 17 folds 

lower than that reported for Ssp DnaB intein split at previously known site, probably due to the strong 

impact that the new splitting site has on the reassembling and refolding attitude of the Ssp DnaB intein. 

Despite the reduced rate of splicing, the final trans-splicing yield (40–45%) was similar to those 

observed for Ssp DnaB intein split at the canonical site. The use of a higher excess of the synthetic 

domain did not result in an improvement of the final yield. The second protein used as case-of-study, 

βLac, required a refolding step, as the construct IntC-βLac-His6 aggregated in inclusion bodies during 

expression in prokaryotic hosts. Refolding was performed in one step by dialysis and the soluble  

IntC-βLac-His6 was reacted with Fl-extein-IntN, even in this case using equimolar amounts of the two 

reactants. PTS afforded Fl-βLac-His6 with a 35% yield. Both Fl-Trx-His6 and Fl-βLac-His6 were 

subjected to enzymatic activity assays, demonstrating that the semi-synthetic origin of the enzymes did 

not affect their functionality. The utility of the split Ssp DnaB intein has also been improved through 

the selection by a directed evolution approach of a mutant which shows a lower restriction about 

sequences requirements of the flanking exteins and an higher rate of trans-splicing [82]. Furthermore, a 

split variant of the Ssp GyrB intein with the split site near its C-terminus was designed, providing an 

N-terminal intein domain of 150 aa and a C-terminal intein domain of 6 aa only. The use of such intein 

allows for the chemical modification of proteins in the C-terminal region, in a similar fashion to that 

described to label a protein N-terminal region with Ssp DnaB intein. Protein trans-splicing has also 

been exploited to introduce a FRET pair into a single protein [83]. The reported strategy combines PTS 

on recombinant fragments and Cys-labeling in solution. The protein of interest was split at a Ser 

residue in two fragments (ProtN and ProtC), each one bearing a single Cys residue along the amino acid 

sequence. Each fragment was expressed in fusion with a domain of Npu DnaE split intein (IntN and 

IntC) and a solubility enhancing partners. The Ser residue at which the protein of interest has been split 

become placed at the catalytic junction between IntC-ProtC. Usually, inteins prefer a Cys residue at  

this site (however Npu DnaE intein tolerates also this nucleophile) allowing to realize the protein 

doubly-labeling in a three steps scheme. First, IntC-ProtC construct was labeled at Cys with a thiol-reactive 

derivative of the first dye; the presence of a catalytic Ser instead of a Cys ensured to maintain intact the 

nucleophile at this position during Cys labeling. Then, the mono-labeled full protein was obtained 

through PTS by mixing IntC-ProtC and ProtN-IntN. The second dye was finally introduced onto the full 

protein by labeling the only remaining Cys residue. As IntN domain also contains a Cys residue 

involved in the splicing reaction, to preserve intein functionality, the labeling with the second dye was 

performed on the full protein after ligation instead than on the intermediate construct ProtN-IntN. The 
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designed approach was validated through the synthesis of a doubly-labeled di-ubiquitin molecule, in 

which two ubiquitin units are joined by a linker sequence containing a Ser residue. Maltose binding 

protein was selected as enhancer of solubility and purification tag of the construct IntC-Ub while  

Ub-IntN was expressed in fusion with a His6tag. Each unit of Ub bore a single Cys residue introduced 

by mutagenesis respectively at position 47 and 7. These sites were selected as they are exposed outside 

the Ub hydrophobic core. The doubly-labeled construct obtained was used to study the unfolding 

process by FRET. Recently, Muir’s group performed a systematic study of 18 cyanobacterial split 

DnaE inteins and several of them resulted to be “ultrafast” inteins, able to catalyze protein trans-splicing 

in tens of seconds, as previously observed for the Npu DnaE intein [84]. They analyzed the effect 

caused by C-extein sequence variation on ultrafast inteins trans-splicing rate, observing different 

degree of tolerance for each intein and kind of mutation. The ultrafast inteins appear an attractive and 

efficient tool to prepare α-thioester proteins for EPL [85]. 

The general applicability of PTS approach is however limited by the instability of the split protein 

fragments which can aggregate in inclusion bodies and for whom refolding procedures are not always 

successful. Besides, many inteins are not completely promiscuous regarding their exteins, showing often 

strong restrictions on the sequences that they tolerate in the proximity of the junction site extein-intein, 

limiting the number of protein targets that can be prepared by PTS. 

2.2. Protein Labeling with Fluorescent Probes for Fluorescence Microscopy in Living Cells 

The ability to track the position and the movements of proteins inside a living cell is a key approach 

to describe cellular mechanisms and protein functions. In the last years, we assisted to an explosion of 

chemical biology tools to label proteins for microscopy applications. Beck-Sickinger and coworkers 

described the site-specific fluorescent modification by EPL of the SDF1α chemokine. SDF1α (1–49) 

fragment was expressed as Mxe GyrA intein-fusion protein. Fusion protein was purified on chitin 

resin, exploiting the presence of the CBD at the intein C-terminus; thioester SDF1α (1–49) was 

obtained on resin after incubation with MESNA. The SDF1α (50–68) C-terminal peptide, starting with 

a native Cys, was synthesized by SPPS and labeled on solid phase with carboxyfluorescein at the  

C-terminal Lys residue. It was selected for labeling as it was assumed it did not interfere with the 

correct protein folding. EPL between the two fragments lasted 24 h. Since SDF1α contains two 

disulfide bridges, after ligation the full product was refolded and oxidized using the cysteine/cystine 

redox system. The well folded product was purified by HPLC, as the retention time of the oxidized 

species shifted with respect to the linear compound. Fluorescence microscopy studies carried out on 

the labeled chemokine demonstrated that the semi-synthetic SDF1α is biologically functional 

molecule, able to induce chemotaxis and to be internalized upon specific binding to its receptor 

CXCR4, supporting the extension of such synthetic protocol to other chemokine and to the introduction 

of other modifications [86]. EPL has also been harnessed to control the activity of a post-translational 

modified protein inside living cells by the use of photocleavable caging groups. In this approach, EPL 

is used to synthesize the protein of interest modified with a fluorophore and a caging group which 

quenches the fluorophore and, contemporary, suppresses the protein activity. The caging group is 

photocleavable and thus it can be removed upon light exposure ensuring to switch on protein activity 

and dye fluorescence emission. For example, this strategy was applied to the protein Smad2, involved 
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in the transforming growth factor α (TGF-α) signaling pathway. The activation of Smad2 requires 

phosphorylation of two Ser residues placed at protein C-terminus. In the phopshorylated Smad2, the  

C-terminal carboxylate stabilizes a homotrimeric structure. The presence of a caging moiety at the  

C-terminus, able to disrupt the homotrimeric interactions, maintains the phosphorylated protein in an 

inactive state. UV irradiation induces the cleavage of the caging group and restores Smad2 activity. 

Smad2 analog harboring two phospho-Ser residues, a fluorescein as fluorescent probe, a dabcyl as 

quencher and the 4-[4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy]butanoic acid as photo-cleavable 

caging group was prepared by semi-synthesis. Thioester Smad2 lacking the last five residues was 

prepared by intein-fusion technology, complexed with the membrane-anchored protein SARA and 

reacted with a synthetic peptide containing all the functional groups listed before [87]. In a subsequent 

work, the same concept and semi-synthetic strategy was applied to prepare caged phosphorylated and 

unphosphorylated Smad2, containing respectively the green fluorophore carboxyfluorescein and the 

red fluorophore tramethylrhodamine. Fluorescence appeared to be titratable by modulating the extent 

of UV-light exposition. The two proteins were co-injected into live cells and their fluorescence before 

and after photoactivation was monitored. This strategy enabled to track the phosphorylated and 

nonphosphorylated Smad2 inside the same single-living cell [88]. A C-terminal protein labeling was 

described by Chaisemartin et al. using a Cys analog linked to a N-1' fluorescent biotinyl derivative; the 

molecule was used to induce splicing of the fusion construct consisting of the intein Mxe GyrA and a 

scFv directed against the GTPase RhoB. Splicing afforded the fluorescent scFv which was purified to 

homogeneity exploiting the biotin hand [89], while fluorescent probe allowed the in vivo antibody 

detection. A “mirror” approach, useful to label protein N-terminus, has also been described and applied 

to the imaging in living cells [3]. In this work, the intein-mediated protein splicing allowed the in vivo 

generation of the target protein bearing an N-terminal Cys residue. EPL with membrane-permeant 

thioester-containing fluorophore allowed site-specific labeling of the protein. Other examples of  

N-terminal Cys containing proteins labeling with thioester molecules were also reported [90–92]. 

Protein labeling can be also accomplished in vivo by using protein trans-splicing, as firstly described 

by Giriat and Muir [93]. To validate their semi-synthetic approach, GFP was expressed in cells as 

fusion protein with the N-terminal fragment of Ssp DnaE split intein. The C-terminal Ssp DnaE intein 

fragment was instead fused to the FLAG epitope and supplied to the cell media. The latter construct 

was able to penetrate through cell wall thanks to a Protein Transduction Domain (PTD) peptide which 

served as a signal peptide and which was ligated to IntC-FLAG through a disulfide bridge. Western-blot 

analysis of the cell lysate with anti-GFP and anti-FLAG antibodies demonstrated the ability of the 

intein to reconstitute in vivo and splice giving the GFP-FLAG as product. The naturally occurring split 

intein Npu DnaE, characterized by the highest rate of trans-splicing reaction, has also been adopted to 

ligate an exogenous polypeptide to a membrane protein exposed by living cells, offering a useful way 

to modify a cell surface protein. The 36 amino acids C-terminal domain of the Npu DnaE intein (IntC) 

was expressed in eukaryotic cells as fusion with a transmembrane domain derived from PDGF receptor 

(TM), a soluble partner (Trx) and the fluorescent protein mCherry. Microscopy analysis on living cells 

showed that the construct IntC-Trx-TM-mCherry was localized on plasma membrane. Cells were 

incubated with a green fluorescent protein carrying the complementary moiety of the Npu DnaE intein 

(102 amino acids), the construct eGFP-IntN, which was expressed in E. coli and purified. Specific  

co-localization of mCherry and eGFP proteins at cell surface was verified by confocal microscopy, 
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demonstrating that Npu DnaE intein was able to reconstitute into a functional splicing unit in a cellular 

context. Npu DnaE intein has two catalytic cysteines involved in PTS reaction that must be reduced to 

ensure successful trans-splicing. Authors observed that PTS was not compromised if the contruct 

eGFP-IntN was preincubated with DTT and dyalized against PBS before the incubation with cells. 

Direct incubation of cells with DTT should be avoided as thiols may damage cell membranes. The 

semi-synthetic approach was extended to the preparation of proteins attached to the membrane through 

a glycosylphosphatidylinositol (GPI) anchor. To this scope, the IntC domain was expressed endogenously 

in fusion with the GPI signaling sequence Gas1p, which triggers its attachment to a glycolipid anchor 

on the cell membrane. Incubation with eGFP-IntN allowed membrane labeling through a GPI-anchor [94]. 

3. Isotopic Labeling 

Structural characterization by NMR spectroscopy may be not trivial if applied to large proteins, due 

to significant loss of spectral resolution and chemical shifts overlap. Both effects are progressively 

amplified as the protein size increases, hampering unambiguous signals assignment. The synthesis of 

large proteins by ligation methods, such as EPL, may resolve this issue. Through a synthetic approach, 

named segmental isotopic labeling, a selected portion of a protein, such as a single protein domain or 

region, can be specifically labeled with 13C, 15N and/or 2H isotopes and analyzed by NMR 

spectroscopy in the context of the native full protein (Figure 8). Segmental labeling allows to reduce 

the complexity of the NMR spectrum as only the signals of the labeled region are revealed, facilitating 

the structural analysis of the labeled protein portion. 

Figure 8. Semi-synthetic strategy for isotope labeling of an internal protein domain. The 

labeled protein domain is reported in yellow. PG is a protease recognition site which 

releases a N-terminal cysteinyl-protein. 

 

Muir’s group reported the first example of segmental labeling by EPL [95,96]. In this work, EPL 

was used to prepare the Abelson protein tyrosine kinase-SH(3,2) domain pair, in which only one of the 
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two domains was labeled with 15N. Unlabeled Abl-SH3 domain was prepared as C-terminal ethyl 

thioester using intein technology and reacted with N-terminal Cys containing (15N)Abl-SH2. A 

combination of mass spectrometry and NMR spectroscopy techniques was used to confirm the identity 

and the correct structure of the ligation product, which also showed the appropriate ligand-binding 

properties. The same semi-synthetic procedure was adopted by Camarero et al. to isotopically label the 

C-terminal region of a sigma70-like subunit from Thermotoga maritima in order to study the 

mechanism of autoinhibition mediated by its own N-terminal 90 amino acids by NMR [97]. More 

recently, the Gierasch’s group described the segmental isotopic labeling of the E. coli Hsp70 molecular 

chaperone DnaK [98]. One of its two constituent domains, the ATPase domain, was expressed as  

N-terminal fusion with the Mxe GyrA intein in minimal medium containing 2H, 13C and 15N isotopes 

sources, generating a labeled C-terminal thioester derivative after incubation with the thiol MESNA. 

The complementary substrate-binding domain (SBD) was expressed as C-terminal fusion with Ssp 

DnaB intein to generate, after intein splicing, a N-terminal Cys residue. The two domains were then 

ligated, affording full DnaK bearing the ATPase domain labeled with NMR active isotopes. In order to 

optimize ligation yield, many conditions were tested, evaluating the effects of varying pH, temperature, 

reagents concentration and ratio, denaturant concentration. Interestingly, they found appropriate to 

carry out the ligation reaction at low urea concentration (2 M) to enhance ligation efficiency, while 

higher or lower denaturant concentration resulted in a decreased ligation yield. They interpreted these 

results hypothesizing that urea concentrations higher than 2 M disrupt specific domain-domain 

interactions which bring together the ligands and promote ligation. At lower urea concentrations, instead, 

domains interaction persists but ligation yield falls down due to poor accessibility of C-terminal 

thioester group and N-Cys of the two domains. The former effect does not affect ligation yield if the 

reaction is carried out using millimolar reagent concentrations and an excess of SBD domain. 

Vitali et al. described an interesting segmental labeling reaction performed on resin, which requires 

the concerted use of two inteins, the Mxe GyrA and Ssp DnaB inteins. The synthetic procedure was 

adopted to prepare and characterize by NMR a series of segmentally labeled variants of the RNA 

recognition motifs (RRM3 and RRM4) of the polypyrimidine tract binding protein (PTB). The RRM3 

motif was expressed in fusion with Mxe GyrA intein and a CBD as affinity partner, while RRM4 was 

fused at the C-terminus of the Ssp DnaB intein and at the N-terminus to a CBD. As both fusion 

proteins bore the same affinity tag, they were co-loaded onto a chitin resin and the splicing of each 

intein was induced. Firstly, Mxe GyrA intein was spliced upon incubation with MESNA, releasing a  

C-terminal α-thioester RRM3. Then, a temperature switch to 37 °C allowed Ssp DnaB intein splicing, 

leaving RRM4 domain with an amino-terminal Cys residue. Once released, the two domains promptly 

reacted, affording a unique polypeptide chain. The full-length product was finally purified on Ni2+-resin, 

exploiting the His6 tag placed upstream RRM3 as additional affinity moiety. The ability of the two 

domains to interact facilitated their successful ligation. Segmental labeling could simply be accomplished 

loading onto the chitin resin an isotopically labeled RRM-Intein-CBD construct. By the use of the 

described on column procedure, many segmentally-labeled variants of RRM34 were prepared carrying 
15N,13C-labeled RRM3 and an unlabeled RRM4, unlabeled RRM3 and a 15N,13C-labeled RRM4 and a 
15N,13C-labeled RRM3 and a 15N-only-labeled RRM4 [99]. The same procedure was adopted and 

improved by Skrisovska and Allain, who described the characterization of two different multidomain 

proteins containing RNA recognition motifs (RRMs), heterogeneous nuclear ribonucleoprotein L and 



Molecules 2013, 18 455 

 

 

Npl3p. In this work, the splicing-ligation on column procedure was extended to insoluble protein, 

adding a refolding step before protein binding on resin, and to non-interacting domains, for which  

full-length protein yield was enhanced by eluting from the resin and concentrating the non-ligated 

reactants. The proteins were obtained in high yields, allowing to characterize their interdomain 

interactions by NMR spectroscopy [100]. An elegant approach was also proposed by Zhao et al. that 

reported an efficient on-column EPL strategy for the semi-synthesis of human apolipoprotein E (apoE) 

triply-labeled with 2H, 15N and 13C. The protein was expressed in two fragments. The N-terminal 

portion of ApoE was expressed as intein fusion construct and also bore a CBD as affinity tag. After 

binding on a chitin-resin, the fusion protein was incubated with the C-terminal ApoE fragment, also 

prepared by recombinant means and harboring a N-terminal Cys, to perform on-resin ligation reaction. 

Using this on-column ligation approach, once generated from intein thiolysis, the thioester species may 

readily react with the N-terminal Cys-fragment, strongly reducing the probability of hydrolysis of the 

thioester group and increasing the ligation yield. By this protocol, several variants of ApoE were 

prepared combining the two fragments labeled with three different NMR active nuclei, 2H, 15N or  
13C [101,102]. Another biological problem which was addressed by segmental labeling is the study of 

ubiquitin biology. The attachment of a ubiquitin (Ub) or of poly-Ub to a target protein may regulate a 

great number of cellular processes, such as protein proteasomal degradation, transcriptional activation, 

vesicular trafficking of proteins. Poly-Ub chains are made by linking to each other Ub monomers 

through an isopeptide bond between the -amino group of one of the seven Lys residues of a monomer 

with the C-terminus of the next one or head-to-tail. Depending on the Lys involved into poly-Ub 

assembling, poly-Ub chains may work as molecular signals for different biological processes. 

Probably, the specificity of each poly-Ub chains depends on the different conformation that each one 

assumes depending on the sites of ramification. The characterization of the interaction of different 

poly-Ub with their receptors requires the ability to prepare homogeneous preparation of poly-Ub with 

a defined linkage between each Ub monomer. EPL fulfills such request, being more selective and 

versatile than enzymatic methods. However, due to its homo-polymeric nature, NMR studies of  

poly-Ub chains represent a challenging task. Segmental labeling offers a solution to the problem, 

allowing to observe each single Ub monomer in the context of the branched poly-Ub. Castaneda et al. 

reported the semi-synthesis of a segmentally isotopic labeled Ub2 chains. A Ub monomer carrying a  

-mercaptolysine at two positions (33 or 48) was prepared by chemical synthesis and reacted with a  

C-terminal thioester (15N)-labeled Ub monomer, obtained by recombinant expression as intein fusion 

protein. EPL allowed the formation of an isopeptide bond between the two monomers. After ligation, 

the thiol group in -position of the Lys was removed by desulfurization, affording a native- like di-Ub 

molecule [103]. The variant in which the two Ub monomers are linked through Lys48 was used as 

control construct, as this poly-Ub has been widely characterized by NMR. Data obtained using the 

segmentally labeled synthetic K48-linked di-Ub demonstrated that it is structurally identical to the one 

assembled using enzyme, confirming that the protein chains obtained by EPL are ‘‘native-like’’ and 

paving the way to the structural, conformational and ligand-binding properties characterization by 

NMR of the K33-linked di-Ub variant. EPL is a useful approach even for the site-specific introduction 

of one or few stable isotopes within a protein. Romanelli et al. applied the segmental isotopic labeling 

to selectively dual label the scissile peptide bond at the N-extein/intein junction of Mxe GyrA intein 

with 13C and 15N nuclei. 15N uniformly labeled Mxe GyrA intein was ligated to a synthetic pentapeptide 
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labeled with 13C only on the C-terminal carboxylic group (Figure 9). On such construct they were able 

to measure the amide 1JNC’ coupling constant which was found to be of 12.3 Hz. This result suggests that 

this amide bond is unusually polarized, because of non-planarity, allowing one to explain the extreme 

lability of the N-extein-intein bond which is broken in the first step of protein splicing. Additional 

studies demonstrated that a conserved His residue of intein block B is absolutely required to catalyze 

the first step of the splicing reaction and contributes to maintain the (-1) scissile bond in its unusual 

conformation [104]. Further investigations on Mxe GyrA intein splicing mechanism were carried out 

performing NMR studies on a semi-synthetic branched intermediate prepared ligating a recombinant 

1–184 α-thioester intein fragment with a synthetic branched peptide reproducing the intein remaining 

portion (aa 185–198) with the C-extein and carrying the N-extein attached to the side chain of a  

Thr. Furthermore, the 13C and 15N isotopes were specifically incorporated into the scissile +1 peptide  

bond [105]. In another example, a series of 13C-labeled amino acids were incorporated at the C-terminus 

of the α-subunit of a heterotrimeric G protein [106]. Using EPL, 9-mer peptides containing 13C labels 

in Leu-348 (uniform), Gly-352 (alpha carbon), and Phe-354 (ring) were ligated to recombinant Gα 

subunit lacking the corresponding carboxyl-terminal residues. Analysis of the 13C resonances indicated 

that the C-terminus of the Gα subunit is unstructured when the protein is bound to GDP, but adopts an 

ordered conformation upon activation by AlF4
−. 

Figure 9. Semi-synthesis of Mxe GyrA intein with the scissile (-1) peptide bond dual 

labeled with 13C and 15N. Mxe GyrA intein (green) was uniformely labeled with 15N. Extein 

peptide (yellow) was synthesized by SPPS with a 13C α-carboxylate. 

 

EPL allows even for the segmental labeling of a protein internal region. To this purpose EPL makes 

use of sequential-ligation tools, as firstly described by Muir’s group who semi-synthesized the  

304 amino acids Crk-II protein through the sequential assembling of three recombinant polypeptides. 

In such approach, the central segment bears both a C-terminal thioester and a “cryptic” N-terminal Cys 

masked by a protease cleavage site which prevents the self-reaction of the central polypeptide. After 

EPL between the central thioester segment and the C-terminal polypeptide, protease cleavage allows to 
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reveal the α-Cys in the intermediate protein. Reaction with N-terminal segment, harboring the C-terminal 

thioester function, may afford the full protein [107]. Zaragöz et al. applied EPL to the semi-synthesis 

of the dimeric protein Hsp90, evaluating the effect on ligation yield of varying critic parameters such 

as reactants concentration, pH, ligation site. They developed an EPL based protocol suitable for the 

preparation of segmentally labeled dimeric proteins [108]. Another application of segmental labeling 

refers to infrared spectroscopy. Moran et al. applied segmental labeling to the study of human  

γD-crystallin amyloid fibrils by two-dimensional IR spectroscopy. EPL was used to uniformly label 

with 13C one of the two Greek key domains in order to individually resolve them in (2D) IR spectra of 

acid-induced amyloid fibrils [109,110]. Segmental labeling can also be accomplished by intein  

trans-splicing. This approach has been, recently, exploited by the Iwai’s group which described a 

strategy to label an internal region of a protein of interest using the split intein Npu DnaE [111] and 

more recently the preparation of a segmentally labeled version of the multi-domain CheA protein from 

E. coli both by EPL and trans-splicing [112]. In the latter work, pTWIN vector was used to express the 

two domains of the 140 kDa protein CheA respectively as Mxe GyrA and Ssp DnaB fusion constructs. 

EPL between the two domains was performed in native conditions and thus gave a ligation yield of 

only 10%–40% due to the impossibility to reach high reactant concentrations under non-denaturing 

conditions. PTS performed using Npu DnaE intein gave better results because the trans-splicing 

reaction does not require high reactant concentrations as the two intein fragments show a very high 

affinity. Intein trans-splicing mediated segmental labeling was also applied to study F1-ATPase, whose 

characterization by NMR is hampered by its amino acid length. A segmental labeling procedure based 

on the use of PI-pfuI intein was applied to label the β subunit of the protein and allowed to successfully 

assign the great majority of signals of the beta subunit monomer. The structures elaborated from the 

collected NMR data suggested that the subunit beta monomer assumes the open form in the absence of 

the nucleotide, while nucleotide binding induces a conformational change from the open to the closed 

form. The structural change of the beta subunit monomer induced by nucleotide binding triggers the 

rotation of F1-ATPase [113]. In a subsequent work, the segmentally labeled F1-ATPase was studied to 

gain deeper insights into the rotation of F1-ATPase, driven by the open/close bending motion of the β 

subunit [114]. An interesting approach has been described by the Iwai’s group to segmentally label a 

protein by in vivo PTS [115–117]. In this synthetic scheme the two protein fragments of a target 

protein are expressed in fusion with the N or C domain of a split intein. Each fusion construct is placed 

under the control of an inducible promoter, for instance the T7 and arabinose promoters respectively 

inducible by IPTG and arabinose. Bacterial cells co-transformed with both the recombinant plasmids 

are cultured and subjected to two sequential induction steps. First, labeled domain expression is 

induced in minimal medium containing isotopes source; then, cells are harvested by centrifugation, 

resuspended in rich culture medium and then expression of the complementary domain is induced.  

In vivo PTS affords segmentally labeled full-length protein target. Such approach has been used by 

Iwai’s group to prepare a 15N-segmentally labeled variant of the c-CRKII adaptor domain using the 

split intein Npu Dna E [115]. Segmental labeling by PTS has also been adopted to overcome the 

solubility limit of a protein sample for NMR studies. In fact, a common obstacle to NMR studies of 

proteins is the preparation of samples in soluble form at high concentration, usually in the millimolar 

range. To improve protein solubility, fusion of the target protein to a solubility enhancement tag 

(SET), such as the glutathione S-transferase, the maltose-binding protein or the thioredoxin, allows one 
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to overcome the problem and at the same time facilitates the purification procedures. However, many 

extra signals arise from the SET, complicating the NMR spectrum. Segmental isotopic labeling offers 

the right solution to the quest trough the so called “invisible SET’’ approach, referring to the 

preparation of a SET fusion protein in which solely the target protein is isotopes enriched. Using in 

vivo intein trans-splicing, the non-isotope labeled SET protein GB1 (Streptococcus Protein G B1 

domain) was fused to 15N-labeled chitin binding domain (CBD), improving its solubility for a study by 

solution NMR spectroscopy [117]. Although of great originality, the shortcoming of such approach is 

that the target protein does not possess a stabilizing fusion partner during expression and thus it may 

aggregate into inclusion bodies before in vivo ligation, becoming unable to react with the SET. In order 

to overcome such limitation, Kobayashi et al. developed an alternative invisible SET approach, always 

based on intein trans-splicing mechanism. The target protein, the ribosome binding factor A (RbfA), 

was expressed in isotopes enriched medium as fusion construct with a tandem repeated N-terminal 

domains of the protein S from Myxococcus xanthus, previously reported to be a useful SET [118], and 

with the C-terminal domain of a split intein. The same SET protein was expressed fused to the split N-

terminal domain of the intein. Intein trans-splicing between them allowed to swap the labeled SET 

from RbfA with an unlabeled one. Using this approach, RbfA soluble expression is ensured by fusion 

with protein S tag even during expression phase and NMR characterization is facilitated by 

suppressing SET signal trough segmental labeling [119]. 

4. Conclusions 

Protein semi-synthesis by EPL is nowadays a mature technology, it has demonstrated its utility to 

solve numerous scientific issues, especially in chemical biology and biophysics. In particular, EPL is 

one of the favorite methods to prepare high pure and homogenous proteins modified with specific 

probes, as fluorescent dyes or isotopes. This aim is achieved developing several ingenious synthetic 

strategies, indicative of the flexibility of EPL technology. In fact, EPL combines the advantages of 

organic chemistry with the easy and size limitless of recombinant protein expression, enabling a single 

protein to be functionalized at one or even more specific positions with different probes irrespective of 

its size. In definitive, EPL is an excellent strategy for the chemical synthesis of labeled protein which 

can find application in wide variety of life-science laboratories. 
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