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PCSK9 (proprotein convertase subtilisin/kexin type 9) and glucose 

metabolism: which connection? 

 

Background: PCSK9 (proprotein convertase subtilisin/kexin type 9), is a protein, mainly 
synthesized and secreted by the liver, which binds to specific target proteins and escorts 
them towards lysosomes for degradation. The best defined activity of PCSK9 is its ability 
to modulate the hepatic uptake of LDL cholesterol (LDL-C), by enhancing the intracellular 
degradation of the LDL receptor (LDLR). In humans, several mutations in PCSK9 gene were 
described, both “gain-of-function” mutations associated to hypercholesterolemia and 
“loss of function” mutations linked to low LDL-C levels [1]. These findings suggest PCSK9 
inhibitors as a promising class of drugs for the treatment of patients with severe 
hypercholesterolemia or at very high cardiovascular risk. However, some gaps regarding 
the potential role of PCSK9 in targeting the LDLR in organs other than the liver are still 
open. Indeed, the LDLR is abundantly expressed in pancreatic β-cells, where it plays a key 
role in the uptake of plasma LDL particles [2]. Therefore, further investigations are 
needed to better clarify the physiological role of PCSK9, also in light of its pharmacological 
targeting. 

Methods: WT, PCSK9 KO, LDLR KO, PCSK9/LDLR DKO, albumin (Alb)Cre+/PCSK9LoxP/LoxP 

(liver selective PCSK9 KO mice) and AlbCre-/PCSK9LoxP/LoxP mice were fed a HFD (High Fat 
Diet – 45% Kcal fat) or SFD (Standard Fat Diet – 10% Kcal fat) for 12 or 20 weeks. GTT, ITT, 
insulin and C-peptide plasma levels, pancreas morphology and cholesterol accumulation 
in pancreatic islets were studied in the different animal models.  

Results: Glucose clearance was significantly impaired in PCSK9 KO mice fed a SFD or a 
HFD for 20 weeks compared to WT animals, with both diet. On the contrary, insulin 
sensitivity was not affected as both animals showed a similar decrease in plasma glucose 
levels following insulin injection (ITT). Plasma insulin and C-peptide levels were reduced in 
PCSK9 KO mice compared to WT and accordingly fasting and refeeding experiments 
showed increased plasma glucose but reduced insulin levels in PCSK9 KO compared to 
controls. A detailed analysis of pancreas morphology of PCSK9 KO mice vs WT littermates 
revealed larger islets with increased accumulation of cholesteryl esters, paralleled by 
increased insulin intracellular levels. This phenotype was completely reverted in 
PCSK9/LDLR DKO mice implying the LDLR as the PCSK9 target responsible for the 
phenotype observed. Further studies in AlbCre+/PCSK9LoxP/LoxP, which lack detectable 
circulating PCSK9, also showed a complete recovery of the phenotype, thus indicating 
that circulating, liver-derived PCSK9 does not impact β-cells function and insulin 
secretion.  

Conclusion:The PCSK9/LDLR axis affects β-cells function and control insulin secretion. Our 
data indicate that this effect is independent of circulating PCSK9, and is probably related 
to local effects of PCSK9 suggesting the possibility that anti-PCSK9 antibodies or liver 
specific therapies, such as siRNAs, might have a limited impact on LDLR expression in 
pancreas and β-cells dysfunction.  

 



Ruolo di PCSK9 (proproteina convertasi subtilisina/kexina di tipo 9)  

nel metabolismo glucidico  
 

Obiettivo: PCSK9, enzima della classe delle proteasi, viene secreto nel circolo sanguigno 

dove regola i livelli plasmatici di lipoproteine a bassa densità (LDL), favorendo la 
degradazione dei recettori per le LDL (LDLR) principalmente a livello epatico. Numerose 
mutazioni nel gene codificante per PCSK9 sono state descritte, associate sia ad 
ipercolesterolemia che a bassi livelli di LDL colesterolo (LDL-C) e ridotto rischio 
cardiovascolare [3]. Queste osservazioni hanno favorito il rapido sviluppo di diverse 
strategie volte all’inibizione farmacologica di PCSK9, soprattutto nel trattamento di 
soggetti con ipercolesterolemia familiare (FH). Tuttavia, la presenza del LDLR e di altri 
recettori target di PCSK9 in numerosi tessuti extra-epatici [4], potrebbe significare un 
ruolo critico della proteina in diverse patologie metaboliche. In particolare, lo scopo del 
seguente progetto è stato quello di valutare l’impatto di PCSK9 nel pancreas e nel 
metabolismo glucidico, avvalendosi di differenti modelli animali.      

Materiali e metodi: Topi maschi WT, PCSK9 KO, LDLR KO, PCSK9/LDLR DKO, 

albumin(Alb)Cre+/PCSK9LoxP/LoxP (topi PCSK9 KO condizionali) e AlbCre-/PCSK9LoxP/LoxP , 
sono stati alimentati per 12 o 20 settimane con una dieta standard (SFD) o con una dieta 
ricca in lipidi (HFD), in grado di indurre obesità e disfunzione metabolica. GTT, ITT, livelli 
plasmatici di insulina e C-peptide, espressione del LDLR, morfologia e contenuto lipidico 
delle isole pancreatiche sono stati valutati nei differenti gruppi sperimentali.  

Risultati: Test di tolleranza al glucosio (GTT) e test di tolleranza all’insulina (ITT) hanno 
evidenziato una marcata intolleranza al glucosio nei topi PCSK9 KO rispetto ai topi WT, 
con entrambe le diete, non associata allo sviluppo di insulino-resistenza. I livelli plasmatici 
di insulina e C-peptide sono risultati significativamente ridotti nei topi PCSK9 KO, in 
associazione ad un accumulo di insulina nel pancreas, suggerendo un’alterazione nel 
processo di secrezione dell’ormone a livello delle cellule β pancreatiche. Queste 
osservazioni sono state confermate dall’analisi morfologica di isole di topi PCSK9 KO e 
WT. L’assenza di PCSK9 si associa inoltre ad una maggiore espressione del LDLR a livello 
pancreatico, con conseguente accumulo di lipidi. Al contrario, topi PCSK9/LDLR DKO non 
presentano alterazioni metaboliche rispetto ai controlli LDLR KO, suggerendo il ruolo 
chiave del LDLR alla base del fenotipo osservato nei topi PCSK9 KO. Anche studi in topi 
AlbCre+/PCSK9LoxP/LoxP, che mancano di PCSK9 solo a livello epatico, non mostrano 
differenze rispetto ai controlli.  

Conclusioni: PCSK9 modula l’espressione del LDLR a livello pancreatico, svolgendo un 

ruolo cruciale nella funzionalità delle cellule β e nel processo di secrezione di insulina 
dalle stesse. I dati riportati indicano inoltre che l’effetto osservato a livello del pancreas è 
indipendente da PCSK9 circolante, principalmente prodotto a livello epatico, ma 
probabilmente associato alla proteina prodotta localmente. Queste osservazioni 
forniscono informazioni chiave riguardo il ruolo di PCSK9 nel metabolismo glucidico, utili 
soprattutto in ottica della sicurezza degli inibitori farmacologici di PCSK9.  
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Abbreviations 

2h PG       2h Plasma Glucose 

ABCA1      ATP-Binding Cassette Transporter A1 

ABCG1      ATP-Binding Cassette Transporter G1 

ACAT1       Acetyl-CoA Acetyltransferase 

AD       Alzheimer’s Disease  

ADH       Autosomal Dominant Hypercholesterolemia 

ApoB       Apolipoprotein B  

ApoER2      Apolipoprotein E Receptor 2 

ASOs       Antisense Oligonucleotides  

AUC       Area Under the Curve 

Aβ       Amyloid Β-Peptide  

BACE1       Β-site Amyloid Precursor Protein (APP)- 

      Cleaving Enzyme 1 

CD36      Cluster Of Differentiation 36 

CGN       Cerebellar Granule Neurons 

CRE       Cyclic AMP Response Element  

DM       Diabetes Mellitus  

DPP-4      Dipeptidyl Peptidase 4 

DRP1      Dynamin-Related Protein 1 

ECs       Endothelium Cells 

EGF-A       Epidermal Growth Factor-A  

eIF2a       Eukaryotic Initiation Factor 2a 

ENaC       Epithelial Na+ Channel 

ER       Endoplasmic Reticulum 

FFA       Free Fatty Acid 

FH       Familial Hypercholesterolemia 

FPG       Fasting Plasma Glucose 

G6P      Glucose 6-Phosphate 

GDM      Gestational Diabetes  

GIP       Glucose-Dependent Insulinotropic Peptide 

GK       Glucokinase 

GLP-1      Glucagon-Like Peptide 1 

GLP-1R      GLP-1 Receptor 

GLUT2      Glucose Transporter 2  

GLUT4      Glucose Transporter 4  

GOF       Gain-Of-Function 

GSIS       Glucose Stimulated Insulin Secretion 

GTT       Glucose Tolerance Test 

https://en.wikipedia.org/wiki/Dipeptidyl_peptidase_4
https://en.wikipedia.org/wiki/Gestational_diabetes
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GWAS       Genome-Wide Association Studies 

HbA1c       Hemoglobin A1c 

HFD       High Fat Diet  

HLA       Human Leukocyte Antigen 

HMGCoA-R      3-Hydroxy-3-Methylglutaryl-Coenzyme A  

      Reductase 

HNF1α      Hepatocyte Nuclear Factor 1α  

ICA512      Islet Cell Autoantigen 512 

IL-6      Interlukin-6 

IMT       Intima Media Thickness 

IPGTT       Intraperitoneal Glucose Tolerance Test 

IR       Insulin Receptor 

IRS       Insulin Receptor Substrate 

ITT       Insulin Tolerance Test 

KATP channel      ATP-Sensitive Potassium channel 

LDL      Low Density Lipoprotein 

LDL-C       LDL Cholesterol 

LDLR       LDL Receptor 

LOF       Loss-Of-Function  

LXR       Liver X Receptor 

mAbs       Monoclonal Antibodies  

MRI       Magnetic Resonance for Imaging  

MTNR       Melatonin Receptor 

NAFPD      Nonalcoholic Fatty Pancreas Disease 

NARC-1     Neural Apoptosis-Regulated Convertase 1 

nNOS       Neuronal NO Synthase   

OA       Oleanolic Acid  

OGTT       Oral Glucose Tolerance Test 

oxLDL       Oxidized LDL  

PC      Proprotein Convertase 

PCR       Polimerase Chain Reaction  

PCSK9      Proprotein convertase subtilisin/kexin type 9 

PDX-1      Duodenal Homeobox-1  

PERK       Pancreatic ER Kinase 

 PP1      Protein Phosphatase 1  

PPAR       Peroxisome Proliferator-Activated Receptor 

RIPE3b      Rat Insulin Promoter Element 3b  

ROS       Reactive Oxygen Species 

 RTK       Receptor Tyrosine Kinase 

RT-PCR      Real Time Quantitative Polymerase Chain  

      Reaction 
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SCAT       Subcutaneous Adipose Tissue  

SFD       Standard Fat Diet  

SH2      Src-Homology 2 

siRNA       Small Interfering Rna  

SMCs       Smooth Muscle Cells  

SNPs       Single Nucleotide Polymorphisms 

SRE      Sterol-Responsive Elements  

SREBP1c      Sterol Regulatory Element-Binding Protein 1c 

T1DM       Type 1 Diabetes Mellitus  

T1R2      Taste Receptor Type 1  

T2DM       Type 2 Diabetes Mellitus  

TCA Cycle     Tricarboxylic Acid Cycle 

TG       Triglycerides  

TNF-α       Tumor Necrosis Factor-Α  

UCP-2      Uncoupling Protein-2  

UPR       Unfolded Protein Response 

VAT       Visceral Adipose Tissue 

VLDLR       Very Low Density Lipoprotein Receptor  
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1. Diabetes Mellitus 

Diabetes mellitus (DM) is a group of metabolic disorders characterized by a chronic 

hyperglycemic condition due to dysfunction in insulin secretion, insulin action or both. 

The chronic hyperglycemia causes long-term damage, dysfunction and failure of different 

tissues and organs, such as the eyes, heart, kidneys, nerves and blood vessels. The 

pathogenic processes involved in the onset and development of diabetes include both 

autoimmune disorders, associated with the destruction of the pancreatic β-cells, and 

deficient action of insulin on target tissues, resulting in abnormalities in carbohydrate, fat 

and protein metabolism [5].  

Particularly, there are three main types of diabetes mellitus: 

 Type 1 DM: is a consequence of the pancreatic failure in producing enough insulin, 

due to autoimmune β-cell destruction. This form was previously known as "insulin-

dependent diabetes mellitus" (IDDM) or "juvenile diabetes". 

 Type 2 DM: begins with insulin resistance, a condition in which cells respond to insulin 

less than expected, leading  to a progressive loss of β -cell insulin secretion. This form 

was referred to as "non insulin-dependent diabetes mellitus" (NIDDM) or "adult-onset 

diabetes". 

 Gestational diabetes (GDM): occurs when pregnant women, without a previous 

history of diabetes, develop hyperglycemia. It is usually diagnosed in the second or 

third trimester of pregnancy. 

 

The prevalence of diabetes is increasing rapidly worldwide and it is estimated that 

currently 415 million adults (8.4%) have diabetes. In 2015 the International Diabetes 

Federation predicted that one-third of adults are expected to have diabetes in 2050 in the 

USA and that there will be 71.1 million adults living with diabetes in Europe [6]. 

 

 

 

https://en.wikipedia.org/wiki/Diabetes_mellitus_type_1
https://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
https://en.wikipedia.org/wiki/Insulin_resistance
https://en.wikipedia.org/wiki/Gestational_diabetes
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1.1 Physiology of glucose homeostasis 

Glucose, a fundamental source of cellular energy, represents an important precursor for 

the synthesis of several biomolecules and plays an important role in cell signalling. Plasma 

glucose concentration depends on the rate of glucose entering the circulation balanced 

by the rate of glucose removed from the circulation. A considerable fraction of plasma 

glucose derives from the intestinal absorption during the fed state, while other sources of 

circulating glucose derive from hepatic processes (glycogenolysis and gluconeogenesis) 

during the fasting state [7]. The maintenance of circulating glucose levels in a relatively 

narrow range is strictly dependent on glucoregulatory hormones release and activity. 

They include insulin, amylin and glucagon, produced in the pancreatic islets of 

Langerhans, and glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic 

peptide (GIP), known as incretins and derived from the intestine [8]. 

Among the various hormones involved in glucose modulation, insulin and glucagon are 

the most relevant. Insulin is secreted by pancreatic β-cells in response to increased blood 

glucose and amino acids in the postprandial state. Insulin is able to reduce circulating 

glucose levels by enhancing the uptake of glucose into insulin-sensitive cells and 

promoting its storage in liver via glycogenesis (conversion of glucose to glycogen) and 

lipogenesis (fat formation). In addition, insulin inhibits glucagon secretion, thus stopping 

the hepatic production of glucose via glycogenolysis and gluconeogenesis [9]. Glucagon is 

secreted from pancreatic α-cells. It is produced in response to fasting hypoglycemia and 

acts increasing glucose levels by enhancing hepatic glycogenolysis and gluconeogenesis 

[10]. The hormone amylin, released from pancreatic β-cells, contributes to reduce 

glucagon in postprandial state, as well as slowing of gastric emptying. GIP and GLP-1, 

glucose-dependent hormones, are secreted only when glucose levels rise above normal 

fasting glycemia and are involved in the regulation of blood glucose, acting on insulin and 

glucagon release [11]. 

The absorptive state or fed state, which occurs when we consume and digest a meal 

absorbing the nutrients (fats, proteins and carbohydrates), is characterized by increased 

glucose concentrations in the bloodstream, that in turn stimulates pancreatic β-cells to 

release insulin. Postprandially, the secretion of insulin occurs in an initial phase of rapid 
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release of preformed insulin, followed by increased insulin synthesis and release in 

response to blood glucose [7]. Basically, the major factors that influence postprandial 

glucose homeostasis are those affecting the suppression of endogenous glucose release 

and those that concern the hepatic and extrahepatic glucose uptake. Insulin primarily 

stimulates the uptake of glucose mainly by hepatocytes, adipocytes and muscle cells, 

taking advantage of glucose transporters (GLUTs). GLUT2, a high-capacity and low-affinity 

glucose transporter, is highly expressed in the liver, while GLUT4 is detected in insulin 

sensitive tissues such as skeletal and cardiac muscle, brown and white adipose tissue 

[12]. Once inside, glucose is immediately converted into glucose 6-phosphate (G6P), 

leading to a reduction in intracellular glucose levels which further increases glucose 

uptake. At the same time, insulin suppresses both hepatic gluconeogenesis and 

glycogenolysis, responsible for the endogenous glucose production [13] (Fig. 1). 

 

The postabsorptive state or fasting state, occurs when food has been digested, absorbed 

and stored. The drop in blood glucose levels several hours after a meal leads to a 

decrease in insulin release, paralleled with a rise in glucagon secretion from pancreatic α 

cells. Glucagon acts mainly in the liver, where it inhibits the synthesis of glycogen and 

stimulates the glycogenolysis, the breakdown of stored glycogen back into glucose [14]. 

The large amount of glucose derived from glycogen is then released in the circulation to 

be used by the peripheral tissues and the brain. Anyway, muscle and liver start to use 

fatty acids as fuel when the blood glucose levels drop, while the entry of glucose into 

muscle and adipose tissue decreases in response to a low insulin level, contributing to the 

maintenance of the blood glucose homeostasis. Finally, to replace the glycogen stores 

that have been depleted in the liver, the gluconeogenesis allows the generation of 

glucose from non-carbohydrate carbon substrates such as lactate, citric acid cycle 

intermediates, amino acids and glycerol [15]. When fasting is prolonged to the point of 

starvation, glycolysis is shut off in cells that can use alternative fuels, such as skeletal 

muscle cells that switch from using glucose to fatty acids, converting them into acetyl 

CoA, used in the tricarboxylic acid cycle (TCA) cycle to produece ATP. As starvation 

continues, fatty acids and triglycerides stores are used to create ketones bodies, which 

become the major source of fuel for the heart and other organs [16] (Fig. 2).  

https://www.diapedia.org/metabolism-insulin-and-other-hormones/51040851315/insulin-synthesis-secretion-and-degradation
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Figure 1. Absorptive State. During the absorptive state, the body digests food and absorbs the nutrients. 
(Anatomy and Physiology - BC Open Textbook project)  

 

 

 

 

 

https://opentextbc.ca/anatomyandphysiology/
http://open.bccampus.ca/
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Figure 2. Postabsorptive State. During the postabsorptive state, the body must rely on stored glycogen for 

energy (Anatomy and Physiology - BC Open Textbook project)  

 

 

 

 

 

https://opentextbc.ca/anatomyandphysiology/
http://open.bccampus.ca/
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1.2 Type 1 Diabetes Mellitus 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting in the destruction of 

pancreatic β-cells and in the consequent development of hyperglycemia, after a 

prolonged and variable latent period. Although T1DM can be diagnosed at any age, it is 

one of the most common chronic diseases of childhood [17]. T1DM is a multifactorial 

disease resulting from a complex interplay between host genetics, immune system and 

environment. Although genetic predisposition are clearly important, the increased 

incidence can only be explained by changes in environment or lifestyle [18]. The presence 

of auto-antibodies against the pancreatic islet cells is the hallmark of T1DM, even if their 

role in the pathogenesis of the disease is still unclear. Beyond islet cells auto-antibodies, 

there are auto-antibodies against insulin (IAA), glutamic acid decarboxylase (GAD, 

GAD65), protein tyrosine phosphatase (IA2 and IA2β) and zinc transporter protein 

(ZnT8A) [19].  

T1DM is clearly a polygenic disorder, with approximately 50 loci known to affect disease 

susceptibility. The human leukocyte antigen (HLA) class II genes show the strongest 

association with T1MD (especially the HLA-DRB1, HLA-DQA1 and HLA-DQB1 loci), as well 

as HLA class I genes, which are responsible for 40–50% of the genetic risk [20]. Moreover, 

multiple non-HLA loci have been reported to contribute to disease risk, including  INS,  

CTLA4,  PTPN22,  IL2RA, IFIH1, CAPSLIL7R,  CLEC16A, and PTPN2 [21]. However, also the 

environment factors play a key role in the pathogenesis of the disease. The main 

environmental factors associated with T1DM are drugs, pollutants, dietary factors, stress, 

infections and gut microbiota [22]. Pentamidine, alloxan and streptozotocin can be toxic 

to β-cells, while among persistent organochlorine pollutants (POPs), dioxins inhibits 

glucose uptake and lowers insulin production [23]. Several studies showed that dietary 

factors are involved in T1DM pathogenesis, including cow’s milk and wheat gluten as risk 

factors, while breastfeeding and Vitamin D seems to have protective effects. The role of 

the psychological stress is still debate but it may induce T1DM associated autoimmunity 

and β-cell stress, thereby accelerating its development [24]. Finally, a number of viral 

infections associate with T1DM onset in humans, including enterovirus, rotavirus and 

cytomegalovirus (CMV) [25]. The mechanisms by which these factors affect T1DM are still 
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unclear. So far, it has been proposed that these environmental factors may induce 

immune responses by generating novel antigens, as well as directly or indirectly inducing 

epigenetic alterations, which regulate gene expression in immune cells [22].  

T1DM is a chronic autoimmune disorder associated with selective destruction of insulin-

producing pancreatic β-cells, histologically characterized by cells inflammation (insulitis) 

and damage. The pathogenesis of β-cells destruction within the islet in T1DM is difficult 

to follow due to the marked heterogeneity of the pancreatic lesions. Although symptoms 

usually occur when 90–95% of β-cells are lost, recent studies suggest that 40%–50% β-

cells viability may be present at the onset of hyperglycemia. The rate of β-cells 

destruction is quite variable, being rapid in some individuals, mainly infants and children, 

and slow in others, such as in adults [26]. The immunological events occurring in T1DM 

involve macrophages, dendritic cells (DCs) and T lymphocytes, both CD4+ and CD8+ T 

cells. Among CD4+ T cells, Th1 and Th17 cells produce proinflammatory cytokines, while 

CD4+ Th2 cells have been recognized to have protective effects against autoimmunity 

[27]. CD4+ T regulatory (Treg) cells exhibit potent regulatory functions and are necessary 

to maintain immune tolerance. In addition to CD4+ T cells, also CD8+ T cells are involved 

in the pathogenesis of T1DM. Studies in NOD mice demonstrated that the activation of 

CD8+ T cells can cause damage to pancreatic islets, contributing to the onset and 

development of the disease [28]. 

The classical symptoms of T1DM, which typically develop over a short period of time, are 

polydipsia, polyuria, enuresis, lack of energy, extreme tiredness, polyphagia, weight loss, 

poor healing, chronic infections and blurred vision, with severe dehydration and diabetic 

ketoacidosis in children and adolescents. In patients with classic symptoms, T1DM is 

diagnosed based on plasma glucose criteria, either the fasting plasma glucose (FPG) or 

the 2h plasma glucose (2h PG) value after a 75g oral glucose tolerance test (OGTT) or 

Hemoglobin A1c (HbA1c). FPG ≥ 126 mg/dL (7.0 mmol/L), 2h PG after OGTT ≥ 200 mg/dL 

(11.1 mmol/L), HbA1c ≥ 6.5% (48 mmol/mol) or a random plasma glucose ≥ 200 mg/dL 

(11.1 mmol/L) along with symptoms of hyperglycemia, are diagnostic of the disease [29]. 

A key distinguishing feature between type 1 and type 2 disorders is the presence of auto-

antibodies against β-cells antigens, observed in more than 90% of subjects with newly 
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diagnosed T1DM. An accurate diagnosis of the disease in childhood and adolescence is 

crucial for optimum care and avoiding complications [30].  

Regarding the management of T1DM, the discovery of insulin in 1921 was clearly the 

most significant therapeutic event in the history of the disease. Currently, the 

administration of exogenous insulin through daily injections or computerized pumps 

remain the most noticeable treatment for T1DM patients [31]. Exogenous insulin 

administration significantly increases life expectancy and helps normalize blood glucose, 

but can expose patients to episodes of hypoglycemia, one of the worst side effects of this 

treatment [31]. Recently, notable progresses have been made in the development of 

immunotherapy approaches using pharmaceutical compounds, such as cyclosporine. 

These compounds are designed to manipulate the immune system in order to avoid β-cell 

destruction, successfully blocking the progression of the disease [32]. Alternative 

immunotherapy methods, including autoantigen-specific immune therapy, immuno-

regulatory-based approach and activation of Treg cells, have been proposed and are 

currently in preclinical and clinical studies [33]. In some cases, whole pancreas or islet 

transplantations can be effective for T1DM treatment, even though they are limited by 

donor scarcity and life-long immunesuppression. Therefore, development of novel 

therapies that can tackle these issues is highly desirable [34]. 

 

Type 2 Diabetes Mellitus 

Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder characterized 

by relative (rather than absolute) insulin deficiency, peripheral insulin resistance and 

consequent hyperglycemia. In 2013, the global prevalence of T2DM in adults (20-79 years 

old) was 8.3% (382 million people) and this number is expected to rise beyond 592 million 

by 2035 [35]. More than 90-95% of diabetes patients belong to T2MD and most of these 

patients are adults. However, the number of young people (< 20 years) with the disease is 

rapidly increasing, mainly due to changes in the lifestyle of children in terms of more 

sedentary life and less healthy food [36]. T2DM is indeed characterized by a strong 

genetic predisposition, even though the environmental factors also play a key role in this 

types of disorder [37]. 

https://en.wikipedia.org/wiki/Metabolic_disorder
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Despite several genome-wide association studies (GWAS) have identified a large array of 

gene mutations and single nucleotide polymorphisms (SNPs) associated with T2DM, these 

variants explain less than 15% of disease heritability [38]. A study conducted in different 

countries on T2DM patients identified various diabetes putative loci positioned in and 

around the CDKAL1, CDKN2A/B, HHEX/IDE and SLC30A8 genes, providing strong 

evidences that common genetic determinants, including common specific genes, are 

linked to diabetes [39, 40]. Genetic variants and polymorphisms in the interleukin and 

related genes, including interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) genes, 

were found to be associated with increased risk of developing T2DM [41]. Interestingly, 

also variants and SNPs in the antioxidant genes, such as superoxide dismutase and 

glutathione peroxidase, are implicated in the risk and pathogenesis of T2DM [35]. 

However, beyond the genetic causes, environmental and lifestyle changes significantly 

contribute to the rapid global increase in T2DM prevalence and incidence in recent 

decades. It has been demonstrated that an unhealthy energy-dense diet in association 

with a sedentary lifestyle are the primary cause of obesity and T2DM [42]. Despite the 

wide range of diet types consumed worldwide, generally plant food is associated with 

reduced T2DM risk than meat, while refined grains or sugar-sweetened beverages appear 

to promote obesity and diabetes risk [43]. Unfortunately, epidemiological studies cannot 

exclude the impact of confounding factors such as those of physical activity, which is 

difficult to assess in queries or interviews. Indeed, high total physical activity is associated 

with a reduction in relative diabetes risk by approximately 30%, compared to low one 

[44]. Other contributing factors for T2DM are the duration and quality of sleep, paralleled 

with housing environment such as the exposure to residential traffic, noise, fine airborne 

particulate, UV or ionising radiation, toxins or allergens [43]. The relationship between 

depressive mood, stress or infections and diabetes is still debated. Of note, except high 

levels of nutrients and their metabolites in blood, only few environmental or lifestyle 

factors directly affect β-cell function. They usually have different sites of action, such as 

the immune system, vascular tissue, adipose tissue, liver, muscle, brain or intestine [43]. 

Regarding the pathophysiology, T2DM is characterised by hyperglycemia, insulin 

resistance and relative pancreatic β-cell failure, with up to 50% cell loss at diagnosis. 

More than 90-95% of T2DM patients are adults, even though recently the incidence of 
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this disease in young people is significantly increased, where the β-cell loss occurs more 

rapidly compared to adults [45]. Insulin resistance is a pathological condition in 

which cells fail to respond normally to insulin and occurs primarily within hepatocytes, 

adipocytes and myocytes. As a consequence, insulin resistance increases the demand for 

insulin in these tissues, leading to an initial period of euglycaemic hyperinsulinaemia [46]. 

Subsequently, insulin secretion decreases with the increased demand for insulin by time 

due to the gradual destruction of β-cells, causing some T2DM patients to be dependent 

on insulin [47]. Increasing evidences support that T2DM is strongly modulated by β-cell 

dysfunction and apoptosis, mainly due to a glucose toxicity effect. Particularly, 

hyperglycemia-induced β-cell apoptosis has been extensively studied regarding the 

balance between pro-apoptotic Bcl-2 proteins (Bad, Bid, Bik, and Bax) and anti-apoptotic 

Bcl family (Bcl-2 and Bcl-xL). Apoptosis occurs when the concentration of pro-apoptotic 

proteins exceeds that of anti-apoptotic ones [48]. 

The classical symptoms associated with T2DM, which usually come on slowly, 

include increased thirst, frequent urination, unexplained weight loss, increased hunger 

and tiredness. The long-term complications caused by high blood glucose levels are heart 

disease, strokes, diabetic retinopathy, kidney failure and reduced blood flow in the limbs, 

which may lead to amputations. As described for T1DM, T2DM is diagnosed using either 

the estimation of plasma glucose (FPG or OGTT) or HbA1c. FGP ≥ 126 mg/dL (7.0 mmol/L), 

2h PG after OGTT ≥ 200 mg/dL (11.1 mmol/L), HbA1c ≥ 6.5% (48 mmol/mol) or a random 

plasma glucose ≥ 200 mg/dL (11.1 mmol/L) along with symptoms of hyperglycemia are 

diagnostic of the disease [35]. Of note, HbA1c has the advantage to be a stable diagnostic 

measure that does not require fasting and is equivalent to FPG regarding the prediction of 

the development of retinopathy [49]. T2DM can be distinguished from T1DM considering 

that it is characterized by hyperglycemia in the context of insulin resistance and relative 

insulin deficiency, while in T1DM there is an absolute insulin deficiency due to destruction 

of pancreatic islet cells. However, if the diagnosis is in doubt, antibody testing may be 

useful to confirm T1DM [50].  

Management of T2DM mainly focuses on lifestyle interventions and pharmacological 

treatments, in order to reach the goal of HbA1c around 7% or fasting glucose <130 mg/dL. 

https://en.wikipedia.org/wiki/Pathological
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Insulin
https://en.wikipedia.org/wiki/Polydipsia
https://en.wikipedia.org/wiki/Polyuria
https://en.wikipedia.org/wiki/Weight_loss
https://en.wikipedia.org/wiki/Polyphagia
https://en.wikipedia.org/wiki/Heart_disease
https://en.wikipedia.org/wiki/Heart_disease
https://en.wikipedia.org/wiki/Stroke
https://en.wikipedia.org/wiki/Diabetic_retinopathy
https://en.wikipedia.org/wiki/Kidney_failure
https://en.wikipedia.org/wiki/Amputation
https://en.wikipedia.org/wiki/Pancreatic_islets
https://en.wikipedia.org/wiki/Antibody
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Considering that around 60% of patients with T2DM are obese (BMI ≥30 kg/m2) and show 

insulin resistance, diet and lifestyle are effective tools for T2DM prevention and 

management [51].  Regarding the pharmacological management, the initial T2DM 

management approach recommend monotherapy, usually with metformin, but if the 

HbA1c goal has not been met within approximately 3 months of starting initial therapy, 

treatment should be intensified by adding a second or third agent [52]. Metformin 

reduces hepatic glucose production, enhances peripheral insulin sensitivity and stimulates 

GLP-1 secretion. Moreover, it effectively decreases HbA1c levels, is weight neutral, does 

not cause hypoglycemia and can have modest beneficial effects on blood pressure and 

lipid profile [42]. Sulfonylureas, which act on β-cells promoting insulin secretion [53], and 

thiazolidinediones, that stimulate peroxisome proliferator-activated receptors (PPARs), 

are usually chosen for dual therapy [54]. Glucagon-like peptide-1 receptor agonists (GLP-1 

RAs) are synthetic analogues of the native human GLP-1 with improved pharmacokinetic 

properties. They trigger GLP-1-like effects, including increased insulin secretion, reduced 

glucagon released, reduced hepatic glucose output, delayed gastric emptying and 

increased satiety [55]. Dipeptidyl peptidase 4 (DPP-4) inhibitors, such as sitagliptin, 

saxagliptin and alogliptin, act reducing the enzymatic degradation of the incretin 

hormones GLP-1 and GIP. This leads to an increased availability of endogenous incretins, 

stimulating insulin secretion from pancreatic β-cells and inhibiting glucagon release from 

pancreatic α-cells in a glucose-dependent manner  [56]. Finally, insulin remains the most 

potent glucose-lowering agent, particularly for patients with high HbA1c levels. However, 

there are multiple barriers to initiating insulin therapy and the decision to add insulin will 

require discussion between the prescribing physician and the patient, taking into 

consideration the patient's motivation, general health, age, risk of hypoglycemia and 

cardiorenal complications [57]. 

 

 

 

 

https://en.wikipedia.org/wiki/Dipeptidyl_peptidase_4
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2. Glucose metabolism: focus on insulin 

The pancreas is a centralized organ vital for whole body metabolic homeostasis and the 

nutrient metabolism in pancreatic cells is not only essential for providing them energy, 

but also acts as a mechanism to sense and react to circulating levels of macronutrients. 

The pancreas, located behind the stomach and connected to liver, spleen and small 

intestine, produces exocrine enzymes to aid digestion and endocrine hormones to 

regulate blood glucose. The exocrine pancreas represents around 98% of the pancreatic 

mass and is responsible for synthesis, storage and secretion of digestive enzymes into the 

duodenum. The endocrine pancreas, representing about 2% of the total mass, is made up 

of the islets of Langerhans, containing different cell types: α- β- δ- ε- and γ (PP) cells [58]. 

Adult pancreatic β-cells express and secrete insulin in response to relevant stimuli. 

Despite the primary regulatory factor for insulin synthesis and secretion is glucose, other 

stimuli, such as amino acids, fatty acids, hormones and neuronal signals, also play 

important roles in these processes. Once released in blood stream, insulin binds to its 

receptor found in several tissues, especially in liver, muscle and adipose tissue, to 

facilitate glucose uptake and storage. An efficient energy metabolism in pancreatic β-cells 

is necessary to prevent dysfunction of this metabolic framework, such as T2DM, whose 

prevalence has been dangerously increasing over the past few decades [59]. 

 

2.1 Insulin structure and biosynthesis 

Insulin was the first peptide hormone to be discovered. In the mid 1950′s Sanger showed 

that insulin is a two-chain heterodimer, consisting of a 21 amino acid residue “A” chain 

and a 30 amino acid residue “B” chain, bound by two disulfide linkages (A7-B7 and A20-

B19) [60]. Although this primary structure provided important information concerning the 

amino acid composition and size of the molecule (5,8 kDa), questions regarding the 

processes of insulin biosynthesis and secretion remained unclear until the late 1960′s, 

when proinsulin was discovered [61]. This precursor protein (   9 kDa) consists of both the 

A and B chain, joined through an intervening fragment, known as C-peptide. Finally, only 

in 1976 Chan et al. demonstrated that there was an additional and larger precursor of 
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insulin, preproinsulin. This single-chain polypeptide (  12 kDa) consists of proinsulin 

extended at the amino-terminus by a 24-residue signal peptide [62].  

 

 

Figure 3. Insulin synthesis and maturation. (2004 Beta Cell Biology Consortium) 

 

Preproinsulin, once encoded, is translocated across the rough endoplasmic reticulum 

(rER) membrane into the lumen, via interactions of its signal peptide with the signal 

recognition particle (SRP) and SRP-receptor in the rER membrane [63]. On the lumenal 

side of the rER membrane, the preproinsulin signal peptide is cleaved  to yield proinsulin, 

which undergoes folding and formation of three disulfide bonds to generate the native 

tertiary structure, the direct precursor of insulin. Finally, the folded proinsulin is 

transported from the ER to the Golgi apparatus where it enters immature secretary 

vesicles and is cleaved to yield insulin and C-peptide. Insulin and C-peptide are then 

stored in these secretory granules together with islet amyloid polypeptide (IAPP or 

amylin) and other less abundant β-cell secretary products [64]. Both proinsulin and insulin 

monomers tend to form dimers when their concentration rises, while in the presence of 

zinc (Zn) and favorable pH the monomers assemble into hexamers [65]. The hexamer, 
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despite it is inactive, presents long-term stability, which protects the highly reactive 

insulin, yet readily available. Once the hexamers are secreted from the β-cell and diffuse 

into circulation, a combination of electrostatic repulsion and decreased concentration of 

insulin favors the dissociation of insulin into its active monomeric form [66].  

 

2.2 Regulation of insulin transcription 

Insulin content in β-cells is highly dynamic, enhancing in the presence of nutrients and 

decreasing in response to fasting. This ability of β-cells to rapidly respond to cellular 

signals is mainly due to transcriptional regulation. Several elements within the promoter 

region of insulin gene (A, C, E, Z, and CRE elements) provide binding sites for different β-

cell transcription factors that regulate insulin gene expression [67]. The A elements 

contain a TAAT motif in the core region, that represents the central DNA binding 

recognition site for several proteins, including duodenal homeobox-1 (PDX-1), Cdx2/3 and 

Isl-1 [68]. The expression of PDX-1, which was initially characterized as an insulin and 

somatostatin transcriptional factor, is generally restricted to islet β-cells (~91%) in adult 

pancreas. Cdx2/3, despite it is expressed both in β-cells and α-cells, appears to play a less 

important role in islet function, because Cdx2/3 KO mice presents defects only in 

intestinal function. Isl-1, which is expressed by all types of islet cells and plays an essential 

role in islet formation during embryo development, is able to activate somatostatin, 

glucagon and IAPP gene expression [59]. There are two C elements in the insulin gene 

promoter, C1 and C2 element. Rat insulin promoter element 3b (RIPE3b)1 is the major 

factor binding the C1 element, which has been demonstrated to play a key role in 

regulating insulin transcription [69]. The C2 element contributes to insulin, glucagon and 

somatostatin transcription in α-, β-, and δ-cells, respectively. In particular, the activator of 

insulin C2 element PAX6, a member of the Pax transcription factor family, which is 

required for normal transcription of these genes and islet development [70]. Regarding 

the E elements, rodents have two separated mini-enhancer units within the insulin gene, 

while other mammals have only one. The most important E element activators are 

BETA2/NeuroD1, E2/5, E12 and E47 [71]. Pancreatic islets are especially enriched in 

BETA2/NeuroD1, which is fundamental in regulating insulin gene expression and β-cell 

survival [72]. The Z element is located upstream of the A element and is present only in 
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the human insulin gene promoter. Of note, recent studies demonstrated that A element 

activation depends on the present of the Z element. The Z element functions as both a 

potent glucose-responsive transcriptional enhancer in primary cultured islet cells and as a 

transcriptional repressor in transformed β-cell lines and primary fibroblast cells [73]. 

Finally, the human insulin gene promoter contains 4 Cyclic AMP response element (CRE) 

sites: CRE1, CRE2, CRE3 and CRE4, which contain within the core a sequence similar to the 

CRE consensus sequence. Several transcription factors, that are members of the CRE 

binding protein (CREB)/ATF family, regulate insulin gene transcription by binding to the 

consensus CRE [74].  

 

2.3 Regulation of insulin translation 

Glucose metabolism is no doubt the most influential physiological event that stimulates 

insulin gene transcription and mRNA translation, despite insulin biosynthesis depends on 

multiple factors. In response to nutrients, β-cells are able to enhance their overall protein 

translation, which is mostly controlled by the phosphorylation/dephosphorylation of 

eukaryotic initiation factor 2a (eIF2a).  Protein phosphatase 1 (PP1) is responsible for the 

eIF2a dephosphorylation, while the pancreatic ER kinase (PERK) phosphorylates eIF2a, 

thereby regulating insulin translation [75]. Interestingly, PERK seems to be required 

during the fetal and neonatal phases for proper development of β-cell mass, while not 

necessary in adults for maintaining β-cell mass [76]. Moreover, β-cells have developed a 

mechanism for detecting the amount of insulin stored in granules and secreted, in order 

to adjust insulin synthesis accordingly. For example, the islet cell autoantigen 512 

(ICA512), a granule transmembrane protein, plays a crucial part in this feedback control. 

When the granule membrane fuses to the cell membrane to release insulin, the cytosolic 

fragment of ICA512 is released from granules and targets the transcriptional factor STAT5 

in the nucleus, which in turn upregulates insulin transcription [77]. Therefore, the release 

of insulin from secretory granules is rapidly communicated to the nucleus, which serves 

as a positive feedback mechanism to start insulin translation, in order to maintain a 

sufficient amount of stored insulin [59]. 

In addition, β-cells also adjust insulin production in response to immediate environmental 

triggers by modulating the speed of insulin translation. The acute glucose-stimulated 
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insulin production is independent of mRNA synthesis within the first 45min, considering 

that blockage of transcription occurs only after that time frame. For example, when rat 

islets are exposed to 25 mM glucose for 1h, occurs a significant induction in intracellular 

proinsulin levels, while proinsulin mRNA content remains almost the same [78]. 

Moreover, insulin mRNA stability, which depends on nutrient status, is a crucial factor 

that influences insulin biosynthesis. In particular, both in vitro and in vivo studies 

demonstrated that insulin mRNA stability decreases under lower glucose levels and 

increases under high glucose conditions. Rats fasted for 3 days present only 15–20% of 

the pancreatic insulin mRNA measured in the control animals. Thus, translation regulation 

controls the immediate insulin synthesis, while regulation at the transcriptional level 

contributes to the modulation of delayed insulin synthesis [59].  

 

2.4 Regulation of insulin secretion 

Secretion of insulin from β-cells represents a crucial step in the regulation of glucose 

homeostasis and in healthy subjects it precisely meet the metabolic demand. However, 

abnormalities in insulin secretion have been demonstrated to be an integral component 

of both T1DM and various forms of T2DM. Insulin is stored in large dense granules and 

released by exocytosis, trough a multistep process that involves the transport of the 

secretory vesicles to the plasma membrane, then docking, priming and finally their fusion 

with the plasma membrane. Only a small part of the insulin stored in granules is released, 

even under maximum stimulation, suggesting that systemic insulin levels are regulated by 

secretion rather than by biosynthesis [66]. To sense the nutritional state, β-cells are 

clustered in islets strategically connected to the circulation, which allows them to receive 

a greater amount of blood than cells in the surrounding exocrine regions. In addition to 

glucose, some amino acids and fatty acids impact on insulin secretion, a process that is 

modulated cooperatively by nutrients, hormones and neurotransmitters in association 

with electrical depolarization of the β-cells [59] (Fig. 4). 
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Figure 4. Schematic illustration of nutrient-regulated insulin secretion [59]. 

Glucose, that accumulates immediately after food ingestion, is no doubt the primary 

stimuli for insulin release in several animal species. In rodents and humans, the amplitude 

of insulin secretion induced by glucose is significantly larger compared with that 

stimulated by protein or fat. While glucose is the obligate fuel source for brain, other 

tissues, such as pancreas, can use alternative fuel sources during starvation, an 

adaptation that could predispose them to glucolipotoxicity [79]. 

β-cells contain several sensing devices that measure circulating glucose, including glucose 

transporter 2 (GLUT2), which is the major glucose sensor in these cells. GLUT2 is the only 

glucose transporter expressed in β-cells and its mobilization to the plasma membrane is 

insulin-independent. Once inside β-cells, glucose is phosphorylated by the rate-limiting 

enzyme glucokinase, which acts as a glucose sensor [80]. The endpoint of glycolysis is the 

metabolic substrate pyruvate which is subsequently oxidized through the TCA cycle to 

produce ATP. This process is the major signaling pathway coupled to “ATP-sensitive 

potassium (KATP) channel-dependent insulin release”, which leads to an increased 

intracellular ATP/ADP ratio, associated with closure of KATP channels, depolarization of 

the plasma membrane, opening of voltage-dependent Ca2+channels and activation of 



 Introduction 

28 
 

exocytosis of insulin-containing granules. Interestingly, also some products derived from 

the anaplerosis/cataplerosis can act as insulin secretion signals, including NADPH, 

malonyl-CoA, and glutamate [81].  

Single amino acids, at physiological concentrations, are usually poor insulin 

secretagogues, but certain combinations of amino acids or higher levels can enhance 

glucose stimulated insulin secretion (GSIS). For example, during fasting proteins in 

skeletal muscle are catabolized and amino acids, such as alanine and glutamine, are 

released into circulation. These free amino acids acts as potent glucagon secretagogues, 

leading to an elevation in blood glucose levels, which then triggers insulin secretion [82]. 

Dietary amino acids can also induce insulin secretion via incretin-dependent mechanisms. 

GIP and GLP-1, the two major incretin hormones secreted from the gastrointestinal tract, 

directly act on β-cells by binding to their specific cell-surface receptors, augmenting GSIS 

[83]. Beyond glucose and amino acids, also free fatty acids (FFAs) can influence β-cell 

secretion of insulin. In T2DM, FFAs potentiate insulin secretion to compensate the 

increased insulin need consequently of insulin resistance [84].  

Finally, several hormones are able to modulate insulin secretion. Despite β-cells are not 

considered classic estrogen targets, their receptors are present in islets and the effects of 

17β-estradiol on β-cells are well described. At physiological concentrations, 17β-estradiol 

significantly decreases KATP channel activity, which causes membrane depolarization and 

subsequent opening of voltage-gated Ca2+ channels, influencing insulin secretion [85]. 

The effect of melatonin, a hormone secreted by the pineal gland, on insulin secretion is 

controvertial, despite melatonin receptors (MTNRs) has been discovered on both clonal 

β-cells and human islets [86]. GLP-1, secreted from small intestinal L-cells in response to 

nutrient load, is involved in insulin secretion in order to meet the increased demand for 

insulin after a meal. Analogs of GLP-1 have been studied as a potential therapy for T2DM 

for many years, with the long-lasting GLP-1 analog exenatide introduced to clinics in 2005. 

Upon activation of the GLP-1 receptor (GLP-1R), adenylyl cyclase is activated, leading to 

the generation of cAMP, which significantly potentiates GSIS [87]. Leptin, secreted by 

adipocytes, exerts an inhibitory effect on insulin secretion. Indeed, has been 

demonstrated that leptin deficiency is associated with hyperinsulinemia in both mice and 

humans [88]. 
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2.5 Insulin receptor and its signal transduction network 

Although insulin is generally viewed as a glucose homeostasis regulating hormone, 

actually it is known to have a much extended pleiotropic role. Insulin acts through a 

receptor located in the membrane of several target organs and tissues, including β-cells. 

The insulin receptor (IR) belongs to the receptor tyrosine kinase (RTK) superfamily, whose 

members generally regulate several cellular functions, including cell proliferation, 

survival, differentiation, migration and metabolism [89]. The receptor, synthesized as 

single chain preproreceptors, is processed into α and β chains by a furin-like proteolytic 

enzyme and subsequently glycosylated, folded and dimerized to yield the mature form. 

Each monomer is structurally organized into 8 distinct domains: a leucine-rich repeat 

domain (L1), a cysteine-rich region (CR), an additional leucine rich repeat domain (L2), 

three fibronectin type III domains (FnIII-1, FnIII-2 and FnIII-3), an insert domain inside 

FnIII-2 (ID, containing the α/β furin cleavage site), a transmembrane helix (TH) and 

intracellular juxtamembrane (JM) region, just upstream of the intracellular tyrosine kinase 

(TK) catalytic domain, responsible for subsequent intracellular signaling pathways [66]. 

Insulin, IGF-I and IGF-II bind to the α-chain of the IR inducing structural changes within the 

receptor, which leads to the autophosphorylation of the tyrosine residues within the 

intracellular TK domain of the β-chain. These changes create binding sites for signaling 

protein partners containing src-homology 2 (SH2) domains or phosphotyrosine-binding 

(PTB) domains. Unlike other RTKs, IR do not bind signaling proteins directly, but works 

through key signaling intermediates, the insulin receptor substrate (IRS) proteins  as well 

as the adapter Shc (SH2 domain containing). The IRS proteins are a family of cytoplasmic 

adaptor molecules that transfer signals from the IR to evoke a cellular response [90]. The 

central portion and the C-terminal domain of the IRS proteins contain up to 20 potential 

phosphorylation sites that bind to signaling proteins containing SH2 domains, when 

phosphorylated by the IR. The two major IR signaling cascades are the PI3K/AKT pathway 

and the Grb2-SOS-Ras-MAPK (also known as ERK) pathway. The PI3K pathway is 

responsible for most metabolic effects of insulin and is connected exclusively through IRS. 

On the contrary, the ERK pathway, linked both with IRS and Shc, is involved in the 

regulation of gene expression and, together with the PI3K pathway, in the control of cell 

growth (mitogenesis) and differentiation [91]. 

https://en.wikipedia.org/wiki/Monomer
https://en.wikipedia.org/wiki/Fibronectin_type_III_domain
https://en.wikipedia.org/wiki/Insulin
https://en.wikipedia.org/wiki/IGF-I
https://en.wikipedia.org/wiki/Insulin-like_growth_factor_2
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3. Factors influencing beta cell function 

The pancreas and especially β-cells play crucial roles in maintaining whole body energy 

balance. Nutrient metabolism in β-cells is not only essential for providing them energy, 

but also allow them to sense and respond to circulating levels of macronutrients, putting 

pancreatic metabolism central in the regulation of whole body energy homeostasis. Many 

factors could affect pancreatic β-cells function, such as hyperglycemia/glucotoxicity, 

lipotoxicity, autoimmunity, inflammation, adipokines, incretins and insulin resistance [92]. 

In particular, chronic hyperglycemia may result in deleterious effects on insulin synthesis 

and secretion, cell survival and insulin sensitivity. Moreover, in the presence of 

hyperglycemia, extended exposure to increased free fatty acids (FFAs) leads to the 

accumulation of toxic metabolites into the cells (lipotoxicity), causing decreased insulin 

gene expression and impaired insulin secretion. In addition recent studies, focusing on 

nonalcoholic fatty pancreas disease (NAFPD), demonstrated that the accumulation of 

FFAs within the pancreas, possibly due to inefficient lipid metabolism, disrupts insulin 

secretion and may contribute to the development of the disease [58].  

 

3.1 Beta cell physiology 

β-cells represent the most important glucose sensors among pancreatic cell types and 

their function is absolutely necessary for proper glucose balance within the whole body. 

In healthy subjects, glucose enters β-cells through facilitated diffusion via GLUT2. Once 

inside, glucose is metabolized to generate pyruvate and NADH via glycolysis, which in turn 

are used to produce ATP through the TCA cycle and the oxidative phosphorylation. The 

resulting increased ATP/ADP ratio causes the fusion of insulin granules with the plasma 

membrane, promoting the hormone release into the circulation [93]. Several studies, 

both in vitro and in vivo, convincingly demonstrated the importance of nutrient 

metabolism for β-cell function and the key role of mitochondria for an efficient GSIS. For 

example, the deficiency of dynamin-related protein 1 (DRP1) in β-cells, that prevents 

mitochondrial fission, reduces GSIS limiting substrate availability to mitochondria. Of 

note, GSIS is rescued in these cells by the simple addition of pyruvate, suggesting that 
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mitochondrial dynamics is able to impact metabolic pathways outside of the 

mitochondria, including glycolysis [94].  

Besides glucose, β-cells respond to several macronutrients such as other 

monosaccharides, amino acids and FFAs, as well as to hormones and neurotransmitters. 

For example, although fructose is largely metabolized in liver, mouse and human β-cells 

secrete insulin in response to fructose, when it interacts with the sweet taste receptor 

type 1 (T1R2) on the β-cell membrane [95]. Amino acids are essential nutrients for β-cells, 

with both positive and negative effects on insulin release, depending on time, 

concentration and type [58]. FFAs modulate insulin secretion via different metabolic 

signalling mechanisms. Once inside β-cells, FFAs are converted into FA-CoA and can enter 

the glycerolipid/FFA cycling (lipogenesis and lipolysis) or can be oxidized to acetyl-CoA to 

enter TCA cycle. In order to improve ATP production, metabolites produced in these 

pathways can independently modulate insulin release through other parallel mechanisms 

[96].  

In addition to nutrients, also circulating hormones interfere with the modulation of β-cells 

metabolism. Non-pancreatic hormones, such as the incretins GLP-1and GIP, are important 

for glucose homeostasis. They are both released from the intestine in response to food 

intake and activate their corresponding G-protein-coupled receptors (GLP-1R or GIPR) on 

the surface of β-cells [97]. GLP-1 and GIP are able to stimulate insulin secretion  when 

glucose is high, but is still debate if this directly depends on their effects on nutrient 

metabolism in β-cells. Recent evidences suggest that GLP-1 and related peptides have 

beneficial effects on mitochondrial metabolism, biogenesis and reactive oxygen species 

(ROS) production in different cell types [58].  

 

3.2 Dysfunctional beta cells  

Nowadays, western diets and sedentary lifestyle represent the major contributors to 

obesity and insulin resistance, which are strictly associated with metabolic syndrome. 

Pancreatic β-cells, which are the primary nutrient-sensors in our bodies, respond to 

chronically higher-than-normal levels of circulating nutrients increasing in mass, in order 

to compensate for higher insulin requirements. However, the slow rate of proliferation 
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and regeneration of this highly differentiated cells is not enough to completely maintain 

glucose homeostasis [58]. High levels of circulating glucose and lipids have also their own 

detrimental effects on β-cells (gluco/lipotoxicity), while inflammation associated with 

obesity, both in peripheral tissues and in pancreas, negatively impacts on β-cell function. 

In addition, stress caused by increased mitochondrial metabolism leads to over-

production of ROS, thus damaging DNA and proteins. Taken together, these insults 

ultimately lead to β-cell failure and death, triggering dependence on exogenous insulin 

for maintenance of glucose balance [98].  

3.2.1 Hyperglycemia and glucotoxicity 

Pancreatic β-cells are very sensitive to blood glucose levels and changes in its 

homeostasis strongly influence their function and dynamics. Several studies have 

demonstrated that the chronic exposure to abnormally high blood glucose has 

deleterious effects on insulin synthesis and secretion, cell survival and insulin sensitivity 

through different mechanisms. In turn, this glucotoxicity leads to hyperglycemia and 

finally to the vicious circle of endless deterioration of β-cells function. Glucotoxicity 

impacts irreversibly the cellular pathways of insulin production and secretion, as opposed 

to beta cell desensitization and beta cell exhaustion, which are reversible. Chronic 

hyperglycemia is able to impair β-cells function and cause β-cells apoptosis through 

multiple pathways and mechanisms [99].  

Firstly, prolonged exposure to increased glucose levels leads to a reduced activity of key 

regulators of insulin promoter activity and other β-cells specific genes, causing a gradual 

loss of insulin gene expression. These processes are, at least in part, mediated by 

oxidative stress. Indeed, long-term sustained hyperglycemia, that increases the metabolic 

flux into the mitochondria, induces a massive production of reactive oxygen species (ROS) 

[100]. In hyperglycaemic conditions, ROS are excessively produced by mitochondrial 

oxidative phosphorylation during anaerobic glycolysis and through alternative pathways, 

which occur when the glycolytic capacity is exceeded. The oxidative stress subsequently 

activates different stress-induced pathways in β-cells, inducing dysfunctional insulin 

biosynthesis and secretion, and ultimately apoptosis [101]. Recent data show a closely 

correlation between the oxidative stress and ER stress. Cellular ROS can increase the 
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accumulation of misfolded proteins in the ER, which amplifies ROS production that in turn 

further enhances the ER stress, impairing insulin production and favoring cell death. The 

ER stress is also induced by β-cells exposure to an increased insulin secretory request 

during hyperglycaemic condition, which increases the demand on ER for the synthesis of 

proinsulin. Despite ER stress triggers the unfolded protein response (UPR) in order to 

restore the ER homeostasis, in case of severe ER stress and strong UPR, apoptosis occurs 

β-cells [92]. Besides ER stress, several studies indicate that chronic hyperglycemia is 

associated with decreased number of mitochondria and changes in their morphology, 

such as increased volume, reduction of the proteins in the inner membrane and increased 

variability in mitochondrial size [102]. Finally, evidence exists that chronic hyperglycemia 

induces non-immune mediated inflammatory pathways, enhancing the production of 

interleukin (IL)-1β, nuclear factor-kB (NF-kB) and Fas receptor in β-cells, even though this 

requires to be confirmed [92].  

3.2.2 Lipotoxicity 

Lipids, which represent no doubt a vital energy source for β-cells, can exert both positive 

and negative effects on their survival and insulin secretory function, depending on 

concentration, duration and glucose abundance. Indeed, prolonged lipid exposure has 

been recently shown to activate cell stress responses including oxidative stress, ER stress 

and autophagy. For example, diabetes is often associated with changes in lipoprotein 

profiles and increased FFA concentrations. Chronic exposure to FFAs determine many of 

the key features of β-cells failure, including apoptosis, defective pro-insulin processing, 

diminished insulin content and gene expression and subsequent reduced GSIS [103]. For 

example, evidence suggests that the uncoupling protein-2 (UCP-2), a ubiquitously 

expressed mitochondrial carrier that uncouple the respiratory chain from ATP synthesis, 

plays a role in lipotoxicity. UCP-2 KO mice are characterized by increased circulating 

insulin levels and are protected from genetic and nutritional diabetes, while UCP-2 

expression is increased in β-cells derived from high-fat feeding rodents [104]. Prolonged 

exposure to FFAs is also able to impair insulin gene expression in the presence of high 

glucose. In particular, palmitate inhibits insulin gene transcription modulating the activity 

of pancreatic duodenal homeobox 1 (PDX-1), a transcriptional factor that plays a central 

role in β-cells function and survival. In vitro, saturated FFAs induce β-cell apoptosis, while 
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unsaturated ones are usually protective, probably due to their greater ability to form 

intracellular triglycerides. Several mechanisms have been proposed to mediate FFAs 

induced apoptosis in β-cells, including ceramide formation, generation of oxidative stress 

and inflammation. In insulin secreting cells, palmitate, but not oleate, induces markers of 

ER stress, causing alterations in its morphology [104] (Fig. 5).  

 

 

Figure 5. Mechanisms of β-cell lipotoxicity: FFA leading to oxidative stress/ER stress/inflammation, resulting 
in β-cell failure. [105] 

 

Although most of the studies have been focused on the effects of FFAs on β-cells 

function, emerging data suggest that cholesterol and lipoprotein fractions may also play a 

role in the progression of β-cells failure. LDL, oxidized LDL and VLDL reduce preproinsulin 

expression levels in isolated β-cells, while HDL particles seems to be protective [106]. 

Interestingly, despite the role of cholesterol in β-cells is still debate, recent findings 

indicate it as an important modulator of β-cells function and survival. The disruption of 

cholesterol transport by reduced function of the ATP-binding cassette (ABC) transporters 

ABCA1 and ABCG1 results in increased fasting glucose levels and impaired glucose 

tolerance. The combined deficiency of ABCA1 and ABCG1 also leads to a significant islet 

inflammation, underlined by enhanced expression of IL-1β and macrophage infiltration 
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[107]. More recently, also the liver X receptor (LXR) alpha, a receptor for cholesterol-

related compounds, is demonstrated to be crucial for insulin secretion. LXRα, 

upregulating the sterol regulatory element-binding protein 1c (SREBP1c), has been 

demonstrated to interfere with glucose metabolism, ATP production and calcium channel 

flux in β-cells [103]. Hao et al. showed a new possible potential mechanism linking 

cholesterol with glucose homeostasis. They demonstrated that excess cellular cholesterol 

is directly linked to reduced GSIS and that normal secretion could be restored by 

cholesterol depletion. The cholesterol regulation of GSIS may involve modification of 

neuronal NO synthase (nNOS) and glucokinase (GK) activity through cholesterol-rich 

membrane microdomains on the insulin granules [108]. Moreover, considering that in β-

cells insulin granules are the major sites of intracellular cholesterol accumulation, excess 

cholesterol is specifically delivered to granules, where it causes their enlargement and 

retention [109]. 

3.3.3 Inflammation and autoimmunity 

The role of autoimmunity in T1DM has been long recognized, however reports have 

shown that about 10% of subjects with T2DM present diabetes-specific autoantibodies, 

with a higher percentage in young people. These evidences suggest a possible role of 

immune system also in the pathogenesis of T2DM. Although the mechanisms and the 

factors behind autoimmunity might be different, the immune-cell infiltration in pancreatic 

islets and the increased production of local cytokines are common of both types of DM 

[110]. β-cells are metabolically and immunologically up-regulated when functionally 

stressed by hyperglycemia. Indeed, in T2DM, chronic metabolic stress such as high levels 

of blood glucose and FFAs, induces an inflammatory response in β-cells, increasing the 

production of cytokines and chemokines. Among them, IL-1β plays a crucial role, 

regulating in turn many other pro-inflammatory cytokines, cytotoxic factors and 

chemokines. IL-1β also contributes to apoptosis and β-cells function impairment [111]. 

Additionally, adipose tissue-derived factors, such as pro-inflammatory adipokines, 

present local and systemic effects on metabolism and contribute to the chronic 

inflammatory process, which triggers β-cells death and is a risk factor for autoimmunity. 

Indeed, apoptotic β-cells may themselves present antigens and stimulate the 

development of an autoimmune response [92]. 
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4. PCSK9 

Proprotein convertase subtilisin kexin type 9 (PCSK9) is the ninth and last member 

belonging to a particular family of proteases known as the proprotein convertases (PCs), 

which includes 8 other members sharing identities to bacterial subtilisin and yeast kexin 

(PC1/3, PC2, Furin, PC4, PC5/6, Pace4, PC7 and SKI-1/S1P) [112]. PCSK9, originally called 

neural apoptosis-regulated convertase 1 (NARC-1), was discovered in primary cerebellar 

neurons, where it plays an important role in brain development as well as in cortical 

neuron differentiation. At the same time, Abifadel et al. identified two mutations in the 

PCSK9 gene associated with autosomal dominant hypercholesterolemia (ADH), in two 

French families without mutations in the candidate genes encoding LDL receptor (LDLR) 

and apolipoprotein B (apoB) [113]. Structural and functional studies revealed that the 

clinical output of these functional variations in PCSK9 gene were linked to an enhanced 

degradation of LDLR. These observations highlighted a strong association between PCSK9 

and circulating levels of LDL-C and quickly other PCSK9 mutations were described around 

the world. The identification of both loss-of-function (LOF) mutations linked to low LDL-C 

levels and gain-of-function (GOF) mutations causing hypercholesterolemia, revealed that 

PCSK9 consistently contribute to the regulation of cholesterol homeostasis. Even if the 

frequency of PCSK9 mutations in patients affected by familial hypercholesterolemia (FH) 

is low (1–2%), these findings established PCSK9 as one of the most promising target for 

the development of new therapies in the treatment of hypercholesterolemia [3]. 

Nevertheless, further analysis on the global physiological function of PCSK9 still have to 

be evaluated, since this protein may have unknown roles beyond LDL-C lowering.  

 

4.1 Structure, cellular biology and targets: focus on LDLR 

Human PCSK9 gene is located on the small arm of chromosome 1p32 and contains 12 

exons and 11 introns [114]. PCSK9 is initially synthesized as a 692-amino acid precursor (  

 75 kDa) which is composed of a signal peptide (aa 1–30), a prodomain (aa 31–152), a 

catalytic serine protease domain (aa 153–451) and a Cys- and His-rich C-terminal domain 

(CHRD; aa 452–692) [115]. PCSK9 zymogen shows an atypical activation pathway when 

compared with the 8 other members of PC family. After the cleavage of its signal peptide 

http://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-011613-140025?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed#g9
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in the ER, the zymogen proPCSK9 (aa 31–692) undergoes an autocatalytic intramolecular 

processing between Gln152 and Ser153, which is required for the release of the mature 

and active PCSK9 (   62 kDa) [3]. Indeed, has been recently described a mutation which 

prevents autocatalytic processing and PCSK9 secretion, associated with a 48% reduction 

in plasma LDL-C levels [116]. After cleavage, the prodomain remains tightly associated via 

hydrogen bonds to the catalytic site of the protein, preventing the access of other 

potential substrates to the catalytic pocket of PCSK9. Therefore the only known substrate 

of PCSK9 for proteolytic cleavage is itself and its activity is related to its binding to specific 

target proteins and to escort them toward intracellular degradation compartments [117] 

(Fig.6).  

 

 
 

Figure 6. Schematic representation of proprotein convertase subtilisin kexin 9 (PCSK9) zymogen  
processing [3]. 

 

 

The first PCSK9 target to be identified is the LDLR at the surface of hepatocytes. Secreted 

PCSK9 binds the epidermal growth factor-A (EGF-A) domain of the LDLR via its catalytic 

domain, as well as the analogous domain discovered in other LDLR superfamily members 

(very low density lipoprotein receptor [VLDLR], apolipoprotein E receptor 2 [ApoER2] 

[118], cluster of differentiation 36 [CD36] [119] and lipoprotein receptor–related protein 

1 [LRP1] [120]). Normally, the LDLR/LDL-C complex is internalized through clathrin heavy 

chain–coated vesicles and then proceeds to the endosomes,  where the acidic pH causes 

the dissociation of the LDLR and its recycling to the cell surface, whereas the LDL-C is 

directed to lysosomes for degradation [121]. Conversely, when secreted PSCK9 binds the 

LDLR, the complex does not dissociate at acidic pH, but is rather more tightly associated 

and it is escorted to lysosomes for degradation [122]. The majority of attention has been 
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focused on the interaction between secreted PCSK9 and the cell-surface LDLR. However, 

it is probable that beyond the extracellular pathway, PCSK9 can induce the degradation of 

the LDLR via an intracellular pathway. Indeed, some degradation of the LDLR precursor 

was observed following PCSK9 overexpression, showing that the LDLR might interact with 

PCSK9 before its O-linked glycosylation in the Golgi apparatus [123, 124]. The presence of 

two different pathways is supported by a recent observation which reveals that PCSK9 

lacking the M2 domain of the CHRD can still degrade the LDLR intracellularly but not 

when added outside cells. However, both the intracellular and the extracellular LDLR 

degradation activities of PCSK9 require the presence of the CHRD, necessary for the 

delivery of the PCSK9/LDLR complex to lysosomes. Whether these two pathways are 

functional in all tissues is still unknown [125] (Fig. 7). 

 

 

 

Figure 7. PCSK9-mediated degradation of LDLR. A complex of LDL-C, LDLR, and PCSK9 is internalized into 
hepatocytes into clathrin-coated pits and subsequently undergoes lysosomal degradation [126]. 
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4.2 Regulation of PCSK9 expression and plasma levels 

The regulation of PCSK9 expression is a quite complex process which, as it occurs with any 

other gene, begins at transcription. A tight scanning of the proximal promoter of the 

PCSK9 gene revealed that the promoter region carries a specificity protein 1 (Sp1) site, a 

hepatocyte nuclear factor 1α (HNF1α) site and two sterol-responsive elements (SREs) 

[127, 128]. Intracellular cholesterol content is the main factor that controls PCSK9 gene 

expression. SRE, the most conserved among the transcriptional motifs and the binding 

site for SRE-binding proteins (SREBPs), mediates the response of PCSK9 to cholesterol 

depletion, statins and SREBPs. PCSK9 expression is strongly downregulated by a high-

cholesterol diet in mice and upregulated in transgenic mice overexpressing nuclear 

SREBP-1a or SREBP-2 [127, 129]. Accordingly, Dubuc et al. demonstrated in vitro that 

statins, which inhibit HMGCoA reductase, the rate-limiting enzyme in cholesterol 

biosynthesis, resulting in a feedback activation of nuclear SREBP-2, increased the level of 

PCSK9 mRNA in HepG2 [128]. Moreover, SREBP-1c is involved in postprandial insulin 

upregulation of PCSK9 gene expression in primary mouse and rat hepatocytes,  as well as 

in vivo, during hyperinsulinemic-euglycemic clamp procedures performed on mice [130]. 

SREBPs activation of the PCSK9 gene promoter is enhanced by HNF1α, which binds to an 

element residing 28 bp upstream from SRE. Recently, Li et al. provided evidence 

suggesting that HNF1α site works cooperatively with SRE and that HNF1α mutation 

reduced PCSK9 promoter activity >90% in transfected HepG2 cells [131]. Upregulation of 

HNF1α expression by statins contributes to sustained PCSK9 production/secretion, which 

reduces the LDLR-mediated clearance of plasma LDL-C induced by these drugs, while its 

expression is downregulated by the natural hypocholesterolemic compound berberine 

[131, 132]. The PCSK9 promoter is also regulated by ligand-activated nuclear receptors, 

such as peroxisome proliferator–activated receptors (PPARs). Mice treated with the 

PPARα agonist fenofibrate show a 50% decrease expression of hepatic PCSK9, in a PPARα-

dependent manner [133], while in humans PCSK9 plasma levels are slightly (8.5%), but 

significantly, reduced in diabetic patients upon fenofibrate treatment, paralleling a 13% 

reduction in LDLC levels [134]. 

PCSK9 mature protein also undergoes post-transcriptional modifications. PCSK9 is 

susceptible to the proteolytic cleavage by other members of the PCs family, such as furin 

http://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-011613-140025?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed&#g9
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and PC5/6A, which cleave the mature PCSK9 at Arg218, generating a truncated protein (  

 55 kDa). The activity of this truncated protein is discussed, but studies in cultured 

hepatocytes and in furin hepatic conditional KO mice suggest that furin-cleaved PCSK9 is 

inactive. The natural gain-of-function mutations R218S, F216L and D374Y, associated with 

hypercholesterolemia, result in total or partial loss of furin/PC5/6A processing [135]. 

However, Lipari et al. recently demonstrated that circulating furin-cleaved PCSK9 is able 

to regulate LDLR and serum cholesterol levels, although somewhat less efficiently than 

intact PCSK9 [136]. 

Overall, beyond transcriptional and post-transcriptional regulation, the key concept is 

that PCSK9 expression is mainly regulated by variation of cholesterol levels. Throughout 

the day and in response to fasting and cholesterol depletion, circulating PCSK9 displays 

significant variation, probably related to oscillations in hepatic cholesterol content and 

consequent modification in cholesterol biosynthesis [137]. As a consequence, PCSK9 

expression is consistently increased following cholesterol-lowering pharmacological 

treatments with agents such as statins [138], ezetimibe [139], or bile acid–binding resins 

[140]. In particular, statins induce SREBP-2 activity by inhibiting HMG-CoA reductase, 

which in turn increases hepatic LDLR expression and plasma LDL-C clearance. However, 

increased PCSK9 expression under these same conditions could attenuate statin efficacy 

by promoting LDLR degradation [141]. The effect of fibrates on circulating PCSK9 is still 

unclear, both reduced and increased PCSK9 levels were reported. Lambert and coworkers 

showed that plasma PCSK9 concentrations correlate with LDL-C and total cholesterol in 

diabetic patients and are decreased by fenofibrate treatment, while Costet et al. 

demonstrated that fenofibrate and atorvastatin increase circulating PCSK9 in diabetic 

patients, with no additive effect after 6 weeks of combined therapy [134, 142]. Finally, 

also the nutritional status and hormones such as glucagon, growth factor and sex 

hormones are surely involved in the regulation of PCSK9 plasma levels. Premenopausal 

women have higher PCSK9 levels when compared with men while in boys PCSK9 

decreases during puberty, although the mechanisms are still unclear [143, 144]. 
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4.3 PCSK9 targets beyond LDLR 

PCSK9 binds the extracellular domains of a highly selective subset of transmembrane 

receptors and escorts them to lysosomes for degradation, through a mechanism that is 

independent of its proteolytic activity. Although the LDLR is no doubt the main studied 

target of PCSK9, probably due to its physiological relevance in modulating the levels of 

circulating LDL-C, PCSK9 targets other receptor members of the LDLR superfamily [3]. This 

family consists of structurally closely related transmembrane proteins, among which 

VLDLR and ApoER2 are the closet to LDLR (59% and 46% identity, respectively). Poirier et 

al. demonstrated that PCSK9 in vitro affects, in an LDLR-independent manner, the levels 

of both VLDLR and ApoER2 and that the gain-of-function D374Y mutant is more active in 

enhancing the degradation of these receptors [118]. In vivo, endogenous PCSK9 

negatively regulates the levels of VLDLR in adipose tissue. The analysis of different mouse 

models reveals that this regulation is achieved by circulating, and not local, PCSK9. 

 Indeed, liver-specific PCSK9 KO mice show a dramatic increase in adipose VLDLR protein, 

while the expression of PCSK9 in the liver of PCSK9 KO mice reverts this phenotype [145]. 

More recently, has been discovered that PCSK9 enhances the degradation of LRP1 in 

mouse B16F1 melanoma cells and in chinese hamster ovary (CHO) cells, although proof of 

this activity in vivo is still lacking. However, the observation that the LDLR is not sensitive 

to PCSK9 in B16F1 cells suggests a distinct targeting mechanisms for these receptors 

[120]. CD36, a major receptor involved in transport of long-chain fatty acids 

and triglyceride storage, is also suspected to be a PCSK9 target in intestinal epithelial 

cells and adipose tissue. The overexpression of PCSK9 induces CD36 degradation and 

reduces the uptake of the palmitate analog Bodipy FL C16 and oxidized LDL in 3T3-L1 

adipocytes and hepatic HepG2 cells, respectively [119].  

Beyond transmembrane receptors, PCSK9 could improve the degradation of certain 

targets within the ER/ER-Golgi intermediate compartment, such as BACE1 (β-site amyloid 

precursor protein (APP)-cleaving enzyme 1) and ENaC (epithelial Na+ channel). BACE1 is 

transiently acetylated in the lumen of the ER/ER-Golgi intermediate compartment. The 

acetylated protein is able to reach the Golgi apparatus, while the nonacetylated one is 

retained and degraded in a post-ER compartment. PCSK9 contributes to the disposal of 

nonacetylated BACE1, enhancing the generation of amyloid β-peptide (Aβ) [146]. 
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Moreover, within the ER/ER-Golgi intermediate compartment of epithelial cells of the 

renal collecting duct, PCSK9 induces the degradation of the ENaC, that is critical for 

Na+ homeostasis and blood pressure control [147].  

 

4.4 Role of PCSK9 in extrahepatic tissues 

Several experimental studies clearly show that the liver is simultaneously the key organ 

modulating PCSK9 plasma levels and the main target of PCSK9 activity, where it is 

involved in the binding and degradation of LDLR. However, PCSK9 is expressed in many 

extrahepatic tissues and organs, where it plays additional functions [1] (Fig. 8).  

 

 

Figure 8. Extrahepatic targets of PCSK9 besides liver [1]. 

 

 

http://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-011613-140025?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed#g9
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4.4.1 Brain 

Despite PCSK9 was originally discovered in brain (NARC-1), its role in this tissue is  still 

debate, with evidence of both pro-apoptotic effects and protective activities in the 

development of the nervous system. PCSK9 is highly expressed in cells with a significant 

proliferative index, including the embryonic brain telencephalon and cerebellum 

neurons, which present a higher recruitment rate of undifferentiated neural progenitor 

cells, when transfected to overexpress PCSK9 [148]. PCSK9 and LDLR are co-expressed in 

the telencephalon and cerebellum during active neurogenesis and in the rostral extension 

of the olfactory peduncle (RE-OP) of adult animals. Although the levels of LDLR are similar 

in the adult brain of PCSK9 KO and WT mice, PCSK9 is able to downregulate LDLR 

expression during brain development and following transient ischemic stroke. Of note, 

following experimental transient ischemic stroke in mice, PCSK9 is not expressed in the 

infarct and penumbra areas (suggesting that it may not play a role in cell death) but 

rather in the area where neurogenesis takes place [149]. Anyway, PCSK9 KO mice are 

viable, without any relevant alterations in the cerebellum, hippocampus or 

cortex, according to the observation that humans carrying complete LOF mutations of 

PCSK9 show no major neurological defects [150].  

Cholesterol plays a key role in neuronal development as well as in brain function, and the 

reduction of plasma cholesterol levels to a large extent might negatively impact brain 

function. On the contrary, hypercholesterolaemia is considered an important risk factor 

for neurodegenerative diseases such as Alzheimer’s disease (AD), and lipid-lowering 

therapies can reduce the risk to develop these pathological conditions. BACE1 (β-site 

amyloid precursor protein (APP)-cleaving enzyme 1) is the β-secretase enzyme required 

for the production of the neurotoxic β-amyloid (Aβ) peptide, which have a crucial early 

role in the etiology of AD. In vitro, PCSK9 overexpression leads to a reduction in 

endogenous BACE1 levels, whereas the down-regulation of PCSK9 by siRNA completely 

normalized the levels of BACE1.  In vivo, PCSK9 KO mice showed higher levels of BACE1 

and Aß in the neocortex, suggesting that in the brain PCSK9 is able to regulate the 

metabolism of BACE1 and the rate of Aß production [146]. However, in randomized 

clinical trials the treatment with PCSK9 mAbs is not associated with increased incidence of 

neurocognitive adverse events, as well as in PCSK9 LOF carriers [151-153]. 
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Finally, PCSK9 has been identified to be up-regulated during apoptosis induced by 

withdrawal of potassium and serum in cultured cerebellar granule neurons (CGN). The 

transient overexpression of recombinant PCSK9 in CGNs is pro-apoptotic and only 

partially sensitive to caspase inhibitors, thus defining both a caspase-dependent and a 

caspase-independent component of PCSK9 pro-apoptotic effect [154]. On the contrary, 

PCSK9 overexpression promoted cell proliferation in a model of human 

neuroglioma, suggesting an anti-apoptotic effects in these cells [155]. Therefore, even if 

PCSK9 inhibitors are already used in the clinic for controlling plasma lipids, we are far 

from fully understanding the physiological role of this protein.  

4.4.2 Pancreas 

The link between PCSK9 and metabolic dysfunction goes beyond the modulation of the 

VLDLR in adipocytes, since PCSK9 is detectable also in mouse and human isolated 

pancreatic islets. Immunohistochemistry analysis showed that PCSK9 co-localizes 

specifically with somatostatin in human pancreatic δ-cells, while α- and β-cells apparently 

do not secrete detectable levels of PCSK9, although they respond to exogenously added 

PCSK9 [156]. Moreover, the LDLR is abundantly expressed in pancreatic β-cells in humans, 

mice and rats, where it plays a pivotal role in the uptake of plasma LDL [2, 157]. 

Cholesterol homeostasis is crucial for β-cells function and survival and excessive 

cholesterol accumulation causes a significant reduction in islets’ ability to secrete insulin 

in response to glucose [108]. All these findings support the investigation of a possible 

involvement of PCSK9 in glucose homeostasis. 

Mbikay and co-workers proved that old male PCSK9 KO mice express more LDLR in 

pancreatic islet cells, when compared with controls. The increased LDLR expression is 

paralleled with morphological abnormalities of pancreatic islets, although it is not clear 

whether this phenotype is correlated with impaired insulin secretion [158]. Indeed, 

contradictory results have been obtained in two different studies: one shows no effect of 

PCSK9 on insulin secretion and glucose tolerance [156],  while the other reveals 

that PCSK9 KO mice are hypoinsulinaemic, hyperglycaemic and intolerant to glucose. In 

the latter study, PCSK9 KO islets present signs of malformation, apoptosis and 

inflammation [158]. These discrepancies are probably age dependent (8–10 weeks  vs 4–5 

months) and  strain dependent (mice with different genetic background). However, as the 
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LDLR-cholesterol axis has been suggested to play a crucial role in modulating β-cell 

function and insulin secretion, a potential physiological role of PCSK9 in the pancreas 

cannot be excluded. 

Also in humans data from carriers of PCSK9 LOF mutations, which present undetectable 

or very low levels of the circulating protein, are discordant. Some studies report no 

pancreatic dysfunction or increased incidence of diabetes in carriers compared to 

controls [153, 159], while others link PCSK9 LOF to an increased incidence of diabetes. 

The FH individuals carrying the PCSK9 InsLEU genetic variant (LOF) seem to be protected 

from major cardiovascular events but show increased occurrence of prediabetes and 

diabetes status [160].  In the cohort of the Dallas Heart Study, it has been shown a 

significant correlation among PCSK9 levels and fasting serum glucose, insulin and HOMA-

IR [143], confirming the data obtained both in healthy volunteers and in a cohort of 

children [161, 162]. Moreover, Yang et al. established a positive correlation between 

PCSK9 levels and hemoglobin (Hb)A1c in T2DM patients, while not in patients without 

[163]. Interestingly, a genetic score consisting of independently inherited polymorphisms 

in the PCSK9 gene in more than 110.000 subjects, although resulting into reduced LDL‐C 

levels and cardiovascular events, associates to increased risk of diabetes [164, 165]. 

Conversely, patients with familial hypercholesterolemia (decreased LDLR function) appear 

to have a lower risk of diabetes [166] (Fig. 9).  

Regarding the clinical evidences, the effect of Alirocumab on the onset of new cases of 

diabetes has been evaluated in the ODYSSEY LONG TERM trial. No significant difference 

has been reported between the Alirocumab and placebo arms after a follow-up of 

78 weeks [112]. In the OSLER-1 and OSLER-2 studies, conducted with Evolocumab, no 

measurable effects on glycemic parameters, including fasting plasma glucose, HbA1c and 

new-onset diabetes, have been showed after one year of treatment [167]. However, 

despite no evidence of PCSK9 inhibition effect on glucose metabolism, longer period and 

larger population could be necessary in order to reveal possible side effects. Indeed, the 

increased of T2DM observed with the use of statins was appreciated only after the 

analysis of several prospective and retrospective clinical trials.   
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Figure 9. Association of Low-Density Lipoprotein Cholesterol (LDL-C)–Lowering Genetic Variants With 

Coronary Artery Disease and Type 2 Diabetes [165] 

 

4.4.3 Vascular tissue 

Beyond the extensively studied role of PCSK9 in liver, recent evidences report that PCSK9 

is also present in human carotid atherosclerotic lesions. Among the cells of the artery 

wall, smooth muscle cells (SMCs) express significant levels of PCSK9, while its expression 

in endothelium cells (ECs) and macrophages is still debated [4]. The vascular expression of 

PCSK9 is notable higher in regions with low shear stress and is coupled with reactive 

oxygen species (ROS) production and inflammation [168].  

In vascular SMCs PCSK9 is processed and released through a mechanism similar to the 

one described in hepatocytes. PCSK9 derived from SMCs  is functionally active and 

capable of reducing LDLR expression at the surface of arterial macrophages, modulating 

the LDL accumulation in the artery wall. This finding suggests a possible role for PCSK9 in 

oxidized LDL (oxLDL) and foam cell formation and in atherogenesis, directly affecting the 

function of vascular cells [169]. Notably, siRNA directed against PCSK9 attenuates OxLDL-

dependent apoptosis in endothelial cells, while OxLDL are able to induce the expression 
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of PCSK9 in these cells [170]. Denis et al. investigated the role of PCSK9 and LDLR on 

the atherosclerotic process in vivo, using WT, apoE KO and LDLR KO mouse models. They 

showed that PCSK9 deficiency ameliorates atherosclerosis in apoE KO mice by improving 

their lipid profile, but not in LDLR KO mice, proposing that the observed effect is 

dependent on the increased levels of LDLR in PCSK9 KO/apoE KO mice [171]. Moreover, 

two recent studies reported an association between serum PCSK9 levels and carotid 

intima media thickness (IMT), a surrogate marker of preclinical atherosclerosis, both in 

hypertensive and in FH patients. This correlation occurs independently of the plasma lipid 

profile and suggests that circulating PCSK9 may have an important role in early 

pathogenesis of the disease [172, 173]. Whether PCSK9 is expressed by macrophages is 

currently a subject of discussion. Murine J774A macrophages do not express PCSK9 

[169], whereas Giunzioni and colleagues demonstrated that murine peritoneal 

macrophages secrete functional PCSK9 [174].  

Anyway, systemic and local PCSK9 (by SMCs or macrophages) affects macrophages LDLR 

expression, while the absence of the LDLR mitigates the negative effect of PCSK9 on 

atherosclerosis and inflammation. Currently there are no studies that elucidate the 

potential role of PCSK9 in heart function. PCSK9 could indirectly affect cardiomyocytes by 

modulating the plasma concentrations of LDL-C and oxLDL, which effects on 

cardiomyocytes are less well reviewed as those to vascular cells [175]. 

4.4.4 Small intestine 

Despite notable levels of PCSK9 mRNA are detectable in the small intestine and the 

intestine is a key player in maintaining cholesterol balance, the knowledge of the role of 

PCSK9 in this tissue is still partial. PCSK9 is highly expressed both in rat and mouse 

embryos and adult ileum and jejunum [148, 176], while in humans immunohistochemical 

analysis reveal that PCSK9 is present almost exclusively in the epithelial barrier of the 

duodenum and ileum, both in enterocytes and goblet cells [177].  Interestingly,  Levy and 

coworkers have recently shown that in Caco-2/15 cells PCSK9 is secreted from basolateral 

site to the culture medium, suggesting that PCSK9 synthesized by the enterocytes may be 

released in the circulation [178].  
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As it occurs in liver, PCSK9 is able to trigger the degradation of the LDLR expressed at the 

basolateral surface of the enterocytes, modulating cholesterol homeostasis and 

chylomicron metabolism. Indeed, Caco-2/15 cells treated with exogenous PCSK9 show 

reduced levels of the LDLR on the basolateral membrane paralleled with increased 

cholesterol uptake and apoB48 synthesis and output [178]. The positive correlation 

between PCSK9 levels and apoB48 secretion observed in Caco-2/15 cells has been 

confirmed in in vivo studies. PCSK9 KO mice exhibit a significantly decreased postprandial 

triglyceridemia after olive oil gavage, caused by reduced lymphatic apoB48 and TG-rich 

lipoproteins output  and by increased capacity to clear chylomicrons from the blood 

[177]. Although the LDLR is involved in this process, the chylomicrons clearence rate 

probably requires the ability of PCSK9 to target other receptors, such as the VLDLR and 

apoER2 [118].  

The involvement of PCSK9 in the postprandial response was also investigated in humans, 

where Cariou et al. pointed out that heterozygous PCSK9 missense mutations may 

associate with profound hypobetalipoproteinemia. [179]. In addition, PCSK9 seems to 

affect intestinal cholesterol absorption. The addition of exogenous PCSK9 to cultured 

enterocytes reduce LDLR expression and cholesterol uptake from the basolateral media.  

Under these conditions, cholesterol uptake through the apical membrane is increased via 

the upregulation of cholesterol transporters (NPC1L1, CD36) [178].  

4.4.5 Adipose tissue 

Although PCSK9 is a key modulator of hepatic LDLR and circulating LDL-C levels, its 

involvement in the regulation of adipogenesis requires further investigation. In addition 

to the LDLR, PCSK9 is able to target other receptors of the LDLR superfamily, such as the 

VLDLR and ApoER2 [118]. The VLDLR, highly expressed on the adipocytes surface, plays a 

key role in the hydrolysis of triglyceride-rich lipoproteins, a critical step for fat storage in 

this tissue.  

Interestingly, despite adipocytes do not express PCSK9, circulating PCSK9 negatively 

regulates the levels of VLDLR in adipose tissue. Indeed,  together with a lower 

postprandial triglyceride levels, PCSK9 KO mice present adipocyte hypertrophy and a 

significant increased visceral adiposity. In particular, a detailed analysis demonstrated 

http://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-011613-140025?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed#g14
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that PCSK9 KO mice are characterized by a larger perigonadal (+70%) and perirenal 

(+90%) depots compared to WT littermates. Of note, this phenotype was demonstrated 

to be independent by the LDLR expression but rather to be mediated by the VLDLR and 

CD36 modulation [119, 145]. In humans, although a modest positive correlation between 

circulating PCSK9 levels and the BMI has been reported [143], specific studies aimed at 

analyzing the association between plasma PCSK9 and obesity are necessary to clarify the 

role of PCSK9 in adipogenesis. Interestingly, the levels of resistin, an adipose tissue 

derived adipokine, is inversely correlated with circulating PCSK9 in lean, but not obese, 

subjects, thus raising questions about the physiological relevance of resistin in the control 

of PCSK9 in vivo [180].  

4.4.6 Kidney and adrenals 

PCSK9 is abundantly expressed in renal tissues, but surprisingly it only marginally 

interferes with kidney and adrenals LDLR expression. This might be due to a lower local 

concentration of PCSK9 or to a different expression of cofactors necessary for PCSK9-

dependent LDLR degradation. Adrenals are enriched in annexin A2, a natural endogenous 

inhibitor of PCSK9, which could prevent its function on the LDLR. Indeed, Anxa2-KO mice 

present double PCSK9 plasma levels and LDLR reduction by ≈50% in some extrahepatic 

tissues, such as adrenals and small intestine but not in liver [181]. Another possibility is 

that the extrahepatic tissues, which do not respond to PCSK9, are unable to sort 

efficiently the PCSK9/LDLR complex to lysosomes, as recently shown in fibroblasts [182].  

Nevertheless these tissues express reasonable amount of PCSK9, recommending a 

possible additional functions of PCSK9 beyond the regulation of LDLR expression and 

cholesterol homeostasis. The epithelial Na+  channel (ENaC) was lately identified as a 

PCSK9 target in the collecting duct of the kidney. PCSK9 regulates ENaC trafficking and cell 

surface expression through its ER degradation, suggesting that reductions in PCSK9 might 

result in increased Na+  renal absorption and increased risk of hypertension [147]. 

However, subjects carrying LOF mutations of PCSK9 do not exhibit increased prevalence 

of hypertension compared with non-carriers [183] and in studies with anti-PCSK9 mAbs 

no effect on blood pressure has been reported to date [152, 184]. Many studies have 

recently proposed a role for PCSK9 in the development of dyslipidaemia in renal 

pathologies. Subjects with renal failure and proteinuria present significant increased 
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PCSK9 plasma levels compared with matched healthy individuals [185], as well as patients 

with nephrotic syndrome. These subjects show elevated LDL-C levels, with a significant 

direct correlation with plasma PCSK9 concentrations, suggesting that increased PCSK9 can 

cause LDLR deficiency, which in turn contributes to the onset of hypercholesterolaemia 

[186]. Despite the physiological role of PCSK9 in kidney and adrenals is still not clear and it 

requires further investigation, these findings indicate that PCSK9 inhibition could be a 

therapeutic strategy for improving dyslipidemia associated with chronic kidney disease.  

 

4.5 PCSK9-based therapy 

After its discovery in 2003, PCSK9 was rapidly recognized as a key player in LDL 

metabolism, because of its ability to prevent the recycling of the LDLR to the hepatocytes 

surface. The crucial role of PCSK9 in lipid metabolism was disclosed performing genetic 

studies, which revealed a strong association between PCSK9 variants and alterations in 

cholesterol levels. GOF mutations in PCSK9 were identified to be involved in FH [187], 

while a range of LOF mutations resulted in reduced LDL-C levels and concomitant 

decreased risk of cardiovascular events [188]. Moreover, preclinical studies showed that 

statin-mediated LDL-C reduction, which occurs through increased LDLR expression on 

hepatocytes along with increased LDL turnover, is associated with induced PCSK9 

expression. This increased expression and secretion of PCSK9 with statin therapy 

attenuates, at least in part, the LDL-lowering efficacy of statins and also of ezetimibe 

[128]. These observations suggest that PCSK9 inhibition may represent a promising 

therapeutic target for LDL-C lowering, also in statin-treated patients. 

Since PCSK9 acts both intracellularly as a chaperone targeting the LDLR to the lysosomes 

and extracellularly by promoting LDLR internalization [189], the inhibition of both its 

synthesis and its interaction with the LDLR represents an attractive approach to obtain a 

lipid-lowering effect. The interaction between PCSK9 and the LDLR can be diminished by 

removing PCSK9 from the circulation (monoclonal antibodies and vaccines) or proposing 

alternative binding partners rather than LDLR (mimetic peptides or adnectins). 

Alternatively, the inhibition of PCSK9 can be performed at the expression level 

(CRISPR/Cas9 system, berberine, silencing RNA and oligonucleotides) [175]. To date the 

http://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-011613-140025?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed#g6
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best approach is related to the use of a monoclonal antibodies (mAb) against PCSK9, that 

block its binding to the LDLR via an allosteric mechanism. Thanks to the advance 

production technologies, it is now possible to generate humanized (bococizumab, 

LY3015014) or fully human (Evolocumab, Alirocumab) antibodies with a significant 

reduced immunogenicity compared with the antibodies of the early-generation [190] (Fig. 

10). 

 

 

Figure 10. Metabolism of lipoproteins when therapies that target proprotein convertase subtilisin/kexin 

type 9 (PCSK9) are used [191]. 

 

 

4.5.1 CRISPR/Cas9 platform 

The CRISPR/Cas system, found in approximately 40% of sequenced bacterial genomes, is 

an adaptive immune system that awards resistance against the invasion of foreign nucleic 

acids, including viruses and plasmids. Recently, a simple version of the CRISPR/Cas 

system, CRISPR/Cas9, has been modified to edit genomes. It includes a synthetic guide 

RNA (gRNA) linked to the Cas9, which delivers the complex to the cellular genome that 

can be cut at a desired location, removing the existing genes and/or adding new ones 

https://en.wikipedia.org/wiki/Bacterial
https://en.wikipedia.org/wiki/Cas9
https://en.wikipedia.org/wiki/Genome
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[192]. Ding et al., using the CRISPR/Cas9 system to target PCSK9 in mouse liver, 

demonstrated that after the administration of the virus, the mutagenesis rate of PCSK9 in 

the liver is higher than 50%. This results in increased hepatic LDLR expression, decreased 

plasma PCSK9 levels and decreased plasma cholesterol levels (by 35-40%) [193]. In a 

study using FRG KO mice, which have chimeric-humanized liver, the treatment with 

CRISPR/Cas9 system to target the human PCSK9 gene induces a significant down-

regulation of PCSK9 both in liver and in the circulation. This technique reveals an high on-

target mutagenesis (around 50%) with a minimal off-target mutagenesis, yields important 

information on the efficacy and safety of CRISPR-Cas9 therapy [194]. Although the 

CRISPR/Cas9 platform targeting PCSK9, causing a permanent PCSK9 alteration, is a 

promising genome editing technology, many questions remain unresolved.  

4.5.2 Antisense oligonucleotides (ASOs) 

Antisense oligonucleotides (ASOs) are short, single-stranded, synthetic nucleotide 

sequences designed to specifically bind to a target messenger RNA (mRNA). This binding  

induces a selective degradation of the mRNA or prevents the translation of the selected 

mRNA into protein.  ASOs are successfully deliver  to the hepatic nucleus and have the 

ability to inhibit unique targets with high specificity [195]. Preclinical trials revealed that 

the administration of a second generation PCSK9 ASO (ISIS 394814) to high fat-fed mice 

for 6 weeks reduces total cholesterol and LDL-C by 53% and 38%, respectively, and the 

levels of PCSK9 mRNA by 92%. The inhibition of PCSK9 expression is associated with a 2-

fold increase in hepatic LDLR protein levels [196].  Antisense oligonucleotides that contain 

at least one locked nucleic acid (LNA) present a higher binding affinity and specificity to 

mRNA. LNA ASOs reduce the mRNA and protein levels of PCSK9, with a concomitant 

increase in LDLR protein levels, both in cell lines (HepG2 and HuH7 cells) and mouse liver. 

In particular, the intravenous administration of LNA ASOs in mice leads to a significant 

reduction in PCSK9 mRNA levels (-60%). This effect lasts more than 16 days, as well as the 

twofold up-regulation of the hepatic LDLR protein levels [197]. Also when translated in 

non-human primates, this technology (LNA SPC5001 and LNA SPC4061) produces a very 

long lasting reduction of LDL-C, paralleled with an important decrease of both PCSK9 

mRNA and protein levels [198]. Although the promising preclinical data, the first phase I 

clinical trials in healthy human subjects and individuals with FH were terminated early 
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(NCT01350960). SPC5001 was seen to cause mild to moderate injection site reactions and 

renal tubular toxicity. Kidney biopsy revealed multifocal tubular necrosis and signs of LAN 

accumulation, a damage reversible upon termination of SPC5001 treatment [199, 200]. 

Further development of SPC4061 was discontinued for undisclosed reasons. Therefore, 

even if ASOs present high affinity and specificity, the high production cost, the undesired 

side effects and the required routes for intravenous or subcutaneous administration limit 

its use in individuals with hyperlipidemia.  

4.5.3 Small interfering RNA (siRNA) 

Small interfering RNA (siRNA) is a class of double-stranded RNA molecules, 20-25 base 

pairs long, that interfere with the expression of specific genes with complementary 

nucleotide sequences, leading to the degradation of the mRNA after 

transcription, resulting in no translation. Delivery systems based on liposomes and lipid 

nanoparticles (LNPs) are the most commonly used nonviral vectors for siRNA delivery, 

both in academic studies and clinical trials [201]. Studies in mice and rats have reported 

that liver-specific siRNA silencing of PCSK9 is able to decrease the PCSK9 mRNA levels by 

50–70% and the plasma LDL-C concentrations by 60%. Also in transgenic mice expressing 

human PCSK9, siRNAs silence the human PCSK9 transcript by >70%, with a significant 

reduction of  the plasma protein levels. In nonhuman primates, siRNA mediated 

knockdown of PCSK9 is rapid, substained and reversible and lasts for 3 weeks after a 

single intravenous administration. The reduced levels of circulating PCSK9 is paralleled 

with a decrease in apoB and LDL-C, without measurable effects on either HDL-C or TGs 

[202]. In humans, Fitzgerald and coworkers investigated the safety and efficacy of siRNA 

ALN-PCS, administered intravenously in healthy subjects with raised cholesterol who 

were not on lipid-lowering treatment. They showed a dose-dependent reduction in 

plasma PCSK9 and LDL-C levels, with the highest dose (0.4 mg/kg) conferring 70% and 

40% reductions in PCSK9 and LDL-C levels respectively. ALN-PCS has a long lasting effect, 

sustained for 2–3 weeks after a single administration, and overall is well tolerated with 

side effects being similar to placebo [203]. More recently, has been tested the 

subcutaneous administered of ALN-PCS, both in single and multiple doses, in healthy 

volunteers with an LDL-C level of at least 100 mg/dl. In this phase I trial, no severe side 

https://en.wikipedia.org/wiki/Double-stranded_RNA
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Gene_expression
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fitzgerald%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24094767
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effects were observed and the doses of 300 mg or more (in single or multiple doses) is 

enough to reduce the levels of PCSK9 and LDL-C for at least 6 months [204]. 

4.5.4  Berberine and oleanolic acid 

Despite small molecules have received considerable attention because of their low cost,  

the efforts to develop small-molecule inhibitors of PCSK9 have often been 

unsuccessful. However, other small molecules which directly inhibit PCSK9 expression, 

such as berberine and oleanolic acid, seem to be promising [205]. Berberine (BBR), usually 

found in the roots, rhizomes, stems and bark of several plants,  is a quaternary 

ammonium salt from the protoberberine group of isoquinoline alkaloids. BBR is endowed 

with several pharmacological activities, including anti-microbial, glucose and cholesterol-

lowering, anti-tumoral and immunomodulatory properties. BBR exerts its protective role 

in atherosclerosis increasing hepatic LDLR expression, due to increased LDLR mRNA 

stability, with a higher LDL uptake in BBR-treated cells [206]. While statins increase the 

expression of hepatic PCSK9, BBR has been shown to reduce PCSK9 mRNA and protein 

levels in HepG2 cells, in a time and dose dependent manner. This effect is not due to 

changes in the PCSK9 mRNA stability but most likely to an impaired transcription of 

the PCSK9 gene [207]. Indeed, BBR reduces the cellular levels of both hepatocytes nuclear 

factor 1α (HNF1α) and sterol regulatory element-binding protein 2 (SREBP2), which co-

regulate the transcription of PCSK9. Although SREBP2 plays a key role also in LDLR 

transcription, it is not altered by the treatment with BBR, suggesting that the overall 

effect of BBR is in favor of the LDLR expression [131]. Recently, studies in mice and 

hamsters revealed that the administration of BBR to hyperlipidemic animals decreases 

both hepatic PCSK9 mRNA levels (-46%) and circulating PCSK9 concentrations (-50%), 

while significantly increases the LDLR protein in liver (+67%). Interestingly, 

hepatic HNF1α protein levels result markedly reduced after the BBR treatment, while no 

difference in HNF1α gene expression, suggesting a mechanism linked with an 

accelerated degradation of the protein [208].  

Oleanolic acid (OA), widely distributed in food and plants, is a naturally occurring 

pentacyclic triterpenoid related to betulinic acid. OA presents several beneficial 

properties, such as antioxidative, anti-cancer, hepatoprotective, anti-inflammatory, 

hypolipidemic and anti-atherosclerotic effects [209, 210]. In db/db mice, the treatment 

https://en.wikipedia.org/wiki/Rhizome
https://en.wikipedia.org/wiki/Quaternary_ammonium_cation
https://en.wikipedia.org/wiki/Quaternary_ammonium_cation
https://en.wikipedia.org/w/index.php?title=Protoberberine&action=edit&redlink=1
https://en.wikipedia.org/wiki/Benzylisoquinoline
https://en.wikipedia.org/wiki/Alkaloid
https://en.wikipedia.org/wiki/Triterpenoid
https://en.wikipedia.org/wiki/Betulinic_acid
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with OA improves lipid and lipoprotein metabolism, reducing serum TG, LDL-C, free fatty 

acids and hepatic lipid accumulation, while increasing circulating HDL-C. In vitro, OA 

decreases the levels of PCSK9 protein and mRNA in HepG2 cells, in a time and dose 

dependent manner. However, the underlying mechanism is still unknown and the OA 

efficiency is limited because of its low bioavailability and insolubility in water [205]. 

4.5.5 Anti-PCSK9 monoclonal antibodies (mAbs) 

Monoclonal antibody therapy is a form of immunotherapy that uses monoclonal 

antibodies (mAbs) to specifically target certain cells or proteins. Therapeutic mAbs act 

through several mechanisms, such as blocking the activity of targeted molecules, 

inducing apoptosis in cells which express the target or modulating signalling pathways. 

Currently, PCSK9 mAbs, that bind to PCSK9 and allow the LDLR to recycle to its higher 

potential, represent the most advanced and promising class of PCSK9 inhibitors. Two 

fully-human PCSK9 mAbs, Alirocumab and Evolocumab, were approved by the FDA (US 

Food and Drug Administration) and the EMA (European Medicines Agency) in 2015. The 

humanized PCSK9 mAb Bococizumab was discontinued from further clinical development 

due to increased immunogenicity and limited LDL-C lowering in 2016. Actually, a third 

humanized PCSK9 mAb, LY3015014, is under development [211].  

Alirocumab 

Alirocumab (REGN727/SAR236553), which is marketed by Sanofi/Regeneron under the 

brand name Praluent, was studied both in phase I and phase II trials. The phase I trials 

revealed that Alirocumab is able to reduce, in healthy volunteers, LDL-C in a dose-

dependent way (-65% at maximal doses), both after an intravenous and subcutaneous 

administration. In non-FH patients on atorvastatin and LDL > 100 mg/dL or with LDL > 130 

mg/dL being managed by diet alone, Alirocumab reduces LDL-C up to 65% and up to 60% 

respectively [212]. The phase II trials, which studied the efficacy of Alirocumab in patients 

with FH, showed that the most efficacious regimen of 150 mg every 2 weeks (Q2W) 

reduces LDL-C up to 70%, paralleled with a significant reduction in apoB levels and 

increased HDL-C. Interestingly, in patients on statin therapy, the Alirocumab mediated 

LDL-C reduction is independent from different doses of atorvastatin (10 mg vs 80 mg) 

[213, 214].  

https://en.wikipedia.org/wiki/Apoptosis
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The phase III randomized, double-blinded ODYSSEY trials were designed to evaluate 

Alirocumab for long-term safety, efficacy and adverse events and include data from 

different open label studies. CHOICE I trial was designed to evaluate Alirocumab in 

patients with poorly controlled hypercholesterolemia and showed that Alirocumab 

(300 mg every 4 weeks; Q4W) significantly reduces LDL-C both in statin-naive patients (-

52%) and in patients on maximally tolerated statins (-59%), when compared to placebo. 

Similarly, COMBO I and II trials studied the effect of Alirocumab treatment in patients 

with LDL-C > 70 mg/dL and high cardiovascular risk on maximally tolerated statin therapy. 

COMBO I (316 patients) demonstrated that Alirocumab (75 mg Q2W, increased to 150 mg 

Q2W at week 12 if at week 8 LDL-C was ≥70 mg/dL) reduces LDL-C up to 50% after 24 

weeks of treatment, compared to placebo. COMBO II (720 patients), comparing Ezetimibe 

(10 mg/die) to Alirocumab (75 mg Q2W) in patients on background statin therapy, 

showed that Alirocumab induces a 50% LDL-C reduction vs 20% reduction with ezetimibe 

at 24 weeks [215]. OPTIONS I trial randomized 355 patients with hypercholesterolemia 

and LDL > 70 mg/dL and found that the addition of Alirocumab (75 mg Q2W increased to 

150 mg Q2W) to atorvastatin  (20 mg/die or 40 mg/die) produced the greatest reduction 

in LDL-C as compared to addition of ezetimibe, doubling atorvastatin dose or switching to 

rosuvastatin [216]. OPTIONS II trial studied the association between Alirocumab and 

rosuvastatin using a similar protocol and obtaining results comparable with those 

obtained in OPTIONS I [184]. CHOICE II and ODYSSEY ALTERNATIVE evaluated Alirocumab 

in patients intolerant to statin therapy. In CHOICE II trial 241 patients with a history of 

statin intolerance demonstrated a 56% reduction in LDL-C when treated with Alirocumab 

(150 mg Q4W), while the ODYSSEY ALTERNATIVE trial (314 patients) showed a 45% 

reduction in LDL-C with Alirocumab (75 mg Q2W) as opposed to 15% reduction in LDL-C 

with ezetimibe (10 mg/die), at 24 weeks [217]. FH I and FH II trials were designed to 

evaluate a total of 735 patients (486 and 249, respectively) with heterozygous FH, 

insufficiently controlled on lipid lowering therapy. These trials showed that Alirocumab 

(75 mg Q2W, increased to 150 mg Q2W at 12 week if at week 8 LDL-C was ≥70 mg/dL) is 

able to reduce LDL-C levels by 48.8% (FH I study) and  by 48.7% (FH II study), compared to 

placebo [218].  Finally, ODYSSEY LONG TERM trial, which was recently 

published, evaluated 2341 patients with hyperlipidemia on maximally tolerated statins 

and high risk for coronary heart disease (CHD). The patients treated with 150 mg 
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Alirocumab Q2W showed lower LDL-C by 62% at 24 weeks, compared to placebo. These 

results persisted at 78 weeks and the reduction in LDL-C appeared to be associated with 

reduction in the combined end-point of death from CHD, nonfatal MI, fatal or nonfatal 

ischemic stroke or unstable angina [112]. The ODYSSEY Outcomes trial (NCT01663402) is 

still ongoing and will assess the effects of Alirocumab on cardiovascular events in 18000 

patients on maximally tolerated statin therapy, with results expected in February 2018 

[219]. 

The side effects of Alirocumab have been evaluated on 2476 patients, that participate to 

the clinical trials mentioned above. The most common adverse effects observed with 

Alirocumab include nasopharyngitis, injection site reactions (erythema, itchiness, 

swelling, pain or tenderness), influenza, sinusitis, bronchitis, urinary tract infection, 

myalgia and muscle spasms. Alirocumab is contraindicated in patients who develop 

serious hypersensitivity reactions such as hypersensitivity vasculitis or allergic reactions, 

which require hospitalization. Among these adverse effects, the most common causes 

that lead to drug discontinuation are allergic reactions and elevated liver enzymes [219]. 

Evolocumab 

Evolocumab (AMG 145), marketed by Amgen under the brand name Repatha, is a fully 

human monoclonal antibody inhibiting PCSK9. It has a molecular weight of 144 kDa and is 

usually administered by subcutaneous injection at a dose of 140 mg Q2W or 420 mg Q4W 

[205]. The phase I trials demonstrated that in healthy volunteers Evolocumab, 

administered both subcutaneously and intravenously, leads to a short-term dose-

dependent reduction in LDL-C by up to 75% with a maximally dose of 420 mg, compared 

to placebo. Similar results were obtained in hypercholesterolemic statin-treated subjects, 

including those with heterozygous FH or taking the highest doses of atorvastatin or 

rosuvastatin. No serious adverse events occurred [220]. The phase II trials were 

subsequently performed to show the benefits of Evolocumab in LDL-C lowering when 

added to maximally tolerated statin therapy in patients with hypercholesterolemia 

(including FH). In LAPLACE-TIMI57 trial, 631 patients on stable statin therapy and LDL-C > 

85 mg/dL were treated with Evolocumab 70 to 140 mg Q2W or 280 to 420 mg Q4W, 

obtaining an LDL-C reduction up to 65% and up to 50%, respectively [221]. The MENDEL 

trial studied Evolocumab, used as monotherapy, in 406 patients with 

https://clinicaltrials.gov/ct2/show/NCT01663402
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hypercholesterolemia. The optimal frequency of Evolocumab therapy was shown to be 

twice monthly to determine a 50% to 60% reduction in LDL-C, when combined with 

statins. However, when used as a monotherapy, also a frequency of one administration 

Q4W would be acceptable [222]. 

Evolocumab was subsequently evaluated in PROFICIO phase III program, which includes 

14 trials performed in different populations. In LAPLACE-2 study, 1899 patients with 

fasting hyperlipidemia were randomized to a daily moderate or high intensity statin 

regimen and after 4 weeks further randomized to receive Evolocumab (140 mg Q2W or 

420 mg Q4W) or placebo. After 12 weeks of treatment, Evolocumab reduces LDL-C levels 

by 75% (both on Q2W and Q4W regimen), when compared to placebo, both in moderate 

and high intensity statin groups [223]. MENDEL-2 trial compared the efficacy of biweekly 

(140mg) and monthly (420mg) Evolocumab with placebo and oral ezetimibe in 614 

patients with fasting LDL-C ≥100 mg/dL and <190 mg/dL and low risk on Framingham 

scale (≤ 10%). Evolocumab treatment is able to reduce LDL-C by up to 57% more than 

placebo and 40% more than ezetimibe [151]. GAUSS-2 trial was designed to evaluate the 

efficacy and safety of subcutaneous Evolocumab compared to oral ezetimibe in 

hypercholesterolemic patients who are statin intolerant, predominantly due to muscle-

related side effects. In this 12-week double-blind study, 307 patients were treated with 

Evolocumab (140 mg Q2W or 420 mg Q4W) and compared to daily oral or subcutaneous 

placebo (both placebo groups on 10mg ezetimibe). At 12 week, Evolocumab group 

showed a reduction in LDL-C by 56% vs 39% in the other groups (placebo + ezetimibe 

arm) [224]. Similarly, GAUSS-3 trial assessed the efficacy of Evolocumab in 218 statin 

intolerant patients, enrolled after an initial phase of the study which included 

administration of atorvastatin (20 mg) for 10 weeks vs placebo. The patients who 

experienced muscle related adverse effects received Evolocumab (420 mg Q4W, divided 

in 3 doses) vs ezetimibe (10 mg/die). After 24 weeks, LDL-C was reduced by 53% with 

Evolocumab compared to 17% with ezetimibe, with no difference in muscle related side 

effects [225]. DESCARTES trial evaluated 901 patients with hyperlipidemia, comparing 

subcutaneous administration of Evolocumab (420 mg Q4W) vs placebo, for a period of 52 

weeks. The patients were under lipid lowering therapy, including diet alone, low intensity 

atorvastatin (10 mg), high intensity atorvastatin (80 mg) or atorvastatin 80 mg/die and 
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ezetimibe 10 mg/die. The treatment with Evolocumab resulted in significant LDL-C 

reduction in all groups [226]. RUTHERFORD-2 was a multicentre, randomised, double-

blind and placebo-controlled trial, undertaken at 39 sites in different countries around 

the world. 329 patients with heterozygous FH were randomized to receive Evolocumab 

(140 mg or 420 mg) or placebo at two weekly and monthly regimens, respectively. 

Evolocumab treatment significantly reduces LDL-C with both regimens, as compared to 

placebo after 12 weeks [227]. While RUTHERFORD-2 evaluated efficacy and safety of 

Evolocumab in heterozygous FH, TESLA trial examined 50 patients with homozygous FH 

on stable lipid lowering therapy. Addition of Evolocumab (420 mg Q4W) leads to a 

significant reduction in LDL-C by up to 31%, vs placebo [228]. OSLER-1 (Evolocumab 420 

mg Q4W) and OSLER-2 (Evolocumab 140 mg Q2W or 420 mg Q4W) confirmed, in 4465 

patients, a very strong reduction in LDL-C with Evolocumab compared to standard 

therapy [229]. Recently, the results from the FOURIER trial have been presented. The 

study enrolled 27,564 patients with cardiovascular disease and on a moderate to high 

intensity statin therapy, in 49 countries. Most patients had a history of heart attack, 

ischemic stroke and symptomatic peripheral artery disease. Patients were assigned to 

receive subcutaneous injections of Evolocumab (140 mg Q2W or 420 mg Q4W) or 

matching placebo, showing that Evolocumab is able to reduce LDL-C by 59%, compared to 

control group. Interestingly, it was observed a statistically significant 27% reduction in 

heart attack and a 21% reduction in stroke, despite no effect on cardiovascular mortality 

by itself [175]. Finally, the TAUSSIG trial (NCT01624142) is still ongoing and is evaluating 

Evolocumab therapy in 300 patients with severe FH, with the results waited for March 

2020 [219]. 

The side effects of Evolocumab are similar to those of Alirocumab.. The most common 

adverse effects are nasopharyngitis, upper respiratory tract infection, back pain and 

nausea, while the most common side effects which lead to drug discontinuation are 

myalgia, nausea and dizziness. In 2,4% individuals have been observed cardiac disorders 

including palpitations, angina pectoris and ventricular extra systoles. Anyway, the overall 

incidence of adverse effects with Evolocumab 140 mg Q2W as compared to placebo were 

43,6% vs 41%, respectively. Notably, Evolocumab and Alirocumab have been associated 

with a higher incidence of cognitive adverse events in patients [219]. 

https://clinicaltrials.gov/ct2/show/NCT01624142
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Bococizumab and LY3015014 

Bococizumab (RN316) is a humanized anti-PCSK9 mAb developed by Pfizer for a longer 

serum half-life and duration of action on LDL-C lowering. Phase I studies demonstrated 

that single intravenous or subcutaneous administration of Bococizumab significantly 

reduces LDL-C in patients with hypercholesterolemia, both with and without concomitant 

atorvastatin therapy [219]. Gumbiner et al. in a phase II, randomized, placebo-controlled 

study evaluated the efficacy and safety of Bococizumab in hypercholesterolemic patients 

on statin therapy but not at target LDL-C. After 12 weeks of treatment they observed a 

60% reduction in LDL-C, compared to placebo group. Of note Bococizumab is more potent 

than other LDL-C lowering mAbs, indeed several patients suspended the treatment after 4 

weeks, due to LDL-C levels lower than 25 mg/dL [205].  Bococizumab had undergone the 

large phase III SPIRE, including  SPIRE-HF trial (NCT01968980) in heterozygous FH, SPIRE-

HR (NCT01968954) and SPIRE-LDL (NCT01968967) trials which are comparing 

Bococizumab to statin therapy in patients with high atherosclerotic cardiovascular risk, 

SPIRE-1 (NCT01975376) and SPIRE-2 (NCT01975389) collecting data on safety and efficacy 

of this drug [219]. The SPIRE program was planned to involve more than 30,000 subjects 

worldwide, in order to evaluate efficacy, safety, tolerability, magnitude of reduction in 

atherogenic lipids as well as in the occurrence of major CV events. However, in November 

2016, Pfizer announced the discontinuation of the global clinical development program 

for bococizumab, due to an unanticipated attenuation of LDL-C lowering over time, as 

well as a higher level of immunogenicity and higher rate of injection-site reactions, 

compared to the other agents of this class [230]. 

LY3015014 (LY), a humanized immunoglobulin G4 (IgG4) monoclonal antibody, binds to a 

PCSK9 epitope that allows cleavage of the full-length active form of PCSK9 to the inactive 

form (52kDa), through protease cleavage at Arg218 in the catalytic domain. Preclinical 

and clinical studies demonstrated that LY binding to a site that permits normal proteolytic 

cleavage of PCSK9, resulting in a reduction of target-mediated drug disposition, increases 

potency and durability of the effect on LDL-C levels. Recently, Kastelein et al. showed that 

the administration of LY dosed Q4W (20, 120, or 300 mg) or Q8W (300 mg), in 527 

patients with primary hypercholesterolaemia, resulted in robust and durable reduction of 

https://clinicaltrials.gov/ct2/show/NCT01968980
https://clinicaltrials.gov/ct2/show/NCT01968954
https://clinicaltrials.gov/ct2/show/NCT01968967
https://clinicaltrials.gov/ct2/show/NCT01975376
https://clinicaltrials.gov/ct2/show/NCT01975389
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LDL-C. No clinically relevant safety issues emerged with the administration of LY, although 

the long-term effects on cardiovascular outcomes require further investigation [231]. 

4.5.6 Vaccines 

Despite mAbs based immunotherapies have significantly improved the treatment of 

several chronic diseases, they present faults that can limit patient access and clinical use. 

mAbs are relatively expensive, over the fact that they require to be injected frequently 

(once or twice a month) and at high doses (140 mg Q2W or 420 Q4W), resulting in 

tolerability issues and poor compliance. An appealing new alternative to mAbs  is the 

active vaccination against self-antigens involved in chronic diseases. The aim is to provide 

the same therapeutic effects obtained with the passive administration of mAbs, but with 

considerably reduced administrations and lower doses, and without the possibility of 

inducing drug-neutralizing immune responses [232]. In 2012, Fattori et al. demonstrated 

that immunization with human recombinant PCSK9 in mice is able to raise antibodies that 

cross-react and neutralize circulating mouse PCSK9 protein. Preventing the PCSK9/LDLR 

interaction,  they showed a considerable increased hepatic LDLR expression, paralleled 

with a reduction in plasma cholesterol levels, in the immunized mice compared to 

controls. Interestingly, these findings closely resemble those described in PCSK9 KO mice 

or in mice treated with anti-PCSK9 mAbs [233]. More recently, the AT04A anti-PCSK9 

vaccine was evaluated for its therapeutic potential in improving or even preventing 

coronary heart disease in the atherogenic APOE*3Leiden.CETP mouse model. AT04A 

vaccine, when injected in mice fed  with a western-type diet for 18 weeks in order to 

induce hypercholeterolemia and the development of atherosclerosis, reduces the total 

amount of cholesterol by 53%, atherosclerotic lesions in the aorta by 64%, and systemic 

and vascular inflammation, compared to unvaccinated mice [234]. In 2015, a phase I 

clinical study started at the Department of Clinical Pharmacology (Medical University of 

Vienna – Austria), studying AT04A and AT06A in 72 healthy people to evaluate its safety 

and activity. The study is expected to complete at the end of this year. Considering that 

the induced antibodies persist for months after a vaccination, if these findings translate 

successfully in humans, it could be developed a long-lasting therapy that just needs an 

annual booster, favouring an higher patient compliance [235].  

  

https://medicalxpress.com/tags/high+cholesterol/
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4.5.7 Mimetic peptides  

Mimetic peptides are small protein-like chains designed to mimic the structure of a target 

protein in order to affect its biological activity. Mimetic peptides have high specificity, are 

relatively easy to produce and are cheaper compared to antibodies, but their routes of 

administration are limited. Recently, this approach has been used to interfere with the 

ability of PCSK9 to interact with the LDLR. In particular, have been developed mimetic 

peptides towards EGF-A (the PCSK9 binding motif on the LDLR), the catalytic domain, the 

prodomain and the C-terminal domain of PCSK9 [205]. Shan et al. demonstrated that a 

synthetic EGF-A mimetic peptide is able to inhibit PCSK9-mediated degradation of LDLR in 

HepG2 cells, as well as mouse VLDLR and, at a lower rate, ApoER2 [236]. Similarly, 

another synthetic peptide mimicking the H306Y GOF mutation in the EGF-A domain block 

the binding of secreted PCSK9 to cell surface LDLR, thus successfully increasing LDLR 

expression in HepG2 cells [237]. Pep2-8, the smallest peptide that mimics the secondary 

structure of the EGF-A domain, covering the catalytic domain of PCSK9, restores LDLR 

recycling and LDL particle uptake in PCSK9-treated HepG2 cells [238]. Beyond mimetic 

peptides to EGF-A, Saavedra and coworkers have engineered a chimeric protein using the 

Fc-region of human IgG1 fused to the PCSK9 prosegment, which interacts with 

the prosegment and the catalytic domain of the PCSK9/prosegment complex and 

allosterically modulates its function. Moreover, considering that annexin-A2 is a natural 

extrahepatic inhibitor of the PCSK9-induced LDLR degradation, small mimetic peptides to 

annexin-A2 have been proposed as a potential approach for PCSK9 inhibition. Finally, the 

PCSK9 inhibitor SX-PCK9 (Serometrix), a small peptide that interferes with the normal 

PCSK9 folding and LDLR binding, is currently  in preclinical development. Despite there are 

no clinical trials testing the use of small peptides to inhibit PCSK9 at this time, all these 

molecules directed against variable parts of PCSK9 could be an interesting approach for 

LDL-C lowering in the future [175]. 
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4.5.8 Adnectins 

Adnectins are a new family of therapeutic proteins derived from the 10th extracellular 

type III domain of human fibronectin, whose variable loops can be efficiently engineered. 

Because they are smaller compared to mAbs, adnectins can be simply modified to bind to 

their target protein (eg, PCSK9) with high specificity and affinity via transforming β-sheet 

loops, which preserve structural stability [239]. The high-affinity PCSK9-binding adnectin 

BMS-962476 (Bristol-Myers Squibb/Adnexus) was designed to target the LDLR binding site 

of PCSK9 and to prevent PCSK9-induced degradation of the LDLR. In hypercholesterolemic 

mice, which overexpress human PCSK9, a single intravenous injection of BMS-962476 is 

able to down-regulate both circulating PCSK9 and LDL-C levels. In cynomolgus monkeys 

the treatment with this adnectin reduces plasma PCSK9 levels to almost zero within 10 

min, resulting in a reduction of LDL-C by approximately 55% within 48 h, an effect that 

persists for nearly 3 weeks. Although adnectins pharmacokinetic has been shown to be 

favourable with a rapid onset of action in preclinical models, further preclinical and 

especially clinical trials are needed to assess the possible development of this agent [240]. 
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PCSK9 is a protein, mainly synthesized and secreted by the liver, which binds to specific 

target proteins and escorts them towards lysosomes for degradation [1]. The best defined 

activity of PCSK9 is its ability to modulate the hepatic uptake of LDL-C, by enhancing the 

intracellular degradation of the LDLR [187]. In humans, several mutations in PCSK9 gene 

were described, both “gain-of-function” mutations associated to FH [113] and “loss of 

function” mutations linked to low LDL-C levels [183]. These findings suggest PCSK9 

inhibitors as a promising class of drugs for the treatment of patients with severe 

hypercholesterolemia and/or at very high cardiovascular risk.  

 

Although the liver is the main regulator and target of PCSK9 [148], it is synthesized also in 

other tissues, pointing to a possible role of this protein beyond the control of hepatic 

LDLR expression [4]. In particular, the LDLR is abundantly expressed by pancreatic β cells 

in humans, mice and rats, where it plays a key role in the uptake of plasma LDL-C [2]. 

Cholesterol homeostasis is crucial for β cells function and survival, and excessive 

cholesterol accumulation causes a significant reduction in islets’ ability to secrete insulin 

in response to increased glucose levels [108].  

 

On these premises, the aim of this PhD project was to further investigate the extra-

hepatic role of PCSK9. The increasing interest in anti-PCSK9 therapies raises the question 

of whether pharmacological inhibition of PCSK9 to treat hypercholesterolaemia and 

associated cardiovascular diseases might impact on non-hepatic tissues, including 

pancreas and β cells function. Indeed, despite the increasing number of observations, the 

debate on the exact roles of PCSK9 in extrahepatic tissues is still ongoing, and as very 

effective drugs inhibiting PCSK9 have become available to the clinician, a better 

understanding of the biological roles of PCSK9 is warranted. Interestingly, in three 

different mendelian randomization studies the analysis of the effects of genetic scores 

consisting of independently inherited polymorphisms in the PCSK9 gene resulted into 

reduced LDL-C levels and cardiovascular events but was also associated with an increased 

risk of diabetes [164, 165, 241]; furthermore patients with familial hypercholesteroleamia 

(decreased LDLR function) appear to have a lower risk of diabetes [166]. These data set 

the stage for further investigating the role of PCSK9 on glucose metabolism and diabetes.
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1. Mice  

B6;129Sv-Pcsk9tm1Jdh/J male mice from the Jackson Laboratory (Bar Harbor, ME, USA) 

were backcrossed to C57Bl6J females for 10 generations. Heterozygous mutant mice from 

the F10 generation were intercrossed to generate littermates WT and PCSK9 KO mice.  

B6.129S7-Ldlrtm1Her/J male mice from the Jackson Laboratory (Bar Harbor, ME, USA) 

were backcrossed to PCSK9 KO females for 10 generations. Heterozygous mutant mice 

from the F10 generation were intercrossed to generate littermates LDLR KO and 

LDLR/PCSK9 DKO mice.  

B6.Cg-Tg(Alb-cre)21Mgn/J male mice from the Jackson Laboratory (Bar Harbor, ME, USA) 

were backcrossed to PCSK9LoxP/LoxP females (provided by Merck Research Laboratories) for 

10 generations. Heterozygous mutant mice from the F10 generation were intercrossed to 

generate littermates AlbCRE-/PCSK9 LoxP/LoxP and AlbCRE+/PCSK9 LoxP/LoxP.   

All the mice were kept under controlled light/dark cycle (12 hours of light/12 hours of 

dark) and temperature-controlled conditions (21°C). They had free access to food and 

water, except when fasting (overnight for GTT and fast and refeeding experiment, 4h for 

ITT) was required.  

 
The investigation conforms to the European Commission Directive 2010/63/EU and was 

granted approval by the “Direzione Generale della Sanità Animale e dei Farmaci 

Veterinari” of the Italian Ministry of Health (402/2015-PR, 1162/2016-PR). 

 

2. DNA isolation and genotyping  

To identify the genotype of the mice pups the Polimerase Chain Reaction (PCR) 

technology was performed, followed by agarose gel electrophoresis. DNA for PCR analysis 

was obtained from ear punches (obtained at 21 days of age), a procedure required for the 

numbering and the identification of the mice. A 2 mm punch of mouse ear was placed in 

0.5 mL of Lysis Buffer [0,5% SDS (Bio-Rad), 0.2 M NaCl (Sigma), 50 Mm Tris HCl pH 8 

(Applichem), 4 Mm EDTA (Sigma)] with 25 μL of Proteinase K (10 mg/ml – Roche) for 18 at 

56°. The addition of Phenol/Cloroform/Isoamyl alchol 25:24:1 (500 μL) and subsequently 

of Ethanol 95%(800 μL) allowed the DNA precipitation, resuspended in 50 μL deionized 

sterilized water. The PCR reaction, performed with GeneAmp – PCR system 9700 

https://www.jax.org/strain/002207
https://www.jax.org/strain/003574
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machinery, was prepared using the GoTaq® Flexi DNA Polymerase kit (Promega) and the 

amplification parameters were set depending on the primers.  

 

PCSK9 KO Primer 0  

PCSK9 KO Primer 1 

PCSK9 KO Primer 2 

5’-GAT TGG GAA GAC AAT AGC AGG CAT GC 

5’-ATT GTT GGA GGG AGA AGT ACA GGG GT 

5’-GGG CGA GCA TCA GCT CTT CAT AAT CT 

LDLR KO Fw Primer 

LDLR KO Rw Primer  

LDLR KO Rw Primer 2  

5’-AAT CCA TCT TGT TCA ATG GCC GAT C 

5’-CCA TAT GCA TCC CCA GTC TT 

5’-GCG ATG GAT ACA CTC ACT GC 

PCSK9 LoxP/LoxP Fw Primer 

PCSK9 LoxP/LoxP Rw Primer 

5’-GGA TAG TTC AGG GTT CAA AGC ATG GG 

5’-GGT CTC CTC CAT CAG CAC CAC AAT G 

AlbCRE Fw Primer  

AlbCRE Rw Primer 

5’-AGG TGT AGA GAA GGC ACT CAG C 

5’-CTA ATC GCC ATC TTC CAG CAG G 

 

All the primers were provided by Metabion International AG. Once the PCR is done, the 

agarose gel electrophoresis (1,5%) was performed to check the genotype of the pups, using 

GelStar™ Nucleic Acid Gel Stain (LONZA). 

 

3. Dietary regimen 

WT and PCSK9 KO mice, starting from 8 weeks of age, were fed with a Standard Fat Diet 

(SFD) or a High Fat Diet (HFD), as a model of diet-induced obesity, for 20 weeks. LDLR KO, 

LDLR/PCSK9 DKO, AlbCRE-/PCSK9LoxP/LoxP and AlbCRE+/PCSK9LoxP/LoxP mice, starting from 8 

weeks of age, were fed with a Standard Fat Diet (SFD) for 12 weeks. 
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SFD (Research Diets, Inc) 

 

Protein 19,2 g% 20 kcal% 

Carbohydrate 67,3 g% 70 kcal% 

Fat  4,3  g%  10 kcal% 

Total 3,85 kcal/g 100 kcal% 

 

Ingredients Gm  Kcal % 

Casein, 30 Mesh 200 800 

L-Cystine 3 12 

Corn Starch 452 18080.8 

Maltodextrin 10 75 300 

Sucrose 174 691.2 

Cellulose, BW200 50 0 

Soybean Oil 25 225 

Lard 20 180 

Mineral Mix S10026 10 0 

DiCalcium Phoshate 13 0 

Calcium Carbonate 5.5 0 

Potassium Citrate, H2O 16.5 0 

Vitamin Mix V10001 10 40 

Choline Bitartrate 2 0 

FD&C Red Dye #40 0.04 0 

Total 858.15 4057 
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HFD (Research Diets, Inc) 

 

Protein 24 g% 20 kcal% 

Carbohydrate 41 g%              35 kcal% 

Fat  24 g%              45 kcal% 

Total 4,13 kcal/g 100 kcal% 

     

Ingredients Gm Kcal % 

Casein, 30 Mesh 200 800 

L-Cystine 3 12 

Corn Starch 73 291 

Maltodextrin 10 100 400 

Sucrose 173 691 

Cellulose, BW200 50 0 

Soybean Oil 25 225 

Lard 178 1598 

Mineral Mix S10026 10 0 

DiCalcium Phoshate 13 0 

Calcium Carbonate 5.5 0 

Potassium Citrate, H2O 16.5 0 

Vitamin Mix V10001 10 40 

Choline Bitartrate 2 0 

FD&C Red Dye #40 0.05 0 

Total 858.15 4057 
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Both HFD and SFD were given for 12 or 20 weeks. The diet was administered 3 times a 

week and food intake was measured daily for 4 weeks during both the HFD and SFD 

treatment, to assess food consumption. Body weights were measured weekly. 

 

4. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT) 

GTT and ITT were performed after 12 and 20 weeks of SFD or HFD treatment. For the GTT, 

mice were fasted overnight (12-16h), weighed and blood glucose was measured by 

snipping the tail and using a glucose meter (ONE-TOUCH Ultra), before and 20, 40, 60, 

120 min after intraperitoneal injection of glucose solution (2g/Kg body weight). For the 

ITT, mice were fasted for 4h, weighed and blood glucose was measured by snipping the 

tail and using a glucose meter (ONE-TOUCH Ultra). Insulin solution (0.2IU/kg body weight) 

was injected in the intraperitoneal cavity and mice were bled as described above after 20, 

40, 60, 120 min. Insulin solution was prepared from stock of 100 UI insulin solution 

(Humuline R 100 UI/mL) and was diluted in a physiological solution (NaCl 0.9%) with 3% of 

bovine serum albumin (BSA Sigma-Aldrich). At the end of both GTT and ITT the tail 

wounds were cauterized and the mice were provided with food. The area under the curve 

(AUC) was calculated for glucose clearance following GTT or ITT.  

 

5. Fasting and refeeding test 

Fasting and refeeding experiments were performed at 12 or 20 weeks. Mice were fasted 

overnight (12-16h), weighted, housed one for cage and refeed ad libitum for 4h (food was 

weighted at the beginning of the test and after the 4h, to assess food consumption for 

each animal). Blood glucose was measured by snipping the tail and using a glucose meter 

(ONE-TOUCH Ultra), both in fasting state and after 4h refeeding.  

 

6. Magnetic resonance for imaging (MRI)  

MRI is a test that uses a magnetic field and pulses of radio wave energy to make pictures 

of organs and structures inside the body. The MRI was used to monitor fat accumulation 

in the visceral (VAT) and subcutaneous (SCAT) depots after 20 weeks of HFD or SFD, in WT 

and PCSK9 KO mice. Mice were anesthetize with isoflurane during the MRI analysis. The 
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identification of fat was allowed by the different amount of water of this tissue compared 

to muscles: fat depot appeared white while muscles black. A total of 16 pictures were 

taken from the visceral area; then the area of fat depot was measured in 3 pictures per 

mouse and the average calculated. 

 

7. Plasma cholesterol and triglycerides measurement  

Blood was collected at sacrifice in Eppendorf tubes containing EDTA 0.5%. Blood samples 

were centifuged for 14 min at 7000 rpm at 4°C and plasma was collected and immediately 

stored at -20°C for assays. 

Plasma cholesterol levels were measured with ABX Pentra Cholesterol CP kit and 

according to manufacturer instructions. The calibrator curve was prepared using serial 

dilution of a cholesterol standard (200 mg/dl - ABX Pentra). The same procedure was 

followed to detect plasma triglycerides, using the appropriate triglycerides standard (200 

mg/dl - ABX Pentra) and reagents (ABX Pentra Triglycerides CP).  

 

8. Insulin, C-Peptide and PCSK9 measurement  

Blood was collected at sacrifice in Eppendorf tubes containing EDTA 0.5%. Blood samples 

were centifuged for 14 min at 7000 rpm at 4°C and plasma was collected and immediately 

stored at -20°C for assays. 

Insulin levels were measured in plasma with Mercodia Ultrasensitive Mouse Insulin ELISA 

and according to manufacturer instructions. Plasma insulin was measured also 5 min after 

intraperitoneal injection of glucose solution (2g/Kg body weight) and after a fasting and 

refeeding experiment, using blood collected from the tails. For insulin detection in 

pancreas Mercodia Mouse Insulin ELISA was used. Pancreas were processed in 350 μl of 

Tissue Protein Extraction Reagents (Thermo Fisher Scientific) containing a cocktail of 

protease and phosphatase inhibitors (Roche Diagnostics). C-peptide levels were 

measured in plasma with Mercodia Ultrasensitive Mouse C-peptide ELISA and according 

to manufacturer instructions. PCSK9 was measured on plasma aliquots collected after 

overnight fasting and stored at -80°C for up to three weeks by a commercial enzyme-

linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN). Plasma samples 

were diluted 50 times and then processed as per manufacturer instructions.   
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9. Western Blot Analysis   

Total cytosolic protein extracts from liver and soleus muscle were obtained by lysing 

tissues in 350 μl of Tissue Protein Extraction Reagents (Thermo Fisher Scientific) 

containing a cocktail of protease and phosphatase inhibitors (Roche Diagnostics). Twenty 

μg of proteins and a molecular mass marker (Novex® Sharp Protein Standard, 

InvitrogenTM; Life Technologies Europe BV) were separated on 4-12% sodium 

dodecylsulfate-polyacrylamide gel (SDS-PAGE; Novex® NuPAGE® 4-12% Bis-Tris Mini Gels, 

InvitrogenTM; Life Technologies) under denaturing and reducing conditions and then 

transferred to a nitrocellulose membrane by using the iBlotTM Gel Transfer Device 

(InvitrogenTM; Life Technologies). The membranes were washed with Tris-Buffered 

Saline-Tween 20 (TBS-T) and non-specific binding sites were blocked in TBS-T containing 

5% (BSA; Sigma-Aldrich) for 90 min at RT. The blots were incubated overnight at 4°C with 

anti-pAKT, (1:150; Millipore) or anti-AKT (1:1,000; Cell Signaling) (5% BSA or non-fat dried 

milk). Membranes were washed with TBS-T and then exposed for 90 min at RT to a 

diluted solution (5% non-fat dried milk) of the secondary antibodies. Immunoreactive 

bands were detected by exposing the membranes to ClarityTM Western ECL 

chemiluminescent substrates (Bio-Rad Laboratories) for 5 min and images were acquired 

with a ChemiDocTM XRS System (Bio-Rad Laboratories). Densitometric readings were 

evaluated using the ImageLabTM software. 

 
10.    Immunofuorescence staning and analysis 

For morphological studies, pancreases from wild type and transgenic mice were collected 

after sacrifice and fixed in 4% (w/v) neutral-buffered formalin, processed and embedded 

in paraffin blocks. After microwave antigen retrieval (2x5 min in 10 mM citrate buffer, pH 

6.0), 5-μm-thick sections were incubated for two hours with primary antibodies against 

hormones. The following antibodies were used: anti-insulin polyclonal from guinea pig 

(Dako; diluted 1:300), anti-glucagon polyclonal from rabbit (R&D Systems, Minneapolis, 

MN, USA; diluted 1:150), and anti-somatostatin monoclonal from rat (Millipore, diluted 

1:100), anti-LDLR (Abcam, diluted 1:300), anti PCSK9 (Cayman,  diluted 1:50). Staining 

with primary antibody was followed by incubation for one hour with rhodamine-
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conjugated anti-guinea pig IgG, FITC-conjugated anti-mouse, Cy5-conjugated anti-rabbit 

and Cy5 or FITC-conjugated anti-rat IgG (Jackson ImmunoResearch Laboratories).  

 

11.   Image acquisition and analysis 

Microscopic analysis was performed using a Zeiss (Oberkochen, Germany) Axiovert 200 

inverted fluorescence microscope equipped with a Retiga SRV charge-coupled device 

camera (QImaging, Surrey, BC, Canada). Briefly, single-stain wildfield 

immunofluorescence images were acquired using identical parameters (acquisition time 

and gain), deblurred using the Nearest Neighbor algorithm (Image ProPlus 6.2 3D 

Analyser; Media Cybernetics, Rockville, MD) and merged. To quantify the islet’s area and 

composition on digital images, the islet profile was manually outlined and a macro was 

created in order to automatically quantify the green (somatostatin)-, red (insulin)- and 

blue(glucagon)-stained areas within the islet regions. For islet composition, single 

hormone staining was expressed as a percentage of total islet area 

(insulin+glucagon+somatostatin-stained areas). For each subgroup, a minimum of five 

islets per pancreas were imaged, in six different animals. Experiments were performed in 

duplicate.  

 
12.   Pancreatic islets isolation and FACS analysis 

Islets were isolated from wild type and transgenic mice by injection of 4 ml type II 

collagenase solution (1 mg/mL, Sigma-Aldrich) within the pancreas. After surgical excision 

of the pancreas, it was incubated at 37 °C for 10 min and then washed 3 times in 

minimum essential medium (MEM, Sigma) to remove collagenase. Undigested tissue was 

removed using a 70 µm filter. Pancreatic islets were separated by Percoll PLUS gradient 

(GE Healthcare Europe, Milan, Italy), collected and processed for flow cytometry analysis. 

Antibodies for FACS were used at 1:200 dilutions unless otherwise specified, optimal 

antibody concentrations for staining were calculated based on manufacturer instructions. 

Cells from pancreatic islets were suspended in 100 µL of PBS/BSA 5% and incubated with 

0.5 µL of Fc block (BD Pharmingen, purified Rat anti-Mouse CD16/CD32, Cat#553142) and 

with primary antibody against LDLR (Cayman LDL Receptor Polyclonal Antibody, 

Cat#10007665) for 30 minutes at 4°C. Samples were washed twice with PBS/BSA 5% and 
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re-suspended in 100 µL of PBS/BSA 5% with goat anti-rabbit IgG secondary antibody Alexa 

Fluor 633 (Thermofisher Scientific, Cat#A-21070) and incubated for 30 minutes at 4°C. 

After two wash with PBS/BSA 5%, samples were diluted in 500 µL of PBS/BSA 5% and 

acquired with Novocyte (ACEA biosciences) and analyzed using Novoexpress 3000 (ACEA 

biosciences). 

 
13.   Cholesterol and fatty acid content in pancreatic islets 

Pancratic islets’ homogenates, after thawing and addition of stigmasterol, nonadecanoic 

acid and cholesteryl heptadecanoate as internal standards,  were extracted three times 

with CHCl3/CH3OH 2:1 plus KCl 0,05%. The lipid layers were collected, concentrated and 

loaded onto a TLC (hexane:diethylether:acetic acid 80:20:1). After run and spraying with 

dichlorofluorescein, the spots corresponding to FC, FFA and CE were removed and 

processed as follows. Those containing FC were extracted twice with hexane/isopropanol 

3:2, concentrated and detected by gas-liquid chromatography (DANI 1000 equipped with 

a HTA autosampler; column MEGA FFAP EXT) without derivatization at a constant 

temperature of 260°C for 10 minutes. The spots containing CE and FFA were derivatized 

by methanolic HCl 3N for 20-120 minutes at 80°C, extracted by hexane/water and their 

fatty acid content analyzed by GLC (same equipment as before, with temperature raising 

from 120 to 260 °C, total run 40 minutes).  

The mass of FC was calculated by comparing its AUC with that of the internal standard 

(stigmasterol), while those of FFA and CE was obtained after summing the AUC of their 

fatty acids and comparison with that of nonadecanoic acid (FFA) or cholesteryl 

heptadecanoate (CE). In the case of CE and FFA, obviously also a qualitative profile is 

available. Each lipid mass was then normalized by sample protein content, evaluated by 

the bicinchoninic acid, and expressed as ug lipid/mg protein.   

 

14.   RNA isolation and real time quantitative polymerase chain reaction 

(RT-PCR) 

RNA was isolated from pancreatic islets (20 mg) collected as described above, using 

NucleoSpin RNA kit (MACHEREY-NAGEL).  0,5 – 1 ng of RNA was reverse transcripted with 

iScript™ Reverse Transcription Supermix for RT-qPCR (BioRad), according to manufacturer 
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instructions. 2 μL of cDNA were amplified by realtime quantitative PCR with 1X Syber 

green universal PCR mastermix (BioRad, Italy). The specificity of the Syber green 

fluorescence was tested as described [242]. Each sample was analyzed in duplicate using 

the CFX-Cycler (BioRad). The PCR amplification was related to a standard curve ranging 

from 10-11 mol/L to 10-14 mol/L and data were normalized for the housekeeping gene 

ribosomal protein L13a (RLP13a) [243]. 

 

ABCA1 Fw Primer 

ABCA1 Rw Primer 

5’-GGTTTGGAGATGGTTATACAATAGTTGT 

5’-TTCCCGGAAACGCAAGTC 

ABCG1 Fw Primer 

ABCG1 Rw Primer  

5’-TTCATCGTCCTGGGCATCTT 

5’-CGGATTTTGTATCTGAGGACGAA 

LXR Fw Primer 

LXR Rw Primer 

5’-CGACAGAGCTTCGTCCACAA 

5’-GCTCGTTCCCCAGCATTTT 

SREBP2 Fw Primer  

SREBP2 Rw Primer 

5’-TGACTAAGTCCTTCAACTCTATGATTTTG 

5’-GCGGCAAACACACAATATCATTG 

HMGCoA Fw Primer  

HMGCoA Rw Primer 

5’-TGTGGTTTGTGAAGCCGACAT 

5’-TACACCATAGCTTCCGTAGTTGTC 

ACAT1 Fw Primer  

ACAT1 Rw Primer 

5’-TGGCACGAATTGCAGCAT 

5’-GCAGGCGCAAGTGGAAAA 

LDLR Fw Primer  

LDRL Rw Primer 

5’-GTGTGACCGTGAACATGACTG 

5’-CACTCCCCACTGTGACACTTGA 

 

 

15.   Statistical analysis 

For animal studies, statistical analyses were performed with GraphPad Prism6 or with 

IBM-SPSS statistic 19. Data were analyzed by the Wilcoxon rank-sum test or by ANOVA 

with repeated measures for main effects of treatment time and genotype, followed by a 

Bonferroni post hoc analysis. Data are presented as mean ± SEM. A P value <0.05 was 

considered statistically significant.  
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1. Setting of a mouse model of obesity and metabolic dysfunction 

 

Weight gain, lipid profile and fat distribution 

 

In order to setting an animal model of metabolic dysfunction, C57BL/6 WT mice were fed 

a SFD or HFD for 20 weeks. We assessed whether a lipid-rich diet causes alterations in 

metabolic parameters evaluating plasma lipid profile, body weight, fat distribution and 

glucose homeostasis.  

Starting from the 10th week of diet, mice fed a HFD gained more weight compared to 

littermates fed a SFD, difference that became significant during the last weeks (13.1±1.9 g 

vs 7.55±0.6 g, 20 weeks, p<0.05) (Fig 1A). At the end of the 20 weeks of diet, also the total 

body weight of mice fed a HFD resulted strongly increased compared to controls 

(37.2±2.4 g vs 29.7±2.6 g, p<0.05). Despite this, food intake was measured daily and no 

difference occurred between the two experimental groups (Fig. 1B). 

As expected, mice fed a HFD showed a significant increase in both circulating cholesterol 

and triglycerides levels, compared to mice fed a SFD (123.4±5.3 mg/dl vs 79.8±11.0 mg/dl 

and 61.6±3.7 mg/dl vs 38.6±4.2 mg/dl, respectively, p<0.05) (Fig. 1C/1D). 

Regarding the fat distribution, we evaluated both the visceral adipose tissue (VAT) and 

the subcutaneous adipose tissue (SCAT) accumulation. Mice fed a HFD presented a 

significantly increased VAT accumulation when compared to mice fed a SFD (+55%, 

p<0.05), as well as an enhanced SCAT content (+65% vs SFD, p<0.05) (Fig. 1E). 

Interestingly, also the MRI axial views showed a different fat distribution in the abdomen 

of SFD WT mice and HFD WT mice (Fig. 1F).  

 

Glucose metabolism 

 

To evaluate the effect of a lipid-rich diet on glucose metabolism, we performed GTT after 

12 weeks of SFD or HFD. In spite of similar plasma glucose levels at baseline (o/n fasting), 

following i.p. glucose injection (2g/Kg body weight), C57BL/6 WT mice fed a HFD showed 

a significant increased glycemia, compared to those fed a SFD (Fig. 2A). The increase of 

the plasma glucose AUC confirmed the delay in glucose clearance in HFD WT mice, 
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compared to control group (AUC +50% vs SFD; p<0,05) (Fig. 2B). GTT was performed also 

after 20 weeks of diet, obtained similar results (Fig. 2C/2D).  

Once shown that a lipid-rich diet is associated with an impaired glucose tolerance in our 

experimental groups, we investigated whether this effect was the consequence of an 

impaired insulin tolerance. ITT (4h fasting) was performed in C57BL/6 WT mice, after 12 

weeks and 20 weeks of SFD or HFD. The decrease in plasma glucose levels, after i.p. 

insulin injection (0.2IU/kg body weight), was significantly lower in mice fed a HFD, 

compared to mice fed a SFD,  suggesting the presence of insulin resistance under a lipid-

rich diet state (Fig. 2E/2F). 

 

The observation that mice fed a HFD developed alterations in weight gain and lipid 

metabolism, paralleled with impaired glucose tolerance and insulin resistance, confirmed 

that we  successfully set a mouse model of obesity and metabolic dysfunction.  
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Figure 1. Weight gain and daily food intake of C57BL/6 WT mice fed a standard fat diet (SFD) or 

high fat diet (HFD) are shown in panel A and B. Panel C and D show the levels of circulating 

cholesterol and triglycerides of mice fed with SFD or HFD. Weight of visceral adipose tissue (VAT) 

and subcutaneous adipose tissue (SCAT) is presented in panel E. Weight of each adipose tissue 

was normalized by total body weight. Data are shown as means ± SEM; n=8 mice per group; 

*p<0.05. Panel F reports representative magnetic resonance imaging axial views of C57BL/6 WT 

fed with SFD or HFD. 
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Figure 2. IPGTT was performed and plasma glucose levels were measured at 0, 20, 40, 60, and 120 

mins.  Data in mice fed a SFD or HFD for 12 weeks or 20 weeks and the AUC for glucose are 

presented in panels A to D. IPITT was performed and plasma glucose levels were measured at 0, 

20, 40, 60, and 120 mins.  Data in mice fed a SFD or HFD for 12 weeks or 20 weeks are presented 

in panels E and F.  Data are shown as means ± SEM; n = 8 mice per group. *p<0.05. 
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2. Impact of PCSK9 deficiency on lipid metabolism and ectopic fat 

accumulation 

 
Once characterized our mouse model, we focused on the metabolic role of PCSK9, both in 

a physiological condition (SFD) and in a state of obesity and metabolic syndrome (HFD). 

Weekly weigh gain and daily food intake of WT and PCSK9 KO mice, fed a SFD or HFD for 

20 weeks, were recorded. Interestingly, the absence of PCSK9 did not impact neither the 

weight gain or the food intake, with both diets (Fig. 3A to 3D). 

Plasma cholesterol and triglycerides levels were measured in all experimental groups. 

Firstly, we confirmed the difference between mice fed a SFD and mice fed a HFD shown in 

the characterization of the model (p<0.05). Moreover, as expected, PCSK9 KO mice 

exhibited significantly lower plasma cholesterol levels compared to WT mice (51.8±6.3 vs 

81.2±9.1 mg/dl and 86.1±4.7 mg/dl vs 118.6±7.2 mg/dl, SFD and HDF respectively, 

p<0.05), while no difference in plasma triglycerides concentrations arose both with SFD 

and HFD (Fig. 3E and 3F).  

WT and PCSK9 KO mice presented a different fat distribution in the abdomen, with both 

diets. Specifically, PCSK9 deficiency was associated with a significantly increased VAT 

accumulation when compared to WT littermates (+20% with SFD, +50% with HFD), while 

no differences were observed in SCAT (Fig. 4A/4B). Representative MRI images of the fat 

distribution in the abdomen of WT and PCSK9 KO mice are reported in Fig 4C.   

 

Here we showed that PCSK9 deficiency, which results in reduced circulating cholesterol 

levels, is associated with an increased ectopic fat accumulation, both in a physiological 

condition and in a state of metabolic dysfunction. This observation raises the question of 

a possible role of PCSK9 in modulating lipids delivery and accumulation in peripheral 

tissues. 
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Figure 3. Weight gain and daily food intake of WT and PCSK9 KO mice fed a standard fat diet (SFD) 

or high fat diet (HFD) are shown in panels A to D. Panel E and F represent the levels of circulating 

cholesterol and triglycerides of WT and PCSK9 KO mice, fed a SFD or HFD for 20 weeks. Data are 

shown as means ± SEM; n=8 mice per group; *p<0.05.  
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Figure 4.  Weights of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) of WT 

and PCSK9 KO mice, fed a SFD or HFD for 20 weeks, are shown in panel A and panel B. Weight of 

each adipose tissue was normalized by total body weight. Data are shown as means ± SEM; n=8 

mice per group; *p<0.05. Representative magnetic resonance imaging axial views of WT and 

PCSK9 KO mice are presented in panel C. 
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3. PCSK9 deficiency results in impaired glucose tolerance but not in insulin 

resistance 

 
Subsequently, we turned our attention to the role of PCSK9 in glucose metabolism. To 

evaluate the impact of PCSK9 deficiency on glucose homeostasis, we initially performed 

GTT in WT and PCSK9 KO mice, fed a SFD or a HFD. In spite of similar plasma glucose 

levels at baseline, following i.p. glucose injection (2g/Kg body weight), the absence of 

PCSK9 resulted in a significant delay of glucose clearance, in both the SFD (Fig.5A to 5D) 

or the HFD (Fig.6A to 6D) groups, after 12 or 20 weeks of diet. Also the plasma glucose 

AUC was significantly higher in PCSK9 KO mice compared to WT littermates, in all 

conditions (Fig. 5C/D, 6C/D). The observation that PCSK9 KO mice presented glucose 

intolerance following GTT, despite comparable baseline glucose levels (following 

overnight fasting), prompted us to perform a fast and refeeding experiment to better 

understand possible differences in plasma glucose levels under physiological conditions. 

After an overnight fasting and ad libitum refeeding (4h), PCSK9 KO mice were 

characterized by a significant increase in plasma glucose levels compared to WT 

littermates (266 ± 14  mg/dl vs 216± 3  mg/dl with SFD; 322 ± 13  mg/dl vs 252 ± 9  mg/dl 

with HFD, p<0.05), in spite of similar food consumption (2,27 ± 0,43 g/4h vs 2,18 ±0,38 

g/4h with SFD; 2,13 ± 0,26 g/4h vs 2,25 ±0,28 g/4h with HFD) (Fig. 5E/F, 6E/F).  

 

These results pointed out the presence of impaired glucose tolerance in PCSK9 KO mice 

and set the stage for investigating whether this effect was the consequence of impaired 

insulin tolerance. 

 

To answer this question, ITT was performed in WT and PCSK9 KO mice, after a 4h fast. 

The decrease in plasma glucose levels, after i.p. insulin injection (0.2IU/kg body weight), 

was similar in WT and PCSK9 KO mice, fed both a SFD (Fig.7A and 7B) or a HFD (Fig.7C and 

7D), after 12 or 20 weeks of diet. These results exclude the presence of insulin resistance 

under PCSK9 deficient state. Moreover, we measured the ratio between phosphorylated 

Akt vs total Akt, as an index of downstream activation of the insulin receptor [244], in the 

liver (Fig. 7E) and in the soleus muscle (Fig 7F) of mice fed a SFD. Interestingly, in these 
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tissues pAkt/Akt ratio was similar in WT and PCSK9 KO mice, suggesting that downstream 

activation of insulin receptor might not be affected by PCSK9 deficiency.  

 

GTT, ITT and fasting and refeeding experiments revealed a possible key role of PCSK9 in 

the regulation of glucose metabolism. PCSK9 KO mice presented impaired glucose 

tolerance, independent of the type of diet used (high fat or standard fat), but no insulin 

resistance. IPGTT allowed us to bypass the contribution of GLP-1 on glucose homeostasis, 

which could interfere during the fasting and refeeding experiment. Several open 

questions led us to further investigate the mechanisms at the basis of these observations.  
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Figure 5.  IPGTT was performed and plasma glucose levels were measured at 0, 20, 40, 60, and 

120 mins.  Data in WT and PCSK9 KO mice, fed a SFD for 12 weeks or 20 weeks and the 

corresponding AUC for glucose, are presented in panels A to D. Panel E and F show plasma 

glucose levels  and food intake of WT and PCSK9 KO mice after a fasting (overnight) and refeeding 

(4h) experiment. Data are shown as means ± SEM; n = 8 mice per group. *p<0.05. 
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Figure 6.  IPGTT was performed and plasma glucose levels were measured at 0, 20, 40, 60, and 

120 mins.  Data in WT and PCSK9 KO mice, fed a HFD for 12 weeks or 20 weeks and the 

corresponding AUC for glucose, are presented in panels A to D. Panel E and F show plasma 

glucose levels and food intake of WT and PCSK9 KO mice after a fasting (overnight) and refeeding 

(4h) experiment. Data are shown as means ± SEM; n = 8 mice per group. *p<0.05. 
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Figure 7.  IPITT was performed and plasma glucose levels were measured at 0, 20, 40, 60, and 120 

mins.  Data in mice fed a SFD for 12 weeks or 20 weeks are reported in panels A and B.  Data in 

mice fed a HFD for 12 weeks or 20 weeks are presented in panels C and D. Data are shown as 

means ± SEM; n = 8 mice per group. The pAkt/Akt ratio, is presented for the liver (E) and the 

soleus muscle (F) for PCSK9 KO and WT mice, fed a SFD. Data are shown as means ± SEM; n = 5 

mice per group. 
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4. PCSK9 deficiency results in the impairment of insulin secretion and 

histological abnormalities in pancreatic islets 

 
To clarify the mechanisms causing impaired glucose tolerance in our mouse model, we 

subsequently investigated the role of PCSK9 on insulin production and pancreatic β-cells 

function. Interestingly, plasma insulin and C-peptide levels were significantly decreased in 

PCSK9 KO mice compared to WT littermates (Fig. 8A/8B), suggesting that PCSK9 

deficiency might impair insulin secretion. As a further confirmation, following i.p. glucose 

injection, plasma insulin levels increased to lower extent in PCSK9 KO mice compared to 

WT animals (Fig. 8C). Similarly, following fast and refeeding experiment, a reduced 

increase in plasma insulin levels was observed in the absence of PCSK9 (Fig. 8D).  

On the contrary, pancreatic insulin content was significantly increased in PCSK9 KO mice 

compared to WT controls (Fig 9A). The evaluation of pancreatic islets morphology 

revealed that PCSK9 KO mice islets present an irregular shape (Fig 9B), a larger size 

(10022±2802 um2 vs 5061±1843 um2, p<0.05) (Fig.9C), and a significant increase in 

insulin positive areas (8843±1432 um2 vs 3215±508 um2, p<0.05) (Fig. 9D) compared to 

WT littermates. 

We confirmed these data also in PCSK9 KO and WT mice, fed a HFD, evaluating plasma 

insulin levels, pancreatic insulin content and pancreatic islets morphology (Fig. 10). 

Representative images of pancreatic islets of WT and PCSK9 KO, fed a SFD or a HFD, for 20 

weeks, are presented in Fig. 10 C/D.  

 

Here we observed that PCSK9 deficiency is associated with decreased plasma insulin and 

C-peptide levels, a finding paralleled by altered pancreatic morphology and insulin 

content. These data suggested an impaired beta cells function in PCSK9 KO mice, 

independent of the type of diet used, and promped us to further investigate the 

mechanisms responsible. 
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Figure 8.  Plasma insulin and C-peptide levels of WT and PCSK9 KO mice, fed a SFD, are shown in 

panels A and B. Plasma insulin levels before and after 5’ of IPGTT are presented in panel C 

(*p<0.05 vs 0; $p<0.05 vs 5’ WT) while following fasting (overnight) and refeeding (4h) experiment 

are presented in panel D (*p<0.05 vs WT; $p<0.05 vs Fasted KO). Data are shown as means ± SEM; 

n = 8 mice per group.  
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Figure 9.  Pancreatic insulin content in PCSK9 KO and WT mice, fed a SFD, is shown in panels A. 

Data are shown as means ± SEM; n = 8 mice per group. Pancreatic islets morphology shows larger 

islets in PCSK9 KO mice compared to WT with significantly increased insulin positive areas (panels 

B to D).  A representative image is presented in panel B; data in panels C and D are shown as 

mean ± SEM of 6 to 8 representative sections for each pancreas (8 animals for each group); 

*p<0.05. Scale bar in panel C: 30 μm.  
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Figure 10. Plasma insulin levels and pancreatic insulin content were measured in PCSK9 KO and 

WT mice fed a HFD (panel A and panel B). Data are shown as means ± SEM; n = 8 mice per group. 

*p<0.05. Representative images of pancreatic islets of WT and PCSK9 KO, fed a SFD (panel C) or a 

HFD (panel D) for 20 weeks, show differences in islets morphology between the two groups. n = 8 

mice per group. 
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5. PCSK9 effect on glucose metabolism is dependent on the presence of 

the LDLR 

 
In order to further investigated the molecular mechanisms responsible for the phenotype 

observed in PCSK9 KO mice, we focused our attention on the LDLR. The LDLR is 

abundantly expressed on the surface of pancreatic β cells, where it plays a key role in the 

uptake of LDL [2]. Moreover, increased β cells cholesterol content was frequently 

associated with decreased insulin secretion [245, 246].   

Firstly, to evaluate the impact of PCSK9 on the pancreatic expression of the LDLR, we 

performed immunofluorescence analysis of pancreatic sections from WT and PCSK9 KO 

mice. In agreement with previous observation [156], we showed that LDLR (blue signal) 

colocalizes with insulin positive areas (red signal), confirming its considerable expression 

on the surface of pancreatic β cells (Fig. 11). Interestingly, flow cytometry analysis 

showed that the LDLR expression was significantly increased in the pancreatic islets 

isolated from PCSK9 KO animals compared to WT littermates (Fig. 12). In addition to 

increased LDLR expression, pancreatic islets from PCSK9 KO mice presented higher 

cholesterol esters content compared to WT islets, together with significant changes in 

fatty acid lipidome (Fig. 13A). This impaired lipid profile was paralleled by the 

downregulation of genes involved in cholesterol biosynthesis and uptake, including 

HMGCoA-R and LDLR and the increase of the expression of ACAT1, which promotes 

cholesterol esterification. A modest but not significant increase was also observed in 

genes involved in cholesterol efflux, such as ABCA1, ABCG1 and LXR (Fig. 13B). 

To further test the hypothesis that the observed phenotype in PCSK9 KO mice could 

dependent on the impact on LDLR levels, we create a double KO animal model, 

PCSK9/LDLR DKO. GTT and ITT were performed in PCSK9/LDLR DKO mice and LDLR KO 

littermates, fed a SFD. The delayed glucose response observed in PCSK9 deficient 

conditions was not observed in PCSK9/LDLR DKO mice and, indeed, GTT and ITT curves 

were superimposable between the two animal groups (Fig. 14A and 14E) and similar to 

those observed in WT animals. Also the plasma glucose AUC during GTT was similar in the 

two experimental groups (Fig. 14B). Fast and refeeding experiments confirmed these 

data, showing no difference in plasma glucose levels between PCSK9/LDLR DKO and LDLR 
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KO mice (190±6 mg/dl for PCSK9/LDLR DKO compared to 191±7 mg/dl for LDLR KO mice), 

paralleled with similar food consumption during the 4h of fasting (Fig. 14C and 14D). 

Finally, we demonstrated that PCSK9/LDLR DKO mice and LDLR KO littermates were 

characterized by similar levels of both plasma and pancreatic insulin (5.17±1.08 ng/ml vs 

4.67±1.25 ng/ml, p=ns) (72.0±21.7 ng/mg of tissue vs 77.7±23.1 ng/mg of tissue p=ns) 

(Fig. 15A and 15B). The evaluation of pancreatic islets morphology revealed no difference 

in islets shape, size and insulin positive areas between PCSK9/LDLR DKO and LDLR KO 

mice, whose features are similar to those observed in WT animals (Fig. 15 C to E).  

 

Here we demonstrated that PCSK9 is able to modulate the expression of the LDLR also at 

the pancreatic level. Moreover, the observations that glucose tolerance, insulin tolerance, 

plasma insulin levels and pancreatic islets morphology in DKO were similar to those of 

control mice, suggest the key role of the LDLR in driving PCSK9 dependent pancreatic 

dysfunction.  
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Figure 11. Representative pictures of pancreatic islets from WT and PCSK9 KO mice. The islets 

were stained for insulin, somatostatin and LDLR, and the results indicated that LDLR colocalizes 

with insulin positive areas (beta cells).  Scale bar: 30 μm.  
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Figure 12. Representative panel for LDLR expression in pancreatic islets isolated from WT mice 

(upper lane) and PCSK9 KO mice (lower lane). Unstained cells, cells stained only with Alexa Fluor 

655 and cells stained with anti-LDLR are shown. The panel presents the overlay of LDLR 

fluorescence intensity in PCSK9 KO and WT mice and the difference (data are shown as mean ± 

SEM, n=5, p<0.05).  
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Figure 13. Cholesterol esters and fatty acids content were measured in pancreatic islets from 

PCSK9 KO and WT mice (panel A). The expression of genes related to cholesterol biosynthesis, 

uptake and efflux, and the expression of ACAT1 was evaluated in pancreatic islets isolated from 

PCSK9 KO and WT mice (panel B). Data presented in panel A (*p<0.05; Unpaired T Test; n = 3 mice 

per group) and B (*p<0.05; T Test; n = 6 mice per group) are shown as means ± SEM. 
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Figure 14.  IPGTT was performed and plasma glucose levels were measured at 0, 20, 40, 60, and 

120 mins. Data in LDLR KO and PCSK9/LDLR DKO mice, fed a SFD for 12 weeks, and the 

corresponding AUC for glucose, are presented in panels A and B. Panel C and D show plasma 

glucose levels and food intake of LDLR KO and PCSK9/LDLR DKO mice after a fasting (overnight) 

and refeeding (4h) experiment. IPITT was performed in mice fed a SFD for 12 weeks and plasma 

glucose levels measured at 0, 20, 40, 60, and 120 mins are reported in panels E.  Data are shown 

as means ± SEM; n = 8 mice per group. 
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Figure 15.  Plasma insulin levels and pancreatic insulin content of LDLR KO and PCSK9/LDLR DKO 

mice are presented in panel A and panel B. Panel C shows a representative image of pancreatic 

islet morphology of PCSK9/LDLR DKO, LDLR KO and WT mice, while panels D and E present data 

on pancreatic islets size and insulin positive areas size. Data in panels A and B are shown as mean 

± SEM; n = 8 mice per group. Data in panels D and F are shown as mean ± SEM of 6 to 8 

representative sections for each pancreas (8 animals for each group). 
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6. Circulating PCSK9 does not impact glucose metabolism and beta cells 

function 

 

Despite PCSK9 is mainly produced and released by the liver, it is also synthesized to a 

relevant amount in other tissues, such as the brain, the intestine and the pancreas [1]. 

Here we investigated if the phenotype observed in PSCK9 KO (full body) mice depends on 

circulating liver-derived PCSK9 or on PCSK9 produced at the pancreatic level. 

Firstly, we demonstrated that in pancreatic islets of WT mice PCSK9 colocalizes with 

somatostatin positive cells (delta cells) but not with alpha or beta cells (Fig. 16A). As 

expected, the analysis of islets derived from PCSK9 KO mice confirmed the absence of the 

protein in delta cells of these animals (Fig. 16B). 

To dissect out the role of circulating liver-derived PCSK9 from those produced in the 

pancreas, we tested glucose metabolism in SFD fed liver-specific PCSK9 KO mice. PCSK9 

mRNA expression was almost abolished in the liver of AlbCre+/PCSK9LoxP/LoxP mice (Fig. 

17A). As a consequence, PCSK9 protein was almost undetectable in plasma from 

AlbCre+/PCSK9LoxP/LoxP, while in AlbCre-/PCSK9LoxP/LoxP mice plasma PCSK9 levels were 

around 10 fold higher (Fig. 17B). As expected, plasma cholesterol levels in 

AlbCre+/PCSK9LoxP/LoxP mice were significantly lower compared to AlbCre-/PCSK9LoxP/LoxP 

(41.8±7.2 mg/dl vs 68.5± 10.2 mg/dl p<0.05) and similar to those observed in PCSK9 KO 

mice (51.1±14.0 mg/dl), further confirming the key role of circulating, liver-derived PCSK9 

on plasma cholesterol levels (Fig. 17C). On the contrary, PCSK9 mRNA expression in 

pancreas was similar between AlbCre+/PCSK9LoxP/LoxP and  AlbCre-/PCSK9LoxP/LoxP mice (Fig. 

17A), also confirmed through immunofluorescence analysis of pancreatic islets (Fig. 17D). 

Flow cytometry analysis revealed that LDLR expression (Fig. 18A) was similar in pancreatic 

islets from AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice and the same was true for 

cholesterol esters levels (Fig. 18B).  

Once characterized our model, we focused our attention on glucose metabolism. Of note, 

AlbCre+/PCSK9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice presented similar GTT and ITT 

curves (Fig. 19A/B), and the same was true for plasma glucose levels following fast and 

refeeding experiments (194±8 mg/dl for AlbCre+/Pcsk9LoxP/LoxP mice compared to 192± 5 

mg/dl for AlbCre-/Pcsk9LoxP/LoxP mice; p=ns) (Fig. 19C/D). Pancreatic insulin content was 
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similar in the two animal models (133.6±21.1 ng/mg of tissue vs 119.1±19.3 ng/mg of 

tissue for AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice; p=ns) (Fig. 19E), as well as 

the insulin positive areas (Fig. 19F).  

 

Thus, here we reported that liver-selective PCSK9 KO mice have PCSK9 plasma levels 

below the detection limit, while maintaining PCSK9 production in other tissues including 

the pancreas. These mice presented plasma and pancreatic insulin levels, LDLR expression 

as well as pancreatic islets cholesterol esters levels similar to those of control mice, 

suggesting that the impaired glucose metabolism observed in PCSK9 KO (full body) mice 

depends on PCSK9 produced locally in the pancreas.   
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Figure 16. Panel A shows a representative image of the immunofluorescence of pancreatic islets 

from WT mice indicating that PCSK9 colocalizes with somatostatin positive areas (delta cells). 

Panel B presents representative images of PCSK9 expression in pancreatic islets from WT and 

PCSK9 KO mice. Scale bar: 30 μm. 
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Figure 17. Panel A shows PCSK9 mRNA expression in the liver or in the pancreas of 

AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice. Panel B presents plasma PCSK9 levels of 

AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice, while panel C shows  the levels of circulating 

cholesterol in the same animal groups. Representative images of PCSK9 expression, which 

colocalizes with somatostatin positive areas (delta cells), of pancreatic islets from 

AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice; Scale bar: 30 μm (Panel D). Data in panels A, 

B and C are shown as means ± SEM; n=8 mice per group; *p<0.05.  
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Figure 18. Panel A shows a representative panel for LDLR expression in pancreatic islets isolated 

from AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice. The panel presents the overlay of LDLR 

fluorescence intensity in AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice and the 

quantification (data are shown as mean ± SEM n=5). Panel B shows cholesterol esters and fatty 

acids content of pancreatic islets from AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice. Data 

are shown as means ± SEM; n = 8 mice per group. 
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Figure 19. Plasma glucose levels following IPGTT (0, 20, 40, 60, and 120 mins) of 

AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice, fed a SFD for 12 weeks, are presented in 

panels A. Panel B shows plasma glucose levels in AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP 

mice following IPITT (0, 20, 40, 60, and 120 mins). Panel C and D show plasma glucose levels and 

food intake of the same mice after a fasting (overnight) and refeeding (4h) experiment. Pancreatic 

insulin content and insulin positive areas of AlbCre+/Pcsk9LoxP/LoxP and AlbCre-/Pcsk9LoxP/LoxP mice 

are presented in panel E and panel F. Data are shown as means ± SEM; n = 8 mice per group. 
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PCSK9 is a protein, initially discovered to be involved in neuronal development and 

differentiation, which binds to specific proteins and escorts them towards 

endosomes/lysosomes compartments for degradation [1, 3]. PCSK9 came to attention of 

the scientific community in 2003, when it was found mutated in patients affected by FH 

[113], pointing out its key role in lipid metabolism. The LDLR has been identified as the 

main target of PCSK9 [247]. Indeed, mice lacking PCSK9 exhibit an increased hepatic LDLR 

expression, resulting in an increased clearance of circulating LDL-C and 

hypocholesterolemia [248], while PCSK9 overexpression induces a 2-fold increase in 

plasma cholesterol levels [124]. In humans, several mutations in PCSK9 gene were 

described over the years, both “gain-of-function” mutations associated to 

hypercholesterolemia [113] and “loss of function” mutations linked to low levels of LDL-C 

[183, 188].  

On these premises, anti-PCSK9 therapies have been developed and monoclonal 

antibodies against PCSK9 are currently available for the treatment of patients with severe 

hypercholesterolemia and/or at very high cardiovascular risk.  

Although the liver is the main contributor to circulating PCSK9 and its most important 

target [148], other tissues produce PCSK9, pointing to a possible role of this protein 

beyond the control of the hepatic LDLR expression [4]. Of note, the LDLR is abundantly 

expressed by pancreatic β-cells in humans, mice and rats, where it plays a key role in the 

uptake of plasma LDL [2, 157]. The accumulation of cholesterol in pancreatic islets has 

been associated with reduced glucose induced insulin secretion [108] and cellular toxicity 

[245, 249], pointing to the critical role of cholesterol metabolism in this tissue. As a 

consequence of the LDLR-mediated cholesterol influx in β-cells, genetic and acquired 

conditions increasing LDLR expression, should be associated with altered glucose 

metabolism. Loss of function variants in the HMGCoA reductase which, by limiting cellular 

cholesterol biosynthesis, favor cholesterol uptake via LDLR, are associated with increased 

risk of developing diabetes [164]. On the contrary, FH subjects bearing a loss of function 

mutation in the LDLR, present a decreased risk of diabetes [166]. Also pharmacological 

treatments resulting in increased LDLR expression, such as statins, increase the risk of 

diabetes [250], thus indicating that excessive LDLR activity could be the driver of β-cells 

dysfunction and diabetes. Interestingly, the same is true for loss of function variants in 

PCSK9. Indeed, in three different mendelian randomization studies the analysis of the 
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effects of genetic scores consisting of independently inherited polymorphisms in the 

PCSK9 gene resulted into reduced LDL-C levels and cardiovascular events but was also 

associated with an increased risk of diabetes [164, 165, 241]. On these premises and 

given the great interest in anti-PCSK9 therapies, we investigated in detail how PCSK9 

deficiency could impact on non-hepatic tissues, especially pancreas and β-cells function. 

 

The influence of PCSK9 on lipid metabolism and glucose homeostasis was evaluated in 

two different conditions: a state of obesity and metabolic dysfunction (HFD) and a 

physiological condition (SFD). The use of a lipid-rich diet, compared to a standard diet, 

allowed us to investigate the role of PCSK9 in different metabolic settings, thus increasing 

the knowledge about its biological functions. Firstly we demonstrated that C57BL6 WT 

male mice, fed a HFD for 20 weeks, developed alterations in weight gain and lipid 

metabolism, paralleled with impaired glucose tolerance and insulin resistance, confirming 

that we successfully set a mouse model of metabolic disorders.  

Once characterized the model, we investigated the impact of PCSK9 deficiency in both 

conditions (HFD and SFD). As extensively reported in literature [248], PCSK9 KO mice 

showed a significant reduction in cholesterol plasma levels compared to WT littermates, 

ascribable to an increased clearance of circulating LDL-C. However, effects of PCSK9 

beyond the LDLR regulation have been proposed [4]. PCSK9 targets not only the LDLR but 

also the closest family member VLDLR, which is highly expressed in adipose tissue. PCSK9 

deficient mice fed a western type diet presented augmented VAT accumulation 

associated with increased VLDLR expression, a phenotype reverted following the injection 

of a liver selective PCSK9 transgene [119]. We extended this observation by 

demonstrating that PCSK9 KO mice presented a significantly increased ectopic fat 

accumulation compared to WT mice,  both in a physiological condition (SFD) and in a 

state of metabolic dysfunction (HFD). This observation raises the question of a possible 

role of PCSK9 in modulating lipids delivery and accumulation in peripheral tissues. 

However, the main focus of this PhD project regards the role of PCSK9 in glucose 

metabolism. In spite of similar plasma glucose levels at baseline, depending on an 

overnight fasting, PCSK9 KO mice showed a significant delay in glucose clearance 

following intraperitoneal glucose injection (GTT), with both SFD and HFD. The fasting and 

refeeding experiment, performed to point out possible differences in plasma glucose 
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levels also under physiological conditions, confirmed the impaired glucose tolerance 

observed under a PCSK9 deficient state. GLP-1, secreted from L-cells of the 

gastrointestinal mucosa in response to a meal, is known to be an important blood 

glucose-lowering agent [251]. However, the intraperitoneal (IPGTT) instead of the oral 

(OGTT) administration of glucose allowed us to bypass the contribution of GLP-1 on 

glucose homeostasis, which could interfere during the fasting and refeeding experiment. 

Interestingly, the altered phenotype described in PCSK9 KO animals, independently of the 

type of diet used, was not the consequence of an impaired insulin tolerance. Indeed, the 

glycemic curves resulting from the intraperitonel injection of insulin (ITT) were 

superimposable between the two experimental groups, thus excluding the presence of an 

insulin resistant state under PCSK9 deficiency. To further extend this finding, we 

measured the ratio between phosphorylated Akt and total Akt, as an index of 

downstream activation of the insulin receptor [252], both in the liver and in the soleus 

muscle. In these tissues pAkt/Akt ratio was similar in WT and PCSK9 KO mice, confirming 

that the absence of PCSK9 do not affect the activation of the insulin pathway.  

Once excluded an insulin resistance state, we focused on pancreas and β‐cells function to 

understand the causes on which depends the impaired glucose tolerance observed in 

PCSK9 KO mice. Plasma insulin and C-peptide levels were significantly decreased in PCSK9 

KO mice compared to WT littermates, suggesting that PCSK9 deficiency might impair 

insulin secretion. As a further confirmation, plasma insulin levels increased to lower 

extent in the absence of PCSK9 also following both an IPGTT and a fast and refeeding 

experiment. On the contrary, pancreatic insulin content was significantly increased in 

PCSK9 KO mice compared to WT controls. These findings, paralleled with the altered 

pancreatic morphology described in PCSK9 KO animals, led us to hypothesize that PCSK9 

could play a central role in β‐cells function and to further investigate the molecular 

mechanisms involved.    

The LDLR, which is the main PCSK9 target, is abundantly expressed on the surface of 

pancreatic β cells, where it plays a key role in the uptake of LDL-C [2, 157]. The PCSK9-

mediated LDLR degradation has been extensively characterized in liver, while its role in 

pancreas is still debate. Firstly we considered the possibility that PCSK9 could modulate 

the expression of the LDLR also in the pancreas. Interestingly, cytofluorimetric analysis 

showed a clearly increase of the LDLR expression in islets from PCSK9 KO mice compared 
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to islets isolated from WT littermates. Recent studies have focused on the potential 

relationship between cholesterol homeostasis and insulin secretion in β-cells, with a 

deleterious effect of high intracellular cholesterol content on GSIS [245]. Mice with a 

selective inactivation of ABCA1 in β-cells, despite normal plasma cholesterol levels, 

showed an elevated total cholesterol content in islets due to an impaired cholesterol 

efflux, causing an impaired glucose tolerance [253]. Hence, considering the increased 

LDLR expression observed in PCSK9 KO mice, we assessed whether PCSK9 deficiency could 

alter cholesterol content in islets. Lipidomic analysis revealed a higher cholesterol esters 

content in PCSK9 KO islets compared to WT ones, together with significant changes in 

fatty acid lipidome. As excess cellular cholesterol is usually stored as cholesteryl esters 

[254], these findings were paralleled by a strong increase in the expression of ACAT1, a 

key enzyme in the cholesterol esterification pathway. Moreover, the impaired lipid profile 

observed in PCSK9 KO islets associated with a downregulation of genes involved in 

cholesterol biosynthesis and uptake, including HMGCoA-R and LDLR, and with a modest 

but not significant increase in genes involved in cholesterol efflux. These data showed an 

altered β-cells lipid  metabolism in the absence of PCSK9, which could determine an 

impairment in β-cells function and in turn explain the impaired glucose tolerance and the 

reduced insulin secretion observed in PCSK9 KO mice.  

To demonstrate that the PCSK9/LDLR axis and not the other known targets of PCSK9, such 

as VLDLR, ApoER2 or CD36 [118, 119, 255], is responsible for the findings observed, we 

also investigated glucose metabolism in PCSK9/LDLR DKO mice. Glucose tolerance, insulin 

tolerance and plasma insulin levels in DKO animals were similar to those of control group, 

as well as islets morphology and pancreatic insulin content. The lack of differences 

between LDLR KO and PCSK9/LDLR DKO mice confirmed the key role of the LDLR in 

driving PCSK9 dependent pancreatic dysfunction.  

Taken together these observations are critical, especially given that anti-PCSK9 therapies 

have been recently approved for the treatment of familial hypercholesterolemia and 

patients at very high cardiovascular risk. It is possible that, while on the one hand anti-

PCSK9 therapies reduce LDL-C levels and related mortality, on the other hand increase the 

risk of diabetes. Data available from one year of therapy with anti-PCSK9 agents do not 

appear to increase the risk of diabetes [256], even though the possibility that this effect 

might appear after longer term treatments could not be ruled out. 
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However, our data in tissue selective PCSK9 KO mice suggested an alternative 

explanation. Despite PCSK9 is mainly produced and released by the liver, it is also 

synthesized to a relevant amount in other tissues, including the pancreas [1]. A liver 

selective PCSK9 KO model allowed us to investigate if the phenotype observed in PSCK9 

KO (full body) mice depends on circulating liver-derived PCSK9 or on PCSK9 produced at 

the pancreatic level. Liver selective PCSK9 KO mice presented PCSK9 plasma levels below 

the detection limit, while maintaining PCSK9 production in other tissues, including 

pancreatic islets. This setting closely mimics the conditions of patients treated with anti-

PCSK9 antibodies where PCSK9 is absent in the circulation but still produced in 

extrahepatic tissues, in contrast to the genetic studies with PCSK9 LOF where all tissues 

present a PCSK9 deficient condition. Liver selective PCSK9 KO animals showed plasma and 

pancreatic insulin levels, LDLR expression, islets cholesterol esters content similar to 

those of control mice, as well as glucose tolerance and insulin tolerance. These data 

indicate that circulating PCSK9 is not affecting LDLR in pancreas and suggest the 

possibility that anti-PCSK9 therapies might have a limited impact on inducing LDLR 

expression in pancreas. 

 

In summary, we demonstrated the crucial role of PCSK9 in glucose metabolism and 

identified the biological mechanisms involved. PCSK9 critically controls the expression of 

the LDLR also at the pancreatic level and contributes to maintain a proper cholesterol 

content in β-cells.  PCSK9 deficiency results in increased LDLR expression and cholesterol 

esters accumulation in pancreatic islets, which is known to be detrimental for cellular 

functionality. Indeed, cholesterol excess impairs insulin secretion, which could explain the 

impaired glucose tolerance observed in our model. Moreover, our data indicate that this 

effect is independent of circulating PCSK9, suggesting the possibility that anti-PCSK9 

antibodies or liver specific therapies, such as siRNAs, might have a limited impact on LDLR 

expression in pancreas and beta cells function. Future studies should aim at addressing, in 

humans, the safety of targeting circulating PCSK9 on pancreatic β-cell function. 
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Impact of Pcsk9 deficiency on beta cells function 
PCSK9 produced and released from delta cells controls LDLR expression in beta cells. PCSK9 
deficiency results in increased expression of the LDLR in beta cells, thus leading to increased 
accumulation of cholesterol esters which impacts glucose-stimulated insulin secretion, resulting in 
hyperglycemia and impaired glucose tolerance observed in PCSK9 KO mice. 
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