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Abstract: Chen, Torres and Ziemer ([9], 2009) proved the validity of generalized Gauss–Green formulas and

obtained the existence of interior and exterior normal traces for essentially bounded divergence measure

fields on sets of finite perimeter using an approximation theory through sets with a smooth boundary. How-

ever, it is known that the proof of a crucial approximation lemma contained a gap. Taking inspiration from

a previous work of Chen and Torres ([7], 2005) and exploiting ideas of Vol’pert ([29], 1985) for essen-

tially bounded fields with components of bounded variation, we present here a direct proof of generalized

Gauss–Green formulas for essentially bounded divergence measure fields on sets of finite perimeter which

includes the existence and essential boundedness of the normal traces. Our approach appears to be simpler

since it does not require any special approximation theory for the domains and it relies only on the Leibniz

rule for divergence measure fields. This freedom allows one to localize the constructions and to derive more

general statements in a natural way.
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1 Introduction
The Gauss–Green formula, or divergence theorem, plays a ubiquitous role in mathematical analysis, mathe-

matical physics, and continuumphysics by giving tools for establishing energy identities and energy inequal-

ities for PDEs, for deriving the governing PDEs from basic physical principles and for rigorously justifying

balance laws or conservation laws for classes of subbodies of a given body. Of particular importance is the

search for extending the validity of such formulas to vector fields of lower regularity and for more general

classes of subdomains. The literature is justifiably rich with such extensions, and below we will give a brief

summary of some of the major developments which are most closely related to the present work. For a more

complete review, see the monograph of Dafermos [11] and the extensive bibliography therein.

We are principally motivated by the paper of Chen–Torres–Ziemer [9] that examines the validity of the

divergence theorem for essentially bounded divergence measure fields F on an open set Ω ⊂ ℝn and for sub-
domains E ⊂⊂ Ω of finite perimeter in Ω. Such vector fields are those F ∈ L∞(Ω;ℝn) whose distributional
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divergence is a real finite Radon measure on Ω and such sets have characteristic functions χE which are of

bounded variation; that is, they are L1 andhavedistributional gradientswhichareℝn-valuedRadonmeasures

onΩ. In this very general setting, the authors are able to incorporate shockwaves in the formof jump surfaces,

which are subsets of the boundary of a set E of finite perimeter on which the measure div F can concentrate
and for which suitable notions of interior and exterior normal traces of F may not coincide.

In [9], in order to prove the Gauss–Green formula and to extract interior and exterior normal traces in

the context specified above, the authors make use of an approximation theory for sets E of finite perimeter

in ℝn in terms of a family of smooth subsets which is well calibrated to any fixed Radon measure μ that is
absolutely continuous with respect to the Hausdorff measureH n−1

(see [9, Theorem 4.10]). They first prove

the result for sets with smooth boundary and then pass to a limit by exploiting their approximation theorem

and a result of Šilhavý [25] which shows that if F is an essentially bounded divergence measure field, then

the total variation measure μ = |div F| is absolutely continuous with respect to H n−1
.

The principal aim of this paper is to show that this approximation step is not needed; that is, one can

obtain the main result (see [9, Theorem 5.2]) directly by following the lines of Vol’pert’s proof for essentially

bounded BV vector fields and sets of finite perimeter (see [28] and [29]). To do so, one combines the afore-

mentioned absolute continuity result of [25] with the Leibniz formula of Chen–Frid [5] (for the product of

an essentially bounded function of bounded variation and an essentially bounded divergence measure field)

and performs some elementary calculations of geometric measure theory. One might also note that in the

aforementioned approximation result of [9], there was a known gap in the proof, which motivated our alter-

native method in the first place and has however been removed in the recent paper [10] by the first author

and Torres. On the other hand, one should note that the approximation result is of independent interest and

shows that for any set of finite perimeter E there exist sequences of smooth sets Ek,i and Ek,e converging to
it from the interior and from the exterior in a measure theoretic sense (see [10, Theorem 3.1, Theorem 4.1

and Remark 4.1]). For instance, these sequences have been used by Chen–Torres in [8, proof of Lemma 4.3]

and by Chen–Torres–Ziemer [9] for showing that the integrals of the generalized normal traces are indeed

the limits of the integrals of the classical normal traces over the smooth sets which approximate E. A more

detailed discussion of this point is given in Remark 3.11.

The advantage of our approach is its relative simplicity, since no approximation step is needed and no

separate proof for smooth subdomains is required. Moreover, our method of proof leads easily to other rel-

evant consequences, such as integration by parts formulas which also hold for domains with locally finite

perimeter not necessarily compactly contained in Ω, when the test functions are compactly supported, and

representation formulas for the measure div F on the reduced boundary of E and for the divergence measure

of the gluing and the extension of essentially bounded divergence measure fields.

In order to place the present work into context, we now give a brief summary of some of the major devel-

opments in the search for generalized Gauss–Green and related formulas for vector fields of low regularity

and rich classes of subdomains. A classical version of the Gauss–Green formula can asserts that for Ω an

open subset ofℝn, if F ∈ C1(Ω;ℝn) and E ⊂⊂ Ω is open with orientable boundary ∂E of class C1, then¹

∫
E

div F dx = − ∫
∂E

F ⋅ νE dH n−1
, (1.1)

where νE is the interior unit normal to ∂E and dx = dLn, where Ln =H n
is the Lebesgue measure on ℝn.

We notice that (1.1) can be reformulated to say that there is a signed divergence measure μ and a signed flux
measure σ on Ω such that

μ(E) = σ(∂E), (1.2)

where μ is absolutely continuouswith respect toLn with a continuous density div F and σ is supported on the
topological boundary ∂E and has the representation formula σ = −(F ⋅ νE)H n−1 ∂E in terms of the trace of

the normal component of F. Generalizations of (1.1) will be sought in the sense (1.2), where one searches for
the precise meaning of μ and σ and their possible representations.

1 Here and throughout, we will write such formulas with respect to the interior normals.
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A first important relaxation is found in the work of De Giorgi [12] and Federer [16] and involves Lipschitz

vector fields F and E ⊂⊂ Ω of finite perimeter in Ω. In this setting, one has (1.1) if one replaces the topologi-

cal boundary ∂E with the reduced boundary ∂∗E, which is contained in the support of |DχE|, and interprets
νE as the measure theoretic interior normal, which is well defined on ∂∗E. These fundamental notions of

De Giorgi are recalled in Definition 2.11 and here we underline that their importance comes from the fact

that an arbitrary set of finite perimeter can be very irregular; for example, its topological boundary can even

have full Lebesgue measure Ln. In this setting, the resulting Gauss–Green formula is

∫
E

div F dx = − ∫
∂∗E F ⋅ νE dH

n−1
, (1.3)

and it is worth mentioning that Federer’s structure theory for sets of finite perimeter allows for inessential

variants of (1.3), such as replacing ∂∗E by the measure theoretic boundary ∂mE = ℝn \ (E0 ∪ E1), where E0

and E1 are the measure theoretic exterior and interior respectively of E (as defined in (2.5) and (2.6)). The

relevant structure theorem which justifies this claim is recalled in formulas (2.7)–(2.8) and we note that, for

simplicity, we will work only with the notion of reduced boundary in the rest of this paper.

A second generalization is the aforementioned study of Vol’pert who extended the De Giorgi–Federer

theory to include essentially bounded BV vector fields; that is, fields F whose components lie in L∞(Ω) and
are of bounded variation on Ω. As mentioned, the scheme of Vol’pert’s proof will be employed in the proof of

our main result and hence a summary of the main steps is in order. The first ingredient is a product rule for

essentially bounded BV functions; that is, if u, v ∈ L∞(Ω) ∩ BV(Ω), then uv ∈ BV(Ω) ∩ L∞(Ω) and

D(uv) = u∗Dv + v∗Du in the sense ofℝn-valued Radon measures on Ω, (1.4)

where u∗, v∗ are the precise representatives of u, v as defined in (2.9) and can be captured as the H n−1
-a.e.

limits ofmollifications of u, v as recalled in (2.10). This stepmakesuse of the important fact that for u ∈ BV(Ω)
one knows that the total variation measure |Du| is absolutely continuous with respect to H n−1

. The second

ingredient involves showing that, roughly speaking, the distributional gradient of a compactly supported

BV function has mean value zero, as happens for C1c -functions. This implies the Gauss–Green formula for

compactly supported fields where there are no boundary terms. The last ingredient involves applying the

product rule (1.4) to u ∈ L∞(Ω) ∩ BV(Ω) and v = χE, where E ⊂⊂ Ω is of finite perimeter in Ω. Performing

some geometric measure theoretic manipulations on the resulting identity and using the compact support

of χEu leads to a pair of generalized Gauss–Green formulas:

Du(E1) = − ∫
∂∗E uνE νE dH

n−1
and Du(E1 ∪ ∂∗E) = − ∫

∂∗E u−νE νE dH
n−1

, (1.5)

where uνE (x), u−νE (x) are interior, exterior traces of u at x ∈ ∂∗E which are H n−1
-a.e. defined as the approx-

imate limits of u restricted to the half-spaces Π±νE (x) := {y ∈ ℝ
n
: (y − x) ⋅ (±νE) ≥ 0}. The precise meaning of

this approximate limit is given in Remark 3.3. Applying (1.5) componentwise with u = Fj ∈ L∞(Ω) ∩ BV(Ω)
and j = 1, . . . , n leads to

div F(E1) = − ∫
∂∗E FνE ⋅ νE dH

n−1
and divF(E1 ∪ ∂∗E) = − ∫

∂∗E F−νE ⋅ νE dH
n−1

. (1.6)

A final group of generalizations stems from the observation that a vector field F can have its distribu-

tional divergence be a Radon measure without having the distributional gradient of each component Fj of F
be a Radonmeasure. Moreover, one can attempt to relax the requirement that F be essentially bounded. This
motivates the introduction of the spaceDMp(Ω;ℝn) of p-summable divergence measure fields for p ∈ [1,∞],
made up of those F ∈ Lp(Ω;ℝn) for which the distributional divergence div F is a finite real Radon measure

on Ω. The case p =∞ of essentially bounded divergence measure fields, and their local versions, will be the

focus of our interest. Such fields were first introduced by Anzellotti [3] when p =∞ in his study of pairings

between measures and bounded functions. Amongst other things, this study led to the existence of L∞(∂Ω)
traces of the normal component of essentially bounded divergence measure fields on the boundary of open

bounded setsΩwith Lipschitz boundary (see [3, Theorem1.2]). Such traces are called normal traces in the lit-
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erature. Later, such fields were studied bymany authors having inmind various applications and resulting in

new versions of the Gauss–Green formula. In particular, motivated by applications to the theory of systems of

conservation laws with the Lax entropy condition, Chen and Frid proved generalized Gauss–Green formulas

for divergencemeasure fields on open bounded setswith Lipschitz deformable boundary (see [5, Theorem2.2]

and [6, Theorem 3.1]). Moreover, Chen, Torres and Ziemer extended this result to the sets of finite perimeter

in the case p =∞ in [9, Theorem 5.2] and later Chen and Torres applied this theorem to the study of solutions

of nonlinear hyperbolic systems of conservation laws ([8]). It is [9, Theorem 5.2] that we wish to reexamine

in this paper as will be further specified below after recalling some additional related results.

As ameans of comparison, some additional works concerning divergencemeasure fields should bemen-

tioned. Degiovanni, Marzocchi and Musesti in [13] and later Schuricht in [24] sought to prove the existence

of normal traces under weak regularity hypotheses in order to achieve a representation formula for Cauchy

fluxes, contact interactions and forces in the context of the foundations of continuum physics. In particular,

a justification of Cauchy’s stress theorem under weak regularity assumptions is a main unifying ingredient in

much of the divergence measure field literature, as is well explained in the introduction of [24]. While the

resulting Gauss–Green formulas (and justifications of the stress theorem) obtained in [13] and [24] are valid

forDMp(Ω;ℝn)-fields for any p ≥ 1, the subdomains E cannot be taken to be arbitrary sets of finite perime-

ter. Instead, Emust be chosen to lie in a suitable subalgebra of sets which are related to the particular vector

field F. On the other hand, Ziemer [30] established the Cauchy stress theorem with respect to subdomains of

finite perimeter for divergence measure fields under the additional assumption that div F ∈ L∞(Ω). Another
important work along these lines is the study of Cauchy fluxes in Šilhavý [25], who sought to give a more

complete description of generalized Gauss–Green formulas forDMp(Ω;ℝn)-fields with respect to the values
of p ∈ [1,∞] and concentration hypotheses on div F. In particular, he gave sufficient conditions under which

the interior and exterior normal traces can be seen as integrable functions with respect to the measureH n−1

on the reduced boundary of a set of finite perimeter. Such conditions are always satisfied in the case p =∞
and we will show in Example 6.1 that this is indeed the only case in which this happens in general, by

constructing a counterexample in DMp
for any p ∈ [1,∞). It is worth noting that Šilhavý also studied the

properties of the so-called extended divergencemeasure fields, already introduced by Chen–Frid in [6], which
are vector-valued Radon measure whose divergence is still a Radon measure. He showed absolute continuity

results and Gauss–Green formulas in [26] and [27]. One should also mention the work of Ambrosio, Crippa

and Maniglia [1] which aimed at extensions of the DiPerna–Lions theory for transport equations at low reg-

ularity. They studied a class of these vector fields induced by functions of bounded deformation and proved

a Gauss–Green formula for essentially bounded divergence measure fields on open sets with C1-boundary
compactly contained in the domain. Finally, it might be noted that in their study of mean value properties of

harmonic functions on metric spaces (X, d) supporting a doubling measure μ and a (1, 1)-Poincaré inequal-
ity, Marola, Miranda and Shanmugalingam [21] verified the validity of generalized Gauss–Green theorems

on balls in metric spaces for 2-summable divergence measure fields.

We now return to the content of the present paper. As already mentioned, the main idea is to present

a new proof of the Gauss–Green formula for essentially bounded divergence measure fields F on Ω for sets of

finite perimeter E ⊂⊂ Ω. Carefully studying the paper of Chen and Torres [7], we noticed that it was possible
to work directly with E along the lines of Vol’pert’s proof for essentially bounded BV-vector fields, which was
sketched above. Hence we are able to avoid the need to approximate E from the interior by smooth domains.

While the statement of the fundamental result (Theorem 3.2) is essentially the same as the main result in

Theorem 5.2 of Chen, Torres and Ziemer [9], our proof is much simpler. Indeed, beyond known facts from

geometric measure theory concerning sets of finite perimeter and functions of bounded variation, it relies

only on the following three ingredients for essentially bounded divergence measure fields F ∈ DM∞(Ω;ℝn):
(1) The absolute continuity property of the divergence of the field: |div F| ≪H n−1

.

(2) The Leibniz rule of [5]: if g ∈ BV(Ω) ∩ L∞(Ω), then gF ∈ DM∞(Ω;ℝn) and

div(gF) = g∗ div F + F ⋅ Dg,

where g∗ is the precise representative of g and F ⋅ Dg is a Radon measure, which is the weak-star limit of

a radially mollified sequence F ⋅ ∇(g ∗ ρδ) and is absolutely continuous with respect to |Dg|.



G. E. Comi and K. R. Payne, Divergence measure fields | 183

(3) The divergence theorem in the case of compactly supported vector fields: if F has compact support in Ω,

then div F(Ω) = 0.
The main result will state that if F ∈ DM∞(Ω;ℝn) and if E ⊂⊂ Ω is a set of finite perimeter in Ω, then there

exist interior and exterior normal traces of F on ∂∗E; that is, (Fi ⋅ νE), (Fe ⋅ νE) ∈ L∞(∂∗E;H n−1) such that

a pair of Gauss–Green formulas analogous to (1.6) hold:

div F(E1) = −2χEF ⋅ DχE(∂∗E) = − ∫
∂∗E Fi ⋅ νE dH

n−1

and

div F(E1 ∪ ∂∗E) = −2χ
Ω\EF ⋅ DχE(∂∗E) = − ∫

∂∗E Fe ⋅ νE dH
n−1

,

where χEF ⋅ DχE and χΩ\EF ⋅ DχE are the weak star limits, respectively, of the sequences χEF ⋅ ∇(χE ∗ ρδ) and
χ
Ω\EF ⋅ ∇(χE ∗ ρδ) as δ → 0, up to a subsequence. Moreover, one will have the following trace estimates:

‖Fi ⋅ νE‖L∞(∂∗E;H n−1) ≤ ‖F‖L∞(E;ℝn) and ‖Fe ⋅ νE‖L∞(∂∗E;H n−1) ≤ ‖F‖L∞(Ω\E;ℝn).
We notice that this new proof also adjusts a dubious point in the proof of the Gauss–Green formula in [7];

indeed, [7, formula (44)], which states

χEF ⋅ DχE = χ∗EF ⋅ DχE ,

is false in general for a vector field F ∈ DM∞(Ω;ℝn) and a set E ⊂⊂ Ω of finite perimeter in Ω (see also

Remark 3.4). In addition, this method of proof yields immediately many relevant consequences, such as the

representation formula for div F on the reduced boundary of sets of finite perimeter, integration by parts

formulas and various results on gluing constructions which come from the ability to directly localize con-

structions as one does not need to pass through an approximation procedure.

We conclude with a brief summary of the contents of the present work. In Section 2, we give the nec-

essary background and preliminary results on Radon measures, sets of finite perimeter and divergence

measure fields, including the needed ingredients (1) and (2) listed above (see Corollary 2.16 and Theo-

rem 2.18). In Section 3, after proving the main result on the Gauss–Green formulas in Theorem 3.2 for

DM∞(Ω;ℝn)-fields, we derive some useful corollaries including a representation of the measure divF on the

reduced boundary and a version for fields which are locally essentially bounded divergence measure fields

F ∈ DM∞
loc

(Ω;ℝn) (see Corollaries 3.5 and 3.6). We also prove that, in the case of continuous fields F, the
normal trace is the classical dot product in Theorem 3.7. In Section 4, we present various integration by

parts formulas for F ∈ DM∞
loc

(Ω;ℝn) and locally Lipschitz functions φ on sets of locally finite perimeter E
and discuss some applications including improved L∞-estimates of the normal traces. We also discuss the

determination of normal traces in Proposition 4.10. In Section 5, we present two gluing constructions for

building DM∞(Ω;ℝn)-fields out of a pair of DM∞-fields whose domains decompose Ω, with or without

essential overlap. These results are similar to results presented in [7] and [9]. Ultimately, we will use these

constructions also to obtain Gauss–Green and integration by parts formulas up to the boundary of open

bounded sets with regular enough boundary in Corollary 5.5. Finally, in Section 6 we will make some con-

cluding remarks concerning the role of p =∞ and some additional comparisons with the literature including

alternate representation formulas for the normal traces.

2 Notation and preliminary results
In this section, we wish to set the notations we will use and present the necessary preliminaries for the main

results in the following sections. In particular, we will need some known facts from abstract measure the-

ory, including weak convergence of Radon measures and elements of geometric measure theory including

Hausdorff measures, capacity and elements of the Caccioppoli–De Giorgi–Federer theory of sets of finite
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perimeter. The notion of divergencemeasure fieldswill be recalled, togetherwith some important preliminary

results concerning the absolute continuity of div F with respect to H n−1
and the crucial Leibniz formula for

products of essentially bounded functions of bounded variation and essentially boundeddivergencemeasure

fields. We will attempt to be brief while keeping the exposition relatively self-contained.

We begin with some notation. In the rest of the paper, Ω is an open subset ofℝn and ⊂ is equivalent to ⊆.
The symmetric difference of sets is denoted by A∆B := (A \ B) ∪ (B \ A). We denote by E ⊂⊂ Ω a set E whose
closure, E, is compact and contained in Ω, by E∘ the interior of the set E and by ∂E its topological boundary.

We denote by L n
and H α

the Lebesgue and α-dimensional Hausdorff measures on ℝn, where α ≥ 0.
Unless otherwise stated, ameasurable set is anL n

-measurable set. For anymeasurable set E ⊂ ℝn,wedenote
by |E| the L n

-measure of E, while, when applied to a function with values in ℝm, | ⋅ | is the euclidian norm.

As usual, B(x, r) is the open ball with center in x and radius r > 0 and ωn = |B(0, 1)|. The unit sphere in ℝn

is denoted by 𝕊n−1, where H n−1(𝕊n−1) = nωn. We will denote byB(Ω) the Borel sigma algebra generated by

the open subsets of (Ω, | ⋅ |)which is a locally compact and separable metric space. We also use the standard

notations μ A for the restriction of a measure μ to the set A and μ ≪ ν to indicate that the measure μ is

absolutely continuous with respect to the measure ν.
For k ∈ ℕ

0
∪ {+∞} and m ∈ ℕ we denote by Ckc(Ω;ℝm) := {φ ∈ Ck(Ω;ℝm) : supp(φ) ⊂⊂ Ω} the space

of Ck functions compactly supported in Ω which will be endowed with the sup norm

‖φ‖∞ = sup
x∈Ω
|φ(x)|.

We denote by Lip(Ω), Lip
loc
(Ω) and Lipc(Ω) the spaces of Lipschitz, locally Lipschitz and Lipschitz functions

with compact support in Ω, respectively.

2.1 Radon measures and weak-star convergence

The needed calculus for divergence measure fields operates in the context of real-signed and vector-valued

Radon measures. Hence elements of this general measure theory are essential for the development. We have

followed essentially the treatments of themonographsAmbrosio–Fusco–Pallara [2] andEvans–Gariepy [14],

which contain the proofs of the results merely stated herein.

We begin with the notions of Radon measures and their total variation.

Definition 2.1. Let Ω be open inℝn.
(a) A measure μ on Ω is called a positive Radon measure on Ω if μ is nonnegative, every B ∈ B(Ω) is

μ-measurable, and μ is finite on the compact subsets of Ω.

(b) A real-signed (or vector-valued) measure in Ω is called a real-signed (or vector-valued) Radon measure
on Ω if it is defined on B(K) for any compact subset K of Ω and the total variation of μ is finite on every
compact K ⊂ Ω. This means that the total variation measure

|μ|(B) := sup{
+∞

∑
k=0
|μ(Bk)| : Bk Borel sets pairwise disjoint, B =

+∞

⋃
k=0

Bk},

defined onB(Ω) is finite on the compact subsets of Ω.

(c) The space of real Radon measures on Ω is denoted byM
loc
(Ω) and the space ofℝm-vector-valued Radon

measures byM
loc
(Ω;ℝm). In addition, if |μ|(Ω) <∞, then μ is a (real-signed or vector-valued) finite Radon

measure and we write μ ∈M(Ω) or μ ∈M(Ω;ℝm), if it is vector-valued.

It is well known that any positive Radon measure is inner and outer regular; that is, for any B ∈ B(Ω),

μ(B) = sup{μ(K) : K ⊂ B, K compact} and μ(B) = inf{μ(U) : B ⊂ U, U open}. (2.1)

In addition, each μ ∈M(Ω;ℝm) determines a positive Radon measure, the total variation measure |μ|, which
is given by its values on open subsets A ⊂ Ω through the formula

|μ|(A) := sup{∫
Ω

φ ⋅ dμ : φ ∈ Cc(A;ℝm), ‖φ‖∞ ≤ 1}.
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Since μ is absolutely continuous with respect to |μ|, the Radon–Nikodym theorem and elementary consider-

ations give rise to the polar decomposition of μ; that is, there exists a unique f ∈ L1(Ω, |μ|;ℝm)with |f(x)| = 1
for |μ|-a.e. x ∈ Ω such that

μ = f|μ|. (2.2)

For these results, we refer to [2, Proposition 1.43, Proposition 1.47 and Corollary 1.29].

We now briefly discuss the notion of weak-star convergence and a compactness criterion for such

measures. The Riesz representation theorem shows that the spacesM
loc
(Ω;ℝm) andM(Ω;ℝm) can be identi-

fiedwith the duals of Cc(Ω;ℝm) and C0(Ω;ℝm), respectively, where C0(Ω;ℝm) is the completion of Cc(Ω;ℝm)
with respect to the sup norm; that is, the space of continuous functions φ on Ω satisfying the property: for

any ε > 0 there exists a compact set K ⊂ Ω such that |φ(x)| < ε for each x ∈ Ω \ K.

Definition 2.2. Given a sequence {μk} inM(Ω), one says that μk weak-star converges to μ ∈M(Ω) if

lim

k→+∞
∫
Ω

φ ⋅ dμk = ∫
Ω

φ ⋅ dμ for all φ ∈ C
0
(Ω;ℝm).

If {μk} and μ are inM
loc
(Ω), one says that μk locally weak-star converges to μ if

lim

k→+∞
∫
Ω

φ ⋅ dμk = ∫
Ω

φ ⋅ dμ for all φ ∈ Cc(Ω;ℝm).

Necessary conditions for the weak-star convergence μk
∗⇀ μ inM(Ω;ℝm) are

lim sup

k→+∞
|μk|(Ω) <∞ and |μ|(Ω) ≤ lim inf

k→+∞
|μk|(Ω),

which follow from the definition of dual norm and the Uniform Boundedness Principle.

More importantly, one has the following weak compactness criterion inM(Ω;ℝm):

sup{|μk|(Ω) : k ∈ ℕ} < +∞ ⇒ there exists a weak-star converging subsequence of {μk};

see [2, Theorem 1.59].

Remark 2.3. As is well known, weak-star convergence of finite Radon measures is implied by the local

weak-star convergence under the condition that sup |μk|(Ω) = C <∞. We observe that this condition implies

|μ|(Ω) ≤ C. Therefore, in what follows, we will always write μk
∗⇀ μ to denote local weak-star convergence,

and, in the case of finite Radon measures, we will also check the condition sup |μk|(Ω) <∞.

We quote nowauseful result concerningweak-star convergencewhichwill play a key role in the L∞-estimates

of the normal traces of the Gauss–Green formula of Theorem 3.2.

Lemma 2.4. Let μk , μ ∈M(Ω;ℝm) and let ν be a positive Radonmeasure on Ω such that μk
∗⇀ μ and |μk|

∗⇀ ν.
Then the following statements hold:
(1) |μ| ≤ ν and for each μ-measurable set E ⊂⊂ Ω satisfying ν(∂E) = 0 one has

μ(E) = lim

k→+∞
μk(E) and ν(E) = lim

k→+∞
|μk|(E).

(2) Given any x ∈ Ω and R = Rx > 0 such that B(x, R) ⊂⊂ Ω, then for L 1-a.e. r ∈ (0, R) we have

ν(∂B(x, r)) = 0.

Hence, μk(B(x, r))→ μ(B(x, r)) and |μk|(B(x, r))→ ν(B(x, r)) for such values of r.

Proof. For point (1) we refer to [2, Proposition 1.62]. For completeness, we recall briefly the proof of point (2),

which follows from the fact that there are limitations on how much a Radon measure can concentrate. For

an interval I, if {At}t∈I is a family of ν-measurable relatively compact sets in Ω such that the sets ∂At are
pairwise disjoint, then there exists a countable set N such that ν(∂At) = 0 for all t ∈ I \N. Indeed, since ν
is finite on bounded sets and additive, the set {t ∈ I : ν(∂At) > ε} is finite for any ε > 0. This implies that the

set {t ∈ I : ν(∂At) > 0} is at most countable (see also [2, observation at the end of Section 1.4]). By applying

this argument to the family {B(x, r)}r∈(0,R), one has that ν(∂B(x, r)) = 0 forL 1

-a.e. r ∈ (0, R). Hence, by using
point (1), one concludes the proof of (2).
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2.2 Relative capacity and relations to Hausdorff measures

As is well known, the notion of capacity is very useful in the study of the fine properties of Sobolev functions

and for Sobolev-type inequalities for functions of bounded variation. Herein the notion will play a key role

in the proof of the absolute continuity of divergence measures with respect to Hausdorff measures (Corol-

lary 2.16 which depends on Theorem 2.15). The brief exposition here borrows from the monographs of

Maz’ya [22], Heinonen–Kilpeläinen–Martio [20] and Evans–Gariepy [14].

Definition 2.5. For 1 ≤ p ≤ n and a compact subset K of the open set Ω in ℝn, we define the p-capacity of K
relative to Ω as

capp(K, Ω) := inf{∫
Ω

|∇φ|p dx : φ ∈ C∞c (Ω), φ ≥ 1 on K}.

If U ⊂ Ω is open, we set

capp(U, Ω) := sup{capp(K, Ω) : K ⊂ U compact}

and, for an arbitrary set A ⊂ Ω,

capp(A, Ω) := inf{capp(U, Ω) : A ⊂ U ⊂ Ω, U open}.

If Ω = ℝn, we write capp(A,ℝn) = capp(A) for any set A.

For any compact subset K of Ω, Definition 2.5 is equivalent to

capp(K, Ω) := inf {∫
Ω

|∇φ|p dx : φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}∘ ⊃ K},

which follows from an approximation argument that one finds in [22, Section 2.2.1, point (ii)]. We shall use

the following well-known monotonicity properties of the capacity:

(1) If Ω
1
, Ω

2
, with Ω

1
⊂ Ω

2
, are open and A ⊂ Ω

1
, then capp(A, Ω2

) ≤ capp(A, Ω1
). In particular, if Ω

2
= ℝn,

then capp(A) ≤ capp(A, Ω) for any open set Ω and any set A ⊂ Ω.
(2) If A

1
⊂ A

2
⊂ Ω, then

capp(A1, Ω) ≤ capp(A2, Ω). (2.3)

We recall a classical result which shows the relations between the p-capacity and the (n − p)-Hausdorff
measure.

Theorem 2.6. The following statements hold:
(a) Let K ⊂ Ω be a compact set. If 1 < p < n, then H n−p(K) <∞ implies capp(K, Ω) = 0, while, if p = 1, one

has H n−1(K) = 0 if and only if cap
1
(K, Ω) = 0.

(b) In addition, if Ω = ℝn and A ⊂ ℝn, then:
(1) If 1 < p < n and capp(A) = 0, then H s(A) = 0 for s > n − p.
(2) cap

1
(A) = 0 if and only if H n−1(A) = 0.

When 1 < p < n, part (a) of the theorem is the content of [20, Theorem 2.27] while part (b) is the content of

[14, Theorem 4 of Section 4.7.2]. When p = 1, the theorem follows from [19, Theorems 4.4 and 5.1]. More

precisely, they show that cap
1
is comparable to a BV notion of capacity and that this BV capacity and H n−1

vanish on the same sets. See also [14, Theorem 3 of Section 5.6.3] for a proof of part (b) when p = 1 by using
isoperimetric inequalities.

Next, we state a useful result concerning the compact sets K ⊂ Ω for which capp(K, Ω) = 0. Such a result
can be also seen as an easy consequence of [20, Lemma 2.9]; however, we will give an alternate proof which

does not use the notion of sets of zero p-capacity and Choquet’s capacitability theorem. Instead, we make

use of the Gagliardo–Nirenberg–Sobolev inequality.

Lemma 2.7. Let 1 ≤ p < n and let K be a compact set such that capp(K, Ω) = 0 for an open set Ω ⊃ K. Then
capp(K, Ω) = 0 for any bounded open set Ω satisfying K ⊂ Ω ⊂⊂ Ω.
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Proof. Let Ω be such that K ⊂ Ω ⊂⊂ Ω. We take φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}∘ ⊃ K and ψ ∈ C∞c (Ω),
0 ≤ ψ ≤ 1, {ψ = 1}∘ ⊃ K, then φψ ∈ C∞c (Ω), 0 ≤ φψ ≤ 1, {φψ = 1}∘ ⊃ K. Thus

capp(K, Ω) ≤ ∫
Ω

 |∇(φψ)|
p dx ≤ 2p(∫

Ω

|∇φ|p dx + ‖∇ψ‖p∞ ∫
Ω

 |φ|
p dx)

≤ 2p(∫
Ω

|∇φ|p dx + ‖∇ψ‖p∞|Ω|
p
n ‖φ‖pLp∗ (Ω)) ≤ C(∇ψ, Ω, p)∫

Ω

|∇φ|p dx,

Taking the inf over φ gives the result, since capp(K, Ω) = 0.

We now state the technical lemma which will be used to show the absolute continuity of the distributional

divergence of divergence measure fields. A similar result was shown in [23], in the proof of Theorem 2.8.

Lemma 2.8. Let 1 ≤ p < n and let K be a compact subset of Ω. If capp(K, Ω) = 0, then there exists a sequence
of functions φj ∈ C∞c (Ω) such that
(i) 0 ≤ φj ≤ 1 and φj = 1 on K,
(ii) ‖∇φj‖Lp(Ω;ℝn) → 0,
(iii) for each j, supp(φj) is contained in an open set Uj ⊂⊂ Ω such that {Uj} is a decreasing sequence and
⋂∞j=1 Uj = K, which implies φj(x)→ 0 for all x ∈ Ω \ K.

Proof. Since K is a compact set and capp(K, Ω) = 0, it follows from Lemma 2.7 that capp(K, U) = 0 for any

open set U such that K ⊂ U ⊂⊂ Ω. By selecting a decreasing sequence of open sets Uj such that Uj ⊂⊂ Ω
and⋂+∞j=1 Uj = K, one concludes that capp(K, Uj) = 0 for any j. Therefore, one can find φj ∈ C∞c (Uj) such that
0 ≤ φj ≤ 1, φj = 1 on a neighborhood of K and ‖∇φj‖Lp(Ω;ℝn) → 0. Finally, if x ∉ K, then x ∉ Uj for any j ≥ j0,
for some j

0
, which easily implies φj(x)→ 0.

One could extend Lemma 2.8 to the borderline case p = n (with a similar proof) if one makes use of the

fullW1,p
-Sobolev capacity, which employs the full functional ∫

Ω

[|∇φ|p + |φ|p] dx in the definition of relative
p-capacity (Definition 2.5). Alternatively, one can apply the notion of p-capacity and Choquet’s capacitability
theorem, as done in [20].

2.3 Functions of bounded variation and sets of finite perimeter

We recall now a few basic definitions and results in the theory of functions of bounded variation and sets of

finite perimeter², which give essential ingredients in the framework for generalized Gauss–Green theorems.

In particular, we will make use of elements in the structure theory of sets of finite perimeter as developed by

De Giorgi [12] and Federer [16] (see also the manuscript of Federer [17]). We follow mainly the treatment of

the monographs [2] and [14] and additional facts will be recalled later, when they are needed.

Definition 2.9. Let Ω ⊂ ℝn be open.
(a) A function u ∈ L1(Ω) is said to be of bounded variation in Ω if the distributional gradient Du is a finite
ℝn-vector-valued Radonmeasure on Ω and the space of all such functions will be denoted by BV(Ω). One
says that u is of locally of bounded variation in Ω if for every open setW ⊂⊂ Ω one has u|W ∈ BV(W); the
space of all such functions will be denoted by BV

loc
(Ω).

(b) A measurable set E ⊂ Ω is said to be a set of finite perimeter in Ω if χE ∈ BV(Ω) and said to have locally
finite perimeter in Ω if χE ∈ BVloc

(Ω).

Consequently,DχE is anℝn-vector-valuedRadonmeasure onΩwhose total variation is |DχE|and, by thepolar
decomposition ofmeasures (2.2), one canwrite DχE = νE|DχE|, where νE is a |DχE|-measurable function such

that |νE(x)| = 1 for |DχE|-a.e. x ∈ Ω.

2 Such sets are also known as Caccioppoli sets.
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Remark 2.10. Important examples of sets of finite perimeter in Ω are open bounded sets U ⊂⊂ Ω such that

H n−1(∂U) <∞ or ∂U is Lipschitz. In this second case, it is possible to show that

|DχU | =H n−1 ∂U, (2.4)

as is known from the work of Federer (see [2, Proposition 3.62], for example).

While (2.4) says that |DχU | is concentrated on the topological boundary of a bounded Lipschitz domain U,
this does not happen in general. Indeed, the topological boundary of a bounded set of finite perimeter E
can be very irregular, including the possibility of having positive Lebesgue measure Ln. On the other hand,

De Giorgi [12] discovered a suitable subset of ∂E of finiteH n−1
-measure on which |DχE| is concentrated if E

has finite perimeter in Ω.

Definition 2.11. Let E be a measurable subset of ℝn and let Ω be the largest open subset for which E is

of locally finite perimeter in Ω. The reduced boundary of E, denoted by ∂∗E, is defined as the set of all

x ∈ supp(|Dχ
E
|) ∩ Ω such that the limit

νE(x) := limr→0
DχE(B(x, r))
|DχE|(B(x, r))

exists inℝn and satisfies
|νE(x)| = 1.

The function νE : ∂∗E → 𝕊n−1 is called themeasure theoretic unit interior normal to E.

A precise justification for calling νE a generalized interior normal comes fromDeGiorgi’s blow-up construction
of E around a point of ∂∗E in which, for ε > 0 small enough, one knows that E ∩ B(x, ε) is asymptotically

close to the half-ball Π

+
νE (x) ∩ B(x, ε). This construction will be taken up in more detail in preparation for

Proposition 4.10 concerning the determination of normal traces of divergence measure fields. Moreover, the

fundamental result of De Giorgi is that

|DχE| =H n−1 ∂∗E,

which generalizes (2.4) to sets of finite perimeter and leads to De Giorgi’s generalized Gauss–Green theo-

rem (1.3). For the proof of these claims, we refer to [2, Theorem 3.59].

Crucial to the calculus on sets of finite perimeter E in Ω is Federer’s structure theorem which we now

recall. For any measurable set E ⊂ Ω and for any α ∈ [0, 1] define the subsets

Eα := {x ∈ Ω : d(E, x) = α}, (2.5)

where

d(E, x) := lim
r→0

|B(x, r) ∩ E|
|B(x, r)| (2.6)

is the Lebesgue density of x in E. One calls E1 and E0 the measure theoretic interior and exterior of E in Ω,

respectively, while ∂mE := Ω \ (E0 ∪ E1) is called the measure theoretic boundary of E in Ω. If E has finite

perimeter in Ω, Federer’s structure theorem (see [2, Theorem 3.61]) states that

∂∗E ⊂ E1/2 ⊂ ∂mE (2.7)

and that there exists a subsetN with H n−1(N) = 0 such that

Ω = E1 ∪ ∂∗E ∪ E0 ∪N. (2.8)

In particular, since H n−1(∂mE \ ∂∗E) = 0, we can integrate indifferently over ∂∗E or ∂mE with respect to

the Hausdorff measure H n−1
and E has density 0,

1

2

or 1 in Ω at H n−1
-a.e. x ∈ E. These facts will play an

important role in Lemma 2.13 below on smooth approximations of χE for sets of finite perimeter.

In part to prepare for the approximation results in Lemma 2.13, we recall a few additional facts about BV

functions. It is a well-known result from BV theory (see for instance [2, Corollary 3.80]) that every function of
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bounded variation u admits a representative which is the pointwise limitH n−1
-a.e. of any mollification of u.

In particular, this representative coincides H n−1
-a.e. with the precise representative u∗ of u defined by

u∗(x) :=
{{{
{{{
{

lim

r→0

1

|B(x, r)| ∫
B(x,r)

u(y) dy if this limit exists,

0 otherwise,

(2.9)

and hence, given u ∈ BV(Ω), if one defines uε := u ∗ ρε in {x ∈ Ω : dist(x, ∂Ω) > ε}, for any radially symmetric

mollifier ρ, one has
uε(x)→ u∗(x) H n−1

-a.e. x ∈ Ω. (2.10)

Next, we record the following elementary extension property as a remark.

Remark 2.12. If u ∈ BV(Ω) has compact support, then the zero extension û to ℝn \ Ω belongs to BV(ℝn).
Indeed, it is clear that û is in L1(ℝn). Fix ξ ∈ C∞c (Ω)with ‖ξ‖∞ ≤ 1 and ξ = 1 in a neighborhood of the support
of u. Then, for any φ ∈ C∞c (ℝn;ℝn) with ‖φ‖∞ ≤ 1 one has

∫
ℝn

û divφ dx = ∫
Ω

u divφ dx = ∫
Ω

u div(ξφ + (1 − ξ)φ) dx = ∫
Ω

u div(ξφ) dx ≤ |Du|(Ω), (2.11)

since ξφ ∈ C∞c (Ω;ℝn) and ‖ξφ‖∞ ≤ 1. Taking the supremum over such φ, one obtains

|Dû|(ℝn) ≤ |Du|(Ω) <∞.

In addition, if φ ∈ C∞c (Ω;ℝn), one has

∫
ℝn

û divφ dx = ∫
Ω

u divφ dx,

which implies that Dû = Du inM(Ω;ℝn), since they are both finite Radon measures and C∞c (Ω;ℝn) is dense
in Cc(Ω;ℝn). Hence, one obtains |Dû|(Ω) = |Du|(Ω), which, combined with (2.11) yields |Dû|(ℝn \ Ω) = 0.

We conclude this subsection with the needed properties of mollifying characteristic functions of sets of finite

perimeter.

Lemma 2.13. Let E ⊂⊂ Ω be a set of finite perimeter in Ω and let χE;δ := χE ∗ ρδ, where ρ ∈ C∞c (B(0, 1)) is
a radially symmetric mollifier. Then the following results hold:
(1) There is a setN with H n−1(N) = 0 such that, for all x ∈ Ω \N, χE;δ(x)→ χ∗E(x), where

χ∗E(x) =
{{{
{{{
{

1 if x ∈ E1,
1

2

if x ∈ ∂∗E,
0 if x ∈ E0.

(2.12)

(2) There exists δ
0
> 0 such that for any δ < δ

0
one has the uniform bound

‖∇χE;δ‖L1(Ω;ℝn) ≤ |DχE|(Ω). (2.13)

(3) One has the following weak-star limits inM(Ω;ℝn):
(a) ∇χE;δ

∗⇀ DχE,
(b) χE∇χE;δ

∗⇀ 1

2

DχE,
(c) χ

Ω\E∇χE;δ
∗⇀ 1

2

DχE.
(4) If U ⊂⊂ Ω is a an open set with |DχE|(∂U) = 0, then |∇χE;δ|(U)→ |DχE|(U).

Proof. For the pointwise convergence of point (1), by (2.10), one knows that χE;δ → χ∗E H n−1
-a.e. and that

χ∗E(x) = limr→0
1

|B(x, r)| ∫
B(x,r)

χE(y)dy = d(E, x),

where d(E, x) is the Lebesgue density (2.6). It follows that χ∗E(x) = 1, 0 if x ∈ E
1

, E0, respectively. Moreover,
by (2.7), it follows that χ∗E(x) =

1

2

if x ∈ ∂∗E.
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For the estimate of point (2), consider first the case Ω = ℝn. For any φ ∈ C∞c (ℝn;ℝn) with ‖φ‖∞ ≤ 1 one
has

∫
ℝn

χE;δ(x)divφ(x) dx = ∫
ℝn

χE(y)div(φ ∗ ρδ)(y) dx ≤ |DχE|(ℝn).

Taking the supremum over φ gives (2.13) in this case. In the general case, since E ⊂⊂ Ω, there exists δ
0
> 0

sufficiently small to ensure that for any 0 < δ < δ
0
the support of χE;δ is compact inΩ. Hence, if χ̂E denotes the

zero extension toℝn, onehas ‖∇χ̂E;δ‖L1(Ω;ℝn) = ‖∇χ̂E;δ‖L1(ℝn;ℝn) ≤ |Dχ̂E|(ℝn)by theprevious case. Remark2.12

then shows that |Dχ̂E|(ℝn) = |DχE|(Ω) and this gives (2.13) in the general case.
For the weak-star limit (a) of point (3), since χE;δ → χE in L1(Ω), one has

∫
ℝn

∇χE;δ ⋅ φ dx = − ∫
ℝn

χE;δ divφ dx → − ∫
ℝn

χE divφ dx = ∫
ℝn

φ ⋅ dDχE

for each φ ∈ C1c (Ω;ℝn). Consequently, one has the limit (a) in the sense ofℝn-vector-valued Radonmeasures,

by the density of C1c (Ω;ℝn) in Cc(Ω;ℝn) with respect to the sup norm, and by the uniform boundedness of

total variation given in (2.13).

In order to show limit (b), consider φ ∈ C1c (Ω;ℝn) and notice that

∫
Ω

φχE ⋅ ∇χE;δ dx = ∫
Ω

χE div(χE;δφ) dx − ∫
Ω

χEχE;δ divφ dx

= −∫
Ω

φχE;δ ⋅ dDχE − ∫
Ω

χEχE;δ divφ dx.

Now, let δ → 0 and apply Lebesgue’s dominated convergence theorem to the measures DχE andL n
and use

point (1) in order to obtain

lim

δ→0
∫
Ω

φχE ⋅ ∇χE;δ dx = −∫
Ω

φχ∗E ⋅ dDχE − ∫
Ω

χ2E divφ dx

= −∫
Ω

1

2

φ ⋅ dDχE − ∫
Ω

χE divφ dx

= −∫
Ω

1

2

φ ⋅ dDχE + ∫
Ω

φ ⋅ dDχE

since χ∗E =
1

2

on ∂∗E and supp |DχE| = ∂∗E. Therefore, by the density of C1c (Ω;ℝn) in Cc(Ω;ℝn) with respect
to the supremum norm, claim (b) follows.

Finally, for limit (c), observe that

χ
Ω\E∇χE;δ = ∇χE;δ − χE∇χE;δ

∗⇀ (1 −
1

2

)DχE

as δ → 0 by combining limits (a) and (b).

For property (4), we refer to [2, proof of Proposition 3.7].

2.4 Divergence measure fields and their fundamental properties

As a final preliminary, we give the precise definition of the class of low regularity vector fields that we will

consider and present a few properties that are fundamental for the generalized Gauss–Green formulas and

their applications. We begin with the class of vector fields.

Definition 2.14. Let Ω ⊂ ℝn be open and 1 ≤ p ≤∞.
(a) A vector field F ∈ Lp(Ω;ℝn) is called a divergence measure field, and we write F ∈ DMp(Ω;ℝn), if the

distributional divergence div F is a real finite Radon measure on Ω.

(b) A vector field F is a locally divergencemeasure field, andwewrite F ∈ DM
p
loc

(Ω;ℝn), if F|W ∈ DMp(W;ℝn)
for anyW ⊂⊂ Ω open.

In the case p =∞, F will be called a (locally) essentially bounded divergence measure field.
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It is worth mentioning that if F = (F
1
, . . . , Fn) is a vector field with components Fj ∈ BV(Ω) ∩ Lp(Ω), then

F ∈ DMp(Ω;ℝn); however, cancelations in the singular part of the measure div F can allow forDMp(Ω;ℝn)
without having components in BV(Ω) ∩ Lp(Ω).

A first important result concerns the absolute continuity properties of div F with respect to q-capacity,
which depends on the Lebesgue index p for F ∈ DMp

loc

(Ω;ℝn). While this result is known (see [23, Theo-

rem 2.8]), given its importance, a complete and self-contained proof using Definition 2.5 of the q-capacity
will be given.

Theorem 2.15. If F ∈ DMp
loc

(Ω;ℝn) with n
n−1 < p ≤∞, then |div F| ≪ capq(⋅, Ω), where q :=

p
p−1 is the Hölder

conjugate; that is, for each Borel set B ⊂ Ω such that capq(B, Ω) = 0, |div F|(B) = 0.

Proof. Since div F is a Radon measure on Ω, it follows that its positive and negative parts (div F)± are well
defined. Let B ⊂ Ω be a Borel set with capq(B, Ω) = 0. By the Hahn decomposition theorem, there exist Borel

setsB± ⊂ BwithB+ ∪ B− = B andB+ ∩ B− = 0 such that±div F B± ≥ 0; that is, (div F)+ B = div F B+ and
(div F)− B = −div F B−. Hence, it suffices to prove that div F(B±) = 0, and, in order to do so, it suffices to

prove div F(K) = 0 for any compact subset K of B±, by (2.1).
We show only the case K ⊂ B+, as the case of B− is analogous. By the monotonicity of capacity, (2.3),

capq(K, Ω) = 0 for any K ⊂ B if capq(B, Ω) = 0. Since capq(K, Ω) = 0 and 1 ≤ q < n, we can apply Lemma 2.8

in order to find a sequence of test functions φj ∈ C∞c (Ω) such that
(1) 0 ≤ φj ≤ 1 and φj = 1 on K,
(2) ‖∇φj‖Lq(Ω;ℝn) → 0,

(3) for each j, supp(φj) is contained in an open set Uj ⊂⊂ Ω such that {Uj} is a decreasing sequence and

⋂∞j=1 Uj = K.
Then, property (1) and the Hölder inequality yield

div F(K) + ∫
Ω\K

φj d div F = ∫
Ω

φj d div F = −∫
Ω

F ⋅ ∇φj dx ≤ ‖F‖Lp(U
1
;ℝn)‖∇φj‖Lq(Ω;ℝn)

and so, by properties (2) and (3),

div F(K) ≤ |div F|(Uj \ K) + ‖F‖Lp(U
1
;ℝn)‖∇φj‖Lq(Ω;ℝn) → 0 as j → +∞.

We remark that a similar result can be proven if p = n
n−1 by making use of the full W1,q

-capacity to extend

Lemma 2.8 to this borderline case. We refer to [23, Theorem 2.8] for more details.

The following corollary (for which we refer also to [25, Theorem 3.2]), in the case p =∞, is one of the
pillars on which the proof of generalized Gauss–Green theorems for essential bounded divergence measure

fields rests.

Corollary 2.16. If F ∈ DM
p
loc

(Ω;ℝn) and n
n−1 ≤ p <∞, then |div F|(B) = 0 for any Borel set B with σ-finite

H n−q measure, where q := p
p−1 . If p =∞, then |div F| ≪H n−1.

Proof. If n
n−1 < p <∞, it suffices to apply Theorems2.6 and2.15. Indeed, oneneeds to show that |div F|(B) = 0

for each B ∈ B(Ω) such that there exists a family {Bj} ⊂ B(Ω) satisfying B ⊂ ⋃j Bj and H n−q(Bj) <∞. For
every compact K ⊂ Bj, one hasH n−q(K) <∞, hence capq(K, Ω) = 0 and thus |div F|(K) = 0. By the inner reg-
ularity of the Radon measure |div F|, we get |div F|(Bj) = 0, and so |div F|(B) = 0, by σ-subadditivity. For the
case p = n

n−1 , we refer to [25, Theorem 3.2]. The case p =∞ follows analogously, by considering B ∈ B(Ω)
such that H n−1(B) = 0: then H n−1(K) = 0 for any compact K ⊂ B, which implies cap

1
(K, Ω) = 0, and so

|divF|(K) = 0. The inner regularity yields |divF|(B) = 0.

The result of Corollary 2.16 is optimal. Indeed, we have the following result, due to Šilhavý [25, Example 3.3

and Proposition 6.1]. The underlying construction will also be discussed in Example 6.1 to illustrate the

related fact of the possible absence of normal traces when p <∞.

Proposition 2.17. If 1 ≤ p < n
n−1 , then for an arbitrary signed Radon measure with compact support μ there

exists F ∈ DM
p
loc

(ℝn;ℝn) such that div F = μ. This means that μmay be not absolutely continuous with respect
to any Hausdorff measure or capacity.
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On the other hand, if n
n−1 ≤ p ≤∞, then for any s > n − q there exists a field F ∈ DM

p
loc

(ℝn;ℝn) such that
|div F| is not H s absolutely continuous.

It is not difficult to see that these results can be generalized to μ ∈M(Ω) with compact support in Ω and

F ∈ DM
p
loc

(Ω;ℝn).
We now recall a product rule for essentially bounded divergence measure fields which is the second fun-

damental ingredient for the generalized Gauss–Green formulas. This result appeared in [5, Theorem 3.1] and

we refer to [18, Theorem 2.1] for an improved proof.

Theorem 2.18. Let g ∈ BV(Ω) ∩ L∞(Ω) and F ∈ DM∞(Ω;ℝn). Then gF ∈ DM∞(Ω;ℝn) and

div(gF) = g∗ div F + F ⋅ Dg (2.14)

in the sense of Radon measures on Ω, where g∗ is the precise representative of g (therefore, the limit of the
mollified sequence gδ := g ∗ ρδ) and F ⋅ Dg is a Radon measure, which is the weak-star limit of F ⋅ ∇gδ and is
absolutely continuous with respect to |Dg|.

In addition, if g is also locally Lipschitz, then

div(gF) = g div F + F ⋅ ∇g

in the sense of Radon measures on Ω.

As previously noted, in the proof of the Gauss–Green formulas this product rule will be applied directly along

the lines of Vol’pert’s treatment of essentially bounded BV fields. We now formalize a few relevant observa-

tions concerning the extension of Vol’pert’s method toDM∞(Ω;ℝn)-fields. See also the related Remarks 3.3

and 3.4.

Remark 2.19. As noted following Definition 2.14, one has BV(Ω;ℝn) ∩ L∞(Ω;ℝn) ⊂ DM∞(Ω;ℝn). This
inclusion is strict for n ≥ 2. Indeed, one might consider the classical example

F(x, y) = sin( 1

x − y)(1, 1) ∈ DM∞(ℝ2;ℝ2) \ BV
loc
(ℝ2;ℝ2) ∩ L∞(ℝ2;ℝ2).

However, there is a certain parallelism between fields F ∈ DM∞(Ω;ℝn) and functions u ∈ BV(Ω), as they
enjoy many similar properties. For example, an important consequence of the coarea formula for BV func-

tions (see [2, Theorem 3.40]) is the absolute continuity property |Du| ≪H n−1
, while Corollary 2.16 yields

|div F| ≪H n−1
. This property plays a fundamental role in the proof of Theorem 2.18, and, as we shall see in

Section 3, it will be essential also in the proof of the Gauss–Green formulas. Moreover, DM∞(Ω;ℝn) is the
natural extension of BV(Ω;ℝn) ∩ L∞(Ω;ℝn) in the sense that (2.14) extends a similar product rule known for

the latter space, which one can find in [29, Chapter 4, Section 6.4]. For the reader’s convenience, we recall it

here: for any F ∈ BV(Ω;ℝn) ∩ L∞(Ω;ℝn) and g ∈ BV(Ω) ∩ L∞(Ω), one has gF ∈ BV(Ω;ℝn) ∩ L∞(Ω;ℝn) and,
for any j = 1, . . . , n,

Dj(gFj) = g∗DjFj + F∗j Djg,

which implies
div(gF) = g∗ div F + F∗ ⋅ Dg, (2.15)

where F∗ and g∗ are the precise representatives of F and g.
It is quite easy to show that these product rules (2.14) and (2.15) are consistent if F ∈ BV(Ω;ℝn) ∩

L∞(Ω;ℝn). Indeed, one reasons as in point (3) of Lemma 2.13 concerning weak-star limits of gradients of

mollified BV functions. Recall that F ⋅ Dg is the weak-star limit of F ⋅ ∇gδ as δ → 0, where gδ is a mollification

of g. Then one tests this sequence of Radonmeasures on a test function φ ∈ C1c (Ω) and some straightforward

calculations yield

∫
Ω

φ dF ⋅ Dg = ∫
Ω

φF∗ ⋅ dDg.

The density of C1c (Ω) in Cc(Ω) implies the identity F ⋅ Dg = F∗ ⋅ Dg inM(Ω), and hence the consistency of the
two product rules.
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Finally, we note that Vol’pert’s method consists of choosing g = χE, where E ⊂⊂ Ω and applying the

product rule to χEF and χ2EF and then using a lemma on fields with compact support (see [29, Chapter 5,

Section 1.4, Lemma 1]). We will follow the same path, using heavily Theorem 2.18 and Lemma 3.1 in the

proof of Theorem 3.2.

We conclude this section with the following simple extension result for divergence measure fields, which

is analogous to the zero extension result for BV functions given in Remark 2.12. Additional extension and

gluing results will be given in Section 6.

Remark 2.20. If F ∈ DMp(Ω;ℝn), for any p ∈ [1,∞], has compact support inside Ω, then its zero extension

to allℝn is inDMp(ℝn;ℝn). With

F̂(x) :=
{
{
{

F(x) if x ∈ Ω,
0 if x ∈ ℝn \ Ω,

one trivially has F̂ ∈ Lp(ℝn;ℝn). Arguing as in Remark 2.12, one can show that |div F̂|(ℝn) ≤ |div F|(Ω) <∞
and so F̂ ∈ DMp(ℝn;ℝn). In addition, if φ ∈ C∞c (Ω), one obtains

∫
ℝn

F̂ ⋅ ∇φ dx = ∫
Ω

F ⋅ ∇φ dx,

which implies div F̂ = div F inM(Ω), since they are both finite Radonmeasures and C∞c (Ω) is dense in Cc(Ω).
Hence, one gets |div F̂|(Ω) = |div F|(Ω), which, combined with the above inequality, yields |div F|(ℝn \ Ω) = 0
and div F̂ = 0 inℝn \ Ω.

Remark 2.21. One could obtain the same result by observing that, given a distribution T ∈ D(Ω), we have
supp(∂αT) ⊂ supp(T) for any α ∈ ℕn. Hence, for any F ∈ DM

p
loc

(Ω;ℝn)we have supp(div F) ⊂ supp(F). Thus,
if F has compact support contained in an open set V ⊂⊂ Ω, then div F = 0 in Ω \ V.

3 Gauss–Green formulas and consistency of normal traces
In this section, we establish versions of the Gauss–Green formula forDM∞(Ω;ℝn) andDM∞

loc

(Ω;ℝn)-fields
on sets of finite perimeter which are compactly contained in Ω. The method is analogous to the one Vol’pert

used in order to prove his integration by parts theoremand it is based on the product rule established by Chen

and Frid [5] and re-presented in [7] and [18]. The results are similar to those presented in the paper of Chen,

Torres and Ziemer [9], but here we are not using their theory concerning the one-sided approximation of sets

of finite perimeter by sets with smooth boundary. Therefore, we do not need to state a preliminary version of

the theorem for open sets with smooth boundary. In addition, our approach can be easily generalized to any

set of finite perimeter, even not compactly contained in Ω. Moreover, we will show the consistency of normal
traces in the sense that if F is continuous on Ω then there is no jump component in the measure div F on ∂∗E
since the interior and exterior normal traces coincide andagreeH n−1

-a.e.with the classical dot product F ⋅ νE.

3.1 Gauss–Green formulas inDM∞ andDM∞loc

We begin with the following result concerning fields with compact support, which is valid for any 1 ≤ p ≤∞
and can be seen as the easy case of the Gauss–Green formula, since there are no boundary terms.

Lemma 3.1. Let p ∈ [1,∞]. If F ∈ DMp(Ω;ℝn) has compact support in Ω, then

div F(Ω) = 0.

Proof. Since F has compact support, there exists an open set V satisfying supp(F) ⊂ V ⊂⊂ Ω. Then, by
Remark 2.21, we have div F = 0 in Ω \ V. Now, if we choose φ ∈ C∞c (Ω) such that φ ≡ 1 on a neighborhood
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of V, we obtain

0 = − ∫
Ω\V

F ⋅ ∇φ dx = −∫
Ω

F ⋅ ∇φ dx = ∫
Ω

φ d div F = ∫
V

φ d div F = div F(V)

and hence div F(Ω) = 0.

We next treat the case of essentially bounded divergence fields, where we recall that χE;δ := χE ∗ ρδ, where
ρ ∈ C∞c (B(0, 1)) is a radial mollifier.

Theorem 3.2. Let F ∈ DM∞(Ω;ℝn) and let E ⊂⊂ Ω be a set of finite perimeter in Ω. Consider the signed Radon
measures defined by

σi := 2χEF ⋅ DχE and σe := 2χΩ\EF ⋅ DχE , (3.1)

where χEF ⋅ DχE and χ
Ω\EF ⋅ DχE on Ω are the weak-star limits (up to subsequences) of χEF ⋅ ∇χE;δ and

χ
Ω\EF ⋅ ∇χE;δ as δ → 0. The measures (3.1) are absolutely continuous with respect to |DχE| (and hence
concentrated on ∂∗E) and satisfy

div F(E1) = −σi(∂∗E) and div F(E1 ∪ ∂∗E) = −σe(∂∗E). (3.2)

The flux measures σi , σe admit Radon–Nikodym derivatives with respect to the measure |DχE| =H n−1 ∂∗E
and denoting these derivatives by (Fi ⋅ νE), (Fe ⋅ νE) ∈ L1(∂∗E;H n−1) one has

div F(E1) = − ∫
∂∗E Fi ⋅ νE dH

n−1 and div F(E1 ∪ ∂∗E) = − ∫
∂∗E Fe ⋅ νE dH

n−1
. (3.3)

Moreover, the normal traces (Fi ⋅ νE), (Fe ⋅ νE) belong to L∞(∂∗E;H n−1) and one has the estimates

‖Fi ⋅ νE‖L∞(∂∗E;H n−1) ≤ ‖F‖L∞(E;ℝn) and ‖Fe ⋅ νE‖L∞(∂∗E;H n−1) ≤ ‖F‖L∞(Ω\E;ℝn). (3.4)

Proof. Using the product rule of Theorem 2.18, at the level of Radon measures on Ω, one has

div(χ2EF) = div(χE(χEF)) = χ
∗
E div(χEF) + χEF ⋅ DχE

= χ∗E(χ
∗
E div F + F ⋅ DχE) + χEF ⋅ DχE

= (χ∗E)
2

div F + χ∗EF ⋅ DχE + χEF ⋅ DχE , (3.5)

where χ∗E is the precise representative of χE given in formula (2.12). On the other hand, one also has

div(χ2EF) = div(χEF) = χ
∗
E div F + F ⋅ DχE (3.6)

and combining (3.5) with (3.6) yields

((χ∗E)
2 − χ∗E)div F + χ

∗
EF ⋅ DχE + χEF ⋅ DχE − F ⋅ DχE = 0. (3.7)

One has |div F| ≪H n−1
by Corollary 2.16 and hence div F (∂mE \ ∂∗E) = 0. By formula (2.12), the first

term in (3.7) satisfies

((χ∗E)
2 − χ∗E)div F = −

1

4

χ∂∗E div F. (3.8)

By Theorem 2.18, |F ⋅ DχE| ≪ |DχE| and |χEF ⋅ DχE| ≪ |DχE| and therefore these two measures are also sup-

ported on ∂∗E. In particular, this implies that χ∗EF ⋅ DχE =
1

2

F ⋅ DχE. From this fact and (3.8) one obtains

1

2

χ∂∗E div F + F ⋅ DχE − 2χEF ⋅ DχE = 0. (3.9)

Now, subtracting (3.9) from (3.6) gives

div(χEF) = χE1 div F +
1

2

χ∂∗E div F + F ⋅ DχE − 1
2

χ∂∗E div F + −F ⋅ DχE + 2χEF ⋅ DχE
= χE1 div F + 2χEF ⋅ DχE .
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On the other hand, adding (3.9) to (3.6) gives

div(χEF) = χE1 div F +
1

2

χ∂∗E div F + F ⋅ DχE + 1
2

χ∂∗E div F+F ⋅ DχE − 2χEF ⋅ DχE
= χE1∪∂∗E div F + 2F ⋅ DχE − 2χEF ⋅ DχE .

Notice that F ⋅ DχE − χEF ⋅ DχE is the weak-star limit inM(Ω) of a sequence

F ⋅ ∇(χE ∗ ρδk ) − χEF ⋅ ∇(χE ∗ ρδk ) = (χΩ − χE)F ⋅ ∇(χE ∗ ρδk ) = χΩ\EF ⋅ ∇(χE ∗ ρδk )

and hence

F ⋅ DχE − χEF ⋅ DχE = χΩ\EF ⋅ DχE . (3.10)

One has then the following identities of Radon measures on Ω:

div(χEF) = χE1 div F + 2χEF ⋅ DχE (3.11)

and

div(χEF) = χE1∪∂∗E div F + 2χΩ\EF ⋅ DχE . (3.12)

Since χEF ∈ DM∞(Ω;ℝn) clearly has compact support in Ω, by Lemma 3.1 and (3.11) one has

0 = div(χEF)(Ω) = div F(E1) + 2χEF ⋅ DχE(Ω).

Recalling that χEF ⋅ DχE is supported on ∂∗E, one concludes that

div F(E1) = −2χEF ⋅ DχE(Ω) = −2χEF ⋅ DχE(∂∗E),

which is the interior Gauss–Green formula in (3.2) for σi defined in (3.1). In an analogous way, Lemma 3.1

and (3.12) yield

div F(E1 ∪ ∂∗E) = −2χ
Ω\EF ⋅ DχE(∂∗E),

which is the exterior Gauss–Green formula in (3.2) for σe defined in (3.1).
Since |χEF ⋅ DχE| and |χΩ\EF ⋅ DχE| are absolutely continuous with respect to the measure

|DχE| =H n−1 ∂∗E,

the Radon–Nikodym theorem implies that there exist functionsFi ⋅ νE andFe ⋅ νE in L1(∂∗E;H n−1) such that

2χEF ⋅ DχE = (Fi ⋅ νE)H n−1 ∂∗E and 2χ
Ω\EF ⋅ DχE = (Fe ⋅ νE)H n−1 ∂∗E, (3.13)

and hence one has the Gauss–Green formulas (3.3).

It remains only to justify estimates (3.4) on the L∞-norm of the normal traces. The Lebesgue–Besicovitch

differentiation theorem implies that, for H n−1
-a.e. x ∈ ∂∗E, one has

(Fi ⋅ νE)(x) = limr→0
2χEF ⋅ DχE(B(x, r))
|DχE|(B(x, r))

.

We claim that the family |χEF ⋅ ∇χE;δ| is uniformly bounded inM(Ω) for δ > 0 and small. Indeed,

|χEF ⋅ ∇χE;δ|(Ω) := sup{∫
Ω

φ|χEF ⋅ ∇χE;δ| dx : φ ∈ C∞c (Ω), ‖φ‖∞ ≤ 1}

≤ ∫
Ω

|χEF ⋅ ∇χE;δ| dx ≤ ‖F‖L∞(E;ℝn)‖∇χE;δ‖L1(Ω;ℝn)
≤ ‖F‖L∞(E;ℝn)|DχE|(Ω),

where the last inequality uses the bound (2.13).
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Thus, there exists a weak-star converging subsequence, which we label with δk, and let the positive

measure λi ∈M(Ω) be its limit. In an analogous way, we can prove that the family of Radon measures

|χ
Ω\EF ⋅ ∇χE;δ| is uniformly bounded, we just need to put in the previous calculation the norm ‖F‖L∞(Ω\E;ℝn).

So there exists a weak-star converging subsequence, which we label again with δk, whose limit is the positive

Radon measure λe. Moreover, we observe that also the sequences χE|∇χE;δk | and χΩ\E|∇χE;δk | are bounded
using the same argument as above. So there exist weak-star converging subsequences which we shall not

relabel for simplicity of notation and which converge to positive measures μi , μe ∈M(Ω).
By Lemma 2.4, a sequence of balls B(x, rj) with rj → 0 can be chosen in such a way that

|DχE|(∂B(x, rj)) = λi(∂B(x, rj)) = μe(∂B(x, rj)) = 0.

Hence, by Lemmas 2.4 and 2.13 and because of |DχE| =H n−1 ∂∗E, we have

lim

rj→0



2χEF ⋅ DχE(B(x, rj))
|DχE|(B(x, rj))


= lim
rj→0



limδk→0 2∫B(x,rj) χEF ⋅ ∇χE;δk dx

limδk→0 ∫B(x,rj) |∇χE;δk | dx



≤ lim
rj→0

2‖F‖L∞(E;ℝn) limδk→0 ∫B(x,rj) χE|∇χE;δk | dx

limδk→0 ∫B(x,rj) |∇χE;δk | dx

= 2‖F‖L∞(E;ℝn) limrj→0(1 −
limδk→0 ∫B(x,rj) χΩ\E|∇χE;δk | dx

limδk→0 ∫B(x,rj) |∇χE;δk | dx
)

≤ 2‖F‖L∞(E;ℝn) limrj→0(1 −
limδk→0 |∫B(x,rj) χΩ\E∇χE;δk dx|

limδk→0 ∫B(x,rj) |∇χE;δk | dx
)

= 2‖F‖L∞(E;ℝn) limrj→0(1 − 12 |DχE(B(x, rj))||DχE|(B(x, rj))
) = ‖F‖L∞(E;ℝn).

In the last equality we used the definition of reduced boundary: if x ∈ ∂∗E, then |νE|(x) = 1, |DχE|(B(x, r)) > 0
for r > 0 and νE(x) = limr→0

DχE(B(x,r))
|DχE |(B(x,r)) . This implies that

lim

r→0

|DχE(B(x, r))|
|DχE|(B(x, r))

= |νE(x)| = 1.

The estimate for the exterior normal trace Fe ⋅ νE can be obtained in a similar way, considering instead balls

contained in Ω which satisfy |DχE|(∂B(x, rj)) = λe(∂B(x, rj)) = μi(∂B(x, rj)) = 0 and using the inequality

∫

B(x,r)

χ
Ω\EF ⋅ ∇χE;δk dx


≤ ‖F‖L∞(Ω\E;ℝn) ∫

B(x,r)

χ
Ω\E|∇χE;δk | dx.

This completes the proof.

Before proceeding with the first corollaries of Theorem 3.2, in the spirit of Remark 2.19, we would like to

formalize a few remarks comparing the case ofDM∞(Ω;ℝn) and BV(Ω;ℝn) ∩ L∞(Ω;ℝn)-fields.

Remark 3.3. Since the proof of Theorem 3.2 given above relies on the product rule for F ∈ DM∞(Ω;ℝn) and
g ∈ BV(Ω) ∩ L∞(Ω) and on Lemma 3.1, it follows from Remark 2.19 and [29, Lemma 1 in Chapter 5, Sec-

tion 1.4] that Theorem3.2 is consistentwithVol’pert’s Gauss–Green formula for BV(Ω;ℝn)∩L∞(Ω;ℝn)-fields
as given in [29, Chapter 5, Section1.8]. In this particular case, onehasFi ⋅ νE = FνE ⋅ νE andFe ⋅ νE = F−νE ⋅ νE,
where F±νE (x) are the approximate limits of F in H n−1

-a.e. x ∈ ∂∗E restricted to

Π

±
νE (x) := {y ∈ ℝ

n
: (y − x) ⋅ (±νE(x)) ≥ 0};

that is, for any ε > 0 one has

lim

r→0

|{y ∈ ℝn : |F(y) − F±νE (x)| ≥ ε} ∩ B(x, r) ∩ Π±νE (x)|
|B(x, r)| = 0.



G. E. Comi and K. R. Payne, Divergence measure fields | 197

Remark 3.4. As a byproduct of identity (3.10) in the proof of Theorem 3.2, one has the following decompo-

sition for the measure F ⋅ DχE:
F ⋅ DχE = χEF ⋅ DχE + χΩ\EF ⋅ DχE . (3.14)

It is, however, not possible in general to factorize the measures χEF ⋅ DχE and χΩ\EF ⋅ DχE into forms such

as χ∗EF ⋅ DχE and χ
∗
Ω\EF ⋅ DχE. For example, consider E := [0, 1]n ⊂⊂ B(0, 2) =: Ω and F(x) = H(x

1
)e

1
, where

H(t) = χ[0,+∞)(t) is the Heaviside function and e
1
= (1, 0, . . . , 0) is the first element of the canonical basis

ofℝn. Then it is not difficult to show that we have

χEF ⋅ DχE =
1

2

D
1
χE ,

F ⋅ DχE = D1
χE −

1

2

H n−1 ({0} × (0, 1)n−1),

which clearly implies χEF ⋅ DχE ̸= 1

2

F ⋅ DχE, but χ∗EF ⋅ DχE =
1

2

F ⋅ DχE, since χ∗E =
1

2

on ∂∗E by (2.12) and

F ⋅ DχE is concentrated on ∂∗E, by Proposition 2.18. Thus,

χEF ⋅ DχE ̸= χ∗EF ⋅ DχE .

The inequality χ
Ω\EF ⋅ DχE ̸= (χΩ\E)∗F ⋅ DχE follows easily from (3.14) and the previous inequality, since

χ
Ω\EF ⋅ DχE = F ⋅ DχE − χEF ⋅ DχE ̸= (1 − χ∗E)F ⋅ DχE = (χΩ\E)

∗F ⋅ DχE .

An immediate corollary of Theorem 3.2 is a way to represent the measure div F on the reduced boundary of

sets of finite perimeter compactly contained in the domain.

Corollary 3.5. Let F ∈ DM∞(Ω;ℝn). If E ⊂⊂ Ω is a set of finite perimeter in Ω, then

χ∂∗E div F = 2χEF ⋅ DχE − 2χΩ\EF ⋅ DχE = (Fi ⋅ νE − Fe ⋅ νE)H n−1 ∂∗E, (3.15)

which implies
div F(B) = ∫

B

(Fi ⋅ νE − Fe ⋅ νE) dH n−1
(3.16)

for any Borel set B ⊂ ∂∗E, and

|div F|(∂∗E) = ∫
∂∗E |Fi ⋅ νE − Fe ⋅ νE| dH

n−1
. (3.17)

Proof. Equation (3.15) follows immediately if one subtracts (3.11) from (3.12) and uses (3.13). Evaluating

both measures in equation (3.15) over a Borel set B in ∂∗E yields (3.16). Finally, (3.17) immediately follows

from (3.15) and from properties of the total variation.

The extension of the Gauss–Green formulas in Theorem 3.2 to locally essentially bounded divergence

measure fields is straightforward. Indeed, if E ⊂⊂ Ω, we can find an open set V satisfying E ⊂⊂ V ⊂⊂ Ω.
This simple topological fact allows us to state the following corollary for vector fields inDM∞

loc

(Ω;ℝn).

Corollary 3.6. Let F ∈ DM∞
loc

(Ω;ℝn) and let E ⊂⊂ Ω be a set of finite perimeter in Ω. Then on a neighborhood
of E one has internal and external flux measures defined by (3.1) and one has interior and exterior normal
traces (Fi ⋅ νE), (Fe ⋅ νE) ∈ L∞(∂∗E;H n−1) such that formulas (3.2), (3.3) and (3.15)–(3.17) hold. In addition,
one has the estimates

‖Fi ⋅ νE‖L∞(∂∗E;H n−1) ≤ ‖F‖L∞(E;ℝn) and ‖Fe ⋅ νE‖L∞(∂∗E;H n−1) ≤ inf
V
{‖F‖L∞(V\E;ℝn)}, (3.18)

where the infimum is taken over all open sets V satisfying E ⊂⊂ V ⊂⊂ Ω.

Proof. As noted above, there exists at least one open set V satisfying E ⊂⊂ V ⊂⊂ Ω. Hence F|V ∈ DM∞(V;ℝn)
and E ⊂⊂ V, which means that one can apply Theorem 3.2 and Corollary 3.5. The two estimates in (3.18)

follow similarly.
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3.2 Consistency of normal traces

As previously noted, for a general divergence measure field the measure div F contains a jump component at

the boundary of a set of finite perimeter where the exterior and interior normal traces do not coincide. How-

ever, this does not happen if the field F is continuous. The following theorem is similar to [9, Theorem 7.2],

however, our proof does not need the preliminary result given by [9, Lemma 7.1] and it is consequently

more direct.

Theorem 3.7 (Consistency of the normal traces). Let F ∈ DM∞
loc

(Ω;ℝn) ∩ C(Ω;ℝn). If E ⊂⊂ Ω is a set of finite
perimeter in Ω, then the interior and exterior normal traces coincide and admit a representative which is the
classical dot product of F and the measure theoretic interior unit normal to E on ∂∗E. The Gauss–Green formu-
las (3.3) hence reduce to

div F(E1) = − ∫
∂∗E F ⋅ νE dH

n−1 = div F(E1 ∪ ∂∗E). (3.19)

Proof. Up to taking an open set V such that E ⊂⊂ V ⊂⊂ Ω, one can assume F ∈ DM∞(Ω;ℝn). By Theorem3.2,

onehas2χEF ⋅ DχE = (Fi ⋅ νE)H n−1 ∂∗E in the sense of Radonmeasures andFi ⋅ νE ∈ L∞(∂∗E;H n−1). This
means that for H n−1

-a.e. x ∈ ∂∗E one has

(Fi ⋅ νE)(x) = limr→02
χEF ⋅ DχE(B(x, r))
|DχE|(B(x, r))

. (3.20)

In addition, if χE;δ := χE ∗ ρδ is a mollification of χE, one knows that

χEF ⋅ ∇χE;δ
∗⇀ χEF ⋅ DχE inM(Ω),

which means that, for all φ ∈ Cc(Ω),

∫
Ω

φχEF ⋅ ∇χE;δ dx → ∫
Ω

φ dχEF ⋅ DχE as δ → 0.

Observe that φF ∈ Cc(Ω;ℝn) and, since χE∇χE;δ
∗⇀ 1

2

DχE, by point (3) (b) in Lemma 2.13, one also has

∫
Ω

(φF) ⋅ ∇χE;δχE dx → ∫
Ω

(φF) ⋅ 1
2

dDχE as δ → 0.

Thus one can conclude that χEF ⋅ DχE = 1

2

F ⋅ DχE inM(Ω), which means that

2χEF ⋅ DχE(B(x, r)) = ∫
B(x,r)

F ⋅ dDχE = ∫
B(x,r)

F ⋅ νE d|DχE|.

Moreover, by the continuity of F, the function F ⋅ νE is well defined on ∂∗E and is also in L1(∂∗E;H n−1).
Thus, from (3.20), for H n−1

-a.e. x ∈ ∂∗E, one obtains

(Fi ⋅ νE)(x) = limr→0
∫B(x,r) F(y) ⋅ νE(y) d|DχE|(y)
|DχE|(B(x, r))

= F(x) ⋅ νE(x),

by the Lebesgue–Besicovitch differentiation theorem.

Applying the same steps to the measure 2χ
Ω\EF ⋅ DχE yields that it is equal to F ⋅ DχE and hence one

also finds that Fe ⋅ νE admits F ⋅ νE as representative and hence it coincides with Fi ⋅ νE in the class of

L∞-functions. Finally, (3.19) follows easily from (3.3).

From this theorem, we see that continuous divergence measure fields have no jump component in their

distributional divergence.

Corollary 3.8. Let F ∈ DM∞
loc

(Ω;ℝn) ∩ C(Ω;ℝn). Then, for any E ⊂⊂ Ω set of finite perimeter in Ω, we have

χ∂∗E div F = 0
in the sense of Radon measures.

Proof. It follows immediately from equation (3.15), from Corollary 3.6 and from Theorem 3.7.
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We remark that while this result says that χ∂∗E|div F| = 0 in the sense of Radonmeasures for any set E ⊂⊂ Ω of

finite perimeter in Ω, we cannot strengthen this to obtain a better absolute continuity property of div F such
as |div F| ≪H n−t

for some t ∈ [0, 1).
We also note that the L∞-estimates in Theorem 3.2 (and so also those in Corollary 3.6) are sharp in the

sense that we can find continuous divergence measure fields F for which

‖Fi ⋅ νE‖L∞(∂∗E;H n−1) = ‖Fe ⋅ νE‖L∞(∂∗E;H n−1) = ‖F‖L∞(E;ℝn) = ‖F‖L∞(Ω\E;ℝn)
as the following simple example shows.

Example 3.9. Let E = [0, 1]n ⊂⊂ Ω and let F(x) = e
1
= (1, 0, . . . , 0). One has F ∈ DM∞(Ω;ℝn) ∩ C(Ω;ℝn)

and ‖F‖L∞(E;ℝn) = ‖F‖L∞(Ω\E;ℝn) = 1. Moreover, on {0} × (0, 1)n−1, νE = e1 and so over this part of ∂∗Ewe have
Fi ⋅ νE = Fe ⋅ νE = F ⋅ νE = 1, which implies the identity of the norms.

We conclude this section with a pair of remarks concerning normal traces.

Remark 3.10. We observe that in general the normal traces of an essentially bounded (but discontinuous)

divergence measure field on the reduced boundary of a set of finite perimeter do not coincideH n−1
-a.e. with

the classical dot product. However, it has been shown that, roughly speaking, the normal traces coincide

with the classical one on almost every surface. More precisely, let I ⊂ ℝ be an open interval and let {Σt}t∈I
be a family of oriented hypersurfaces in Ω such that there exist Ω

 ⊂⊂ Ω, Φ ∈ C1(Ω) and a family of open

set Ωt ⊂⊂ Ω, t ∈ I, with Φ(Ω) = I, {Φ = t} = Σt = ∂Ωt for any t ∈ I, |∇Φ| > 0 in Ω


and Σt is oriented by

∇Φ
|∇Φ| .

Then, if F ∈ DM∞
loc

(Ω;ℝn), we have

Fi ⋅ νΩt = Fe ⋅ νΩt = F ⋅ νΩt H n−1
-a.e. on Σt, for L 1

-a.e. t ∈ I.

For a proof of this result, see [1, Proposition 3.6] (although in that paper the definition of exterior normal

trace is slightly different from ours, they are indeed equivalent by Proposition 4.10 below). We notice that in

particular this statement applies to any family of balls {B(x
0
, r)}r∈(0,R) inside Ω: indeed, in this case I = (0, R)

and Φ(x) = |x − x
0
|2. Thus, for L 1

-a.e. r ∈ (0, R), we have |div F|(∂B(x
0
, r)) = 0,

Fi ⋅ νB(x
0
,r) = Fe ⋅ νB(x

0
,r) = −F ⋅

(x − x
0
)

|x − x
0
|

H n−1
-a.e. on ∂B(x

0
, r)

and

div F(B(x
0
, r)) = ∫

∂B(x
0
,r)

F ⋅ (x − x0)
|x − x

0
|
dH n−1

.

Remark 3.11. Wenotice that, by combiningRemark3.10, Theorem3.2 andCorollary 3.6, one can recover the

approximation result of Chen–Torres–Ziemer (as contained in [9, Theorem 5.2 (i) (b), (i) (g), (ii) (b), (ii) (g)]);

that is, the integrals of the interior and the exterior normal traces over the reduced boundary are the limits

of the integrals of the classical normal trace over the boundaries of a suitable family of smooth sets. Indeed,

let F ∈ DM∞
loc

(Ω;ℝn) and let E ⊂⊂ Ω be a set of finite perimeter. Pick a smooth nonnegative radially sym-

metric mollifier ρ ∈ C∞c (B(0, 1)) and consider the mollification uk(x) := (χE ∗ ρεk )(x) of χE by some positive

sequence εk → 0. For t ∈ (0, 1), one has Ak;t := {uk > t} ⊂⊂ Ω if εk is small enough, following the notation

of [9] and [10]. Since |div F| ≪H n−1
(by Corollary 2.16), we can apply the approximation result stated in

[9, Lemma 4.1] to the measure div F (see also [10, Theorem 3.1]) in order to obtain

lim

k→+∞
|div F|(E1∆Ak;t) = 0 for t ∈ (1

2

, 1) (3.21)

and

lim

k→+∞
|div F|((E1 ∪ ∂∗E)∆Ak;t) = 0 for t ∈ (0, 1

2

). (3.22)

It is clear that the sets Ak;t satisfy the hypothesis of Remark 3.10 for any k with Φ = uk, and so

Fi ⋅ νAk;t = Fe ⋅ νAk;t = F ⋅ νAk;t H n−1
-a.e. on ∂Ak;t, for L 1

-a.e. t ∈ (0, 1).
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Now, sinceAk;t has a smoothboundary forL 1

-a.e. t ∈ (0, 1), it follows fromRemark2.10 that for these values

of t one has H n−1(∂Ak;t \ ∂∗Ak;t) = 0, and this implies H n−1((Ak;t)1 \ Ak;t) = 0. Hence, by Corollary 2.16
and the Gauss–Green formulas (3.3), one has

div F(Ak;t) = − ∫
∂Ak;t

F ⋅ νAk;t dH n−1
(3.23)

for any t ∈ (0, 1) \ Zk, with L 1(Zk) = 0. Clearly, Z := ⋃k Zk is L 1

-negligible, and so (3.23) holds for any k
and for any t ∈ (0, 1) \ Z. Finally, one applies (3.3) to the set E and uses (3.21) and (3.22) to obtain

lim

k→+∞
∫

∂Ak;t

F ⋅ νAk;t dH n−1 = − lim

k→+∞
div F(Ak;t) = −div F(E1) = ∫

∂∗E (Fi ⋅ νE) dH
n−1

for L 1

-a.e. t ∈ (1
2

, 1), and

lim

k→+∞
∫

∂Ak;t

F ⋅ νAk;t dH n−1 = − lim

k→+∞
div F(Ak;t) = −div F(E1 ∪ ∂∗E) = ∫

∂∗E (Fe ⋅ νE) dH
n−1

for L 1

-a.e. t ∈ (0, 1
2

), which are the desired approximation results.

4 Integration by parts formulas and determination of normal traces
In this section, we make use of the Gauss–Green formulas to obtain integration by parts formulas and a few

applications. In particular, the use of compactly supported test functions will lead us to an investigation of

the local properties of normal traces of F ∈ DM∞
loc

(Ω;ℝn) on ∂∗E for subsets E ⊂ Ω of locally finite perimeter

and their complements. Moreover, we will show that the normal traces of F on ∂∗E depend on E only though
∂∗E and its orientation.

4.1 Integration by parts formulas

We begin with integration by parts formulas for aDM∞
loc

-vector field and a Lipschitz scalar function over sets

of finite perimeter compactly contained in the domain.

Theorem 4.1. Let F ∈ DM∞
loc

(Ω;ℝn)and let E ⊂⊂ Ω bea set of finite perimeter inΩ. Then, for anyφ ∈ Lip
loc
(Ω),

we have
∫
E1

φ d div F = − ∫
∂∗E φ(Fi ⋅ νE) dH

n−1 − ∫
E

F ⋅ ∇φ dx (4.1)

and
∫

E1∪∂∗E φ d div F = − ∫∂∗E φ(Fe ⋅ νE) dH
n−1 − ∫

E

F ⋅ ∇φ dx. (4.2)

Proof. As in theproof of Corollary 3.6,we take anopen setU satisfying E ⊂⊂ U ⊂⊂ Ω. Then F|U ∈DM∞(U;ℝn)
and φ ∈ Lip(U), which implies also φ ∈ W1,∞(U) ⊂ BV(U) ∩ L∞(U), since U is bounded. With a slight abuse

of notation, from now on, we will write F instead of F|U . By Theorem 2.18, we know that φF ∈ DM∞(U;ℝn).
Using the first Gauss–Green formula in (3.2) of Theorem 3.2, we obtain

div(φF)(E1) = −2 ∫
∂∗E dφχEF ⋅ DχE .

We have φχEF ⋅ DχE = φχEF ⋅ DχE: indeed, for any ψ ∈ Cc(U),

∫
U

ψ dφχEF ⋅ DχE = lim
δ→0
∫
U

ψ φχEF ⋅ ∇χE;δ dx

= lim
δ→0
∫
U

(ψφ)χEF ⋅ ∇χE;δ dx = ∫
U

(ψφ) dχEF ⋅ DχE ,
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because ψφ ∈ Cc(U). Since 2χEF ⋅ DχE = (Fi ⋅ νE)H n−1 ∂∗E, it follows that

∫
E1

d div(φF) = − ∫
∂∗E φ(Fi ⋅ νE) dH

n−1
. (4.3)

On the other hand, Theorem 2.18 yields div(φF) = φ div F + F ⋅ ∇φ, which implies

∫
E1

φ d div F = − ∫
E1

F ⋅ ∇φ dx + ∫
E1

d div(φF). (4.4)

Combining (4.3) with (4.4) and using |E∆E1| = 0 yields (4.1). The proof of (4.2) is analogous and makes use

of the second Gauss–Green formula in (3.2) of Theorem 3.2.

More generally, it is also possible to remove the assumption E ⊂⊂ Ω if we localize with a Lipschitz function φ
which is compactly supported in Ω.

Theorem 4.2. Let F ∈ DM∞
loc

(Ω;ℝn) and let E ⊂ Ω be a set of locally finite perimeter in Ω. Then there are well-
defined interior and exterior normal traces of F on ∂∗E satisfying (Fi ⋅ νE), (Fe ⋅ νE) ∈ L∞

loc

(∂∗E;H n−1) such that
formulas (4.1) and (4.2) hold for any φ ∈ Lipc(Ω). In addition, for any open set U ⊂⊂ Ω one has the estimates

‖Fi ⋅ νE‖L∞(∂∗E∩U;H n−1) ≤ ‖F‖L∞(E∩U;ℝn) (4.5)

and
‖Fe ⋅ νE‖L∞(∂∗E∩U;H n−1) ≤ ‖F‖L∞(U\E;ℝn). (4.6)

Moreover, for any open set U ⊂⊂ Ω,

χ(∂∗E)∩U div F = (Fi ⋅ νE − Fe ⋅ νE)H n−1 (∂∗E ∩ U), (4.7)

which implies
div F(B) = ∫

B

(Fi ⋅ νE − Fe ⋅ νE) dH n−1
(4.8)

and
|div F|(B) = ∫

B

|Fi ⋅ νE − Fe ⋅ νE| dH n−1
(4.9)

for any Borel set B ⊂⊂ Ω with B ⊂ ∂∗E.

Proof. We begin with the existence of the normal traces and the validity of formula (4.7). It is clear that there

exists an open setW ⊂⊂ Ω such that supp(φ) ∩ E ⊂⊂ W and for which we have then F|W ∈ DM∞(W;ℝn) and
(χE)|W = χE∩W ∈ BV(W). This means that we can apply the Leibniz rule (Theorem 2.18) to φχEF and φχ2EF
and argue as in the proof of Theorem 3.2. We obtain

div(φχEF) = φχ∗E div F + φF ⋅ DχE + χEF ⋅ ∇φ, (4.10)

div(φχ2EF) = φ(χ
∗
E)

2

div F + φχ∗EF ⋅ DχE + φχEF ⋅ DχE + χEF ⋅ ∇φ, (4.11)

andweobserve that div(φχEF) = div(φχ2EF), since χ
2

E = χE.Makinguse of formulas (2.12) for χ∗E andof decom-

position (3.14) for the measure F ⋅ DχE, formulas (4.10) and (4.11) become

div(φχEF) = φχE1 div F +
1

2

φχ∂∗E div F + φχEF ⋅ DχE + φχΩ\EF ⋅ DχE + χEF ⋅ ∇φ, (4.12)

div(φχEF) = φχE1 div F +
1

4

φχ∂∗E div F + 3
2

φχEF ⋅ DχE +
1

2

φχ
Ω\EF ⋅ DχE + χEF ⋅ ∇φ. (4.13)

Subtracting (4.13) from (4.12) gives the following identity between measures inM(W):

φχ∂∗E div F = 2φ(χEF ⋅ DχE − χΩ\EF ⋅ DχE). (4.14)

Since |χEF ⋅ DχE|, |χΩ\EF ⋅ DχE| ≪ |DχE| as measures in M(W) which are concentrated on ∂∗E ∩W, by the

Radon–Nikodym theorem there exist two functions (Fi ⋅ νE), (Fe ⋅ νE) ∈ L1(∂∗E ∩W;H n−1) such that

2χEF ⋅ DχE = (Fi ⋅ νE)H n−1 (∂∗E ∩W) and 2χ
Ω\EF ⋅ DχE = (Fe ⋅ νE)H n−1 (∂∗E ∩W). (4.15)
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Now,with U ⊂⊂ Ω fixed, select φ ∈ Lipc(Ω) such that U = {φ ̸= 0}, so that one has U∩∂∗E ⊂ supp(φ)∩E ⊂ W.

Hence, for any ψ ∈ Cc(U), one can take as test function Φ = ψφ ∈ Cc(U) in (4.14) to find

∫
U

ψχ∂∗E d div F = 2∫
U

ψ d(χEF ⋅ DχE − χΩ\EF ⋅ DχE).

This implies identity (4.7) in the sense of Radon measures. Formulas (4.8) and (4.9) are immediate conse-

quences.

Next, we will show that (4.1) and (4.2) hold for any φ ∈ Lipc(Ω). Substituting into (4.12) the expression
for φχ∂∗E div F given in (4.14), we find

div(φχEF) = φχE1 div F + χEF ⋅ ∇φ + 2φχEF ⋅ DχE , (4.16)

to which we apply Lemma 3.1, using the fact that φ has compact support, in order to obtain (4.1). Analo-

gously, substituting into (4.16) the expression for 2φχEF ⋅ DχE which comes from (4.14), we find

div(φχ2EF) = div(φχEF) =φχE1∪∂∗E div F + χEF ⋅ ∇φ + 2φχΩ\EF ⋅ DχE ,
from which we deduce (4.2) in a similar way.

As for the L∞-estimates, let U ⊂⊂ Ω. Then we have F|U ∈ DM∞(U;ℝn) and χE∩U ∈ BV(U). Hence, we
obtain (3.4) for F and the set E ∩ U, whose reduced boundary in U is ∂∗E ∩ U, where ∂∗E is the reduced

boundary of E in Ω. Indeed, we notice that, in the last part of the proof of Theorem 3.2, the assumption

E ⊂⊂ Ω is not necessary. Therefore, (4.5) and (4.6) follow.

Before proceeding with some generalizations and applications of the integration by parts formulas, we wish

to make some remarks about the normal traces in the extended context of E ⊂ Ω having only locally finite

perimeter, as in Theorem 4.2.

Remark 4.3. It is possible to improve estimates (4.5) and (4.6) on the L∞-norm of the normal traces. Indeed,

if F ∈ DM∞
loc

(Ω;ℝn) and E ⊂ Ω is a set of locally finite perimeter in Ω, we can choose U = (∂E)ε ∩ V, where
(∂E)ε = {x ∈ Ω : dist(x, ∂E) < ε} and V ⊂⊂ Ω is open. Then we get

‖Fi ⋅ νE‖L∞(∂∗E∩V;H n−1) ≤ infε>0
{‖F‖L∞(Eε;ℝn)},

where Eε := U ∩ E = {x ∈ E ∩ V : dist(x, ∂E) < ε}. On the other hand, a similar argument and (4.6) yield

‖Fe ⋅ νE‖L∞(∂∗E∩V;H n−1) ≤ infε>0
{‖F‖L∞(Eε;ℝn)},

where Eε := U ∩ (Ω \ E) = {x ∈ (Ω \ E) ∩ V : dist(x, ∂E) < ε}.

Remark 4.4. It is easy to see that, if F ∈ DM∞
loc

(Ω;ℝn) ∩ C(Ω;ℝn) and E is a set of finite perimeter in Ω, then

we have that the normal traces coincide with F(x) ⋅ νE(x) for H n−1
-a.e. x ∈ (∂∗E) ∩ U and χ(∂∗E)∩U div F = 0,

for any open set U ⊂⊂ Ω. Indeed, the traces are defined as the densities of the same Radonmeasures as in the

case E ⊂⊂ Ω.

As a first application of the integration by parts formulas, one can generalize the classical Green’s identities

to C1-functions whose gradients are locally essentially bounded divergence measure fields.

Proposition 4.5. Let u ∈ C1c (Ω) satisfy ∆u ∈Mloc
(Ω) and let E ⊂ Ω be a set of finite perimeter in Ω. Then for

each v ∈ Lipc(Ω) one has
∫
E1

v d∆u = − ∫
∂∗E v∇u ⋅ νE dH

n−1 − ∫
E

∇v ⋅ ∇u dx, (4.17)

and if v ∈ C1c (Ω) also satisfies ∆v ∈Mloc
(Ω), one has

∫
E1

v d∆u − u d∆v = − ∫
∂∗E (v∇u − u∇v) ⋅ νE dH

n−1
. (4.18)

Moreover, if E ⊂⊂ Ω, then one can drop the assumption that u and v have compact support in Ω.
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Proof. We begin by noting that if u ∈ C1(Ω) and ∆u ∈M
loc
(Ω), then ∇u ∈ DM∞

loc

(Ω;ℝn) ∩ C(Ω;ℝn). Thus,
given a set E of finite perimeter in Ω, the normal traces of ∇u on ∂∗E coincide with the classical dot product
∇u(x) ⋅ νE(x) for H n−1

-a.e. x ∈ (∂∗E) ∩ U and χ(∂∗E)∩U∆u = 0, for any open set U ⊂⊂ Ω, by Remark 4.4.

Thus taking u ∈ C1c (Ω) such that ∆u ∈M
loc
(Ω) and taking v ∈ Lipc(Ω), for any set E of finite perimeter

in Ω we have (4.17) by applying (4.1) of Theorem 4.2. If, in addition, v ∈ C1c (Ω) and satisfies ∆v ∈Mloc
(Ω),

one also has (4.17) with the roles of u and v interchanged, which leads to (4.18). If E ⊂⊂ Ω, one can appeal
to Theorem 4.1 to eliminate the assumption on the compact support of u and v.

We prove now a variant of the integration by parts formula in which the set of finite perimeter E and supp(φ)
are not compactly contained in the domain Ω. This variant will be used in the applications of Section 5 on

patching and extending divergence measure fields.

Proposition 4.6. Let V ⊂⊂ E∘ ⊂ E ⊂ U, where U, V are open sets and E is a set of finite perimeter in Ω := U \ V,
and let F ∈ DM∞

loc

(Ω;ℝn). Then, for any φ ∈ Lipc(U), we have

∫
E0

φ d div F = − ∫
∂∗E φ(Fi ⋅ νΩ\E) dH

n−1 − ∫
Ω\E

F ⋅ ∇φ dx, (4.19)

∫
E0∪∂∗E φ d div F = − ∫∂∗E φ(Fe ⋅ νΩ\E) dH

n−1 − ∫
Ω\E

F ⋅ ∇φ dx. (4.20)

Proof. Let φ ∈ Lipc(U). If we set Iε(V) = {x ∈ U : dist(x, V) < ε}, for some ε > 0 such that dist(Iε(V), ∂E) > 0,
we can take a function η ∈ C∞c (Iε(V)) such that η ≡ 1 on Iε/2(V). Now we define the function φ̃ := φ(1 − η),
so that we have φ̃ ∈ Lip(Ω), φ̃ = φ on Ω \ E and φ̃ = 0 on Iε/2(V), hence φ̃ has compact support in Ω. Hence,

we can apply Theorem 4.2 to F, Ω \ E and φ̃ in order to obtain

∫
(Ω\E)1

φ̃ d div F = − ∫
∂∗(Ω\E) φ̃(Fi ⋅ νΩ\E) dH

n−1 − ∫
Ω\E

F ⋅ ∇φ̃ dx,

∫
(Ω\E)1∪∂∗(Ω\E) φ̃ d div F = − ∫∂∗(Ω\E) φ̃(Fe ⋅ νΩ\E) dH

n−1 − ∫
Ω\E

F ⋅ ∇φ̃ dx.

By the properties of φ̃ and recalling that (Ω \ E)1 = E0 and that ∂∗(Ω \ E) = ∂∗E (see (4.23) below), we deduce
(4.19) and (4.20).

Remark 4.7. When E is not compact in Ω, we cannot in general drop the assumption that φ has compact

support in the integration by parts formulas, even if E is a set with globally finite perimeter measure on Ω.

Indeed, if φ does not have compact support in Ω, we can take φ = 1. For example, consider Ω = ℝn \ B(0, 1
2

),
E = ℝn \ B(0, 1) and F = x

|x|n . It is clear that |DχE| is a finite Radonmeasure on Ω and that F ∈ DM∞(Ω;ℝn) ∩
C(Ω;ℝn), with div F = 0 and (Fi ⋅ νE)(x) = F(x) ⋅ x|x| = 1 on ∂B(0, 1). If we take φ = 1 on Ω in (4.1), we have

0 = div F(E1) = − ∫
∂B(0,1)

F(x) ⋅ x
|x| dH

n−1(x) = −H n−1(∂B(0, 1)) = −nωn ,

which is absurd.

4.2 Determination of normal traces

We begin by reinterpreting Theorem 4.2 in terms of the normal trace functional (TF)∂E : Lipc(Ω)→ ℝ defined
by

(TF)∂E(φ) = ∫
E

F ⋅ ∇φ dx + ∫
E1

φ d div F. (4.21)

This functional is well defined for any E of locally finite perimeter and for any F ∈ DM
p
loc

(Ω;ℝn) with
1 ≤ p ≤∞ and has been well studied by Šilhavý in [25]. Theorem 4.2 says that when p =∞ this func-

tional can be represented by a locally essentially bounded function on ∂∗E (the interior normal trace of F
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on ∂∗E) in the sense that
(TF)∂E(φ) = − ∫

∂∗E φ(Fi ⋅ νE) dH
n−1

, (4.22)

from which it also follows that supp((TF)∂E) ⊂ ∂∗E. On the other hand, if p ̸=∞, one cannot hope to find
a representation like (4.22) with even Fi ⋅ νE ∈ L1

loc

(∂∗E;H n−1), as Example 6.1 below illustrates.

In the case p =∞, onemight ask in what sense the normal traces depend on E. Wewill show that for sets

of locally bounded perimeter, the normal traces are determined by ∂∗E and its orientation, thus generalizing
what is known for the case of E open, bounded with C1-boundary (see [1, Proposition 3.2]). Our treatment

begins by considering the normal traces on complementary sets.

If E ⊂ Ω has locally finite perimeter in Ω, then one knows that the complementary set Ω \ E also has

locally finite perimeter in Ω, where

∂∗(Ω \ E) = ∂∗E (4.23)

and

ν
Ω\E(x) = −νE(x) for all x ∈ ∂∗(Ω \ E) = ∂∗E.

Theorem 4.2 then shows that F ∈ DM∞
loc

(Ω;ℝn) also admits interior and exterior normal traces

(Fi ⋅ νΩ\E), (Fe ⋅ νΩ\E) ∈ L∞
loc

(∂∗(Ω \ E);H n−1),

with respect to ∂∗(Ω \ E), for which the integration by parts formulas (4.2) and (4.1) hold with Ω \ E in place
of E. One easily obtains the following useful relations for normal traces on the boundary of complementary

sets of locally finite perimeter in Ω.

Proposition 4.8. If F ∈ DM∞
loc

(Ω;ℝn) and E ⊂ Ω is a set of locally finite perimeter in Ω, then

(Fe ⋅ νE) = −(Fi ⋅ νΩ\E) H n−1-a.e. on ∂∗E (4.24)

and
(Fe ⋅ νΩ\E) = −(Fi ⋅ νE) H n−1-a.e. on ∂∗E. (4.25)

Proof. For any φ ∈ C1c (Ω), by Theorem 4.2 (using (4.2) on E and (4.1) on Ω \ E), one has

∫
Ω

F ⋅ ∇φ dx = ∫
E

F ⋅ ∇φ dx + ∫
Ω\E

F ⋅ ∇φ dx

= − ∫
∂∗E φ(Fe ⋅ νE) dH

n−1 − ∫
E1∪∂∗E φ d div F − ∫∂∗E φ(Fi ⋅ νΩ\E) dH

n−1 − ∫
E0

φ d div F

= − ∫
∂∗E φ(Fe ⋅ νE) dH

n−1 − ∫
∂∗E φ(Fi ⋅ νΩ\E) dH

n−1 − ∫
Ω

φ d div F

= − ∫
∂∗E φ(Fe ⋅ νE) dH

n−1 − ∫
∂∗E φ(Fi ⋅ νΩ\E) dH

n−1 + ∫
Ω

F ⋅ ∇φ dx,

where one uses (Ω \ E)1 = E0 and the facts thatH n−1(Ω \ (E0 ∪ E1 ∪ ∂∗E)) = 0 (by (2.8)) and |div F| ≪H n−1

by Theorem 2.15. Hence for each φ ∈ C1c (Ω) one has

∫
∂∗E φ(Fe ⋅ νE) dH

n−1 = − ∫
∂∗E φ(Fi ⋅ νΩ\E) dH

n−1
,

which gives (4.24) since φ ∈ C1c (Ω) is arbitrary, and by the density of C1c (Ω) in Cc(Ω). In a similar way, using

(4.1) on E and (4.2) on Ω \ E, one obtains (4.25).

Remark 4.9. We notice that the L∞-estimates are compatible with (4.24) and (4.25). Indeed, the L∞-norm
of F on Ω \ E controls both the L∞-norm of the interior normal trace on Ω \ E and the L∞-norm of the exterior

normal trace on E. Analogously, ‖F‖L∞(E;ℝn) controls |Fi ⋅ νE| and |Fe ⋅ νΩ\E|.
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We will now consider the normal traces of F on a common portion of the reduced boundary of two sets of

locally finite perimeter. We will show that the traces agree if the measure theoretic normals are the same and

have opposite signs if the measure theoretic normals have opposite orientation. Our proof will adapt that

given in [1, Proposition 3.2] for bounded open sets with C1-boundary.
For the proof, we need to recall a few additional facts from geometric measure theory. First, we recall

a consequence of the basic comparison result between a positive Radon measure μ and k-dimensional

Hausdorff measures through the use of k-dimensional densities of μ: if μ ∈M
loc
(Ω) with μ positive and

μ A = 0 for a Borel set A ⊂ Ω, then for each k ≥ 0 one has

μ(B(x, ρ)) = o(ρk) for H k
-a.e. x ∈ A. (4.26)

For a proof of this fact, see [2, Theorem 2.56]. Next, we recall elements of the structure of sets of locally finite

perimeter given by De Giorgi’s blow-up construction. If E is a set of locally finite perimeter in Ω, then for any

x ∈ ∂∗E one has

χ(E−x)/ρ → χH+
νE (x) and χ((Ω\E)−x)/ρ → χH−

νE (x) in L1(B(0, 1)) as ρ → 0

+
, (4.27)

whereH±νE (x) := {y ∈ ℝ
n
: ±y ⋅ νE(x) ≥ 0}. Moreover, the hyperplaneHνE (x) := {y : y ⋅ νE(x) = 0} is the approx-

imate tangent space to the measure H n−1 ∂∗E at x ∈ ∂∗E in the sense that for any φ ∈ Cc(Ω) one has

lim

ρ→0+ ρ−(n−1) ∫
∂∗E φ(

y − x
ρ ) dH

n−1(y) = ∫
HνE (x)

φ(z) dH n−1(z). (4.28)

For the proof of these statements, see [2, Theorem 3.59].

Finally, let us consider two sets E
1
, E

2
of locally finite perimeter in Ω. ForH n−1

-a.e. x ∈ ∂∗E
1
∩ ∂∗E

2
, we

have either νE
1

(x) = νE
2

(x) or νE
1

(x) = −νE
2

(x). This follows from the locality property of approximate tangent

spaces, for which we refer to [2, Proposition 2.85 and Remark 2.87].

Proposition 4.10. Let F ∈ DM∞
loc

(Ω;ℝn), and let E
1
and E

2
be sets of locally finite perimeter in Ω such that

H n−1(∂∗E
1
∩ ∂∗E

2
) ̸= 0. Then one has

Fi ⋅ νE
1

= Fi ⋅ νE
2

and Fe ⋅ νE
1

= Fe ⋅ νE
2

(4.29)

for H n−1-a.e. x ∈ {y ∈ ∂∗E
1
∩ ∂∗E

2
: νE

1

(y) = νE
2

(y)} and

Fi ⋅ νE
1

= −Fe ⋅ νE
2

and Fe ⋅ νE
1

= −Fi ⋅ νE
2

(4.30)

for H n−1-a.e. x ∈ {y ∈ ∂∗E
1
∩ ∂∗E

2
: νE

1

(y) = −νE
2

(y)}.

Proof. We begin with the first claim in (4.29). For H n−1
-a.e. x ∈ ∂∗E

1
∩ ∂∗E

2
such that νE

1

(x) = νE
2

(x) one
has

x is a Lebesgue point for Fi ⋅ νEj with respect to H n−1 ∂∗Ej for j = 1, 2 (4.31)

and

|div F|((E1
1

∪ E1
2

) ∩ B(x, ρ)) = o(ρn−1). (4.32)

Indeed, the normal traces are in L∞
loc

(∂∗E;H n−1) and so the Lebesgue–Besicovich differentiation theorem

gives (4.31). For (4.32), it suffices to observe that (E1
1

∪ E1
2

) ∩ ∂∗Ej = 0 for j = 1, 2, and so the property follows
from (4.26) with μ = |div F| (E1

1

∪ E1
2

) and k = n − 1.
Let η ∈ C∞c (B(0, 1)) and define ηρ(y) := η(

y−x
ρ ). By the integration by parts formula (Theorem 4.2), one

has

∫

E1j

ηρ d div F = − ∫
∂∗Ej ηρ(Fi ⋅ νEj ) dH

n−1 − ∫
Ej

F ⋅ ∇ηρ dy (4.33)

for j = 1, 2. Using (4.32), one sees that

∫

E1
1

ηρ d div F − ∫
E1
2

ηρ d div F

≤ |div F|((E1

1

∪ E1
2

) ∩ B(x, ρ)) = o(ρn−1). (4.34)
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Since ∇ηρ = 1

ρ (∇η)ρ, one also has

∫
E
1

F ⋅ ∇ηρ dy − ∫
E
2

F ⋅ ∇ηρ dy

≤
1

ρ ‖F‖L
∞(B(x,1);ℝn)‖∇η‖L∞(B(0,1);ℝn)|(E1∆E2) ∩ B(x, ρ)|. (4.35)

Next, observe that

ρ−n|(E
1
∆E

2
) ∩ B(x, ρ)| = ρ−n ∫

B(x,ρ)

|χE
1

− χE
2

| dy

= ∫
B(0,1)

|χE
1

(x + ρz) − χE
2

(x + ρz)| dz

= ∫
B(0,1)

|χ E
1
−x
ρ
(z) − χ E

2
−x
ρ
(z)| dz → 0

as ρ → 0, where one uses (4.27) and the fact that H+νE
1

(x) = H+νE
2

(x). Hence, (4.35) implies


∫
E
1

F ⋅ ∇ηρ dy − ∫
E
2

F ⋅ ∇ηρ dy

= o(ρn−1). (4.36)

Subtracting (4.33) with j = 2 from (4.33) with j = 1 and using (4.34) and (4.36), one obtains

∫
∂∗E

1

ηρ(Fi ⋅ νE
1

) dH n−1 − ∫
∂∗E

2

ηρ(Fi ⋅ νE
2

) dH n−1 = o(ρn−1). (4.37)

On the other hand, since x is a Lebesgue point for Fi ⋅ νEj with respect to H n−1 ∂∗Ej, one has

∫
∂∗Ej ηρ(Fi ⋅ νEj ) dH

n−1 − (Fi ⋅ νEj )(x) ∫
∂∗Ej ηρ dH

n−1


≤ ∫
∂∗Ej ηρ(y)|(Fi ⋅ νEj )(y) − (Fi ⋅ νEj )(x)| dH

n−1(y) = o(ρn−1) (4.38)

for j = 1, 2. In addition, (4.28) implies that


ρ−(n−1) ∫

∂∗Ej ηρ dH
n−1 − ∫

HνEj (x)

η dH n−1

= o(1), (4.39)

for j = 1, 2. Hence, by (4.38), (4.39) and the triangle inequality, one has

ρ−(n−1) ∫

∂∗Ej ηρ(Fi ⋅ νEj ) dH
n−1 − (Fi ⋅ νEj )(x) ∫

HνEj (x)

η dH n−1

= o(1).

Hence, for j = 1, 2 one has

ρ−(n−1) ∫
∂∗Ej ηρ(Fi ⋅ νEj ) dH

n−1 → (Fi ⋅ νEj )(x) ∫
HνEj (x)

η dH n−1
as ρ → 0. (4.40)

Now choose η such that η ≥ 1

2

on HνEj (x) ∩ B(0,
1

2

) so that the integral over HνEj (x) is not zero. By recalling
that HνE

1

(x) = HνE
2

(x), formulas (4.37) and (4.40) imply (Fi ⋅ νE
1

)(x) = (Fi ⋅ νE
2

)(x).
As for the other identities, notice that (4.24) gives (Fe ⋅ νEj ) = −(Fi ⋅ νΩ\Ej ) for H n−1

-a.e. x ∈ ∂∗Ej, for
j = 1, 2. Moreover, since ν

Ω\Ej = −νEj H n−1
-a.e. on ∂∗Ej and νE

1

(x) = νE
2

(x), one has ν
Ω\E

1

(x) = ν
Ω\E

2

(x).
Since Ω \ Ej is a set of locally finite perimeter in Ω, one can apply the identity we just proved to obtain

(Fe ⋅ νE
1

)(x) = −(Fi ⋅ νΩ\E
1

)(x) = −(Fi ⋅ νΩ\E
2

)(x) = (Fe ⋅ νE
2

)(x)

for H n−1
-a.e. x ∈ {y ∈ ∂∗E

1
∩ ∂∗E

2
: νE

1

(y) = νE
2

(y)}, which is the second claim in (4.29). The identities of

(4.30) follow in an analogous way by using formulas (4.24)–(4.25) and the previous argument applied to E
1

and Ω \ E
2
.
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5 Gluing constructions and extension theorems
In this section, we will present two gluing constructions for building DM∞(Ω;ℝn)-fields from a pair of

DM∞-fields whose domains decompose Ω. The first construction involves subdomains whose overlap is an

open subset containing the boundary ∂E of a bounded set of finite perimeter in Ω and the gluing takes place

along ∂E by restriction of the respective fields to E and its complement. The second construction involves

complementary subsets, one of which is an open bounded subset U whose topological boundary has finite

H n−1
-measure. The pair of fields are extended by zero on their complements and summed to give the glu-

ing along ∂U. Since there are no a priori compatibility assumptions made on the pair of fields, the results

provide a wealth of DM∞ extensions of a given DM∞-field. The two theorems presented here are similar

to [7, Theorem 3] and [9, Theorem 8.5 and Corollary 8.6], respectively; however, we have removed some

of their assumptions on domains and modified and completed the proofs. In particular, we make use of the

integration by parts formula on the complement of sets of finite perimeter compactly contained in the domain

(Proposition 4.6) which justifies the treatment of the termwith an unbounded domain in [9, Corollary 8.6]. In

addition, we have refined the conclusions by providing representation formulas for the jump components of

the distributional divergence of the fields constructed and given L∞-estimates of the relevant normal traces.

Finally, we use the second construction to obtain Gauss–Green and integration by parts formulas up to the

boundary of a bounded domain U such that H n−1(∂U \ ∂∗U) = 0.
We begin with the extension theorem with overlapping domains.

Theorem 5.1. Let W ⊂⊂ E∘ ⊂ E ⊂⊂ U ⊂ Ω, where Ω, U and W are open sets and E is a set of finite perimeter
in Ω. Let F

1
∈ DM∞(U;ℝn) and F

2
∈ DM∞(Ω \W;ℝn). Then

F(x) =
{
{
{

F
1
(x) if x ∈ E,

F
2
(x) if x ∈ Ω \ E,

belongs toDM∞(Ω;ℝn), and

‖F‖DM∞(Ω;ℝn) = max{‖F
1
‖L∞(E;ℝn), ‖F2‖L∞(Ω\E;ℝn)} + |div F|(E1)

+ |div F
2
|(E0) + ‖Fi,1 ⋅ νE − Fe,2 ⋅ νE‖L1(∂∗E;H n−1),

whereFi,1 ⋅ νE is the interior normal trace of F1 over ∂∗E andFe,2 ⋅ νE is the exterior normal trace of F2 over ∂∗E.
In addition, we have

div F = χE1 div F1 + χE0 div F2 + (Fi,1 ⋅ νE − Fe,2 ⋅ νE)H n−1 ∂∗E (5.1)

in the sense of Radon measures on Ω, which in particular implies the following representation for the jump
component:

χ∂∗E div F = (Fi,1 ⋅ νE − Fe,2 ⋅ νE)H n−1 ∂∗E. (5.2)

We notice that we recover [7, Theorem 3] if we take Ω = ℝn and U bounded.

Proof. Obviously, F ∈ L∞(Ω;ℝn) and

‖F‖L∞(Ω;ℝn) = max{‖F
1
‖L∞(E;ℝn), ‖F2‖L∞(Ω\E;ℝn)}.

By applying the integration by parts formulas (4.1) to E and (4.19) toΩ \ E, for each φ ∈ C1c (Ω)with ‖φ‖∞ ≤ 1
one has

∫
Ω

F ⋅ ∇φ dx = ∫
E

F
1
⋅ ∇φ dx + ∫

Ω\E

F
2
⋅ ∇φ dx

= − ∫
E1

φ d div F
1
− ∫
E0

φ d div F
2
− ∫
∂∗E (Fi,1 ⋅ νE + Fi,2 ⋅ νΩ\E)φ dH

n−1
(5.3)

≤ |div F
1
|(E1) + |div F

2
|(E0) + ‖Fi,1 ⋅ νE + Fi,2 ⋅ νΩ\E‖L1(∂∗E;H n−1).

Thus, taking the supremum over φ on the left-hand side, one has F ∈ DM∞(Ω;ℝn).
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Now, by (5.3) and (4.24), for any φ ∈ C1c (Ω) one has

∫
Ω

φ d div F = −∫
Ω

F ⋅ ∇φ dx = ∫
E1

φ d div F
1
+ ∫
E0

φ d div F
2
+ ∫
∂∗E (Fi,1 ⋅ νE − Fe,2 ⋅ νE)φ dH

n−1
,

from which identities (5.1) and (5.2) follow. Finally, basic properties of the total variation then yield the

estimate on ‖F‖DM∞(Ω;ℝn).
Before turning our attention to the extension theorem for complementary domains, we will need a result

frommeasure theory which allows us to approximate open sets with finite boundarymeasure from the inside

and from the outside. A similar result is contained in [9, Proposition 8.1] in order to prove their extension

Theorem 8.5; however, in [9] only the interior approximation is considered. In order to prove the result, we

follow the line of the proof of [2, Proposition 3.62].

Proposition 5.2. Let U ⊂ ℝn be a bounded open set with H n−1(∂U) <∞. Then there exist two sequences of
open bounded sets Uk andWk such that Uk ⊂⊂ U ⊂⊂ Wk and
(1) |U \ Uk|→ 0,
(2) lim supk→+∞H n−1(∂Uk) ≤ 2n−1 nωnωn−1 H n−1(∂U),
(3) |Wk \ U|→ 0,
(4) lim supk→+∞H n−1(∂Wk) ≤ 2n−1 nωnωn−1 H n−1(∂U).

Proof. By the definition of Hausdorff measure, for each integer k, there exists a δk-covering of ∂U by closed

sets {Cj} satisfying diam(Cj) =: 2rj < δk, ∂U ⊂ ⋃∞j=1 Cj and

∞

∑
j=1
ωn−1rn−1j ≤H n−1

δk (∂U) +
1

k ≤H n−1(∂U) + 1k . (5.4)

It is clear that we can cover ∂U with a family of balls {B(xj , 2rj)}, for some xj ∈ Cj. Since ∂U is compact, there

exists a finite covering {B(xj , 2rj)}mk
j=1 and so we set Vk := ⋃

mk
j=1 B(xj , 2rj). We observe that

∂Vk ⊂
mk

⋃
j=1
∂B(xj , 2rj).

This inclusion implies

H n−1(∂Vk) ≤ 2n−1
nωn
ωn−1

mk

∑
j=1
ωn−1rn−1j ,

which, together with (5.4), yields

H n−1(∂Vk) ≤ 2n−1
nωn
ωn−1
(H n−1(∂U) + 1k) for all k. (5.5)

We set Uk := U \ Vk and so, by (5.4), we have

|U \ Uk| = |U ∩ Vk| ≤ |Vk| ≤
mk

∑
j=1
ωnrnj <

δk
2

ωn
ωn−1

mk

∑
j=1
ωn−1rn−1j ≤

δk
2

ωn
ωn−1
(H n−1(∂U) + 1k),

which goes to zero as δk → 0. Finally, ∂Uk = ∂Vk ∩ U and so (5.5) implies point (2).

For the exterior approximation we choose Wk := U ∪ Vk, which is clearly bounded. It is easy to see that

we have ∂Wk = ∂Vk \ U and

|Wk \ U| = |Vk \ U| ≤ |Vk|→ 0.

It follows also that H n−1(∂Wk) ≤H n−1(∂Vk), which, by (5.5), implies

lim sup

k→+∞
H n−1(∂Wk) ≤ 2n−1

nωn
ωn−1

H n−1(∂U),

as desired.
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We now are ready for the extension theorem with respect to complementary sets, which also leads to repre-

sentation formulas for the divergence measure of the extension and yields estimates on the L∞-norm of the

normal traces on ∂∗U.

Theorem 5.3. Let U ⊂⊂ Ω be open sets with H n−1(∂U) <∞, F
1
∈ DM∞(U;ℝn) and F

2
∈ DM∞(Ω \ U;ℝn).

Then, if we set

F̂
1
(x) :=
{
{
{

F
1
(x) if x ∈ U,

0 if x ∈ Ω \ U,
and F̂

2
(x) :=
{
{
{

0 if x ∈ U,
F
2
(x) if x ∈ Ω \ U,

we have F̂
1
, F̂

2
∈ DM∞(Ω;ℝn) with

‖F̂
1
‖DM∞(Ω;ℝn) ≤ (1 + 2n−1 nωnωn−1

H n−1(∂U))‖F
1
‖DM∞(U;ℝn), (5.6)

‖F̂
2
‖DM∞(Ω;ℝn) ≤ (1 + 2n−1 nωnωn−1

H n−1(∂U))‖F
2
‖DM∞(Ω\U;ℝn). (5.7)

If we set F := F̂
1
+ F̂

2
, we have F ∈ DM∞(Ω;ℝn) and we obtain the following representation formula for the

divergence measure of the extension:

div F = χU1 div F̂
1
+ χU0 div F̂

2
+ ((F̂

1,i ⋅ νU) − (F̂2,e ⋅ νU))H n−1 ∂∗U, (5.8)

where (F̂
1,i ⋅ νU) is the interior normal trace on ∂∗U of F̂

1
and (F̂

2,e ⋅ νU) is the exterior normal trace in ∂∗U
of F̂

2
. In particular,

χ∂∗U div F = ((F̂1,i ⋅ νU) − (F̂2,e ⋅ νU))H n−1 ∂∗U. (5.9)

In addition, the normal traces of F on ∂∗U satisfy

(Fi ⋅ νU) = (F̂1,i ⋅ νU), (Fe ⋅ νU) = (F̂2,e ⋅ νU) and (F̂
1,e ⋅ νU) = 0 = (F̂2,i ⋅ νU)

H n−1-a.e. on ∂∗U. Finally, we have the following L∞-estimates of the normal traces:

‖Fi ⋅ νU‖L∞(∂∗U;H n−1) ≤ infε>0
‖F

1
‖L∞(Uε;ℝn), (5.10)

‖Fe ⋅ νU‖L∞(∂∗U;H n−1) ≤ infε>0
‖F

2
‖L∞(Uε;ℝn), (5.11)

where Uε := {x ∈ U : dist(x, ∂U) < ε} and Uε := {x ∈ Ω \ U : dist(x, ∂U) < ε}.

Proof. Clearly, F̂
1
, F̂

2
, and F are in L∞(Ω;ℝn). We notice that, since H n−1(∂U) <∞, we have |∂U| = 0 and

hence we can ignore ∂U when dealing with L n
.

First, we study F̂
1
. Let Uk be the sequence of approximating sets given in Proposition 5.2. We observe

that each Uk is a set of finite perimeter inℝn, sinceH n−1(∂Uk) <∞, and that Uk ⊂⊂ U implies U1

k ⊂ Uk ⊂ U.
Hence, for any φ ∈ C1c (Ω) with ‖φ‖∞ ≤ 1, we may apply the Gauss–Green formula (4.1):

∫
Uk

F
1
⋅ ∇φ dx = − ∫

∂∗Uk φ(Fi,1 ⋅ νUk ) dH
n−1 − ∫

U1

k

φ d div F
1
.

Thus, by Proposition 5.2,


∫
Uk

F
1
⋅ ∇φ dx

≤ |div F

1
|(U1

k ) + ‖F1‖L∞(Uk;ℝn)H n−1(∂∗Uk)

≤ |div F
1
|(U) + ‖F

1
‖L∞(U;ℝn)H n−1(∂Uk).

By letting k → +∞, Lebesgue’s dominated convergence theorem and Proposition 5.2 yield


∫
U

F
1
⋅ ∇φ dx

≤ |div F

1
|(U) + 2n−1 nωnωn−1

‖F
1
‖L∞(U;ℝn)H n−1(∂U).

Since we have

∫
U

F
1
⋅ ∇φ dx = ∫

Ω

F̂
1
⋅ ∇φ dx,
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it follows that

|div F̂
1
|(Ω) ≤ |div F

1
|(U) + ‖F

1
‖L∞(U;ℝn)2n−1 nωnωn−1

H n−1(∂U)

and so

‖F̂
1
‖DM∞(Ω;ℝn) ≤ |div F1|(U) + ‖F1‖L∞(U;ℝn)(1 + 2n−1 nωnωn−1

H n−1(∂U)),

which implies (5.6).

Now we consider F̂
2
and we take the sequence of open sets Wk in Proposition 5.2. Each Wk is a set of

finite perimeter in ℝn since H n−1(∂Wk) <∞ and U ⊂⊂ Wk implies W0

k = (Ω \Wk)1 ⊂ Ω \Wk ⊂ Ω \ U. For
any φ ∈ C1c (Ω)with ‖φ‖∞ ≤ 1, we can apply the integration by parts formula (4.19) to the set Ω \Wk and the

field F
2
:

∫
Ω\Wk

F
2
⋅ ∇φ dx = − ∫

∂∗Wk

φ(Fi,2 ⋅ νΩ\Wk ) dH n−1 − ∫

W0

k

φ d div F
2
.

Letting k → +∞, we obtain, by Proposition 5.2 and Lebesgue’s dominated convergence theorem,


∫

Ω\U

F
2
⋅ ∇φ dx

≤ |div F

2
|(Ω \ U) + 2n−1 nωnωn−1

‖F
2
‖L∞(Ω\U;ℝn)H n−1(∂U).

Hence, since we have

∫

Ω\U

F
2
⋅ ∇φ dx = ∫

Ω

F̂
2
⋅ ∇φ dx,

taking the sup in φ we obtain

|div F̂
2
|(Ω) ≤ |div F

2
|(Ω \ U) + 2n−1 nωnωn−1

‖F
2
‖L∞(Ω\U;ℝn)H n−1(∂U),

and so

‖F̂
2
‖DM∞(Ω;ℝn) ≤ |div F2|(Ω \ U) + (1 + 2n−1 nωnωn−1

H n−1(∂U))‖F
2
‖L∞(Ω\U;ℝn),

which implies (5.7). It is then clear that F ∈ DM∞(Ω;ℝn).
As for the second part of the statement, we notice that, for any φ ∈ C1c (Ω), we can apply (4.1) to U and

(4.19) to Ω \ U, thus obtaining

∫
Ω

F ⋅ ∇φ dx = ∫
U

F̂
1
⋅ ∇φ dx + ∫

Ω\U

F̂
2
⋅ ∇φ dx

= − ∫
U1

φ d div F̂
1
− ∫
∂∗U φ(F̂1,i ⋅ νU) dH n−1 − ∫

U0

φ d div F̂
2
− ∫
∂∗U φ(F̂2,i ⋅ νΩ\U) dH n−1

.

By (4.24), we get (5.8) and (5.9). Applying again formulas (4.1) to U and (4.19) to Ω \ U, we get

∫
U

F ⋅ ∇φ dx = − ∫
U1

φ d div F − ∫
∂∗U φ(Fi ⋅ νU) dH

n−1

= ∫
U

F̂
1
⋅ ∇φ dx = − ∫

U1

φ d div F̂
1
− ∫
∂∗U φ(F̂1,i ⋅ νU) dH n−1

,

∫
Ω\U

F ⋅ ∇φ dx = − ∫
U0

φ d div F − ∫
∂∗U φ(Fi ⋅ νΩ\U) dH

n−1

= ∫
Ω\U

F̂
2
⋅ ∇φ dx = − ∫

U0

φ d div F̂
2
− ∫
∂∗U φ(F̂2,i ⋅ νΩ\U) dH n−1

,

which, together with (4.24) and (5.8), yields (Fi ⋅ νU) = (F̂1,i ⋅ νU), (Fe ⋅ νU) = (F̂2,e ⋅ νU)H n−1
-a.e. on ∂∗U.

Finally, using the estimates in Remark 4.3 to the field F, we obtain (5.10) and (5.11). If we apply these

estimates to F̂
1
and F̂

2
, we have (F̂

1,e ⋅ νU) = 0 = (F̂2,i ⋅ νU), since F̂1 = 0 in Uε and F̂2 = 0 in Uε.



G. E. Comi and K. R. Payne, Divergence measure fields | 211

Remark 5.4. It should be noted that the normal traces (F̂i,j ⋅ ν), (F̂e,j ⋅ ν) are the densities with respect to

H n−1 ∂∗U of the Radon measures

2χU F̂j ⋅ DχU and 2χ
Ω\U F̂j ⋅ DχU ,

respectively, for j = 1, 2. Then it is clear that

2χU F̂2 ⋅ DχU = 2χΩ\U F̂1 ⋅ DχU = 0,

since F̂
2
= 0 in U and F̂

1
= 0 in Ω \ U.

In particular, we see that, if the topological and measure theoretic interior and exterior of U coincide up to

an H n−1
-negligible set, we obtain a representation formula for the divergence measure of the extension in

terms of the divergences of the fields as well as new Gauss–Green formulas up to the boundary of the smaller

domain U.

Corollary 5.5. In the hypotheses of Theorem 5.3, if H n−1(U1 \ U) = 0 and H n−1(U0 \ (Ω \ U)) = 0, or, equiv-
alently, H n−1(∂U \ ∂∗U) = 0, we have

div F = χU div F1 + χ
Ω\U div F2 + ((F̂1,i ⋅ νU) − (F̂2,e ⋅ νU))H n−1 ∂U, (5.12)

|div F|(Ω) ≤ |div F
1
|(U) + |div F

2
|(Ω \ U) +H n−1(∂U) inf

ε>0
(‖F

1
‖L∞(Uε;ℝn) + ‖F2‖L∞(Uε;ℝn)), (5.13)

div F
1
(U) = − ∫

∂U

F̂
1,i ⋅ νU dH n−1

, (5.14)

div F
1
(U) = −div F(∂U) − ∫

∂U

F̂
2,e ⋅ νU dH n−1

. (5.15)

In particular, if F
2
= 0, then

div F
1
(U) = − ∫

∂U

F̂
1,i ⋅ νU dH n−1 = −div F̂

1
(∂U). (5.16)

Proof. One has the topological and measure theoretic decompositions

U ∪ ∂U ∪ (Ω \ U) = Ω = U1 ∪ U0 ∪ ∂∗U ∪ Z, H n−1(Z) = 0.

By hypothesis, one also has

U1 = U ∪ ZU , U0 = (Ω \ U) ∪ Z
Ω\U with H n−1(ZU) = 0 =H n−1(Z

Ω\U) = 0,

which yields ∂U = ZU ∪ ZΩ\U ∪ ∂∗U ∪ Z and H n−1(∂U \ ∂∗U) = 0. Analogously, if H n−1(∂U \ ∂∗U) = 0,
then ∂U = ∂∗U ∪Z∂U withH n−1(Z∂U) = 0. Hence one has U1 = U ∪ (Z∂U ∩U1) and U0 = (Ω \U)∪ (Z∂U ∩U0),
which implies H n−1(U1 \ U) = 0 and H n−1(U0 \ (Ω \ U)) = 0.

Now, since the divergence of a DM∞-field is absolutely continuous with respect to H n−1
, we can work

with U and Ω \ U instead of U1

and U0

, respectively. It is easy to see that div F̂
1
= div F

1
inM(U). Indeed, for

any φ ∈ C1c (U),
∫
U

φ ddiv F̂
1
= −∫

U

F̂
1
⋅ ∇φ dx = −∫

U

F
1
⋅ ∇φ dx = ∫

U

φ d div F
1
.

Then, by the density of C1c (U;ℝn) in Cc(U;ℝn) with respect to the sup norm, we can conclude the equality

of the Radon measures. Analogously, div F̂
2
= div F

2
in M(Ω \ U). Therefore, (5.8) implies (5.12). Estimate

(5.13) follows immediately, also by (5.10) and (5.11).

It remains to justify the Gauss–Green formulas (5.14)–(5.16). We begin by observing that (3.11) implies

div(χUF) = χU div F + 2χUF ⋅ DχU .

We now evaluate over Ω, using the fact that U is bounded and using Lemma 3.1, to find

div F(U) = − ∫
∂U

(Fi ⋅ νU) dH n−1
.

Then, since div F = div F
1
inM(U) and (Fi ⋅ νU) = (F̂1,i ⋅ νU)H n−1

-a.e. on ∂U by Theorem5.3, one has (5.14).
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With a similar argument, we can show that

div(χUF) = χU∪∂U div F + 2χΩ\UF ⋅ DχU ,

and so we obtain

div F(U ∪ ∂U) = − ∫
∂U

(Fe ⋅ νU) dH n−1
.

Using the fact that (Fe ⋅ νU) = (F̂2,e ⋅ νU)H n−1
-a.e. on ∂U by Theorem 5.3, we get (5.15). Finally, if F

2
= 0,

by Theorem 5.3, we have (F̂
2,e ⋅ νU) = 0 H n−1

-a.e. on ∂U and so (5.14) and (5.15) imply (5.16).

Remark 5.6. We notice that if U is an open bounded set with Lipschitz boundary, then Remark 2.10 implies

H n−1(∂U \ ∂∗U) = 0. Hence, U satisfies the hypotheses of Corollary 5.5. For bounded open sets U satisfy-

ing the hypotheses of Corollary 5.5 and for F ∈ DM∞(U;ℝn), Theorem 5.3 shows that the zero extension F̂
belongs to DM∞(ℝn;ℝn) and that there exists the interior normal trace (F̂i ⋅ νU) on ∂U, while the exterior
normal trace is zero. By formulas (5.16) and (5.12) of Corollary 5.5, we have

div F(U) = − ∫
∂U

(F̂i ⋅ νU) dH n−1
and χ∂U div F̂ = (F̂i ⋅ νU)H n−1 ∂U.

In addition, by Theorem 2.18 and (5.12), for any φ ∈ Lip
loc
(ℝn) we obtain

div(φF̂) = φ div F̂ + F̂ ⋅ ∇φ = φχU div F + φ(F̂i ⋅ νU)H n−1 ∂U + χUF ⋅ ∇φ. (5.17)

Hence, since φF̂ has compact support in ℝn, we can evaluate (5.17) on ℝn and apply Lemma 3.1 to obtain

the following integration by parts formula:

∫
U

φ d div F = − ∫
∂U

φ(F̂i ⋅ νU) dH n−1 − ∫
U

F ⋅ ∇φ dx.

6 Concluding remarks
In this section, we would like to make some final remarks concerning the results we have obtained and com-

parisonswith other related results in the literature. First, we briefly discuss the importance of choosing p =∞
in the question of the existence of normal traces for F ∈ DM

p
loc

(Ω;ℝn). Then we indicate some relations

between our p =∞ theory and known alternate approaches, which will lead to some known variants of what

we have presented. In particular, we will illustrate how one can obtain the consistency of the normal traces

with the classical dot product F ⋅ νE without the assumption that F is continuous (as made in Theorem 3.7)

provided that one makes additional assumptions on F and E. We will also discuss alternate representations

of the normal trace as certain local averages.

We begin by illustratingwhy F ∈ DM
p
loc

(Ω;ℝn) for p <∞may fail to admit locally integrable interior and

exterior normal traces which satisfy the Gauss–Green formula. The example relies heavily on a construction

of Šilhavý in his study ofDM
p
loc

(Ω;ℝn)-fields (see [25, Example 3.3 and Proposition 6.1]).

Example 6.1. For any n ≥ 2 and any p ∈ [1,∞) there exists a vector field F ∈ DM
p
loc

(Ω;ℝn) \DM∞
loc

(Ω;ℝn)
for which we can find a set E ⊂⊂ Ω of finite perimeter in Ω such that there do not exist interior and exterior

normal traces (Fi ⋅ νE), (Fe ⋅ νE) ∈ L1(∂∗E;H n−1) satisfying respectively

∫
E1

φ d div F = − ∫
∂∗E φFi ⋅ νE dH

n−1 − ∫
E

∇φ ⋅ F dx (6.1)

and

∫
E1∪∂∗E φ d div F = − ∫∂∗E φFe ⋅ νE dH

n−1 − ∫
E

∇φ ⋅ F dx (6.2)

for any φ ∈ C∞c (Ω).
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Indeed, as in [25], we will make use of the vector field F which is the gradient of a Newtonian poten-

tial of uniform mass distribution on a suitable compact set K of Hausdorff dimension m ∈ (0, n − 1). With-

out loss of generality, we may assume that B(0, 1) ⊂⊂ Ω. For any m ∈ (0, n − 1) we choose a compact set

K ⊂ B(0, 1) ∩ {x ∈ ℝn : xn = 0} with 0 <H m(K) <∞ for which there is a constant c > 0 such that

H m(K ∩ B(x, r)) ≤ crm for all x ∈ ℝn and all r > 0.

For the existence of such a set K, see [15, Corollary 4.12]. We define the vector field Ln-a.e. on Ω by the

formula

F(x) := 1

nωn
∫
K

(x − y)
|x − y|n dH

m(y).

Following the calculations of [25, Proposition 6.1], one sees that F ∈ Lp
loc

(Ω;ℝn) provided that

m > n − p
p − 1 (6.3)

and that in such cases F ∈ L1
loc

(Ω;ℝn) with

div F =H m K inM(Ω),

and hence F ∈ DM
p
loc

(Ω;ℝn) provided that m ∈ (0, n − 1) can be chosen to satisfy (6.3) with n and p
given. For p ∈ [1, n

n−1 ] any m ∈ (0, n − 1) will do, while for
n
n−1 < p <∞ one can choose such an m since

n − p
p−1 ∈ (0, n − 1). In addition, F ̸∈ DM∞

loc

(Ω;ℝn) since div F is notH n−1
-absolutely continuous, as follows

from Corollary 2.16.

With E := B(0, 1) ∩ {xn > 0}, we claim that the existence of normal traces satisfying (6.1)–(6.2) leads to

a contradiction. To this end, we note that for any Borel set A ⊂ Ω one has

div F(A) = div F(A ∩ K) = div F(A ∩ {xn = 0}).

Subtracting (6.1) from (6.2) would say that for each φ ∈ C∞c (Ω) one has

∫
∂∗(B(0,1)∩{xn>0}) φ d div F = − ∫

∂∗(B(0,1)∩{xn>0}) φ(Fe ⋅ νE − Fi ⋅ νE) dH
n−1

. (6.4)

We observe that

∂∗(B(0, 1) ∩ {xn > 0}) = (B(0, 1) ∩ {xn = 0}) ∪ (∂B(0, 1) ∩ {xn > 0}).

Since H m(K) <∞, one has capn−m(K) ≤ capn−m(K, Ω) = 0 by Theorem 2.6 and hence, by Lemma 2.8, there

exists a sequence φj ∈ C∞c (Ω)which satisfies 0 ≤ φj ≤ 1, φj = 1 on K and φj(x)→ 0 for all x ∈ Ω \ K. We can

write equation (6.4) for any φj and, since the measure div F is supported in K, we have

∫
∂∗(B(0,1)∩{xn>0}) φj d div F = ∫K d div F =H m(K) > 0.

On theother hand,φj → 0H n−1
-a.e. since Theorem2.6 shows that capn−m(K) = 0 impliesH s(K) = 0 for

any s > m, hence in particular for s = n − 1. Thus we may apply Lebesgue’s dominated convergence theorem

to the right-hand side of (6.4), since 0 ≤ φj ≤ 1 and (Fe ⋅ νE − Fi ⋅ νE) ∈ L1(∂∗(B(0, 1) ∩ {xn > 0});H n−1). In
this way, we obtain

H m(K) = lim

j→+∞
∫

∂∗(B(0,1)∩{xn>0}) φj d div F = lim

j→+∞
− ∫
∂∗(B(0,1)∩{xn>0}) φj(Fe ⋅ νE − Fi ⋅ νE) dH

n−1 = 0,

which contradicts the positivity of H m(K).

It is interesting to notice that the obstruction to the existence of normal traces which complete Gauss–Green

formulas such as (6.1)–(6.2) is the possibility of having div F supported on a set of Hausdorff dimension

strictly less than n − 1 which lies on the reduced boundary of a set of finite perimeter. However, one knows
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that it is possible to recover such formulas also in the case F ∈ DM
p
loc

(Ω;ℝn) \DM∞
loc

(Ω;ℝn), provided that F
and the set E of finite perimeter in Ω satisfy some additional assumptions. We refer to Degiovanni, Marzocchi

andMusesti [13], Schuricht [24] and Šilhavý [25] for a complete treatment of this theory. Herewe only discuss

how their results are consistent with ours in the case p =∞.
We begin with the question of the consistency of normal traces with the classical dot product even when

F is not continuous, provided that F and E satisfy two additional conditions which were in introduced in [13]
and exploited in greater generality in [24]. These conditions are

|div F|(∂∗E) = 0 and ∫
∂∗E h dH

n−1 <∞, (6.5)

where h ∈ L1
loc

(Ω) is a nonnegative function such that one can extract a subsequence {Fk}k∈ℕ of the canonical
mollification Fk := F ∗ ρεk of F ∈ L1loc(Ω;ℝ

n) satisfying³

Fk → F in L1
loc

(Ω;ℝn), (6.6)

Fk(x)→ F(x) for each x ∈ Ω such that h(x) < +∞, (6.7)

|Fk(x)| ≤ h(x) for each x ∈ Ω and k ∈ ℕ. (6.8)

The existence of such a nonnegative function h for which the above properties hold is standard (see,

for example, [4, Theorem 4.9]). For F ∈DM1

loc

(Ω;ℝn) and E ⊂ Ω of finite perimeter in Ω satisfying condi-

tions (6.5), [24, Proposition 5.11] gives the integration by parts formula⁴

∫
E1

φ d div F = − ∫
∂∗E φF ⋅ νE dH

n−1 − ∫
E

F ⋅ ∇φ dx, (6.9)

for every φ ∈ Lip
loc
(Ω) such that χEφ has compact support in Ω.

Remark 6.2. For F ∈ DM∞
loc

(Ω;ℝn) and E ⊂ Ω of finite perimeter in Ω satisfying conditions (6.5), the inte-

rior and exterior normal traces of F on ∂∗E coincide H n−1
-a.e. on ∂∗E with the classical dot product F ⋅ νE

and one has the formula (6.9) for each φ ∈ Lip
loc
(Ω) such that χEφ has compact support in Ω. Indeed, since

|div F|(∂∗E) = 0 by the first condition in (6.5), the interior and exterior normal traces of F coincide and so

χEF ⋅ DχE = χΩ\EF ⋅ DχE inM
loc
(Ω). Thus one has the following identities inM

loc
(Ω):

F ⋅ DχE = χEF ⋅ DχE + χΩ\EF ⋅ DχE = 2χEF ⋅ DχE = 2χΩ\EF ⋅ DχE . (6.10)

For any φ ∈ C1c (Ω) one has

lim

k→+∞
∫
Ω

φFk ⋅ dDχE = lim

k→+∞
∫
∂∗E φFk ⋅ νE dH

n−1 = ∫
∂∗E φF ⋅ νE dH

n−1
, (6.11)

by Lebesgue’s dominated convergence theorem with respect to the measure |DχE| =H n−1 ∂∗E, since
Fk(x)→ F(x) forH n−1

-a.e. x ∈ ∂∗E and |φFkνE| ≤ Ch which is summable on ∂∗E by the second condition in
(6.5). In addition, since φFk ∈ C1c (Ω;ℝn), one has

∫
Ω

φFk ⋅ dDχE = −∫
Ω

χE div(φFk) dx

= −∫
Ω

χEφ div(Fk) dx − ∫
Ω

χE∇φ ⋅ Fk dx

= −∫
Ω

∫
E

φ(x)ρεk (x − y) dx d div F(y) − ∫
Ω

χE∇φ ⋅ Fk dx.

3 Here and below we will still denote by F the particular representative which is the limit of the sequence Fk in the sense (6.7).
4 Schuricht actually treats divergence tensor fields F ∈ DM1

loc

(Ω;ℝn×m) and uses the opposite orientation with respect to our

choice. See also the related Theorems 5.2 and 5.4 in [13].
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Now, notice that for y ∈ E1 one has
∫
E

φ(x)ρεk (x − y) dx → φ(y),

while if y ∈ E0, one has
∫
E

φ(x)ρεk (x − y) dx → 0.

On the other hand, since H n−1(∂mE \ ∂∗E) = 0 and |div F| ≪H n−1
, Corollary 2.16 yields

|div F|(Ω \ (E1 ∪ E0)) = |div F|(∂∗E) = 0.

Thus, by Lebesgue’s dominated convergence theorem and the Leibniz rule (Theorem 2.18), one obtains

lim

k→+∞
∫
Ω

φFk ⋅ dDχE = −∫
Ω

χE1φ d div F − ∫
Ω

χE∇φ ⋅ F dx

= −∫
Ω

χE1φ d div F + ∫
Ω

φ d div(χEF)

= −∫
Ω

χE1φ d div F + ∫
Ω

φχ∗E d div F + ∫
Ω

φ dF ⋅ DχE

= ∫
Ω

φ dF ⋅ DχE ,

since χ∗E = χE1 on E
1

by (2.12) and |div F|(∂∗E) = 0. From (6.11) and the density of C1c (Ω) in Cc(Ω) it follows
that F ⋅ DχE = F ⋅ νE dH n−1 ∂∗E, which means, by (6.10), Fi ⋅ νE = Fe ⋅ νE = F ⋅ νE H n−1

-a.e. on ∂∗E.

It is also perhaps worth mentioning that in this setting of F ∈ DM1

loc

(Ω;ℝn) and E ⊂ Ω satisfying (6.5),

[24, Proposition 6.5] provides the following Leibniz formula for χE and the particular representation of F
described in (6.7):

div(χEF) = gE div F + F ⋅ νEH n−1 ∂∗E,

where gE ∈ L∞(Ω; |div F|) satisfies 0 ≤ gE ≤ 1 and gE(x) = d(E, x) at each x for which the Lebesgue density

(2.6) exists. This last property indicates that gE is in some sense a generalization of χ∗E. If one also assumes

that E ⊂⊂ Ω, then, by Lemma 3.1, one has the following Gauss–Green formula for F ∈ DM1

loc

(Ω;ℝn):

∫
Ω

gE d div F = − ∫
∂∗E F ⋅ νE dH

n−1
.

If F ∈DM∞(Ω;ℝn)and |div F|(∂∗E) = 0, this formula gives anatural variant to (3.19), since gE = χ∗E H n−1
-a.e.

Next we turn our attention to alternate representations of the normal trace functional (4.21) and of the

normal traces discussed herein.

Remark 6.3. If F ∈ DM∞
loc

(Ω;ℝn), then for any compact set K ⊂ Ω one can represent the normal trace func-

tional as an average on one-sided tubular neighborhoods of ∂K in the sense that

div F(K) = lim
ε→0

1

ε ∫
Kε\K

F ⋅ νdK dx, (6.12)

where Kε = {x ∈ Ω : dist(x, K) ≤ ε} and νdK(x) = ∇dist(x, K) is a unit vector for L n
-a.e. x ∈ Ω \ K. This last

property says that νdK is a sort of generalization of the exterior normal. Indeed, formula (6.12) holds even for

F ∈ DM1

loc

(Ω;ℝn) (see [24, Theorem 5.20]). It is sufficient to apply the definition of distributional divergence

using as tests the Lipschitz functions

φεK(x) :=
{{{
{{{
{

1 if x ∈ K,
1 − 1

ε dist(x, K) if x ∈ Kε \ K,
0 if x ∉ Kε ,

which clearly have compact support for ε small enough, and then to pass to the limit as ε → 0.
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Next we notice that it is possible to provide an alternate representation formula for interior and exterior

normal traces of F as limits of fluxes in terms of the blow-up construction of De Giorgi (as recalled in the

discussion leading to Proposition 4.10). This observation comes from the paper of Šilhavý [25], in which one

finds a rich study of the normal trace functional under various summability assumptions on F and concen-
tration hypotheses on |div F|. In particular, we refer to [25, Theorems 4.2, 4.4 and 4.6]. Wewill comment only

on the case p =∞ as treated in [25, Theorem 4.4], where we note that the author treats explicitly only the

case of the interior normal trace and uses an orientation which is opposite to ours.

Remark 6.4. Let F ∈ DM∞
loc

(Ω;ℝn) and let E ⊂ Ω be a set of locally finite perimeter. Then one has the follow-

ing formulas for interior and exterior traces which are valid for H n−1
-a.e. x ∈ ∂∗E:

(Fi ⋅ νE)(x) = limr→0
n

ωn−1rn
∫

Π

+
νE (x)∩B(x,r)

F(y) ⋅ y − x
|y − x| dy (6.13)

and

(Fe ⋅ νE)(x) = −(Fi ⋅ νΩ\E)(x) = − limr→0
n

ωn−1rn
∫

Π

−
νE (x)∩B(x,r)

F(y) ⋅ y − x
|y − x| dy. (6.14)

Indeed, (6.14) follows from (4.24) and (6.13), sinceΠ

+
ν
Ω\E (x) = Π−νE (x). In order to establish (6.13), one applies

Theorem4.2 and (4.1) to the Lipschitz functionφx,r(y) := max{r − |y − x|, 0}, where x ∈ ∂∗E and r > 0. For the
details, one can consult [25, Theorem 4.4]; roughly speaking, one needs to exploit the tangential properties

of the sets of finite perimeter as in the proof of Proposition 4.10.

We conclude with an application of these formulas to a classical example.

Example 6.5. Consider the field

F(x
1
, x

2
) = sin(

1

x
1
− x

2

)(1, 1) ∈ DM∞
loc

(ℝ2;ℝ2).

It is easy to see that div F = 0 in the sense of distributions, hence the interior and exterior normal traces of F
always coincide by (4.7). We are interested in finding the normal trace on the line {x

1
= x

2
}; that is, on the

set of essential singularities, in any neighborhood of which F is not even a function of bounded variation.

Hence, let x = (t, t), ν = √2
2

(1, −1) and E = Π+ν (x). By a roto-translation and a passage to polar coordinates,

we have

∫

Π

+
ν (x)∩B(x,r)

sin(
1

y
1
− y

2

)
y
1
− x

1
+ y

2
− x

2

|y − x| dy = ∫

Π

+
ν (0)∩B(0,r)

sin(
1

y
1
− y

2

)
y
1
+ y

2

√y2
1

+ y2
2

dy

= ∫
{z

1
≥0}∩B(0,r)

sin(
1

√2z
1

)
√2z

2

√z2
1

+ z2
2

dz

=
r

∫
0

π
2

∫
− π

2

sin(
1

√2ρ cos θ
)√2ρ sin θ dθ dρ = 0,

since sin( 1

√2ρ cos θ
) sin θ is odd in θ ∈ (− π

2

,

π
2

) for any ρ > 0. Hence, we conclude that

(Fi ⋅ νE)(x) = (Fe ⋅ νE)(x) = 0

for any x ∈ {x
1
= x

2
}, by Proposition 4.10. It is possible to prove this identity also using the definition of the

normal traces as densities of the Radon measures 2χEF ⋅ DχE and 2χΩ\EF ⋅ DχE; however, the method is less

straightforward.
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