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INTRODUCTION 
 

 
1. THE HYPOXIA INDUCIBLE FACTOR (HIF) AND ITS REGULATION 
 

Oxygen is the main element present on the earth (Webb et al. 2009) and it is fundamental for 

life and strongly linked to the evolution of the whole planet. The ability of cells to adapt and maintain 

homeostasis under hypoxic conditions depends on an highly conserved oxygen-sensing mechanism 

which regulates the transcription of several genes involved in metabolic adaptation, angiogenesis, 

energy conservation, erythropoiesis, and cell survival (Gunaratnam and Bonventre 2009). A reduced 

level or tension of oxygen, called hypoxia, is observed in many situations, such as embryogenesis 

(Provot and Schipani 2007), exposure to high altitude or physical exercise (Richardson et al. 1995), 

as well as pathologic conditions (Semenza 2014). 

Low oxygen levels can determine cellular dysfunction and eventually cell death, in aerobic 

organisms (Kaelin and Ratcliffe 2008). In humans, there are two different clinical scenarios of 

hypoxia: the former regarding the hypoxia localized in the organs such as myocardial infarction, 

ischemic stroke, organ harvesting for transplantation or surgical procedures associated with cessation 

of arterial blood supply, the latter occurring as a systemic hypoxia, in example the intense and 

protracted hypotension, shock and cardiorespiratory arrest (Heyman et al. 2016). Interestingly, each 

tissue is characterized by a specific hypoxic threshold which depends on the baseline oxygen supply, 

the metabolic rates, the ability to shift energy metabolism towards anaerobic glycolysis. Thus, it is 

critical to identify the absolute value of physiological hypoxia, but it is normally defined as a decrease 

in oxygen tension under the standard concentration present in organ or specific cell types (Heyman 

et al. 2016). The role of cardiovascular and respiratory systems is to guarantee the proper oxygen 

supply to cells and tissues (Kaelin and Ratcliffe 2008). The cellular response to oxygen levels’ 

variation is ultimately regulated by hypoxia-inducible factor (HIF) (Greer et al. 2012). HIF has a 

pivotal role in restoring the homeostasis by promoting glycolysis, erythropoiesis and angiogenesis 

(Semenza 1996, Wenger and Gassmann 1997) (Iyer et al. 1998). For these reasons, HIF is considered 

the master regulator of hypoxia processes, and it is able to play a central role in the capacity to acquire 

resistance to hypoxia. 
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1.1. STRUCTURE AND FUNCTION OF THE HYPOXIA INDUCIBLE FACTOR (HIF) 

The hypoxia-inducible factor (HIF) is a heterodimer composed by an oxygen-sensible α-subunit 

(HIF-1α) and a constitutively expressed β-subunit (HIF-1β or ARNT). Both subunits are part of the 

basic Helix–Loop–Helix PER-ARNT-SIM (bHLH-PAS) family of transcription factors. Three genes 

encoding distinct HIF-α isoforms exist in humans: HIF1A, encoding HIF-1α; EPAS1, encoding HIF-

2α; and HIF3A, which is expressed as multiple HIF-3α splice variants (Makino et al. 2002, Maynard 

et al. 2003). HIF-1α, HIF-2α and HIF-3α splice variants 1–3 possess an oxygen-dependent 

degradation domain (ODD) and an N-terminal transactivation domain (NTAD), while HIF-1α and 

HIF-2α possess a C-terminal transactivation domain (CTAD) (Jiang et al. 1997, Pugh et al. 1997, 

O'Rourke et al. 1999, Hara et al. 2001, Maynard et al. 2003).  

The two best characterized HIF-α isoforms (HIF-1α and HIF-2α) contain two sites of prolyl 

hydroxylation and a single site of asparaginyl hydroxylation. HIF-1α prolyl hydroxylation occurs at 

two sites (residues Pro402 and Pro564) lying in the N-terminal (NODD) and C-terminal (CODD) 

regions of the central ODD in HIF-1α (Jaakkola et al. 2001). HIF-1α prolyl hydroxylation supports 

the interaction with the von Hippel-Lindau ubiquitin E3 ligase complex and targets HIF-α subunits 

for degradation by the ubiquitin-proteasome pathway (Hon et al. 2002). 

 

Figure 1. Schematic representation of HIF-α. bHLH = basic helix loop helix domain; PAS = Per-ARNT-Sim motif; 
ODDD = oxygen-dependent degradation domain; N-TAD = N-terminal transactivation domain; C-TAD = C-terminal 
transactivation domain. Hydroxylated residues (red).  

  

In normoxia, HIF-1α is constitutively transcribed and translated to HIF-1α protein. While in 

hypoxia, HIF-1α is hydroxylated and degraded by the ubiquitin-proteosome pathway 

(Karuppagounder and Ratan 2012). HIF-1α is hydroxylated on at least one of two conserved proline 

residues Pro402 and Pro564 within the ODD (Jaakkola et al. 2001) by prolyl-hydroxylase domain 

(PHDs)-containing enzymes (Epstein et al. 2001) in the presence of oxygen, ferrous iron and 

ascorbate (Schofield and Ratcliffe 2004). Hydroxylation of HIF-1α allows it to bind to the Von 

Hippel-Lindau tumor suppressor protein (pVHL) that acts as a recognition component of E3 ubiquitin 
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ligase complex. Hydroxylated HIF-1α is polyubiquitinated at three lysines in the ODD domain and 

degraded by the 26S proteosome (Paltoglou and Roberts 2007). pVHL is part of a ubiquitin ligase 

linking the HIF subunits via elongin C and a complex composed of several proteins to the 

ubiquitination system (Wenger et al. 2005). 

An alteration in HIF ubiquitination is followed by HIF-α stabilization, increasing the 

transcription of its target genes (Haase 2009). In this context, the factor-inhibiting-HIF (FIH) operates 

in the carboxy-terminal transactivation domain of HIF-α with oxygen-dependent asparagine 

hydroxylation by blocking CBP/p300 recruitment. Inhibition of FIH upon hypoxia promotes 

CBP/p300 recruitment, leading to an up-regulation of HIF target genes (Mahon et al. 2001). 

While hydroxylation is required for the polyubiquitination and degradation, thus the non-

hydroxylated HIF-1α is stabilized and translocates to the nucleus. In the nucleus, the HIF-1α binds 

several factors in order to promote the transcription of specific genes that induce the adaptive response 

to hypoxia; in particular, HIF-1α can bind HIF-1β to form HIF-1α/HIF-1β heterodimers, before 

binding to hypoxia-response elements (HREs) comprising a core 5’-[A/G]CGTG-3’ consensus 

sequence (Wenger et al. 2005). This heterodimer can bind to HREs and recruit specific transcriptional 

coactivator complexes, including p300/CBP and SRC (steroid receptor coactivator). HIF-1α and HIF-

2α proteins are closely related and are regulated in a similar manner by oxygen levels, but can differ 

in their coactivators (Karuppagounder and Ratan 2012). 
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Figure 2. Regulation of hypoxia-inducible factor (HIF) activity. OH = hydroxylation; Ub = ubiquitin. 

 

 

A milestone in the study of the oxygen-sensing mechanisms has been the control of 

erythropoietin (EPO) gene expression (Webb et al. 2009). In late 1995, the discovery of the 

modulation of EPO gene transcription led to the first discovery of HIF family as important 

transcriptional activators (Wang and Semenza 1995).  

It has been reported that HIF regulates about 300 target genes, which promote the hypoxia 

response pathway to address the oxygen delivery and restrict its use. It is well known that HIF-1α 

and HIF-2α regulate the expression of different pathway, such as glycolysis and EPO, respectively 

(Kaelin and Ratcliffe 2008). Nowadays, we know that HIF could boast a long list of target genes 

including hexokinase, phosphofructokinase, aldolase, enolase, glucose transporters, adrenomedullin, 

heme-oxygenase-1 (HO-1), carbonic anhydrase-9 (CAIX), vascular endothelial growth factor 

(VEGF), transforming growth factor (TGF), insulin-like growth factor (IGF) and its binding proteins, 

transferrin, transferrin receptor and ceruloplasmin, nitric oxide synthases, endothelin and endothelin 

converting enzyme-1 (ECE-1), adrenergic receptors, and many others (Schodel et al. 2011). 

Moreover, it has been demonstrated the pivotal role of HIF also in stem cell biology. For 

example, it was shown that pluripotent embryonic stem cells (ESCs) undergo a metabolic shift 

towards glycolysis during development (Zhou et al. 2012). Indeed, HIF1α promotes the transcription 

of key metabolic enzymes such as pyruvate dehydrogenase kinase-1 (PDK1) (Kim et al. 2006) and 
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lactate dehydrogenase A (LDHA) (Seagroves et al. 2001). Other HIF target genes include those 

involved in cell cycle and apoptosis signaling, however, the role of HIF in cell proliferation and 

survival response is not completely understood (Mason and Johnson 2007). 

It is important to notice that HIF-1α regulates more than 2% of proteins in mammalians and 

controls all apoptotic and angiogenic pathways (Sen Banerjee et al. 2012). Therefore, the regulation 

of HIF-1α plays a pivotal role in many cardioprotective approaches (Hirota and Semenza 2006). 

 
1.2. HIF PROLYL HYDROXYLASES (PHDs) 

HIF prolyl hydroxylases (PHDs) are oxygen sensors and promote HIF-1α degradation. As 

mentioned above, HIF is mainly regulated by oxygen-dependent proteolysis of its α-subunit 

(Gunaratnam and Bonventre 2009). Thus, PHDs play a pivotal role in the regulation of HIF adaptive 

response (Myllyharju 2013), while PHD inhibition or HIF stabilization allow a control on HIF target 

genes (Webb et al. 2009).  

PHDs belong to the superfamily of iron and 2-oxoglutarate (2OG)-dependent dioxygenase 

(Hausinger 2004, Loenarz and Schofield 2008). 2OG oxygenases have a role in different mechanisms, 

such as: collagen and carnitine biosynthesis, lipid metabolism, histone/nucleic acid 

modification/repair, ribosome hydroxylation and modification of epidermal growth factor-like 

domains, and RNA splicing related proteins (Klose and Zhang 2007). 

Prolyl hydroxylases are the most important regulators of HIF levels (Bruick and McKnight 

2001), these enzymes require molecular oxygen and Fe2+ for their reactions (Sen Banerjee et al. 

2012).  

The first PHD was discovered in C. Elegans in 2001 (Epstein et al. 2001), and it was named 

egg-laying abnormal 9 (EGL-9). Three ortholog human isoforms were next identified and named 

PHD1 (EGLN2), PHD2 (EGLN1), PHD3 (EGLN3). Alternative splicing variants have been 

described for PHD2 (Hirsila et al. 2003), PHD3 (Cervera et al. 2006) and a shorter PHD1 isoform 

result from alternative translational initiation (Tian et al. 2006). The three known PHD isoforms 

PHD1, PHD2 and PHD3, hydroxylate the HIF-1α subunit in the presence of oxygen (Sen Banerjee 

et al. 2012). Their expression level, throughout the body, depends on the types of tissue (Berra et al. 

2003). PHD1 is abundant in the testis, PHD2 is ubiquitously expressed, while, PHD3 is expressed in 

the heart and smooth muscle (Willam et al. 2006). Regarding their localization in the cell, PHD1 was 

found exclusively in the nucleus, while PHD2 is predominant in the cytoplasm but is able to shuttle 

in between the cytoplasm and the nucleus. Finally, PHD3 was found to be uniformly distributed in 

both these cellular compartments (Berra et al. 2003). Among the three PHD family members, PHD2 
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appears to be the most important in the regulation of HIF-1α levels (Berra et al. 2003, Minamishima 

et al. 2008). Indeed, the inactivation of PHD2 strongly dysregulates normal murine embryonic 

development, resulting in embryonic lethality, whereas PHD1 and PHD3 KO mice are viable (Takeda 

et al. 2006). 

 

1.3. PHDs INHIBITORS 

Hypoxia can be partially mimicked by a number of compounds that inhibit 2OG oxygenases 

including iron chelators, transition metal ions, and small molecule 2OG analogues. There is 

widespread interest in the possibility of developing PHDs inhibitors that activate HIF pathways 

therapeutically in ischemic disease (Myllyharju 2009). In fact, while PHDs were becoming attractive 

drug targets (Sen Banerjee et al. 2012), PHDs inhibitors gained a protective role in stroke models, 

but there is still significant work to do to make this a viable therapeutic approach (Karuppagounder 

and Ratan 2012). The control PHD activity should be a new therapeutic target to regulate the adaptive 

response to hypoxia. For this reason, several compounds have been used to inhibit PHDs, in order to 

stabilize HIF, and increase the transcription of its target genes (Heyman et al. 2011). For example, 

renal EPO synthesis is hastened in animals and humans given DMOG derivatives (Bernhardt et al. 

2010), enhancing erythropoiesis. Furthermore, HIF stabilization was found to be organ-protective in 

renal, cardiac, neural (Corcoran and O'Connor 2013) or gastrointestinal injuries (Hart et al. 2011), to 

improve graft survival of transplanted organs and to prevent organ damage in septic shock (Heyman 

et al. 2011). Nonetheless, HIF stabilization results in a non-selective regulation of its gene expression. 

In fact, some target genes promote vasoconstriction (endothelin-1), thrombosis (plasminogen 

activator inhibitor-1) or fibrosis (fibroblast growth factor, connective tissue growth factor). But at the 

same time induce angiogenesis by VEGF activation, which is beneficial in myocardial infarction (Bao 

et al. 2010), but detrimental in proliferative retinopathy and macular degeneration (Heyman et al. 

2016). 

However, it has been reported that GSK360A, a novel orally active PHDs inhibitor, could 

promote HIF pathway and play a cardioprotective role in rats, improving ventricular function, 

remodeling, and vascularity (Bao et al. 2010). In addition, it has been recently discovered new 

tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with 

the 2OG. One compound (IOX4) induces HIF-1α in cells and in wildtype mice with marked induction 

in the brain tissue, revealing its therapeutic use in cerebral diseases (Chan et al. 2015). Moreover, 

IOX2 was identified eligible for study the functional effects of PHDs inhibition in cells and in animals 

(Chowdhury et al. 2013). FG-4592, also known as Roxadustat, an oral PHDs inhibitor that stimulates 

erythropoiesis, regulates iron metabolism, and reduces hepcidin, was evaluated in patients with 
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nondialysis chronic kidney disease (CKD) and is now employed in a clinic trial phase 3 for the 

treatment of renal anemia (Maxwell and Eckardt 2016).  

In general, the activity of PHDs inhibitors is to block the binding of the co-substrate 2OG to 

the catalytic domain, which is fundamental for enzymatic activity (Fraisl et al. 2009). Therefore, in 

the last few years several 2OG analogues, such as N-oxalylglycine or its precursor DMOG, have been 

developed to inhibit PHDs. Moreover, PHDs inhibitors can interfere with the catalytic activity by 

chelating iron, such as desferrioxamine (DFO). Unfortunately, none of these compounds have an 

absolute specificity for the distinct PHD sub-types (Fraisl et al. 2009). Finally, metal ions such as 

Co2+, Cu2+, Zn2+ and Mn2+ cannot support the enzymatic activity of the PHDs, and therefore also 

function as inhibitors (Schofield and Ratcliffe 2004). As ascorbate is maintaining iron in its active 

(reduced) Fe2+ state, it is essential for proper PHD function. Several other enzymes host an iron 

molecule in their catalytic domain, therefore, attempts to inhibit PHDs using chelating agents or ion 

substitution will probably be non-selective, and result in undesired side effects. Indeed, iron chelation 

interferes with several other cellular processes, such as oxidative phosphorylation and arachidonic 

acid signaling (Needleman et al. 1986). The main problem of the commercial available PHDs 

inhibitors is their lack of specificity. So, further compounds are being developed to be more powerful 

and selective, as the new aromatic heterocycles, related to pyridine derivatives, including 

pyrazolopyridines and 8-hydroxyquinolines (Hewitson et al. 2004). The generation of 8-

hydroxyquinolines is based on a recently described isoquinoline derivative that specifically inhibits 

PHDs. In the last few years, it was characterized the identification of dual action PHD inhibitors, such 

as diacylhydrazines, which bind to the active site iron and also induce the binding of a second iron 

ion at the active site (Yeoh et al. 2013). It was demonstrated that these compounds have the potential 

to simultaneously chelate a second transition metal ion when appropriately functionalized with 

additional metal-chelating groups (Li et al. 2011).  

Taken together, these data encourage efforts to develop new PHDs inhibitors, but more 

information is required to define their function, biological properties, and safety profile. 

 

 

2. SKELETAL MUSCLE DIFFERENTIATION 

 
2.1. MECHANISMS OF MYOGENESIS 

Myogenesis leads to the formation of muscle tissue, which is promoted by the activation of signaling 

molecules from neighboring tissues which determine myogenic cell fate (Buckingham 2001). 
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Skeletal muscle cells, or myotubes, are contractile, multinucleated cells, which constitute the 

minimal functional unit of all muscles in the body. Undifferentiated muscle cells are called myoblasts, 

they are mononucleated and are characterized by the expression of muscle-specific transcription 

factors (muscle regulatory factors, MRFs) (Bismuth and Relaix 2010). MRFs, myocyte enhancer 

factor 2 (Mef2) family and other general and muscle-specific factors are crucial for the differentiation 

of skeletal muscle cells, and coordinate the expression of target genes during myogenesis (Berkes 

and Tapscott 2005). 

In the embryo, skeletal myogenic progenitors originate from somites (Summerbell and Rigby 

2000), which are formed along the rostro-caudal axis of the embryo and are organized in dorso-ventral 

compartments (Bismuth and Relaix 2010): somites differentiate along the dorso–ventral axis to give 

rise to the dorsally located epithelial dermomyotome and the ventrally located mesenchymal 

sclerotome. The dermomyotome gives rise to the dermis and the skeletal muscle of the trunk and 

limbs, whereas the sclerotome develops into the cartilage and bone. Skeletal muscles originated from 

the dermomyotome (Bentzinger et al. 2012), and in particular the first muscle fibers are formed, then 

additional fibers are added using the former as a template (Parker et al. 2003).  

It has been observed that myogenic precursors express Pax3, Pax7 and low levels of Myf5 in 

the dermomyotome (Jostes et al. 1990). The Pax3-expressing cells proliferate as an undifferentiated 

population due to the secretion of specific signals from the lateral plate mesoderm and surface 

ectoderm (Amthor et al. 1999). In detail, Pax3 is expressed in the pre-somitic mesoderm and early 

epithelial somites (Goulding et al. 1994), during the early stages of embryonic development ,whereas 

Pax7 is induced during somite maturation (Jostes et al. 1990). The principal regulator and activator 

of Pax3 is the genetic network Six-Eya-Dach, which is able to induce, when overexpressed, the up-

regulation of Pax3, ultimately promoting muscle differentiation (Kardon et al. 2002). 

The high concentrations of FGF and WNT in the caudal area of somites lead to formation of 

mesenchymal cells in an undifferentiated state (Aulehla and Pourquie 2010) which represent the most 

ventral part, called the sclerotome, while most dorsally the dermomyotome is comprised of cells that 

will generate dermis and muscle progenitors cells (MPC) and to the majority of skeletal muscles.  

The maturation of a dermomyotome will form the myotome, which contains the first 

differentiated myofibers and it is characterized by MyoD and Myf5 expression (Kiefer and Hauschka 

2001).  

Muscle progenitors subsequently fit into the primary myotome, and these will originate a 

fraction of the satellite cells (SCs) that resides within the postnatal skeletal muscle (Relaix et al. 

2005). The epaxial (dorso-medial) part of the myotome will originate the back muscles and is 

constituted when progenitor cells of the dorsal medial lip (DML) leave the cell cycle and terminally 



	 11	

differentiate (Christ and Ordahl 1995); while the hypaxial (ventro-lateral) somite will generate the 

rest of the trunk and limb muscles (Parker et al. 2003).  

 

 
Figure 3. Schematic representation of vertebrate somitogenesis (Buckingham 2001) 

 

In adult, myogenesis is regulated by MRFs, which are expressed in a temporally ordered 

manner (Yablonka-Reuveni and Rivera 1994). MRFs are constituted by myogenic determination 

factor 1 (MyoD), myogenic factor 5 (Myf5), myogenin (also known as myogenic factor 4 when first 

discovered), and myogenic regulatory factor 4 (MRF4, also known as myogenic factor 6 and herculin 

when first discovered), which are involved in determining the myogenic fate during early 

embryogenesis (Ludolph and Konieczny 1995).  

It has been demonstrated the pivotal role of MRFs during myogenesis, by the binding between 

their homologous "basic helix-loop-helix" (bHLH) domain and DNA sequence, which gives rise to 

the dimerization with the E-protein family (Pownall et al. 2002). 

Each MRF protein has a different temporal expression which reflects the functional differences 

(Wilson-Rawls et al. 1999). In particular, the early markers Myf5 and MyoD are necessary for the 

differentiation of mesodermal cells into myoblasts, while the late myogenin and MRF4 are required 

for muscle fusion and myotubes differentiation (Ferri et al. 2009).  

The myoblast induction (commitment) is driven by Myf5 and MyoD and it is essential for the 

determination of myogenic line, since both regulate the expression of specific proteins expressed in 

the muscle, as myogenin, M-cadherin, Myosin Heavy Chain (MHC) and creatin-muscle kinase. Myf5 
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was first transcribed in cells located at the edges of dermomyotome which later delaminate to form 

the skeletal muscle of the myotome (Tajbakhsh and Buckingham 2000). MyoD is later activated in 

hypaxial and epaxial progenitors that generate the mature myotome (Braun et al. 1992). In mutant 

mice for MyoD, Myf5 remains highly expressed, even if its expression normally decreases after the 

activation of MyoD. These results show that these two transcription factors are overlapping and each 

one is able to compensate the absence of the other, according to the gene redundancy. In mice double 

mutants Myf5/MyoD, the process of myogenesis failed (Rudnicki et al. 1993). Furthermore, 

transfecting human fibroblasts with a plasmid containing the cDNA of MyoD, it was shown that 

MyoD is crucial in promoting myogenesis and the induction of myogenin and MHC (Berkes and 

Tapscott 2005). Myogenin has a pivotal role in the differentiation of myoblasts (Walters et al. 2000) 

and knockout (KO) mice show the presence of mononuclear cells and rare muscle fibers, revealing 

that myogenin regulates the fusion of mononuclear myoblasts and the formation of multinucleated 

fibers called myotubes (Hasty et al. 1993). Furthermore, MRF4 is expressed in differentiated muscle 

fibers suggesting its involvement in the late stages of muscle differentiation; in fact, MRF4 KO mice 

develop a normal skeletal muscle with higher levels of expression of myogenin than wildtype mice, 

suggesting that MRF4 and myogenin are partially overlapping (Zhu and Miller 1997). 

Mef2 (myocyte enhancer factors 2) is important for the skeletal muscle fate (Yun and Wold 1996). 

Although MRFs control myoblast differentiation by regulating gene expression by binding to distinct 

DNA sequences (E-box) localized in the promoters of muscle-specific genes (Berkes and Tapscott 

2005), the complete activation of the expression of these genes depends on their association with 

other bHLH transcription factors, represented by the Mef2 transcription factors, belonging to the 

MADS family, which function as transcriptional co-activators of the myogenic proteins (Black et al. 

1998). The MADS domain and Mef2 domain that characterize these proteins respectively mediate 

DNA binding and dimerization (Olson et al. 1995). These factors function as homo- and heterodimers 

binding consensus sequences rich in A/T present in almost all the myogenic promoters and 

synergistically with the MRFs proteins alter the chromatin structure, thus promoting the transcription 

and myogenesis (Naya et al. 1999). The Mef2 factors are not sufficient to induce the myogenic 

program alone and their expression is under the control of the MyoD family (Dodou et al. 2003). 

After birth, the expression of Mef2 decreases, but is restored during muscle regeneration. 

In the embryo, skeletal muscle formation is constituted by two different phases: the first one 

includes an early myogenesis during the initial 14 days, subsequently, the following step is 

characterized by the proliferation and differentiation of myoblasts, determining the formation and 

maturation of muscle fiber types identity (Zhang and McLennan 1998). In fact, the final part of 

muscle differentiation process is regulated by the expression of Myosin Heavy Chain (MHC), which 
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is expressed in different isoforms depending on the muscle type (Weiss and Leinwand 1996). In adult, 

there are four different isoforms: MHC type I, or slow isoform and three fast MHC type IIb, IIa and 

IId/x. According to these isoforms, it is possible to classify three types of skeletal muscle fibers: slow, 

fast and intermediate. The slow fibers express MHC type I, show small dimensions and are 

characterized by an oxidative metabolism. Physiologically, slow fibers exhibit slow speeds of 

contraction, but a high resistance to fatigue. On the other hand, fast fibers express the MHC type IIb 

and are predominantly characterized by glycolytic anaerobic metabolism. These fibers are able to 

contract very rapidly, producing intense muscular forces, but have a low resistance to fatigue. Finally, 

the intermediate fibers show contractile and metabolic characteristics in the middle to the previously 

described muscle fibers, and express MHC isoforms IIa and IId/x (Talmadge et al. 1993). 

The molecular mechanisms regulating slow versus fast fiber phenotypes were investigated 

(Buckingham 2001): slow fibers will revert to a fast phenotype on denervation. It has been 

demonstrated that NFAT transcription factor regulates the gene expression in slow fibers as a result 

of calcineurin-activated Ca2+-dependent pathway (Olson and Williams 2000), moreover it has been 

proposed also MEF2 as another mediator of calcineurin signalling (Olson and Williams 2000).  

Furthermore, slow fiber type identity depends on an E-box motif (O'Mahoney et al. 1998), 

which in the case of the slow Troponin1 gene binds a TFII-1 like factor (O'Mahoney et al. 1998). 

Finally, in order to mimic the effect of slow motor neurons on myosin gene expression, Ras signalling 

was found as another important actor for the activation of slow muscle specific genes.  

 

2.2. ROLE OF SATELLITE CELLS IN MUSCLE REGENERATION 

Satellite cells (SCs) are muscle stem cells, known as myogenic progenitors localized in a 

specific niches, suggesting the critical role of oxygen during muscle regeneration (Chaillou and 

Lanner 2016).  In vivo, SCs respond to hypoxic, ischemic muscle damage by activation, proliferation, 

differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of 

SCs (Koning et al. 2011). Therefore, the hypothesis is that hypoxia improves proliferation and 

differentiation of SCs (Koning et al. 2011). Skeletal muscle is a post-mitotic tissue that has a high 

regenerative potential (Almeida et al. 2016) and this feature is mainly due to SCs, highly 

heterogeneous cells population, which form a reservoir of precursor cells that are responsible for its 

after-birth growth and also for the response to injuries, either by exercise or by disease (Charge and 

Rudnicki 2004). Their amounts in the adult muscle could vary between 3 and 11% of the myonuclei, 

depending upon which species are being analyzed. In mice, the amount of SCs drops from 32% in 

neonates to 5% in adults (Allbrook et al. 1971) (Bischoff and Heintz 1994). These cells are strictly 

associated with the sarcolemma, residing between the membrane and the basal lamina (Mauro 1961), 
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becoming associated with the muscle fiber before the formation of its surrounding lamina (Bischoff 

and Heintz 1994). These cells are easily identified by their location and morphology; the transcription 

factor Pax7 is found to be the most important marker that characterizes this cell type (Seale and 

Rudnicki 2000). While it is clear that bovine satellite cells were shown to both proliferate and 

differentiate more efficiently under hypoxia (Kook et al. 2008), most is unknown for different species 

and cell types; in fact, for example, the influence of hypoxia on human satellite cells has not yet been 

fully investigated (Koning et al. 2011). 

 

 
Figure 4. Schematic representation of myogenesis. 

 

SCs have a pivotal role in adult muscle regeneration (Lepper and Fan 2010), and they are under 

the same genetic hierarchy involved in embryonic myogenesis, with the same genes participating in 

their regulation (Rudnicki et al. 2008). The major distinction between embryonic myogenesis and 

adult regeneration is that the latter requires a scaffolding that will work as a template (Ciciliot and 

Schiaffino 2010). 

It is further known that, upon activation, specific SCs undergo asymmetric division, by which 

they could form cells that either are capable of self-renewing or can enter the myogenic pathway and 

differentiate to restore the muscle (Kuang et al. 2008).  

 

3.  EFFECTS OF HYPOXIA ON MYOGENESIS 

 

3.1. EFFECT OF HIF-1a ACTIVATION IN SKELETAL MUSCLE DIFFERENTIATION  

It has been reported that transient hypoxia and prolonged hypoxia have different effects on 

muscle regeneration: while transient hypoxia is beneficial and stimulates productive proliferation and 

differentiation of satellite cells (SCs), on the other hand prolonged hypoxia is found to be detrimental, 

leading to the inhibition of differentiation process (Jash and Adhya 2015). 
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It has been demonstrated that myogenesis is blocked at low oxygen levels, inducing the 

degradation of MyoD, and the reduction of E2A and myogenin genes (Yun et al. 2005). It is well-

known that skeletal muscle possesses the capacity to ride out chronic ischemia, which has been shown 

to induce skeletal muscle adaptations, including metabolic changes (Chaillou et al. 2014) and muscle 

atrophy (Favier et al. 2015). In fact, it has been demonstrated that muscle fibers, originated during 

chronic ischemia, have smaller diameters than healthy myofibers (Scholz et al. 2003). Along this line, 

also the exposure to high altitude result in the same phenotype (Howald and Hoppeler 2003). Taken 

together, these scenarios suggest that hypoxia is able to alter myogenesis. 

Di Carlo et al. have reported that the induction of differentiation under prolonged hypoxia 

causes a marked degradation of MyoD (Di Carlo et al. 2004), leading to the inhibition of myotubes 

formation and a reduced expression of MHC (Di Carlo et al. 2004).  

Furthermore, the proliferation and differentiation of C2C12 myoblasts has been studied during 

hypoxia by silencing HIF-1𝛼, which inhibits myotube formation and MHC expression (Ono et al. 

2006), confirming the crucial role played by HIF-1𝛼. In contrast, other studies showed that hypoxia 

is detrimental for myogenic process, leading to the formation of smaller and poorly organized 

myofibers (Yun et al. 2005), concluding that hypoxia can alter the expression of key genes involved 

in myocyte fusion and myofiber growth. 

It is noteworthy that myoblast differentiation is not irreversibly blocked by hypoxia. Indeed, 

myoblasts regain their capacity to proliferate and differentiate when normal oxygen levels are 

restored. Thus, although myogenesis is strongly inhibited at 0.5% O2, overexpression of MyoD, or of 

myogenin alone restores myogenesis to a similar level to that in normoxia (Yun et al. 2005). 

Tissue-specific knockout (KO) of HIF-1𝛼 in muscle cells did not affect cell proliferation, but 

KO of HIF1𝛼 in myeloid cells resulted in reduced macrophage in infiltration and numbers of 

proliferating cells (Scheerer et al. 2013), suggesting that hypoxia indirectly triggers myoblast 

proliferation through phagocytic clearance of the debris at the injury site.  

It has been recently demonstrated that Echinomycin, a molecule able to inhibit the binding 

between HIF-1α to DNA (Vlaminck et al. 2007), also interferes with myogenic differentiation (Cirillo 

et al. 2017). These results were overlapping to those obtained by genetic inhibition of HIF-1α, in fact 

the in vitro silencing of HIF-1α strongly reduced the differentiation process, inducing a 

downregulation of MyoD nuclear translocation, a marked decrease of myogenin and MHC gene 

expression and ultimately leading to a reduction of fusion and differentiation indexes (Cirillo et al. 

2017). 

Moreover, the crucial role of HIF-1α was also confirmed in vivo, in the regeneration of muscle 

tissue in mice after eccentric exercise (Ono et al. 2006). 
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Among the PHD isoforms, PHD2 has emerged as particularly critical. In mice, KO of PHD2, 

but not of PHD1 or PHD3, leads to embryonic lethality (Takeda et al. 2006). Therefore, it has been 

proposed a different model of conditional PHD2 KO (cKO), which presents an increase in 

haematocrit values, haemoglobin concentrations and capillary number in muscles, demonstrating the 

beneficial effects of the indirect activation of HIF pathway upon inhibition of PHD2 (Nunomiya et 

al. 2016). 

At the same time, PHD2 deficiency resulted in an increased capillary density in skeletal muscles 

due to the induction of VEGF and moreover stabilized HIF-1α induced by PHD2 cKO resulted in the 

transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway 

(Shin et al. 2016). 

Along this line, treatment with a well-known PHDs inhibitor such as DMOG shows a potential 

therapeutic use in promoting angiogenesis in ischemic diseases, and perhaps for improving muscle 

recovery after injury, exercise or training (Milkiewicz et al. 2004). In vivo, DMOG enhanced the 

transcription of HIF-regulated genes reducing ischaemic injury (Ogle et al. 2012). Further, DMOG 

improved maximal aerobic velocity and endurance in both sedentary and trained rats (Favier et al. 

2016). 

 

3.2. ROLE OF WNT-FAMILY PROTEINS IN MUSCLE DIFFERENTIATION 

Many evolutionarily conserved pathways in vertebrate development converge on HIF. One 

such example is the canonical WNT/β-catenin pathway, which is potentiated by HIF in neural stem 

cell niches (Sim and Johnson 2014).  

WNTs are evolutionarily conserved secreted Cys-rich proteins, and in humans there are 19 

genes that encode WNTs (Kikuchi et al. 2011). They bind different receptors and activate three 

different pathways which are classified as: a) canonical (β-catenin-dependent), involved in regulating 

cell proliferation and b) two non-canonical (β-catenin-independent) signalling pathways (Niehrs 

2012).  

Cytosolic β-catenin is the principal mediator of canonical WNT signaling. Usually, β-catenin 

is localized in cytosol and binds cytosolic protein complex containing Axin, the adenomatous 

polyposis coli gene product (APC), and glycogen synthase kinase-3β (GSK-3β). Axin and APC 

serve as scaffolding proteins that enable GSK-3β to phosphorylate β-catenin (Liu et al. 2002), 

thereby targeting it for ubiquitination and subsequent degradation by the proteasome. In absence of 

WNT stimulation, the levels of cytosolic β-catenin protein are kept low. After the binding of a WNT 

ligand to its co-receptors Frizzled (Fz) and low-density lipoprotein (LDL) receptor-related protein 
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(LRP) 5/6, the Dishevelled (Dvl) protein is activated, leading to the inhibition of GSK-3β-mediated 

phosphorylation of β-catenin. The stabilization of cytosolic β-catenin induces its translocation to the 

nucleus, where binds to the T cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors 

and activates its target genes (Logan and Nusse 2004).  

β-catenin is also implicated in non-canonical (β-catenin-independent) signalling pathways, 

where it translocates to the cell membrane compartment, and reversibly binds cadherins to α-catenin 

and to the actin cytoskeleton to form adherens junctions, which are essential for cell–cell adhesion 

and cell migration (Brembeck et al. 2006).  

The non-canonical WNT pathways are subclassified according to the WNT receptors or co-

receptors they are coupled to.  

The best-characterized β-catenin-independent pathway is the PCP pathway, in which Frizzled 

receptors activate the small GTPases RAC1 and RHOA and JUN-N-terminal kinase (JNK), 

ultimately leading to rearrangements in cytoskeleton and cell polarity (Schlessinger et al. 2009). PCP 

and β-catenin-dependent WNT signalling are well known to antagonize each other, at the ligand–

receptor level. For example, WNT5A, which preferentially activates PCP signalling, competes for 

and inhibits binding of WNT3A to Frizzled (Janda et al. 2012), thereby suppressing the β-catenin-

dependent pathway (Sato et al. 2010).  

The second β-catenin-independent pathway that has been described is the WNT-Ca2+ pathway 

(Kikuchi et al. 2011), which involves the activation of heterotrimeric G proteins, which in turn 

activate phospholipase C (PLC), finally stimulating diacyl-glycerol and inositol-1,4,5-trisphosphate 

(Ins(1,4,5)P3) production. Ins(1,4,5)P3 triggers Ca2+ release from intracellular stores and activation 

of effectors such as Ca2+- and calmodulin-dependent kinase II (CAMKII), calcineurin and protein 

kinase C (PKC), which activates the transcriptional regulator nuclear factor associated with T cells 

(NFAT). This pathway is involved in cancer, inflammation and neurodegeneration (De 2011). 

Noteworthy, the non canonical activation of WNT pathway involves WNT4, which regulates 

the subcellular localization of β-catenin, from cytosol to the cell membrane, switching to membrane 

functions of β-catenin (Bernard et al. 2008). 
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Figure 5. WNT signalling pathways. Only the three best-characterized WNT pathways are shown: A) the PCP pathway, 
B) the β-catenin-dependent pathway; C) the WNT–Ca2+ pathway. DAAM, DVL-associated activator of morphogenesis1; 
DVL, Dishevelled; LRP, low-density lipoprotein receptor-related protein; PLC, phospholipase C. (Niehrs 2012) 
 
 

Yuen et al. first showed the link between HIF and WNTs, demonstrating that WNT7a/7b 

expression is controlled by novel upstream hypoxia response elements (Yuen et al. 2014). 

It is noteworthy that signals originated from axial structures (neural tube and notochord) and 

dorsal ectoderm activate myogenesis in newly formed somites. In mouse embryos, axial structures 

preferentially activate myogenesis through a Myf5-dependent pathway, while dorsal ectoderm 

through a MyoD-dependent pathway. In avian embryos, this activation is mediated by the 

simultaneous stimuli originated by Sonic Hedgehog (SHH) and WNT family (Munsterberg et al. 

1995). The Hedgehog pathway is constituted by three mammalian Hedgehogs (Hh), Sonic, Indian, 

and Desert hedgehog (Shh, Ihh, and Dhh), which are essential for tissue growth, patterning, and 

morphogenesis (Ingham and McMahon 2001). It was suggested that SHH may induce activation of 

myogenic genes in response to WNT1, WNT3 and WNT4. Along this line, it has been reported that 

cells expressing WNT1 will preferentially activate Myf5, while cells expressing WNT7a will 

preferentially activate MyoD (Tajbakhsh et al. 1998). Further studies demonstrated that an 

overexpression of WNT4 resulted in up-regulation of muscle satellite cell markers Pax7 and MyoD. 

Thus, WNT4 acted as a stimulator during myogenic proliferation and differentiation (Takata et al. 

2007). It has been evaluated the myogenic differentiation induced by WNT family members: 
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Troponin T expression was significantly increased with WNT6, WNT7a and WNT9a overexpression, 

but not WNT3a, WNT5a and WNT10a (Tanaka et al. 2011) according to the classification of WNTs 

into canonical or noncanonical WNTs, where WNT1, WNT3a, or WNT8 were considered to activate 

canonical WNT signaling, whereas WNT5a or WNT11 are best known for their ability to trigger 

noncanonical WNT signaling (Rao and Kuhl 2010). 

A truncated WNT7a retains full biological activity in skeletal muscle and induces hypertrophy 

in differentiated myotubes and myofibers, opening important new avenues for the development of a 

WNT7a-based biologic drug for the treatment of muscle-wasting disease (von Maltzahn et al. 2013) 

Taken together, these discoveries suggested that different WNT molecules control cell proliferation 

and differentiation (Tanaka et al. 2011): the canonical WNT1, WNT3a, WNT8 and WNT10a trigger 

proliferation processes, whereas non canonical WNT4, WNT5a, WNT6, WNT7a, WNT9a and 

WNT11 are principally involved in differentiation mechanisms. 

It has been demonstrated that specific phases of skeletal muscle development require different 

WNT members (Shi and Garry 2006). In particular, WNT1 and WNT3a are expressed during 

differentiation in dorsal and medial somites (Tajbakhsh et al. 1998); WNT3a overexpression 

significantly decreases terminally differentiated myogenic cells (Anakwe et al. 2003); WNT5a and 

WNT11 have been implicated in the switching of fast and/or slow myofiber types (Anakwe et al. 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 20	

4.  AIM 

 
Hypoxic and ischemic preconditioning was initially discovered as an endogenous protective 

mechanism in animals and later confirmed in virtually all types of cultured cells and organs (Kirino 

2002). It was demonstrated that intermitted cycles of hypoxia or ischemia enhance the resistance of 

subjects exposed to severe and prolonged ischemic events (Verges et al. 2015). During this 

preconditioning, there are two different phases of cytoprotection: a) Phase I, an acute protection that 

appears early and lasts for a few hours after insult and b) Phase II, a delayed but stronger protection 

which emerges many hours after hypoxia and can last for days or even weeks (Pong 2004). The 

delayed phase of this process is usually mediated by synthesis of mRNAs and proteins, including the 

transcription factor HIF-1α and HIF target genes, such as erythropoietin (EPO) and vascular 

endothelial growth factor (VEGF). 

As extensively described at the beginning of this thesis, HIF-1α is well-known as the principal 

actor in the adaptive response to hypoxia, and is finely regulated by HIF prolyl hydroxylases (PHDs), 

which hydroxylate proline residues in its oxygen degradation domain (ODD) leading to its ultimate 

proteasomal degradation. The effects of the activation of HIF-1α in pathological conditions have been 

extensively investigated, while its role in cell differentiation is still poorly understood. Regeneration 

of skeletal muscle is a complex process that requires the activation of quiescent adult stem cells, 

called satellite cells, which are resident in hypoxic niches in the tissue. To govern this process, cells 

have developed a complex machinery, which is mainly regulated by a group of transcription factors 

known as the hypoxia-inducible factors (HIFs).  

For instance, HIF-1α activation has been described as beneficial for the cell to overcome a 

hypoxic stress, as it enhances the transcription of glucose transporters and glycolytic enzymes, 

promotes the synthesis of the vascular endothelial growth factor (VEGF), and stimulates the inducible 

nitric oxide synthase. However, a chronic activation of HIF-1α has been described as a negative 

predictor, completely inhibiting myogenesis. Indeed, upon an ischemic injury, it is known that the 

regeneration process can take place only after restoration of blood flow and tissue oxygenation. 

Therefore, oxygen deprivation and HIF-1α may play a role in activating the initial steps of the 

regeneration process.  

On these bases, we investigated the effects of a hypoxic pre-conditioning on the differentiation 

process. Moreover, we tried to chemically activate HIF-1α using synthetic PHDs inhibitors, in order 

to mimic the effects observed under hypoxic conditions on myogenesis. 
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Finally, a future perspective could be to translate the use of these PHDs inhibitors from the in 

vitro experiments to in vivo models, in order to investigate their potential in the treatment of several 

atrophic muscle disorders and to improve the differentiation of muscle tissues. 
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MATERIALS AND METHODS  
 

 

1. CELL CULTURES 
    C2C12 mouse myoblasts were obtained from Sigma-Aldrich and cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, Sigma-Aldrich) with high glucose (4.5 g/L) supplemented with 

10% (v/v) fetal bovine serum (FBS, Sigma-Aldrich), 2 mM glutamine (Sigma-Aldrich), 

penicillin/streptomycin 1X (Euroclone) (GM) at 37°C in a 5% CO2 and 95% air-humidified 

atmosphere.  

 

1.1. CELL PROLIFERATION 

A) HYPOXIC PRE-CONDITIONING 

For hypoxia experiments, cells were cultured at 37°C in a 5% CO2/1% O2 incubator with a nitrogen 

inlet at different time lengths. To assay cell proliferation, growth curves were performed counting 

cells after Trypan Blue staining. Briefly, 75*103 C2C12 cells were seeded in 35mm culture plates, 

and viable cells were counted after 3, 6, 12, 24 and 48 hours of hypoxia and/or normoxia treatments. 

For the hypoxic pre-conditioning, C2C12 myoblasts were cultured for 24 hours in an incubator with 

a nitrogen inlet at 1% O2, 5% CO2, and 37°C.  

B) SKELETAL MUSCLE DIFFERENTIATION 

To induce differentiation, C2C12 cells were switched to a normoxic incubator (21% O2) in the 

differentiation medium (DM) containing DMEM supplemented with 2% (v/v) horse serum (HS, 

Sigma-Aldrich). The DM was changed every day for seven days. Cells were collected for analyses 

after 24 hours of hypoxia treatment (Post Treatment, PT) and at day 3, 5 and 7 of differentiation.  

C)  HIF-1α SILENCING 

The genetic silencing of HIF-1α in C2C12 cells was achieved by transfecting with HIF-1α siRNA 

(Santa Cruz), according to the Manufacturer’s instructions. Briefly, 2 µg of HIF-1α and control 

plasmid were used to transfect C2C12 in the presence of Viafect Transfection Reagent (Promega) 

according to the Manufacturer’s procedure. Silenced clones were isolated after selection with 

Puromycin (1.2 µg/ml). 

In parallel, the chemical inhibition of HIF-1α was obtained by treating cells with 5nM Echinomycin, 

a HIF-1a inhibitor which prevents its binding to DNA, for 24 hours under normoxic or hypoxic 

conditions. 
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D) WNTs CHEMICAL INHIBITION 

In order to inhibit the WNT signaling pathway, C2C12 were cultured for 24 hours under hypoxic 

conditions in the presence of 40 µM XAV939 (Sigma), which promotes the accumulation of Axin2, 

leading to the phosphorylation and degradation of b-catenin.  

E) PHDs INHIBITORS PRE-TREATMENT 

For the chemical inhibition of PHDs, cells were cultured for 24 hours with PHDs inhibitors (50 µM 

IOX2 and 40 µM FG-4592) at 37°C in 5% CO2, and then induced to differentiate, switching in 

differentiation medium (DM), containing DMEM supplemented with 2% (v/v) horse serum (HS, 

Sigma-Aldrich). The DM was changed every day for seven days. Cells were collected for analyses 

after 24 hours of inhibitors treatment (PT) and at 3, 5 and 7 days of differentiation. 

 

1.2. CELL VIABILITY AND CELLULAR METABOLISM 

Cell viability after treatment with PHDs inhibitors was assessed using RealTime-Glo™ kits 

MT Cell Viability Assay (Promega). The RealTime-Glo™ Cell Viability Assay is a nonlytic, 

homogeneous, bioluminescent method to measure cell viability in real time using a simple, plate-

based method. The nonlytic nature of this assay allows the cells to be used for further downstream 

applications, including multiplexing with a variety of assay chemistries. It determines the number of 

viable cells in culture by measuring the reducing potential of cells and thus metabolism (MT). The 

assay involves adding NanoLuc® luciferase and a cell-permeant prosubstrate, the MT Cell Viability 

Substrate, to cells in culture. Viable cells reduce the proprietary prosubstrate to generate a substrate 

for NanoLuc® luciferase. This substrate diffuses from cells into the surrounding culture medium, 

where it is rapidly used by the NanoLuc® Enzyme to produce a luminescent signal. The signal 

correlates with the number of viable cells, making the assay well suited for cytotoxicity studies. Both 

the MT Cell Viability Substrate and NanoLuc® Enzyme are stable in complete cell culture medium 

at 37°C for at least 72 hours. No cell washing, removal of medium or further reagent addition is 

required to determine the number of viable cells.  

For the optimization, C2C12 were seeded at 5 different cell density: 7500 cells/well, 5000 

cells/well, 2500 cells/well, 1000 cells/well, 500 cells/well in 96-well following manufacturer’s 

instructions. The luminescent signal was measured at 1, 3, 6, 12, 24 and 48 hours using VICTOR X3 

™ Multilabel Plate Reader. Briefly, MT Cell Viability Substrate and NanoLuc® Enzyme are both 

diluted 1:1000 in culture medium at a final volume of 100 µl per well. For the following experiments, 

cells were seeded at a density of 5000 cells/well in 96-well. After 24 hours, cells are treated in the 

presence of the chemical inhibitors. Cell viability was measured at 3, 6, 12, 24 and 48 hours. Data 

were normalized to the untreated control. 
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1.3. CELL TOXICITY TESTS  

CellTox™ Cytotoxicity Assay (Promega) was used to investigate the cytotoxic effect of 

hypoxia on C2C12 cells, according to the Manufacturer’s instructions. The CellTox™ Green 

Cytotoxicity Assay measures changes in membrane integrity that occur as a result of cell death. The 

assay is intended for assessing cytotoxicity in cell culture after experimental manipulation. The assay 

system uses a proprietary asymmetric cyanine dye that is excluded from viable cells but preferentially 

stains the dead cells’ DNA. When the dye binds DNA in compromised cells, the dye’s fluorescent 

properties are substantially enhanced. Viable cells produce no appreciable increases in fluorescence. 

Therefore, the fluorescent signal produced by the dye binding to the dead-cell DNA is proportional 

to cytotoxicity. 

Briefly, C2C12 cells were seeded in a 96-well plate at a concentration of 5000 cells/well and 

incubated for 3, 6, 12, 24, and 48 hours. After each incubation, an equal volume of 100 µl of CellTox 

Buffer containing 1:500 dilution CellTox Green Dye was added to each well and incubated at room 

temperature for 15 minutes. The signal was measured using the VICTOR™ X3 Multilabel Plate 

Reader with an excitation wavelength of 485-500 nm and emission filter of 520-530 nm. 

 

2. LUCIFERASE ASSAY 
IC50 was calculated using a Dual-Glo® Luciferase Assay System kit (Promega), which 

measures the activity of PHDs in presence of the inhibitors, IOX2 and FG-4592, at different 

concentrations.   

Dual-Glo® Luciferase Assay allows an high-throughput analysis of mammalian cells containing the 

reporter genes Firefly Luciferase (Luciferase-pcDNA3, ODD-Luciferase-pcDNA3) and Renilla 

luciferase (pRL-CMV). The Dual-Glo® Luciferase Assay System can be added directly to cells in 

growth medium without washing or preconditioning. This reagent induces cell lysis and acts as a 

substrate for firefly luciferase. Addition of the Dual-Glo® Stop & Glo® Reagent quenches the 

luminescence from the firefly reaction by at least 10,000-fold and provides the substrate for Renilla 

luciferase in a reaction that can also be read within 2 hours (with a similar retention in signal).  

In particular, cells were seeded in a 96-well plate at a concentration of 104 cells/well, transfected with 

an ODD-luciferase-pcDNA3 or Empty-luciferase-pcDNA3 (80 ng) and pRL-CMV (8 ng) as internal 

control, according to ViaFect Transfection Reagent® protocol (Promega) and incubated for 24 hours. 

After the transfection, cells were treated with PHDs inhibitors for 3, 6, 12, 24, and 48 hours. 

At the end of the treatment, an equal volume of Dual-Glo® Luciferase Reagent to the volume of 

resuspension of the cells was added to each well and the mixture was incubated for 30 minutes. At 
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the end of the incubation the solution was transferred to 96-well white plates for luminescence reading 

emitted at 550 nm by Firefly luciferase, the signal was measured using VICTOR ™ X3 Multilabel 

Plate Reader. To turn off the luminescence of the Firefly luciferase and provide the substrate for the 

Renilla luciferase was added an equal volume of Dual-Glo® Stop & Glo reagent. After 30 minutes, 

the signal emitted by Renilla at 480 nm was read by VICTOR ™ X3 Multilabel Plate Reader. 

The calculation of IC50 was performed by linear regression, using GraphPad Prism 7 (GraphPad 

Software Inc, California, USA). 

 

3. WNT7a-PROMOTER PLASMID CONSTRUCT  
The promoter of WNT7a gene was amplified by PCR using Phusion High-Fidelity kit (NEB) 

from 100 ng of genomic DNA obtained by C2C12 murine myoblasts. In order to amplify the fragment 

the following primers were used: forward 5′-GGGGTACCCCGGAAGCTATCACAGGCTT-3′, 

which contained KpnI enzymatic site, and reverse 5′-

GGGTTCGAACCCTAGCATCCTTCGCTAACT-3′, which contained the HindIII enzymatic site. 

The PCR fragment and the vector pNL1.1(Nluc) (Promega) were digested in presence of the 

restriction enzymes KnpI and HindIII (Promega) for 2 hours at 37°C. Both were purified from agarose 

gel using Wizard® SV Gel and PCR Clean-Up System (Promega) and the fragment was cloned into 

the corresponding site of the vector pNL1.1 using T4 Ligase Fast (Promega) for 1 hour at room 

temperature.  

 

4. NANO-GLO LUCIFERASE ASSAY  
The direct interaction between WNT7a promoter and HIF-1α was evaluated with Nano-Glo® 

Dual-Luciferase Assay System kit (Promega), which allows a high-throughput analysis of 

mammalian cells containing the reporter genes Nanoluc (pNL1.1empty and 

pNL1.1WNT7a_promoter) and pGL4.54(luc2/TK), as internal control. Briefly, cells were seeded in 

a 96-well plate at a concentration of 5 x 103 cells per well, transfected with a pNL1.1empty or 

pNL1.1WNT7a_promoter (90 ng) and pGL4.54(luc/TK) (10 ng) as internal control, according to 

ViaFect Transfection Reagent® protocol (Promega) and incubated for 24 hours. After the 

transfection, cells were treated with IOX2 and FG-4592 at the IC50 working concentrations for 24 

hours. At the end of the treatment, an equal volume of ONE-GloTM EX Luciferase Assay Reagent 

was added to each well and incubated for 30 minutes. At the end of the incubation the signal was 

measured using VICTORTM X3 Multilabel Plate Reader (PerkinElmer, Waltham, MA, USA). To turn 

off the luminescence of the Firefly luciferase and provide the substrate for the Nanoluc, NanoDLRTM 
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Stop&Glo® Reagent was added to the mixture and incubated for 30 minutes. At the end of incubation, 

the signal was read, as described above, using VICTORTM X3 Multilabel Plate Reader (PerkinElmer, 

Waltham, MA, USA).  

 

5. RNA EXTRACTION AND GENE EXPRESSION BY REAL-TIME PCR 

(qPCR) 
Total RNA was isolated using ReliaPrepTM RNA Miniprep Systems (Promega) and 1 µg of the 

extracted RNA was reverse transcribed to cDNA using the iScript cDNA synthesis kit (BioRad), 

according to the Manufacturer’s instructions. Real-Time PCR was performed with 10 ng of cDNA 

template, 0.2 µM primers, and 1X Power SYBR Green PCR Master Mix (Thermo Fisher Scientific) 

in 20 µl final volume using a StepOnePlus® Real-Time PCR System (Applied Biosystem).  

The following primers were used: VEGF forward 5’-AAAAACGAAAGCGCA-3’ and reverse 5’-

TTTCTCCGCTCTGAA-3’; PHD2 forward 5’-CTGTGGAACAGCCCTTTTT-3’ and  reverse 5’- 

CGAGTCTCTCTGCGAATCCT-3’; PHD3 forward 5’-CTATGTCAAGGAGCGGTGCAA-3’ and 

reverse 5’-GTCCACATGGCGAACATAACC-3’ ; MYOG forward 5’-AGCCACACTGAGGGA-3’ 

and reverse 5’-GTTGAGGGAGCTGAG-3’; MHC forward 5’-TGGAGCAGGAGGAATACAAG-

3’ and reverse 5’-GCATAGTGGATGAGGGAGAA-3’; WNT7a forward 5’-

ACTGTGGCTGCGACAAG-3’ and reverse 5’-CTTCATGTTCTCCTCCAG-3’; WNT9a forward 

5’-TCGTGGGTGTGAAGGTGATA-3’ and reverse 5’-CAGGAGCCAGACACACCAT-3’; WNT4 

forward 5’-GGGTGGAGTGCAAGTGTCA-3’ and reverse 5’-CACGCCAGCACGTCTTTAC-3’; 

ID1 forward 5’-GAGTCTGAAGTCGGGACCAC-3’ and reverse 5’-

ATCGTCGGGTGGAACACATG-3’; MYOR forward 5’-GCCCAGCGACATTTCTTC-3’ and 

reverse 5’-CGCTTCCTCTTGCATCCT-3’; TCF7 forward 5’-TGATGCTGGGATCTGGTGTA-3’ 

and reverse 5’-CTTGGGTTCTGCCTGTGTTT-3’; CYCLIN D1 forward 5’-

TTGACTGCCGAGAAGTTGTG-3’ and reverse 5’-CTGGCATTTTGGAGAGGAAG-3’; GLUT1 

forward 5’-GACCCTGCACCTCATTGG and reverse 5’-GATGCTCAGATAGGACATCCAAG-3’; 

HK1 5’- GTGGACGGGACGCTCTAC-3’ and reverse 5’-CCACCATCTCCACGTTCTTC-3’; 

GAPDH forward 5’-CGTGCCGCCTGGAGAAAC-3’ and reverse 5’-

TGGGAGTTGCTGTTGAAGTCG-3’; RPLI3A forward 5’- CTCGGCCGTTCCTGTAT-3’ and 

reverse 5’-GTGGAAGTGGGGCTTCAGTA-3’, this latter was used as the housekeeping gene. The 

amplification program consisted in an initial denaturation at 95°C for 3 minutes, followed by 40 

cycles of 5 seconds each at 95°C and 30 seconds at 57°C; WNT7a was amplified at 53°C. Relative 

quantification of target genes was performed in triplicate and calculated by the equation 2-ΔΔCt. 
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6. ISOLATION OF THE PLASMA MEMBRANES AND THE NUCLEI 

COMPARTMENT  
For plasma membranes isolation, C2C12 were harvested by scraping, centrifuged at 300xg for 

5 minutes, and resuspended in a phosphate-buffer saline (PBS) solution containing protease-inhibitor 

and phosphatase-inhibitor cocktails (Sigma-Aldrich). Then, cells were lysed by sonication and 

centrifuged at 800xg for 10 minutes at 4°C, to eliminate intact cells and nuclear components. The 

crude extract was centrifuged at 200,000xg for 20 minutes at 4°C with a TLC100 Ultracentrifuge 

(Beckman Coulter) to obtain the cytosolic and plasma membrane fractions.  

For nuclei separation, 5x106 cells were collected after enzymatic treatment with trypsin (Sigma-

Aldrich), centrifuged at the maximum speed, resuspended in 400 µl of Buffer A (10 mM KCl, 0.1 

mM EDTA, 1mM DTT, 10 mM Hepes, pH 7.9), containing protease and phosphatase inhibitors 

cocktail (Sigma-Aldrich), and incubated on ice for 20 minutes. Then, NP40 10% was added to the 

cell suspension, mixed for 40 seconds and centrifuged 40 seconds at the maximum speed. After 

centrifugation, the pellet was resuspended in 80 µl of Buffer C (0.4M NaCl, 1mM EDTA, 1 mM 

DTT, 20 mM Hepes, pH 7.9), containing a protease and phosphatase inhibitors cocktail and it was 

mixed for 30 minutes at 4°C at the maximum speed. Finally, the nuclear suspension was centrifuged 

for 5 minutes at 4°C at the maximum speed, collected and transferred in a new tube. Total protein 

content was determined with the BCA Protein Assay Kit (Pierce) following the Manufacturer’s 

instructions. 

 

7. WESTERN BLOT ANALYSES  
Proteins were denaturated by boiling for 10 minutes in sample buffer (0.6 g/100 mL Tris, 2 

g/100 mL SDS, 10% glycerol, 1% b-mercaptoethanol, pH 6.8) and loaded into 10% SDS–PAGE gel, 

then transferred onto a nitrocellulose membrane (Trans-blot, Bio-Rad Laboratories) by 

electroblotting. Nitrocellulose membranes were incubated with a blocking solution containing 5% 

(w/v) non-fat dry milk or 5% (w/v) BSA (Sigma-Aldrich) in Tris-buffer saline with 0.1% Tween® 

20 (TBS-T) for 1 hour. Blots were incubated with primary antibodies for 2 hours at room temperature. 

The following primary antibodies were used: anti-β-catenin, 1:1000 dilution (Cell Signaling), anti-

Na+/K+ ATPase, 1:1000 dilution (Cell Signaling), anti-HIF-1α, 1:1000 dilution (Cell Signaling, clone 

D2U3T), anti-Lamin A/C, 1:1000 dilution (Santa Cruz Biotechnology, clone N-18), anti-MyoD1, 

1:1000 dilution (Abcam, clone 5.2F), anti-Lamin β1, 1:1000 (Abcam, clone 119D5-F1), anti-WNT7a, 

1:1000 dilution (Thermo Fisher Scientific). Membranes were washed three times for 10 minutes with 

TBS-T, and then incubated with the appropriate anti-mouse, anti-rabbit or anti-goat HRP-conjugated 
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secondary antibodies (Dako), 1:2000 dilution, for 1 hour at room temperature. After three washes for 

10 minutes with TBS-T, the immunoreactive bands were visualized using the enhanced 

chemiluminescence detection kit reagents (ECL Advance, GeHealthcare), following the 

Manufacturer’s instructions.  

 

8. IMMUNOFLUORESCENCE STAINING  
C2C12 cells were plated onto 35mm culture plates. After differentiation, cells were washed in 

PBS and fixed for 15 minutes in 4% (w/v) paraformaldehyde at room temperature. For 

permeabilization and blocking, cells were incubated for 1 hour in the presence of PBS 0.1% (v/v) 

Triton X-100 (TX-100) and 5% (w/v) fetal bovine serum (FBS) at room temperature. Then, cells 

were incubated for 2 hours at room temperature with anti-Skeletal, Fast, Myosin (Sigma-Aldrich, 

clone MY-32), diluted 1:200 in PBS 0.1% (v/v) Triton X-100 (TX-100) and 5% (w/v) FBS. After 

incubation, cells were washed three times in PBS and incubated for 1 hour at room temperature with 

anti-mouse FITC-conjugated secondary antibody (Jackson ImmunoResearch), diluted 1:200. After 

washing in PBS, cells were analyzed under a fluorescent microscope (Olympus TH4-200) equipped 

with an acquisition camera, the original magnification was 100X. Cell nuclei were counterstained 

with Hoechst 33258 (1:500 dilution). Myogenesis was assessed by measuring the myotube area and 

the number of myonuclei per myotube. To quantify both differentiation and fusion indexes, ten fields 

were chosen randomly and, for each field, a minimum of one hundred myosin-positive myotubes with 

more than two myonuclei were measured using the Image J software. The area and the number of 

nuclei per myotube was the mean of ten measurements averaged from three different experiments. In 

detail, the fusion index is calculated as the ratio between MHC-positive nuclei and the total number 

of nuclei, while the differentiation index as the ratio between the average of myotubes area and nuclei 

localized in the MHC-positive myotubes.  

 

9. CHROMATIN IMMUNOPRECIPITATION (CHIP) 
Chromatin immunoprecipitation assay (ChIP) was conducted in mouse myoblasts C2C12 after 

24 hours exposure to normoxic or hypoxic (1% O2) conditions. ChIP assay was performed using a 

SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads, Cell Signaling) according to the 

manufacturer’s protocol.  

The ChIP assay is a powerful and versatile technique used for probing protein-DNA interactions 

within the natural chromatin context of the cell. This assay can be used to identify multiple proteins 

associated with a specific region of the genome, or the opposite, to identify the many regions of the 
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genome associated with a particular protein. We evaluated the regulation of HIF-1a on the Wnt7a 

promoter. 

When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA 

cross-linking agent that serves to fix or “preserve” the protein-DNA interactions occurring in the cell. 

Cells are then lysed and chromatin is harvested and fragmented using either sonication or enzymatic 

digestion. The chromatin is then subjected to immunoprecipitation using antibodies specific to a 

particular protein. Any DNA sequences that are associated with the protein of interest will co-

precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA 

sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-

DNA cross-links are reversed and the DNA is purified. The enrichment of a particular DNA sequence 

or sequences can then be detected by qPCR. 

Briefly, genomic DNA was cross-linked with bound proteins with 1% formaldehyde (for 10 minutes 

at room temperature). Genomic DNA was digested with Microccocal Nuclease for 20 minutes at 

37°C to achieve DNA sizes ranging from 150 to 900 bp. The nuclear pellet was lysed by sonication 

(Branson Sonifier 150). 

For the immunoprecipitation of DNA-protein mix, 10 µl of anti-HIF-1a (Cell Signaling), or 10 µl of 

anti-Histone-H3 (positive control), or 1 µl of IgG rabbit (negative control) were added to the 

chromatin solution and incubated at 4°C over-night with rotation. Immuno-complexes were collected 

with ChIP Grade Protein G Magnetic Beads and incubated for 2 hours at 4°C with rotation. The elutes 

were finally digested with Proteinase K at 65°C for 4 hours. The precipitates DNAs were recovered 

using DNA Purification Spin Columns. The purified DNA was amplified by Real-Time PCR using 

these following ChIP primers designed on WNT7a promoter: WNT7a1 forward 5’-

CTATCACAGGCTTGCCCAGA-3’ and reverse 5’-ACCGTGGATTCAAGGAACAC-3’; WNT7a2 

forward 5’- CAGGCTGTACCCAGACCAAG-3’and reverse 5’-ACTCCAGGCCTGCTTAGCC-3’; 

WNT7a3 forward 5’-GCAGTCTGGAAGGCTAAGCA-3’ and reverse 5’-

GCAGCCCAAGTTTCAGTTG-3’; WNT7a4 forward 5’-TTCACCTCCTCAGTTTCTCCA-3’ and 

reverse 5’-AGCCCAATGACCAGTAGCAG-3’; WNT7a5 forward 5’-

AAGACAAAAGGCCAGAATGC-3’ and reverse 5’-GACAGGATCCTCCGGAATCT-3’; 

WNT7a6 forward 5’-GTCTCGCCTTAGGTGCAATC-3’ and reverse 5’-

GGCTCATTTCAGAACCCTCA-3’; WNT7a7 forward 5’-GCACAGACGAGGGTGAGG-3’ and 

reverse 5’-GGCCATCCTCTGGGTGTAG-3’. 
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10.  STATISTICAL ANALYSIS 
For all quantified data, mean ± SEM values are presented. The Student’s t-test was used to determine 

significance using Graphpad Prism 6 Software. P values of less than 0.05 were considered to be 

significant. All P values were calculated from data obtained from at least three independent 

experiments. All error bars represent the standard deviation of the mean. 

All the results are expressed as Relative Quantity (R.Q.), which allows to measure differences in the 

expression level of a specific target gene or protein between different samples. This method requires 

an initial phase where the results of the target gene/protein are normalized using an housekeeper as 

internal control, which is a gene/protein not modified by the treatment and constitutively expressed 

by cells. After the normalization, the results are expressed as fold increase or decrease in comparison 

to a reference sample control (CTRL=1), which is the untreated sample. The same method was 

applied to the gene or protein experiments.   
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RESULTS 

 
1. PROLIFERATION AND CELL TOXICITY ASSAYS 

The effects of a hypoxic pre-conditioning on skeletal muscle differentiation were studied on 

C2C12 murine myoblasts. Initially, we tested the effects of oxygen deprivation on the proliferation 

rate. To this purpose, myoblasts were cultured in a hypoxic incubator at 1% O2 for 3, 6, 12, 24 and 

48 hours to assess the toxicity of the treatment. Control myoblasts were cultured under normoxia 

(21% O2). During the first 12 hours, no significant changes in the proliferation rate were observed, 

whereas after 24 hours of hypoxic pre-conditioning, cells showed a marked decrease in proliferation 

rate (-50%) which reached -70% at 48 hours (Figure 1A). Then, cytotoxicity was measured using 

CellToxTM (Promega) assay, which measures changes in membrane integrity that occur as a result of 

cell death, using a cyanine dye that penetrates the cell and binds to the DNA of compromised cells. 

Results showed that the hypoxic pre-conditioning did not induce any evident cytotoxic effect within 

the first 24 hours, while at 48 hours, myoblasts cultured in 1% O2 showed a 3.6-fold increase in the 

fluorescence signal as compared to controls (Figure 1B). 

 

2. ACTIVATION OF HIF-1α PATHWAY UNDER HYPOXIA 
Based on the cytotoxicity tests, a 24 hours hypoxic pre-conditioning (1% O2) was chosen for 

the following studies, considering that the decrease of proliferation rate observed at 24 hours was not 

due to cytotoxic effect. Initially, it was tested whether a hypoxic pre-conditioning activated the HIF-

1α pathway. To this purpose, HIF-1α translocation to the nucleus was analyzed by Western Blot 

(WB), after nuclei isolation. Results showed a protein band of 100 kDa corresponding to a 1.5-fold 

increase in HIF-1α nuclear localization in hypoxia pre-conditioned myoblasts as compared to 

normoxic controls (Figure 1C), while a negligible amount of protein was found in the cytosolic 

fraction (data not shown). Lamin A/C protein, which is a nuclear marker, was used as the 

housekeeper. Quantitative PCR (qPCR) analyses of key HIF-1α target genes revealed a 2.5-, 5.1- 

and 6.6-fold increase in the mRNAs of VEGF, PHD2 and PHD3, respectively, after a 24 hours 

hypoxic pre-conditioning, as compared to normoxic controls (Figure 1D). 
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Figure 1. Effects of hypoxia on C2C12 murine myoblasts on cell proliferation, toxicity, and activation of HIF-1α. 
The effects of hypoxia were evaluated analyzing the cell growth curve (A) and toxicity (B) of C2C12 cells cultured in 
normoxia (N) or in hypoxia (H) for 3, 6, 12, 24, and 48 hours. Western blot (WB) and the relative quantification of HIF-
1α nuclear translocation were performed after nuclei separation from cells treated for 24 hours in normoxic or hypoxic 
conditions, while a negligible amount of protein was found in the cytosolic fraction (data not shown). Lamin A/C was 
used as nuclear marker (C). Activation of the HIF-1a pathway was measured by qPCR analyzing the expression of its 
target genes: VEGF, PHD2, and PHD3 (D). Data represent mean±SEM of 4 independent experiments. Statistical 
significance was determined by Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
 

 

3. EFFECTS OF HYPOXIA ON MYOGENESIS 
To assess whether a hypoxic pre-treatment would affect myogenesis, proliferating C2C12 

murine myoblasts were cultured under 1% O2 (hypoxic, H) or 21% O2 (normoxic, N) conditions for 

24 hours, and then they were induced to differentiate for seven days under normoxic conditions (21% 

O2), by switching to the differentiation medium containing 2% horse serum (HS), as deeply described 

in the Materials and Methods. At the end of the differentiation process, the extensive formation of 
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myotubes could be observed in both hypoxic or normoxic pre-conditioned cell plates, and they stained 

positive for myosin heavy chain (MHC) by immunofluorescence (Figure 2A). A quantitative analysis 

of the differentiation revealed that the hypoxic pre-treatment induced the formation of hypertrophic 

myotubes, with a 1.4-fold increase in the differentiation index, as compared to normoxic controls, 

while no significant differences were observed in the fusion index (Figure 2B).  

 

 
Figure 2. Effects of hypoxia on C2C12 muscle differentiation. C2C12 cells were induced to differentiate under 
normoxia after 24 hours of preconditioning in 1% O2 and compared with controls that had been kept under normoxia. 
Immunofluorescence staining at the end of differentiation revealed the formation of myotubes expressing MHC (green). 
Cell nuclei were stained with DAPI (blue). Original magnification 100X. (A). Two differentiation parameters were 
calculated: the fusion index, as the ratio between MHC-positive nuclei and the total number of nuclei, and the 
differentiation index, as the ratio between the average of myotubes area and nuclei localized in the MHC-positive 
myotubes (B). Data represent mean±SEM of 6 independent experiments. The results are expressed as fold-change in 
comparison to normoxia. Statistical significance was determined by Student’s t test. **P < 0.01. 
 

Then, in order to assess how the hypoxic pre-conditioning affected myogenesis, each different 

phase of the process was analyzed, starting from the nuclear localization of the earliest differentiation 

marker MyoD. Results showed that the hypoxic pre-conditioning induced a 3-fold increase of MyoD 

localization in the nuclei (Figure 3A). Moreover, the mRNA expression levels of ID1 and MyoR, the 

two main MyoD corepressors, were significantly down-regulated of about 50% and 30%, 

respectively, after 24 hours under hypoxia, and their expression level remained lower than controls 

throughout the differentiation process (Figure 3B).  
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Figure 3. Activation of MyoD. Western blot (WB) and relative quantification of MyoD subcellular localization were 
performed after hypoxia pretreatment and nuclei separation using Lamin A/C as a nuclear marker (A). Gene expression 
of MyoD corepressors, MyoR, and ID1, was measured by qPCR during the differentiation process (B). Data represent 
means±SEM of 4 independent experiments for the WB analyses and 5 replicates for the gene expression experiments. 
The results were expressed as fold-change in comparison to normoxia and the statistical analysis was determined by 
Student’s t test. *P < 0.05. 

 

Then, Myogenin and MHC, the two main intermediate and late-markers of differentiation, 

respectively, were evaluated by qPCR, revealing that hypoxia pre-conditioning induced an increase 

of Myogenin, that was 1.66- and 2.4-folds higher, at the end of the 24 hours hypoxic pre-conditioning 

(day 0 of differentiation) and after three days of differentiation (day 3), as compared to normoxic 

controls (Figure 4A). Analysis of the terminal differentiation marker MHC by qPCR at the end of 

differentiation (day 7) revealed that its expression was 1.33-folds higher in hypoxia pre-conditioned 

cells than in controls (Figure 4B).  
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Figure 4. Effects of hypoxia on myogenic markers. Gene expression of myogenin (A) and MHC (B) was analyzed by 
qPCR during differentiation of C2C12 cells pretreated in hypoxia or normoxia and then induced to differentiate in 
normoxic culture conditions. Data represent means±SEM of 4 independent experiments and the results were expressed 
as fold- change in comparison to normoxia. The statistical analysis was determined by Student’s t test. *P < 0.05; **P < 
0.01. 
 

 

4. MECHANISTIC STUDY OF HIF-1α-INDUCED ACTIVATION OF 

MYOD 
We then investigated the hypothesis of a possible direct link between the activation of HIF-1α 

and the accumulation of MyoD into the nuclei. Along this line, it is known that a class of secreted 

proteins, called WNTs, are finely regulated under hypoxia, and they are also known to regulate the 

expression of MyoD. Therefore, we tested whether the hypoxic pre-conditioning would alter either 

the canonical or the non-canonical pathway of β-catenin. Results showed that hypoxia inhibited the 

canonical WNT pathway by reducing the nuclear translocation of β-catenin (-50%) and by inducing 

a marked down-regulation of its target genes TCF7 (-52%) and Cyclin D1 (-25%) (Figure 5A).  

On the contrary, we found the activation of the non-canonical WNT pathway. In fact, qPCR 

analysis showed a significant increase of WNT7a, WNT9a, and WNT4, of 1.75-, 1.55-, and 1.23-

folds, respectively, was observed after 24 hours of hypoxic pre-conditioning (Figure 5B). To further 

confirm the activation of the non-canonical pathway, the β-catenin translocation to the plasma 

membrane was analyzed, which is known to be induced by WNTs. The WB analysis of the plasma 

membrane fraction revealed a 1.66-fold increase of β-catenin, as compared to normoxic controls 

(Figure 5B).  
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Figure 5. Canonical and non-canonical WNT pathway analyses. (A) Analysis of the WNT canonical pathway was 
performed by measuring the nuclear translocation of b-catenin by Western blot (WB) with its relative quantification using 
Lamin A/C as marker after nuclei separation and evaluating the gene expression of its target genes by qPCR. (B) Analysis 
of the WNT non-canonical pathway was performed by evaluating gene expression of WNT7a, WNT9a, and WNT4 by 
qPCR, and the b-catenin subcellular localization by WB, using Na+/K+ ATPase as marker after plasma membrane 
separation. Data represent means±SEM of 5 independent replicates for the gene expression analyses and 4 experiments 
for the β-catenin translocation. Results are expressed as fold-change in comparison to normoxia and the statistical analysis 
was determined by Student’s t test. *P < 0.05; **P < 0.01. H, hypoxia; N, normoxia. 

 

 

Then, we tested whether the hypoxic pre-conditioning was responsible for the activation of 

MyoD mediating the non-canonical WNT pathway.  

To validate this hypothesis, HIF-1α was silenced in C2C12 myoblasts by stable transfection 

with shHIF1α (HIF-1α-) plasmid, while the scrambled shCTR (HIF-1α+) was used as controls. Cells 

were then cultured under hypoxia for 24 hours and the inhibition of HIF-1α was evaluated by WB. 

Results revealed that HIF-1α-  cells showed a decrease of HIF-1α nuclear translocation (-40%), as 

compared to controls (HIF-1α+ cells, Figure 6A), while a negligible amount of protein was found in 

the cytosolic fraction (data not shown). 

Moreover, the down-regulation of HIF-1α induced also a decrease of WNT7a protein 

expression (-50%) as shown in the WB (Figure 6B) and a reduction of MyoD localization into the 

nuclei (-60%) (Figure 6C).  
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Figure 6. Effects of HIF-1a inhibition on C2C12 myoblasts. Silencing of HIF-1a was performed in C2C12 myoblasts. 
A) HIF-1α inhibition was evaluated after preconditioning for 24 hours in 1% O2 and analyzing the nuclear translocation 
of HIF-1α in HIF-1α- cells by Western blot (WB) with relative quantification to control cells (HIF-1α+) using Lamin A/C 
as marker after nuclei separation, while a negligible amount of protein was found in the cytosolic fraction (data not 
shown). B, C) WB and relative quantification were also used to measure WNT7a protein levels (B), using EE1a as marker, 
and the nuclear localization of MyoD protein (C), after nuclei separation and using Lamin A/C as marker, in HIF-1α- as 
compared with control HIF-1α+ cells. Data represent means±SEM of 3 independent experiments. The statistical analysis 
was determined by Student’s t test. *P < 0.05; **P < 0.01. 
 
 

Then, to further understand the role played by HIF-1α during differentiation, HIF-1α+ and HIF-

1α-  cells were cultured under hypoxic conditions for 24 hours and then induced to differentiate in 2% 

HS for seven days. At the end of the differentiation process, cells were stained for myosin heavy 

chain (MHC) (Figure 7A). Results showed that the inhibition of HIF-1α induced a decrease of about 

90% and 70% in fusion and differentiation indexes, respectively, as compared to HIF-1α+ cells 

(Figure 7B). Moreover, a significant reduction in myogenin expression (-53%) could be observed by 

qPCR at day three of differentiation (day 3), as well as in MHC expression (-33%) at the end of the 

differentiation process (day 7), as compared to controls (Figure 7C).  
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Figure 7. Effects of HIF-1a silencing on skeletal muscle differentiation. HIF-1α+ and HIF-1α- were induced to 
differentiate under normoxia after preconditioning for 24 hours in 1% O2. Immunofluorescence staining at the end of the 
differentiation process revealed the formation of myotubes expressing MHC (green). A) Cell nuclei were stained with 
DAPI (blue). Original magnification 100X. B) Two differentiation parameters were calculated: the fusion index, as the 
ratio between MHC-positive nuclei and the total number of nuclei, and the differentiation index, as the ratio between the 
average of myotubes area and nuclei localized in the MHC-positive myotubes. C) Gene expression of myogenin, at the 
third day of differentiation (3DD), and MHC, at the seventh day of differentiation (7DD), were analyzed by qPCR during 
the differentiation process. Data represent means±SEM of 3 independent experiments. Results are expressed as fold 
change compared with the control HIF-1α+. Statistical significance was determined by Student’s t test. *P < 0.05; ***P 
< 0.001. 
 

Then, we investigated the involvement of the non-canonical WNT pathway during myogenesis. 

To this purpose, the WNT pathway was inhibited using XAV939, a known and specific inhibitor that 

promotes the phosphorylation and degradation of β-catenin through the action of Axin2. Thus, 

myoblasts were cultured in the presence of 40 µM XAV939 under hypoxia for 24 hours, and then 

switched to normoxia and induced to differentiate in 2% HS for seven days. Results were compared 

to those of control myoblasts, that were pre-conditioned under hypoxia but without the addition of 

XAV939 in the culture medium, without inhibiting the WNT pathway. At the end of the 
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differentiation process, cells were stained for myosin heavy chain (MHC) expression (Figure 8A). 

Results revealed that the inhibition of the WNT pathway with XAV939 induced a decrease of about 

55% and 50% in the fusion and differentiation indexes, respectively, as compared to controls (Figure 

8B).  

 

 
Figure 8. Effects of WNT inhibition on skeletal muscle differentiation. C2C12 cells were treated with 40 µM of 
XAV939 under hypoxic conditions and induced to differentiate for 7 days. A) Immunofluorescence staining was 
performed at the end of the differentiation, revealing myotubes expressing MHC (green), and the nuclei were stained with 
DAPI (blue). Original magnification 100X. B) Two differentiation parameters were calculated: the fusion index, as the 
ratio between MHC-positive nuclei and the total number of nuclei, and the differentiation index, as the ratio between the 
average of myotube area and nuclei localized in the MHC-positive myotubes. Data represent means±SEM of 3 
independent experiments. Results are expressed as fold changes as compared with controls that were cultured in the 
presence of DMSO. Statistical significance was determined by Student’s t test. *P < 0.05; **P < 0.01. 
 

 

Moreover, differentiation markers analysis showed a decrease in the nuclear translocation of 

MyoD (-25%) (Figure 9A), as well as a reduction in the expression of Myogenin (-49%) and MHC 

(-52%), at 0, 3, and 7 days of differentiation, respectively (Figure 9B). 
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Figure 9. Analyses of differentiation markers after XAV939 treatment. A) C2C12 were treated with XAV939 to 
inhibit the WNT pathway. Nuclear localization of MyoD was investigated by Western blot (WB) and relative 
quantification after nuclei isolation and using Lamin b1 as a marker (Lamin A/C could not be used as its expression 
changed during treatment). B) Gene expression of myogenin and MHC was determined by qPCR at day 3 and 7 of 
differentiation, respectively. Data represent means±SEM of 3 independent experiments. Results are expressed as fold 
changes as compared with controls cultured in the presence of DMSO. Statistical significance was determined by 
Student’s t test. *P < 0.05; **P < 0.01. 
 

 

5. EFFECTS OF TWO COMMERCIAL PHDs INHIBITORS ON C2C12 

CELLS 
Two commercial PHDs inhibitors have been characterized and tested: IOX2 and FG-4592 

(Figure 10A). The half maximal inhibitory concentration (IC50) represents the concentration of a 

drug that is required for 50% inhibition in vitro of the activity of the PHDs was measured by a 
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two plasmids: either the Luciferase-pcDNA3 plasmid (luciferase control vector) or the ODD-
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the gene of Luciferase) (80 ng) and as a second vector, the pRL-CMV plasmid expressing the Renilla 

gene, which acts as the internal control of the transfection (8 ng).  

Then, cells were treated with PHDs inhibitors at different working concentrations (10 µM, 25 

µM, 50 µM, 100 µM) for 24 hours. The activity of PHD inhibitors turns out to be directly proportional 

to the translation of the ODD-HIF-1α cloned upstream the luciferase gene, and it was detected using 

the Dual Glo Luciferase assay kit (Promega). We performed a linear regression analysis, which 
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correlates the inhibition rate with the concentration of each inhibitor, and the IC50 value for each 

compound was calculated. The results showed that the IC50 values of IOX2 and FG-4592 were 50 

µM and 40 µM respectively (Figure 10B).  

Then, the effects of IC50 concentration on cell viability and toxicity were investigated after 24 

hours of treatment. IOX2 and FG-4592 molecules were used at the chosen concentrations of 50 µM 

and 40 µM respectively. The results were compared with those obtained with control cells (CTRL), 

which were cultured at the same time point in growth medium in the absence of inhibitors, in the 

presence of DMSO. Cell proliferation was measured by RealTime GloTM (Promega) assay while cell 

cytotoxicity was measured using the CellToxTM (Promega) assay. Results showed no significant 

changes in the proliferation rate and in the cytotoxicity, confirming that the treatment did not induce 

any evident alteration of the cellular behavior (Figure 10C). 

 

 
Figure 10. PHDs inhibitors characterization and their effects on murine myoblasts C2C12 on cell proliferation 
and toxicity. The commercial available PHDs inhibitors, IOX2 and FG-4592 (A), are characterized and tested for the 
IC50 calculation using 10, 25, 50, 100 µM working concentrations (B). Their effects on C2C12 cells treated for 24 hours 
at the IC50 working concentrations were analyzed evaluating the viability and toxicity (C). Data represent mean±SEM 
of five independent experiments.  
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6. ACTIVATION OF HIF-1α PATHWAY 
 

Based on the previous experiments, C2C12 were treated for 24 hours with 50 µM IOX2 and 40 

µM FG-4592. Initially, it was tested whether a pre-conditioning treatment with a PHD inhibitor could 

activate HIF-1α. To this purpose, the results obtained from the IC50 calculation were used to measure 

the activation of the HIF-1a oxygen-responsive domain (ODD) by a luciferase assay.  

The activity of PHD inhibitors turns out to be directly proportional to the translation of the 

ODD-HIF-1α cloned upstream the luciferase gene. In particular, it was observed that IOX2 and FG-

4592 induced a 2.19- and 3.95-fold increase, respectively, as compared with the controls (Figure 

11A). These data were also confirmed by the analysis of HIF-1a localization by western blot after 

nuclei isolation, which revealed that IOX2 and FG-4592 promoted its nuclear localization of 8.78- 

and 14.98-fold increase, respectively, as compared with the controls (Figure 11B), as shown from 

the 100 kDa band in the WB (while a negligible amount of protein was found in the cytosolic fraction 

(data not shown)). 

Moreover, quantitative PCR (qPCR) analysis of key HIF-1α target genes revealed a 1.64- and 

4.43-fold increase in the expression levels of VEGF and PHD2 with IOX2 treatment, whereas FG-

4592 promoted a 2.15- and 4.83-fold increase in the mRNA levels of the same genes, as compared 

with the controls (Figure 11C). 
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Figure 11. Effects of PHDs inhibitors on HIF-1α activation. 
Cells were treated with 50 µM IOX2 and 40 µM FG-4592 for 24 hours and the activation of the HIF-1α pathway was 
analyzed measuring the activity of oxygen-responsive domain (ODD) by a Luciferase assay (A), evaluating the HIF-1α 
nuclear translocation by western blot, after nuclei separation and using Lamin A/C was used as nuclear marker, while a 
negligible amount of protein was found in the cytosolic fraction (data not shown). (B), and quantifying the gene expression 
of its target genes, VEGF and PHD2, by qPCR (C). Data represent mean±SEM of three independent experiments for 
luciferase assay, four for gene expression and three for western blot, and the statistical analysis was determined by t-test. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  
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seven days. At the end of the differentiation process, the extensive formation of myotubes could be 

observed and they were stained positive for MHC by immunofluorescence (Figure 12A). A 

quantitative analysis of the differentiation revealed that a chemical pre-treatment induced the 

formation of hypertrophic myotubes, with a 1.47- and 1.28-fold increase in the differentiation index 

upon IOX2 and FG-4592 treatment, respectively, as compared to the controls, while no significant 

differences were observed in the fusion index values (Figure 12B). 

 

 
Figure 12. Effects of PHDs inhibitors on C2C12 skeletal muscle differentiation. 
C2C12 were treated for 24 hours with 50 µM IOX2 and 40 µM FG-4592 and then induced to differentiate in presence of 
2% HS. Immunofluorescence staining at the end of differentiation revealed the formation of myotubes expressing MHC 
(green). Cell nuclei were stained with DAPI (blue). Original magnification 100X. (A). Two differentiation parameters 
were calculated: the fusion index, as the ratio between MHC-positive nuclei and the total number of nuclei, and the 
differentiation index, as the ratio between the average of myotubes area and nuclei localized in the MHC positive 
myotubes (B). Data represent mean±SEM of three independent experiments and the results were expressed as fold-change 
in comparison to controls. The statistical analysis was determined by t-test, ***p < 0.001, ****p < 0.0001.  
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Moreover, the mRNA expression levels of MyoR, the main MyoD corepressor, were 

significantly down-regulated of about 54% and 61%, upon IOX2 and FG-4592 treatments, 

respectively, as compared with the controls (Figure 13B), as expected.  

Then, Myogenin and MHC, the main intermediate and late-markers of differentiation, were 

evaluated by qPCR, revealing that chemical pre-conditioning induced an increase of both them: IOX2 

and FG-4592 induced a 2- and 1.42-fold increase of Myogenin after 3 days of differentiation and 

2.21- and 2.34-fold increase of MHC after 7 days of differentiation, respectively, compared with the 

controls (Figure 13C). 

 

 
Figure 13. Activation of myogenic markers upon chemical treatment with PHDs inhibitors. 
The effects of treatment with 50 µM IOX2 and 40 µM FG-4592 on differentiation markers were performed analyzing the 
MyoD nuclear localization by western blot after nuclei separation and using lamin A/C as a nuclear marker (A), measuring 
the gene expression of MyoD co-repressor MyoR by qPCR (B) and evaluating the expression level of myogenin and 
MHC (C) by qPCR during differentiation (3dd and 7dd, third and seventh day of differentiation, respectively). Data 
represent mean±SEM of four independent experiments for the Western Blot analyses, while three replicates for the gene 
expression experiments. The results were expressed as fold-change in comparison to controls and the statistical analysis 
was determined by t-test. *p < 0.05, **p < 0.01, ***p < 0.001. 
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8. MECHANISTIC STUDY OF HIF-1α-INDUCED ACTIVATION OF MYOD 
As previously described for physical hypoxia, we finally assessed whether there was a 

mechanistic link between the activation of HIF-1α and MyoD. Therefore, we tested whether a 

chemical activation of HIF-1a would promote the same up-regulation of the WNT non-canonical 

pathway, with the hypothesis that HIF-1a could directly bind on the promoter region of WNT7a. In 

fact, it was previously described that HIF-1a directly binds the WNT7a HRE sequences in a model 

of oligodendrocyte (Yuen et al. 2014). 

Therefore, we further investigated how the chemical pre-conditioning with PHDs inhibitors 

affected WNTs pathway and found that WNT4 and WNT7a, key WNTs involved in cell 

differentiation, were upregulated. In particular, results demonstrated that IOX2 induced a 1.46- and 

1.41-fold increase in WNT4 and WNT7a gene expression; similar results were obtained by FG-4592 

treatment, which up-regulated of 1.45- and 2.32-fold the gene expression of WNT4 and WNT7a 

(Figure 14A). 

In order to confirm the activation of WNT non-canonical pathway, it was set up a luciferase 

assay in which the expression of luciferase was under the control of WNT7a promoter, as extensively 

described in Materials and Methods. In fact, it was already demonstrated in the literature the crucial 

role played by WNT7a during skeletal muscle differentiation, generating an increased number of 

larger fibers (von Maltzahn et al. 2011, von Maltzahn et al. 2013, Bentzinger et al. 2014). Therefore, 

murine myoblasts C2C12 were treated with 50 µM IOX2 and 40 µM FG-4592 for 24 hours. At the 

same time, as a positive control we decided to use physical hypoxia (1% O2), and all data were 

compared to the negative control, treated with DMSO. The results showed that both physical and 

chemical HIF-1a activation induced an increase of luciferase signal, leading to an enhancement of 

WNT7a promoter activity. In particular, it was observed that hypoxia promoted a 1.98-fold increase 

and, in parallel, IOX2 and FG4592 induced a 1.4- and 1.3-fold increase, compared with the controls 

(Figure 14B), confirming that HIF-1a strictly regulates WNT7a gene expression.  
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Figure 14. Activation of WNT non-canonical pathway.  
The study of WNT Non-Canonical pathway was performed analyzing the gene expression of WNT7a and WNT4 by 
qPCR (A) and the regulatory activity of HIF-1α on WNT7a promoter by luciferase assay (B). In both experimental 
procedures C2C12 were treated with 50 µM IOX2 and 40 µM FG-4592 for 24 hours. In particular, for the luciferase assay 
physical hypoxia (1% O2) was used as positive control, and all data were compared to the negative control (DMSO). 
Data represent mean±SEM of three independent replicates for the gene expression analyses and for luciferase assays. 
Results are expressed as fold-change in comparison to controls and the statistical analysis was determined by t-test. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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in Materials and Methods (Figure 15A).  
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corresponding to nt -995 -843 and nt -653 -484, validating that HIF-1a directly binds WNT7a 

promoter and regulates its gene expression (Figure 15B). 

 

 
Figure 15. Regulatory effect of HIF-1a on WNT7a promoter. 
A ChIP assay was performed on C2C12 treated upon physical hypoxia (1% O2) for 24 hours to investigate the direct link 
between HIF-1α and WNT non-canonical pathway (A). The immunoprecipitation was conducted using antibodies against 
HIF-1α or IgG mouse, as negative control. After immunoprecipitation, the genomic DNA was analyzed by qPCR and 
two distinct HRE binding sequences were identified, in comparison to the input of normoxia (nt -995 -843; nt -653 -484). 
Binding was not observed in non-treated controls (normoxia) (B). Data represent mean±SEM of three independent 
replicates. Results are expressed as fold-change and the statistical analysis was determined by t-test. *p < 0.05, **p < 
0.01, ****p<0.0001. 
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DISCUSSION AND CONCLUSIONS 
 

Skeletal muscle differentiation is a complex biological process characterized by different 

phases. During myogenesis, proliferating muscle cells, called myoblasts, arrest their growth, exit the 

cell cycle, express muscle-specific genes, then form the multinucleated myotubes and finally fuse 

into myofibers. This process is finely regulated by several key markers such as MyoD, Myogenin and 

MHC. In particular, MyoD has been recognized as the main regulator of myoblast cell fate by its 

ability to bind specific DNA sequences, called E-boxes, ultimately activating myogenic 

differentiation (Weintraub 1993, Olson and Klein 1994). The proliferating myoblasts express the 

early marker MyoD, the first activator of myogenesis, which blocks the proliferative stimulus and 

induces the expression of myogenin, that in turn promotes differentiation and fusion in myotubes 

(Lassar et al. 1994). The formation of myotubes leads to the fusion into myofibers that will express 

MHC isoforms at different levels depending on the fate of the myofiber (Allen et al. 2001). 

In order to ensure the proper muscle development and cell survival, a constant supply of oxygen 

is needed, which is the main source of energy for all mammals (Semenza 2010). For this reason, 

cellular oxygen levels are finely tuned and an altered oxygen partial pressure could have detrimental 

effects on cell state. In this context, HIF-1α is the major regulator of oxygen homeostasis and 

regulates the expression of several genes (Yoon et al. 2006). In fact, HIF-1α mediates cell responses 

to hypoxia by regulating glucose uptake, anaerobic metabolism in oxygen-depleted environments 

(Carmeliet et al. 1998), angiogenesis (Levy et al. 1995), survival (Krishnamachary et al. 2003), 

differentiation (Kim et al. 2015). As previously described, HIF-1α is a heterodimeric transcription 

factor consisting of a constitutively expressed β-subunit and an oxygen-regulated α-subunit. In the α-

subunit, there is an oxygen-dependent degradation (ODD) domain, which is hydroxylated by proline-

hydroxylases (PHDs), rendering the α-subunit vulnerable to proteasomal degradation under normoxia 

(Huang et al. 1998). On the contrary, when the amount of oxygen is limited, in hypoxic conditions, 

PHDs are inhibited, thus HIF-1α is stabilized, it can translocate to the nucleus and it activates the 

transcription of its target genes (Huang et al. 1996). 

In the literature, the role of HIF-1a during skeletal muscle differentiation is quite controversial. 

In fact, while it is known that HIF-1a is implicated in muscle cell development, vascular formation, 

and energy metabolism in skeletal muscle (Ono et al. 2006, Niemi et al. 2014, Thom et al. 2014, Xie 

et al. 2014), several studies demonstrated that a chronic activation of HIF-1a turns out to be 

detrimental for skeletal muscle differentiation as it blocks the myogenic process by inducing the 

degradation of MyoD (Di Carlo et al. 2004, Majmundar et al. 2012). Indeed, these findings support 
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the concept that hypoxia is necessary for adult stem cells to preserve their undifferentiated state, as 

they usually reside in those hypoxic tissue districts known as the hypoxic niches (Morrison and 

Spradling 2008, Liu et al. 2012).	On the other hand, it is known that upon an ischemic insult, muscle 

regeneration occurs once the normal blood flow is restored. Therefore, the role of HIF, whose 

activation is strictly oxygen-dependent, could be crucial also in the activation of muscle regeneration. 

Along this line, we tested the hypothesis that the activation of HIF-1α could play a role not only 

in preventing stem cell differentiation, but also in preparing satellite muscle, i.e. inducing their 

commitment toward differentiation, once oxygenation is restored. To this purpose, we used two 

different approaches to activate HIF: (a) physical hypoxia, obtained by culturing cells in a hypoxic 

incubator at 1% O2, and (b) chemical hypoxia, obtained by a pharmacological inhibition of the prolyl-

hydroxylases (PHDs), ultimately activating HIF-1α. 

Overall, in this Ph.D. thesis, we found that a transient (up to 24 hours) activation of HIF-1α, 

either under physical or chemical conditions, leads to an increase of MyoD, mediated by the Wnt 

non-canonical pathway. In particular, a transient activation of HIF-1α renders myoblasts more 

committed to differentiation and, upon oxygen restoration, they complete the differentiation process 

by forming hypertrophic myotubes. In particular, we initially confirmed that hypoxia greatly reduces 

the proliferation rate of C2C12 myoblasts, that enter a pseudo-quiescent state, as expected 

(Greenbaum 1997, Di Carlo 2004) and differentiation is inhibited. However, hypoxia does not induce 

any significant cell death during the first 24 hours of treatment. Nonetheless, we confirmed that 

prolonged exposure to severe hypoxia ultimately leads to cell death. Thus, in this study, we limited 

the hypoxic pre-conditioning time to 24 h. Moreover, in order to propose a possible new translational 

approach, we decided to mimic the effects obtained by physical hypoxia also using two commercially 

available PHDs inhibitors, IOX2 and FG-4592, the later under Phase III clinical trial for the treatment 

of renal anemia (Maxwell and Eckardt 2016). We used the PHDs inhibitors at their IC50 working 

concentrations and we observed that a 24 hours pre-treatment is sufficient to activate HIF-1α, as 

confirmed by its shift to the nucleus and by the activation of its main target genes, mimicking what 

we previously observed under physical hypoxia (1% O2) (Cirillo et al. 2017). Then, we tested whether 

our pre-conditioning would affect myoblasts differentiation under standard culture conditions 

(normoxia and differentiation medium, DM). Upon both treatments, we found that pre-conditioned 

myoblasts completed each step of the differentiation process earlier than controls, and they formed 

hypertrophic myotubes, as confirmed by the significant increase in the differentiation index. On the 

other hand, no statistical differences could be observed in the fusion index value, supporting the 

notion that the pre-conditioning did not cause an increase in the total number of myotubes but rather 

in their size. In order to investigate the possible mechanism behind these surprising data, we measured 
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the expression of some key markers during differentiation. In particular, we found that both hypoxic 

pre-conditioning and the pre-treatment with PHDs inhibitors significantly induced the activation of 

MyoD.  

Actually, it is well known that MyoD is a constitutive transcription factor (Berkes and Tapscott 

2005), which can be found in two different forms: (a) the active form, which is localized in the nucleus 

and bound to E-protein (whose activity is necessary to induce the transcription of MyoD target genes, 

including myogenin) or (b) the inactive form, which is initially localized in the nucleus but it is rapidly 

degraded in a proteasome-dependent manner (Benezra et al. 1990), due to the binding between the 

E-protein, necessary to activate the transcription, to the inhibitors of differentiation, such as ID1 and 

MyoR (Benezra et al. 1990, Berkes and Tapscott 2005). Results showed that an hypoxic pre-

conditioning caused an increase in MyoD nuclear localization, which was accompanied by a decrease 

in MyoR and ID1 expression levels. Remarkably, also a chemical activation of HIF-1α increased the 

accumulation of MyoD into the nuclei and down-regulated the expression of MyoR. Based on these 

findings, we hypothesized that HIF-1α could play a role in activating myoblasts toward myogenesis. 

Indeed, a time-course analysis of myogenic markers during differentiation revealed that 

myogenin expression level was significantly higher than controls at day three of differentiation, 

supporting an early activation of myogenesis. Moreover, MHC level expressed at the end of the 

differentiation process (day seven) was significantly higher in pre-conditioned cells than in controls, 

supporting the increase observed in the differentiation index. On the contrary, no alteration of the 

fusion index was observed, supporting that HIF-1a activation did not increase the total number of 

myotubes, but they became hypertrophic.  

In order to understand the mechanism underlying the hypertrophic phenotype observed, we 

decided to study the possible involvement of the Wnt signaling pathway process. In fact, the Wnt 

pathway is known to be modulated under hypoxia (Mazumdar et al. 2010) and it plays an essential 

role during both embryonic muscle development and the maintenance of skeletal muscle homeostasis 

in the adult by regulating the expression of the myogenic regulatory factors (MRFs) (von Maltzahn 

et al. 2012). Actually, WNT proteins constitute a large family of secreted glycoproteins that regulate 

myogenesis in two distinct ways: the canonical and non-canonical pathways, which are β-catenin 

dependent or independent, respectively (Sethi and Vidal-Puig 2010). In particular, the canonical Wnt 

pathway stabilizes β-catenin and activates target genes via TCF/Lef transcription factors, thus 

promoting the self-renewal and proliferation of satellite cells. On the other hand, the non-canonical 

pathway is β-catenin independent and supports its plasma-membrane translocation, and it is involved 

in the differentiation process and in the growth of muscle fibers (Tanaka et al. 2011). Along this line, 

it was demonstrated that WNT4, WNT7a and WNT9a are up-regulated in C2C12 during 
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differentiation, and that they promote the myogenic processes through the non-canonical pathway 

(Tanaka et al. 2011). In fact, they act as transcription antagonists mediated by β-catenin/TCF and also 

induce the translocation of β-catenin to the plasma membrane (Berkes and Tapscott 2005). Thus, we 

first assessed whether the hypoxic pre-conditioning affected WNT expression in C2C12 cells. Our 

results showed that a 24 hours hypoxic-treatment in 1% O2, in normal growth medium, caused the 

inhibition of the canonical Wnt pathway, reducing the nuclear translocation of β-catenin and the 

expression of its target genes TCF7 and CYCLIN D1. Nonetheless, under the same experimental 

conditions, we observed the activation of the non-canonical Wnt pathway, as confirmed by the up-

regulation of WNT4, WNT7a and WNT9a, as well as the translocation of β-catenin to the plasma 

membrane. Moreover, we demonstrated that WNT4 and WNT7a are also up-regulated upon PHDs 

inhibitors pre-conditioning. 

Interestingly, a previous study with slightly, yet possibly crucially, different experimental 

conditions showed that a 0.5% O2 treatment for 48 hours, instead of 24 hours, caused a robust down-

regulation of the Wnt canonical pathway, which determined the complete inhibition of skeletal 

muscle differentiation (Majmundar et al. 2015). Indeed, during the optimization of our protocol, we 

found that subjecting C2C12 cells to hypoxia for more than 24 hours caused significant cell death 

and complete inhibition of the differentiation process, supporting the notion that the effects of 

sustained hypoxia are strongly due to the treatment length. Nonetheless, under our experimental 

conditions, we found an activation of the non-canonical Wnt pathway, which has been shown to be 

involved in the migration and differentiation of C2C12 myoblasts (von Maltzahn et al. 2012, 

Bentzinger et al. 2014). In particular, it has been reported that WNT7a is the main actor in the 

activation of the non-canonical Wnt pathway during the skeletal muscle differentiation, leading to 

the formation of hypertrophic myotubes. In fact, treatment with exogenous WNT7a increased C2C12 

motility and engraftment, resulting in improved muscle strength. Moreover, an increase of WNT7a 

(by overexpression or by subjecting cells to the recombinant protein in the culture medium) 

stimulated C2C12 myoblasts to form larger myotubes upon differentiation (von Maltzahn et al. 2012, 

Bentzinger et al. 2014), through the up-regulation of MyoD (Tajbakhsh et al. 1998). On these bases, 

our results support the hypothesis that HIF-1α plays a critical role in activating myogenesis through 

the non-canonical Wnt pathway.  

To further validate our hypothesis, we tested whether an inhibition of HIF-1α had any effect on 

myoblast differentiation. Therefore, HIF-1α silencing was performed in C2C12 and the effects on 

skeletal muscle differentiation were evaluated. Results showed that the inhibition of HIF-1α caused 

a marked reduction of WNT7a protein accumulation, when cells were subjected to 1% O2 for 24 

hours, supporting the involvement of Wnt non-canonical pathway. Moreover, HIF-1α silencing 



	 53	

caused a down-regulation of MyoD nuclear translocation. To further investigate the role of HIF-1α 

during skeletal muscle differentiation, we cultured HIF-1α silenced cells for 24 hours in 1% O2, and 

then induced them to differentiate under normoxic conditions. Results showed that silencing of HIF-

1α strongly reduced the differentiation process, as compared to controls, inducing a marked decrease 

of Myogenin and MHC expression, ultimately leading to a reduction of both fusion and differentiation 

indexes. Finally, to clarify the link between HIF-1α activation and myogenesis, we further 

investigated the involvement of Wnt non-canonical pathway in the differentiation process. Along this 

line, it was previously demonstrated that an up-regulation of WNT7a induces hypertrophy in C2C12 

(Tajbakhsh et al. 1998, von Maltzahn et al. 2013), thus already suggesting a possible involvement in 

the process. Therefore, to test whether the activation of the Wnt non-canonical pathway is required 

for HIF-1α-induced activation of myogenesis, we chemically inhibited WNT during a 24 hours 

hypoxic pre-treatment. To this purpose, myoblasts were cultured for 24 hours under hypoxia in 

presence of 40 µM XAV939, a chemical inhibitor of WNT that decreases β-catenin signaling through 

an up-regulation of Axin2 (Huang et al. 2009), and then induced myoblasts to differentiate under 

normoxia without the inhibitor. Results showed that treatment with XAV939 strongly reduced the 

differentiation process, with a marked reduction of MyoD nuclear localization and a decrease of 

Myogenin and MHC expression levels, eventually leading to the decrease of both fusion and 

differentiation indexes. Interestingly, it was previously reported that inhibition of WNT under 

normoxia caused an inhibition of the differentiation process (Abraham 2016), supporting the notion 

that the activation of WNT caused by hypoxia, could be only partially counteracted by the inhibitor, 

leading to some, yet limited differentiation. Overall, our results supported the hypothesis that hypoxia 

decreases the ubiquitination/degradation of HIF1α and induces its activation (Groulx and Lee 2002), 

promoting skeletal muscle hypertrophy, through the action of the Wnt non-canonical pathway. 

To better understand the link between HIF-1a activation and WNT7a expression, a luciferase 

assay, under the control of WNT7a promoter, was designed. In order to investigate the role of HIF-

1a in the activation of WNT7a, we decided to perform the experiments in both physical and chemical 

hypoxia culture conditions. We observed that in both conditions the activation of HIF-1a determined 

a considerable increase of the luciferase signal, which turned out to be directly proportional to 

WNT7a promoter stimulation, confirming the regulatory role played by HIF-1a in the activation of 

WNT7a gene expression. Interestingly, it has been previously demonstrated that HIF-1a is able to 

bind WNT7a in a model of oligodendrocytes (Yuen et al. 2014). Therefore, to confirm their direct 

interaction also in our cellular model, we decided to perform a ChIP assay in the presence of 1% O2 

to achieve preliminary results in physical hypoxia, but without any alterations induced by the 
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chemical treatment. In particular, we identified two possible binding sequences of HIF-1a on WNT7a 

promoter, characterized by the presence of HRE sequences. The relevance of this finding is extremely 

important because HIF-1a can become a new therapeutic target to induce the up-regulation of 

WNT7a, promoting the hypertrophy in skeletal muscle.  

In summary, our results support that a transient activation of HIF-1a is fundamental to activate 

the regeneration process which occurs in skeletal muscle. In particular, IOX2 and FG-4592, two 

PHDs inhibitors deeply used in several studies and one of them already employed in clinical trial 

phase 3, are able to mimic the effects on myogenesis obtained by 1% O2, promoting the accumulation 

of MyoD into the nuclei and the formation of hypertrophic myotubes. Moreover, we define HIF-1a 

as a new possible candidate to induce the activation of WNT7a, which characterized the hypertrophic 

phenotype of the skeletal muscle. Clearly, the next step would be to assess if our findings could be 

also activated in vivo in an animal model. In fact, if these results will be confirmed also in vivo, it 

might be envisioned to pharmacologically activate HIF-1α, which has been already shown to be safe 

and feasible (Kim 2003, Mole 2009, Bentzinger 2014), to further activate muscle regeneration after 

an injury or a chronic degenerative disease. Further studies in this direction are currently ongoing in 

our laboratories and will be extended beyond this thesis work. 
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