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Abstract

Static functions are data structures meant to store arbitrary mappings from finite sets to integers;
that is, given universe of items U , a set of n ∈ N pairs (ki, vi) where ki ∈ S ⊂ U, |S| = n, and
vi ∈ {0, 1, . . . ,m−1},m ∈ N, a static function will retrieve vi given ki (usually, in constant time).
When every key is mapped into a different value this function is called perfect hash function and
when n = m the data structure yields an injective numbering S → {0, 1, . . . n− 1}; this mapping
is called a minimal perfect hash function.

Big data brought back one of the most critical challenges that computer scientists have been
tackling during the last fifty years, that is, analyzing big amounts of data that do not fit in main
memory. While for small keysets these mappings can be easily implemented using hash tables,
this solution does not scale well for bigger sets.

Static functions and MPHFs break the information-theoretical lower bound of storing the set
S because they are allowed to return any value if the queried key is not in the original keyset.
The classical constructions technique for static functions can achieve just O(nb) bits space, where
b = log(m), and the one for MPHFs O(n) bits of space (always with constant access time). All
these features make static functions and MPHFs powerful techniques when handling, for instance,
large sets of strings, and they are essential building blocks of space-efficient data structures such
as (compressed) full-text indexes, monotone MPHFs, Bloom filter-like data structures, and prefix-
search data structures.

The biggest challenge of this construction technique involves lowering the multiplicative con-
stants hidden inside the asymptotic space bounds while keeping feasible construction times. In
this thesis, we take advantage of the recent result in random linear systems theory regarding the
ratio between the number of variables and number of the equations, and in perfect hash data
structures, to achieve practical static functions with the lowest space bounds so far, and construc-
tion time comparable with widely used techniques. The new results, however, require solving
linear systems that require more than a simple triangulation process, as it happens in current
state-of-the-art solutions. The main challenge in making such structures usable is mitigating the
cubic running time of Gaussian elimination at construction time. To this purpose, we introduce
novel techniques based on broadword programming and a heuristic derived from structured Gaus-
sian elimination. We obtained data structures that are significantly smaller than commonly used
hypergraph-based constructions while maintaining or improving the lookup times and providing
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iv ABSTRACT

still feasible construction.
We then apply these improvements to another kind of structures: compressed static hash

functions. The theoretical construction technique for this kind of data structure uses prefix-free
codes with variable length to encode the set of values. Adopting this solution, we can reduce
the space usage of each element to (essentially) the entropy of the list of output values of the
function. Indeed, we need to solve an even bigger linear system of equations, and the time
required to build the structure increases.

In this thesis, we present the first engineered implementation of compressed hash functions.
For example, we were able store a function with geometrically distributed output, with parameter
p = 0.5 in just 2.28 bits per key, independently of the key set, with a construction time double
with respect to that of a state-of-the-art non-compressed function, which requires ≈ log logn bits
per key, where n is the number of keys, and similar lookup time. We can also store a function
with an output distributed following a Zipfian distribution with parameter s = 2 and N = 106

in just 2.75 bits per key, whereas a non-compressed function would require more than 20, with
a threefold increase in construction time and significantly faster lookups.



Glossary

perfect hash function (PHF)

A function that defines an injective mapping from the set of keys to the set of values. 1

lazy Gaussian elimination

A heuristic that reduces the number of equation to be solved by standard Gaussian Elimi-
nation. 3

hypergraph

A structure consisting of a pair (V,E); the set V is the set of nodes, and E is the set of
edges; each edge is a subset of V . 11

nodes

See hypergraph, we use w to identify a node, they are also called vertex . 11

edges

A set of nodes, we use e to identify an edege. 11

r-uniform hypergraph

A hypergraph such that each edge contains exactly r nodes. 11

degree

The number of edges which contain a node. 11

k-core

A maximal induced connected subgraph such that each node has degree at least k, and it
is denoted by the letter Kk. 12

hinge

A variable uniquely associated with an equation by the peeling process. 13

cycle

A finite sequence of adjacent nodes wherein a vertex is reachable from itself, it is usually
identified with the letter C. 13
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path

A sequence of adjancent nodes and it is usually identified with the letter P . 13

triangulated

A square matrix converted into an upper triangular form. 14

random graph model

We use Erdös-Rényi random graph model, this model chooses uniformly a graph G(m,n)

from the collection of all possible graph which have m nodes and n edges. 15

weight

Number of non-zero elements in a vector. 15

orientation

The process that assigns uniquely a node to an edge. 16

collision

A collision occurs when there are two distinct keys ki, kj such that f(ki) = f(kj) that is
when the function is not injective. 19

rank data structure

A data structure that allows rank operation. 20

bit array

A Sequence of bits, we assume that it is possible to access any position of the bit array in
constant time, and it is denoded by the symbol B. 20

s-bit digesting function

A function such that associate with each element of the universe a string of s bits. 20

code

It is a map c from a set of symbols Σ to the set of bit string {0, 1}∗. 23

codewords

The range of code, the length of a codeword is |c(σ)|. 23

prefix-free

A code is prefix-free if given σ, τ ∈ Σ it never happens that c(σ) � c(τ) or c(τ) � c(σ). 24



List of Symbols

n Number of keys. 1

m The number of variables in a linear system of equations that is the number of nodes in the
hypergraph. 11

ai,j Element of the m× n matrix A in row 0 ≤ i ≤ n− 1 column 0 ≤ j ≤ m− 1. 11

bl Element of size n vector B in position 0 ≤ l ≤ n− 1. 11

A It is the matrix of coefficients of a linear system. 11

x Vector of variables. 11

B It is the vector of constant terms of a linear system. 11

r Number of nodes in an edge. 11

k Minimum degree of a node in order to remain after the peeling procedure. 12

O(E) Asymptotically grows at most k · (E) for some constant k > 0. 12

⊥ Special symbol for undefined value. 13

c Any ratio between the number of nodes and the number of edges for a random r-hypergraph.
15

γr,k The threshold for the appearance of a k-core in a r-hypergraph. 15

γr Shortcut to γr,2. 15

βr Calkin lower bound. 15

ck,r Threshold for the solvability of k-XORSAT problem. 16

U Universe of keys. 19

log(x) Logarithm base 2 of x. 20

e Euler’s numer, e = 2.718281828 . . .. 20
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u The size of the Universe U . 20

ε A small constant near zero. 20

{0, 1}n Set of all the possible bit strings of length n, we use {0, 1}∗ to represent the set of all
possible bit string. 20

|B| The size of the bit array B. 20

rankB(p) Number of ones in the bit array B up to position 0 ≤ p ≤ |B|. 20

o(n) Asymptotically grows at most k · (n) for all the constants k > 0. 20

B[i] The bit in position 0 ≤ i ≤ |B| − 1 in the bit array B. 20
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� Much less than. 23

σ An element in Σ, also called symbol . 23

� Prefix partial order,for X ,Y ∈ {0, 1}∗ we have X � Y iff ∃Z ∈ {0, 1}∗ such that Y = XZ. 24

XY Given two bit string X ,Y, we use XY when all the bits in Y are appended after the bits in
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Chapter 1

Introduction

Motivation

Since the early ‘50s computer scientists focused their efforts on how to store information and how
to retrieve information. One of the most common models of data representation is the key/value
mapping. This abstraction is well suited to store functions with a finite domain. Although it
looks like an elementary model, several solutions have been offered, each of them with a different
purpose and different tradeoffs.

A collection of key/value pairs such that each key does not appear more than once is known
as dictionary or map, and can be implemented using standard techniques such as hash tables [16]
or search trees [25].

For any key in the domain, a dictionary returns the matching value. For keys outside of
the domain, the dictionary usually returns a special value, denoting the absence of the key.
Dictionaries are ubiquitous in applications.

A map can have additional properties: it can be, for instance, a perfect hash function (PHF)
or a minimal perfect hash function (MPHF). A perfect hash function is an injiective mapping,
this is, each key is associated with a distinct value. If a function is perfect, the size of the keyset
is equal to n ∈ N, and the set of output values is {0, 1, . . . , n − 1}, then the function is called
minimal.

Based on the data to store and on the task to perform, computer scientists separated static
from dynamic data structures. A static data structure does not allows dynamic modifications:
when adding an element or changing the value associated to a key, all the data structure must be
recomputed from scratch. With this premise is clear that this kind of data structure is excellent
for big dataset that changes rarely or that takes a long time to be computed.

An important building blocks of some static data structure are static functions. In this thesis
we will mainly focus on a (nearly) succinct representation of static hash functions.

Computer scientists have studied succinct data structure since the late ‘80s. A data structure

1



2 CHAPTER 1. INTRODUCTION

is succinct if its space usage is equal to the information-theoretical lower bound plus a smaller-
order factor, and the speed of its operations is the same as that of a standard data structure.
Unfortunately some of these theoretical data structures are impractical, the main causes are their
complexity and the fact that the required size of the keyset is too big. So the computer scientists
accepted a mild increase in space to provide simple and very efficient practical data structures.

In this thesis, we start from the traditional technique proposed by Majewski, Wormald, Havas,
and Czech [41] (or MWHC) to build a static data structure for function representation. This
technique is very simple; it uses a construction based on random linear system solving, and can
be adapted to store minimal perfect hash functions in a very efficient way. If the ratio between
variables and equation in the linear system is above a certain threshold we can find the solutions
in linear time. But this ratio influence the final size of the data structure. During the years,
computer scientists focused their reasearch on the methods to reduce the space occupation of the
data structure. The most practical solutions are: use a smaller ratio [2,20] and compression [35].

The first solution has been proposed by Dietzfelbinger and Pagh [20] and experimented by
Aumüller et al. [2]. Unfortunately the experimental results were not rewarding because their
construction time was too high. Furthermore, a recent result on a logical problem [19] suggests
that the ratio between variables and equation in the linear system can be lowered.

Instead, Hreinsson, Krøyer, and Pagh [35] follow the second option and defined a new teo-
retical data structure that uses compression. We to decided fill the gap between theoretical and
real data structures by implementing this solution.

Problem and Challenges

As already anticipated, some useful approaches, both theoretical and pratical, have been proposed
to solve static functions; however there is a large space for improvement, especially from the
practical point of view.

In general, we want to reduce the final size of the data structure and keep a reasonable
construction time.

The first challenge is the same faced by Aumüller et al. [2]. Reducing the ratio between the
number of variables and the number of equation inside the linear system denies the possibility of
a linear time system solving. In order to find the solutions one of possible algorithms is Gaussian
elimination, but its complexity is cubic in the number of equations. Some better solutions have
been proposed during the years [52,55], but none of them was suitable for sparse equations. So,
the first challenge we tackled was finding a suitable heuristic for speed up system solving. The
second problem was the implementation of a theoretical data structure for compressed static
functions described in [35]. For this construction technique the number of equations, thus the
number of variables, present in the linear system depends on the distribution of the output
values of the function. This leads to a linear system that contains more equation than the
MWHC construction technique and we did not know if the solutions that we proposed in order
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to speed up system solving were sufficient to obtain a reasonable construction time.
Finally, compressing the data structure requires a system that converts information to symbols

and viceversa, this system is tipically called a code. One of the challenges was finding an efficient
code, both in terms of space consumption and decoding speed.

Main Contributions

As we have seen in the previous sections, most of our problems are related to the solution of
big linear systems. Since the systems are modular, and we need exact solutions, some form of
Gaussian elimination is the primary method available, and we devised few techniques to speed
it up. In particular:

• we introduced the use of broadword programming [37] for manipulating equations [28].
These methods aim at packing multiple values in a machine word and process them simul-
taneously. For our problem, the inner loop of the Gaussian elimination is entirely composed
of row operations, i.e. addition and subtraction of two rows of the same matrix. By using
this technique we can process sixty-four variables at the time when building static hash
functions and thirty-two when building minimal perfect hash functions.

• We propose a new version of structured Gauss elimination without parameters, which we
call lazy Gaussian elimination [28]. This heuristic method aims at reducing the number
of operations needed in the solution of a linear system by trying to isolate some variables
appearing in a significant number of equations and then rewrite the rest of the system
using just those variables. Since our linear system is very sparse, this heuristic method
turned out to be extremely useful, reducing the size of the system to be solved by standard
elimination to around 4% of the original one.

• We implemented and tested extensively over large dataset several kinds of functions. No
scalable construction technique was previously known for our structures. In particular, we
engineered for the first time [29] the compressed structures described in [35].

All the code is available as part of the Java open source libray Sux4J available online.

Organization

The core of this thesis is the engineering and experimental evaluation of some techniques to store
static functions and minimal perfect hash functions.

In the first part, we present the theory behind our approach, by introducing some basic
definitions about linear system and hypergraphs, discussing the relevant results about "random
linear system solving "and "hyperedge orientability", which are the ground for our construction
methods.

http:sux.di.unimi.it


4 CHAPTER 1. INTRODUCTION

After this premise, we presents critically the construction techniques for static hash functions
already present in literature, analyzing the strengths and weaknesses of each structure, and, most
importantly, introduces the improvements we added to solve the linear system more quickly.

In the second part, we mainly focus on experiments. We will describe the terms of comparison
between different construction techniques. We will test how parameters, such as the number of
variables, influence these measures. For our experimental analysis, we used mainly two keysets
containing hostnames and URLs gathered with a web crawler. For each construction we discuss
the results and, where possible, we compare the results with different methods. The analysis for
the compressed static functions will be deeper. In particular, we will discuss in which cases gives
the best performances, in comparison with standard methods. Furthermore, the solution offered
in literature exhibits some flaws for realistic datasets.

In the last chapter, we summarize the results of this work.



Part I

Theory
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Introduction

The first part of the thesis focuses on the theoretical background relevant for our study/ the
theoretical basis of our work. We start from Chapter 2 by giving some basic definitions to
understand the different construction techniques. We will show how we can represent any linear
system by using a hypergraph. Then, we will discuss some conditions for the linear systems to be
solvable (Section 2.4). In the third chapter, we will present several construction techniques for
the representation of static functions. We will describe the most famous construction techniques.
We will start from Minimal Perfect Hash Functions in Section 3.1. Then we are going to extend
the hypergraph-based construction technique to obtain static functions in Section 3.1.3 and
compressed static hash functions in Section 3.2. We will see that compressed static functions
require an encoding scheme, and we will define it in Section 3.2.1. Finally, in Chapter 4 focuses
on the improvements of the solving methods introduced in this work. In Section 4.1 we will show
how to speed up row operations by using a different representation for the equations. We will use
broadword programming to perform row operations. In Section 4.2 will present a highly efficient
heuristic for linear system processing. The last part is dedicated to some minor improvements
for particular construction technique.

9
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Chapter 2

Linear Systems

2.1 Introduction

This chapter introduces to the reader the basis to understand the construction techniques that
we will present later. These notions are taken from graph theory, but what they all have in
common is that they are related to static functions representation.

2.2 Linear Systems

A linear system containing n ∈ N+ equations and m∈ N+ variables can be written as:
a00x0 + · · ·+ a0(m−1)xm−1 = b0
...

a(n−1)0x0 + · · ·+ a(n−1)(m−1)x(m−1) = b(n−1)

(2.1)

Each elements ai,j∈ R are called coefficients and bl ∈ R are named constant terms. In particular
we will use descrete values for the coefficients and for the constant terms. Another way to
represent the system is by using a matrix form Ax = B where A is a m × n matrix and it
contains all the coefficients, x is a vector containing m variables and B is a vector with n

constant terms.

A =


a00 · · · a0(m−1)

...
. . .

...
a(n−1)0 · · · a(n−1)(m−1)

 ; x =


x0

...
xm−1

 ; B =


b0
...

bn−1

 (2.2)

Now, we are going to show another way to represent a linear system by using hypergraphs,
while in Section 2.4 we will focus on random linear systems.

11



12 CHAPTER 2. LINEAR SYSTEMS

2.3 Hypergraphs

A hypergraph is a pair (V,E) where V is a set of nodes and E is a set of non-empty subset of V
called edges. Each edge can contain an arbitrary number of nodes nodes, but in general edges
which connects a node to itself are not allowed. If every edge has exactly1 r ∈ N+ nodes, then
we a have a r-uniform hypergraph (r-hypergraph from now on). For instance, if r = 2 then we
have a graph. If the hypergraph is not oriented the degree of a node is the number of edges that
contain the node. We can use a hypergraph to represent a linear system, as shown in the next
example.

Example 2.3.1. Given a set of equation:

a00x0 + a03x3 = 3

a10x0 + a11x1 + a13x3 = 0

a21x1 + a22x2 + a23x3 + a24x4 = 1

a32x2 + a34x4 = 2

(2.3)

The linear system in Equation 2.3 contains four equation and five variables. First, we fill the
set of nodes V with all the variables appearing in the system. Then, for each equation we create
an edge, i.e. a set of variables, with all the variables inside the equation. All the edges form the
set E.

V = {x0, x1, x2, x3, x4};
E = { {x0, x3}, {x0, x1, x3},

{x1, x2, x3, x4}, {x2, x4} }
(2.4)

The Figure 2.1 shows the hypergraph that represent the above linear system. The green edge
represents the first equation, the yellow one the second, the blue one the third and last equation
is red. Note that the coefficients are not rapresented in the hypergraph.

x0

x1

x2

x3

x4

Figure 2.1: The hypergraph representing the linear system in Equation 2.3

1In practice we allow each edge to have at most r nodes.
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Using the hypergraph representation, we can adapt a peeling procedure in order to find the
solution of the linear system. This procedure iteratively removes nodes of degree less than k ∈ N+

(and their incident edges) until no further node can be removed. The advantage of this procedure
can be implemented in linear time with a simple depth-first visit. Usually, this procedure detect
a k-core, which is defined as a maximal induced induced connected subgraph such that each node
has degree at least k. The procedure is summarized in Algorithm 1, and takes O(E) time. This
procudure returns a ordered list of pairs (node, set of edges).

Algorithm 1 Peeling procedure
1: function PeelingProcedure(Graph, k)
2: create an empty list of pairs (nodes, edge) L
3: while Exist a node w with degree less than k do
4: remove it from the graph
5: remove the all possible incident edges e from the graph
6: append to L the pair (w, e) [or (w,⊥) if w has degree 0]
7: update the degrees of all adjacent nodes
8: end while
9: return L

10: end function

In particular, if k = 2 we can solve the linear system in linear time. In fact, the list L contains
a distinct node per edge, or, equivalently, one distinct variable per equation, in this case we call
this variable the hinge of the equation: indeed, each node is uniquely associated to the only edge
to which it was incident when it was peeled. If L contains all the nodes then we say that the
procedure succeeded. We call acyclic all the hypergraphs that do not contains any cycle, i.e. a
path of edges wherein a vertex is reachable from itself. Therefore the system is no longer solvable
in linear time.

Theorem 1. An hypergraph G is acyclic if and only if for k = 2 after the peeling procedure the
remaining hypergraph is empty.

Proof. We start by proving that if there exists a cycle inside G and we apply the peeling
procedure then the remaining hypergraph is not empty. We define C as the finite sequence of
distinct nodes w0w1 · · ·waw0. Let us notice that C is a cycle. By definition all the nodes in C
have degree at least two and does not exist any vertex w ∈ G \C such that if we remove w from
G then there exists a vertex in C with degree smaller than two. So all the nodes in the cycle
cannot be removed by the peeling procedure, and the remaining hypergraph is not empty. Now,
we need to prove that if G is acyclic then the remaining hypergraph is empty. By contradiction,
suppose that G is acyclic and the remaining hypergraph is a nonempty 2-core. So we need to
prove that any nonempty 2-core contains at least a cycle. Let K2 be the nonempty 2-core and
P be the longest sequence w0w1 . . . wa−1wa of adiancent nodes in K2. All the nodes w1 . . . wa−1

have degree at least two, since the are connected with the previous and the successive node of
the sequence. But the node wa has degree at least two because it belongs to K2. So either wa
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is connected to another node w not in P , but this case is impossibile since P was choosen to
be of maximal length, or it is connected to w ∈ w0, . . . , wa−2. Thus if w = wi, 0 ≤ i ≤ a2,
then wiwi+1wawi is a cycle.

So we proved that in K2 there is at least one cycle. Now, K2 is a induced subgraph of G,
thus G contains a cycle, and this concludes the proof since contradicts the initial proposition.

Example 2.3.2. In Figure 2.2 we show a complete example of the peeling procedure for the
following system:

x1 + 3x3 = 200

x3 + 2x4 = 24

x3 + 41x5 = 311

x2 + 10x5 = 120

→
V = {x1, x2, x3, x4, x5};
E = { eq1 = {x1, x3}, eq2 = {x3, x4},

eq3 = {x3, x5}, eq4 = {x2, x5} }
(2.5)

The red nodes have degree equal to 1 and are going to be removed within the next step and
appended in the list of hinges. At the end of the procedure, all the equations are sorted, and the
list L = [(x1, eq1), (x2, eq4), (x5, eq3), (x3, eq2), (x4,⊥)]. If we move from the the last element of
L to the first one, the hinge variable did not appeared in a previous equation.

Figure 2.2: Peeling procedure applied to a to the graph defined by Equation 2.5

Now the system is triangulated , and is possibile to solve it by backward substitution. We
assign the last standing variable, x4, to 0 and we begin to solve the linear system. We start from
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the equation x3 + 2x4 = x3 + 0 = 24, we assign x3 = 24 and then we go back and substitute x3

in the whole equations until all the system is solved. After x3, we assign x5 = 7 then x2 = 50

and we conclude with x1 = 128. This procedure does not work for every hypergraph; we will
discuss the appearances of 2-cores in the next section.

2.4 Constants for Solvability / Orientability

As we have seen in the previous section, if the peeling procedure succeded then it is always
possible to find a solution for the linear system. We now introduce the definition of a random
graph generated by using the Erdös-Rényi random graph model .

Definition 2. Given n,m ∈ N+, the Erdös-Rényi random graph model choose uniformly at
random a graph G(m,n) from the collection of all possible graph which have m nodes and n

edges.

This model can be trivially generalized for the hypergraphs. Computer scientists studied the
presence of the k-cores in random graphs in several papers over the years. We denote with c

the ratio between the number of nodes and the number of edges for a random r-hypergraph.
Computer scientist focused their attention to the minimum value of c such that the random
r-hypergraph is acyclic with high probability.

In 1994 Havas et al. [33] conjectured and verified experimentally the value of this threshold
for graphs and 3-hypergraph. In 1996, Pittel et al. [48] provided a sound analysis of the threshold
for the appearance of k-cores in random graph G(m,n). In their analysis they also calculate the
size of the k-core. Studying k-XORSAT formulas, Molloy [44] extended the heuristic from [48].
He proposed a simpler technique in order to compute the threshold for the appearance of a k-core
in a random r-hypergraph. This particular threshold in the following text is denoted as γr,k.
Such threshold is a consequence of Theorem 1 in [44]:

Theorem 3. For any r, k ≤ 2 with r, k not both equal to 2. The threshold for the appearance
of a k-core in a r-hypergraph γr,k, is defined by this equation:

γr,k = r! ·

(
min
x>0

x · (r − 1)!

(1− e−x
∑k−2
i=0

xi

i! )r−1

)−1

(2.6)

The results for k = 2 and r = 3 are in accordance with the experimental values appearing
in [33] and [17]. From now on we define γr = γr,2. In Figure 2.3 we show values for the threshold
γr. As we proved earlier in Theorem 1, the absence of a 2-core is equivalent to acyclicity for
r-hypergraph.

As you can see in Figure 2.3 γr,2 has a global minimum for r = 3.
Beyond that, the question arises whether it is possible to solve the system using a smaller

ratio between nodes and variables than the threshold for acyclicity. One of most important
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Figure 2.3: Values for γr, βr and c2,r for a r-hypergraph

results in this direction is the bound presented by Calkin [14]. He proved the existence of a
constant βr, such that if m > βrn and the rows of the matrix A are just drawn at random from
vectors of weight r then the limit of the probability that the rows of A are linearly dependent
is zero as the number of rows tends to infinite (Theorem 1 [14]). In contrast with γr which has
a finite minimum, βr vanishes quickly as r increases. Using the Equation 2.7 it is possible to
compute the value of βr. An approximation of those values is plotted in orange in Figure 2.3.

βr = 1− e−r

ln 2
− 1

2 ln 2
· (r2 − 2r − 2r

ln 2
− 1) · e−2r ±O(r4) · e−3r (2.7)

In [20] the authors suggested a theoretical data structure based on the solution of systems by
Gaussian elimination. In [2] the authors perform some experiments using this approach. However,
in spite of trying several techniques (e.g., splitting the keyset into small buckets, precomputing
all the pseudoinverse of system matrices, trying different algorithm for system solving, etc.),
there were not sufficient improovements for construction time (see for instance discussion in [2]
and in [49]). In Section 3.1.3 we are going to give more details about this construction.

Actually, since we are interested in solving the system, and this might happen even if the
system matrix has not full rank, we can even consider the k-XORSAT solvability threshold
ck,r [19], which is smaller, and plotted in Figure 2.3.

We cite the values in the first line of the table presented in Section 2 of [19], as we can see,
this values are smaller than the ones computed using the Equation 2.7.
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Table 2.1: Values described by Dietzfelbinger et al. [19]

k/r 2 3 4 5 6 7
2 - 0.91793 0.97677 0.99243 0.99737 0.99906

2.4.1 Orientation

Building minimal perfect hash functions requires to associate each edge with one of its nodes, as
we discussed previously. We call this association an orientation. When one solves a linear system
by triangulation, the triangulation gives as a byproduct an orientation. However, when we apply
Gaussian elimination this is no longer true, and an orientation has to be computed explicitly.
In [19] Dietzfelbinger et al., studying k-XORSAT solvability, showed that the threshold for the
orientability of a 3-hypergraph is the same as the one for k-XORSAT solvability. Since Goerdt
and Falke have proved a result analogous to the one for k-XORSAT for modulo-3 systems [30], we
can obtain an orientation of a random 3-hypergraph using the generalized selfless algorithm [19],
and then solve the modulo-3 linear system induced by the orientation to get a perfect hash
function. The generalized selfless algorithm runs in linear time in the number of the edges and
has some controlled probability of failure. In case such a failure occurs, we generate a new
hypergraph. The computation of solvability threshold is still an hot topic, as demonstated in a
very recent paper [3].

2.5 Conclusions

So far, we presented the basic tools that we are going to use in the next chapters:

• how to represent linear system using a hypergraphs;

• a linear procedure to triangulate the system;

• constant for solvability and orientability of random linear systems.

As we will see later, we will put together all these elements to describe construction techniques
for minimal perfect hash functions, static hash functions, and compressed functions.
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Chapter 3

Construction Techniques

Introduction

In this chapter, we will present a summary of the construction techniques for minimal perfect
hash functions, static hash functions, and compressed hash functions. We start from the minimal
perfect hash function problem, which is historically the most relevant. In Section 3.1 we will
define the problem and present some of the most successful techniques. The first will be Hash
Compress Displace (HDC) in Subsection 3.1.1. Then we will present the hypergraph-based
construction techniques in Subsection 3.1.2. We will begin with the one proposed by Majewsky,
Wormald, Havas, and Czech (MWHC), then the refinement suggested by Botelho, Pagh and
Ziviani (BPZ). Finally, in Section 3.2 we describe two different construction techniques that can
be used to represent a compressed static function. The first one uses buckets and random tables
and is described in Subsection 3.2.3. The second is based on linear systems and is presented in
Subsection 3.2.4.

3.1 Functions

Our description starts from minimal perfect hash functions. Let us fix a finite set U , the universe,
and a set S ⊂ U , the key set, whose elements are called keys. The problem can be defined as
follows.

Definition 4. Given a subset S of size n of the universe U , store an injection f : S →
{0, 1, . . . , n− 1} so that f(ki) can be computed in constant time for any ki ∈ S.

This task can be easily implemented using a direct-addess tables [16]. While this method
has the advantage that has a constant worst case lookup time, the size of the data structure
depends on the size of the universe. If the size of the universe is large then this solution may
be unfeasible. To overcome this issue, computer scientists proposed to use hash tables. The

19
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idea is to use a function on a key to compute the position where the value is stored. One
of the main issue with this approach is that sometimes two distinct keys may have the same
hash value so that a collision occurs. Over the years, several solution have been proposed in
order to avoid collisions such as: separate chaining or cuckoo hashing or open addressing. All
this solutions offers an average constant lookup time, but the worst case lookup time is O(n).
However, minimal perfect hash functions are allowed to return any value if the queried key is
not in the original set S; this relaxation allows to break the information-theoretical lower bound
of storing the set S and have a constant worst-case lookup time. Finally, we can state that
the construction for minimal perfect hash function achieves just O(n) bits. This makes minimal
perfect hashing functions a powerful technique when handling, for instance, large sets of strings,
and they are essential building blocks of space-efficient data structures such as (compressed) full-
text indexes [9], monotone MPHFs [5,7], Bloom filter-like data structures [10], and prefix-search
data structures [6].

Fredman and Komlós [26], in one of the first studies on the topic, proved that the minimum
space required by a minimal perfect hash function is nlog(x)e+ log log u−O(log n) bits, if n2+ε ≤
u, where u is the size of the universe U and ε a small constant near zero. This bound has been
proven to be tight by Mehlhorn [42]; his construction takes n log e+ log log u+O(log n), but the
lookup time is high.

The first construction with constant lookup time is the one proposed by Schmidt and Siegel [50].
Their construction uses O(n+log log u) bits, but they did not give a quatitative extimation about
the time required to find this structure. The best theoretical result, in this direction, came ten
years later by Hagerup and Toley [32]. Their construction has expected linear time construction
and occupies n log e + log log u + O(n(log logn)2/ log n + log log log u) bits. However, the space
usage of this technique is reasonable for an unfeasibly large n.

Once the best theoretical construction method is established, there are different lines of de-
velopment, more focused on evaluation time and simplicity of construction method than optimal
space. The easiest solution that has been proposed so far is perfect hash compression. Every
perfect hash functions f ′ : U → {0, 1, . . . ,m − 1},m ≥ n can be “compressed” into a minimal
perfect hash function using an extra bit array of size m and a rank data structure on this ar-
ray. Given a bit array B ∈{0, 1}n, we define |B| the size of the bit array B and the rankB(p)

operation returns the number of ones up to position p. Jacobson [36] proposed a constant time
implementation for the rank data structure that uses o(n) additional bits. More recently, several
authors proposed alternative constructions [31,47,54].

Consider a bit array B such that B[i]= 1 if and only if i is an image of some key ki ∈ S

through f ′. Now we can define a new MPHF f : U → {0, 1, . . . , n− 1} by

f(ki) = rankB(f ′(ki)).

As we have seen before, rank queries can be executed in constant time, so f is as fast as f ′. In
this construction technique we use m+ o(m) extra bits.
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Minimal perfect hash functions cannot be used to establish whether an element of the universe
U is a member of the keyset S. One way to fix (partially) this behavior is to define an s-bit
digesting function σ : U → {0, 1, . . . , 2s − 1} . Then, we can store an array of signatures A such
that A[f(ki)] = σ(ki). When we query for an element of the universe x ∈ U , we check whether
A[f(x)] = σ(x). If this is not true, x does not belong to S. If it is true, either x belongs to S
or we hit a false positive. However, if σ is fully random, the probability of a false positive is at
most 2−s. This kind of data structure are named approximate membership data structure.

3.1.1 Hash, Displace and Compress

We will now present one of the most successful construction techniques. This is a modification of
Pagh’s construction “hash and displace” [46] that based is contruction on an old idea of Tarjan
and Yao [53].

The construction technique we are going to analyze is called "hash, displace and compress"
and was described in [8]. It builds a perfect hash function f : U → {0, 1, . . . , p − 1}, p > n and
then it compresses it using a rank structure. This technique adopts two levels of hashing and
relies on the availability of a sequence of fully random hash functions.

Assume that exists an infinite sequence h0, h1, . . . : U → {0, 1, . . . , p− 1}, such that:

• hj(ki) can be evaluated in constant time;

• no storage space is needed;

• hj(ki), k ∈ S, j ≥ 0 are fully random values, uniformly distributed in {0, 1, . . . , p− 1}.

The first level of the data structure is defined by a random hash function g : U → {0, 1, . . . , b−
1}, b ∈ N+. This function divides U in b buckets. So, S is also divided into b buckets, but the
cardinality of each bucket may vary. Each bucket Bj is defined by the following equation:

Bj = {ki ∈ S | g(ki) = j} 0 ≤ j < b.

We define a indexing function σ : {0, . . . , b−1} → N . For each bucket Bj (we enumerate buckets
in decreasing-size order) we now pick the first function hσ(j) in the sequence above such that
hσ(j) is injective on Bj , and moreover it has no collision with the hσ(l), 0 ≤ l < j. We can now
describe our perfect hash function

f ′(ki) = hσ(g(ki))(ki).

Once a perfect hash function has been defined, its output can be ranked to obtain a minimal
perfect hash function.

From the analysis in Section 3 [8], w.h.p. σ(j) < C log n for some constant C. Thus, each
number σ(j) can be represented using log log n+O(1) bits.
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3.1.2 Hypergraph-based Constructions

In this section we analyze two different construction techniques. Both use an r-hypergraph to
represent a random linear system.

The first technique was introduced in [41], and it is the one we referred to as the “standard
MWHC technique”. The authors intend to find a way to store an order-preserving minimal
perfect hash function, which is a minimal perfect function mapping each element of the keyset
to its rank in some prescribed order. Note that, in spite of the name, this problem is much more
similar to the problem of storing a static function than to minimal hashing , and indeed the
MWHC technique can be trivially extended to store arbitrary static functions.

As defined in Section 2.4, we call c ratio between nodes and variables. Let us fix a function
f : S → {0, 1, . . . , p − 1}, p > n we want to represent. Consider r ≥ 2, and fully random hash
functions hj : U → {0, 1, . . . ,m− 1}, m = cn. We can define a random r-hypergraph G = (V,E)

with V = {w0, w1, . . . , wm−1}, and, for each ki ∈ S, an edge {h0(ki), h1(ki), . . . , hr−1(ki)}. We
think of the edge as representing the equation

wh0(ki) + wh1(ki) + · · ·+ whr−1(ki) = f(ki) (3.1)

As we discussed in Example 2.3.2, if the peeling procedure succeded we obtain a list of equations,
each associated with a distinct variable that does not appear before in the list: the system is
now triangulated and can be easily solved by substitution. Remark that if the ratio c is greater
than γr then the peeling succeded with high probability. The construction requires linear time,
and we compute f(ki) by replacing the variables wh0(ki), . . . , whr(ki) in Equation 3.1 with the
corrisponding solution. This can be evaluated in constant time.

The same construction can be adapted to obtain a perfect hash function [15]: since during
the triangulation we assign a one of the possible r variables, say whd(ki), d ∈ {0, 1, . . . , r− 1}, to
the equation associated with ki, we can set

wh0(ki) + wh1(ki) + · · ·+ whr−1(ki) = d(ki) mod r.

We store the position d(ki) in order to obtain a perfect hash function from S to p. When we
want to lookup for a value compute d(ki) by replacing the variables wh0(ki), . . . , whr(ki), then we
compute hd(ki). As we discussed previously, we can use the ranking data structure to obtain a
BPZ minimal perfect hash function [12].

In Section 4 of [12] Bothelo et al. analyze the space consumption of the BPZ representation
using the 2-hypergraph. The authors state that a perfect hash function can be stored in ≈ 2.09n

bits.

Instead, for minimal perfect hash function the value r = 3 provides the lowest space usage.
Moreover, it makes it possible to avoid to store a rank bit array. Indeed, to create a rank data
structure we assign two bits for d(ki) as follows:
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• 00 all the variables that are not an hinge and are equal to zero;

• 01 variables equal to one;

• 10 variables equal to two;

• 11 hinge variables equal to zero.

Now, ranking can be performed by counting pairs of nonzero bits, more precisely, by counting
the occurences of 01, 10 and 11. Finally, the resulting structure uses ≈ 2.62 bits per element.

3.1.3 Linear Systems

The MWHC-based construction for static functions leave the space for further improvements:
Dietzfelbinger and Pagh [20] introduced a new construction that makes constant in the space
bound for static functions arbitrarily close to one. In according with Calkin’s Theorem [14](see
theorem 1), a constant βr exists such that if m ≥ βrn, A is a matrix of size m × n and the
rows of the matrix A are drawn at random from vectors of weight r, then A has full rank with
high probability. As we can see in Figure 2.3,β tends to one quickly as r increases, in opposition
with the behavior of γr (which has a finite minimum). Thus, the denser the rows, the closer
m can be to n. For example, if r = 3, β3 ≈ 1.12 < γ3 ≈ 1.23. Unlike MWHC’s linear-time
peeling algorithm, general matrix inversion requires superquadratic time (Θ(n3) with Gaussian
elimination).

Some experiments in this direction have been performed by Aumüller et al. [2]. To obtain
a feasible algorithm, they shard the set S into small sets using a hash function, and compute
the static functions on each subset independently. In their study, they have performed two
main experiments. In the first experiment, authors keep in a look-up table some of the possible
pseudo-inverse matrices for fixed sizes n′�n and m′ � m. The size of the table grows incredibly
fast even for small values of n′ m′. Furthermore using small values is impossible to achieve the
threshold ck,r. However, in [2] authors confirmed that using this technique the expected time
required to build the function is linear. In the second experiment the authors tried to solve the
linear system directly. The time required to build the function with 107 keys splitted in sets
of size n′ = 500 and m′ = 1.1 · n′ is about 40 minutes. Consequently, they concluded that it
is possible to beat the hypergraphbased construction, but the time required for system solving
makes the construction unusable (for more details, see for instance [49]).

3.2 Compressed Static Functions

3.2.1 Codes

We now introduce the basic concepts which are used widely in the next section, dealing with
compressed static functions. We start from the definition of code.
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Definition 5. A code for a set of symbols Σ is a map c : Σ → {0, 1}∗. The elements of c(σ),
σ ∈ Σ are called codewords.

Let� denote the prefix partial order, that is, for X ,Y ∈ {0, 1}∗ we have X � Y iff ∃Z ∈ {0, 1}∗

such that Y =XY The main property we will use is the following one:

Definition 6. A code is prefix-free if given X ,Y ∈ Σ it never happens that c(X ) � c(Y) or
c(Y) � c(X ).

Given a sequence of values in Σ and a code, we can concatenate the codewords associated
with each element of the sequence, obtaining a uniquely decodable sequence of bits. Our aim is
to choose the code that minimizes the length of the sequence of bits.

In our case, the symbols are independent from each others and we must compress each symbol
by itself. Under this assumption the space lower bound for a sequence of symbols T is given by
the 0-th order empirical entropy [38]. Let p(σ) be the number of occurences of the symbol σ in
T , the 0-th order empirical entropy of T is defined by the equation:

H(T ) =
∑
σ∈Σ

p(σ) log
1

p(σ)
(3.2)

There exist some static codes, such as Elias’s γ code [23], that match this bound if the
frequencies of the symbols follow a specific distribution. Given a set of frequencies it is always
possible to build an optimal code with space close to the lower bound. One of these codes can
be computed using the Huffman algorithm. Given a set of frequencies and symbols, it creates
a binary tree that represents an optimal code for those frequencies. The space usage of the
Huffman code consumes at most one bit more than the empirical entropy

3.2.2 General Considerations

Having introduced these ideas, we can apply the previous concepts to compressed static functions
and describe construction techniques. Although static hash functions have been deeply studied,
the study of compressed static functions is a recent research direction. Since we are solving the
problem of storing static functions, we will use the same notation we used in the previous section.

The questions to answer are two:

• How much can we reduce the space usage?

• How does this affect the lookup time?

We can answer the first question by saying that it depends on the list of output values V .
More precisely, we want to represent a function using space close to nH(V ), where H(V ) is the
0th-order entropy as defined in Equation 3.2.From now on, when we do not specify the list of
values, we identify the 0th-order entropy as H0.
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As in the case of static functions, there is a simple construction that involves a minimal perfect
hash function. The first step creates a minimal perfect hash function f : S → {0, 1, . . . , n −
1}. Then the list of values V is encoded using Huffman coding. For each key ki ∈ S, the
corresponding codeword c(f(ki)) is appended in a contiguous bit array, and the starting position
of each codeword is represented using a succinct representation for monotone lists, or prefix
sums, such as Elias–Fano[22, 24]. This data structure stores a monotone increasing list of n
natural numbers 0 ≤ x1 ≤ . . . ≤ xn−1 < 2s for s ∈ N, using 2 + s− log n bits per element when
n < 2s or 1 + 2s/n bits otherwise. Furtermore using a modern data structure the random access
is performed in constant time [54]. When we want to query the value for any key ki ∈ S we
perform the following steps:

• compute f(ki);

• query the value for f(ki) in the prefix sum data structure;

• access the bit array in that position;

• decode a codeword.

All these steps, can be implemented in constant time using a proper data structure. However,
to obtain this results this construction technique requires many space overheads. Recently two
new, better solutions have been proposed to improve this simple method. The first one is
suggested by Hreinsson, Krøyer, and Pagh [35] and the latter by Belazzougui and Venturini [10]
.

3.2.3 BeV

Now, we present the solution proposed by Belazzougui and Venturini in [10]. The first step of
their construction splits the keyset S into m = Θ(n log logn

logn ) buckets using a function G : S →
{B0, B1, . . . , Bm}. Each of these buckets contains at most b = c logn

log logn keys, where c is an
arbitrary constant smaller than 1. Then the authors use the function Q : S → {0, 1, . . . , b2} such
that all keys in the same bucket are mapped injectively. This way, the function G gives the index
of the bucket and the function Q gives the offset inside the bucket. The authors assumed that
both of these functions can be computed in constant time. Each bucket Bl can be represented
using this equation:

Bl = {(oj , vi)|∀(ki, vi), G(ki) = l ∧Q(ki) = oj}. (3.3)

For each bucket, they combined the offset information and the value of the key. The next step
creates a fully random nε × b2 table TR, where ε is a constant smaller than 1. They look for
the row index rl, such that TR[rl, oj ] = vi for any pair (oj , vi) ∈ Bl. All the row indexes are
then encoded and appended in a bit array. Since the row indexes are stored by using a variable
length binary code, all the starting positions need to be represented by using a prefix sum data
structure. To lookup the value vi of the key ki they follow these steps:
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• compute the bucket G(ki) and the offset Q(ki)

• retrieve the starting position of the index row for the bucket BG(ki) by using the prefix
sum data structure

• access the table TR[rG(ki), Q(ki)]

In their analysis, Belazzougui and Venturini state that log3 n attempts are necessary to find
the suitable table. The time required to search the match for each bucket configuration is n2εb.
Thus, the overall time required is O(n2εb log3 n), which is linear for ε < 1/2. The authors analyze
the space required to store the bit array containing all the row indexes. Their analysis is based
on the probability that a generic row of TR matches the bucket configuration. More precisely,
the probability that the row index rl is such that TR[rl, oj ] = vj for every pair of the bucket
configuration Bl described in Equation 3.3. At the end of the analysis, they state that the
expected space required to store the bit array is bounded by the 0th-order entropy of the values.

3.2.4 HKP

The second construction technique is the one presented in [35]. This approach builds on the
construction of static functions based on linear systems, and as such relies on r fully random
hash functions h0, h1, . . . , hr−1.To preoceed with the (description) of this method, we assume to
have built a suitable optimal (or close to optimal, see [35] for details) code c : Σ → {0, 1}∗ for
the output values. We denote with c(f(ki))d is the d-th bit of the codeword c(f(ki)), 0 ≤ d <

|c(f(ki))|.
Then we build the equations to encode each bit of c(f(ki)), for ki ∈ S. More precisely, the

j-th bit of c(f(ki)) gives rise to the equation

wh0(ki)+j ⊕ wh1(ki)+j ⊕ · · · ⊕ whr−1(ki)+j = c(f(ki))j . (3.4)

Here the w’s are variable representing the content of a bit array. Thus, we obtain a linear
system on F2 of

∑
ki∈S |c(f(ki))| equations, each with exactly r variables. Since the system is ran-

dom, by the known bounds on the satisfiability of k-XORSAT instances [19,21], which are equiv-
alent to such linear system on F2, we know that we need the bit array to be c2,r

∑
ki∈S |c(f(ki))|

bits long (c2,3 ≈ 1.089, c2,4 ≈ 1.024).
Note that reading the values from the bit array defined by the equations above (if any) is a

very simple process: given ki ∈ S, one computes the positions hj(ki) in the bit array and XORs
the stream of bits starting at those position. Then, one decodes the first codeword in c from the
stream and returns the associated value.

We now notice that if the distribution associated with the prefix-free code c matches exactly
the distribution of the values,

∑
ki∈S |c(f(ki))|/n is approximately H0, which suggests that in

general the space used per key will be very close to c2,kH0, that is, very close to the entropy. In
practice, as we will see, there will be some auxiliary data which must be stored and we will not
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be able to work with a truly optimal code, but both limitations have a relatively small impact
on the whole data structure.

The authors of [35] show that for distributions in which the most frequent element σ̄ has a
frequency very close to one, it is useful to store the set of keys mapped to σ̄ using a separate ap-
proximate data structure. The trick can be applied to our engineered construction orthogonally,
so we will not discuss this issue further.

Applying this technique we shifted from n equations (for the non-compressed case) to
∑
ki∈S |c(f(ki))|

equations—an H0-fold increase in the size of the linear system, to which an even larger increase
in construction time follows, as Gaussian elimination is cubic.
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Chapter 4

Improvements

Introduction

This section focuses on the original core of this thesis work. We propose an innovative engi-
neering method for constructions on linear systems that we have originally developed. Two are
the main improvementes we implemented: the first is the introduction of a broadword program-
ming. We represent the equations of the linear system using a bit array; this makes faster row
operations; more details are given in Section 4.1. We combine broadword programming with
a new heuristic that tries to minimize the number of row operation required by the standard
Gaussian elimination, lazy Gaussian elimination, which is presented in Section 4.2. These two
changes have a significant impact on construction time as we will see in Table 4.2. In Section 4.3
we describe other improvements that can be applied to some specific construction techniques.
For instance, in Subsection 4.3.1 we will show how we can remove the ranking required by the
BPZ construction. In Subsection 4.3.3 we describe our technique for generating lengthlimited
canonical Huffman codes. In Subsection 4.3.4 we will analyze the drawbacks of the “structured"
hash functions proposed in [35].

4.1 Broadword Programming

Our first step towards a practical solution by Gaussian elimination is broadword programming [37]
(a.k.a. SWAR“SIMDWithin A Register”), this terminology indicates a set of techniques to process
multiple values simultaneously by packing them into machine words of w bits and performing
the computations on the whole words. In theoretical succinct data structures, it is common
to assume that w = Θ(log n) and reduce to subproblems of size O(w), whose solution can be
precomputed into sublinearsized tables and looked up in constant time( this technique is calle
fourrussian technique [1]). For practical values of n, however, the space used by these tables is
far from negligible; in this case, broadword algorithms are usually sufficient to compute the same

29
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functions in constant or nearconstant time without having to store a lookup table.
In our case, the inner loop of Gaussian elimination is entirely composed of row operations:

given vectors x and y, and a scalar α, compute x + αy. Moreover, when performing back
substitution, we will need to compute rowmatrix multiplications, where a row is given by the
coefficients of an equation, and the matrix contains the solutions computed so far.

4.1.1 First Case: Static Functions (F2)

In the case of static functions, the underlying field is F2, and it is trivial to perform row operations
and process w elements at a time. More precisely the bit i of word j represent the coefficient of
the variable of index wj+ i. Since the coefficients can be 0 or 1, we can simply pack one element
per bit, and since the scalar can only be 1, the sum is just a bitwise XOR (x ^ y, using the C
notation).

To perform rowmatrix multiplications, one can iterate on the ones of the row and add up the
corresponding bbit rows in the matrix. Iterating on the ones is easy: the position of the least
significant one can be found by an constant time computation, and the bit can be deleted with
the standard broadword trick x = x & x.1

4.1.2 Second Case: Minimal Perfect Hash Function (F3)

For MPHFs construction, the linear system is over the field F3, which requires more sophisticated
algorithms. First, we can encode each element {0, 1, 2} into 2 bits, thus fitting w/2 elements into
a word. The scalar α can only be 1 or 1, so we can treat the cases x+ y and xy separately.

In the case we are performing an addition, we can start by simply adding x and y. When
elements on both sides are smaller than 2, the result remains smaller than 3 and there’s nothing
to do. However, when at least one of the two elements is 2 and the other one larger than 0,
it is necessary to subtract 3 from the addition result, to bring its value back to the canonical
representation in[0 . . 3). Thus we need to compute a mask that is 3 wherever the result is at least
3, and then subtract it from x+ y. Note that when the two sides are both 2 the result overflows
its 2 bits (102 + 102 = 1002), but since addition and subtraction modulo 2w are associative we
can imagine that the operation is performed independently on each 2bit element, as long as the
final result fits into 2 bits.

uint64_t add_mod3_step2(uint64_t x, uint64_t y) {

uint64_t xy = x | y;

// Set MSB if (x == 2 or y == 2) and (x == 1 or y == 1).

uint64_t mask = (xy << 1) & xy;

// Set MSB also if (x == 2) and (y == 2).

mask |= x & y;

1Most recent CPUs, in fact, have a specific instruction to clear the lowest bit.
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// The MSB of each 2bit element is now set

// iff the result is >= 3. Clear the LSBs.

mask &= 0x5555555555555555 << 1;

// Now turn the elements with MSB set into 3.

mask |= mask >> 1;

return x + y mask;

}

Subtraction is very similar. We begin by subtracting elementwise y from 3, which does not
cause any carry since all the elements are strictly smaller than 3. The resulting elements are thus
at least 1. We can now proceed to compute x+ y with the same case analysis as before, except
now the righthand elements are in [1 . . 3], so the conditions for the mask are slightly different.

uint64_t sub_mod3_step2(uint64_t x, uint64_t y) {

// y = 3 - y.

y = 0xFFFFFFFFFFFFFFFF - y;

// Now y > 0

// Set MSB if x >= 2.

uint64_t mask = x;

// Set MSB if (x >= 1 and y == 2) or (y == 3).

mask |= ((x | y) << 1) & y;

mask &= 0x5555555555555555 << 1;

mask |= mask >> 1;

return x + y mask;

}

Example 4.1.1. We now show a small example of the computation for the addition between
two equations. To the pourpose of the example, we limit the size of the machine word to eight.
Suppose that we want to sum up these equations: 2x0 +x1 +2x2 +2x3 = 0 and x0 +x1 +2x2 = 2.
The righthand sides are just summed up. So, we will focus just on coefficients. Each coefficient is
represented by 2 bit and we will use a comma to separates each pair of bits. Hence, these equations
are converted into two bit sequences: x = 10, 01, 10, 10 and y = 01, 01, 10, 00. The complicated
part of this computation is taking care of the carry. The possible combinations of values that
produce a carry are {1 + 2, 2 + 1, 2 + 2}. The results of line 1 and 2 of add_mod_step2(uint64_t
x, uint64_t y) is a mask. The most significant bit (MSB from now on) of each pair is set iff
the pair (xi, yi) is such that (xi = 2∧ yi = 1)∨ (xi = 1∧ yi = 2). Let us describe these two steps
more thoroughly.

1.

10, 01, 10, 10 |

01, 01, 10, 00

xy =11, 01, 10, 10
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2.

1,10, 11, 01, 00 &

0,11, 01, 10, 10

mask =10, 01, 00, 00

In the second step we added two bits due to the right shift, but the operator is an “and” thus
the blue bits can be omitted. For each pair we highlighted the most significant bit in red. After
these two steps, the MSB is set to 1 just for the first pair. In Line 3 we set the MSB to 1 for
each pair (xi, yi) such that both (xi = 2) ∧ (yi = 2).

3.

10, 01, 10, 10 &

10, 01, 10, 00

00, 01, 10, 00 |

10, 01, 00, 00

mask =10, 01, 10, 00

Now we set the MSB for all the pairs with both sides equal to 2. In the fourth step we remove
the spurious less significant bits using a bit mask. Then, in the fifth step, we set all the bits for
the pair with a carry to 3. At last, we sum x and y and we remove 3 for all the pairs that have
a carry using mask.

4.

10,10, 10, 10, 10 &

00,10, 01, 10, 00

mask =10, 00, 10, 00

5.

01, 00, 01, 00 |

10, 00, 10, 00

mask =11, 00, 11, 00
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6.

x =10, 01, 10, 10 +

y =01, 01, 10, 00

11, 11, 00, 10

mask =11, 00, 11, 00

result :00, 10, 01, 10

The final result is the bit array 00, 10, 01, 10, which represents the equation 2x1 +x2 + 2x3.
In a similar way, it is possible to subtract two equations.

Both addition and subtraction take just ten arithmetic operations and modern 64bit CPUs
can execute each operation on a vector of 32 elements with one single instruction. We are left
with rowmatrix multiplications.

To compute such multiplications, we use the following broadword algorithm that computes the
scalar product of two vectors represented as 64bit words. The function popcount(uint64_t x)

returns the number of bits equal to 1 in x. This instruction is common in broadword programming
and has been introduced in SSE4.2 Intel instruction set in 2007.

uint64_t prod_mod3_step2(uint64_t x, uint64_t y) {

uint64_t high = x & 0xAAAAAAAAAAAAAAAA;

uint64_t low = x & 0x5555555555555555;

uint64_t high_shift = high >> 1;

uint64_t t = (y ^ (high | high_shift))

& (x | high_shift | low << 1);

return popcount(t & 0xAAAAAAAAAAAAAAAA) * 2

+ popcount(t & 0x5555555555555555);

}

The expression computing t takes care of placing in a given position a value equivalent to the
product of the associated positions in x and y (this can be checked easily with a casebycase
analysis). We remark that in some cases we actually use 3 as equivalent to zero. At that point,
the last lines compute the contribution of each product. Note that the results still have to be
reduced modulo 3.

Example 4.1.2. We now show how we use the function uint64_t prod_mod3_step2(uint64_t

x, uint64_t y) in order to back substitute solution in an equation. The equation is represented
by x, meanwhile the solutions are represented by y. As in Example 4.1.1 the system is over F3.
We thus need 2 bit to represent each coefficient and each solution. We will use a machine word
size equal to six. We want to compute the solution for x0 from the equation

2x0 + x1 + x2 = 1 (4.1)
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and we know that x1 = 2, x2 = 1. We first convert the equation and the solutions into bit
arrays: 10, 01, 01 for the equation and 00, 10, 01 for the solutions. The first two steps separate
the high bits of the coefficient from the lower bits:

1.

10, 01, 01 &

10, 10, 10

high =10, 00, 00

2.

11, 01, 00 &

01, 01, 01

low =00, 01, 01

Then we compute the mask high_shift

3.
high_shift = 01, 00, 00

The next step is a little bit more complicated and we split it in two parts: one computes y ˆ (

high | high_shift ) and the other one computes ( x | high_shift | low < < 1). Then
we AND the two values together. After this step we will obtain t.

4.

10, 00, 00 |

01, 00, 00

11, 00, 00 ˆ

00, 10, 01

right =11, 10, 01

5.

10, 01, 01 |

01, 00, 00

11, 01, 01 |

00, 10, 10

left =11, 11, 11
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6.

11, 10, 01 &

11, 11, 11

t =11, 10, 01

Each pair of the value t represent the multiplication between the solution of a variable and
its coefficient. We highlighted the value for x0 in red, this value is 3, but in F3 is equal to 0 and
does not influence the final result. The next step is unpacking the bitvector and summing all the
pairs. To do this we separate the low bits from the high bits in each pair of bits in t. Then the
high bits will be multiplied by 2.

7.

11, 10, 01 &

10, 10, 10

high_t =10, 10, 00

8.

11, 10, 01 &

01, 01, 01

low_t =01, 00, 01

9.
result = popcount(high_t) ∗ 2 + popcount(low_t) = 2 ∗ 2 + 2 = 6

The result can be bigger than three, so we compute result mod 3 and we obtain zero. Now we
can substitute the result in the original equation in order to find the values of x0. More precisely,
Equation 4.1 becomes 2x0 + 0 = 1→ x0 = 2.

As suggested by Djamal Belazzougui it is possible to further reduce the number of opera-
tions required to compute the scalar product by using prod_mod3_step2Djamal (uint64_t x,

uint64_t y).

uint64_t prod_mod3_step2Djamal(uint64_t x, uint64_t y) {

uint64_t z =x | y;

uint64_t w = (z | z >> 1) & 0x5555555555555555;

uint64_t t = x ^ y ^ w;

return popcount ( t & 0 xAAAAAAAAAAAAAAAA ) * 2

+ popcount ( t & 0 x5555555555555555 ) ;

}
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The outputs of prod_mod3_step2Djamal and prod_mod3_step2 may be different, but the
results are always congruent mod 3. By using the code proposed by Belazzougui we can compute
the scalar product ≈ 20% faster.

4.2 Lazy Gaussian Elimination

Even if armed with broadword algorithms, solving by Gaussian elimination systems of thousands
of equations and variables would be prohibitively slow, making the construction of our data
structures orders of magnitude slower than the standard MWHC technique.(we will see that we
can reduce to this case using HEM; see Section 4.3.1)

Structured Gaussian elimination aims at reducing the number of operations in the solution of
a linear system by trying to isolate some variables appearing more frequently, and then rewrite
the rest of the system using just those variables. It is a heuristic developed in the context of
computations of discrete logarithms, which require the solution of large sparse systems [39, 45].
The standard formulation requires the selection of a fraction of variables (chosen arbitrarily) that
appear in a large number of equations, and then some loosely defined refinement steps.

Here we describe a new parameterless version of structured Gaussian elimination, which we
call lazy Gaussian elimination. These heuristics turned out to be extremely efficient on our
systems; in fact we can reduce the number of equation in the system to be solved by standard
elimination to around 4% of the original one.

Consider a system of equations on some field. At any time a variable can be active, or solved
and an equation can be sparse or dense. Variables that are not active and not solved are called
idle. Initially, all equations are sparse, and all variables are idle. We will modify the system
maintaining the following invariants:

• dense equations do not contain idle variables;

• an equation can contain at most one solved variable;

• a solved variable appears in exactly one dense equation.

Our purpose is to modify the system so that all equations are dense, trying to minimize the
number of active variables (or, equivalently, maximize the number of solved variables). At that
point, values for the active variables can be computed by standard Gaussian elimination on the
dense equations that do not contain solved variables, and solved variables can be calculated easily
from the values assigned to active variables.

The weight of a variable is the number of sparse equations in which it appears. The priority
of a sparse equation is the number of idle variables in the equation. The priority determines if an
equation contains variables that can be converted from idle to solved. Lazy Gaussian elimination
keeps equations in a minpriority queue and performs the following actions:
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1. If there is a sparse equation of priority zero that contains some variables, it is made dense.
If there are no variables, the equation is either an identity, in which case it is discarded, or
it is impossible, in which case the system is unsolvable, and the procedure stops.

2. If there is a sparse equation of priority one, the only idle variable in the equation becomes
solved, and the equation becomes dense. The equation is later used to eliminate the solved
variable from all other equations.

3. Otherwise, the idle variable appearing in the largest number of sparse equations becomes
active.

Note that if the system is solvable the procedure always completesin the worst case, by making
all idle variables active (and thus all equations dense).

We can observe that:

• The weight of an idle variable never changes, as in step 2 we eliminate the solved variable
and modify the coefficients of active variables only. It means that initially we can simply
sort (e.g., by countsort) the variables by the number of equations in which they appear,
and pick idle variables in that order at step 3.

• We do not need a priority queue for equations: simply, when an equation becomes of
priority zero or one, it is moved to the left or right side, respectively, of a deque that we
check in the first step.

Thus, the only operations requiring superlinear time are the eliminations performed in step 2,
and the final Gaussian elimination on the dense equations, which we compute, however, using
broadword programming.

Example 4.2.1. We now give an example of how lazy Gaussian elimination works. We start
from this system of equations on F2 and ⊕ is a bitwise XOR operation:

v0 ⊕ v1 ⊕ v3 = 1

v0 ⊕ v1 ⊕ v2 = 0

v1 ⊕ v2 ⊕ v4 = 1

v2 ⊕ v3 ⊕ v4 = 1

(4.2)

From the system, we compute the weights of the variables. w0 = 2, w1 = 3, w2 = 3, w3 = 1,
w4 = 1. All the variables are set as idle. The priority of an equation is the number of idle
variables: p0 = 3, p1 = 3, p2 = 3, p3 = 3. Initially all the equations are sparse and we don’t have
any solved or active variable. Since there are no equations with priority zero or one so we move
to step 3. We mark the variable v1 as active, and change the priorities of the equations in which
v1 appears, p0 = 2, p1 = 2, p2 = 2, p3 = 3. As previously done, step 1 and 2 are skipped. We
mark as active the variable v2, and we decrease priorities p1, p2 and p3. Now p1 = p2 = 1. We
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choose to mark the variable v4 from the third equation as solved. We also decrease the priority
of the third equation and we mark it as dense. Now we substitute the variable v4 in the fourth
equation. The system is now the following:

v0 ⊕ v1 ⊕ v3 = 1

v0 ⊕ v1 ⊕ v2 = 0

v1 ⊕ v2 ⊕ v4 = 1

v2 ⊕ v3 ⊕ v1 ⊕ v2 = 1

From now on we highlight the dense equations in red. The last equation can be further
reduced, since v2 ⊕ v2 = 0, and then p3 = 1. We proceed with step 2. We mark the variable v3

as solved. The set of solved variables is {v3, v4}, the idle variable {v0} and active are {v1, v2}
and the set of dense equations consists of the third and fourth equations..

v0 ⊕ v1 ⊕ v3 = 1

v0 ⊕ v1 ⊕ v2 = 0

v1 ⊕ v2 ⊕ v4 = 1

v3 ⊕ v1 = 1⊕ 1 = 0

Then we substitute the solved variable v3 in the first equation and we obtain v0⊕v1⊕v1 = 1.
From this equation we can mark the variable v0 as solved, and we substitute v0 = 1 in the second
equation. So the system looks like this:

v0 = 1

v1 ⊕ v2 = 1

v1 ⊕ v2 ⊕ v4 = 1

v3 ⊕ v1 = 0

Now that the procedure is over, let us recap all the configurations:

• solved variables ={v0, v3, v4}

• active variables ={v1, v2}

• idle variables ∅

• all equations are dense; only the second equation contains just active variables.

Now it is time to use Standard Gaussian elimination on the set of dense equation containing
active variables only. In this case we have one equation and two variables, thus we can set one
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variable to zero and then solve the other one. So we set v1 = 0, thus v2 = 1. Then, we easily
compute the solved variables, since they depend on active variables only . We obtain v3 = 0.
and v4 = 0.

4.2.1 An Experimental Evaluation of Lazy Gaussian Elimination
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Figure 4.1: Ratio between the reduced and original systems as a function of the number of
variables per equation.

In this section we briefly analyze experimentally the effectiveness of lazy Gaussian elimination.
More precisely, we want to know the size of the reduced system (i.e., the number of dense
equations containing active variables only) for different system sizes and density. In particular,
we test systems with n ∈ {1000, 2000, 4000} equations and variables, and generate random
systems with r ∈ {3 . . 33} variables per equation.

In Figure 4.1 we plot the ratio between the number of equation in the reduced and original
system. Since we have to solve the reduced system by Gaussian elimination, we focus just on
small values of r for which the ratio is below 20%.

4.3 Minor Improvements

n this section, we present some special improvements that can only be applied to a specific type
of functions, differently from the previous ones, which have general validity.
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4.3.1 HEM

One of the main practical issues we find when dealing with big datasets is the amount of main
memory that we use during the construction. A simple solution is the classical divide and conquer
technique as proposed in [13]. This solution, which we call henceforth HEM (Heuristic External
Memory algorithm), can be implemented orthogonally to almost all construction techniques. The
dataset is divided into fixedsized chunks by hashing, and for each chunk, we compute the solution
for the linear system. The solutions coming from each chunk are concatenated in order.The
number of values in the previous chunk and the seeds of the random generator are stored within
the solutions. When we want to find the value for a key, we compute its chunk, then retrieve
the offset of the values of the corresponding function, and finally compute the value of that key.
The amount of time that we spend to compute the chunk for each key is limited, and it can be
hidden under the key loading time.

Our HEM version uses ondisk bucket sorting to speed up construction: keys are first divided
into 256 ondisk physical chunks, depending on the highest bits of their hash value (we use
Jenkins’s SpookyHash). The ondisk chunks are then loaded into memory and sorted, and virtual
chunks of the desired size are computed by either splitting or merging physical chunks. Since
we store a 192bit hash plus a 64bit value for each chunk, the upper limit for the keynumber
dependent amount of memory used is one bit per key. This value does not include the memory
required for the structure to be computed.

Note that in the case of compressed functions we will use a single code for all values. Thus,
if we focus on a single chunk, the code we are using is no longer optimal, but this does not
change the probability of solving systems. In fact the system size depends only on the sum of
the codewords representing values actually in the chunk, and does not depend on the optimality
of the code. By concatenating the bit arrays of all chunks, we get the same space we would
have used without HEM. Note that the approach of having a local prefixfree optimal code per
chunk would never work, as the space used to store the locacessary In the case of minimal perfect
hashing, we can further speed up the structure and reduce space by getting rid of the ranking
structure that is necessary to make the perfect hashing computed by the system of equations
minimal.

In the standard HEM construction, the number of vertices associated with a chunk of size n′

is given by dcn′e, where c ∈ R is a the ratio between nodes and edges, and the offset information
contains the partial sums of such numbers.

We will use a different approach: the number of vertices associated with the chunk will be
dc(N ′+n′)edcN ′e, where N ′ is the number of elements stored in previous chunks. The difference
with dcn′e is at most one, but using our approach we can compute, given N ′ and n′, the number
of vertices associated with the chunk.

Thus, instead of storing the offset information for each chunk, we will store the number N ′ of
elements stored in previous chunks. The value can be used as a base for ranking inside the chunk:
this way, the ranking structure is no longer necessary, reducing both the space and the number
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of memory accesses. When r = 3, as it is customary, we can use two bits for each value, minding
to use the value 3, instead of 0, for the hinges. As a result, ranking requires just counting the
number of nonzero pairs in the values associated with a chunk, which can be performed again
by broadword programming:

int count_nonzero_pairs(uint64_t x) {

return popcount ((x | x >> 1) & 0x5555555555555555);

}

Example 4.3.1. Consider for instance the bit array of solutions 1111, 1111011001111111. For
simplicity, we take c = 1. The array is divided in chunk0, chunk1 and separated by “,”. We
store these values [0, 2, 10]. From these values we know that in chunk0 there are 2 values, and
in chunk1 the remaining 8. We want retrieve the value of the key “a” such that:

• it belongs to chunk1

• h0(“a”) = 0 , h1(“a”) = 4 , h2(“a”) = 6

Since the key has been mapped into chunk1 we will use the perfect hash function gchunk1 .
We compute the perfect hash function inside chunk1 like this: f(“a”) = hi(“a”), where i =

gchunk1(0) + gchunk1(4) + gchunk1(6) mod 3 = 1 =⇒ f(“a”) = 4. We now count the nonzero
pairs in the red part of this bit array 1111, 1111011001111111.

1111011001 |

0111101100

1111111101 &

0101010101

0101010101

Now we use the function population count on the bit sequence 0101010101 and we obtain 5. So,
we sum the result with the offset 2 and we obtain 7.

4.3.2 Compacting Offset and Seeds

After removing the ranking structure, what is left to do is storing the partial sums of the number
of keys per chunk, and the seed used for the chunk hash function. This is the totality of the
overhead imposed by HEM.

Instead of storing these two numbers separately, we combine them into a single 64bit integer.
The main reason that allows us to do so is that due to the extremely high probability of finding
a good seed for each chunk, few random bits are necessary to store it: we can just use the same
sequence of seeds for each chunk, and store the number of failed attempts before the successful
one. Assuming that the probability that the random linear system is solvable is p, we remark
that this probability is high since we are above the threshold ck,r. The probability of at least one
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success in k trials is 1(1p)k, and in our experiments we always obtain a success in less then 24
trials. For convenience we save 8 bits for the seed, thus we use the remaining 54 bits for storing
the partial the partial sums of the number of keys per chunk, which is more than sufficient for
any realistic value n.

4.3.3 Codes

In Section 3.2 we stated that we can compress the list of values using a Huffman code. Using
the Huffman encoding, however, poses two problems:

• with the classical tree decoder it is impossible to decode a codeword in constant time;

• for skewed distributions the longest generated codeword can be quite long.

So the worst case decoding time depends on the length of the longest codeword. The solution
proposed in [35] works as the follows: a subset of most frequent elements of Σ is actually stored
using an optimal length-limited code, together with an additional symbol ⊥ accounting for the
rest of the elements. Then, the non-frequent elements are stored explicitly after ⊥ using a suitable
table. Essentially, one trades the optimality for a small cost in space and faster decoding time.

A fast algorithm for constructing an optimal code with a bound on the length of the longest
codeword was introduced in [40]. The proposed solution uses the packagemerge algorithm, which
is a greedy algorithm that finds the solution in time O(nL), where n is the number of symbols
and L the maximum final length. In [43] the authors suggest a tight bound for the inefficiency
of such code. They also propose an O(n) time and space algorithm to find an approximate
solution. All the codewords longer than L are arranged in a complete binary tree of depth L̄;
subsenquently, a new node is added at depth LL̄1 and the left child will be the old tree, and the
right child will be the new tree.

The classical decoding approach for a Huffman code for a bit sequence adopts a walk from
the root of the tree to a leaf. For each bit of the sequence, this process chooses the left subtree if
the bit is a 0 else it chooses the right subtree. When a leaf is encountered the process ends, and
the label of the leaf is the symbol corresponding to that encoding sequence. After a brief test we
concluded that this approach was inappropriate, we will give more details in 7.2. So the decoding
process based on binary tree had some effect on the lookup time, we decided to use a different
practical approach based on canonical Huffman codes [51]. Canonical Huffman codes are based
on the observation that among many equivalent Huffman decoding trees, there is one that is
canonical, which is the one in which the depth of leaves from left to right is nondecreasing. A
table made of two lists of integers of the same length can describe the structure of such a tree; the
first list contains lengths, and the second list, in parallel, the number of codewords of that length.
Codewords of the same length are consecutive integers, and, more in general, if we leftalign by
zero padding all codewords the resulting values are increasing as the symbol frequency decreases
(a property that we will use for fast decoding). Indeed, it is possible to decode a canonical code
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in time proportional to the length of the lists, rather then to the length of the keywords [34]. We
also need to store the symbols ordered from left to right as they appear in the tree, as we need
to map each codeword to the original symbol.
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Figure 4.2: Huffman Tree for C (see Table 4.1).
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Figure 4.3: Huffman tree for C ′, and the associated table representation (see Table 4.1)
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44 CHAPTER 4. IMPROVEMENTS

Example 4.3.2. Assume we have the set of symbols and frequencies present in Table 4.1.
In Figure 4.2 we show the tree for an optimal code for the list of symbols and the frequencies

in the first two columns. In Figure 4.3 we see the canonical Huffman tree version of the previous
Huffman tree. Both codes are optimal since the length of the codeword for the same symbols is
equal.

Symbol Frequency C C ′ (canonical) CL (tablelimited)

0 17
52 00 00 00

1 6
52 011 011 001

2 6
52 101 010 010

3 5
52 100 100 1000

4 4
52 0100 1010 1001

5 3
52 0101 1011 1010

6 3
52 1100 1100 1011

7 2
52 1110 1110 1110

8 2
42 1101 1101 1101

9 2
52 11110 11110 1100

10 1
52 11111 11111 1111

Table 4.1: Data for Example 4.3.2. For each symbol, we show the frequency, the associated
codeword in an optimal code C, the associated codeword in the canonical optimal code C ′, and
the associated codeword in the tablelimited canonical code CL (` = 2).

We adopted a different construction to limit the length of the code, that we call tablelimited
canonical Huffman code. Our solution is based directly on the table representation of a canonical
code, rather than on the decoding tree. We first set a maximum table length ` and a fraction
0 ≤ α ≤ 1 (typically, α = 0.99). We assume to know, for each symbol, its cardinality in the
output values of the function we want to compress.

With a first pass on the table representation, we can compute the sum of the lengths of the
codeword representation of the function values. Then, we walk down the table estimating the
sum of the lengths of symbols belonging to an initial segment of the table. At each entry of the
table we check whether the accumulated length exceeds α as a fraction of the total length. We
stop in any case at the entry `.

At the end, we know that we have to limit the table at the entry ¯̀ ≤ ` (the inequality
happens for very skewed distributions, such as the geometrical distribution, in which very few
entries of the table are sufficient to code almost all values). Thus, we sum the cardinality of all
the symbols represented after the entry ¯̀, and we redistribute the cardinality uniformly among
all such symbols (if the division is not exact, we privilege symbols appearing before in the table).
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Finally, we recomputed the canonical code using the new cardinalities. Clearly, the new table
cannot be longer than ¯̀+ 2 ≤ `+ 2. Thus, for a fixed `, decoding happens in constant time. The
effect of the construction is that of flattening all codes represented after entry ¯̀ in the original
table.

Example 4.3.3. In Figure 4.4 we show the tablelimited code for Example 4.3.2. The parameter
` is set to 2. As you can see, the code is no longer optimal (for example, the length of the
codeword for 3 is now longer).

Finally, we remark that in our setting we can always read enough bits to decode the longest
codeword in one operation. Usually, bits are coming from a source stream, and decoding a
canonical code require a number of logical operations and some reading from the input stream,
depending on the entry of the representation table in which the code is located [34]. In our case,
we can just precompute the first codeword for each table entry and left-align it with the longest
codeword; decoding is then just down by scanning a table of increasing values until the value
fetched from memory is dominated by the current entry.2 A few simple arithmetic operations
complete the decoding.

4.3.4 Random Uniform Hash Functions

After the first implementation of the construction proposed in [35], we experimented a particular
behavior of the linear system using HEM. From now on, we fix a chunk log size n′ in HEM. In
practice, n′ is the number of higher bits used to divide keys into chunks. The average size of a
chunk will be 2n

′
.

The construction proposed in [35] uses a special form for the hash functions hj ,0 ≤ j ≤ k1 :

hj(ki) = h′j(ki)wl + q(ki),

where ki ∈ S, h′(·) : S → dm/wle and q : S → wl are fully random hash functions, and wl is the
length of the longest codeword inside the lth chunk. This choice looks promising, for each chunk
it creates at most wl strongly connected components (SCC) such that each node in the SCC is
congruent modulo wl to the others. Thus, we obtain wl small systems with independent sets of
variables. This has two practical advantages:

• we can use parallel solving.

• variable index compression.

We found that the first approach is detrimental in practice. Moreover, HEM can be easily
parallelized without effort (each chunk can be analyzed independently), so it is not necessary

2Of course, in principle a binary search would provide asymptotically logarithmic decoding time. However,
due to practical values of ` being very small, the complex logic of such a search yields results that are never
competitive with a linear search. Even more complex techniques are described in [27].
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Figure 4.5: Fraction of unsolvable systems in a test dataset with geometric value distribution,
k = 3, δ = 1.21, depending on the maximum codeword length in the chunk.

to exploit parallelism. The latter combined with broadword programming can be advantageous.
The next step reduces the index of the variable subtracting the residue mod wl and divide the
result by wl. Using smaller indexes, the bit array representing each equation is smaller. Thus
row operations are faster.

The problem, which is hard to detect from the theoretical side, is that the kXORSAT bounds
we are using have a different asymptotic behavior than, say, acyclicity thresholds for random
graphs. The asymptotic behavior starts becoming typical at much larger values (in the acyclicity
case, just a few dozens of vertices are sufficient). Since we are solving linear systems chunk by
chunk, but we are using a global code, some chunks happen to have a quite large maximum
codeword wl, in particular in the case of skewed distributions. For these chunks, the size of the
systems and the number of variables are both scaled down by a factor of wl, bringing them out
of the “good” region. In Figure 4.5 we show the fraction of the unsolvable system with respect
to the length of the maximum codeword (for a standard Huffman code) in a chunk for a dataset
with geometric distribution with parameter p = 0.5 (the worst case): the described behavior is
evident. In particular, with the smallest chunk size, finding solvable systems becomes almost
impossible. Another technical issue is that the length of the longest keyword in each chunk must
be stored, and m/wl needs to be computed at query time. In the experimental part, we will
show the results that motivate our decision to fall back and use the same random hash function
we utilized for the other constructions.
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4.4 Conclusions

In this chapter, we presented different improvements that can be added to the construction
techniques based on linear system solving. These allowed us to make the construction proposed by
Dietzfelbinger and Pagh [20] feasible. In 4.2 we discussed the effect of each major improvement to
the time of the construction technique. This experiment was made using the MWHC construction
using r = 3, c2,3 = 1.10 and log chunk size n′ = 10. We determined different classes: just peeling
process (P), broadword computation (B), lazy Gaussian elimination (G) or a combination of
these. When we do not use lazy Gaussian elimination, we use standard Gaussian elimination.
Without broadword computation, we use a sparse representation of the system with arraylist of
arraylist. As we can see in 4.2 the best performance is obviously given by a combination of all

All BG GP G BP B P None
0% +13% +57% +98% +296% +701% +2218% +5490%
best worst

Table 4.2: Time deterioration without each technique for the noncompressed case.
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Figure 4.6: Fraction of peeled edges for a random 3hypergraph with 1024 edges.

three improvements. However, the impact of the lazy Gaussian elimination is clearly essential.
This improvement is present in all the best results.

We experimented how the size of the 2core varies depending on the ratio between nodes and
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edges. In Figure 4.6 we show that the number of peeled equations grows quickly as we increase
the number of variables. The more close we get to γ3, the more equations are peeled.

The effectiveness of lazy Gaussian elimination is also due to the fact that the number of
equations remaining in the nonempty 2core after the peeling procedure is high, as we shown in
Figure 4.6. This is also confirmed by the poor performance of the peeling process when used by
itself.
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Introduction

In this part of the thesis, we will present experimental results for different construction techniques
based on linear systems. We start the analysis of results from static functions. We will compare
the results obtained using the classical MWHC construction and the ones obtained with the
improvements described in Chapter 4. To build static hash function, we will use both r = 3 and
r = 4. We will see how lookup time increases depending on r.

Then, in Chapter 6 we will move to minimal perfect hash functions. We add our improvements
also to the BPZ construction technique. We will compare the results for minimal perfect hash
functions created using MWHC, BPZ, and HDC. For HDC construction technique we use the
available code on the website of the project.

The last chapter is about compressed static functions. We describe the datasets, and we will
analyze the results obtained for each dataset. We will also show that for skewed datasets the
construction is scalable, and suggest that one can switch to MWHC-style triangulation otherwise.

Datasets

We performed experiments using two datasets derived from the eu-2015 crawls gathered by
BUbiNG [11]. The smaller dataset is the list of hosts that contains 11 264 052 keys. Each key is
long ≈ 22 bytes. The larger dataset is the list of pages with 1 070 557 254 keys; in this case, keys
are longer, that is, ≈ 80 bytes. The crawl data is publicly available at the LAW website3. We
will see later that the length of keys has a significant impact on lookup speed.

The dataset is stored on secondary memory in plain text format. The sizes are about 80GB
for the list of URLs and 233MB for the list of hosts. In Chapter 7 we will analyze the performance
of compressed static functions, and we will describe the list of values associated with each key.

We also measure the scalability of our implementation. We create subsets of the URLs dataset
for different sizes {2i | 22 ≤ i ≤ 27}. We can state that construction is scalable if the construction
speed and the space usage per key are constant.

3http://law.di.unimi.it/
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Experiments

In this section, we will describe how we perform the experiments. The language we used is Java
8. The latest improvements of the JVM made bit manipulation very fast, and the performance is
similar to faster language such as C/C++. The only experiment done using a different language
is the one involving HDC construction. For that specific experiment, we used the implementation
proposed by the authors written in C. Each experiment is performed on an Intel® Core™ i7-7770
CPU @3.60GHz (Kaby Lake), with 64GiB of RAM, and Linux 4.10.12.

For each construction technique we measure:

• the construction speed;

• the final space required to store the function on disk;

• the lookup speed.

The time required to build and store the function is measured using the Bash command time.
This command outputs three different times real, user and sys. For all the experiments we used
the real time value, or wall time, that is, the time from the start to the end of the command
execution. We decided to use to not measure timing inside the application because we want to
include starting overhead for the JVM and the time required to load the keys from the datasets
and arrange them using HEM. We express the time necessary for the construction as the time
needed for each key. More precisely we divide the time required by the number of the elements
in the keyset. We report the number of microseconds per key.

In our implementation, each data structure is stored using object serialization. Each object
in Java that implements a particular interface can be stored as a sequence of bytes. The sequence
of byte includes all the object data and all the information about the type of the object. All
serialized objects can be loaded from secondary memory and used. We measure the size of the
final file. We use as a unit of measurement bits per key. We are conscious that this is not the
real size of the data structure and may contains some redundancy given by object serialization,
but we think that is more fair to use this measure for experiment space usage in real case, indeed
once the file is stored it contains all the data required to perform lookup queries. Furthermore
is easier to compare different implementation.

Our data structures are designed to perform random access in constant time. So we fix the
number of accesses that we want to perform, then extract a subset of the keyset, and shuffle it.
Once fixed the subset, we perform 13 rounds; in each round, we access all the keys of the shuffled
subgroup. We use the first three rounds as warm-up rounds for the just-in-time compiler. Then
we measure the time required for each round, and at the end, we compute the average of the
results. If the cardinality of the subset is at least 107, then the variance of the results for each
round is small. It is important to notice that in this case, we do not measure the time required
to load the object from the secondary memory and the time necessary to pre-process the dataset.
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P C A Total
HOST (ns/key) 47.62 ≈ 9.59 ≈ 46.08 103.29
URLS (ns/key) 105.45 ≈ 17.94 ≈ 150.28 273.67

Table 4.3: Lookup speed contribution for each unit

The lookup time is measured in nanoseconds per key. For simplicity we divide the lookup time
in four units operation:

• (P)rocess the string

• (C)ompute three indexes of the variables in the equation

• (A)ccess three times the data structure (cache miss)

These units are common for all the construction; furthermore the minimal perfect hash func-
tions and compressed static function require one more operation: the ranking for the former,
decoding process for the latter.

Table 4.3 shows the impact of each unit using GOV3Function class. The time required by
the first unit depends on the length of the keys, URLs are typically longer than than host names,
as we can see the impact in the first column of Table 4.3. Access to the bitvector depends just
on its final length.

For compressed static function we notice that decoding the canonical Huffman code has a
very marginal impact, as it requires ≈ 10 ns or less (≈ 2 ns in the uniform case, as the decoding
table contains just one entry).

Parameters

In every construction technique based on linear system solving, few parameters can be tuned.
We can decide the size n′ of each chunk of the HEM (see Section 4.3.1). We can also fix the ratio
between the number of nodes and the number of hyperedges, as we saw in Section 2.4, to speed
up computation. Only for compressed static functions, we can set the maximum table length
` and the fraction α as explained in Subsection 4.3.3. We will see that all parameters have a
significant impact on the construction speed and final space, but they have a small impact on
lookup speed.
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Chapter 5

GOV3 and GOV4

5.1 Introduction

In this chapter, we will analyze the results obtained by appling our improvements to construction
for static functions, and in particular focunsing on the optimization of the chunk size. We will
use the following implementations:

• MWHC;

• GOV3Function;

• GOV4Function.

These classes are available as part of the open source Java project Sux4J.
The MWHC function is the same as the one presented in 3.1.2. GOV3Function is our data

structure based on linear systems (see Section 3.1.3) plus the improvements described in 4. As
indicated by its name, this implementation uses random 3-hypergraphs. GOV4Function has the
same improvements of GOV3Function but uses random 4-hypergraphs.

5.2 Results

The first analysis that we performed concerns the choice of the chunk size. This parameter
defines the number of keys for each bucket, that is, the number of equations for each system.
This setting influences both construction speed and space usage. In general small buckets require
less time to be processed. On the other hand, smaller buckets need more space. Remember that
for each bucket we build a static function, and that each of these has some extra information to
store. Both GOV3Function and GOV4Function create a data structure that can represent for
any static function. In all experiments, we store the function f(ki) = i, which implies that we
store exactly one integer equal to the dataset size minus one.
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Figure 5.1: Space usage for GOV3 and GOV4 on host dataset

It is interesting to see how the measures of interest vary with the chunk size. Figure 5.1 shows
how the number of bits per element and construction time varies with the chunk size for GOV3
and GOV4. To avoid being too close to the threshold, we use the constant 1.10 in the case r = 3
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Figure 5.2: Space usage for GOV3 and GOV4 on URL dataset

and 1.03 in the case r = 4 (the thresholds are ≈ 1.09 and ≈ 1.023, respectively). In Figure 5.1
and Figure 5.2 we highlight the theoretical space usage with a line. The theoretical space usage
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represent the thoeretical size of the array of bits and it is computed using this formula:

c2,r · log(m)

where m is the maximum value of the output values. As you can see the theoretical space usage
is not influenced by the HEM size. We remark that the difference between theoretical value
and file size is at most 0.61 bits/key and 0.52 bits/key for GOV3Function and GOV4Function
rispectively. In real case, as chunks gets larger the number of bits per key slightly decreases (as
the impact of the offset structure is better amortized); at the same time in Figure 5.3 we can see
that construction time increases because the Gaussian elimination process is superlinear (very
sharply after chunk size 211).
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Figure 5.3: Construction time for GOV3 and GOV4 on host dataset

In Figure 5.3 we can see the behavior of construction speed. For both GOV3Function and
GOV4Function, for chunk size equal to 27 we obtained the best result. Of course, GOV3Function
is in general faster than GOV4Function (as we have seen in Figure 4.1, lazy Gaussian elimination
is less efficient when the number of variables per equation increases, as highlited in fig 5.4.). The
average gap between GOV3Function and GOV4Function is 0.96µs/ key, but it becomes evident
for chunks bigger than 211. In both datasets, the worst case the GOV4Function is about four
times slower than the best case. Nonetheless, the worst case for GOV3Function is about just 1.5

times slower.

In Figure 5.5 we show the lookup speed for host dataset, it is always constant when the chunk
size varies. Obviously, GOV3Function is faster than GOV4Function, because the latter requires
one additional cache miss. Values are quite stable for both constructions. As it is quite evident,
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Figure 5.4: Construction time for GOV3 and GOV4 on URL dataset

the chunk size has basically no impact on this measure. Similar results are obtained for the URL
dataset and displayed in Figure 5.2, 5.4 and 5.6.

It is interesting to notice that using chunks larger than 210 yield a slightly improved lookup
time, as the offset array becomes small enough to fit into the L3 cache. This phenomenon occours
only for big datasets because for small datasets the offset array always fits the in the L3 cache.
It explains why in Figure 5.6 we have better performances increasing the chunk size.

Summarizing the analysis preented so far, we see that for chunk size 210 we obtain the
best results in terms of space usage and construction time. Indeed construction time increases
rapidly for chunks bigger than 210 and the space usage decrease slowly. So we decided to fix the
chunk size to 210. Finally we can compare GOV3Function and GOV4Function with a classical
hypergraph-based MWHCFunction. In Table 5.1 we report all measurement for both datasets.

Host URLs

MWHC GOV3 GOV4 MWHC GOV3 GOV4

Lookup (ns/key) 184.08 160.68 171.57 368.01 320.73 339.05
Construction (µs/key) 0.46 0.92 1.39 0.89 1.23 1.97
Size (bits/key) 29.80 26.51 24.81 37.17 33.11 30.99

Table 5.1: A comparison of per-key construction time, lookup time and size for static function
implementation.

As expected, the space per key required by the classic MWHC construction is bigger than
both GOV3Function and GOV4Function.
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Figure 5.5: Lookup speed for GOV3 and GOV4 on host dataset
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Figure 5.6: Lookup speed for GOV3 and GOV4 on URLs dataset
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5.3 Conclusions

In this chapter, we analyzed results for different implementation of static functions. Our ex-
periments show that our method give improvements in both space usage and lookup speed. In
the next chapter we will present the results for minimal perfect hash functions. We will analyze
BPZ, HDC and a version of BPZ that includes our improvements. In Chapter 7 we will compare
GOV3Function and GOV4Function with compressed static function.



Chapter 6

Minimal Perfect Hash Functions

Introduction

As we have seen in Chapter 3, minimal perfect hash functions have been historically more
important than static functions. This chapter focuses on the application of our improvements
to MPHF, applying an analysis similar to the one we showed in the previous chapter. As
before, we focus on the size of the chunk that gives the best performances. We have different
implementations available for the construction technique base on linear system solving. We have
one for BPZ algorithm and one based on BPZ that includes our improvements. The last one
will be called GOVMPHF. We also compared our implementation with the one proposed by the
author of HDC.1

For minimal perfect hash functions, we choose to use just r = 3. As we have seen in Sec-
tion 3.1.2 there are good reason to use r = 3. Indeed for r = 4 we need three bits to store each
value because two bits are fully covered by the index of the hinge, and one is required for the
ranking data structure. Moreover, we need results analogous to the k-XORSAT bounds for the
solvability of modular systems, and they are available only for r = 3.

6.1 Results

As before, the aim of the first experiment is to find out the best size for the chunks. In Figure 6.1
and Figure 6.2 we show how the number of bits per element vary with the chunk size for r = 3.
Figure 6.1 shows the results obtained by using the host dataset while Figure 6.2 the ones obtained
using the URL dataset. The values for GOVMPHF ranges from 2.55 bit/key to 2.21 bit/key,
and from 2.45 bit/key to 2.21 bit/key for the host and URL dataset respectively. These values
show that the size of the dataset does not influence the final space as expected by theory.

1We used their implementation, this is written in C and is available at [18].
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Figure 6.1: Size for BPZ and GOVMPHF on host dataset.

We can see that we can use less space than the classical BPZ. For chunk size equal to 210 we
move from 2.72 bits/key required by BPZ construction to 2.25 bit/key required by GOVMPHF.
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Figure 6.2: Size for BPZ and GOVMPHF on URL dataset.

We can see from Figure 6.1 and Figure 6.2 that we reduced the gap between the theoretical
lower bound and the real size of the file. We remark that the the theoretical lower bound is
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2 · c2,3, as we explained in Subsection 3.1.2 we need two bits for each key to create the ranking
data structure.
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Figure 6.3: Time for BPZ and GOVMPHF on host dataset.

The construction time for GOVMPHF sharply increases as the chunk size passes 210. As we
have seen for GOV3Function, this behavior is typical in constructions based on the solution of
linear systems, rather just on peeling (triangulation).
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Figure 6.4: Time for BPZ and GOVMPHF on URL dataset.
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Figure 6.5: Lookup speed for BPZ and GOVMPHF on host datasets

As we can see in Figure 6.5 and Figure 6.6, larger chunks cause slower lookup speed. The
substitute of the rank function does more work to compute the inside-chunk rank that we de-
scribed in Section 4.3.1. Anyway, for small chunks, the improvement that we proposed is two
times faster than the rank data structure for BPZ.
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Figure 6.6: Lookup speed for BPZ and GOVMPHF on URLs datasets

In Table 6.2 we show the lookup, construction time and final size of our chosen chunk size, 210,
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with respect to the data reported in [2] for the same space usage (i.e., additional 1.10 b/key), and
to the C code for the HDC technique made available by the authors (http://cmph.sourceforge.net/)
when λ = 3, in which case the number of bits per key is similar to ours. We tried to set the
parameter λ = 2, but the space obtained was 2.44. For completeness, we report all the results
for both values of λ in Table 6.1.

eu-2015-host eu-2015

λ = 3 λ = 2 λ = 3 λ = 2

Lookup (ns) 371.44 372.33 897.50 1054.90
Construction (µs) 0.75 0.59 2.08 1.58
Size 2.18 2.45 2.18 2.45

Table 6.1: Per-key construction, evaluation time and size for HDC construction with different
λ.

We remark that for minimal perfect hash functions is required edge orientation. As for the
GOV3Function and GOV4Function, the gap in speed is quite stable with respect to the key size:
testing the same structures with very short (less than 8 bytes) random keys provides, of course,
faster lookup, but the ratio between the lookup times remain the same.

6.2 Conclusions

In this chapter, we presented the experimental results for minimal perfect hash function. As for
the GOV3Function and GOV4Function, the main challenge was to reduce the overhead caused
by Gaussian elimination. We show that our construction speed is comparable with the BPZ
implementation. We also reduced the gap between the space required and the theoretical lower
bound by removing the ranking data structure. As we have seen in Figure 6.5 and Figure 6.6,
this choice does not influence lookup speed for small chunks. We have extremely competitive
lookup speed and better scalability.

For small sizes, performing the construction entirely in main memory, as HDC does, is an
advantage, but as soon as the dataset gets large, our approach scales better. We also remark
that our code is a highly abstract Java implementation based on strategies that turn objects into

Table 6.2: A comparison of per-key construction and evaluationn time, r = 3. HDC is from [8],
ADR is from [2].

eu-2015-host eu-2015 ADR

BPZ GOVMPHF HDC BPZ GOVMPHF HDC SF

Lookup (ns) 134.89 126.84 371.44 393.26 329.55 897 ?
Construction (µs) 0.40 1.30 0.75 0.96 1.93 2.07 270
Size 2.72 2.25 2.18 2.69 2.24 2.18 1.10
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bit vectors at runtime: any object can thus be used as a key. A tight C implementation able to
hash only byte arrays, such as that of HDC, would be significantly faster. Indeed, from the data
reported in [4] we can estimate that it would be about twice as fast.

Finally, one must consider that HDC, at the price of a much greater construction time, can
further decrease its space usage, but just a 9% decrease in space increases construction time by
an order of magnitude, which makes the tradeoff unattractive for large datasets.



Chapter 7

Compressed Static Functions

Introduction

In this chapter we will analyze the results of our implementation for compressed static functions.
We will use the theoretical construction proposed in [35]. As we have seen in Section 3.2, this
construction reaches a space per key proportional to the empirical entropy of the list of output
values. We pay this space reduction by multiplying the number of equations that must be solved
approximately by the entropy itself.

Thus, it is not obvious that previously known techniques are sufficient to make this construc-
tion scalable. Indeed, to the best of our knowledge, no one has ever engineered, implemented
and published a practical code for building a compressed static function for a large number of
keys, whereas several constructions for the non-compressed case are available.

As in the case of static functions, this construction technique is based on linear system solving.
Thus, we tested our implementation for r = 3 and r = 4 as in Chapter 5. In both minimal perfect
hash function and static functions, we focused on the behavior of the implementation varying
the chunk size. Instead, for the compressed static function, we focus on the list of values; we
wanted to find out which distribution has the best performance using CSF construction. We
compared our construction with the implementation provided by the classes GOV3Function and
GOV4Function.

7.1 Datasets

Before analyzing the results, we will describe the datasets and the lists of values. As in the
previous chapters, we consider a list of 11 264 052 hostnames, and a list of 1 070 557 254 URLs.
However, in this case, for each key set we generate three synthetic lists of values using different
distributions:

• a geometric distribution with probability p = 1/2;
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• a Zipfian (i.e., finite power-law) distribution with N= 106 values and exponent s= 2;

• a discrete uniform distribution with 64 values.

Moreover, as real-world case we consider the mapping from each URL (host) to its indegree in
the web (host, respectively) graph.

The geometric and uniform distributions are the most skewed and the less skewed distribution
with exactly matching optimal codes, and the Zipfian distribution sits somewhere in the middle.
Note that in principle the geometric distribution has un unlimited range, but in practice for n
keys the largest generated value is O(log n) with high probability.

Table 7.1 reports the empirical value range and empirical entropy of the eight resulting
combinations. Figure 7.1 represents the Pareto chart for each list of values for the host dataset.
To make plots more readable, we limited the cumulative sum at 0.97 of total value for the
distribution with a long tail.
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Figure 7.1: Pareto chart for each value list for host dataset

Dataset Geometric Zipfian Uniform Indegree

Hosts [0 . . . 23], 2.0 [1 . . . 774599], 2.36 [0 . . . 63], 6.0 [1 . . . 174433], 4.22
URLs [0 . . . 31], 2.0 [1 . . . 997570], 2.36 [0 . . . 63], 6.0 [1 . . . 20252239], 5.10

Table 7.1: Actual ranges and empirical entropy of our synthetic and real-world datasets.
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7.2 Results

In Table 7.2 and 7.3 we report the results of our eight combinations of datasets and output values,
coupled with similar results for the non-compressed data structures distributed with Sux4J.

• If the distribution is skewed and the entropy is small, we obtain a significant compression,
very close to c2,r ·H0 bits per key, as expected. The compression is more impressive in the
case of a distribution with a long tail, as in that case for large datasets a few very large
values occur, which forces the standard implementation to choose a large number of bits
per value. In the case of the geometric distribution, this might happen, too, but with very
small probability. Construction time increases, in some cases very significantly (e.g., URL
indegree, r = 4).

• In the uniform case, construction time starts to grow significantly, and we have no space
gain. Nonetheless, since we can use a value of c2,3 very close to the best possible, we do
not increase the space usage. Lookup time is slightly slower due to decoding, but by using
a flat binary code, it would be equivalent to the standard case.

• Lookup times for Zipfian and Indegree dataset are (sometimes significantly) shorter. It is
due to the reduced size of the bit array. Since the bit array is smaller we have less stress
on the cache and on the Translation Lookahead Buffer.

• concerning the case r = 3, the case r = 4 exhibits slightly increased access time, a few
percent reduction in space (as expected) and much longer construction time, due to the
growing density of the linear systems.

Host dataset
r = 3

Geometric Zipfian Uniform Indegree

Std Comp Std Comp Std Comp Std Comp
Size (b/key) 5.56 2.27 22.10 2.75 6.66 6.67 19.89 4.78
Constr. (µs/key) 0.82 1.57 0.82 2.06 1.06 11.25 0.80 5.35
Lookup (ns/key) 103.97 97.62 152.74 100.08 114.11 116.70 152.38 119.96

r = 4

Geometric Zipfian Uniform Indegree

Std Comp Std Comp Std Comp Std Comp
Size (b/key) 5.21 2.12 20.69 2.59 6.23 6.24 18.62 4.48
Constr. (µs/key) 1.27 3.38 1.42 4.88 1.29 44.90 1.33 18.30
Lookup (ns/key) 109.02 108.00 164.72 108.04 121.02 123.50 163.45 124.01

Table 7.2: Comparison between the non-compressed implementations from Sux4J (Std) and our
compressed implementation (Comp) for the host dataset.
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URL dataset
r = 3

Geometric Zipfian Uniform Indegree

Std Comp Std Comp Std Comp Std Comp
Size (b/key) 5.55 2.25 22.09 2.72 6.65 6.65 27.60 5.72
Constr. (µs/key) 1.46 2.58 1.47 3.29 1.46 19.81 1.49 13.83
Lookup (ns/key) 270.42 271.92 315.56 277.28 276.47 275.55 318.47 302.72

r = 4

Geometric Zipfian Uniform Indegree

Std Comp Std Comp Std Comp Std Comp
Size (b/key) 5.191 2.11 20.67 2.55 6.22 6.23 25.83 5.36
Constr. (µs/key) 2.17 5.96 2.17 8.75 2.17 86.20 2.23 55.70
Lookup (ns/key) 277.68 280.05 325.98 284.48 285.96 291.06 339.42 309.49

Table 7.3: Comparison between the non-compressed implementations from Sux4J (Std) and our
compressed implementation (Comp) for the URL dataset.

7.3 Scalability

We tested scalability using sequence of subsets of the URL datasets with sizes increasing expo-
nentially from 222 to 227, with geometrically distributed values. Figure 7.2 shows that there is
essentially no difference in per-key construction time and space usage. Indeed, due to HEM once
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Figure 7.2: Size and construction time for increasing size of the key set (geometrically distributed
output, r = 3).

we fix the chunk log size the only non-linear part of the construction is the sorting phase, which
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accounts for just a few percent of the overall construction time. Maybe surprisingly, one can
witness a small decrease in per-key construction time due to some constant costs (JVM startup,
etc.) being amortized on a larger number of keys.

7.4 Switching to Triangulation.

Since we try to triangulate the system before solving it by lazy Gaussian elimination, for r = 3

when we move from c2,3 to γ3 we can triangulate the system in linear time with high probability
(as in the MWHC case). In practice, with a 12% increase in space, we can guarantee that the
increase in construction time will be at most multiplied by the entropy. In fact, as we show in
Table 7.4, the increase is usually much less, as the triangulation process is responsible for a small
fraction of the overall construction time. Maybe surprisingly, because of the reduced memory
footprint the construction time for the geometric case is faster than the standard construction.
As we state in Chapter 2, note that γ3 s minimum among the γr, so there is no sense in trying
this approach for r 6= 3.

URL dataset
r = 3

Geometric Zipfian Uniform Indegree

Size (b/key) 2.51 3.03 7.43 6.39
Constr. (µs/key) 1.04 1.60 1.94 1.95
Lookup (ns/key) 272.68 278.52 285.95 305.44

Table 7.4: Data for δ = 1.23, using triangulation to solve linear systems.

7.5 Table-Limited Huffman Code

As stated before it is possible to use different a static code to encode values. We tested the
performance of the Unary code. This code is optimal if the frequencies of the output values
follow a geometric distribution with p = 0.5. In our case we encode each value f(xi) with
the bit sequence 0f(xi)1, and the decoding can be performed counting the leading zeros. This
is a common operation in browadword programming and has been introduced in SSE4.2 Intel
instruction set in 2007. As expected the final size and the construction time are similar to the
one we reported in Table 7.2 and Table 7.3. The lookup time for the host dataset is ≈ 90 ns/key
and ≈ 204ns/key for the URLs dataset. The values do not differs too much from the reported
in Table 7.2 and Table 7.3 for the same datasets. The main drawback of the use of static Unary
code is its limited applications; indeed, it is very uncommon to store functions such that the
output values follows exactly a geometric distribution.

The last experiment that we performed shows the behavior of the function when we change
the length of the decoding table of the table-limited Huffman code (see Section 4.3.3). For this
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Figure 7.3: Lookup speed vs. length of the decoding table (geometrically distributed output).

experiment we will use the host dataset and the list of values generated using the geometric
distribution with p = 0.5. This distribution is the most skewed and exploits the changes in
the decoding table. Then we changed the parameter ` = 2i, i ∈ {1, 2, 3, 4, 5}, and we measured
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Figure 7.4: Construction time vs. length of the decoding table.

construction speed, space usage and lookup speed. We expect that for values of ` beyond 8 the
impact of the table-limited Huffman code should be marginal.
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Note that for ` = 32 there is no difference from table-limited Huffman code and canonical
Huffman code, beacuse in the geometric-distributed list of value the longest codeword has length
equal to 23.

In theory, we need to use a table-limited Huffman code to perform decoding in constant time.
In practice, however, the decoding time is dominated by the time required to compute the r hash
functions hi. As we can see in Figure 7.3, the speed values slowly increases for different table
lengths, but never more than 10%.
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Figure 7.5: Size vs. length of the decoding table.

Nonetheless, the size of the table deeply affects the construction speed and space usage.
If we use a non-optimal code for the frequency of values, the number of equations increases

and this presents two drawbacks: the system is bigger and the number of total variables grows.
It is obvious that if we use a non-optimal code the space usage increases. We report these results
in Figure 7.5. The space usage ranges from 3.36,b/key to 2.27 b/key. As shown in Figure 7.4,
when we have more equations the time required to solve the system increases. We can nearly
halve the construction time, from 2.86µs/key to 1.56µs/key;
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In this thesis, we investigated construction techniques for static functions, that is, maps from
a fixed subset of the universe to a set of integers. This family of functions can be divided in
several subclasses: perfect hash function, minimal perfect hash function, order preserving min-
imal perfect hash function and compressed static functions. Each of these classes has different
purpose: for instance, to retrieve the position of a key in a give list of keys we use order pre-
serving minimal perfect hash functions. In general, minimal perfect hash functions can be used
as building block of space efficient data structures. As we have seen in Chapter 3, several con-
struction techniques have been proposed in the literature. We selected the ones that have the
widest range of applications, which are based on the solution of random linear system. The first
formulation of this construction technique takes advantage of the graph theory. As we have seen
in Section 2.3, a random linear system can be represented using hypergrahs. In particular, in a
random uniform hypergraphs if the ratio between nodes and edges is greater than the threshold
γr the system can be triangulated in linear time. Our ambition was to beat the γr multiplicative
factor in front of space bound without increasing significantly the construction time, as below
this factor the system cannot be triangulated in linear time, and we need to solve it. To do so,
we used the ck,r threshold described in [19].

In Chapter 4 we have presented how we can engineer data structures for construction based
on linear systems. The most significant improvement is given by Lazy Gaussian Elimination 4.2.
This heuristic derives from a sparse large system a small, denser one, which can be solved using
standard Gaussian elimination. To speed up this process we represented equations using bit
arrays and used broadword programming to manipulate them.

In Section 4.1.2, we described the algorithms to perform row operation for equations over F3.
In the same chapter we introduced minor improvements, such as HEM to reduce the amount of
main memory required during construction. In minimal perfect hash function representation we
can remove the ranking as we explained in 4.3.1. For compressed static functions we introduced
a new table-limited canonical Huffman code 4.3.3 and we trade optimality for constant-time
decoding. We also discussed the drawback of the structured hash functions proposed in [35].
The asymptotic behavior of the new threshold causes the failure of many small linear system
affecting construction speed.

In the experimental part of the thesis we compared the results for all the construction tech-
niques based on linear system solving. Firstly, we described how we perform the experiments
and the dataset that we used. Then in Chapter 5 we presented the results for GOV3Function
and GOV4Function, the implementations for static function. We analyzed the behavior of the
construction technique for different size of the linear system. We focused on final space required
and construction speed. We choose the size that provides the best trade off between these two
measures. Indeed, the number of equations does not influence the lookup speed. We compared
the results with the hypergraph-based construction. Remarkably, our study demonstrate that
our method can improve signficantly lookup speed with respect to previous construction.

In Chapter 6, we performed experiments on our minimal perfect hash function implementa-
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tion. After the elimination of the ranking data structure we analyzed how the size of the linear
system influence the lookup speed and the final size. The lookup speed increases as the size of
the linear system, but for sizes less than 210 the lookup speed grows slowly. Under that value,
lookup for GOVMPHF is faster than BPZ construction. We also compared our new construction
with one of the best construction technique available, HDC. This construction has similar per-
formances in terms of final size and construction speed. Anyway, we can state that GOVMHPF
is about 2.5 times faster in lookup speed than HDC construction as reported in Table 6.2. We
consider this parameter crucial for the design of these data structure.

The last chapter of the experimental part is about compressed static hash functions 7. As far
as we know, this is the first engineered implementation of the theoretical construction proposed
in [35] for compressed static functions. For this construction technique the number of equations
in the linear system is not equal to the size of the keyset. Rather, it depends on the 0th order
entropy of the list of the outputs of the function. So we experimented different list of values as
described in 7.1. We have seen that if the list of values has a small entropy this construction
technique outperform GOV3/GOV4Function. If the distribution of the values has a long tail,
but high entropy, we can reduce the space usage and improve lookup speed with respect to
GOV3/GOV4Function. However, construction speed is slower than GOV3/GOV4Function. Note
that to circumvent the high-entropy case one can measure at construction time the entropy of
the output values and just switch to the construction based on linear-time system triangulation,
as showed in Table 7.4.

We remark that the code for GOV3/GOV4/MinimalPerfectHashFunctions is already included
in the Sux4J library. This is an open source project and we hope that it can be used as term of
comparison with future construction techniques. We also plan to release the code for compressed
static function: it will use the inherent parallelism of HEM to decrease the construction time by
an order of magnitude if sufficient cores are available. For experiment comparing with previous
literature we believe that a single-threaded approach gives less biased results.

It is also easy to use distributed computational frameworks to solve independently each
chunk. For compressed static functions we suggest the k = 3 for a practical data structure, as
construction time for k = 4 becomes too high, with minimal space gains.

If the distribution of values is known in advance, Huffman codes can in principle be replaced
by a standard instantaneous code such as unary or Elias’s γ. This choice reduces the space usage
since the decoding structure is no longer required.

We remark that one of the advantages of the theoretical approach we chosen for our algorith-
mic engineering efforts [35] is that the number of memory accesses to compute a value is identical
to that of the non-compressed case we are comparing with: indeed, in our tests we found a minor
lookup slowdown in the uniform case, and a speedup in some skewed cases, in spite of the time
that is necessary for decoding, as the smaller memory footprint reduces the out-of-cache accesses
and the stress on the Translation Lookaside Buffer.
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