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Abstract  

Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide, 

particularly in individuals with diabetes. The current study objective was to determine the 

circulating metabolite profiles associated with the risk of future cardiovascular events, with 

emphasis on diabetes status. Non-targeted metabolomics analysis was performed by LC-

HRMS in combination with targeted quantification of eicosanoids and endocannabinoids. 

Plasma from 375 individuals from the IMPROVE pan-European cohort were included in a 

case-control study design. Following data processing, the three metabolite datasets were 

concatenated to produce a single dataset of 267 identified metabolites. Factor analysis 

identified six factors that described 26.6% of the variability in the given set of predictors. An 

association with cardiovascular events was only observed for one factor following adjustment 

(p=0.026). From this factor, we identified a free fatty acid signature (n=10 lipids, including 

saturated, monounsaturated, and polyunsaturated fatty acids) that was associated with lower 

risk of future cardiovascular events in non-diabetics only (OR=0.65, 0.27-0.80 95% CI, 

p=0.030), whereas no association was observed among diabetic individuals. These 

observations support the hypothesis that increased levels of circulating omega-6 and omega-3 

fatty acids are associated with protective effects against future cardiovascular events. 

However, these effects were only observed in the non-diabetic population, further 

highlighting the need for patient stratification in clinical investigations.  

  

Page 2 of 31

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

 

 

Introduction 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide (1), 

and is especially pronounced amongst individuals with diabetes (2). While multiple potential 

markers have been proposed for predicting future cardiovascular events, there is significant 

uncertainty regarding their ability to accurately predict risk (3). Metabolomics has been 

successfully applied to determine the circulating metabolic profile in an effort to link specific 

metabolites to the onset of CVD (4-8) and diabetes (9-11), as reviewed by Ruiz-Canela et al. 

(12) and Guasch-Ferré et al. (13). A recent large prospective study of 3 population-based 

cohorts employed high-throughput NMR-based metabolomics in combination with a targeted 

metabolomics platform to identify (sets of) biomarkers that improved CVD risk prediction 

(8). In the current study, we applied non-targeted high-resolution mass spectrometry to a pan-

European study of cardiovascular disease (Carotid Intima Media Thickness [IMT] and IMT-

Progression as Predictors of Vascular Events in a High Risk European Population; IMPROVE 

(14)). The study objective was to determine the metabolite profiles associated with the risk of 

future cardiovascular events. These metabolomics studies were complemented with targeted 

analyses of eicosanoids and endocannabinoids, which have known roles in CVD as well as 

diabetes (15-17). We stratified the study population by diabetic status given the importance of 

the reported biomarkers within the framework of the SUrrogate markers for Micro- and 

Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) consortium (18), 

which aimed to identify and characterize biomarkers for complications of diabetes.  
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Materials and Methods 

Detailed methods are available in the Supplementary Information.  

 

Study Population 

The current study was based upon the original IMPROVE cohort, which is a multicentre 

longitudinal cohort study of 3711 subjects designed to identify the main determinants of 

cIMT in high-risk individuals (19). Between 2002 and 2004, men and women aged from 55 to 

79 years with at least 3 vascular risk factors (VRF), but with no symptoms of cardiovascular 

disease, were recruited in 7 centers in 5 European countries (Finland, Sweden, the 

Netherlands, France, and Italy) and followed for about 3 years. Individuals were considered to 

possess a VRF when one of the following criteria was satisfied: male sex or at least 5 years 

after menopause for women; hypercholesterolemia (mean calculated LDL-C blood levels > 

160 mg/dL or treatment with lipid lowering drugs); hypertriglyceridemia (triglycerides levels 

> 200 mg/dL after diet or treatment with triglycerides lowering drugs); 

hypoalphalipoproteinemia (HDL-C < 40 mg/dL); hypertension (diastolic blood pressure, DBP 

> 90 mmHg and/or systolic blood pressure, SBP >140 mmHg or treatment with anti-

hypertensive drugs); diabetes or impaired fasting glucose (blood glucose level > 110 mg/dL 

or treatment with insulin or oral hypoglycaemic drugs); smoking habits (at least 10 

cigarettes/day for at least thirty months); family history of cardiovascular diseases. The 

IMPROVE study exclusion criteria were: age under 55 or over 79 years; abnormal anatomical 

configuration of neck and muscles; marked tortuosity and/or depth of the carotid vessels, 

and/or uncommon location of arterial branches; personal history of myocardial infarction, 

angina pectoris, stroke, transient ischemic attack, aortic aneurysm or claudication; re-

vascularization in carotid, coronary or peripheral arteries, congestive heart failure (III-IV 

NYHA Class); history of serious medical conditions that might limit longevity. 
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During the study span, 215 cardiovascular events were recorded, including 

myocardial infarction, sudden cardiac death, angina pectoris, ischemic stroke, transient 

ischemic attack, new diagnosis of intermittent claudication, heart failure, or any surgical 

intervention or revascularization of coronary or peripheral arteries. The case-control matching 

yielded 201 pairs, after excluding subjects for whom a mismatch was observed between the 

diabetes status in the database and the pre-established criteria used to define diabetes in the 

present report (diagnosis of diabetes and/or treatment with insulin or other hypoglycemic 

drug, and/or fasting glucose ≥ 7 mmol/L at the baseline examination). The final cohort for 

metabolomics analysis included 173 incident cases and 172 controls matched for recruitment 

center, age, sex, diabetes status, insulin use, statin use and smoking (Figure 1). From each of 

these individuals, blood sampling was performed after an overnight fast. EDTA plasma 

samples were prepared and kept frozen at -80°C until used for centralized laboratory analyses 

(at the Karolinska Institutet, Sweden) (19). Ethics committee approvals for the study were 

obtained in each of the 7 recruiting centers and the study followed the respective institutional 

guidelines. Written informed consents were obtained from all participants. Informed consent 

for the IMPROVE study includes assessments of CVD risks based on blood samplings for 

later analyses of blood based risk markers and genetic variants as well as ultrasound 

investigations of the carotids.  

 

Metabolomics analysis 

Plasma samples were analyzed using liquid chromatography coupled to high-resolution mass 

spectrometry (LC-HRMS) as previously published (20), and described in the Supplemental 

Information. Briefly, EDTA plasma samples (400 µl) were thawed on ice and split into three 

different extraction methods. For reversed-phase metabolomics analysis, 50 µl of plasma were 

protein-precipitated with 3:1 volumes of pre-chilled methanol. For hydrophilic interaction 
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liquid chromatography (HILIC) metabolomics analysis, 50 µl of plasma were protein-

precipitated with 4:1 volumes of acetonitrile. Samples were vortexed, centrifuged, and the 

supernatant was transferred and stored at -80°C until the day of analysis. For lipid mediator 

analysis, solid phase extraction (SPE) was used to extract lipid mediators from 250 µl plasma 

as previously published (21, 22). Eicosanoids and endocannabinoids were extracted with 

Waters Oasis HLB (60 mg) SPE cartridges, eluted, and extracts were dried and stored at -

80°C until the day of analysis. 

For metabolomics, samples were analysed using an Ultimate 3000 UHPLC and a Q-

Exactive Orbitrap mass spectrometer (ThermoFisher, Waltham, USA). For reversed-phase 

chromatography, 20 µl of sample was injected on a Thermo Accucore aQ RP C18 column 

(150 × 2.1 mm, 2.7µm particle size) and analyzed as described in the Supplemental 

Information. For HILIC chromatography, 12.5 µl of sample was injected on a Merck-Sequant 

ZIC-HILIC column (150 × 4.6 mm, 3.5µm particle size) fitted with a Merck Sequant ZIC-

HILIC guard column (20 × 2.1 mm) and analyzed as described in the Supplemental 

Information. Mass spectrometry data were acquired (full scan mode) in both positive and 

negative ionization modes (an independent run for each polarity), with a resolution of 70000 

at 400 m/z.  

Eicosanoid (21) and endocannabinoid (22) separation were performed as previously 

published, using an Acquity UPLC and a XEVO-TQS triple quadrupole (Waters, Milford, 

USA), with some modifications. Briefly, eicosanoid and endocannabinoid separation were 

separately performed using an ACQUITY UPLC BEH (Ethylene Bridged Hybrid) C18 

Column (130Å, 1.7 µm, 2.1 mm X 150 mm) equipped with a pre-column (ACQUITY UPLC 

BEH C18 VanGuard Pre-column, 130Å, 1.7 µm, 2.1 mm X 5 mm) as described in the 

Supplemental Information.  
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Data processing 

MSconvert was used to convert and centroid the raw files to mzXML (23). All 

chromatograms were evaluated using the open source software package XCMS (24) 

performed under the package R. Two preliminary approaches were followed for metabolite 

annotation. Accurate mass and retention time (AMRT) approach was used to compare the 

physical parameters of accurate mass and retention time of authentic reference standards to 

those obtained in the metabolomics analysis. The second approach was a putative annotation 

(AM) based on matching the m/z signals obtained from the metabolomics analysis with those 

of entries in the human metabolome database (HMDB) (25). Metabolites of interest identified 

by factor analysis were later subjected to an MS/MS experiment (on the pooled QC sample). 

The method of identification for each metabolite is reported in Table S1. 

Each sample was subjected to analysis in six different, but overlapping methods. To 

avoid the redundant reporting of the same metabolic signals, an in-house script (VBA-Excel) 

was used to filter metabolites reported in more than one method. The method of choice was 

the method with the least analytical variance judged by the coefficient of variance for the QC 

samples. After imputation of zero values with half the minimum recorded intensity, all 

metabolomics and background data were combined in one dataset for statistical analysis. 

 

Statistical analysis 

The computer software STATA version 11.2 (StataCorp LP, College Station, TX, USA) was 

used to conduct statistical analysis. Cluster analysis was performed in RStudio (Version 

0.98.1062, RStudio, Boston, MA, USA). Forest plots were created using Forest Plot Viewer 

(SRA International, Inc., Durham, NC, USA). Baseline characteristics were reported as 

median (interquartile range) for continuous and as count (%) for binary variables. Fisher's 

exact test for parametric data and the Mann-Whitney U test for nonparametric data were used 
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for comparison between 2 groups. Nonparametric data were log-transformed prior to factor 

analysis and/or regression. A two-sided p-value of 0.05 was considered significant. Principal 

component analysis (PCA) was performed on the univariate (UV)-scaled log10 of the data 

using SIMCA v14.0 (MKS Umetrics, Sweden). 

Metabolomics measurements contained two types of missing data, which were 

treated differently. Values below the lowest calibration point were replaced with half the limit 

of detection (LOD) for that metabolite. True missing values appeared if peaks were missing 

for a reason of analytical failure. Metabolites with >25% of values below the LOD were 

excluded from the analysis. 

In order to identify a set of uncorrelated factors we performed factor analysis 

with varimax (orthogonal) rotation. The purpose of factor analysis is to reduce the number of 

latent variables (or dimensions), which can explain the common variance and correlation of a 

larger set of original variables. Factor analysis allows identification of factors that account for 

inter-relationships between these variables (26). The rationale for rotation is to maximize 

factor loadings for selected factors whereas keeping the total variability described by the 

combination of these factors. Scree plot for eigenvalues vs. components was examined to 

determine the number of factors to retain (Figure S1). The number of factors to be included in 

the analysis corresponded to the "elbow" in the scree plot. Based on a common rule of thumb 

significant factor loading is considered to be >0.4, which was therefore the cut-off set for 

factor loadings (26, 27). Clustering of metabolites was performed using hierarchical 

clustering (Euclidean distances with Ward's method). In principle, Ward's method estimates 

the distance between two clusters measured by ANOVA sum of squares and joins clusters to 

maximize the likelihood, so called minimum variance method.  

Association between these factors and incident cardiovascular events was first 

assessed by conditional logistic regression analysis for matched pairs in univariate model and 
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with further adjustment for age, body mass index (BMI), anti-hypertension treatment (HT), 

high-density lipoprotein (HDL) cholesterol, and anti-platelet medication. Association between 

individual components and incident cardiovascular events was also analyzed in conditional 

logistic regression and results were presented in the form of a forest plot. To evaluate the 

relationship between the significant factor and its components with time to incident 

cardiovascular events we used Cox proportional hazard regression with adjustment for age, 

gender, and population substructure (assessed by multi-dimensional scaling 1, MSD1). 

Hazard ratios were presented per one standard deviation of the predictor. All regression 

models were stratified by diabetes status. The reported p-values for the metabolites identified 

by factor analysis were not corrected for multiple hypothesis testing because they are highly 

correlated metabolites identified in a single factor analysis. 

The ability of Factor 1 and individual metabolites within this factor to predict short-

term progression of asymptomatic atherosclerosis was assessed by linear regression to change 

over time in cIMT (cIMT progression) and inter-adventitia common carotid artery diameter 

(ICCAD), where ICCAD was measured in plaque-free areas. Progression was an estimate of 

change over follow-up time assessed by linear regression using measurements obtained at 

baseline, and after 15 and 30 months (28). The linear regression was stratified by diabetes 

status and adjusted for age, gender and corresponding baseline measurement of the carotid 

artery segment. For Factor 1, an extended model also included MDS1, presence of 

hypertension, blood glucose, ever smoking, lipid-lowering medication, anti-platelets use and 

angiotensin receptor blockers use. 

 

Results 

The baseline characteristics of the study population according to the presence of diabetes are 

summarized in Table 1. Among both diabetics and non-diabetics, the cases showed less 
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favorable anthropometric and metabolic profiles, and used more medication compared to the 

controls. Case-control differences were accentuated among the individuals with diabetes.  

Following data processing, the non-targeted metabolomics profiling yielded 1978 

unique features, of which 270 were matched to chemical reference standards by accurate mass 

and retention time. Of the 270 metabolites, 51 had >25% of the values below the limit of 

detection. These compounds were excluded to give 219 identified metabolites. The remaining 

1708 features were annotated putatively. A total of 104 lipid mediators from the eicosanoid 

and endocannabinoid platforms were screened, of which 48 compounds were present above 

the limit of quantification. These lipid mediators are generally present at concentrations too 

low to be detected by metabolomics, and were therefore quantified using targeted methods. 

The metabolomics and lipid mediator datasets were concatenated to produce a single dataset 

of 267 metabolites included in the analyses described below. The full list of reported 

metabolites is provided in Tables S1-S3. The potential for collection center bias was 

examined via PCA analysis (Figure S2). No distinguishable clusters were observed on a 

collection center basis (Figure S2A). However, samples collected in the Nordic countries 

were distinct from the rest of Europe (Figure S2B). Accordingly, analyses were matched by 

center to control for potential bias.  

The metabolite levels were compared between cases and controls, and no significant 

patterns were observed in the 267 reported metabolites (Table S4). Accordingly, the data were 

further analyzed by factor analysis. Analysis of the scree plot showed that six factors had 

eigenvalues greater than the average eigenvalue (Figure S1). Accordingly, six factors were 

retained after the varimax orthogonal rotation for the primary analysis. The six factors 

described 26.6% of the total variability in the given set of predictors (Table S5). Amongst the 

diabetics, there was no significant association between any of the six factors and 

cardiovascular events (Table 2). In non-diabetics, two of the factors were significantly 
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associated with cardiovascular events at p<0.05. Following adjustment for BMI, hypertension, 

HDL cholesterol and anti-platelet medication, only Factor 1 (F1) remained significant 

(p=0.026) (Table 2). F1 contained 39 metabolites (Figure S3), the majority of which were free 

fatty acids (n=10, Figure 2) or their downstream metabolic products (e.g., eicosanoids [n=19], 

endocannabinoids [n=5]). The free fatty acids in F1 included polyunsaturated (PUFAs), 

monounsaturated (MUFAs) and saturated fatty acids (SAT) (Figure S4). In non-diabetics, 

high concentrations of free fatty acids were associated with lower odds to suffer 

cardiovascular events (OR=0.65, 0.27-0.80 95% CI, p=0.030), whereas no association was 

observed among diabetic individuals (Figure 2). A similar trend was observed in Cox 

proportional hazard regression for the F1 free fatty acids. F1 associated with longer time to 

incident cardiovascular events in the non-diabetic group (HR=0.80, 0.65-0.97 95% CI, 

p=0.024) (Table 3). All free fatty acids measured were associated with a protective effect in 

non-diabetic individuals.  

In the non-diabetic group, pairwise Spearman rank correlation analysis between the 

six selected metabolic factors and cIMT measurements identified an association between 

Factor 2 and all IMT readouts at baseline, as well as baseline ICCAD, which disappeared 

after adjusting for age, gender and MDS1. Also in non-diabetics, a significant inverse 

correlation was observed between Factor 3 and progression of Bulb-IMTmean (r=-0.23, p= 

0.002), which disappeared after further adjustments for cardiovascular risk factors and 

medication (β=-0.011, p=0.067). Associations between F1 and cIMT variables were 

essentially non-significant. However, a significant correlation was found between F1 and 

ICCAD change over time in non-diabetes, tested in linear regression with adjustment for 

MDS1, cardiovascular risk factors (hypertension, blood glucose, ever smoking) and 

medication (lipid-lowering drugs, angiotensin II receptor blockers and anti-platelets) (β=-

0.008, p=0.001) (Table S6). To identify the major effects for association with ICCAD change 
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over time among metabolites included in F1, we ran linear regression analysis for each 

component (Table 4). The strongest association was observed with linoleic acid-derived 

metabolites, including: 12(13)-epoxy octadecanoic acid (EpOME; β=-0.018, p=0.001), 9- and 

13-hydroxyoctadecadienoic acid (9-HODE and 13-HODE; β=-0.017, p=0.002 and β=-0.018, 

p=0.001, respectively), as well as 13-keto-octadecadienoic acid (13-KODE; β=-0.014, 

p=0.002). Another group of interesting compounds associated with the dynamics of ICCAD 

were N-stearoyl taurine (β=-0.008, p=0.001) and N-palmitoyl taurine (β=-0.011, p=0.009). 

 

Discussion 

In the present report, non-targeted metabolomics analyses of plasma from a subset of the 

IMPROVE cohort identified a signature of free fatty acids associated with lower risk of future 

cardiovascular events in non-diabetic subjects. These observations corroborate the results 

recently reported by Würtz et al. (8) in a large prospective discovery cohort of 7,256 

individuals, replicated in two other cohorts of 2,622 and 3,563 individuals. The two studies 

had similar objectives; however, Würtz et al. (8) did not directly examine the effect of 

diabetes. The IMPROVE study recruited subjects at high-risk of CVD, resulting in a cohort 

with elderly participants (mean age 64 years) and 30% prevalence of diabetes. Based upon the 

high prevalence of diabetes, and within the framework of the SUMMIT consortium, our 

analyses were stratified by diabetes status. We observed that the risk for future cardiovascular 

events differed significantly between the two strata, and that omega-6 fatty acids were 

significantly associated with lower risk of future cardiovascular events only in non-diabetics. 

Würtz et al. (8)  identified omega-6 fatty acids to be significantly associated with lower risk 

of future cardiovascular events (HR=0.89) over 15 years of follow-up in a large population 

with a lower diabetes prevalence (~7.8%), which potentially explains the lack of reported 

diabetes-related differences.  
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We also found that circulating levels of MUFAs, herein represented by palmitoleic, 

oleic, and mead acids, associated with lower risk of cardiovascular events in non-diabetic 

individuals. This finding agrees with earlier reports in which dietary MUFAs were shown to 

directly correlate with the circulating levels (29), and with a favorable lipoprotein profile and 

thus lower risk of CVD (30, 31). By contrast, Würtz et al. (8) reported that increased levels of 

MUFAs were associated with a slightly higher risk for cardiovascular events (HR=1.17). The 

protective effect that we observed in relation to increased levels of circulating fatty acids is 

not restricted to one type of fatty acid, but includes PUFAs, MUFAs and SATs, with both 

omega-6 and omega-3 fatty acids.  

There are limited studies to date that perform metabolomics profiling in association 

with incident CVD. The disparity in analytical approaches and metabolic coverage in the 

utilized methods makes it challenging to directly compare studies. However, many of the 

reported studies have observed that levels of circulating free fatty acids are associated with 

the incidence of cardiovascular events (12). The exact fatty acid species as well as the 

trajectory and magnitude of the shift vary with the reported study. Würtz et al. (8), as well as 

the current study, focused on European populations and observed that increased levels of 

omega-6 and omega-3 circulating fatty acids are associated with lower risk of future 

cardiovascular events. In a Chinese population, circulating long-chain omega-3 fatty acids 

and stearic acid were associated with lower risk of acute myocardial infarction, while 

arachidonic acid levels were associated with a higher risk (32, 33). Of particular interest to the 

current study was the observation that inclusion of oxylipin metabolites of arachidonic acid 

did not affect the observed odds ratios (32). A detailed metabolomics investigation of a 

German prospective cohort concluded that metabolites of the arachidonic acid pathway are 

independently associated with risk of myocardial infarction in healthy adults (34). 

Accordingly, the exact putative role of omega-6 and omega-3 derived lipid mediators (e.g., 
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oxylipins, eicosanoids) in future cardiovascular events is unclear. There is subsequently 

interest in measuring these low abundance lipid mediators when performing metabolomics 

studies. Unfortunately, most general metabolomics profiling methods, and especially 

metabolomics kits, do not detect these compounds, highlighting the need for targeted methods 

in combination with metabolomics approaches. In addition, none of the studies listed above 

stratified the reported population by diabetic status, which in light of the current study may 

further confound the reported observations. 

Although not a primary goal, we also analyzed the relationships between 

metabolomics factors and carotid artery ultrasound measurements taken in the participants at 

the baseline and in progression over 3 years of follow-up. In the IMPROVE study, the 

progression of the maximum IMT detected after 15 months in the whole carotid tree 

regardless of location (Fastest-IMT(max-progr)) was significantly associated with the risk of 

subsequent vascular events, whereas none of the other cIMT measures showed predictive 

value (35). In the present study, the only significant association found was between F1 and 

lower change over time in ICCAD in non-diabetics. ICCAD measured in plaque free areas is 

assumed to reflect carotid expansion due to atherosclerosis and correlates with several 

vascular risk factors. Interestingly, the protective associations between F1 and change in 

ICCAD were driven by metabolic products of linoleic acid (12[13]-EpOME and 9[10]-

EpOME, 9-HODE, 13-HODE and 13-KODE) and taurine derivatives (N-stearoyl taurine and 

N-palmitoyl taurine) (Table 4). The data on linoleic acid (and its derivatives) are unclear, but 

a recent meta-analysis reported a suggestive relationship between dietary linoleic acid and 

diabetes as well as CVD (36). Taurine, an abundant amino acid-like compound distributed 

throughout human tissues, has a long list of biological activity including atheroprotective, 

anti-inflammatory and anti-obesity effects (37, 38). Taurine has even been studied in relation 

to cardiovascular prevention and obesity, although the effects of taurine ingestion in humans 
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remain unclear (37, 38). The metabolic effects of palmitic and stearic conjugates have not 

been well studied and are unclear in the current context. 

All participants of the present study were Europeans, which, to some extent, 

precludes generalization of the observations to other populations. Another limitation is the 

relatively small size, particularly of the diabetes subset, and lack of a replication cohort. The 

current study does confirm previous similar results in larger populations (8); but suggests that 

those findings are not applicable to entire populations. In addition, there is a potential bias in 

the metabolites identified via metabolomics. While the method is comprehensive, there is a 

possibility of metabolites not detected with the current method being of interest in 

understanding cardiovascular risk. This potential metabolite bias does not affect the accuracy 

of the reported results, but simply highlights that there may be additional biochemical 

information of interest. In summary, the lack of protective effects observed for any of the 

measured fatty acids, with respect to occurrence of cardiovascular events among diabetic 

participants, calls for further studies into the increased CVD risk in these patients. In addition, 

these findings highlight the utility of stratifying populations on multiple clinical and 

physiological factors (e.g., diabetic status, sex, therapeutic response). This type of analysis is 

an important component of stratified medicine, as demonstrated by the reported observation 

that the protective effects of circulating fatty acids is only observed in a non-diabetic sub-

group, which can have repercussions in study design and statistical analysis as well as the 

primary study findings. 

 

Supporting Information 

The following files are available free of charge at ACS website http://pubs.acs.org: 

Kamleh et al_Supporting Information_Methods. PDF file containing an extended methods 

description and supporting data including Figures S1-S4 and Tables S5-S6. 
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Table 1. Basic characteristics of the study participants 
 
 Diabetics   Non-diabetics  
 Cases Controls  Cases Controls 
N 40 39  133 133 
Age, years* 66.5 (61.5 - 68.4) 65.5 (61.2 - 68.8)  65.5 (60.4 - 68.1) 65.2 (60.2 - 67.5) 
Sex (F/M), n (% of females)* 15/25, (38) 16/23, (41)  51/82, (38) 51/82, (38) 
BMI, kg/m2 29.3 (26.9 - 32.2) 28.1 (24.8 -32.4)  26.4 (24.1 - 29.3) 27.0 (24.4 - 29.3) 
Waist-hip ratio 0.96 (0.92 -1.00) 0.95 (0.90 - 1.01)  0.94 (0.87 -0.98) 0.93 (0.88 - 0.97) 
Waist, cm 101 (97 - 113) 98 (91 - 111)  95 (86 - 100) 96 (87 - 102) 
SBP, mmHg 142 (133 - 153) 146 (136 - 160)  144 (131 - 156) 144 (130 - 160) 
DBP, mmHg 83 (77 - 87) 85 (81 - 88)  82 (76 - 90) 83 (77 - 90) 
Cholesterol, mmol/L 4.98 (4.49 - 5.77) 4.93 (4.54 - 5.75)  5.66 (5.01 - 6.41) 5.49 (4.94 - 6.31) 
LDL cholesterol, mmol/L 3.06 (2.63 - 3.72) 3.06 (2.57 - 3.71)  3.78 (3.05 - 4.50) 3.51 (2.79 - 4.21) 
HDL cholesterol, mmol/L 1.05 (0.93 - 1.27) 1.03 (0.91 - 1.27)  1.18 (1.04 - 1.44) 1.21 (1.03 - 1.51) 
Triglycerides, mmol/L 1.94 (1.31 - 2.58) 1.52 (1.09 - 2.01)  1.39 (1.04 - 1.93) 1.44 (0.97 - 2.16) 
Glucose, mmol/L 7.56 (6.61 - 9.05) 7.50 (6.65 - 9.75)  5.40 (4.87 - 5.75) 5.40 (4.90 - 5.90) 
CRP, mg/mL 2.12 (1.20 - 4.23) 2.01 (0.91 - 3.42)  2.19 (0.97 - 4.42) 1.66 (0.87 - 3.22) 
Smoking, n (%)* 7 (17.5) 8 (20.5)  27 (20.5) 27 (20.5) 

Pack years, number 15 (0 - 30) 0 (0 - 18)  0 (0 - 17) 0 (0 - 18) 
Diseases      

Diabetes, n (%)* 40 (100) 39 (100)  - - 
Hypercholesterolemia, n (%) 24 (60.0) 23 (60.5)  92 (69.7) 91 (68.4) 
Hypertriglyceridemia, n (%) 17 (42.5) 9 (23.1)  30 (22.7) 32 (24.1) 
Hypoalphalipoproteinemia, n (%) 8 (20.0) 5 (12.8)  22 (16.7) 12 (9.0) 
Hypertension, n (%) 36 (90.0) 32 (82.1)  108 (81.8) 105 (79.0) 

Medication, n (%) 40 (100.0) 35 (89.7)  113 (85.6) 107 (80.5) 
Glucose-lowering, n (%) 29 (72.5) 25 (64.1)  0 0 
Insulin, n (%)* 5 (12.5) 5 (12.8)  0 0 
Lipid lowering, n (%) 20 (50.0) 18 (46.2)  55 (42.6) 57 (43.2) 
Statin, n (%)* 18 (45.0) 17 (43.6)  46 (34.9) 47 (35.3) 
Anti-hypertension, n (%) 29 (72.5) 22 (56.4)  74 (56.1) 73 (54.9) 
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Anti-platelet, n (%) 17 (42.5) 7 (18.0)  30 (22.7) 19 (14.3) 
Events 43   145  

Cardiac 28 (65.1) -  77 (53.1) - 
Cerebro-vascular 10 (35.7) -  50 (34.5) - 
Peripheral 5 (11.1) -  18 (12.4) -  
F, females; M, males; BMI, body-mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low density 

lipoprotein; HDL, high density lipoprotein; CRP, C-reactive protein. 
Smoking refers to ever smoker vs non-smokers. 
Lipid-lowering medication includes statin, fibrate and resin. Also, 4 cases (2 diabetics, 2 non-diabetics) and 1 non-diabetic control used fish 

oil. 
Total event number is higher than number of cases due to multiple events in some of the cases.  
*Matching variables. 
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Table 2. Prediction of cardiovascular events estimated for individual factors 
 

 Crude Diabetics Crude Non-diabetics Adjusted Diabetics† Adjusted Non-diabetics 
Factor  OR  95% CI p-value  OR  95% CI  p-value  OR 95% CI p-value OR  95% CI p-value  
F1  0.69  0.30-1.64 0.404 0.66 0.46-0.96  0.029  0.86 0.32-2.20 0.759 0.64 0.43-0.95 0.026 
F2  1.39 0.25-7.82 0.711 0.65 0.27-1.57 0.341 1.22 0.13-9.35 0.851 0.62 0.23-1.50 0.309 
F3  0.36 0.11-1-15 0.085 0.58 0.35-0.95 0.031 0.36 0.06-1.08 0.108 0.63 0.38-1.09 0.087 
F4  0.51 0.09-2.85 0.446 0.58 0.31-1.06 0.076 0.50 0.08-5.51 0.495 0.65 0.33-1.20 0.179 
F5  0.86 0.51-1.46 0.578 0.79 0.59-1.06 0.122 0.93 0.31-1.39 0.815 0.81 0.58-1.10 0.195 
F6  0.93 0.40-1.49 0.653 0.77 0.68-1.28 0.443 0.78 0.33-1.60 0.519 0.96 0.69-1.34 0.787 
F1-6 are derived from factor analysis of the concatenated metabolomics and lipid mediator data sets. OR, odds ratio; 95% CI, 95% 
confidence interval. 
†Adjustment for age, body-mass index, hypertension, HDL cholesterol and anti-platelet medication was introduced in the regression 
model for each factor. 
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Table 3. Relationships of free fatty acids within Factor 1 to future cardiovascular events. 
 
 Diabetics Non-diabetics 
 HR* 95% CI p-value HR 95% CI p-value 
       

Factor 1 1.01 0.61-1.67 0.966 0.80 0.65-0.97 0.024 

       
Omega-3 fatty acids       
Docosahexaenoic acid 1.04 0.70-1.53 0.85 0.86 0.72-1.02 0.085 
       
Omega-6 fatty acids       
γ-Linolenic acid 

 

1.01 0.65-1.58 0.957 0.72 0.59-0.88 0.001 

Linoleic acid 
 

0.87 0.58-1.29 0.481 0.83 0.69-1.00 0.053 

Arachidonic acid 
 

1.05 0.0.69-1.60 0.815 0.83 0.70-0.99 0.037 

Adrenic acid 
 

1.01 0.67-1.52 0.967 0.79 0.66-0.95 0.012 

Dihomo-γ-Linolenic acid 0.99 0.65-1.52 0.986 0.81 0.69-0.96 0.015 

       
Omega-7 fatty acids       
Palmitoleic acid 0.77 0. 0.199 0.87 0.73-1.05 0.143 
       
Omega-9 fatty acids       
Oleic acid 1.03 0.71-1.51 0.841 0.83 0.70-0.98 0.030 

Mead acid 0.82 0.56-1.21 0.316 0.85 0.72-1.01 0.059 
       

Saturated fatty acids       

Stearic acid 1.02 0.73-1.43 0.891 0.81 0.68-0.96 0.016 

Palmitic acid 1.03 0.73-1.46 0.874 0.79 0.66-0.94 0.009 

*Hazard ratios (HR) are per 1-SD log transformed metabolite concentration and adjusted for 
age, sex, geographical latitude, hypertension, ever smoking, and anti-platelet medication. 95% 
CI, 95% confidence interval.  
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Table 4. Associations between individual components of Factor 1 with change 
over time in inter-adventitia common carotid artery diameter (ICCAD) in non-
diabetics (n=197).† 

 
β SE p 

12(13)-EpOME -0.018 0.005 0.001 

N-Stearoyl Taurine -0.008 0.002 0.001 

13-HODE -0.018 0.005 0.001 

13-KODE -0.014 0.004 0.002 

9-HODE -0.017 0.005 0.002 

N-Palmitoyl Taurine -0.011 0.004 0.009 

LEA -0.011 0.005 0.030 

9(10)-EpOME -0.010 0.005 0.045 

9-HOTrE -0.006 0.003 0.050 
γ-Linoleic acid -0.008 0.004 0.055 
9-KODE -0.008 0.004 0.060 
15-HETE -0.008 0.005 0.064 
Arachidonyl glycine -0.004 0.002 0.070 
AEA -0.007 0.004 0.073 
Dihomo-γ-Linolenic acid -0.007 0.004 0.096 
Palmitic acid -0.009 0.005 0.099 
15-KETE -0.009 0.005 0.100 
Stearic acid -0.011 0.006 0.103 
OEA -0.010 0.006 0.110 
11(12)-EpETrE -0.008 0.005 0.114 
C20H36O3_HEDE(s)* -0.003 0.002 0.115 
Oleic acid -0.008 0.005 0.136 
Arachidonic acid -0.008 0.005 0.147 
17-HDoHE -0.006 0.004 0.147 
Docosahexaenoic Acid -0.005 0.004 0.211 
1-Stearoyl-2-Arachidonoyl PC -0.005 0.004 0.239 
Adrenic acid -0.004 0.004 0.330 
PEA -0.006 0.007 0.339 
C20H32O3_HETE(s)* -0.003 0.003 0.353 
Arachidonoyl PAF C-16 -0.004 0.005 0.372 
5-HETE -0.003 0.005 0.466 
Mead acid 0.001 0.002 0.506 
EKODE -0.001 0.002 0.562 
DIHOMOLEA 0.002 0.004 0.636 
5-KETE 0.001 0.004 0.785 
9-KOTrE -0.001 0.003 0.807 
Palmitoleic acid 0.001 0.006 0.908 
8-HDoHE <0.001 0.004 0.917 
15-HETrE <0.001 0.004 0.982 

†Values are from linear regression with adjustment for age, gender and corresponding baseline 
values. Metabolite nomenclature is provided in Table S1. SE=standard error. 
*The terminology of C20H36O3_HEDE(s) and C20H32O3_HETE(s) indicates that the 
reported metabolite is a mono-hydroxy isomer of either eicosadienoic acid or arachidonic 
acid, respectively; however, the exact position of the hydroxyl group is undetermined. 
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Figure Legends 

 
 

Figure 1. Study design with participant inclusion and matching criteria. Cases were subjects 

who suffered a cardiovascular event (myocardial infarction, sudden cardiac death, angina 

pectoris, ischemic stroke, transient ischemic attack, new diagnosis of intermittent 

claudication, heart failure, or any surgical intervention or revascularization of coronary or 

peripheral arteries) during the follow up period. 

 

Figure 2. Association of the free fatty acids within Factor 1 with incidence of cardiovascular 

events stratified by diabetes status. In non-diabetics, high concentrations of fatty acids were 

associated with lower odds to suffer cardiovascular events (OR=0.65, 0.27-0.80 95% CI, 

p=0.030). Linoleic acid was manually added given its relevance to cardiovascular disease, 

even though the loadings were below the <0.4 cutoff. 
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Graphical Abstract 

 

 

Page 28 of 31

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 1. Study design with participant inclusion and matching criteria. Cases were subjects who suffered a 
cardiovascular event (myocardial infarction, sudden cardiac death, angina pectoris, ischemic stroke, 
transient ischemic attack, new diagnosis of intermittent claudication, heart failure, or any surgical 

intervention or revascularization of coronary or peripheral arteries) during the follow up period.  
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Figure 2. Association of the free fatty acids within Factor 1 with incidence of cardiovascular events stratified 
by diabetes status. In non-diabetics, high concentrations of fatty acids were associated with lower odds to 
suffer cardiovascular events (OR=0.65, 0.27-0.80 95% CI, p=0.030). Linoleic acid was manually added 

given its relevance to cardiovascular disease, even though the loadings were below the <0.4 cutoff.  
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