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ABSTRACT
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain
development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many
cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most
part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In
this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose
dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases
the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity.
Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected
despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also
results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132
increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.
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Introduction

Methyl CpG binding protein 2 (MeCP2) is a basic DNA
binding protein with preference for methylated DNA1,2 and
is highly abundant in the brain.3 This protein functions as a
transcriptional regulator by virtue of its interaction with
both transcription activator and repressor complexes.4,5 In
neurons, one MeCP2 molecule is present in approximately
every two nucleosomes;6 hence, it is a very important chro-
mosomal protein whose alterations have dire neurological
consequences,1,7 for example, Rett syndrome.8 In other cell
types and tissues, the abundance of this protein is approxi-
mately 30- to 40-fold lower than in neurons.3 Nevertheless,
its functional role in these cells is also important. Indeed,
MeCP2, by virtue of its specific binding to methylated DNA,
plays a very important role in cancer,9,10 where the dysregu-
lation of this epigenetic mark is a hallmark11 that leads to
important structural chromatin changes.12 Moreover,
MECP2 was recently shown to be a bona fide oncogene,13

which is frequently amplified in several cancer types.
Histone acetylation affects inter- and intra-nucleosome

interactions14,15 within the chromatin fiber as well as inter-
chromatin fiber associations16 and has been extensively studied
in our lab over the years.17,18

The interaction of MeCP2 with methylated DNA on a chro-
matin template and the massive presence of MeCP2 in neuro-
nal chromatin unavoidably makes it an important functional
partner of histones and their posttranslational modifications
(PTMs).19 For instance, histone acetylation also plays a critical
role in neurogenesis and neuronal plasticity,20 and its levels are
affected in many functional neuronal alterations.1,21 However,
the potential cross-talk between MeCP2 and histones is largely
unknown and remains to be elucidated.

In particular, the regulation of MeCP2 mediated by
HDAC inhibitors is very important, as such compounds are
currently used both in cancer therapy22-33 and for the
treatment of several neurological disorders34-40 to different
levels of success.41,42 Hence, understanding the molecular
details of the effect(s) of such inhibitors on MeCP2 homeo-
stasis is of major importance.

CREB and microRNAs arising from the miR132/212 cluster
have also been shown to play important roles in MeCP2
homeostasis. CREB has been shown to stimulate miR13243 and
miR21244 expression; miR212 conversely activates CREB.44 At
the same time, both mRNAs can block MeCP2 translation43,45

and MeCP2 can repress pri-miR132/212 expression. In a simi-
lar fashion, CREB can repress MeCP2 and vice versa.46
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Several years ago, an intriguing observation was made in our
lab that showed that treatment of HeLa cells with the HDAC
inhibitor sodium butyrate in order to induce global genome
histone acetylation resulted in a significant decrease in
MeCP2.47 While other labs have seen decreased MeCP2 with
HDAC inhibition in other cell lines,48,49 the observation
remains puzzling as it is hard to explain by the ‘dogma’ ensuing
from the initial association of MeCP2 to transcriptional repres-
sion.50 This activity is mediated by the binding of the Sin3A-
HDAC repressive complex51 to MeCP2, and, hence, the pres-
ence of MeCP2 in the genome should result in an overall recip-
rocal decrease in histone acetylation, as was experimentally
observed.6 Yet, the opposite did not follow from said mecha-
nism (i.e., HDAC inhibition did not lead to increased MeCP2).
Similarly, an anti-correlation between DNA methylation and
histone acetylation has been reported.52 The current paper rep-
resents a follow up on our initial observation and it shows that
the relation between histone acetylation, HDACs and MeCP2
is not as simple as originally envisaged.

To date, the most significant studies on MeCP2 have been
carried out in the brain.1 In this study, we took advantage of
some mechanistic molecular information already available for
MeCP2 from this tissue and analyzed it in the frame of non-
neuronal cell lines. As mentioned, MeCP2 plays a critical role
in cancer;53,54 however, the detailed underlying mechanisms
have not been widely studied.

Results

TSA treatment results in chromatin reorganization and MeCP2
redistribution within the nucleus without affecting the dynam-
ics of MeCP2 association-dissociation. To follow up on our

intriguing initial observation on the decrease of MeCP2 levels
upon sodium butyrate treatment, and since we had originally
shown that MeCP2 chromatin partitioning was minutely
affected by the HDAC inhibitor treatment of the cell,47 we
decided to check first the effects of TSA (a commonly used
HDAC inhibitor in recent studies)55-57 on MeCP2 nuclear dis-
tribution and on its interactions with chromatin. To this end,
we used mouse embryonic fibroblast NIH/3T3 cells because
their chromatin is organized into dense pericentomeric
domains58 (“chromocenters”) consisting of major and minor
satellite DNA regions59 that can be easily visualized by optical
microscopy and are associated with MeCP2.60

The chromatin reorganization in the nucleus resulting from
TSA treatment has been extensively characterized and mouse
NIH/3T3 cells have been shown to provide a unique system for
these kinds of analyses.61 Fig. 1a shows an example of this in
which we also monitored the distribution of MeCP2. As previ-
ously described, TSA treatment leads to chromatin deconden-
sation that affects both the euchromatin and heterochromatin
compartments. This chromatin rearrangement is mirrored by
that of MeCP2, which exhibits a more diffuse distribution
across the nucleus in which the chromocenters have been par-
tially dispersed, as indicated by DAPI staining. This results in
overall global opening of chromatin as visualized by the small
but noticeable MNase digestion of chromatin observed in
Fig. 1b. Biochemically, TSA treatment results in a redistribution
and increase of both repressive and activating histone PTMs in
the MNase generated SI, SE, and P chromatin fractionations3

(Fig. 1c) without affecting their characteristic MeCP2 con-
tent.3,47 The enrichment of these histone epigenetic marks in
the nuclease-accessible SI fraction upon treatment with TSA is
in agreement with our previous results.62

Figure 1. TSA treatment results in chromatin rearrangement. (a) Immunofluorescence analysis of MeCP2 and acetylated H4 distribution in NIH/3T3 cells CTSA and -TSA.
Scale bars: 10 mm. (b) Time course microccocal nuclease digestion and (c) Western blot analysis of several histone PTMs before and after TSA treatment of the same cells.
“100 bp” corresponds to a 100 bp marker. SI, SE, and P represent the chromatin fractions obtained upon micrococcal nuclease digestion as described in 3.
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We then wanted to analyze how all of this affects the interac-
tion of MeCP2 with chromatin. In this regard, it is noteworthy
that despite the nuclear chromatin relocalization of MeCP2
observed in Fig. 1a, fluorescence recovery after photobleaching
(FRAP) (Fig. 2a) clearly indicates that TSA treatment does not
affect the dynamics with which MeCP2 associates and dissoci-
ates from chromatin. To ensure that the cells being analyzed by
FRAP had undergone TSA treatment, cells were visualized
using a chromobox homolog 5 (CBX5) antibody. CBX5 binds
to H3K9me present in heterochromatin and, as seen in Fig. 2b,
has undergone redistribution upon TSA treatment similar to
that shown in Fig. 1a and is in agreement with Fig. 1b
H3K9me2 redistribution.

TSA treatment increases MeCP2 chromatin binding affinity
and decreases its global phosphorylation in NIH/3T3 cells. To
gain further molecular detail on the effects of TSA on the inter-
action of MeCP2 with chromatin we performed ionic-strength-
dependent experiments.3 Despite the little effect of TSA treat-
ment on the dynamics of MeCP2 binding (Fig. 2), we decided
to check whether its chromatin binding affinity was affected.
Indeed, MeCP2 and histone H1, which bind and compete for
similar linker DNA regions, have very different binding affini-
ties [(see Fig. 3E, in reference 3)], yet they exhibit almost identi-
cal chromatin binding dynamics (unpublished results and63,64).
For consistency, the analysis was performed in NIH/3T3 cells
grown in the presence or absence of TSA (Fig. 3). Upon treat-
ment with different NaCl concentrations, nuclear suspensions
were pelleted and MeCP2 levels were measured in both super-
natant and pellet fractions. The reciprocal increase and
decrease of MeCP2, respectively, provided validation of experi-
mental success. We found that TSA substantially increased the
binding affinity of MeCP2 to chromatin. This was unexpected,
as previous results from our lab had shown that, in vitro, his-
tone acetylation did not affect the binding of recombinant
MeCP2 to the nucleosome.47

The obvious candidate for the intriguing in vivo results seen
in Fig. 3 became MeCP2 phosphorylation.65-67 MeCP2 is an
intrinsically disordered protein and, as such, is subject to many
PTMs,7 including phosphorylation.67 Histone phosphorylation

has been shown to globally decrease its chromatin binding
affinity68,69 and TSA has been shown to downregulate several
cyclin dependent kinases (CDKs).70

We decided to analyze two of the most intensively character-
ized phosphorylation sites to date, S80-P and S421-P.71 In neu-
rons, S80 is constitutively phosphorylated in the resting state72

and S421 is phosphorylated in response to neuronal activity.69

We also decided to include S164-P, a recently described abun-
dant developmental MeCP2 phosphorylation, which has been
documented to lower its binding affinity to chromatin.66 The
results of such analyses are shown in Fig. 4. While we were not
able to detect any significant change in S80 and only a relative
change in S421 phosphorylation, the decrease observed in S164
suggests that MeCP2 phosphorylation reduction could be
responsible for the TSA-driven increase in chromatin binding
affinity (Fig. 3).

Figure 2. FRAP analysis of NIH/3T3 cells. (a) Untransfected NIH/3T3 cells in the presence (red)/absence (orange) of DMSO controls or transfected with GFP-MeCP2 (blue).
(a) Green fluorescence analysis of the distribution of chromobox homolog (CBX5) in the nuclei used for the analyses shown in (a), with (C) or without (¡) TSA treatment.
Scale bar: 10 mm.

Figure 3. TSA treatment affects the binding of MeCP2 to chromatin. Salt (NaCl)
extraction of MeCP2 from nuclei of untreated (orange line) and TSA treated (blue
line) NIH/3T3 cells. Quantitative western blots were carried out on n D 2 indepen-
dent experiments. MeCP2 levels were measured in both supernatant and pellet
fractions, given that the reciprocal increase and decrease of MeCP2 represent the
unbound (released) and bound fractions from cell nuclei, respectively. Data pre-
sented as mean § SEM.
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TSA treatment decreases the level of MeCP2. TSA has the
same effect in decreasing the levels of MeCP2 as previously
observed when we exposed HeLa cells to sodium butyrate. Dif-
ferent types of mouse and human cell lines were treated
(Fig. 5). The cells chosen encompass different developmental
origin: human HeLa (ectoderm) and HEK293 (mesoderm), as
well as mouse embryonic fibroblast NIH/3T3 (mesoderm).

As seen in Fig. 5a–b, TSA73 treatment resulted in a decrease
of MeCP2 and an increase in the levels of histone acetylation,
thus recapitulating our earlier observation.47 Treatment with
TSA resulted in an approximate 30–40% decrease in MeCP2,
while the level of histone acetylation increase was 2–2.5-fold.
Moreover, the lower levels of MeCP2 observed are the result of
a similar decrease in the levels of MeCP2 mRNA (Fig. 5c).

Therefore, we decided to analyze the potential molecular mech-
anism involved.

Exposure of NIH/3T3 cells to HDAC inhibition increases
the expression of miR132/212. The observed decrease of
MeCP2 in NIH/3T3 cells upon exposure to TSA was intriguing.
Homeostasis of MeCP2 is critical, particularly in neurons,
where a tight regulation of its levels is required for their proper
function.74 cAMP responsive element binding protein (CREB)-
binding protein (CREB-CBP) have been involved in this pro-
cess through a CREB-induced microRNA (miR132/212).43

CBP is a highly abundant histone acetyl transferase (HAT) sub-
unit that interacts with CREB. We reasoned that TSA treatment
could decrease the levels of MeCP2 by upregulating the expres-
sion of miR132/212.

Figure 4. TSA exposure alters the levels of MeCP2 phosphorylation. Changes in the levels of MeCP2 phosphorylation at positions S80, S164, and S421, normalized to total
MeCP2, both without (¡) and with (C) exposure to TSA. Equal loadings of total MeCP2 (in control and treated samples) were used so that changes in the phosphorylated
forms could be visualized. Westerns for total MeCP2 and each one of the corresponding phosphorylated forms were obtained from the same gel (membrane). Data repre-
sents mean § SEM of 4 independent experiments. Mann-Whitney tests were used to calculate significance; � P value <0.05, ��P value <0.01, ���P value <0.001. Repre-
sentative blot images are shown in greyscale black on white format.

Figure 5. TSA decreases the levels of MeCP2 in different cell lines. (a) Comparison of the effects of TSA (330 nM) treatment for 24 h. on the levels of MeCP2 and histone H4
acetylation in NIH/3T3 mouse fibroblasts. (b) Effects of TSA treatment on HeLa S3 [40 ng/mL (132 nM), 12 h] and HEK293 [120 ng/mL (396 nM), 18 h]. Representative WB
bands shown to be disconnected were non-adjacent signals visualized on the same membrane. (c) Quantification of MeCP2 transcripts by real-time RT-PCR of NIH/3T3 cells
with and without TSA treatment. Data presented as mean § SEM of 3–11 experiments. Unpaired two tailed t-tests were used for large sample sizes wherein normal
distribution could be validated (using Shapiro-Wilk test) and Mann-Whitney tests were used for small sample sizes. � P value <0.05, ��P value <0.01, ���P value <0.001. Rep-
resentative blot images are shown in greyscale black on white format.
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Figure 6a shows that TSA-treated NIH/3T3 cells exhibit a
significant upregulation of the pri-miR132/212, therefore
resulting in the presence of higher levels of mature miR132. To
verify if this upregulation directly affects MeCP2 protein levels
we blocked the miR132 recognition element (MRE) in the
MeCP2 30 UTR as described before.43 To this end, we trans-
fected NIH/3T3 with a locked nucleic acid (LNA) oligonucleo-
tide complementary to the MRE and an LNA control,
complementary to a non-MRE sequence, also present in the
MeCP2 30 UTR.43 Cells transfected with the specific LNA
showed increased MeCP2 levels upon TSA treatment as com-
pared to untransfected and control LNA cells (Fig. 6b). The
control LNA could possibly be affecting MeCP2 mRNA stabil-
ity in our system, since we observed higher levels of MeCP2

compared with untransfected TSA-treated cells. Nevertheless,
our results are in agreement with a role of miR132 in the down-
regulation of MeCP2. Hence, overexpression of miR132 upon
TSA treatment appears to be responsible for the decreased
MeCP2 protein levels through a mechanism that would resem-
ble that described in neuronal systems43 (Fig. 7). However, we
cannot rule out the possibility of other additional regulatory
mechanisms also involved.

Discussion

Because of their peculiar chromatin organization in well-
defined dense nuclear chromocenters, mouse NIH/3T3 cells

Figure 7. Model representation of the effects of HDAC inhibitors (TSA) on MeCP2 metabolism. (a) In the brain, MeCP2 expression is regulated by a complex regulatory
loop 94 (shown in blue; see text for a detailed description). In red we are highlighting the regions of this network that we have been able to confirm in NIH/3T3 non-neu-
ronal cells. (b) Based on early models of MeCP2 function, interaction of MeCP2 with an HDAC-Sin3A complex results in deacetylation of histones on surrounding nucleo-
somes leading to chromatin organization repressive to transcription 51. Under physiological conditions, MeCP2 is phosphorylated at several residues (S80),72 (S164),66,
72 and (S421)65 that fine-tune its transcriptional regulatory nature67, 71. Upon exposure to HDAC inhibitors such as TSA, the levels of MeCP2 phosphorylation decrease
and so do the levels of the protein itself. This decrease is likely mediated by the action of CREB-CBP binding to MeCP2, which, upon acetylation of the neighboring nucle-
osomes (green triangles), creates a relaxed/transcriptionally-permissive chromatin organization that enhances transcription of miR132/212 4 and creates a regulatory
loop of MeCP2 expression,43 shown in (a).

Figure 6. TSA treatment increases miR132 levels and affects MeCP2 protein levels in NIH/3T3 cells (a) Unprocessed pri-miR132/212 and mature miR132 transcription
increases in TSA treated NIH/3T3 cells. Values were collected via quantitative RT-PCR. Data presented as mean § SEM of 3–5 independent experiments. Mann-Whitney
tests were used to calculate significance; � P value <0.05, ��P value <0.01, ���P value <0.001. (b) Densitometric analysis and representative WB showing MeCP2 protein
levels after transfection of NIH/3T3 with an LNA oligonucleotide against miR132 MRE located in the 30UTR of MeCP2 mRNA and a LNA oligonucleotide control upon TSA
treatment.
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provide a very good model to study the nuclear distribution of
MeCP2.60 Under normal conditions, MeCP2 concentrates in
these condensed heterochromatin regions.60,75 These regions
correspond to pericentromeric domains and arise from the
coalescence of major satellite DNA regions with minor
satellites associated with their periphery and exhibit different
micrococcal nuclease sensitivity. Moreover, both regions con-
tain the methylated forms of H3K9 and the minor satellites
exhibit a relaxed chromatin organization compared to the
highly compacted major type, which interacts with heterochro-
matin protein 1a (HP1a).59 It is likely that the minor satellite
domains are more prone to become disorganized by TSA treat-
ment further enhancing their nuclease sensitivity in agreement
with the results observed in Fig. 1 (b).

Our previous analyses on the chromatin distribution of
MeCP2 in cells treated with sodium butyrate indicated that the
chromatin reorganization that takes place upon such treatment
does not affect the partitioning of MeCP2,47 as observed in the
MeCP2 lane of (Fig. 1c). This means that, despite the loss of
chromocenter compaction upon TSA exposure [Fig. 1a TSA
(C)], the remaining MeCP2 stays bound to the same chromatin
territories and it exchanges from them with very similar
dynamics (Fig. 2a). In addition, the elevated presence of
MeCP2 in the highly nuclease accessible SI fraction of different
cell types and tissues (see3 and Fig. 1c) makes it tempting to
speculate a particular type of association of MeCP2 to the
minor satellite regions of the chromocenters. This may provide
a hint to the massive presence of MeCP2 in the SI chromatin
fraction of all organisms and cell types studied to date76 and
whose molecular explanation remains a mystery.1 It would be
interesting to know which regions of DNA are partially
depleted of MeCP2 as a result of TSA treatment. Interestingly,
the changes in chromatin reorganization and the more relaxed
chromatin conformation adopted upon TSA treatment
(Fig. 1a–b) are accompanied by a seemingly counterintuitive
increase in the levels of repressive marks, such as H3K9me2
and H3K27me3, as well as the H3K4me3 activating mark,
which is most likely the result of changes in gene expression
resulting from TSA treatment.77,78 In agreement with this
observation, a very recent paper has shown that the increase in
nuclear histone acetylation upon treatment of barley pollen
with TSA also results in a nuclear accumulation of H3K27me3
and H3K4me2.79 Such indiscriminate accumulation of histone
methylation marks is most likely the result of the upregulation
of histone methyltransferases by TSA treatment.80

Besides increasing global histone acetylation, TSA exposure
alters the binding characteristics of MeCP2. It is interesting to
compare the results obtained here with those obtained for his-
tone H1 under similar TSA treatment conditions.81 There is a
striking similarity with which both chromosomal proteins com-
pete with each other7,82 for presumably similar in vivo binding
sites6 and for chromatinized DNA templates in vitro.50,83 This
is despite the preference of MeCP2 for methylated CpN (where
N D G, A, T or C)2 DNA regions, which are prevalent at chro-
matin linker regions84,85 where linker histones (H1) bind. Our
data (Fig. 3) clearly shows enhanced ionic strength-dependent
binding affinity of MeCP2 to chromatin upon TSA treatment,
which contrasts with the unchanged binding affinity observed
under the same conditions for histone H1.16 Nevertheless,

contrarily to histone H1,86 TSA did not affect the binding
kinetics of MeCP2 to chromatin (Fig. 2). This may simply
reflect the fact that while histone acetylation has been shown to
alter histone H1 binding back to acetylated chromatin once it
has dissociated,87 that of MeCP2 remains unchanged.47 The
increased binding affinity of MeCP2 upon treatment with
HDAC inhibitors cannot be attributed to the overall increase in
histone acetylation of nucleosomes as the binding of MeCP2 to
nucleosomes in vitro has been shown to be unaffected by their
extent of histone acetylation.47

One of the potential contributors to the TSA-induced
increase in binding affinity of MeCP2 just described could be
the result of a decrease in the phosphorylation of this protein
due to kinase dysregulation ensuing from the HDAC inhibitors
treatment. Global MeCP2 phosphorylation has been described
to decrease its chromatin binding affinity.69,88 and TSA has
been shown to downregulate cdk4, cdk6, and cdk270 and Cal-
cium/calmodulin-dependent protein kinase II (CaMKII).89

MeCP2 S421-P is mediated by CaMKII72,90 and MeCP2 S80-P
is mediated by homeodomain-interacting protein kinase 2
(HIPK2).91 Figure 4 shows that in our hand, neither one of
these two phosphorylations were significantly affected by the
treatment of NIH/3T3 cells with TSA. However, phosphoryla-
tion of S164 was reduced by half. Phosphorylation of S164 is a
very abundant MeCP2 PTM recently described to decrease the
binding affinity of MeCP2 for chromatin and to be involved in
the control of dendrite patterning.66 Although the kinase
responsible is still not known, it is plausible to think that it
could be a member of the cdk family. For instance, alterations
in the kinase cdkl5 lead to Rett syndrome phenotypes, as is the
case for MeCP2.92 Moreover, cdkl5 has been involved in den-
drite development.93 While in the context of NIH/3T3 cells
these functions may lack relevance, the fact that CDKs are also
downregulated by TSA treatment and that they share neurolog-
ical pathways with S164 phosphorylation, suggest that CDKL5
could be a likely candidate.

Regardless of the above chromatin structural considerations,
we found that treatment of cells with TSA lead to a decrease in
the overall content of nuclear MeCP2 (Fig. 5), as previously
observed via treatment of HeLa cells with sodium butyrate.47

Human HeLa, HEK293, and mouse NIH/3T3 cell lines were
used (Fig. 1a–b) to corroborate those preliminary results using
different germ layers and/or species.

In the brain, where most information is available for MeCP2
metabolism, CREB-CBP, MeCP2, and miR132/212 have been
shown to be connected through a regulatory network (Fig. 7a)
that is responsible for maintaining MeCP2 homeostasis.94

HDAC inhibitors enhance the activation of genes regulated by
the CREB-CBP transcriptional complex,95 including miR132,43

which represses MeCP2 levels in rat neurons46 [see blue loop in
Fig. 7a]. The results obtained here (Fig. 6) clearly support the
notion of a similar regulatory feedback loop [red lines in
Fig. 7a] occurring in non-neuronal cells.

As stated in the introduction, our work shows that the rela-
tionship between histone acetylation and MeCP2 is much more
complex than originally anticipated. In earlier studies, mainly
repressive models for the function of MeCP2,50 antagonism
was observed between the presence of MeCP2 and histone acet-
ylation.6 However, there is now abundant evidence in support
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of a transcriptional regulatory role, wherein MeCP2 can also
bind to activator complexes such as CREB-CBP4 [see Fig.7b].
TSA, as well as other HDAC inhibitors, by decreasing the phos-
phorylation of MeCP2 may enhance the binding of these acti-
vator complexes to promoters (Fig. 7b), underscoring, at any
rate, the larger than envisioned complexity of the relationship
between histone acetylation and MeCP2 on their shared chro-
matin substrate.

To conclude, this work was based on an observation made in
our lab several years ago: that HDAC inhibitor-induced hyper-
acetylation of histones in non-neuronal cells resulted in signifi-
cant decrease in the levels of MeCP2.47 A follow up to that
observation here shows that HDAC inhibitor treatment results
in increased MeCP2 chromatin binding affinity, which appears
to be affected by a global decrease in MeCP2-S164 phosphory-
lation and is accompanied by significant decrease in the levels
of MeCP2, in part involving miR132.

Materials and methods

Cell culture

NIH/3T3, HEK293, and HeLa S3 cells were grown at 37�C in 5%
CO2 atmosphere in Dulbecco’s modified essential medium
(DMEM) (Sigma-Aldrich, St. Louis, MO, USA) containing 10%
bovine growth serum (BGS) (VWR, Radnor, PA, USA), 1% pen-
icillin and streptomycin (10,000 UI and 100 mg/mL, respectively)
(Sigma-Aldrich, St. Louis, MO, USA), and 1X Gibco GlutaMAX
(ThermoFisher Scientific Inc., Waltham, MA, USA).

Cells were grown to high density according to ATCC stand-
ards, media was removed, plates washed in phosphate buffered
saline (PBS) and cells were either treated with Trichostatin A
(TSA) (Sigma-Aldrich, St. Louis, MO, USA) or new medium
was added to control plates. Treatment concentrations and
times used were based on both literature and/ or time-course
experiments (data not shown)61,96 and were as follows: NIH/
3T3: 100 ng/mL (330 nM) for 24 hours; HeLa S3: 40 ng/mL
(132 nM) for 12 hours; and HEK293: 120 ng/mL (396 nM) for
18 hours.

Sample preparation

Cells were harvested by removing media from plates on ice,
washing with cold PBS then dislsodged by trypsinization. Tryp-
sin was neutralized with medium (see “Cell Culture”), and sam-
ples were pelleted at 4�C for 2 minutes at 1,000 £ g. Cell pellets
were homogenized in 4 volumes (w/v) of cell lysis buffer
(0.25 M Sucrose, 60 mM KCl, 15 mM NaCl, 10 mM MES,
5 mM MgCl2, 1 mM CaCl2, 0.8% Triton X-100), incubated on
ice for 5 minutes, then centrifuged at 4�C for 10 minutes at
1,000 £ g. The supernatant was discarded and pellets were
then resuspended in a half volume of nuclei resuspension buffer
(50 mM NaCl, 10 mM Pipes pH 6.8, 5 mM MgCl2, 1 mM
CaCl2). Complete protease cocktail inhibitor (Roche Molecular
Biochemicals, Laval, Quebec, Canada) was added at each step
at a dilution of 1:100, as was phosphatase inhibitor cocktail
(Roche Molecular Biochemicals, Laval, Quebec, Canada) at a
dilution of 1:10 in the case of probing for protein phosphoryla-
tion. SDS-PAGE sample buffer (125 mM Tris HCl pH 6.8, 2%

SDS. 20% glycerol, 1.43 M b-mercaptoethanol, 0.2% bromo-
phenol blue) was added to samples, which were then sonicated
in 10-second intervals for approximately 1 minute and then
boiled for 60–90 seconds at 95�C. Samples were flash frozen in
liquid nitrogen and stored at ¡80�C until use.

Chromatin fractionation

Nuclei were prepared as described in “Sample preparation”
for the MNase digestions. MNase digestion for chromatin frac-
tionation (30 U/mg of DNA) was carried out for 15 minutes on
pre-warmed samples at 37�C with shaking (in a water bath)
and for time-course chromatin accessibility (5 U/mg of DNA)
was performed for 0, 4, 8, 12, and 16-minutes time intervals.
The activity of MNase was stopped using 20 mM EDTA (pH
8.0). Chromatin fractionation was then carried out according
to.3 In brief, samples were centrifuged at 10,000 £ g for
10 minutes at 4�C. Supernatants (SI) were removed and pellets
were resuspended harshly and vortexed in 0.25 mM EDTA
(volume equal to Buffer B), then tumbled at 4�C for 60 minutes.
The pellets containing 0.25 mM EDTA were centrifuged at
16,000 £ g for 10 minutes at 4�C. Supernatants (SE) were
recovered and appropriate volumes of SDS sample buffer were
added to the resulting pellets (P), S1 and SE, and samples were
sonicated before electrophoresis.

DNA extraction

Time course MNase digested samples were supplemented
with a 1:1 ratio of Protein K digestion buffer (600 mM
NaCl, 40 mM EDTA, 20 mM Tris pH 7.5, 1% SDS), treated
with 50 mg/ml of RNase (10 mg/ml) at 37�C for 1 h and
subsequently with Proteinase K (1 mg/10 mg of DNA) for
another hour at 37�C. An equal volume of Phenol:Chloro-
form:Isoamylic alcohol (PCI) (25:24:1) was added and sam-
ples were vortexed and centrifuged at 16,000 £ g at room
temperature for 10 minutes. The top aqueous layer was
removed and the PCI step was repeated once more. One
volume of Chloroform:Isoamyl alcohol was added to
the aqueous layer, vortexed well, and centrifuged as above.
The aqueous phase was removed and 0.1 volume of 3 M
sodium acetate (pH 5.2) was added and vortexed. Overnight
precipitation was then carried out in 2.5 volumes of ice-
cold 95% ethanol. Samples were centrifuged at 16,000 £ g
at room temperature for 10 minutes and the supernatant
was discarded. Pellets were then gently washed with same
volume of 75% ethanol and centrifuged as above. The
resulting pellet was then allowed to air dry and dissolved in
a small volume of Tris-EDTA (TE) buffer (pH 8.0) (10 mM
Tris-HCl, 1 mM EDTA). DNA concentrations were deter-
mined using NanoDrop and analyzed on 1.5% agarose gel.
DNA band intensities were measured using Image Studio
Lite version 5.2 to confirm an equal amount of DNA for
each time interval.

Gel electrophoresis

SDS-polyacrylamide gel electrophoresis (PAGE) (10% and 15%
acrylamide) were prepared as previously described.97
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Western blot (WB)

SDS-PAGE gels were transferred for 2–3 hours at 400 mA on
ice onto 0.2 mm nitrocellulose membrane (Bio-Rad, Hercules,
CA, USA) in 40 mM:192 mM Tris:glycine, 20% methanol or
20 mM sodium phosphate (pH 6.8) buffer, 15% ethanol (for
the analyses of PTMs). Membranes were blocked in 3% skim
milk, PBS-Tween 0.1%, or 5% bovine serum albumin (BSA) in
Tris-buffered saline (TBS)-Tween 0.1% (for phosphorylation)
for 45 minutes at room temperature with shaking. Primary
antibodies incubation was done overnight at 4�C. Primary anti-
bodies and dilutions used were as follows: MeCP2 1:1,000
(M9317, Sigma-Aldrich, St. Louis, MO, USA), PanAcetyl H4
1:1,000 (06–866, EMD Millipore, Temecula, CA, USA), H4
1:30,000 (rabbit serum produced in-house). MeCP2 pSer80
1:1,000 (AP31635SU-N, Acris, Dunwoody Park, Atlanta GA),
MeCP2 pSer164 1:1,000 (rabbit serum produced in house66),
MeCP2 pSer421, b-actin 1:5,000 (A2228, Sigma-Aldrich, St.
Louis, MO, USA), H3K9me2 1:1,000 (13969P, Cell Signaling
Technologies, Danvers, MA, USA), H3K27me3 1:1,000 (07–
449, EMD Millipore), H3K4me3 1:1,000 (5326P, Cell Signaling
Technologies), and H3K36me3 1: 2,000 (4909P Cell Signaling
Technologies). Secondary antibody incubation was carried out
at room temperature for 1 hour, with three 5 minute PBS-
Tween 0.1% or TBS-Tween 0.1% (for phosphorylation) washes
before and afterwards. Secondary antibodies used were
enhanced chemiluminescent (ECL) Anti-rabbit IgG 1:2,000
(NA934, GE Healthcare, Piscataway, NJ, USA), Donkey Anti-
Sheep/Goat IgG 1:2,000 (AB324P, EMD Millipore Corpora-
tion), IRDye 800 Anti-rabbit IgG 1:10,000 (611-132-122, Rock-
land Antibodies & Assays, Gilbertsville, PA, USA), IRDye
680LT Anti-mouse IgG 1:20,000 (926–68020, LI-COR, Lincoln,
NK, USA). The latter two secondary incubations were carried
out in darkness. Western blots were acquired using Li-Cor C-
digit for chemiluminescent imaging or Li-Cor Odyssey (LI-
COR Biosciences) for fluorescent imaging. Images were ana-
lyzed using Li-Cor Image Studio version 5.2 software.

Fluorescence recovery after photobleaching

MeCP2-GFP plasmid and fluorescence recovery after photo-
bleaching (FRAP) was carried out as described elsewhere.98,99

Salt extraction

Equal amounts of solutions of 10 mM Tris (pH 7.5), 1 mM
EDTA (pH 8.0) with increasing NaCl concentration
(0.4, 0.6, 0.7, 0.8, 0.9, and 1 M) were added to aliquots of
TSA-treated and untreated control sample preparations (see
“Sample preparation”), vortexed well, and incubated on ice
for 20 minutes. Samples were then centrifuged at 4�C for
10 minutes at 16,000 £ g. The supernatant was removed
and appropriate volumes of SDS-PAGE sample buffer were
added to both supernatants and pellets and stored at
¡80�C. Normalizations for WB experiments were based on
equal suspension and loading volumes, determined via spec-
trophotometric DNA quantity analysis as well as total his-
tone protein visualization in Coomassie-stained SDS-PAGE
gels. Western blots were acquired using Li-Cor Odyssey

(LI-COR Biosciences). Images were analyzed using Li-Cor
Image Studio Version 5.2 software.

Immunofluorescence

NIH/3T3 cells were plated on glass coverslips (12–541B, Fisher
Scientific, Pittsburgh, PA, USA) during incubation. At 24 hours
TSA treatment, immunofluorescence protocol was carried out
as follows: Media was removed and coverslips were washed
three times in PBS-T 0.1%. Fixation was carried out in 4% para-
formaldehyde for 15 min. Primary antibodies were added as
follows: 1:500 for both MeCP2 and PanAcH4 (see “Western
blot”) in PBS-T 0.1%. This was followed by an overnight incu-
bation at 4�C and subsequent wash 3 times in PBS-T 0.1% prior
to the addition of secondary antibodies, donkey anti-rabbit
Alexa 555 and donkey anti-mouse Alexa 488, both at 1:1000.
The secondary antibodies were incubated for 1 hour at room
temperature followed by 3 washes in PBS-T 0.1% and mounted
in Immumount to view.

RNA extraction and RT-qPCR

NIH/3T3 total RNA purification was performed using TRIzol
reagent (Invitrogen) following manufacturer instructions. To
assess pri-miR132/212 expression, RNA was reverse-transcribed
using High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). Each PCR was carried out in triplicate using SYBR
Green PCR Master Mix (Applied Biosystems). Primers used are:
Mecp298; pri-miR132/212 (fwd: CGGTGACTCAGCCTA-
GATGG, rv: GGACGGGACAGGGAAGGG100). To confirm
reproducibility of the observed changes in transcripts levels,
three different housekeeping genes were analyzed: Gapdh (fwd:
AAGGTCATCCCTGAGCTGAACGGG, rv: CCAGGAAAT-
GAGCTTGACAAAGTG), Ppia (fwd: CAAATGCTGGAC-
CAAACACAAACG, rv: GTTCATGCCTTCTTTCACCTTCCC)
and Tbp (fwd: CCCCACAACTCTTCCATTCT, rv: GCAG-
GAGTGATAGGGGTCAT). Representative figures used were
Mecp2/Gapdh (Fig. 5) and pri-miR132/212/Tbp (Fig. 6).

Mature miR132 reverse-transcription and RT qPCR were
carried out using the TaqMan microRNA Assays #000457
(miR132-3p) and #001973 (endogenous control U6 snRNA),
TaqMan microRNA Reverse Transcription kit and TaqMan
Universal Master Mix II (Applied Biosystems). In all cases,
thermocycling conditions were 10 minutes at 95�C, then
40 cycles of 15 seconds at 95�C and 1 minute at 60�C. Fluores-
cent signals were acquired by the Stratagene Mx3005P qPCR
System (Agilent Technologies). Relative mRNA levels were cal-
culated using the comparative Ct method (DDCt), considering
PCR efficiency. Fold change is equal to 10DDCt/m, where ‘m’ is
the average slope of the calibration curves for the gene of inter-
est and the endogenous control.

Locked nucleic acid (LNA) assay

In a 6-well plate, NIH/3T3 cells at 70–80% confluency were
transfected with control and antisense LNA oligos [Antisense,
50- TAACAGTCCTGGTGATATTTGGTCA-30; Control, 50-
TGTAGACAATAATGTCCATGGCCTT-30 (modified bases
are underlined)] at a concentration of 10 nM using
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lipofectamine 3000 plus (Invitrogen), as per manufacturer’s
protocol. After 4 hours of transfection, the cells were treated
with 100 ng/mL (330 nM) of TSA for 24 hours. This was fol-
lowed by SDS preparation of protein lysate for immunoblot
assays as mentioned above (see “Sample preparation”).
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