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Abstract

We extensively describe our recently established “divide-and-conquer” semiclassical method [M. Ceotto,

G. Di Liberto and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)] and propose a new implementation of

it to increase the accuracy of results. The technique permits to perform spectroscopic calculations of high

dimensional systems by dividing the full-dimensional problem into a set of smaller dimensional ones. The

partition procedure, originally based on a dynamical analysis of the Hessian matrix, is here more rigorously

achieved through a hierarchical subspace-separation criterion based on Liouville’s theorem. Comparisons of

calculated vibrational frequencies to exact quantum ones for a set of molecules including benzene show that

the new implementation performs better than the original one and that, on average, the loss in accuracy with

respect to full-dimensional semiclassical calculations is reduced to only 10 wavenumbers. Furthermore, by

investigating the challenging Zundel cation, we also demonstrate that the “divide-and-conquer” approach

allows to deal with complex strongly anharmonic molecular systems. Overall the method very much helps

the assignment and physical interpretation of experimental IR spectra by providing accurate vibrational

fundamentals and overtones decomposed into reduced dimensionality spectra.
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I. INTRODUCTION

The simulation of vibrational spectra of high-dimensional systems is an important open issue

in quantum mechanics. The challenge is to beat the curse of dimensionality that plagues any quan-

tum method in both electronic and nuclear spectroscopy simulations. In fact, the exact treatment

of quantum problems often implies the set-up of a grid. As a consequence, the computational

cost scales exponentially with dimensionality, and only simulations involving a few atoms can be

exactly performed.[1–5] Alternatively, perturbative quantum methods have also been successfully

applied to many systems, but they are intrinsically limited to a single reference geometry. [6–11]

High dimensional systems, such as peptides, are instead usually simulated through ad-hoc scaled

harmonic approaches or by means of classical mechanics, either using force fields[12–14] or em-

ploying ab initio molecular dynamics (AIMD)[15–21] approaches in which the nuclear forces are

calculated using electronic structure codes. In classical simulations the curse of dimensionality is

significantly tamed with respect to quantum mechanical counterparts. However, a purely classical

dynamics simulation is unable to describe tunneling effects, zero point energies, overtones and

other important spectroscopic quantum features.

Semiclassical dynamics employs classical trajectories to reproduce quantum mechanical ef-

fects. In semiclassical methods, spectra are calculated in a time-dependent way, i.e. by Fourier

transforming the survival amplitude or the autocorrelation function of some observables (such

as the dipole moment).[22] Semiclassical methods based on the coherent states Herman-Kluk

propagator[23–29] and the initial value representation (SCIVR)[30–32] are robust, have been

proven to reproduce quantum effects quite quantitatively,[22, 33–56] and have been shown to have

an accuracy in spectra calculations often within 1% of exact results.[35, 57] Recently, the multiple-

coherent (MC)-SCIVR technique has been developed. It allows to perform on-the-fly semiclassical

molecular dynamics simulations given a few input trajectories.[58–65] The approach is amenable

to ab initio direct molecular dynamics, thus avoiding the effort to construct an accurate analytical

potential energy surface which may be quite demanding especially for large systems,[66–74] and

permits to faithfully reproduce quantum effects like quantum resonances,[60] intra-molecular and

long-range dipole splittings, and the quantum resonant ammonia umbrella inversion.[62] Never-

theless, all SCIVR methods run out of steam when straightforwardly applied to problems involving

large-sized systems.

Understanding the reasons of such a limitation is the first step to do for dealing with the curse
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of dimensionality and possibly overcoming it. The semiclassical wavepacket for a system of N

degrees of freedom consists in the direct product of N monodimensional (Gaussian) wavefunc-

tions |Ψ(t)⟩ = |ψ1 (t)⟩ ... |ψN (t)⟩. When the time-dependent overlap ⟨Ψ(0) |Ψ(t)⟩ is Fourier

transformed to generate the spectrum, the simulation time should have been long enough to pro-

vide a significant overlap. In other words, if the trajectory does not periodically return to the

surroudings of the phase space region where it started, a noisy signal will be collected. If, in-

stead, the multidimensional classical trajectory is such that (p (t) ,q (t)) approaches several times

(p (0) ,q (0)), then the overlap ⟨Ψ(0) |Ψ(t)⟩ is sizable and the signal associated to the vibrational

features will prevail on the noise. The curse of dimensionality occurs because each monodimen-

sional coherent state overlap ⟨ψi (0) |ψi (t)⟩ should be significant for all dimensions at the same

time. Even for uncoupled oscillators with non-commensurable frequencies the concomitant over-

lapping event is rarer and rarer as the dimensionality increases, and the simulation time has to

be much prolonged.[58] The present “divide et impera” idea starts from the consideration that a

full-dimensional classical trajectory, once projected onto a sub-dimensional space, is more likely

to provide a useful spectroscopic signal and for such a reduced dimensionality trajectory, a clear

spectroscopic signal can be obtained in a much shorter amount of time with respect to the full-

dimensional case, as we have recently shown.[75] Thus, according to this divide-and-conquer

strategy, after dividing the full-dimensional space into mutual disjoint subspaces, a semiclassical

spectroscopic calculation is performed separately for each subspace. While the classical trajecto-

ries are full-dimensional, the semiclassical calculations employ subspace information for calcu-

lating each partial spectrum. Composition of the projected spectra provides the full-dimensional

one. Considering that nuclear spectra of high dimensional systems are often too crowded for an

unambiguous interpretation, this “divide-and-conquer” strategy will also allow to better read and

understand the physics behind the spectra and help the interpretation of experimental results.

In this paper we introduce some new features that significantly enhance the accuracy of our

divide-and-conquer semiclassical initial value representation (DC SCIVR) method. Accuracy

of results is estimated by comparison to exact values for systems up to 30 degrees of freedom

(DOFs). In Section (II) we first recall the basics of time averaged semiclassical spectral den-

sity calculations,[76, 77] and then we describe in details the DC-SCIVR approach and two new

subspace-separation criteria. In Section (III) we test the performance of DC SCIVR on strongly

coupled Morse oscillators, real molecular systems like H2O, CH2O, CH4, CH2D2, the very chal-

lenging Zundel cation (H5O2
+) and, finally, the benzene molecule, which is, at the best of our
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knowledge, the highest dimensional molecular system for which exact quantum vibrational calcu-

lations have been performed.[78] A summary and some conclusions end the paper.

II. A DIVIDE AND CONQUER STRATEGY FOR SEMICLASSICAL DYNAMICS

This Section recalls the derivation of the DC-SCIVR expression for spectroscopic calcula-

tions. We start from the SC-IVR power spectrum formulation and its multiple coherent state

time averaging implementation (MC-SCIVR), and then move to the “divide and conquer” work-

ing formula. Finally, we present three different techniques for partitioning the full-dimensional

vibrational space into suitable lower-dimensional subspaces.[75]

A. The SC-IVR time averaged spectral density

We start by writing the power spectrum I (E) of a molecular system, characterized by the

Hamiltonian Ĥ , as the Fourier transform of the survival amplitude[22] of a given and arbitrary

reference state |χ⟩

I (E) ≡ 1

2π~

ˆ +∞

−∞

⟨
χ
∣∣∣e−iĤt/~

∣∣∣χ⟩ eiEt/~dt. (1)

In semiclassical (SC) molecular dynamics, the quantum time-evolution operator e−iĤt/~ of Eq. (1)

is substituted by the stationary phase approximation to its Feynman Path Integral representation.[79]

In the position representation, the semiclassical propagator is a matrix whose elements are obtained

as products of a complex action exponential and a stationary-phase pre-exponential factor, summed

over all classical trajectories that connect the two endpoints.[41, 80–88] The search for these trajec-

tories is hampered by the rigid double-boundary condition. In the SC-IVR dynamics, introduced

by Miller and later also developed by Heller, Herman, Kluk, and Kay,[22, 27, 28, 30, 31, 34, 57, 89]

the propagator is instead formulated in terms of classical trajectories determined by initial condi-

tions (p (0) ,q (0)) so that Eq. (1) becomes

⟨
χ
∣∣∣e−iĤt/~

∣∣∣χ⟩ ≈
(

1

2π~

)F ¨
dp (0) dq (0)Ct (p (0) ,q (0)) e

i
~St(p(0),q(0)) ⟨χ |p (t)q (t) ⟩⟨p (0)q (0)| χ⟩ ,

(2)

where F is the number of degrees of freedom, St (p (0) ,q (0)) is the classical action, and

Ct (p (0) ,q (0)) indicates the pre-exponential stationary-phase factor. If |p (t) ,q (t)⟩ is repre-
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sented as a coherent state[22, 89–91] of the type

⟨x|p (t) ,q (t)⟩ =
(

det (Γ)
πF

)1/4

e−(x−q(t))TΓ(x−q(t))/2+ipT (t)(x−q(t))/~, (3)

where Γ is a diagonal width matrix with coefficients usually equal to the square root of the vibra-

tional frequencies for bound states calculations, then the pre-exponential factor becomes

Ct (p (0) ,q (0)) =

√
det
∣∣∣∣12
(
∂q (t)

∂q (0)
+
∂p (t)

∂p (0)
− i~Γ

∂q (t)

∂p (0)
+

i

Γ~
∂p (t)

∂q (0)

)∣∣∣∣, (4)

and Eq. (2) is commonly known as the Herman-Kluk survival amplitude of the Hamiltonian

Ĥ . However, for complex systems, the phase space integration of Eq. (2) requires too many

trajectories to be feasible. To overcome this limitation, Miller and Kaledin introduced a time

averaged version of the semiclassical propagator (TA-SCIVR),[76, 77] which significantly reduces

the computational overhead

I (E) =
1

(2π~)F

ˆ ˆ
dq (0) dp (0)

Re
π~T

ˆ T

0

dt1

ˆ +∞

t1

dt2e
i(St2 (p(0),q(0))+Et2)/~

×⟨χ|p(t2),q(t2)⟩e−i(St1 (p(0),q(0))+Et1)/~⟨p(t1),q(t1)|χ⟩Ct2(p(t1),q(t1)), (5)

where t1 is the additional time averaging variable and t2 is the original Fourier transform variable.

In Eq. (5) the integrand is time averaged by taking into account different portions of time length

t2 − t1 of the same trajectory started in (p (0) ,q (0)). Considering that the pre-exponential factor

is of the type eiωt for a harmonic ω-frequency system, Eq. (4) can be reasonably approximated

as Ct (p (0) ,q (0)) = eiϕt , where ϕt = phase [Ct (p (0) ,q (0))], leading to the computationally

more convenient separable approximation version of TA-SCIVR [76, 77]

I (E) =
(

1

2π~

)F ¨
dp (0) dq (0)

1

2π~T

∣∣∣∣∣∣
T̂

0

e
i
~ [St(p(0),q(0))+Et+ϕt]⟨χ|p (t) ,q (t)⟩dt

∣∣∣∣∣∣
2

. (6)

Eq. (6) is more amenable than (5) to phase space Monte Carlo integration, given the positive-

definite integrand, and it has been tested with excellent results on several molecular systems.

However, TA-SCIVR still requires thousands of trajectories per degree of freedom to reach

convergence.[76, 77, 92, 93] To further reduce the computational effort, the multiple coherent

time averaged SCIVR (MC SCIVR) has been introduced.[58–62, 94] In the MC-SCIVR formu-

lation, the reference state |χ⟩ is written as a combination of coherent states placed at the classical

phase space points
(
pi

eq,q
i
eq

)
, i.e. |χ⟩ =

∑Nstates
i=1

∣∣pi
eq,q

i
eq

⟩
. qi

eq is an equilibrium position, while
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pi
eq is obtained in a harmonic fashion as

(
pij,eq

)2
/2m = ~ωj (n+ 1/2), where j is a generic

normal mode, ωj is the associated frequency, and m is unitary in mass-scaled normal mode

coordinates. Eq.(6) has been shown to be quite accurate with respect to exact quantum mechan-

ical simulations for the several molecules tested, even when applied to systems as complex as

glycine.[62, 63, 92, 93]

B. The “Divide-and-Conquer” strategy applied to semiclassical dynamics

In this Section we provide a more detailed explanation of the “divide-and-conquer” strategy

previously introduced elsewhere.[75] The idea is to calculate the power spectrum I (E) of Eq.

(1) as composition of partial spectra Ĩ (E) each one calculated in a reduced M-dimensional phase

space (p̃, q̃) of the full Nvib-dimensional space (p,q) ≡ (p1, q1,..., p̃i+1, q̃i+1, ..., p̃i+M , q̃i+M , ..., pNvib
, qNvib

).

In quantum mechanics, where operators can be represented by matrices, the projection of an opera-

tor onto a sub-space is obtained by a preliminary suitable singular value decomposition (SVD),[95]

followed by a subsequent matrix multiplication between the full-dimensional operator and the pro-

jector. Semiclassically operators are represented in phase space coordinates and a suitable SVD

is the one involving the displacement matrix D for the M-dimensional subspace.[95, 96] In our

case, D is a Nvib × M dimensional matrix and a singular-value decomposition is obtained when

D = UΣV, where U is a Nvib × M matrix, Σ is a M × M one, and V a M × M one. The

matrix ∆ = UUT is the projector onto the M-dimensional subspace. Eventually, any matrix A

is projected onto the reduced M-dimensional subspace by taking Ã = ∆A∆ and retaining the

M × M sub-block of non-zero elements. Similarly, any vector q is projected by taking q̃ = ∆q.

Given these considerations, the projected power spectrum can be written as

Ĩ (E) =

(
1

2π~

)M ¨
dp̃ (0) dq̃ (0)

1

2π~T

∣∣∣∣ˆ T

0

e
i
~ [S̃t(p̃(0),q̃(0))+Et+ϕ̃t]⟨χ̃|p̃ (t) , q̃ (t)⟩dt

∣∣∣∣2 , (7)

where the M-dimensional coherent state in the M-dimensional sub-space is

⟨x̃|p̃ (t) , q̃ (t)⟩ =

(
det(Γ̃)
πM

) 1
4

e−(x̃−q̃(t))T Γ̃(x̃−q̃(t))/2+ip̃T (t)(x̃−q̃(t))/~ (8)

where the matrix Γ̃ = UUTΓUTU is the projected Gaussian width matrix. ⟨x̃|χ̃⟩ is obtained in

a similar way. The phase space integration is now limited to
´ ´

dp̃ (0) dq̃ (0), i.e. a 2M dimen-

sional space. This greatly reduces the computational cost and the number of trajectories necessary
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to converge the Monte Carlo integration. Furthermore, the sampling of the initial conditions of the

full-dimensional trajectories can be done according to a Husimi distribution in the subspace with

the external degrees of freedom at equilibrium. The representation of the phase ϕ̃t in reduced di-

mensionality is approximated as ϕ̃t = phase
[
C̃t (p̃ (0) , q̃ (0))

]
, where the pre-exponential factor

is calculated according to Eq.(4) and each matrix block is of the type ∂q̃ (t) /∂q̃ (0), and so on.

The only component of Eq.(7) that cannot be projected onto the sub-space using the SVD is the

classical action

S̃t (p̃ (0) , q̃ (0)) =

ˆ T

0

[
1

2
m ˙̃q2 (t) + VS (q̃ (t))

]
dt (9)

since the expression of the “projected” potential VS (q̃ (t)) cannot be directly obtained. More

specifically, the projected potential VS (q̃ (t)) should be the potential such that an M-dimensional

trajectory starting with initial conditions (p̃ (0) , q̃ (0)) visits at all times t the same phase-space

points (p̃ (t) , q̃ (t)) obtained upon projection of the full-dimensional trajectory. However, the po-

tential VS (q̃ (t)) is known only for systems characterized by a separable potential. In an effort

to find a general and suitable expression for VS (q̃ (t)), we notice that the full-dimensional tra-

jectory is continuous with continuous first derivatives for the full-dimensional molecular potential

V (q (t)), and we deduce that the M-dimensional trajectory and VS (q̃ (t)) have the same features.

In a straightforward way, we initially define the sub-dimensional potential as

VS (q̃ (t)) ≡ V (q̃ (t) ;qNvib−M (t)) (10)

where the positions qNvib−M (t) belonging to the other subspaces have been downgraded to pa-

rameters. Then, we introduce a time-dependent field such that

VS (q̃ (t)) = V
(
q̃ (t) ;qeq

Nvib−M

)
+ λ (t) , (11)

since it is more intuitive and convenient to represent the reduced dimensionality potential in terms

of the conditioned full-dimensional one (with the parametric coordinates in their equilibrium po-

sitions) plus an external time-dependent field. In agreement with our previous work,[75] we take

the following expression for λ (t)

λ (t) = V (q̃ (t) ;qNvib−M (t))−
[
V
(
q̃ (t) ;qeq

Nvib−M

)
+ V (qeq

M ;qNvib−M (t))
]

(12)

which is exact in the separable limit. To verify this, we consider for simplicity a two dimensional

separable potential of the type V (q1 (t) , q2 (t)) = V1 (q1 (t)) + V2 (q2 (t)) but the procedure is

readily generalizable to separable potentials of any dimensionality. In the 2D case, using Eqs (11)
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Figure 1. Mass-scaled phase space plot for the two strongly coupled Morse oscillators of Eq.(18).

Left panel: Black continuous line for the exact, green dashed line for the potential VS (q̃ (t)) =

V
(
q̃ (t) ;qeq

Nvib−M

)
. Right panel: Black continuous line for the exact, red dashed line for the potential

of Eq. (11).

and (12), we obtain VS (q1 (t)) = V1 (q1 (t)) − V1 (q
eq
1 ) which is exact. We also notice that in

Eq. (12) an additional last term (the value of the instantaneous full-dimensional potential with the

subspace coordinates at equilibrium) has been introduced with respect to Eq. (10). It provides a

linear term in the action and consequently shifts the spectrum by a constant, allowing to match on

the same scale each partial spectrum Ĩ (E) and to obtain the full-dimensional spectrum I (E) as a

composition of the several Ĩ (E). In this last aspect the DC-SCIVR procedure is somewhat similar

to the one employed by Wehrle, Sulč and Vaníček in their reduced-dimensionality emission spectra

simulations.[97] There, they exploited conservation of energy to derive a projected Lagrangian

whose potential energy was made only of a constant term that had the effect to shift the total

spectra. Finally, the full-dimensional DC-SCIVR zero point energy (ZPE) can simply be regained

by summing up the partial ZPE contributions of each subspace.

To test the effectiveness of our scheme for VS (q̃ (t)), we consider two strongly coupled

monodimensional Morse oscillators, whose analytical potential will be explicitly reported in Sec-

tion III A. Fig.(1) reports in the left panel the phase space plots for a classical trajectory with energy
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equal to that of the ground state. The black continuous line is for the (p̃ (t) , q̃ (t)) values obtained

from the full-dimensional vector, which becomes (p (t) ,q (t)) ≡ (p1 (t) , q1 (t) , p2 (t) , q2 (t)) in this

specific case, evolved according to the full-dimensional potential V (q (t)). The dashed green line

is for the classical trajectory starting at (p̃ (0) , q̃ (0)) and evolved according to the approximate

potential VS (q̃ (t)) = V
(
q̃ (t) ;qeq

Nvib−M

)
, i.e without any λ (t) correction. Such a potential is

really unfit to describe the projected trajectory motion, since the green curve diverges after a few

time-steps, as it were describing an unbound system. Two different phase-space plots for the same

Morse oscillators appear on the right panel of Fig.(1). Again, the black continuous line is for

the exact projected trajectory, while the dashed red line is for the classical trajectory starting at

(p̃ (0) , q̃ (0)) and evolved according to the approximate potential VS (q̃ (t)) of Eq.(11). In this

case, the trajectory phase-space plot is typical of a bound system. For one of the two dimensions,

the phase space exact and approximate trajectories can be hardly distinguished. For the other

degree of freedom, despite a phase accumulation, the frequency of the approximate trajectory

motion is very similar to the exact one.

C. Vibrational space decomposition into mutually disjoint subspaces

It is now important to define an appropriate strategy for the decomposition of the full-

dimensional space into mutually disjoint and convenient subspaces. The identification of rele-

vant DOFs for spectroscopic calculations is a long-standing issue in spectroscopy, and several

techniques to determine the “effective modes” have been proposed.[98, 99] We present here three

possible strategies: one is based on the time evolution of the Hessian matrix, and the other two

on the evolution of the monodromy matrix. In all cases, a preliminary test trajectory is classically

evolved starting from the atomic equilibrium positions and with initial kinetic energy equal to the

harmonic zero point energy (ZPE) and distributed among the vibrational modes proportionally to

their harmonic frequencies.

1. The Hessian space-decomposition method

We recall a decomposition strategy that has been recently presented[75] for the computa-

tion of molecular vibrational spectra. The full mass-scaled Hessian matrix is calculated at each

time-step and the time averaged value of each Hessian matrix element is obtained, i.e. H̄ij =
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Figure 2. Hessian matrix elements for a system of 30 degrees of freedom (benzene) greater than a given

threshold value ϵ. The greater the value of ϵ, the less dense is the matrix. Diagonal elements are out of

scale and reported as white pixels. Panel (a) shows as pixels only the coupling elements that are greater

than ϵ = 0 a.u. Panels (b), (c) and (d) are similar respectively for ϵ = 4.5 · 10−7a.u., ϵ = 9 · 10−7a.u. and

ϵ = 6 · 10−6a.u. In (b) and (c), the matrix elements have been conveniently arranged after permutations (P̂)

into sub-blocks. Each sub-block determines a subspace.

∑N
k=1Hij (tk) /N , with N the number of time steps. If ¯|H ij| ≥ ϵ, where ϵ is an arbitrarily fixed

threshold parameter, then the degrees of freedom i and j are considered as belonging to the same

subspace. If |H̄ij| < ϵ, then i and j can still belong to the same subspace if there exists a third

degree of freedom k such that H̄ik and H̄jk are bigger than ϵ. In that case, i and j (and also k) are

collected into the same subspace. In Fig.(2) we report how the division into subspaces is affected

by the chosen value of ϵ. Clearly for ϵ = 0, all degrees of freedom are on the same full-dimensional

space as shown in Fig.(2)(a). By gradually increasing the value of ϵ, the subspaces become more

and more fragmented as illustrated in Fig.(2)(b) and (c). Finally, for ϵ bigger than a certain value,

the full-dimensional space is broken down into a direct sum of mono-dimensional subspaces, as

in Fig.(2)(d). In our simulations we usually choose a value of ϵ such that it maximizes the di-
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mensionality of the biggest subspace provided that a spectroscopic signal can be collected and the

curse of dimensionality does not kick in. This strategy is very advantageous in terms of compu-

tational effort, since the partition of the degrees of freedom into subspaces is instantaneous after

the classical trajectory is run and the Hessian matrices calculated. However, there is no evidence

that this strategy makes the partial spectra Ĩ (E) of Eq.(7) the most accurate with respect to the

full-dimensional spectrum I (E) of Eq.(6).

2. Wehrle-Sulč-Vaníček (WSV) space-decomposition method

An alternative decomposition approach (still based on dynamically averaged quantities and

an arbitrary threshold) has been recently introduced by Vaníček and co-workers.[97] In fact, to

quantify the coupling between various DOFs still in a dynamical way one can utilize the stability

matrix. This is a 2Nvib dimensional matrix also called monodromy matrix and defined as

M (t) ≡

 ∂p (t) /∂p (0) ∂p (t) /∂q (0)

∂q (t) /∂p (0) ∂q (t) /∂q (0)

 =

Mpp Mpq

Mqp Mqq

 (13)

It may be employed to measure how the classical energy is exchanged in time between the DOFs

and, by virtue of Liouville’s theorem, its determinant is always equal to 1.

In their paper, Vaníček and co-workers define the following quantity B to measure the amount

of coupling between the vibrational degrees of freedom in a dynamical fashion

Bij =

∣∣∣∣βijβii
∣∣∣∣ , with βij =

1

T

ˆ T

0

dt (|Mqiqj(t)|+ |Mqipj(t)|+ |Mpiqj(t)|+ |Mpipj(t)|), (14)

where |Mij (t)| are the absolute values of the monodromy matrix elements of Eq. (13). After an

arbitrary parameter ϵB is chosen, if the test max {Bij, Bji} ≥ ϵB is passed, then modes i and j go

into the same subspace, following a procedure very similar to the one employed for our Hessian

criterion but with the difference that more than a single threshold is used. In our calculations

with the WSV method, given an Nvib vibrational space, the bigger M−dimensional subspace is

determined through a fixed value of ϵB. For the remaining Nvib −M DOFs, a different value of

ϵB is chosen to obtain the biggest subspace between the remaining DOFs, and so on and so forth

until all DOFs are grouped.

One might wonder if other dynamical quantities fit in the same general scheme made of a tra-

jectory average followed by a comparison versus a threshold value. In this regard, the interested
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reader may find tests and a thorough discussion of several ways to define B on the basis of alterna-

tive averaged quantities (like, for instance, the correlation matrix of the wavepacket) in Wehrle’s

doctoral thesis.[100]

3. Jacobi space-decomposition method

We here introduce a new approach to determine a subspace partition which leads to a more

accurate calculation of Ĩ (E). Since in DC SCIVR the coherent state overlap ⟨χ|p (t) ,q (t)⟩ is

already written in terms of direct mono-dimensional overlaps and the action S̃t (p̃ (0) , q̃ (0)) is

approximated according to Eqs. (9), (11) and (12), the best strategy is one that minimizes the

error in decomposing the full-dimensional pre-exponential factor into a direct product of lower-

dimensional ones so that Ct (p (0) ,q (0)) ≈
∏Nsub

i C̃t,i (p̃ (0) , q̃ (0)), where Nsub is the number

of subspaces. To understand how to better proceed, we take a two-dimensional separable system.

The pre-exponential factor (4), using Eq. (13), can be written as

Ct (p (0) ,q (0)) =

√
det
∣∣∣∣12
(
Mqq +Mpp − i~ΓMqp +

i

Γ~
Mpq

)∣∣∣∣ (15)

In the case of a two-dimensional separable system, the matrix components of Eq.(13) are diagonal

matrices

Mpp =

Mp1p1 0

0 Mp2p2

 ; Mpq =

Mp1q1 0

0 Mp2q2

 ... etc. (16)

Since the determinant of a block diagonal matrix is equal to the product of the block determinants,

in the case of a separable system the pre-exponential factor of Eq.(15) is given by the product of

the pre-exponential factors of each dimension. This consideration suggests that the best sub-space

division is the one that minimizes the off-diagonal terms of the monodromy components in Eq.

(16). The elements of the monodromy matrix can be rearranged into the Jacobian matrix

J (t) =

 ∂qt/∂q0 ∂qt/∂p0

∂pt/∂q0 ∂pt/∂p0

 (17)

and, in the case of a separable system, the determinant of the full-dimensional Jacobian, J (t),

is given by the product of the determinants of each sub-space Jacobian J̃i (t), i.e. det (J (t)) =∏Nsub

i det
(
J̃i (t)

)
. By virtue of Liouville’s theorem det (J (t)) = 1 at anytime, i.e. dp (t) dq (t) =

dp (0) dq (0), and, for a separable system, det
(
J̃i (t)

)
= 1 for the generic i-th subspace, so that

12



dp̃i
tdq̃

i
t = dp̃i

0dq̃
i
0. However, in general, dp̃tdq̃t ̸= dp̃0dq̃0 and we need to look for the subspace

partition which provides subspace Jacobians J̃i (t) with the closest determinants to one. Since

the Jacobian is time dependent, the search for the more suitable subspace division and for the best

grouping of the vibrational modes within the different subspaces also depends on time. The chosen

set of M vibrational modes for a M-dimensional subspace is the one that makes the J̃M (t) deter-

minant the closest to unity more often during the time evolution of the test trajectory, and we will

refer to this procedure as the “Jacobi criterion” from now on. The selection of the best subspace

dimensionality is instead performed in a hierarchical way starting from the full-dimensional space

and then proceeding through the remaining degrees of freedom. More specifically, once the best

M-dimensional grouping has been determined for each subspace of dimensionality M ≤ Nvib, we

choose the one for which the determinant of J̃M (t) (averaged over the trajectory) is the closest to

unity. Clearly, M is acceptable if it permits to achieve Monte Carlo convergence in TA-SCIVR

calculations in the subspace, so it cannot be too big, otherwise the curse of dimensionality still

kicks in. The same procedure is then iteratively applied for the remaining degrees of freedom

until all of them have been grouped in various subspaces. The final result is a separation of the

full-dimensional space into subspaces, where each subspace preserves Liouville’s theorem with

the best possible accuracy. The main drawback of the method is that it comes at a higher compu-

tational cost than the two previously described.

In the next Section, we will apply Eqs (11) and (7) to several systems and compare our results

with available quantum mechanical vibrational eigenvalues.

III. RESULTS AND DISCUSSION

A. A model system: two strongly coupled Morse oscillators

To test the accuracy of Eq.(7), we consider a coupled system of the type

V (q1, q2) = D
2∑

i=1

[
1− e−αi(qi−qeqi )

]2
+ c (q1 − qeq1 )2 (q2 − qeq2 )2 (18)

where the coupling is biquadratic, the dissociation energy D = 0.2 a.u. is the same for each

oscillator, αi = ωi

√
µ/2D, c = 10−7µ2, and qeq1 = qeq2 = 0. The reduced mass µ is that

of the H2 molecule, i.e. µ = 918.975 a.u., and the harmonic frequencies are 3,000 and 1,700

wavenumbers. The oscillators are strongly coupled as shown by the deviation of the vibrational

13



eigenvalues from the uncoupled ones. In this case there are two monodimensional subspaces

and, as anticipated, we sample the initial phase space conditions for the (p̃ (t) , q̃ (t)) trajecto-

ries according to a Husimi distribution for the internal degree of freedom using a Box-Muller

sampling centered at (p̃eq1 =
√
ω1,q̃eq1 ) or (p̃eq2 =

√
ω2, q̃

eq
2 ), with the other (external) degree of

freedom initially set at equilibrium. The projection of the reference state on the subspaces is

|χ̃⟩ =
∣∣√ωi, q

eq
i

⟩
, i = {1, 2}. The potential of Eq. (18) provides quite a stringent test for the

DC-SCIVR approach because of the artificial strong coupling. We simulate the full-dimensional

and the partial-dimensional spectra both with single trajectories using the MC-SCIVR approach

and with many trajectories by means of Husimi-sampled TA-SCIVR calculations. In this latter

instance, we perform 10,000 trajectories 50,000 a.u. long per subspace.

The MC-SCIVR spectrum is losing accuracy only at high energies, since such energy range is

not well sampled by MC SCIVR. In the partial spectra Ĩ (E) in Fig. (3) the overtones generated

by the quantum contribution from the other subspace are much less intense and barely detectable.

Nevertheless, the main spectroscopic features, i.e. fundamentals and most of the overtones, are

faithfully reproduced.

B. Small molecules: H2O, CH2O, CH4, and CH2D2

We choose H2O, CH2O, CH4, and CH2D2 as test cases for DC SCIVR, since these are molecular

systems accessible to full-dimensional SCIVR calculations, as it has been shown in the past.[76,

77, 92, 93] We perform full-dimensional SCIVR and DC-SCIVR calculations using 30,000 a.u.

long classical trajectories, which is a typical dynamics length for semiclassical calculations on

molecules.[60, 63, 92]

Starting from H2O, which is the smallest of these systems, we generate 12,000 classical tra-

jectories on the potential energy surface of Partridge and Schwenke[102] for the full dimensional

TA-SCIVR calculations, while 4,000 trajectories per degree of freedom are sufficient in the case

of DC-SCIVR spectra. As in the case of the Morse oscillators, the reference state of each M-

dimensional subspace is |χ⟩ =
∏M

i

∣∣√ωi, q
eq
i

⟩
, where ωi is the harmonic frequency of the i-th

normal mode of vibration included in the subspace. Harmonic frequencies are listed in the “HO”

column of Table (I). By employing the three different subspace partition criteria previously illus-

trated, we find that the three vibrational degrees of freedom of water should always be grouped into

two different subspaces. However, in the case of the Hessian approach modes 1 and 2 (the bending
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Figure 3. DC-SC-IVR spectra for the Morse oscillators of Eq. (18). Dashed lines are for the MC-SCIVR

simulations and continuous ones for 10000-trajectory simulations. (a) black line for the full-dimensional

TA-SCIVR spectrum; (b) red line for the DC-SCIVR spectrum of mode 1; (c) green line, the same of (b) for

mode 2. Vertical dashed blue lines indicate the exact values calculated by a Discrete Variable Representation

(DVR) approach.[101]

and symmetric stretch respectively) are separated from mode 3 (the asymmetric stretch), while the

Jacobi and WSV methods suggest to collect together modes 2 and 3, leaving mode 1 alone. In

Figure (4) the DC-SCIVR spectra of water obtained with the Jacobi criterion are presented, while

Table (I) reports the detailed computed energy levels and compares them with full-dimensional
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Figure 4. DC-SCIVR vibrational spectra of H2O. The black line in panel (a) reports the two-dimensional

subspace spectrum and the red line in panel (b) the monodimensional one. Vertical blue dashed lines are

the full-dimensional TA-SCIVR values.

SCIVR estimates and exact values.

First of all we observe that DC-SCIVR estimates generally account pretty well for the an-

harmonicity of water. This can be appreciated by comparing the mean absolute deviations from

quantum exact values of the DC-SCIVR estimates (~ 20 cm-1) to the mean deviation of the har-

monic frequencies (~ 140 cm-1). In spite of the anharmonicity and intermode coupling of water,

all separation criteria offer rather accurate estimates. Only in the case of the asymmetric stretch

fundamental frequency the partition procedure overestimates the quantum value, which is anyway

very accurately regained by the full-dimensional semiclassical approximation.

Moving to CH2O, we sample 24,000 classical trajectories to have the full-dimensional SCIVR

calculation converged on the potential energy surface constructed by Martin et al.,[103]. To keep
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Table I. Vibrational energy levels of water. The first and second columns show the vibrational state label

and the exact results respectively; the third column reports the full-dimensional TA-SCIVR eigenvalues.

Column four shows the DC-SCIVR results with the Jacobi subspace criterion (DC SCIVRJacobian); column

five refers to frequencies based on the WSV method (DC SCIVRWSV); in column six results obtained by

employing the Hessian matrix criterion (DC SCIVRHess) are listed. The last column reports the harmonic

estimates. All values are in cm−1. MAE stands for Mean Absolute Error and it is calculated with respect to

the exact values,[102] and for DC-SCIVR simulations also with respect to the full-dimensional TA-SCIVR

values. Values for DC SCIVRJacobi and DC SCIVRWSV are exactly the same because they are based on

exactly the same partition of the vibrational modes into the two work subspaces.

Mode Exact[102] TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1595 1580 1584 1584 1581 1649

12 3152 3136 3164 3164 3154 3298

21 3657 3664 3668 3668 3656 3833

31 3756 3760 3802 3802 3824 3944

MAE Exact 11 20 20 21 141

MAE SCIVR 20 20 23

the same overall computational cost, we take 4,000 trajectories per degree of freedom when cal-

culating the partial spectra. The dimensionality of each subspace for the DC-SCIVR calculations

is chosen by employing the three criteria introduced in Section (II). In the case of the Hessian

matrix criterion, we find that for a value of ϵ = 3.0 · 10−7 the full six-dimensional vibrational

space is partitioned into a three-dimensional, a bi-dimensional and a mono-dimensional subspace.

When using the WSV approach, the biggest subspace dimensionality is four for a threshold value

of ϵB = 120. When employing the Jacobi criterion, the division turns out to be different. Figure

(5) shows the displacement of the determinant of the reduced-dimensional Jacobian matrix, i.e.

det
(
J̃i (t)

)
calculated on the basis of the projected trajectories p̃ (t) , q̃ (t), from unity for differ-

ent choices of the subspace dimensionality M in the case of CH2O, CH4, and CH2D2. Clearly,

there is no approximation for the full-dimensional analyses. For the CH2O molecule, the smaller

deviation is obtained for a maximum subspace dimensionality equal to 4, which is slightly better

than a bi-dimensional choice. After fixing these four normal modes into the same subspace, the

other two left modes are taken in the same subspace. Eventually the initial full-dimensional space
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is divided into 4- and 2- dimensional ones. The corresponding spectra are reported in Fig.(6). As a

comparison, the full-dimensional TA-SCIVR values are reported as vertical blue dashed lines. All

vibrational features are faithfully reproduced, including overtones. It may be noticed that the sig-

nals of the fifth and sixth fundamentals sum up to a broader peak in the 4-dimensional spectrum.

They can be separated by inserting the parity symmetry into the reference state when performing

the 4-dimensional simulation. This common practice in semiclassical calculations permits to en-

hance the signal of one vibration at a time.[58, 77] To have a more detailed comparison Table (II)

shows DC-SCIVR results, the exact ones,[104] and the full-dimensional SCIVR frequencies.

To help the reader to better appreciate the level of accuracy for each semiclassical approxima-

tion, we report in the last lines the Mean Absolute Error (MAE). The DC-SCIVR deviation with

respect to the exact value is 12cm−1 for the Jacobi and WSV approaches, and 25cm−1 for the

Hessian one. These values are comparable with the full-dimensional TA-SCIVR one of 9cm−1.

Conversely, a harmonic estimate is almost three times less accurate than the DC-SCIVR ones.
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Figure 6. DC-SCIVR vibrational spectra of CH2O. The black line in panel (a) reports the four-dimensional

subspace spectrum and the red line in panel (b) the bi-dimensional one. Vertical blue dashed lines are the

full-dimensional TA-SCIVR values.

When comparing the approximate DC-SCIVR results with the TA-SCIVR ones, the deviation is

on average really small, respectively 6cm−1, 6cm−1 and 19cm−1 for the Jacobi, WSV, and Hessian

criteria.

In the case of the CH4 molecule, we employ the potential energy surface (PES) by Lee et

al.[105] Given the highly chaotic regime for the classical trajectories of this PES, about 95% of

the trajectories have been rejected due to the deviation of the full-dimensional monodromy matrix

determinant from unity. By employing an amount of 180,000 trajectories, we still have enough

trajectories left for TA-SCIVR Monte Carlo convergence. When dividing the space into subspaces,

we keep the number of trajectories per degree of freedom equal to 20,000, in order to have for the

overall DC-SCIVR calculation the same total amount of trajectories. We have recently shown [75]

that when a value of ϵ = 4.8 · 10−7 is employed for the Hessian criterion, the nine-dimensional

vibrational space of methane is decomposed into six-dimensional and three-dimensional ones.
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Table II. The same as in Table(I) this time for the vibrational energy levels of CH2O.

Mode Exact[104] TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1171 1162 1154 1154 1192 1192

21 1253 1245 1246 1246 1244 1275

31 1509 1509 1508 1508 1508 1544

41 1750 1747 1746 1746 1755 1780

12 2333 2310 2288 2288 2286 2384

22 2502 2497 2490 2490 2423 2550

51 2783 2810 2816 2816 2836 2930

61 2842 2850 2845 2845 2864 2996

32 3016 3018 3016 3016 3024 3088

42 3480 3476 3478 3478 3486 3560

MAE Exact 9 12 12 25 66

MAE SCIVR 6 6 19

When applying the WSV criterion with ϵB = 85, we also obtain a six-dimensional and a three

dimensional subspace. Finally, even on the basis of the Jacobi criterion the better choice for the

maximum dimensional subspace is six, as shown in Fig.(5). We then hierarchically apply the same

criterion for the remaining vibrational modes and find out that a division into a bi-dimensional plus

a mono-dimensional subspace is preferred with respect to a single three-dimensional one. Even-

tually, the nine-dimensional vibrational space is partitioned into six-, two- and mono-dimensional

ones. Fig.(7) reports the partial spectra of the three subspaces. Given the degeneracy of some

of methane vibrations, the nine vibrational modes are labeled in four groups. Since degenerate

modes can be projected onto different subspaces, spectral contributions to the same peak may be

observed in Fig.(7) from different spectra. The full-dimensional TA-SCIVR peaks are once again

well reproduced, including overtones and combination of overtones. Vibrations 41 and 22 have

been separated by including the parity symmetry into the reference state. For a detailed compar-

ison, we report in Table (III) our vibrational eigenvalues and compare them with the exact ones.

On average, the full-dimensional TA SCIVR is quite accurate, i.e. there is only a 12cm−1 dif-

ference from the exact frequency. The DC-SCIVR accuracy using the Jacobi criterion is slightly

worse (MAE = 17cm−1), and it is comparable when using either the WSV or the Hessian criterion.
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Figure 7. DC-SCIVR vibrational spectra of methane. Black line in panel (a) reports the six-dimensional

subspace partial spectrum, the red line in panel (b) the bi-dimensional one, and the green line in panel (c)

the mono-dimensional one. Vertical blue dashed lines indicate the full-dimensional TA-SCIVR values.

Table III. The same as in Table(I) but for the vibrational energy levels of CH4.

Mode Exact[106] TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess[75] HO

11 1313 1300 1296 1308 1300 1345

21 1535 1529 1530 1530 1532 1570

12 2624 2594 2556 2588 2606 2690

1121 2836 2825 2830 2832 2834 2915

31 2949 2948 2960 2933 2964 3036

22 3067 3048 3060 3044 3050 3140

41 3053 3048 3056 3038 3044 3157

MAE Exact 12 17 15 11 68

MAE SCIVR 11 7 7
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These deviations are about six times more accurate than a crude harmonic approximation. Finally,

a comparison among the different semiclassical approaches shows that in this case the Hessian

criterion provides slightly more accurate results than the Jacobi ones. However, it is the overtone

excitation 12 which is responsible for the slightly worse accuracy of the Jacobi criterion with re-

spect to the Hessian one. If one did not consider this term on the MAE calculation, the Jacobi DC

SCIVR estimate would be on average within 9cm−1 of the exact one and only 6cm−1 away from

the TA-SCIVR value.

Finally, we look at the lower symmetry molecule CH2D2, where some of the typical degen-

erations of methane have been removed. We employ the same PES as in the case of CH4 and

experience a comparable percentage of trajectory rejection for the monodromy matrix evolution in

a chaotic potential. As above, we choose to employ 180,000 trajectories. Using the Hessian ma-

trix criterion at a value ϵ = 2 · 10−7 we obtain a decomposition of the full nine-dimensional space

into a six-dimensional and a three-dimensional one. According to the WSV criterion, at a value

ϵB = 180, we obtain a decomposition of the full nine-dimensional space into a four-dimensional,

a three-dimensional and a bi-dimensional one. In the Jacobi approach reported in Fig.(5), we look

at the green triangle profile and conclude that a four dimensional subspace is the first step in the

hierarchical determination of the subspaces. Then, among the remaining five dimensional modes,

the Jacobi analysis leads to a partition into a three- and a two-dimensional subspace. Eventually,

the nine-dimensional space is divided into four, three and two dimensional subspaces.

Fig.(8) reports the partial spectra for the four-dimensional (a), the three-dimensional (b), and

the two dimensional (c) subspaces. By comparison with the dashed vertical lines representing the

full-dimensional semiclassical results we can observe that some accuracy is lost for the combined

overtones (see the 1121 peak) with respect to the typical accuracy of the fundamental peaks, as it

was noticed for the strongly coupled Morse oscillators.

Table (IV) shows the computed DC-SCIVR energy levels which are compared with both the

exact values [106] and the full-dimensional TA-SCIVR ones. For this system, the MAEs relative

to the exact values are more accurate for the TA-SCIVR and the Jacobian DC SCIVR than for the

standard Hessian criterion. When comparing the different semiclassical approaches the expected

order is found, i.e. from the more accurate TA SCIVR to the less accurate DC SCIVR.
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Figure 8. DC-SCIVR vibrational spectra of the CH2D2 molecule. The black line in panel (a) reports the

partial spectrum for the 4-dimensional subspace, the red line in panel (b) the three-dimensional one and

the green line in panel (c) the bi-dimensional one. Vertical blue dashed lines are the full-dimensional TA-

SCIVR values.

C. A complex and strongly anharmonic molecular system: H5O+
2

We keep proceeding in the application of DC-SCIVR to larger and larger molecules and face

the challenge represented by the Zundel cation. H5O2
+ with its 15 vibrational degrees of freedom

has attracted the interest of many, mainly due to the vibrational features related to the motion

of the shared proton. Specifically, a doublet is found in the vibrational pre-dissociation spectra

of Zundel ions in the region of the O-H-O stretch associated to the proton transfer (~1000 cm-1).

Furthermore, two neatly separated bending signals are present owing to the water bending - proton

transfer interaction.[107, 108] Consequently in our investigation we focus our attention on the

proton transfer doublet, the water bendings, and, in addition, the four high-frequency free OH

stretchings which are well detected by experimental spectra.[109] We benchmark our DC-SCIVR

simulations against the MCTDH calculations of Meyer et al. [107, 110–115] and also compare
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Table IV. The same as in Table(I) but for the vibrational energy levels of CH2D2.

Mode Exact[106] TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1034 1026 1028 1020 1038 1053

21 1093 1084 1072 1098 1086 1116

31 1238 1230 1234 1212 1230 1266

41 1332 1329 1320 1326 1316 1360

51 1436 1430 1430 1420 1434 1471

1121 2128 2110 2089 2080 2114 2169

61 2211 2199 2195 2192 2137 2236

1131 2242 2236 2250 2231 2210 2319

71 2294 2268 2274 2250 2274 2336

1141 2368 2356 / / 2400 2413

1151 2474 2456 2485 2436 2484 2524

2151 2519 2504 2516 2494 2510 2587

3151 2674 2660 2661 2672 2627 2737

4151 2769 2756 2754 2734 / 2831

81 3008 3050 3000 3012 3026 3103

MAE Exact 14 13 21 21 47

MAE SCIVR 12 15 19

them with the VCI estimates of Bowman and collaborators.[116]

We propagate the test classical trajectory on an accurate H5O2
+ PES.[117] The trajectory is

characterized by a strongly roto-vibrationally coupled motion leading to monodromy matrix in-

stability and to a couple of hindrances to the application of our semiclassical techniques. For this

reason, a Jacobi-based subspace partition is not feasible and we have to rely on the Hessian method

to determine our work subspaces. Also, the coupling is responsible for an exaggerated broadening

of the spectral features. This latter drawback can be overcome by removing the Cartesian angular

momentum every few steps along the dynamics of the trajectories employed in our calculations.

The associated loss in energy may partially affect the frequency accuracy (an artificial shift to-

wards their harmonic counterparts is anticipated for the high frequencies) but it is compensated by

the Husimi distribution of energies around the harmonic zero-point one employed for the initial
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conditions. Finally, due to the monodromy matrix instability, the original Herman-Kluk prefactor

cannot be employed, so we approximate it by means of a reliable second order iterative approx-

imation that depends only on the Hessian matrix.[93] As expected, not only peaks in the spectra

still have good accuracy but they are also much narrower thus decreasing the uncertainty of our

results.

The Hessian criterion suggests us to enroll the normal modes associated to the free OH stretch-

ings of the two water molecules into a four dimensional subspace, while all the other degrees of

freedom are grouped into mono-dimensional subspaces. For this reason, we assign the two wa-

ter bendings to two separate mono-dimensional subspaces, and the same fate applies to the mode

associated to the shared proton motion. The only exception concerns the O-O stretching mode

which is collected with a wagging state into a bi-dimensional subspace. This choice is driven by

previous studies that have provided evidence of the occurrence of a combined state interacting

with the shared proton motion.[107, 111] We run 2,000 full-dimensional classical trajectories per

degree of freedom, i.e. 2,000 for the mono-dimensional subspaces, 4,000 for the bi-dimensional

one, and 8,000 for the four-dimensional subspace. For each subspace, the initial kinetic energy

is given in the usual harmonic fashion to the four OH stretches and to the modes enrolled in the

subspace under investigation. No energy is instead given to the other modes.

Figure (9) reports the main excitations below 2,000 wavenumbers. To remove any spurious

noise effect, we add a Gaussian filter of type e−αt2 in the Fourier transform, with α = 3 · 10−8 a.u.

The orange and magenta lines refer to the two water bendings (bu) and (bg); the blue line shows the

signal of the shared proton motion (1z) and a mixed excitation(1z, 1R). Finally, on the bottom of

the Figure are the spectra associated to the bi-dimensional subspace. The usual procedure based on

selecting the parity of the semiclassical reference state permits to separate the overlapping features

of this bidimensional subspace. Specifically, in green the fundamental for the O-O stretch (1R)

and its overtone (2R) are detected, while in red the excitation ω3 of the wagging state (assigned on

the basis of the MCTDH benchmark) and the combined excitation (1R,ω3) stand out. In Figure

(10) are instead illustrated the DC-SCIVR spectra of the free OH stretchings. In panel (a) the

spectra of the (sg) and (su) excitations are reported, while panel (b) shows the signal of the two

remaining OH stretchings labeled as (sa).

Table (V) shows our computed energy levels, labeled with the usual nomenclature for the Zun-

del cation reported in the literature.[107, 111] Our DC-SCIVR estimates are pretty accurate with

the exception of the combined excitation (1z, 1R) which is rather off-the-mark, but anyway better
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Figure 9. Vibrational spectra of the Zundel cation. Starting from the top, orange, magenta, and blue lines

report the spectra of the mono-dimensional subspaces associate to the (bu), (bg), and (1z) excitations; the

green and red lines build up together the bi-dimensional subspace. The zero point energy value has been

shifted to the origin in each subspace to help the reader in comparing the different frequencies. The vertical

lines indicate the MCTDH reference.[107]

than the VCI value. A certain degree of inaccuracy arises also for the (1z) signal. As anticipated,

the high frequency estimates are blue shifted with respect to the benchmark values, an effect the

instantaneous removal of the Cartesian angular momentum may have largely contributed to. Over-

all, the average deviation from MCTDH results is 46 wavenumbers that decreases to 38 if (1z, 1R)

is not considered. These values are not far from those found for smaller molecules and are satis-

factory given the high complexity of the Zundel cation.
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Figure 10. Vibrational spectra of the Zundel cation in the free OH stretching region. Starting from the

bottom, panel (a) reports the spectrum of (sg) and (su), panel (b) refers to (sa) excitations. The zero point

energy value has been shifted to the origin to help the reader in evaluating the frequencies of the peaks. The

vertical lines indicate the MCTDH estimates.[107]

D. “Divide-and-Conquer” semiclassical dynamics for a high dimensional molecule: vibrational

power spectrum of benzene

Halverson and Poirier have recently calculated the vibrational frequencies of benzene using

a DVR approach. They pushed the limits of “exact” vibrational state calculations up to thirty

dimensions.[78] In their method, the DVR basis set and grid has been conveniently selected using

phase-space localized basis sets (PSLBs) and truncated Harmonic functions (HOB).[3, 4, 118]

They were able to obtain all the relevant (about a million) vibrational energy levels of benzene

within a given energy threshold. They employed a quartic force field modeling for the PES.[119]

We employ the same surface for a direct comparison between the present DC-SCIVR method

and the exact DVR one. First we study how to best partition the 30-dimensional space. Using

the Hessian-based approach and ϵ = 9 · 10−7, the full-dimensional space is separated into one
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Table V. Vibrational energy levels of the Zundel cation reported in cm−1. The first column presents the label

of the excitation according to Ref.[107] The second column contains the experimental values, the third and

fourth ones show the MCTDH results from two different works,[107, 111] while in the fifth column our

DC-SCIVR estimates are reported. Column six contains the VCI energy levels[116] and, finally, in the last

column are the harmonic estimates of the fundamental excitations. The last row reports the mean absolute

error of the DC-SCIVR estimates with respect to the benchmark MCTDH values of Ref. 107.

Label Exp[109] MCTDH[107] MCTDH[111] DC SCIVR VCI[116] HO

(ω3)
a 374 386 452

(1R) 550 532 630

(1R,ω3) 928 918 913 920

(1z) 1047 1033 1050 952 1070 861

(2R) 1069 1008

(1z, 1R) 1470 1411 1392 1520 1600

bg 1606 1668 1604 1720

bu 1763 1756 1756 1768 1781 1770

sg 3607 3650 3610 3744

su 3603 3614 3618 3650 3625 3750

sa 3683 3689 3680 3720 3698 3832

MAE 46
aThis assignment of the ω3 wagging excitation is done upon comparison to the benchmark MCTDH values.

eight-dimensional, eight bi-dimensional and six mono-dimensional subspaces. When employing

the WSV criterion and ϵB = 5.6 · 103, the full-dimensional space is partitioned into one ten-

dimensional, two seven-dimensional and one six-dimensional subspace. When using the Jacobian-

based criterion, the computational search for space decomposition is much more computationally

expensive since all possible combinations of the 30 vibrational modes into groups of M should be

tested. We restrict instead our search to 6 ≤M ≤ 10, since the Hessian criterion shows that when

the biggest subspace is eight-dimensional then the results are quite accurate. We cannot rule out

that there may be a better choice for M > 10. However, the potential little improvement in the

accuracy of the results does not justify the additional huge computational overhead.

Fig.(11) shows the result of this search and points to a seven-dimensional subspace for the

28



6 7 8 9 10

Subspace Dim.

0.1

0.15

0.2

0.25

|1
-d

et
(J~  M

 (
t)

)|

Figure 11. Values of
∣∣∣1− det

(
J̃M (t)

)∣∣∣ for different choices of the subspace dimensionality M for the

C6H6 molecule.

first partition. The same procedure is repeated and involves the remaining 23 modes. The second

subspace found is a six-dimensional one. The third search (among the remaining 17 modes) leads

to a ten-dimensional subspace. The remaining seven modes are collected together within the same

subspace. Eventually, the full thirty dimensional vibrational space has been partitioned into a ten-

dimensional, two seven-dimensional, and one six-dimensional subspace. Whatever the method

employed for partitioning the space, we run 1000 trajectories per degree of freedom to calculate

the frequencies. Each trajectory is 30,000 a.u. long. To remove any spurious noise effect, in

the Fourier transform we add the same Gaussian filter used for the Zundel cation. As usual,

the reference state of each M-dimensional subspace is written as |χ⟩ =
∏M

i

∣∣√ωi, q
eq
i

⟩
, where

ωi are the harmonic frequencies that we report under the columns “HO” in Table (VI). For the

evolution of the pre-exponential factor (4) and its phase calculation we use a recently introduced

iterative second-order approximation.[93] This approximation allows for the calculation of the

pre-exponential factor without explicitly calculate the monodromy matrix elements, and it can be
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Figure 12. Vibrational spectra of C6H6 as obtained upon partition of the full-dimensional space according

to the Jacobian criterion. Panel (a) reports the features of the six-dimensional subspace. Panels (b) and (c)

contain the spectra of the two seven-dimensional subspaces, while panel (d) refers to the 10-dimensional

subspace. The zero point energy value has been shifted to the origin to help the reader in evaluating the fre-

quencies of the other peaks. The vertical lines indicate the exact levels from Poirier’s EQD calculations.[78]

safely employed for strongly chaotic and high dimensional systems, as in the case of the benzene

molecule. Fig. (12) shows our computed spectra. Panel (a) reports the six-dimensional subspace,

panels (b) and (c) the seven-dimensional ones, and panel (d) the 10-dimensional subspace.

We follow Halverson and Poirier in their labeling of vibrational states. Table (VI) reports our

computed energy levels compared with the available exact ones. We find an excellent agreement

with a MAE of only 9 wavenumbers when adopting Jacobi’s criterion. With the WSV approach,

the MAE increases to 15cm−1. As we have recently reported,[75] the Hessian criterion leads to
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Table VI. Benzene DC-SCIVR vibrational frequencies compared with available quantum results (EQD).

Degenerate frequencies are not replicated. Values are given in cm−1.

State HO DC SCIVRWSV DC SCIVRJacobi EQD State HO DC SCIVRWSV DC SCIVRJacobi EQD

11 407 432 399 399.4554 111 1167 1150 1144 1147.751

21 613 610 606 611.4227 121 1192 1189 1175 1180.374

31 686 610 696 666.9294 22 1226 1223 1228 1221.27

41 718 742 719 710.7318 131 1295 1330 1314 1315.612

51 866 865 869 868.9106 141 1390 1375 1352 1352.563

61 989 990 997 964.0127 42 1436 1410 1437 1418.58

71 1011 1038 1020 985.8294 151 1512 1464 1492 1496.231

81 1008 1002 990 997.6235 161 1639 1614 1602 1614.455

91 1024 1014 1014 1015.64 52 1732 / 1752 1737.51

101 1058 1042 1042 1040.98 MAE 15 9

still acceptable but less accurate results, with a MAE of 19 wavenumbers.

Despite the increase in dimensionality, we conclude that moving from the three smaller molec-

ular systems of the previous section to benzene, the MAE referred to the exact results is anyway

limited to 10-20 cm−1, a proof of the reliability of DC SCIVR and of the accuracy of the new

Jacobian criterion.

IV. SUMMARY AND CONCLUSIONS

All quantum mechanical methods suffer from the curse of dimensionality. In this paper we

have illustrated a method to deal with it and to obtain vibrational frequencies almost as accurate as

in standard SCIVR simulations, i.e. just a few wavenumbers away from the exact quantum values.

More specifically, a “divide et impera” strategy has been adopted, in which spectra are calculated

in partial dimensionality even if they are still based on full-dimensional classical trajectories. The

method does not take advantage in any way of molecular symmetry.

We have shown how crucial the choice of the criterium for the decomposition of the full-

dimensional space into mutually disjoint subspaces can be. In particular, the partition procedure

based on the Jacobian matrix is the one that usually minimizes the error in approximating the full-
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dimensional pre-exponential factor as the direct product of several reduced dimensionality ones.

This is evident from Fig. (13) where DC-SCIVRJacobi is clearly the overall more accurate way to

decompose the vibrational space. The exception of CH4 is due to a not very accurate estimate of a

single overtone which we have anyway included in the MAE calculation, while the Jacobian-based

partition strategy remains the most accurate even for CH4 as far as fundamental frequencies are

concerned. The apparent better accuracy of DC-SCIVRJacobi with respect to the full-dimensional

calculation for CH2D2 is to be ascribed instead to an accidental compensation of errors between

the semiclassical and subspace-partition approximations. Another key advantage of the Jacobian-

based approach lies on its less noisy spectra with better resolved peaks, which is going to be more

and more evident and helpful as the dimensionality of the system increases. Remarkably, the

Jacobi criterion provides an internally consistent method to check the reliability of the subspace

partition. In fact, not always an increase in the subspace dimensionality leads to more accurate

vibrational frequencies. On the contrary, spectra can be noisier or it could be even impossibile to

collect a sensible spectral signal. The partitioning schemes here developed can be also adopted

for on-the-fly DC-SCIVR calculations. In fact, upon calculation of the test trajectory and of the

associated Hessians and monodromy matrix elements by means of ab initio molecular dynamics, it

is possible to determine the best subspace partition by following exactly the same procedures and

at no additional cost with respect to DC-SCIVR simulations based on analytical potential energy

surfaces.

DC-SCIVR, like other semiclassical and classical methods, is based on the Fourier transform

of a survival amplitude. According to Nyquist’s theorem, for a total evolution time T a peak

width equal to 2π/T should be expected. In our simulations, though, other factors contribute

to increase the width of the spectral features. The ro-vibrational coupling generate a vibrational

angular momentum which perturbs the pure vibrational motion. Furthermore, when a Gaussian

filter is employed, peaks may be substantially enlarged (as in the case of H5O2
+ and benzene).

The full width at half maximum (FWHM) of the peaks provides a measure of the uncertainty of

our results and benchmark values are always within this uncertainty bar. A potential drawback

related to the width of the peaks is that it may hinder the resolution of spectral features very close

to each other. A practical way to overcome this issue, that is largely adopted in semiclassical

dynamics, consists in employing a proper combination of coherent states able to introduce a parity

symmetry[77, 92] which permits to distinguish among spectral features belonging to different

vibrational modes.
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Figure 13. Trend of the mean absolute error (MAE) with respect to exact results for the different molecules

investigated. Results refer to full-dimensional SC-IVR calculations (blue), DC SCIVR with Hessian matrix

criterion (black), DC-SCIVR with Jacobian matrix criterion (green), and DC-SCIVR with WSV subspace

partition (magenta).

A known issue of semiclassical spectra is represented by the so-called “ghost” peaks. These

are unphysical features that can be generally distinguished from the true fundamental transitions

because of their much lower intensity. As shown in Figure 3, this is not a specific drawback of

DC-SCIVR simulations since full-dimensional calculations present the same issue. The adoption

of a combination of coherent states able to account for the parity symmetry further enhances this

discrepancy in the intensities making the identification of the true vibrational features even more

favored.

DC SCIVR can be employed to simulate all kinds of spectroscopies relative to the nuclear

motion, such as IR, Raman, absorption/emission dipole, vibro-electronic, and photodetachment

spectra. It will allow to read each part of the spectra in a wider molecular context up to the

nanoscale, with inclusion of non-trivial long-range quantum interactions. The calculation of partial
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spectra representations has not only the advantage to accelerate the Monte Carlo integration by

virtue of the reduced dimensionality of each subspace and to get better resolved spectra, but also

simplifies the identification of each peak. Another potential application of DC SCIVR is in the field

of mixed (hybrid) semiclassical methods[87, 120, 121] due to the possibility to assign different

degrees of freedom to the different semiclassical techniques employed.

In conclusion, we think that semiclassical molecular dynamics is a very convenient approach

for quantum mechanical simulations of nuclear vibrational spectroscopy. Future challenges, con-

cerning the study of vibrational features of large molecules involved in biological mechanisms

and technological processes, will be tackled in a novel quantum-mechanical fashion thanks to DC

SCIVR and the implementation of the newly proposed subspace-separation criterion.
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