
Selective Access for Supply Chain Management
in the Cloud

Anselme Tueno∗, Florian Kerschbaum†, Daniel Bernau∗ Sara Foresti‡,
∗SAP Research, Karlsruhe, Germany – Email: anselme.kemgne.tueno@sap.com, daniel.bernau@sap.com

†University of Waterloo, Waterloo, Canada – Email: florian.kerschbaum@uwaterloo.ca
‡Università degli Studi di Milano, 26013 Crema, Italy – Email: sara.foresti@unimi.it

Abstract—Object-level tracking along supply chains, enabled
by the low-cost and wide availability of Radio Frequency Iden-
tification (RFID) technology, permits companies to collect large
amounts of data (e.g., time, location, handling) about the goods
they produce. Combining the data collected by the different com-
panies along a supply chain can provide considerable advantages
to all of them. However, such a sharing sometimes needs to be
selective. Indeed, companies may need to keep some information
about their business operations secret. In this paper, we propose
a solution that enables selective sharing of data collected along a
supply chain. Our solution uses the services offered by cloud
providers for sharing data among companies, and relies on
selective encryption for enforcing access restrictions over such
data.

Index Terms—Selective encryption, supply chain policy

I. INTRODUCTION

Thanks to the wide availability today of Radio Frequency
Identification (RFID) technology [13] at limited prices, compa-
nies are more and more adopting object-level tracking in their
supply chains. Indeed, object-level tracking provides business
benefits and is sometimes requested by regulations (e.g., in the
pharmaceutical industry). RFID technology provides the means
to equip and capture each object with an unique identifier
and hence enables companies to easily collect information
about it. Data commonly collected in supply chains include
time, location, and type of handling (e.g., packing, unpacking,
receiving, or shipping). On one hand, combining these data
from all the companies along a supply chain (not just prede-
cessor and successor of each phase) enables or improves many
economically attractive collaborative applications, including
batch recalls [29], counterfeit detection [28], benchmarking and
analytics [18]–[20], or estimated arrival forecasts [6]. On the
other hand, information collected along the supply chain may
be considered sensitive as it allows espionage on the business
operations of the involved companies [12], [23]. The need for
keeping a subset of the collected data secret, also to (some of)
the other companies along the supply chain, represents a major
obstacle to wider sharing of object-level tracking data.

In this paper, we propose a solution for enabling companies
collaborating in the production process to selectively share
object-level tracking data. The proposed solution leverages the
services offered by the cloud for data sharing and relies on a
Trusted Third Party (TTP) offering a Public Key Infrastructure

t1 t2 t3 t4
A 1 1 0 1
B 1 0 0 1
C 1 0 1 1
D 0 0 1 1

Fig. 1: An example of access matrix

(PKI). Therefore, collected data are stored in a centralized
cloud database that all the collaborating companies can access.
Since the cloud provider itself may not be authorized for
the sensitive content of the collected data, and then also
to enforce access restrictions, the proposed approach relies
on selective encryption for enforcing the authorization policy
regulating access to collected data. Intuitively, each company
will encrypt different portions of the collected information
using different encryption keys, which are then distributed to
the other companies along the chain, in such a way that each
company can decrypt all and only the data it is authorized to
access.

The reminder of this paper is organized as follows. Section II
illustrates how selective encryption can be used to enforce
access control restrictions. Section III focuses on the policies
that should be used to regulate visibility over objects’ data in
supply chain scenarios. Section IV introduces our approach,
based on selective encryption, for effectively enforcing these
visibility policies. Section V summarizes related works. Fi-
nally, Section VI presents our conclusions.

II. SELECTIVE ENCRYPTION FOR ACCESS CONTROL
ENFORCEMENT

Given a relation r, defined over relation schema
R(a1, . . . , an), the authorization policy regulating access
to the tuples in r by the users in the system can be represented
through an access matrix AM , having a row for each user
u ∈ U and a column for each tuple t ∈ r. Cell AM [u,t] in
the access matrix has value 1 iff u is authorized to access t,
it has value 0 otherwise. The set of users who can access a
tuple t represents its access control list, acl(t) ⊆ U. Figure 1
illustrates an example of access matrix regulating access
to a relation composed of 4 tuples {t1, . . . , t4} for a set
U={A,B,C,D} of 4 users. As an example, acl(t1)=ABC.

978-1-5386-0683-4/17/$31.00 ©2017 IEEE

Sara Foresti




A

))
B // ABC

&&
C

55

""

ABCD

D // CD

44

user key
A kA
B kB
C kC
D kD

tuple key
t1 kABC
t2 kA
t3 kCD
t4 kABCD

source target token
lA lABC kABC⊕h(kA,lABC )
lB lABC kABC⊕h(kB ,lABC )
lC lABC kABC⊕h(kC ,lABC )
lC lCD kCD⊕h(kC ,lCD)
lD lCD kCD⊕h(kD ,lCD)

lCD lABCD kABCD⊕h(kCD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)

(a) (b) (c) (d)

Fig. 2: Encryption policy equivalent to the authorization policy in Figure 1

Selective encryption represents an effective solution for en-
forcing access control restrictions over data stored at an exter-
nal, possibly not fully trusted, cloud provider. Indeed, selective
encryption guarantees that the data self-enforce access control
restrictions. Hence, the enforcement of the authorization policy
regulating access to the data requires the intervention neither of
the data owner nor of the cloud provider. Intuitively, selective
encryption consists in encrypting different tuples with different
encryption keys, and in distributing keys in such a way that
the key used to protect a tuple is known to all and only the
users authorized to it. The adoption of selective encryption
requires the definition of an encryption policy equivalent to
AM . The encryption policy establishes the key(s) to be used to
encrypt each tuple t ∈ r as well as key distribution to users. An
encryption policy is equivalent to, and hence correctly enforces,
an authorization policy if each user is able to decrypt all and
only the tuples she is authorized to access (i.e., u can decrypt
t iff AM [u,t]=1).

To translate the authorization policy into an equivalent
encryption policy, the solution in [10], [11] defines a different
key ku for each user u ∈ U and a key kU for each set
U of users representing the access control list of a tuple
t ∈ r. Each user u is then assigned key ku and each tuple
t ∈ r is encrypted with kU , with U = acl(t). Equivalence
between the encryption policy and the authorization policy is
guaranteed by using a token-based key derivation technique [1],
enabling the derivation of each key kU from any key ku such
that u ∈ U . For key derivation, each encryption key ki is
associated with a public label li. Token tokeni,j=kj⊕h(ki,lj),
with ⊕ the bitwise xor operator and h a collusion resistant
cryptographic hash function, permits to derive key kj from the
knowledge of ki and public label lj . Graphically, keys and
tokens can be represented in a key derivation graph with a
node for each key k and an edge (ki,kj) for each token tokeni,j .
Equivalence to the authorization policy is then guaranteed if
there exists a path from ku to kU iff u ∈ U . Indeed, this
permits any user u authorized to access a tuple t to derive
key kU , with U = acl(t), used to encrypt t starting from
the knowledge of her own key ku . Figure 2 illustrates an
encryption policy equivalent to the authorization policy in
Figure 1. Figure 2(a) illustrates the key and token graph, while
Figures 2(b-c) summarize the keys assigned to users and the
keys used to encrypt tuples, respectively. Figure 2(d) reports
publicly available tokens, stored at the cloud provider.

Since the encryption policy should be equivalent to the

authorization policy to guarantee its proper enforcement, up-
dates to the authorization policy translate into updates to the
corresponding encryption policy. Intuitively, every time a user
is granted (revoked, respectively) access to a tuple, it should
be (re-)encrypted with a key known to all and only the users
in the new access control list. If such a key does not exist, the
data owner needs to generate it, together with the set of tokens
necessary to enable its derivation. For instance, if user B is
granted access to t2, then acl(t2)=AB. To enforce such a policy
update, the data owner needs to generate a new encryption key,
kAB , and the tokens that enable users A and B to derive it. She
will then re-encrypt t2 with kAB . Note that, in some situations,
it is not necessary to generate a new key and re-encryption can
be avoided. If user u is granted access to a tuple t and no other
tuple is encrypted with the same key as t, it is sufficient to add
a token enabling u to derive the key used for t. For instance,
if user A is granted access to t3, then acl(t3) becomes ACD.
Since kCD is used to protect t3 only, the data owner can simply
add a token enabling A to derive kCD from kA.

III. SUPPLY CHAIN

In this section, we illustrate the problem facing supply chain
partners, and describe visibility policies and the access control
protocol that will allow to enforce fine-grained access to supply
chain data.

A. Problem Definition

Imagine a set of mobile physical objects o1, ..., om each
traversing a (potentially different) subset of players p1, ..., pn.
Each player pi collects information about each object oj it
handles (e.g., time, place, type of action, etc.) and stores this
information in a central cloud database. Later other players
may ask to access an object’s data in this database. This
scenario is common place in modern supply chains [27]. Figure
3 illustrates an example of a supply chain where a manufacturer
p1 produces two objects o1, o2, collects information I11, I21
and ships both objects to distributor p2. The distributor col-
lects information I12, I22 and ships o1, o2 to retailers p3, p4
respectively. Later, a supply chain partner may want to access
the data collected by another one.

Companies are usually part of many supply chains (even for
the same product), and collected data may be stored in a single
cloud database. Specifying access control rules for the tuples
in this database can be very delicate. Consider the following
two examples. Imagine a supplier p2 selling a product o2 to



Fig. 3: An example of a supply chain

buyers p3 and p4. If buyer p3 has access to all scheduled orders
for o2, she can infer the volume of future business with p4.
This can be very sensitive, in case supplier p2 has to cancel
some orders due to a temporary capacity reduction (e.g., a
machine failure). Buyer p3 could then infer whether p4’s orders
are treated preferentially. While this decision can be based on
local information, in the case of bridging only one supply chain
stage, it becomes difficult in case of a tier-2 supplier (i.e., a
supplier’s supplier). As another example, imagine a supplier p1
selling product o1 to p2 which is then used by p2 to produce
o2. Again, assume that p2 later sells object o2 to players p3 and
p4. If either buyer p3 or p4 contacts supplier p1 requesting data,
p1 cannot decide which object was shipped to which buyer. If
supplier p1 would grant access to all items, buyer p3 could
infer again the volume of business of p4.

A naturally emerging access rule is to share data with
partners about shared objects, that is, objects a group of part-
ners have possessed. This implements the important business
concept of visibility [21], that is, each partner gains (additional)
information about how its (entire) supplies are produced and
how its (entire) products are used, but still provides a separation
between different supply chains merging at one company.
Furthermore it can be easily adopted reciprocally (i.e. “I give
you access, if you give me access”) providing a fair allocation
of cost, risk, and benefits.

We distinguish between downstream and upstream visibility.
In downstream visibility a company is allowed to access data
associated with its objects shipped to its supply chain partners
(at those partners). Upstream visibility is the reverse and a
company is allowed to access data associated with objects it
has received from its supply chain partners (again at those
partners).

B. Visibility Policies

Visibility policies allow each partner to gain information
about how its supplies are produced and how its products are
used, but still provides a separation between different supply
chains merging at one company. We now review the notion of
visibility policies introduced in [21]. To this purpose, we first
introduce the trajectory of an object oj , and then present the
definition of upstream and downstream visibility policies.

Definition 1: Let there be n players pi ∈ X = {p1, ..., pn}.
The trajectory L(oj) = 〈Lj ,Rj〉 of object oj is modeled as a
totally ordered set consisting of elements in the set Lj ⊆ X

and a binary relation Rj ⊆ Lj × Lj . The players represent
the spatial domain of the trajectory and the players in Lj are
those that have handled (possessed) the object oj . Relation Rj
models the temporal domain of the trajectory.
Simply speaking, a player pi is ranked lower than a player pi′ in
L(oj), that is, 〈pi, pi′〉 ∈ Rj , if pi handled the object oj earlier
than pi′ . We write σ(pi, L(oj)) for a predicate that can be used
to compute the rank of player pi in L(oj) and |σ(pi, L(oj))|
for the evaluated rank itself. The predicate σ(pi, L(oj)) can be
seen as a chained proof of the path followed by object oj to
player pi. This means, each sender adds a proof to the chain
that it sent the object to the next receiver. In this case, we
see |σ(pi, L(oj))| as the length of the proof σ(pi, L(oj)) if it
is indeed true. We also assume the existence of an external
party, the trusted third party, that helps to prove the source
of the chain and to compute the rank (Section III-C). Then,
|σ(pi, L(oj))| < |σ(pi′ , L(oj))| iff 〈pi, pi′〉 ∈ Rj . If player pi
did not handle the object oj , then |σ(pi, L(oj))| is UNDEFINED
and any order relation on the natural numbers, (e.g., both < and
>), should always evaluate to false. We say the least element
in L(oj) is the source of object oj and the top most element
is its destination.

In the example in Figure 3, the trajectory of o1 is L(o1) =
〈{p1, p2, p3}, {(p1, p2), (p2, p3)}〉. As the proof of the source
is provided by the trusted third party, the rank of p1, p2, p3, p4

are respectively 1, 2, 3,UNDEFINED.
A player pi is part of multiple supply chains if at least two

objects that it handled have been handled by at least one player
each - both upstream or downstream - which did not handle
both objects. For example distributor p2 is in the supply chain
of both objects o1 and o2.

Now assume, player pi is requesting information from player
pv (verifier) about object oj stored in the cloud database.
Player pv intercepts this request and performs an access
control decision. The intercepting component is called a policy
enforcement point (PEP) and the information about the request,
(e.g., the identity of the requestor pi and the unique identifier
of the object oj) are forwarded to the policy decision point
(PDP). The PDP compares the information with the policies in
its store and returns its evaluation decision (grant or deny) to
the PEP, which will then enforce grant (or deny) access.

Definition 2: An upstream visibility policy grants (or denies)
access to pi for oj based on the predicate evaluation

|σ(pv, L(oj))| < |σ(pi, L(oj)|.

With reference to the example in Figure 3, player p3 can
be granted access to the information collected at p1, p2 only
on object o1. Similarly, player p4 can be granted access to
information collected at p1, p2 only on object o2.

Definition 3: A downstream visibility policy grants (or de-
nies) access to pi for oj based on the predicate evaluation

|σ(pi, L(oj))| < |σ(pv, L(oj)|.



With reference to the example in Figure 3, player p1 can
be granted access to the information collected at p2, p3, p4 on
objects o1 and o2.

C. Access Control

Existing access control models are not scalable when pro-
tecting object-level data, because the authorization matrix is too
huge. Since the concept of visibility is independent of the play-
ers on the trajectory of an object, it can be used to reduce the
authorization matrix and simplify its administration. Moreover,
it is possible to unify visibility policies with attribute-based
access control (ABAC) [24] without necessarily sacrificing
simplicity of administration. This unification is important as
companies may want to deny access to competitors or allow
access to players outside the supply chain, such as auditors
[21].

The enforcement of access control restrictions requires a
preliminary authentication phase. The authentication phase
is a protocol executed between the requestor and the data
owner. It is assumed that players are uniquely identifiable and
can reliably compute the predicate σ(pi, L(oj)). Moreover,
a trusted third party (TTP) should be available for providing
a PKI and RFID tag to players. Finally, it is also assumed
that the communication between each player and the TTP is
secure and authenticated and that RFID tags have re-writable
permanent storage. The access control protocol operates in
three steps: initialize, move, and authenticate [21].

Initialize: The trusted third party (T ) sends to player pi an
RFID tag with identifier id which contains in its storage the
signature ST (id, pi).

Move: Player pi wants to move an object to another player
pj . She appends to the storage on the RFID tag the recipient’s
identity (pj) and her signature Spi(id, pj).

Authenticate: Let s1, ..., sκ be the sequence of signatures
stored on the RFID tag attached to object oid. The requestor
pi sends as the verifiable predicate σ(pi, L(oid)) this sequence
s1, ..., sκ. The verifier pv verifies that

1) sκ is equal to Spiκ (id, pi).
2) ∀λ ∈ {2, . . . , κ− 1}, sλ is equal to Spiλ (id, piλ+1

).
3) s1 is equal to ST (id, pi2).
4) ∀λ ∈ {1, . . . , κ}, sλ is valid signature from piλ .

If all checks are successful, then pv evaluates its policies to
make the access decision.

Figure 4 provides an example of supply chain operations
based on the above protocol. Assume a manufacturer M
produces a good. She first starts the Initialize protocol by
contacting the trusted third party T and requesting an RFID
tag. T chooses a tag for the good with identifier g, stores on
the tag memory s1 = ST (g,M) and sends the RFID tag to
M . M reads 〈s1〉 from the tag, stores it in its database and
attaches the tag to the good g. Now M intends to ship g to
its distributor D. She starts the Move protocol and appends

s2 = SM (g,D) to the tag’s memory. M can then ship g to
D. When D receives the good g, she reads 〈s1, s2〉 from the
tag and stores it in her database. Later D may ship g to the
retailer R. In this Move protocol she appends s3 = SD(g,R)
to the tag’s memory. R reads 〈s1, s2, s3〉 from the tag of the
received good g and stores it in her database.

Now, assume that M wants to send a downstream request
to R, (e.g., in order to collect sales data or analyze product
returns). M and R run an Authenticate protocol. M reads
〈s1〉 from her database and sends it along with g, M to
R. R’s PEP verifies the data in 〈s1〉. It extracts M , g, and
the number of signatures (1) from 〈s1〉. Then it looks up
its corresponding predicate σ(R,L(g)) = 〈s1, s2, s3〉 in its
database and similarly extracts R, g, and the number of
signatures (3).

Fig. 4: An example of an object traversing a supply chain

IV. SUPPLY CHAIN ACCESS CONTROL ENFORCEMENT

In this section, we illustrate how selective encryption (Sec-
tion II) can be profitably used to enforce supply chain visibility
policies (Section III). To properly enforce the visibility policy
through selective encryption, each player p chooses her own
private key kp . Every time an object moves through the supply
chain, each player who possesses it collects information about
it. This information is represented as a tuple, which is then
stored in a database in the cloud to simplify sharing with
other players. Since the data collected about objects moving
through supply chains are sensitive, tuples are encrypted before
being inserted into the cloud database. To this aim, the player
collecting the data chooses a unique symmetric encryption key
ko (and a corresponding public label lo ) for each object o that
she handles, and uses such a key to encrypt the tuple t about
o. Even if in principle each tuple t generated by player p could
be encrypted with her own key kp , we use a different key for
tuple encryption to keep the role of player’s private keys and
that of encryption keys separate.

To illustrate how selective encryption can be used to enforce
the visibility policy of supply chains, we analyze each of the
steps of the access control protocol described in Section III.
In the following discussion, we will refer our examples to the
simple supply chain and object traversal illustrated in Figure 4.
The manufacturer M has private key kM , the distributor D has
key kD, and the retailer R has key kR.



t1 t2 t3
M 1 0 0
D 0 1 0
R 0 0 1

player key
M kM
D kD
R kR

tuple key
t1 k1
t2 k2
t3 k3

source target token
lM l1 k1⊕h(kM ,l1)
lD l2 k2⊕h(kD ,l2)
lR l3 k3⊕h(kR,l3)

(a) (b) (c) (d)

Fig. 5: Access matrix and encryption policy subsequently to the move step

t1 t2 t3
M 1 0 1
D 0 1 0
R 0 0 1

player key
M kM
D kD
R kR

tuple key
t1 k1
t2 k2
t3 kMR

source target token
lM l1 k1⊕h(kM ,l1)
lM l3 k3⊕h(kM ,l3)
lD l2 k2⊕h(kD ,l2)
lR l3 k3⊕h(kR,l3)

(a) (b) (c) (d)

Fig. 6: Access matrix and encryption policy after authentication of M for t3

M // MD

##
D

<<

MDR

R

55

t1 t2 t3
M 1 1 1
D 1 1 0
R 1 0 0

player key
M kM
D kD
R kR

tuple key
t1 kMDR
t2 kMD
t3 kM

source target token
lM lMD kMD⊕h(kM ,lMD)
lD lMD kMD⊕h(kD ,lMD)
lMD lMDR kMDR⊕h(kMD ,lMDR)
lR lMDR kMDR⊕h(kR,lMDR)

(a) (b) (c) (d) (e)

Fig. 7: An example of key derivation graph, access matrix, and encryption policy

Initialize. At initialization time, a player p requests a set of
RFID tags from the trusted third party and possibly starts to
create objects. With reference to our example, after receiving
the RFID tag from T , the manufacturer M creates an object g.
She then generates tuple t1, collecting information about the
creation of g, and an encryption key k1 to protect t1. She then
encrypts t1 using key k1 and stores it in the cloud. Since she
is authorized to access tuple t1, she also generates tokenM,1

enabling her to derive k1, and hence access t1, from her own
key kM .

Move. When a player pi sends an object to another player pj ,
the receiver generates a tuple t to keep track of her operations
over the object, and a new encryption key k to protect it.
She then encrypts t using k and stores the encrypted tuple
in the cloud. Since pj can access t, she also generates a
token enabling her to derive k from her own private key. With
reference to our example, the manufacturer M sends g to D,
who in turns forwards it to R. As a consequence of the first
move action, D generates tuple t2, encrypts it with a newly
chosen key k2, and computes token tokenD,2. Similarly, as a
consequence of the second move action, R generates tuple t3,
encrypts it with a newly chosen key k3, and computes token
tokenR,3. The authorization and encryption policies resulting
after the initialize and move steps of the protocol are illustrated
in Figure 5. Note that, at this point, each tuple is visible only
to its owner (i.e., the player who generated it).

Authenticate. Since each player pi encrypted the information
that she generated with a key that only she knows and can
derive, any other player pj who wants to access a tuple must
first authenticate to the tuple owner to be granted access to

the information. If player pj successfully authenticates with
pi to access tuple t, then pi will grant pj access to t. Since
each tuple is encrypted using a different key, to enforce such
a policy change, pi only needs to generate a token enabling pj
to derive the encryption key k used to protect t from her own
private key. This guarantees that k can be derived by all the
users in acl(t), including pj . Note that, it is not necessary to
re-encrypt t, since simply adding the token enables pj to derive
k, while not disclosing other tuples to pj . With reference to our
example, assume that M would like to read t3. To this aim, she
needs to authenticate with R, who owns the tuple of interest,
using the authentication protocol described in Section III. If
the authentication is successful, R grants M access to t3 and
updates acl(t3)=M to acl(t3)=MR. Since k3 has been used
to protect only tuple t3, it is sufficient to add token tokenM,3

to the catalog to enable M to access t3. Indeed, both M and
R will be able to derive k3, hence k3 will become the key
of the set {M ,R} of users. Since the computation of token
tokenM,3 requires knowledge of private information of both
M (her private key kM ) and of R (k3), the two players need
to collaborate to compute it. To this aim, player M uses her
private key kM and the label of the key used to protect t3, which
is public, to compute h(kM , l3). Then, she sends the result
securely to R. Finally R computes the token as k3⊕h(kM , l3)
and stores it in the public catalog. Figure 6 illustrates the
authorization and encryption policies after the authentication
of M for t3.

Even if the approach illustrated above always permits to
enforce the authentication step of the protocol in Section III,
this may cause a growth in the number of nodes in the key



derivation graph. Indeed, also tuples with the same acl would
be encrypted with a different key. To limit the overhead due
to key management, players can use the same encryption
key for different tuples when they share the same acl, and
dismiss keys when they are no longer used for tuple encryption.
Granting or revoking access to tuples may then require to
create new nodes or to delete old ones from the key derivation
graph. As an example, assume that tuples {t1, t2, t3} belong
to M (e.g., they represent three different objects that left
M and eventually reached D and R), that D and R were
granted access to t1, and that D was granted access to t2.
Figure 7 illustrates the key derivation graph, the authorization
policy, and the encryption policy for such a scenario. Assume
now that, at a later time, R is granted access to t2 and
hence acl(t2)=MDR. As there is already a node representing
acl(t2)=MDR in the key derivation graph, the tuple owner
M just needs to decrypt t2 with kMD and re-encrypt it with
kMDR. After this policy update, node MD becomes obsolete
since there is no tuple t with acl(t)=MD. Therefore, the node
and all its incoming and outgoing edges can be removed from
the graph (and hence the corresponding key and tokens are
removed from the encryption policy). To guarantee correct
key derivation, node MDR is directly connected with M,D
and R. As illustrated above, players M and R will then
need to cooperate to compute token tokenR,MDR. However,
as we already have a token tokenR,MDR, we need to compute
tokenD,MDR instead, which requires involvement of D. This
is inconvenient for D, which already had access to t2. To
avoid the cooperation of players every time the token catalog
needs to be updated as a consequence of an Authenticate step,
the tuple owner pj can agree in advance with each possible
access requestor pi an initial key kji , which will be used by
the requestor as a starting point in the derivation process. To
guarantee that each player needs to manage one secret key
only, we compute such a key as kji = h(ki, lj) where ki is
the unique private key of the requestor pi. This way, M and
D know kMD = h(kD, lM ), M and R know kMR = h(kR, lM ).
Therefore, M can compute tokens tokenD,MDR = kMDR⊕kMD
and tokenR,MDR = kMDR ⊕ kMR by herself.

V. RELATED WORK

The problem of enabling data owners to specify and enforce
access restrictions over data stored in the cloud, without the
need for the data owner to filter access requests and to
trust the cloud provider for authorization enforcement, has
been recently widely studied. The solutions proposed to this
problem follow two different strategies: attribute based encryp-
tion (e.g., [3], [14], [26]) and selective encryption (e.g., [2],
[7]–[11]). Attribute-Based Encryption (ABE) [3], [14], [26]
enforces attribute based access control policies over encrypted
data. To this purpose, each tuple is encrypted with a key
that only the users possessing attributes that satisfy the tuple
policy can derive (or vice versa). Selective encryption [10], [11]
instead translates the authorization policy into an equivalent
encryption policy. Intuitively, each tuple is encrypted with a key

known (or that can be derived) by all and only authorized users.
The solution in [11] has been extended to enforce also write
privileges [8], and to support the presence of multiple data
owners [9]. The problem of efficiently manage policy update
operations, limiting the data owner overhead, has been also
studied [2], [11]. To this aim, the proposal in [11] delegates
expensive re-encryption operations to the storing server. The
approach in [2] instead specifically focuses on revoke opera-
tions, and introduces a solution that does not require complete
re-encryption of revoked tuples.

A line of work related to our proposal is represented by ac-
cess control enforcement using RFID. An extension of attribute
based access control in RFID deployments has been previously
formulated in [21]. However, in contrast to the work presented
in this paper, the impact of the cloud and its requirement for
efficient cryptographic capabilities, as we suggest, has not been
analyzed. General approaches to RFID security and privacy
are extensively surveyed in [17]. An alternative access control
proposals for the RFID scenario at hand is represented by [4]
which is considering the problem of specifying access only
to part of the object data. Effectively this is expressible by
the ABAC approach. The work in [16] formulates an access
control approach in which the decision maker changes when
an object is passed on from one party to another party, where
we are uncertain about efficiency.

When providing confidentiality in the cloud by crypto-
graphic means, querying of encrypted data is an important topic
because encryption prevents the cloud provider from directly
evaluating users queries due to no access to encryption keys.
Furthermore, requiring the user to download the encrypted data
and locally decrypt it before processing, nullifies the benefits
of outsourcing the database to the cloud. Thus, we see the
line of research on processing queries directly over encrypted
data through specific encryption schemes, such as [5], [15],
[22], [25], as an intriguing extension to the selective access
approach formulated in this work.

VI. CONCLUSIONS

We have presented an approach based on selective encryp-
tion for enforcing downstream and upstream visibility policies
in supply chain scenarios, where data about objects are stored
at an external cloud service provider. The proposed approach
enables companies to profitably use the sharing services offered
by the cloud, while enforcing restrictions on the visibility of
sensitive data. Our technique has the advantage of flexibility
and enables the enforcement of arbitrary visibility policies over
objects’ data.

VII. ACKNOWLEDGMENT

This work was supported by the EC within the H2020 under
grant agreement 644579 (ESCUDO-CLOUD).

REFERENCES

[1] M. Atallah, M. Blanton, N. Fazio, and K. Frikken, “Dynamic and efficient
key management for access hierarchies,” ACM TISSEC, vol. 12, no. 3,
pp. 18:1–18:43, January 2009.



[2] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa,
and P. Samarati, “Mix&Slice: Efficient access revocation in the cloud,”
in Proc. of CCS, Vienna, Austria, October 2016.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy Attribute-
Based Encryption,” in Proc. of IEEE S&P, Oakland, CA, May 2007.

[4] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of Cryptology, vol. 17, no. 4, pp. 297–319, Sep 2004.

[5] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Para-
boschi, and P. Samarati, “Modeling and assessing inference exposure in
encrypted databases,” ACM TISSEC, vol. 8, no. 1, pp. 119–152, 2005.

[6] S.-Y. Chou and Y. Ekawati, “Cost reduction of public transportation
systems with information visibility enabled by RFID technology,” in
Proc. of CE, Taipei, Taiwan, July 2009.

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and G. Livraga,
“Enforcing subscription-based authorization policies in cloud scenarios,”
in Proc. of the 26th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security and Privacy (DBSec 2012), Paris, France, July
2012.

[8] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Para-
boschi, and P. Samarati, “Enforcing dynamic write privileges in data
outsourcing,” Computers & Security, vol. 39, pp. 47–63, November 2013.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, and P. Samarati, “Encryption-based policy enforcement for
cloud storage,” in Proc. of SPCC, Genova, Italy, June 2010.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evolution
on outsourced data,” in Proc. of VLDB, Vienna, Austria, September 2007.

[11] ——, “Encryption policies for regulating access to outsourced data,”
ACM TODS, vol. 35, no. 2, pp. 12:1–12:46, April 2010.

[12] B. L. Dos Santos and L. S. Smith, “RFID in the supply chain,”
Communications of the ACM, vol. 51, no. 10, pp. 127–131, October
2008.

[13] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification. John Wiley & Sons, Inc.,
2003.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. of CCS,
Alexandria, VA, October-November 2006.

[15] I. Hang, F. Kerschbaum, and E. Damiani, “ENKI: Access control for

encrypted query processing,” in Proc. of SIGMOD, Melbourne, Victoria,
Australia, May – June 2015.

[16] A. Ilic, F. Michahelles, and E. Fleisch, “Dual ownership: Access man-
agement for shared item information in RFID-enabled supply chains,”
in Proc. of IEEE PerCom Workshops, White Plains, NY, USA, March
2007.

[17] A. Juels, “RFID security and privacy: A research survey,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 2, pp. 381–394, 2006.

[18] F. Kerschbaum, “Practical privacy-preserving benchmarking,” in Proc. of
SEC, Milan, Italy, September 2008.

[19] F. Kerschbaum, D. Dahlmeier, A. Schröpfer, and D. Biswas, “On the
practical importance of communication complexity for secure multi-party
computation protocols,” in Proc. of SAC, Honolulu, HI, USA, March
2009.

[20] F. Kerschbaum, N. Oertel, and L. Weiss Ferreira Chaves, “Privacy-
preserving computation of benchmarks on item-level data using RFID,”
in Proc. of WiSec, Hoboken, NJ, USA, March 2010.

[21] F. Kerschbaum, “An access control model for mobile physical objects,”
in Proc. of SACMAT, Pittsburgh, Pennsylvania, USA, June 2010.

[22] ——, “Frequency-hiding order-preserving encryption,” in Proc. of CCS,
Denver, Colorado, USA, October 2015.

[23] C. Kuerschner, F. Thiesse, and E. Fleisch, “An analysis of data-on-
tag concepts in manufacturing,” in Proc. of MMS, Munich, Germany,
February 2008.

[24] NIST, “A survey of access control models,” in Privilege (Access) Man-
agement Workshop, 2009.

[25] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query processing,”
in Proc. of SOSP, Cascais, Portugal, October 2011.

[26] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc. of
EUROCRYPT, Aarhus, Denmark, May 2005.

[27] S. Sarma, D. Brock, and D. W. Engels, “Radio frequency identification
and the electronic product code,” IEEE Micro, vol. 21, no. 6, pp. 50–54,
November 2001.

[28] T. Staake, F. Thiesse, and E. Fleisch, “Extending the EPC network: the
potential of RFID in anti-counterfeiting,” in Proc. of SAC, Santa Fe, New
Mexico, USA, March 2005.

[29] L. Weiss Ferreira Chaves and F. Kerschbaum, “Industrial privacy in
RFID-based batch recalls,” in Proc. of 3M4EC, Munich, Germany,
September 2008.


