UNIVERSITÀ DEGLI STUDI DI MILANO

Agriculture, Environment and Bioenergy (code: R10)

Department of Agricultural and Environmental Sciences Production, Landscape, Agroenergy (DISAA)

XXX cycle

FRUIT FLESH IN PEACH: characterization of the 'slow softening' texture Disciplinary sectors: AGR/03, AGR/07

> Angelo Ciacciulli R10941

Supervisor: Prof. Daniele Bassi Co-supervisor: Prof. Laura Rossini PhD School Coordinator: Prof. Daniele Bassi

2016-2017

Table of Contents

<u>1</u>	GENERAL ABSTRACT	1
<u>2</u>	INTRODUCTION	3
2.1	THE TEXTURE: A SENSORY PROPERTY	3
2.2	THE TEXTURE GOLD STANDARD ANALYSIS	4
2.3	OBJECTIVE ANALYSES	5
2.4	THE TEXTURE IN FRUIT	6
2.5	PEACH: TAXONOMY AND BOTANICAL OVERVIEW	6
<u>3</u>	IDENTIFICATION OF A MELTING TYPE VARIANT AMONG PEACH (P.	
PE	RSICA L. BATSCH) FRUIT TEXTURES BY A DIGITAL PENETROMETER	14
3.1	Abstract	14
3.2	INTRODUCTION	15
3.3	MATERIALS AND METHODS	16
3.4	Results	20
3.5	DISCUSSION AND CONCLUSIONS	24
3.6	SUPPLEMENTAL MATERIALS AND TABLES	27
<u>4</u>	GENETIC ANALYSIS OF THE SLOW SOFTENING TRAIT IN PEACH	33
4.1	Abstract	33
4.2	INTRODUCTION	33
4.3	MATERIALS AND METHODS	35
4.4	RESULTS	39
4.5	Discussion	51
4.6	Conclusions	52
<u>5</u>	GENERAL CONCLUSIONS	62
6	REFERENCES	63

III

1 **1 General abstract**

2 The aim of this research was to deepen the knowledge about the slow softening texture in peach.

3 The texture is a synthesis of several parameters detected by senses, derived from the food structure. The paramount sense in the texture perception is the tactile one, principally perceived 4 5 by hand and mouth. The tactile perception is a combination of four classes of mechanoreceptors, each one specialized to perceive mechanic deformation with different speed. This combined 6 7 perception influences the consumer evaluation of food quality, giving the texture importance 8 among food characteristics. The texture could also affect the taste perception through mechanical 9 actions on food structure. The mechanical property linked to the texture is associated with the 10 cellular organization and the cell wall strength. The main cell wall component affecting texture in 11 fresh fruit is pectin, a polymer of galacturonic acid. The disassembly of pectin involves several 12 enzymatic and non-enzymatic activities acting directly in pectin cleavage or indirectly disrupting 13 non-covalent interactions. The gold standard of texture analyses is the sensorial one, however 14 several issues make sensorial analyses inapplicable to breeding programs to select plant with 15 improved fruit texture. Several efforts were made to achieve instrumental analyses capable of 16 substitute humans in texture analyses. To mimic the tactile sense, a discipline studying the material 17 response to an applied force, the rheology, is applied. The easiest instrumental measure of rheology 18 parameters is the penetrometer test, diffused to measure the firmness, but exploitable to collect the 19 Young's modulus and the slope of yield stress represented respectively elasticity and fracturability.

20 In peach, so far at least four textures were described, melting (M), stony hard (SH), non-21 melting (NM) and slow softening (SS). Prior to this work, no reliable objective nor fast tool were 22 available to phenotype and select the SS trait in peach germplasm. The only reliable approach was 23 a sensorial assessment done by a texture-trained panel, requiring repeated and time-consuming 24 assessment. An objective, instrumental method, was set up by processing the data of a digital 25 penetrometer test. The penetrometer itself, as reported in paragraph 2, does not support the ability 26 to discriminate among the different texture types, as already reported in other works. In addition, 27 this method appears to be affected by the fruit ripening season, since the early-ripening accessions 28 tend to show faster loss of firmness, while the late-ripening exhibit a slower firmness loss.

Using the data collected in our experiment, the texture dynamic (TD) model was developed from the observation of differences in the rheogram shape due to the elasticity and fracturability parameters. The TD model, that excludes the firmness effect on the fracturability and elasticity parameters, was thus developed, after testing it on 20 accessions in three years, allowing for reliable discrimination between SS and M phenotype. Differences in the TD were also found when
comparing M vs SH and M vs NM textures. In particular, when comparing M and SS, TD value
is explained for the 96% from the texture.

36 The developed method was then applied (together with sensorial evaluation) to genetically dissect 37 the SS trait. Association and QTL mapping approaches were combined by analyzing a germplasm 38 panel and a biparental progeny, and a single locus at the end of chromosome 8 was identified. 39 RNA-seq analysis of 2 SS and 2 M accessions suggested some common features with the SH type 40 described in literature. In both texture types a lower auxin response was found when compared to 41 the M type. This agrees with the already known activity of auxin in the modulation of cell wall 42 rearrangement and expansion. Therefore, slower softening could be associated to slower cell wall 43 rearrangement. In future, comparison of auxin content in slow softening and melting type peaches 44 might provide further insight into the validity of this hypothesis. In detail, by RNA-seq comparing 45 M and SS a total of 64 differentially expressed genes were found in the genomic region harboring 46 the SS locus. Out of these 64 genes, 16 are uncharacterized, while among the characterized ones, 47 4 are putatively involved in auxin response based on peach genome annotation. Analysis of 48 polymorphisms in these 4 DEGs based on resequencing data of the 'Max10' and 'Rebus 028' 49 parents of biparental population did not uncover any variants in agreement with the observed 50 segregation. Analyzing 2kb gene models flanking regions, 16 genes were associated with 51 polymorphisms outside the coding sequence: the possible regulatory effects of such variants 52 require further evaluation by expression analyses.

53 In summary, the major results are the setup of a reliable tool to score objectively the SS texture 54 and the detection of a major locus and his dominant mendelian inheritance. However, NGS and 55 RNA-seq approaches are presented as a speculative data only, because they are not supported by 56 hormones content in fruit, and the large locus detected did not allow indication of a putative 57 variant.

These results will: a) give impetus in exploring SS genetic and physiology; b) support the design of future crosses and experiments; c) increase marker density in the locus; d) point out the possible central role of auxin (to validate the hypothesis of a similarity between SS and SH physiology); e) allow texture assessment of improved cultivars; and f) allow phenotyping of segregating progenies to develop molecular markers associated with the SS trait.

63

65 2 INTRODUCTION

66

67 **2.1 The texture: a sensory property**

A pioneer in food texture science and founding editor of the *Journal of Texture Studies*, Alina Szczesniak states [1] that "texture is the sensory and functional manifestation of the structural, mechanical and surface properties of foods detected through the senses of vision, hearing, touch and kinesthetics". She then postulated the following axioms:

a. "texture is a sensory property" which can only be perceived and described by humans and any

73 instrumental measurements must be related to sensory responses.

b. "texture is a multi-parameter attribute."

75 c. "texture derives from the structure of the food."

76 d. "texture is detected by several senses."

77 Tactile texture can be divided into oral-tactile texture, mouth feel characteristics, phase changes 78 in the oral cavity, and the tactile texture perceived when manipulating an object by hand (often 79 used for fabric or paper and called "hand") or with utensils [2]. However, the tactile sense is 80 perceived in humans at least from four different mechanoreceptors specialized on different 81 deformation frequencies, the fast-adapting type I, the slowly-adapting type I, the fast-adapting type 82 II and the slowly-adapting type II, involved in the perception of deformation with 5-50 Hz 83 frequency, deformation with frequency lower than 5Hz, vibration of 40-400 Hz and the sensation 84 of static force, respectively [3].

85 Texture is one of the most appreciated characteristics of food [4], enhancing or reducing flavor

perception [5]. Experiments showed that foods are less recognizable after changes in texture, so
the combination of taste and texture is considered a fingerprint of food in particular flavorless food

88 like cucumber which are unrecognizable when blended [2].

89 Several experiments conducted in simplified models as artificial matrices [5,6], showed distinct

90 phenomena modulating the perception of savors [7] by physical immobilization, increasing the

91 contact area or the ability to change the releasing rate of aromas [5], juice and tasting molecules,

92 affecting the biting time [8] and the receptor binding of the tasty molecules [9].

93 Regarding the relationship between texture and food structure, the basic structure of food is a 94 carbon skeleton: commonly in fruit and vegetables a major component is represented by plant cell 95 walls consisting of carbohydrates arranged in long and branched structures, called 96 polysaccharides, interacting with other organic molecules and ions. Plant cell walls link together 97 adjacent cells creating tissues and organs [4,10]. Considering edible fruits, non-lignified

98 parenchymatous cells are joined together by the middle lamella, composed mainly by pectin. 99 Pectin is a polymer of galacturonic acid, branched with sundry substituents as sugars, probably the 100 most complex macromolecule in nature [10]. Pectin plays a major role in texture perception [11] 101 and its degradation is associated to changes in texture [12]. The pectin degradation pathway 102 involves several enzymatic activities [13]. Polygalacturonase enzymes hydrolyze the poly 103 galacturonic acid (pectin), cleaving the alpha-1,4 glycosidic bonds between galacturonic acid 104 residues: exo-polygalacturonases cut molecules from the end, releasing galacturonic acid 105 monomers, while endo-polygalacturonases cut the molecule randomly producing pectin 106 fragments, i.e. oligogalacturonides. Pectin methylesterase catalyzes the demethoxylation of pectin, 107 changing water affinity. Polygalacturonic transeliminase catalyzes an eliminative cleavage of (1-108 >4)-alpha-D-galacturonan to give oligosaccharides with 4-deoxy-alpha-D-galact-4-enuronosyl 109 groups at their non-reducing ends [14]. As recently demonstrated in tomato using genetic 110 engineering approach, a bottleneck in pectin disassembly could be represented by the ability of the 111 enzymes to move across extra-cellular matrix. The relaxation of extra-cellular matrix increasing 112 the accessibility to the pectin matrix, a big part in relaxation is done by expansing disrupting non 113 covalent interactions [15–18].

114 **2.2 The gold standard for texture analysis**

Since texture is defined as a sensory property that can be perceived and described only by humans, physical parameters detected and quantified by so-called texture testing instruments must be interpreted in terms of sensory perception [1,19]. For these reasons, sensorial analysis is the gold standard for texture studies. Sensory evaluation comprises a set of techniques for accurate measurement of human responses to foods and minimizes the potential bias effects of brand identity and other information influencing consumer perception [2].

121 Advanced protocols to describe different textures in food have been already published [6,20]. The 122 use of humans as sensors involves several human abilities [1], tactile, acoustic and chemical 123 perception, capacity to elaborate sensations from previous experience, communication capacity 124 [19], known vocabulary (lexicon) and native language (compared to Americans, Japanese could 125 use five times more words to describe the same textural property of foods) [2]. Each human ability 126 involved in sensorial analysis may be a bottleneck for an objective and reproducible analysis 127 [21]. Other limits of sensory analysis could be to find standard foods, well trained panelists, 128 homogeneity of the panelist age, culture and ethnicity [20,22]. Usually this time-consuming 129 approach is inapplicable to breeding programs where a relatively large number of samples need to 130 be assessed each day [23].

131 **2.3 Objective analyses**

Different scientific approaches have been applied to develop objective analyses to better understand texture, including: rheology [24–26], tribology [27] and acoustic-vibrational approaches [28,29], that are based on disciplines studying mechanical properties of matter; chemistry to study matter chemical composition [18]; optical approaches based on microscopy to visualize structural differences among samples with different textures [30]; and spectrophotometry to study optical properties of the material [31,32].

138 **2.3.1 Mechanical properties**

- 139 Different mechanical approaches intending to imitate the human tactile sense have been proposed
- 140 to characterize food texture.

141 **2.3.1.1 Rheology**

Food rheology is the study of the manner in which food materials respond to an applied stress or
strain [26]. Instrumental methods have been classified into three main categories: empirical,
imitative and fundamental [28]. Among the empirical ones, the most used is the Penetrometer Test
[22,24].

146 2.3.1.1.1 Penetrometer test

147 Penetrometer test is the easiest test to record a stress-strain curve [24]. The stress-strain curve of a 148 material (where the stress is the compressive loading and the strain is the amount of deformation), 149 is the relationship between the stress and strain recorded during the penetrometer test. The 150 graphical representation of stress-strain curves is the rheogram, that is specific for each material 151 and related with its mechanical properties [33]. Penetrometer test is usually performed at constant 152 speed where the force is recorded [21]. Several plungers have been tested and adopted [34]: in the 153 horticultural field the most used has a cylindrical shape with a flat head [22]. The test involves the 154 compression force, applied by the central part of the plunger, and the shear force exercised by the edge of the plunger [35]. 155

- 156 The most used mechanical parameter is the upper yield point (pag.18 Figure 2) that represents the
- are the Young's modulus that represents the elasticity, and the Slope of Yield Stress after the upper

firmness [2], one of the main maturity indices of fruits [36]. Other parameters that can be obtained

- 159 yield point, that represents the fracturability [37].
- 160

161

162 **2.4 The texture in fruit**

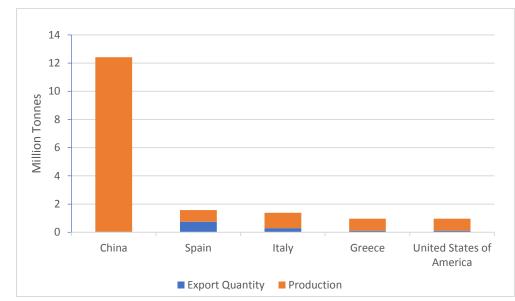
163 Texture is one of the main fruit quality attribute, influencing consumers degree of liking 164 and marketability. All these aspects are well-described in several recent reviews [28,34,38].

In the horticulture field, the term "texture" has acquired a specific meaning, departing to some extent from its meaning in the food engineering field [34]. In contrast to the extemporary description of food texture used by food engineers, horticulturists define different texture types referring to the evolution of fruit structure-related characteristics during ripening or storage. This implies that fruit texture is somehow described as a dynamic concept linked to firmness evolution [38].

171 2.4.1 Fruit texture, improvement of consistency and shelf-life

172 The availability of fruits with satisfactory quality for fresh market requires the adoption of 173 different solutions [39–41]. Most important examples are represented by the extension of the 174 harvest season using cultivars with different ripening dates, combined with cultivation at different 175 latitude and/or altitude; by the improving of storage technologies to preserve and control fruit 176 texture (controlled temperature, atmosphere and light conditions); improving the maintenance of 177 fruit consistency (reported in the sensory analysis vocabulary ISO 5492:2008, as "mechanical 178 attribute detected by stimulation of the tactile or visual receptors") during storage, for example by 179 tapping into a wide genetic diversity pool and combining texture type variants. Interesting, most 180 of these variants were often discarded in the past, when the consumer trends and distribution chains 181 were different [39,42].

182 2.5 Peach: Taxonomy and Botanical Overview


183 The domesticated peach (Prunus persica [L.] Batsch; synonym: Amygdalus persica) is a member 184 of the Rosaceae family in the subgenus Amygdalus within the section Euamygdalus .P.persica is 185 a self-compatible entomophilous species, with a small diploid genome (220Mb, 2n=16) almost 186 twice the size of the Arabidopsis one [43]. The genus Prunus is a monophyletic group, which 187 consists of ten subgenera and more than 200 species having certain morphological traits in 188 common. They are deciduous shrubs and trees with simple leaves and glands at the base of a blade 189 or at the top of the petiole. The inflorescence shows large variation among the groups but as 190 common trait it has a calyx with a bell-shaped tube, inserted at the throat of flower [44].

- Linné (1758) first named the species (*Amygdaluspersica*) with the specific epithet *persica* based
 on the opinion that the fruit was native to Persia (present day Iran) due to its widespread cultivation
 in this putative country of origin.
- Written records and archaeological evidences discovered [45] between the 19th and the 20th century showed that the origin of peach domestication was the region of Northwest China between the Tarim Basin and the north slopes of the Kunlun Shan mountains, at least as far back as 3000 BC.
- More recent archaeological studies [46] (based on discovery of peach stones preserved in waterlogged context in the Zhejiang province) propose that the lower Yangzi River valley, in the East of China, was the region of early peach selection from the wild *P. persica* ancestor, in a process that began at least 7500 years ago and took over three millennia. This could help to explain the presence of peach in Japan around 2500 BC [45]. According to these data, the westward movement of peach could have brought it into Persia around the second century BC, by crossing the entire China in 3000 years.
- *Prunus* is from the Latin for plums. Peaches were acquired by the Romans, probably along the
 Silk Road in the beginning of the Christian era, which had given rise to the European supposition
 that the fruit had originated in Persia. The fruit tree was introduced in Italy during the 1st century
 AD; soon it reached France, which became a second center of diversification of this species after
 China.
- 209

210 2.5.1 Macroeconomic Relevance

Globalization, decrease in transportation costs, rising incomes and technological improvements, in addition to development and evolution of commercial trades, have led to an enhancement of the global exchange of vegetables and fruits.

214 Peach has a prominent role in the global fruit farming production and is the most important in the

215 genus Prunus [47].

216

217 *Figure 1 Production and export quantity (in millions of tons) of top five peach producer in the world (FAOSTAT 2013)*

The global production of peaches is estimated around 21,6 million tons, which corresponds to 3,21% of the entire global fruit production, with a growth rate that has increased by approximately 3.93% every year since 2000 [48]. Worldwide, Italy is the third producer of peaches after China and Spain, producing 1.4 million tons of fresh fruit every year (Figure 1). Italy is also one of the major exporters (with Spain as leader), with almost a 300k tons exported in 2013 corresponding to an economic value of more than 363 million dollars [49].

224 **2.5.2 Morphology**

225 **2.5.2.1 Growth Habit**

Peach is a deciduous medium-high tree with a smooth and straight trunk and a dark grey bark. It can reach 4-8 m, depending on internode length [42]. The growth habit is characterized by the angle of insertion of the branches and the length of the internodes, which define the appearance of the tree canopy.

Buds are present at the base of leaves. Each node shows commonly two lateral flower buds and one vegetative bud in the middle [42]. One-year-old shoots have flower buds on their axis and one vegetative bud at the apex [42]. Fruit weight is positively correlated to the vigor of the shoot and also depends on the season. For this reason, the production of fresh fruit needs a vigorous shoot,
up to 100 cm in length. The production of canning fruit, instead, benefits from a weak shoot, 1025 cm long [42] because the small fruit are more suitable for canning. Side shoots arising from a
bud formed in the same year are called a "feather" [50].

237 2.5.2.2 Leaf

In peach, leaves are formed right after anthesis and present two temporary stipules at the base of the petiole [42]. The adaxial surface of the leaves is darker than the abaxial one, and the color of the veins is associated with the color of the flesh of the fruit: pale yellow in the yellow flesh fruit and pale green in the white flesh fruit. The margin can be smooth or crenate. There are usually a variable number of secreting glands near the bottom of the leaf margins. Their shape can be globose or reniform. They are absent in plants that are homozygous recessive for this trait [42].

244 **2.5.2.3 Flower**

Peach has hermaphroditic and perigynous flowers. The gamosepalous calix falls after the initial swelling of the fruitlet. Petals, normally five, are separated and two kinds of corolla are known: showy, with large rose-shaped petals, or non-showy, with bell-shaped smaller petals. This second shape is the dominant trait [51]. Petal color varies from white to dark red, but the most common is a shade of pink. The gynoecium is superior. The receptacle contains as many as 20 or 30 stamens and it carries reddish anthers, unless they are sterile: in this case, they look pale yellow; this is a monogenic recessive trait [42].

252 2.5.2.4 Phenological Stages

253 The time of flowering depends on the chilling units (see below) necessary to overcome 254 endo-dormancy, and later, on the amount of "growing degree-hours" (GDH) required to reach a 255 full blossom. The chilling requirement is the minimum period of cold below a certain threshold 256 temperature that a flower needs to complete its morphological development. It is expressed in 257 chilling units (CU), a measure of the exposure of plants to chilling temperature (latter depends on 258 the adopted model) [52]. The heat requirement is analogous to the chilling requirement: the flower 259 needs an amount of heat to achieve organ development after endo-dormancy is fulfilled. Heat is 260 the main driver of bloom timing [53][54]. In winter, at the end of the dormancy period, 261 microsporogenesis takes place: two 2-nucleated pollen grains, contained into the pollen sac, are 262 generated from the microsporocytes [55]. A light brown color covers the swelling bud during 263 meiotic division of the megasporocyte that leads to a tetrad of megaspores. Three of them 264 ordinarily disintegrate, and the fourth one develops into an embryo sac. Following subsequent

- nuclear divisions, the embryo sac contains eight nuclei, one of which becomes the female gamete;
 this usually happens a few days before full anthesis [53].
- 267 The ovary contains two ovules, but only one will be fertilized; the development of the ovary is
- 268 conventionally divided into four phenological stages: cellular division (SI), pit hardening (SII),
- cell elongation and enlargement (SIII) and, finally, fruit ripening (SIV) [56].
- 270 The fruit development period may range from 55-60 to more than 220 days and is under polygenic
- 271 control. A major locus for maturity date was located on chromosome 4 and associated to a variant
- in a NAC transcription factor gene [57].

273 2.5.2.5 Fruit

The peach drupe can have a globose, elongated or flat shape [58]. The weight can vary from 50g, up to 700g, depending on cultivars and agronomical management. The epicarp is thin and can be adherent to the flesh depending also on mesocarp texture. The skin can be pubescent or glabrous in the case of "nectarines", a mutation that occurred in China and has been imported in Europe in the XIV century [59–61].

279 Fruits are classified as climacteric or non-climacteric by the ability to increase respiration rate and 280 ethylene production at the onset of ripening. The ethylene is a hormone synthesized in the plant 281 from the amino acid methionine, by three enzymatic steps involving in order three enzymes: The 282 S-adenosyl-L-methionine (SAM); 1-aminocyclopropane-1-carboxylic (ACC) acid synthase 283 (ACS); and ACC oxidase (ACO). Several ACS and ACO genes are present in plant genomes [62]. 284 The expression of these genes could be regulated by two different systems one autoinhibitory (in 285 presence of exogenous ethylene the endogenous one decrease) and one autocatalytic (presence of 286 exogenous ethylene induces endogenous ethylene production). The first (System 1) is induced in 287 the normal plant development and in response to stress (such as cold), the second (System 2) plays 288 a role in organ senescence and fruit ripening [62]. Peaches are described as climacteric fruit that 289 ripe with a biphasic behavior, a first phase of slow flesh softening followed by a rapid decrease of 290 firmness. The shift to a rapid loss of firmness is marked by a climacteric peak, with high ethylene 291 production regulated by System 2 [63]. Notably, peach germplasm is characterized by the presence 292 of non-climacteric accessions, such as the stony hard cultivars [64], unable to produce ethylene 293 but reaching a sufficient degree of palatability.

295 2.5.2.6 Endocarp and Seed

296 The endocarp is lignified (in certain cultivars lignification can be so limited that the fruit 297 is completely edible [42]) and shows a more or less furrowed surface. The suture presents a ridge 298 and a pointed tip at the apex. The endocarp splitting trait (which is not a desirable trait) is believed 299 to occur when a rapid mesocarp expansion leads to the splitting at the carpel suture or the shattering 300 of the rigid endocarp. It is also associated to those agronomical practices that lead to a faster 301 expansion of the mesocarp. In almonds (P. dulcis) the trait is associated to the presence of a site 302 of a secondary ovule abortion [65]. Flesh and stone may adhere to each other or be separated. This 303 trait seems to be controlled by a single locus, where the freestone allele is dominant over the 304 clingstone allele [51]. Mesocarp and endocarp shapes are strictly related: in round shaped fruit, the 305 stone is globose, while in flat fruits the stone is round-oblate or elliptic in elliptic fruits. The seed 306 within the fruit is typically single (exceptionally, double) and may contain cyanogenic glycosides, 307 that confer a bitter taste [42].

308 **2.5.2.7 Fruit texture**

309

Several texture variants have been described in peach flesh:

Melting (M) peaches are the most spread texture type in fresh market. They are characterized by a fast evolution from firm and crispy flesh to creamy and buttery on the tree and mealy during extended storage. Within this texture type, a quantitative variation exists for the rate of flesh melting. Several approaches were tested to measure differences in peach flesh texture: the rate of firmness loss, measured by penetrometer test, during ripening or storage, is the most commonly used to assess the quantitative variation in the M type [66].

316 Stony hard (SH) peaches have a crispy and consistent flesh characterized by the lack in ethylene 317 and auxin production: they are able to melt and produce ethylene in cold storage or after ethylene 318 or auxin exposure [67]. This trait originated in the far Est and was introduced in Italy from the 319 Korean peach 'Yumyeong' used in an important Italian breeding program [68]. For the SH type, 320 the production of ethylene can be assessed by head space gas chromatography of peach fruits. A 321 recent molecular study of this texture type allowed the development of a genetic marker based on 322 a microsatellite variant in the intron of *PpYUC11*, a gene involved in the auxin biosynthesis [69]. 323 The non-melting (NM) type is characterized by a consistent flesh unable to melt, but able to 324 produce ethylene [70]. This texture is associated to the lack of endopolygalacturonase activity 325 [63], that gives resistance to mealiness during storage. This type is frequently used for canning 326 [42]. For the NM type, knowledge of the molecular genetic basis of the trait produced reliable 327 DNA markers allowing early prediction of the flesh texture already at the seedling stage [70].

Non-softening (NSF) texture is described as a crispy non-melting variant: this trait is controlled by a specific allele (called "f2") of the same endoPG gene already described in non-melting texture

330 [70].

331 Slow-ripening (SR) is described as a peach with a hard and pour quality flesh: it is a mutant unable

to ripe properly, since fruit development arrests at the S3 stage [71]. First described in 'Fantasia'

progeny, this texture type is insensitive to ethylene exposure [71].

Slow softening(SS) peaches are phenotypic variants of melting-type, characterized by a slower softening rate compared to the melting ones. Interesting, this type of texture was initially classified as stony hard types, although SS peaches were subsequently recognized as a distinct texture type for their ability to produce ethylene and melt [72]. The origin of this character is unknown, but was first described in the 'Big Top' variety, a nectarine licensed by Zaiger Genetics around 1980 [73].

340 **2.5.3 Breeding**

In breeding programs, breeders must be able to efficiently and inexpensively evaluate thousands of plants in a short time. In the case of fruit trees, phenotyping is made more complex by the high variability of fruits on the plant, so that a high number of replicated measurements/observations is required to obtain reliable data.

345 The inherent complexity of texture evaluation, the time and money required for advanced 346 chemical/physical analysis to analyze cell wall structure, the inapplicability of panel tests for high 347 numbers of genotypes, are stimulating the development of fast and low-cost techniques to phenotype different texture types. Combination of different mechanical properties with the 348 349 appropriate interpretation could well represent the texture. As Harker argued, mechanical 350 parameters are not the same for tactile or bite and instrumental detection: an example is the 351 hardness (the force needed to compress the sample under a flat plate for 1cm), while the relation 352 among instrumental and sensory has a good predictability on sample with different hardness but 353 sharing the same matrix, compare samples with the same instrumental hardness, but different 354 matrix, shows weaker relation between organoleptic hardness and instrumental ones [8,28].

356 2.5.3.1 Finding a reliable tool to phenotype the SS trait

The major relevance of texture types for the development of new peach cultivars requires reliable and efficient methods for texture evaluation, in order to be applied in breeding programs. Over the years our group's efforts were dedicated to find a reliable tool to score the SS texture type. Various approaches were tested including Time Resolved Spectroscopy (TRS), echography, computerized tomography (CT), expressible juice, penetrometer test by digital penetrometer [74], Fourier Transformed Near Infrared Spectroscopy in reflectance (FT-NIR), pectin analysis [72] and relaxation test by texturometer.

364 Herein it is reported the development and testing of an empirical method to score the SS texture 365 type, incorporating an innovative interpretation approach and exploiting the relationship among 366 rheological parameters as a predictor of fruit texture. This novel approach has been applied 367 together with sensorial phenotyping in a genotyped progeny and germplasm collection to identify 368 the genetic basis of the trait and genotypic markers associated to SS phenotype. A single locus was 369 detected, suggesting a simple inheritance of SS texture. The gene models annotated within the 370 target locus have been investigated through RNAseq approach by comparing 2 SS and 2 M 371 accessions. Candidate variants were also investigated by whole-genome re-sequencing (WGRS) 372 of cross parents.

373 The developing of a novel phenotyping approach for SS texture has been submitted to the *Journal*

374 of Texture Studies with the title: Identification of a melting type variant among peach (P.

375 **Persica L. Batsch) fruit textures by a digital penetrometer.** The manuscript is currently under

376 review.

377 The genetic dissection of SS texture will be submitted to *Tree Genetics & Genomes*.

378 My contribution to the both studies was manifold, besides writing two papers. Both are ready to

be submitted to referred journals.

380 In the first one, I contribute to the developing of the phenotyping approach, through the collection

and analysis of the mechanical parameters from rheograms, and model development.

382 In the second paper, other than collecting and analyzing phenotypic data, I performed QTLs, RNA-

383 seq and WGRS data analysis.

385 3 Identification of a melting type variant among peach (*P. Persica* L. Batsch) fruit textures by a digital penetrometer

388 **3.1 Abstract**

389 The increase of peach (P. persica L. Batsch) fruit shelf-life is one of the most important objectives 390 of breeding activities, since peach is a highly perishable fruit which undergoes rapid softening 391 during ripening. The loss of fruit firmness is accompanied by a modification of textural properties. 392 At least four distinct textures were described in peach: *melting* (M), *non-melting* (NM), *stony hard* 393 (SH) and *slow-melting* (better defined as 'slow-softening', SS). Flesh textures are usually 394 discriminated using different approaches, specific for each type. Objective of this work was the 395 development of a reliable method to assess flesh texture variants in peach fruit, with special 396 attention to the SS type which is currently scored by sensorial evaluation. A puncture-based test 397 using a digital penetrometer was performed on 20 accessions belonging to the four textural groups, 398 obtaining a series of rheological measures related to mechanical flesh properties and including 399 Young's Modulus, Upper Yield Point and Slope of Yield Stress. Among the components of elasto-400 plastic behavior of the fruits, the texture dynamic index (TD) was shown to be a reliable parameter 401 to distinguish the group of M flesh texture from SS, NM and SH. The TD index can be applied to 402 discriminate SS and M fruits, although variability within the different texture groups suggests the 403 existence of genotypes with intermediate phenotypes and minor quantitative trait variation.

The availability of an objective method to clearly distinguish M and SS phenotypes paves the road
to phenotype segregating progenies in order to find molecular markers associated to the SS trait.

406 **3.1.1.1 Practical applications**

407 The TD index could be considered to determine different textures in fleshy fruits in pre- and post-408 harvest, to support evaluation of quality for the intended use.

409

410 Key words: texture, firmness, slow softening, phenotyping, fruit quality, peach

412 **3.2 Introduction**

Fruit maturation is a coordinated and genetically programmed process, leading to the development of an edible fruit with desirable quality attributes [13]. In most fleshy fruits, softening is a ripening-related phenomenon. The softening process involves metabolic and physiological changes, which lead to the disassembly of the polysaccharide matrix composing the primary cell wall and middle lamella, and loss of turgor pressure [18]. Such changes impact shelf-life, so selection of slow softening cultivars is a major objective of current breeding activities, stimulating the search for textural characteristics able to increase fruit storability.

420 Peach [Prunus persica L. (Batsch)] is the most important cultivated species of the Prunus genus. 421 Significant breeding efforts during the last decades have allowed the improvement of important 422 fruit quality traits [42]. Currently, the increase of shelf-life is a primary breeding goal, since peach 423 is a highly perishable fruit which undergoes a rapid softening during ripening [75]. In this context, 424 the development of a quick and reliable method for assessing the range of textures present in peach 425 is of utmost importance (see below). The rate of softening varies depending on genotype, 426 environmental conditions and cultural practices [70]. Peach softening is also accompanied by a 427 modification of fruit textural properties. Texture can only be perceived and described by humans 428 and any instrumental measurements should be related to sensory responses because it is 'the 429 sensory and functional manifestation of the structural, mechanical and surface properties of foods 430 detected through the senses of vision, hearing, touch and kinesthetic' [2]. So far at least four distinct 431 types of flesh texture have been identified in peach: 'melting' (M), 'non-melting' (NM), 'stony 432 hard' (SH) and 'slow-melting' [42]. Most peach accessions are characterized by a melting flesh. 433 NM peaches arise from a missense mutation in an endo-PG gene [34,76], coding for an endo-434 polygalacturonase enzyme, resulting in a slower decrease of firmness and the maintenance of a 435 rubbery texture [77]. NM trait is typical of canning peaches. SH peaches also tend to remain firm, 436 since they are unable to produce ethylene during ripening, although they can melt under 437 appropriate storage conditions [78,79]. A reduced expression of the auxin biosynthesis gene 438 *PpYUCCA11-like* has been recently suggested as the genetic base of the recessive SH trait [80]. A 439 novel phenotype of qualitative origin has been recently characterized, the *slow-melting* (SM) 440 texture, typical of 'Big Top'-like cultivars [81]. SM peach tend to soften slower compared to the 441 melting ones, although the biochemical and physiological patterns are still largely unknown. In 442 agreement with Contador et al. [82], we suggest renaming the SM texture in *slow-softening* (SS), since the term 'slow-melting' can be easily mistaken with the quantitative variability found within 443 444 the melting type [72,83]. The different texture phenotypes are often discriminated using various

445 approaches, e.g. the evaluation of the softening rate during storage or other methods specific for
446 each texture [66,82,84–86]. For the most interesting, the SS type, an objective and reliable method
447 of phenotyping has not been developed yet.

448 The puncture test is one of the simplest methods to obtain a stress-strain curve. It is widely used 449 in both solid and semi-solid foods [24], and thus very useful for measuring the textural qualities 450 of fruits [21]. Puncture-based tests are commonly used in peach for firmness measurement, a crucial parameter for establishing the harvest time and for the monitoring of post-harvest storage 451 452 [87,88]. However, the continuous evolution of firmness in peach flesh does not allow to phenotype 453 a given texture by a simple pressure test. At the current state of the art, the NM accessions are 454 mechanically indistinguishable from SH ones. Instead, SH accessions are usually identified by 455 monitoring ethylene evolution, since both NM and M fruits release ethylene during maturation 456 [89]. The SS phenotype is the most difficult to distinguish, particularly from very firm, unripe, M 457 one. In some studies, SS accessions have been identified by comparing firmness decay during 458 post-harvest storage, assuming a low rate of softening with respect to melting peach [66]. 459 Nevertheless, this approach is hardly generalizable, since it is affected by the criteria adopted for 460 the establishment of harvest time and the evaluation of maturity degree. Such difficulties are 461 exacerbated in experimental studies involving many accessions or seedlings, often bearing a 462 limited number of fruits.

The assessment of the different flesh phenotypes under variable conditions by using a simple and reproducible method and allowing a fast recording of many samples is highly desirable. The present study is aimed at the development of a reliable method to discriminate peach fruit texture using a digital penetrometer, with particular attention to the SS texture type.

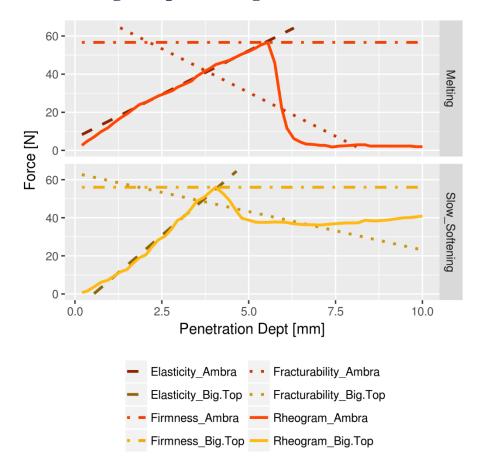
467

468 **3.3 Materials and Methods**

469 **3.3.1 Plant Material**

The experiments were carried out with a total of twenty peach accessions belonging to the four different flesh phenotypes and the two skin types: peach (P, fuzzy surface) and nectarine (N, glabrous surface) (Table 1), harvested in seasons 2011, 2012 and 2014. Fruits were picked between June and August at the "Zabina" experimental orchard located in Castel San Pietro (Bologna, Italy). Fruits of each accession were harvested from different parts of the tree crown (lower, 475 medium and upper) to collect a full range of ripening degree. One hundred sixty-five fruits were 476 harvested for each accession. Peaches were grouped into three maturity classes based on the IAD 477 parameter (see below) and divided into lots of 15 fruits for daily analysis, so that each lot included 478 the full I_{AD} range. Each lot was composed by five fruits classified as less mature, five as medium 479 mature and five as mature. Out of the one hundred sixty-five fruits for each accession, seventy-480 five were held at 20° C and ninety were put into 4° C storage for two weeks. After cold storage, 481 fruits were held at 20° C for daily analysis. Every day one lot of fruit was taken out of storage and 482 measured for IAD, fruit weight and firmness. Shelf life evaluation was conducted after harvest and 483 two weeks of cold storage.

484 **3.3.2 Measure of the maturity stage by IAD**


 Δ Ameter instrument (Synteleia S.R.L., Italy) is a portable spectrometer that measures the index absorbance difference (IAD) between two wavelengths near the chlorophyll-A absorption peak [36]. I_{AD} was measured on the two sides of each fruit at harvest and daily during the analysis. The lower value of I_{AD} was taken as the expression of the physiological age the fruit, since the lower the parameter, the more advanced is the ripening evolution. The fruit classes are specific for each accession. For each accession, fruits were sorted using I_{AD} in three different classes, each representing about a third of the total number of fruits.

492 **3.3.3 Penetrometer test**

The penetrometer test was performed on the day of analysis. A 1.5 cm round portion of the skin was removed from the middle of each fruit cheek by a slicer. The penetrometer test was done using a constant rate digital penetrometer (Andilog Centor AC TEXT08) fitted with an 8mm diameter flat plunger for 1 cm puncture, motorized by a basic test stand (BATDRIVE) set at 5 mm/s speed.

497 The rheogram data were acquired by the RSIC bundle software (Andilog Technology).

498 **3.3.4 Rheogram processing**

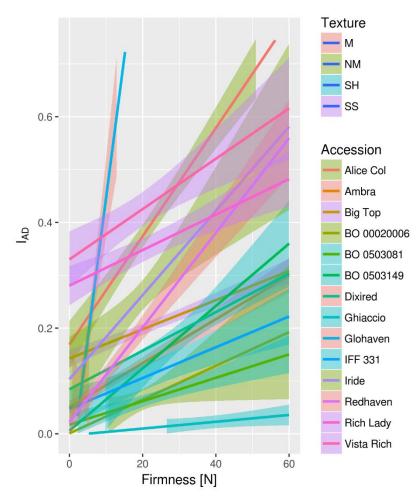
499

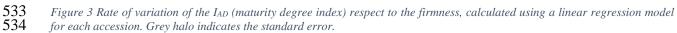
Figure 2 An example of rheogram (stress-strain curve) obtained using a digital penetrometer from sampled fruits of 'Big Top' (slow-softening, brown solid line) and 'Ambra' (melting, red solid line); the Young's modulus and the Slope of yield stress curve are indicated by dashed and dotted lines, respectively. The Young's modulus and the Slope of yield stress are calculated respectively on the 20 data points before and after the Upper yield point.

504

Young's modulus (Y_M), the upper yield point (the U_{YP}) and the slope of yield stress (S_{YS}) [9] were calculated from the rheogram of each sample (Figure 2). The upper yield point, and the Young's modulus are the maximum firmness and the elastic properties of the fruit, respectively. In a mechanical sense, the ripening process of fruit flesh can be described in terms of its elasto-plastic properties: elastic for the small deformations and plastic for the large ones. Modulus of elasticity (E), and modulus of fracturability (F) were evaluated by using the following formulas, respectively: $E = \Delta YM / \Delta UYP$ and $F = \Delta SYS / \Delta UYP$.

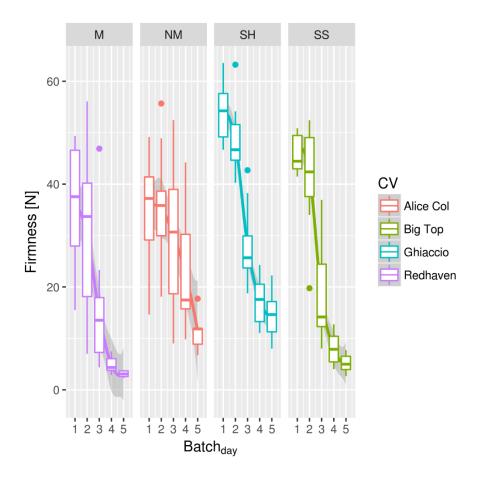
513 **3.3.5 Statistical data analysis**


514 To investigate the components of the elasto-plastic behavior in peach fruit, a regression approach 515 was applied to rheological data. A linear regression for each accession was calculated using the 516 *lmList* function of the R package *nlme*, according to the formula: $U_{YP} = E^*Y_M + F^*S_{YS} + k$, where E is the elasticity modulus, F the fracturability modulus and k the intercept. The E:F ratio was 517 518 then defined as *texture dynamic* (TD) and calculated for each accession for each year and storage 519 condition. ANOVA analysis was performed on TD data using as the *aov* function in R stats 520 package. The data of each accession were analyzed by year and storage regime as blocks. Physical 521 analyses were tested for distribution by Shapiro-Wilk test. Based on distribution, each parameter 522 was analysed with a congruous test. Young's modulus was checked by Siegel-Tukey analysis for 523 equal variability based on ranks. The upper yield point was analyzed by ANOVA for the variance 524 analysis and the slope of yield stress was analyzed by Welch Two Sample t-test. An LSD ($\alpha < 0.05$, 525 p adjusted by Bonferroni) was done on TD, E and F using the texture phenotypes as blocks.


527

532

528 **3.4 Results**


A common problem when evaluating and comparing softening behavior, is to properly account for the variability in fruit physiological age, both within and among accessions. The maturity degree at harvest exerts a major effect on the dynamic of firmness loss during storage.

Based on DA-meter measurement (I_{AD} as an estimate of fruit physiological age) and
independently from the days of storage, firmness reduction (in terms of the I_{AD} *vs* U_{YP}) turned out
to be highly variable, accession-specific and not correlated with the different textures types (Figure
3).

Also monitoring the temporal evolution of firmness ($U_{YP}vs$ days of storage) does not reveal significantly different trends among the texture types, although NM accessions tend to display a slower decay (Figure 4). Indeed, the rate of firmness loss in each accession fits a logistic curve that largely depends on the criteria used for the establishment of harvest time. It is important to remark that for this analysis, fruits were *a priori* sorted based on I_{AD} value into three maturity classes in order to remove confounding effects due to the heterogeneity in their physiological age.

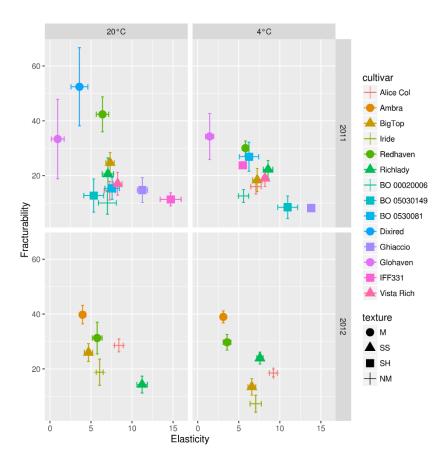

545

Figure 4. Rate of firmness loss during storage at 20° C for five days for four accessions representative of each texture group: 'Alice
Col' (NM), 'Big Top' (SS), 'Ghiaccio' (SH) and 'Redhaven' (M). The regression model is smoothed using the Loess method, with
a 0.8 span. The standard error is indicated by grey halo. The box plot represents the median and quartiles and for each day of
analysis.

Therefore, none of the two above described approaches yielded a reliable classification of the different texture types within the considered panel of accessions. As described in Materials and Methods section, other rheological parameters can be used in addition to the U_{YP} to describe the changes of peach texture during ripening: the Young's modulus (Y_M), evaluating the elastic behavior, and the fracturability (F), dependent from the slope of yield stress and describing the plastic behavior [2].

The Young's Modulus showed a bimodal distribution in M and SS accessions, being unimodal for the SH and NM ones (data not shown). The Y_M was strongly related with the U_{YP} , and the slope of this regression (E) was specific for each accession, representing the rate of variation in the elastic properties of the fruit (Supplemental Table 1). Nevertheless, the E parameter

- 560 was unable to significantly differentiate among the different textures, although a tendency to
- 561 display low elasticity values was observed in M accessions (Table2).

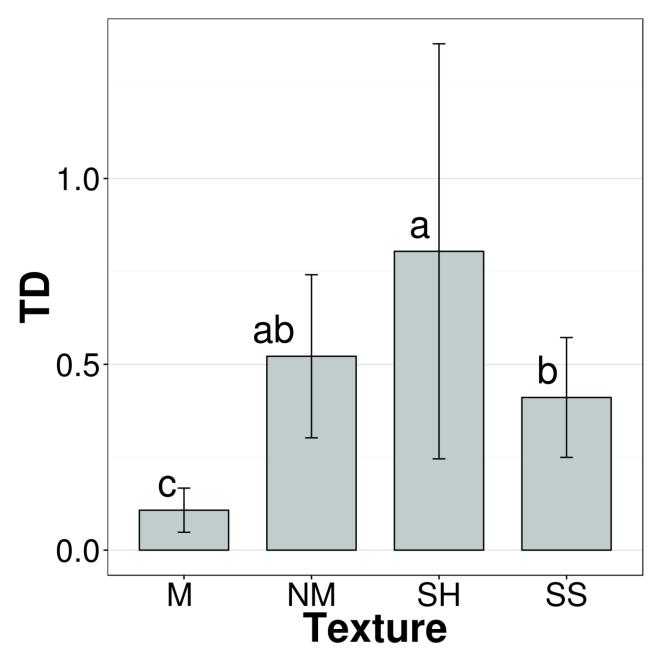

562

Figure 5. Relationship between Fracturability and Elasticity parameters in fruits collected during 2011-2012 seasons. The shape of the points indicates the texture group (M, melting; SS, slow-softening; SH, stony hard, and NM, non-melting). Colors indicates each cultivar. Horizontal and vertical error bars represent the standard error of the Fracturability (F) and the Elasticity(E) of the regression model: $U_{YP} = E^*Y_M + F^*S_{YS} + k$ (see text for further details).

567

568 The Slope of Yield Stress (S_{YS}) showed a studentized distribution, with a marked difference 569 in the shape among the textures, while the statistical test showed significant differences for all 570 pairs of combinations. The fracturability (F), calculated by the regression of the S_{YS} on the U_{YS} , 571 was specific for each accession (Supplemental Table 1) and able to distinguish SS from M 572 (showing high F value), but not from NM and SH (Table 2). As shown in Figure 5, E and F 573 parameters tend to be inversely related i.e. the fracturability tend to decrease with the increase of 574 elasticity and vice versa. Melting fruits show a higher fracturability and, thus, lower elasticity 575 compared to the other texture types, particularly with respect to NM and SH fruits, in which the 576 two parameters remain basically constant. In contrast to F, the E parameter was affected by storage 577 conditions, particularly in SH accessions. However, the ability of F parameter to discriminate

578 between M and SS textures was not confirmed on 2014 season (Supplemental Table 2). For such 579 reasons, novel indices were calculated: Texture Dynamic (TD) and K-intercept. The TD index is 580 based on the ratio between the elasticity and the fracturability modulus (E:F ratio). The TD index, 581 can be interpreted as the trend of variation in fruit consistency in function of the firmness, resulting 582 significantly correlated to the texture, independently from the accession (including skin hairiness 583 phenotype), year or storage regime. The texture explains 88% of the TD mean square error (MSE), 584 whereas the M and SS phenotypes explained up to 96% of TD MSE. SH and NM add 8% of 585 unexplained variance. The M phenotype can easily be separated from SS for TD value lower than 586 0.25 (Figure 6 and Supplemental Table 1). The discrimination ability of TD index was also 587 validated on 2014 data, obtaining consistent results (Supplemental Figure 2 and Supplemental 588 Table 2). Nevertheless, TD cannot distinguish NM from both SS and SH, since the index showed 589 similar values for these three texture groups (Figure 6). The K-intercept is the intercept of the 590 model and resulted well-correlated with the TD-index (data not shown).

591

592 Figure 6Texture Dynamic (TD) values in each texture group as predicted by the model. Letters indicate the least significant differences (LSD) among textures for $\alpha < 0.05$ (p value adjusted by Bonferroni). The error bars represent the standard errors.

594

595 **3.5 Discussion and Conclusions**

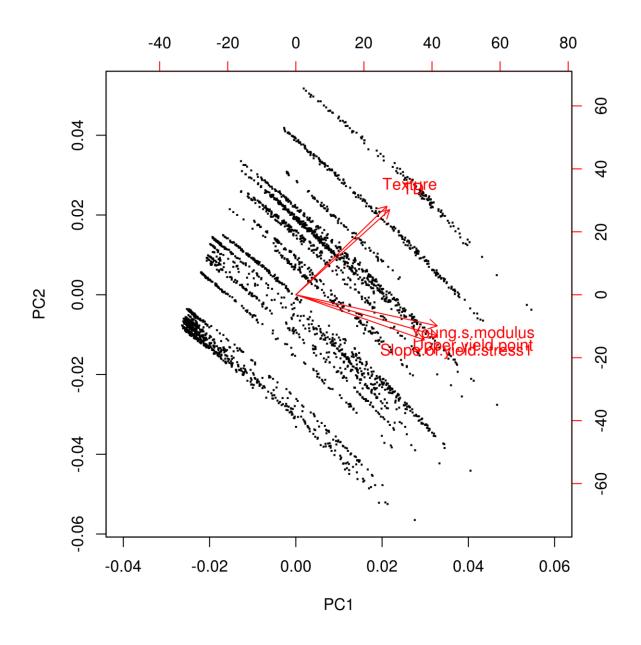
Analyzing a diversified set of accessions, the difficulties of discriminating among different texture types by monitoring maximum firmness (U_{YP}) decay during storage became evident, in particular when comparing M and SS types. Comparison of the softening trend among accessions requires an accurate estimation of fruit physiological age. However, the main index used for assessing maturity degree (I_{AD}) was correlated to the firmness only in a genotype-dependent 601 manner, and therefore, not useful to standardize a diversified panel of accessions. This is in 602 agreement with several other studies [66,90,91].

603 In addition to firmness, other mechanical properties of the fruit can be determined from 604 rheological data, such as elasticity and fracturability. In the analyzed accessions, the E and F 605 parameters were strongly interconnected and varied depending on the texture type. Fruit elasticity, 606 calculated from the Young's Modulus, showed a unimodal behavior in NM and SH, and bimodal 607 in M and SS. This is coherent with the typical biphasic pattern of firmness loss, because of the 608 activation of the melting pathway [78]. Nevertheless, the E parameter was variable both within 609 and among accessions, resulting in a reduced ability to distinguish the different textures. Such 610 variability may be affected by the water status of flesh tissues and, thus, by changes in cell turgor 611 pressure [92]. In contrast, the fracturability (F) appeared more specific and particularly able to 612 discriminate M from the other textures: this is in agreement with the notion that the disassembly 613 of cell wall structure (mainly responsible for fruit plasticity) plays a major role in the softening 614 process in the melting type [93]. However, the F parameter was also affected by some variability, 615 that in certain cases masks a reliable discrimination. The resolution of the F parameter can be 616 increased by using the elasticity value to adjust for fruit water status, leading to a combination of 617 both components in a unified index, TD, which is more stable and unaffected by season or storage 618 regime. Indeed, this index measures inherent mechanical properties of the fruits, not dependent on 619 the firmness. The texture phenotype can affect the rheological properties of the flesh but not the 620 firmness, in agreement with some works in peach and other species [63,94]. While firmness 621 represents just the ripening stage, TD allows to predict the evolution of the elasticity and 622 fracturability during the softening process, thus identifying a specific phenotype. This index can 623 be calculated through a one-step analysis, and only requires the sampling of fruits with an average 624 firmness ≥ 15 N.

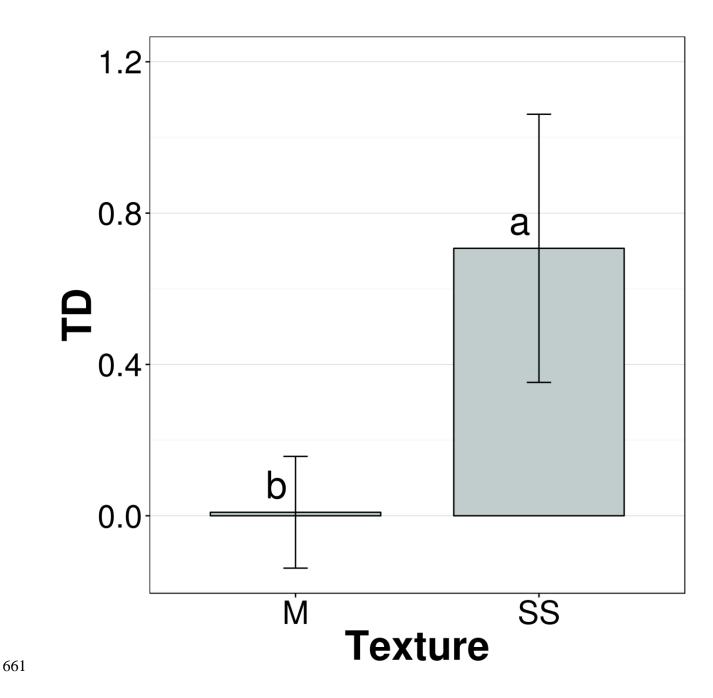
625 In this work, accessions have been considered as biological replicates of the four groups of 626 textures. The rationale of this approach arose both from the need for a reliable method to 627 discriminate predefined texture types (in particular SS) and from the opportunity to test a target 628 modeling on well-outlined phenotypes (in the case of NM and SH, accompanied by the knowledge 629 of genetic determinants). It is important to highlight that the analyzed rheological parameters (E, 630 F and TD), irrespective of the greater or lesser predictive ability, all tend to distinguish the melting 631 type from the other textures, and to group together NM, SH and SS, which tend to have similar 632 mechanical properties of the flesh, as also previously hypothesized [81]. Moreover, the variability 633 in TD values observed in each texture group suggests the existence of intermediate phenotypes

that may depend on the genetic background. The presence of a quantitative variability for flesh 634 635 texture trait has been also observed in other studies [66,72,82]. Further studies are needed to 636 confirm whether TD can be used as an effective approach to score the continuous phenotypic 637 variability present in peach germplasm, in turn a crucial step for association and linkage mapping 638 studies. However, we have to stress that the main goal of our work was achieved by setting up an 639 objective method to clearly distinguish melting from slow softening phenotypes that so far was 640 possible only by sensorial evaluation. This finding will pave the road to phenotype segregating 641 progenies in order to find molecular markers associated to the slow softening trait.

3.6 Supplemental Materials and Tables


644 Table 1 Accession panel used in this study. Texture, skin hairiness (peach vs nectarine) and sampling season are reported.

Accession	Texture	Skin hairiness	Season
Alice Col	Non-Melting	Nectarine	2011-2012
Ambra	Melting	Nectarine	2012-2014
Amiga	Slow-Softening	Nectarine	2014
Big Top	Slow-Softening	Nectarine	2011-2012-2014
BO00020006	Non-Melting	Peach	2011
BO04020009	Melting	Peach	2014
BO0503149	Non-Melting	Peach	2011
BO0530081	Stony-Hard	Peach	2011
Dixired	Melting	Peach	2011
Ghiaccio1	Stony-Hard	Peach	2011-2014
Glohaven	Melting	Peach	2011
Grenat	Slow-Softening	Peach	2014
Honey Blaze	Slow-Softening	Nectarine	2014
Honey Kist	Slow-Softening	Nectarine	2014
IFF331	Stony-Hard	Peach	2011
IFF813	Non-Melting	Nectarine	2014
Iride	Non-Melting	Peach	2012
Pulchra	Slow-Softening	Peach	2014
Redhaven	Melting	Peach	2011-2012
Rich Lady	Slow-Softening	Peach	2011-2012-2014
Vistarich	Slow-Softening	Peach	2011-2014



650	Table 2. The average values of the Elasticity (E) and Fracturability (F) parameters are reported for each texture group for the
651	seasons 2011 and 2012. Letters indicate significant different group based on Least Significant Difference (LSD) test (α <0.05, p
652	value adjusted by Bonferroni).

Tortuno	Elasticity		Fracturability			
Texture	E	LSD	F	LSD		
Melting	3.84	b	36.90	a		
Slow-Softening	7.67	ab	19.95	b		
Non-Melting	7.21	a	15.77	b		
Stony-Hard	9.42	а	15.13	b		

656 Supplemental Figure 1. Principal Component Analysis (PCA) performed on rheological data 657 obtained from the analyzed panel of accessions. The first two components (PC1 and 2) explain 62 658 and 20% of the variance proportion, respectively, and 82% of the cumulative variation. 659 Eigenvalues and eigenvectors relative to the texture, TD index, Young's modulus, Upper yield 660 point and Slope of yield stress are highlighted in red.

662 Supplemental Figure 2. TD index values for each texture group as determined on season 2014.
 663 Letters indicate the least significant differences (LSD) among melting and slow softening textures

664 (α <0.05, p adjusted by Bonferroni).

Supplemental Table 1. Rheological parameters recorded in two seasons (2011-2012) for 14 peach
accessions. Fruits were stored at 4° and 20° C. All coefficients are expressed as average values.
For the components K (intercept), E (elasticity), F (fracturability) the standard errors are also
reported.

Accession	Veer	Storege (°C)	Storage (°C)	Intercept	Electicity	Fracturability	lasticity Fracturability		<		а		b	TD
Accession	rear	Storage (C)	mercept	Elasticity	Fracturability	Estimate	Std.Error	Estimate	Std.Error	Estimate	Std.Error	ID		
Alice Col	2011	20	-10.88	7.28	14.47	-10.88	1.37	7.28	0.65	14.47	3.30	0.50		
Alice Col	2011	4	-11.62	7.09	15.99	-11.62	1.06	7.09	0.61	15.99	2.59	0.44		
Alice Col	2012	20	-18.93	8.39	28.56	-18.93	0.93	8.39	0.516	28.56	2.30	0.29		
Alice Col	2012	4	-14.72	9.21	18.49	-14.72	0.57	9.21	0.55	18.49	1.61	0.49		
Ambra	2012	20	-21.85	3.97	39.77	-21.85	1.51	3.97	0.363	39.77	3.29	0.10		
Ambra	2012	4	-20.95	3.11	38.96	-20.95	1.11	3.11	0.298	38.96	2.43	0.08		
BigTop	2011	20	-15.97	7.32	24.67	-15.97	1.62	7.32	0.493	24.67	3.63	0.29		
BigTop	2011	4	-12.64	7.24	18.37	-12.64	1.86	7.24	0.534	18.37	4.09	0.39		
BigTop	2012	20	-15.29	4.69	25.97	-15.29	1.34	4.69	0.497	25.97	3.13	0.18		
BigTop	2012	4	-9.96	6.58	13.43	-9.96	1.46	6.58	0.529	13.43	3.39	0.49		
BO 00020006	2011	20	-8.84	6.99	10.02	-8.84	1.63	6.99	1.066	10.02	4.00	0.69		
BO 00020006	2011	4	-9.06	5.58	12.56	-9.06	0.90	5.58	0.589	12.56	2.26	0.44		
BO 05030149	2011	20	-8.60	5.33	12.72	-8.60	2.47	5.33	1.18	12.72	5.86	0.41		
BO 05030149	2011	4	-10.98	10.96	8.44	-10.98	1.42	10.96	1.163	8.44	3.93	1.29		
BO 0530081	2011	20	-12.16	7.57	15.34	-12.16	1.50	7.57	0.865	15.34	3.87	0.49		
BO 0530081	2011	4	-17.21	6.24	26.89	-17.21	1.95	6.24	1.133	26.89	5.11	0.23		
Dixired	2011	20	-27.92	3.59	52.41	-27.92	6.53	3.59	0.999	52.41	13.85	0.06		
Ghiaccio	2011	20	-14.19	11.26	14.71	-14.19	1.94	11.26	0.61	14.71	4.40	0.76		
Ghiaccio	2011	4	-13.00	13.81	8.158	-13.00	0.59	13.81	0.425	8.158	1.26	1.69		
Glohaven	2011	20	-16.89	0.94	33.35	-16.89	6.78	0.94	0.758	33.35	14.07	0.02		
Glohaven	2011	4	-17.61	1.45	34.28	-17.61	3.91	1.45	0.485	34.28	8.06	0.04		
IFF331	2011	20	-16.40	14.71	11.32	-16.40	0.88	14.71	1.243	11.32	2.34	1.30		
IFF331	2011	4	-15.13	5.47	23.73	-15.13	0.40	5.47	0.429	23.73	1.20	0.23		
Iride	2012	20	-12.20	6.05	18.79	-12.20	2.22	6.05	0.418	18.79	4.64	0.32		
Iride	2012	4	-7.18	7.06	7.27	-7.18	1.37	7.06	0.776	7.27	3.47	0.97		

Supplemental Table 2. Rheological parameters recorded in 2014 season for 10 peach accessions.

Fruits were stored at 4° C. All coefficients are expressed as average values. For the components K

674 (intercept), E (elasticity), F (fracturability) the standard errors are also reported. The TD index

shows lower values for the melting peach accessions 'Ambra' and 'BO 04020009'.

	Veer	Storage	Uyp	v	^	К		E		F		-
Accession	Year	(° C)	(N)	Υ _M	S _{YS}	Estimate	Std.Err	Estimate	Std.Err	Estimate	Std.Err	TC
Ambra	2014	4	31.79	0.10	0.21	0.36	0.12	1.51	0.52	14.53	0.66	0.1
Big Top	2014	4	48.11	0.23	0.10	2.08	0.40	6.54	1.55	13.24	3.92	0.4
BO 04020009	2014	4	42.48	0.17	0.28	0.07	0.43	1.70	1.17	14.21	1.48	0.1
Ghiaccio 1	2014	4	49.16	0.19	0.10	3.44	0.39	4.38	1.98	8.11	2.50	0.5
Grenat	2014	4	29.36	0.11	0.04	1.19	0.22	9.01	1.84	19.14	4.57	0.4
Honey Blaze	2014	4	32.00	0.11	0.07	2.09	0.57	11.59	4.87	1.53	5.93	7.5
Honey Kist	2014	4	25.42	0.10	0.06	0.58	0.17	12.71	2.03	11.31	2.62	1.1
IFF813	2014	4	40.27	0.14	0.14	1.60	0.17	11.59	1.90	6.92	1.67	1.6
Pulchra	2014	4	31.02	0.29	0.22	0.33	0.37	3.46	1.45	8.38	2.64	0.4
Vista Rich	2014	4	49.19	0.23	0.07	2.27	0.38	7.57	1.55	15.64	5.41	0.4

4 Genetic analysis of the slow softening trait in peach

679

680 **4.1 Abstract**

681 Texture is one of the main quality attributes of peach fruit. A germplasm panel and a segregating 682 progeny were genotyped with the Illumina 9k peach SNP array and phenotyped for fruit texture 683 (Slow-softening vs Melting) using a sensorial evaluation and by measuring mechanical properties, 684 respectively. Combining association and linkage mapping a locus for the Slow-softening trait was 685 located in the distal part of chromosome 8 (spanning an interval of about 2.3 Mb and 1.6Mb, 686 respectively using GWA and QTL-mapping). The most significantly associated SNPs in Genome 687 Wide-Association and QTL-mapping are spaced about 257kb apart on the reference peach genome 688 sequence, suggesting that the same locus might be segregating both in progeny and association 689 panel. Among 804 gene models fall in the locus, 517 were expressed in the fruit flesh. A 690 preliminary investigation of putative candidate genes was performed by inspecting annotated 691 transcripts within the identified interval, by comparing fruit gene expression data between two 692 slow-softening and two melting accessions and whole-genome re-sequencing data of parents in 693 search of sequence variants possibly associated with the trait: 7 variants were identified in coding 694 regions of differentially expressed genes, Prupe.8G257900 (coding for tetratricopeptide repeat 695 (TPR)-containing protein), Prupe.8G224000 (coding for Protein of unknown function, DUF647) 696 and Prupe.8G206600 (coding for UDP-Glycosyltransferase superfamily protein) (1, 2 and 4 697 variants, respectively), while 33 were identified in regulatory regions of 16 differentially expressed 698 genes. This is the first description of slow-softening locus, his inheritance resulting consistent with 699 previous works fasting objective method and molecular biology. It is expected that applying 700 texture dynamic model on a similar or an even wider peach progeny or collection will support 701 precise QTL mapping or genome wide association studies. This would allow to identify genes 702 involved in peach texture control.

703 4.2 Introduction

The limited shelf-life of peach fruit has stimulated an increasing interest for the characterization of the natural phenotypic variability associated to texture and softening behavior [42]. The vast majority of peach cultivars are characterized by a melting flesh (M) texture type, manifested through an initial slow decrease of firmness followed by a rapid softening (melting phase), concomitant to the climacteric respiration and ethylene burst [95]. The loss of turgor pressure and cell-to-cell adhesion in pericarp tissues have been proposed as the main physiological mechanisms 710 regulating the melting process in peach [63]. At genetic level, the M trait is regulated by a major 711 locus located on linkage group 4 [76], and harboring a cluster of genes belonging to the 712 endopolygalacturonase family (endo-PG), under the control of ethylene signaling pathways [96]. 713 Copy number variation at the *M* locus involving the presence/absence of two endo-PG genes (endoPGM and endoPGF), has been recently proposed as the genetic bases of the monogenic 714 715 recessive non-melting flesh (NM) trait [97]. NM peaches are characterized by the maintenance of 716 a rubbery texture, characteristic which makes them suitable for canning [70]. The stony-hard (SH) 717 texture is a monogenic recessive trait first reported by Yoshida (1976) [83]. The flesh of SH 718 peaches remains firm and consistent at full ripening, evolving null or very low ethylene amount 719 during ripening [79,84]. The inability to produce ethylene is determined by a low expression of 720 the main fruit-related ethylene biosynthesis gene, the 1-aminocyclopropane-1-carboxylic acid 721 synthase isoform *PpACS1* [98], in turn caused by the lack of auxin increase at the onset of ripening 722 [67]. The ppa008176m gene, coding for an auxin biosynthesis protein similar to the Arabidopsis 723 YUCCA11 (AtYUC11) has been recently proposed as a candidate gene for the recessive SH trait 724 [80].

725 Apart from these texture variants, the genetic basis of the quantitative behavior associated to the 726 melting flesh phenotype is poorly understood, mainly hampered by environmental effects and 727 intra-genotype variability [72]. Understanding variation within the melting group is especially 728 important because of its relevance for the fresh market [87]. An interesting melting-variant, the 729 slow-softening type, has been recognized in 'Big Top'-like cultivars [73,81]. The Slow-softening 730 trait is manifested through a delay of the melting phase, resulting in a prolonged shelf-life and a 731 crispy texture compared to the melting flesh. The genetic and physiological mechanisms regulating 732 this phenotype still remain largely unknown [42]. A dominant Mendelian inheritance has been 733 suggested for the SS trait, observing the segregation pattern in several bi-parental progenies 734 derived from the 'Big Top' parent [73]. However, the inherent complexity of SS trait does not 735 allow to exclude a co-dominant or even quantitative inheritance.

Aim of this work is the genetic dissection of the slow-softening trait and the identification of
molecular markers to be used for marker assisted selection and putative candidate genes and/or
pathways involved.

740 **4.3 Materials and methods**

741 4.3.1 Plant materials

742 A panel of 119 accessions and 70 F1 progenies from cross 'Max10' x 'Rebus 028' (MxR028) were 743 analyzed in this study. Plants were grown under integrated pest management in the "Centro 744 Ricerche Produzioni Vegetali" (CRPV) experimental orchard, located at Imola. Eleven fruits per 745 plant were assessed by DA-meter [36] and visual inspection in order to select representative fruits 746 at commercial ripening stage. Of the 119 accessions 41 are nectarines, (21 acid and 20 sub-acid), 747 while 78 accessions are peaches (63 acids and 15 sub-acid). MxR028 F1 seedlings are all 748 nectarines, but segregate 1:1 for the D locus controlling the acid/sub-acid trait (32 sub-acid, 38 749 acid). Rebus 028 is a SS early ripening nectarine belonging from a cross between SS 'Big Top' 750 and M 'May Fire' cultivars. Max10 is a M late ripening nectarine the pedigree is unknown.

751 **4.3.2 Genotyping**

The panel of 119 accessions and 70 individuals from F1 cross-population MxR028 were genotyped by using the IPSC peach 9K SNP array [99], using previously described SNP selection criteria [51]. SNP positions within the array were recalibrated based on the Peach Genome assembly V2.0 [100]. For the germplasm panel, genotyping data were further filtered for marker missing rate < 10% and minor allele frequency (MAF) > 5%, finally retaining a total of 6104 SNPs for GWA analysis.

758 **4.3.3 Phenotyping**

759 Accessions and MxR028 seedlings were screened for fruit texture through sensorial analysis 760 classifying them as melting (M) or slow-softening (SS). Organoleptic data were collected for at 761 least 5 years through the scoring of tactile and mouthfeel attributes during SIV ripening stage and 762 post-harvest (room temperature). For mechanical analysis, fruits of MxR seedlings were selected 763 based on maturity degree (established through IAD index measurement) and firmness value (above 764 15 N threshold) and analyzed through a digital penetrometer (Andilog Centor) after peel removal 765 as detailed in paragraph 3 (page 17). Rheograms data were analyzed as described in paragraph 3 766 (page 18). Fruit acidity, fresh weight, SSC, skin overcolor and maturity date were also measured 767 and evaluated. Statistical analyses were performed in R using *nmle* and *stat* packages.

768 **4.3.4 Genome Wide Association Study**

The panel used for GWA analysis was established by including a total of 119 accessions, of which

34 with SS phenotype and the remaining with MF. Population structure was inferred by using

771 ADMIXTURE v1.22 [101,102] by using a value of K = 3, chosen based on a 10-fold cross-772 validation procedure with 10 different fixed initial seeds. For association analysis, Mixed Linear 773 Model (MLM) was performed in GAPIT R package [103]. Random effects were included in the 774 mixed models as kinship matrix computed using Identical-By-State (IBS) algorithm, as 775 implemented in EMMAX package [104]. For fixed effects, a Q-matrix using a value of K = 3 was 776 used as covariate for association analysis. The Fixed and random model Circulating Probability 777 Unification (FarmCPU) method was used to further confirm association signals [105]. The 778 performance of all tested GWA algorithms was evaluated by comparing the observed vs expected 779 *p*-values under null hypothesis, through quantile-quantile (QQ)-plot inspection and considering statistical power against False-Discovery Rate (FDR). A conservative threshold for assessing SNP 780 781 significance was calculated based on Bonferroni correction for a type I error rate of 0.05. Intra-782 chromosomal LD patterns were measured and visualized using HAPLOVIEW v4.2 [106].

783 **4.3.5 Map construction and QTL-mapping**

784 Genetic map construction was performed with JoinMap 4.1 [107], using the Monte Carlo 785 Maximum Likelihood mapping with a spatial sampling threshold of 0.01 and 3 rounds, using 70 786 F1 seedlings and 479 SNP markers: 199 hkxhk (heterozygous in both parents), 114 lmxll 787 (heterozygous in 'Max10' and homozygous in 'Rebus028'), 166 nnxnp (homozygous in 'Max10' 788 and heterozygous in 'Rebus028') according to JoinMap and MapQTL manuals. Markers showing 789 segregation distortion were excluded. The map was built using as fixed order the recalibration of 790 SNP positions based on the current assembly of the peach reference genome v2.1 [100]. A nearest-791 neighbour fit parameter higher than 0.11 was set as threshold for marker exclusion[108]. QTL 792 analyses were carried out using the software MapQTL 6.0 [108]. The nonparametric Kruskal-793 Wallis (KW) rank sum test was used to search phenotype-marker associations. The association 794 was accepted as significant if the significance level was under the *p*-value threshold of 0.005.

796 **4.3.6 RNA sequencing and data processing**

797 Fruits from two SS cultivars, 'Big Top' (BT) and 'Rich Lady' (RL), and two melting cultivars, 798 'Bolero' (BL) and 'Red Haven' (RH) were collected. Trees were grown under integrated pest 799 management growing systems at the "Centro Ricerche Produzioni Vegetali" (CRPV) (Imola, Italy) 800 experimental orchard. Representative fruits of each accessions were harvested along the SIII and 801 SIV stage of ripening. Maturity degree was assessed through the measuring of IAD index using 802 DA-meter instrument (Sintéleia, Bologna, Italy). For each accession 9 fruits (3 fruits from 3 trees) 803 were collected, immediately peeled, sliced in wedges, quickly frozen and ground using liquid 804 nitrogen. Total RNA was obtained following the protocol of Dal Cin et al. [109]. Total RNA 805 concentration was evaluated examining aliquots of samples in a Nanodrop spectrophotometer 806 (Thermo Scientific) while the quality was assessed by gel electrophoresis on a 1% agarose gel in 807 TAE buffer and stained with ethidium bromide. Samples were sequenced using Illumina RNA-808 Seq technology (HiSeq 2000) at IGA Technology Services (Udine, Italy) in 6-plex with a 50 bp 809 single end module. Quality of raw data was checked using the FastQC tool for high throughput 810 sequence data [110]. About 98% of the cleaned reads were aligned against the 'Lovell' peach 811 genome version 2.0 using bowtie2 and TopHat2 [111,112]. About 90% of the reads were uniquely 812 mapped and counted by HTSeq [113]. For subsequent analyses, only features with more than one 813 read per million in at least three samples were retained, for a total of 15 672 genes expressed across 814 the different texture types. Expression of each gene was normalized in RPKM (reads per kilobase 815 of exon model per million mapped reads), calculated based on the length of the gene and reads 816 mapped [114]. To compare the M accessions to SS accessions a gene by gene non-parametric 817 analysis was done by *nparcomp* package. Heatmap data visualization was obtained with the 818 heatmap.2::R software package [115].

820 4.3.7 Next-generation sequencing whole-genome resequencing

821 Whole-genome sequence (WGS) libraries of 'Max10' and 'Rebus 028' parents were prepared by 822 the Genomics Platform of Parco Tecnologico Padano (Lodi, Italy) with the Illumina Truseq DNA 823 Nano sample prep kit (Illumina, San Diego) following manufacturer's protocol and sequenced on 824 the Hiseq2000 with paired-end sequencing module using the Truseq SBS kit v3. FASTQ files were 825 obtained with the Illumina CASAVA Pipeline. After cleaning and filtering, reads were trimmed 826 with Trimmomatic v0.32 and mapped using default parameters onto the peach reference genome 827 v2.0 using BWA-MEM algorithm, implemented in BWA v.0.6.1 tool [116]. After alignment, mean 828 coverage was estimated by using Samtools *mpileup* tool, obtaining a value of 31.6x and 28.9x 829 respectively for 'Max10' and 'Rebus 028'. For variant identification, after duplicate removal and 830 reads indexing with PICARD, a joint-calling approach was performed using Haplotype Caller 831 algorithm in GATK, following Best Practice guidelines. Sequences for predicted peach gene 832 models were retrieved from the Phytozome database [117]. Functional annotation of the variants 833 was performed using SNPEffect v2.0 [118].

835 **4.4 Results**

4.4.1 Phenotyping for fruit texture

The slow-softening trait is a phenotypic variant of melting flesh texture characterized by a delay of softening processes. At the start of this work, an objective method to identify this trait was not yet available, while firmness measurement through maximum force tests were shown not to correlate to texture properties (see paragraph 3 for more details and references on this topic). The identification of SS trait was (and still is) largely based on sensorial analysis by trained experts,

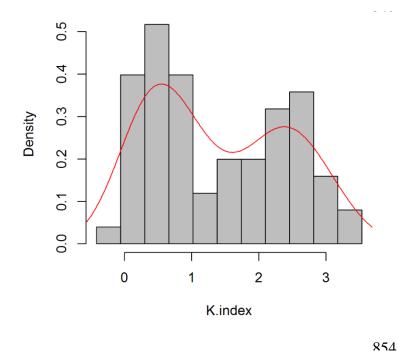


Figure 7 The bimodal distribution of the index K.intercept in the MxR028, on the left the M seedlings and on the right the SS seedlings.

through tactile evaluation and mouthfeel sensations. and in comparison, with reference phenotypes (i.e 'Big Top'-like varieties). The accession panel and MxR028 progeny were phenotyped for at least 5 years using sensorial analysis throughout SIV stage of fruit development and in postharvest. In addition to the 'Big Top' variety, the panel includes wellknown series of SS accessions, including 'Honey' and 'Romagna' for nectarines, and 'Rich' and

⁶Royal' series for peach and some breeding selections derived from them (Table 3). The MxR028
progenies was obtained from the cross of two SS nectarine parents, 'Max10' and 'Rebus 028'
⁶(Big Top' x 'Mayfire'). Seedlings of this progeny (Table 4) were phenotyped through the
approach proposed in the previous chapter. This method is based on the use of synthetic indices
(Texture Dynamics, TD and K-intercept, K) derived from the measurement of the mechanical
properties (Elasticity and Fracturability) of pulp tissues through penetration-based tests.

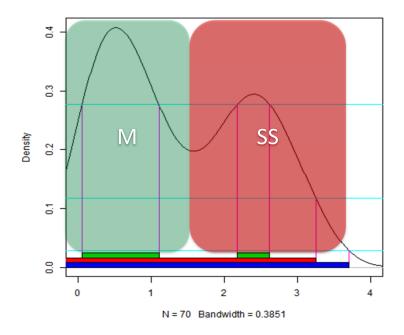


Figure 8 The bimodal distribution of the index K.intercept in the MxR028, under the green halo on the left the M seedlings and under the red halo on the right the SS seedlings; the horizontal bars represent respectively in green the 50% of the data, in red the 95% and in blue the 99%.

Figure 9 The not normal distribution of the TD index in the MxR028; horizontal bars represent respectively in green the 50% of the data in red the 95% and in blue the 99%.

As a result of the application of this method on MxR028 seedlings, the K-intercept value showed a bimodal distribution, varying between a minimum of -0.08 and a maximum of 3.20, with 2th and 3rd quartiles included within the intervals 0.1-1.1 and 2.2-2.6, respectively Figure 7). The K-index is able to cluster seedlings into two groups of similar sample size, supporting the hypothesis of a mendelian trait (Figure 8). The TD index showed instead a continuous and not normal distribution (SW-test p < 0.05), with

a maximum peak ranged between 0.1-0.65, typical of a quantitative behavior (Figure 9). No significant (p<0.05) correlation was found between the K and TD indices and the other tested parameters, such as I_{AD}, acidity, SSC, fruit overcolor, maturity date and fresh weight (Figure 10).

886 Supporting the phenotypical data, the already described pleiotropic effect of the maturity date on

the SSC were found[119].

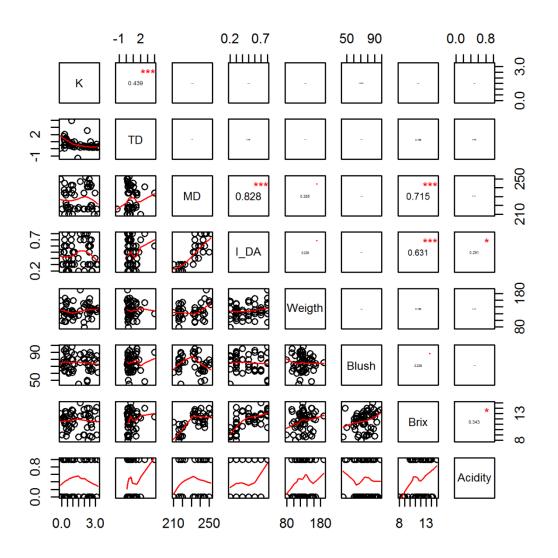
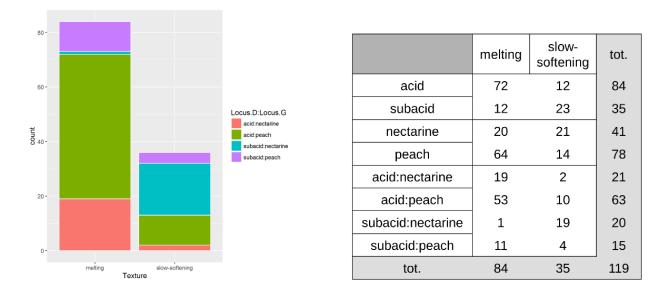
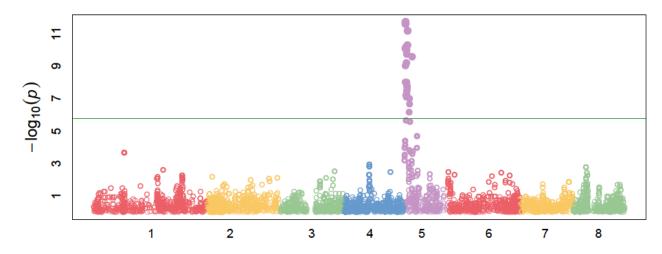



Figure 10 Pearson correlation among the TD equation parameters (TD and Intercept) and other fruit attributes. The numbers represent the Pearson correlation coefficient, * mark significant values ('***': p < 0.001 - '**': p < 0.01 - '*': p < 0.05 - '.'': p < 0.1).

893 **4.4.2 Genome-wide association and LD analysis**

The 119 accessions used for GWA analysis included: 35 slow softening accessions (2 acid nectarines, 10 acid peaches, 19 sub-acid nectarines, 4 sub-acid peaches); 84 melting accessions (19 acid nectarines, 53 acid peaches, 1 sub-acid nectarine and 11 sub acid peaches) (Figure 11, Table 5). Prior to GWA analysis, the genetic structure of the panel was inferred by ADMIXTURE software.


899

900 Figure 11 The counting of the pubescence and acidity mendelian traits between the M and SS accessions used for GWA analysis.

A value of K = 3 minimized cross-validation error, explaining most of the ancestry within the panel. The clusters of Oriental, Occidental and breeding-derived (the most represented) Figure 13, accessions agreed with the already suggested pattern of peach domestication. As a proof-of-

905 concept of the statistical power of the GWA approach, the panel was used to map the monogenic

906 trait acid/sub-acid (D/d locus). For this analysis, phenotypes were coded as a binary trait, assigning

907 0 - 1 to acid and sub-acid accessions, respectively (Figure 11).

908 909 910

Figure 12Manhattan plot of the GWAS analysis for the low acidity trait (MLM algorithm in the GAPIT software, corrected using the kinship matrix). In the different color the chromosome reported on the x axis. On the y the log10 of the probability (p). Green line is the threshold calculated using Bonferroni.

912

911

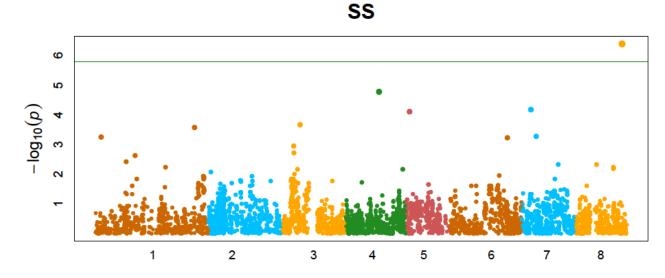
913 Using FarmCPU algorithm adjusted for population structure, a strong significant signal (p-value

1.95e-12 was detected on the proximal regions of chromosome 5 (SNP_IGA_544657, at 635,222

bp), in agreement with previous studies [51,120].

916

917 Figure 13 The kinship matrix representing the genetic structure of the panel of accessions. In small on the top left the color key and the color frequency.

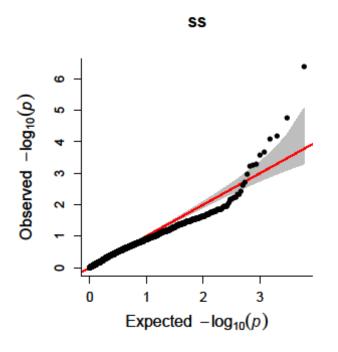

919

920 The same approach (FarmCPU algorithm adjusted for population structure) was used for detecting

921 genome-wide associations for the SS trait. A highly significant signal was detected on

922 chromosome 8, corresponding to the marker SNP_IGA_881722, with a *p*-value of 4.0e-7), above

923 to the Bonferroni threshold (Figure 13).



924

Figure 14 Manhattan plot of the GWAS analysis for the Slow Softening trait, made using the FarmCPU software. In the
different colors, the chromosome reported on the x axis. On the y the log10 of the probability (p). Green line is the threshold
calculated using Bonferroni.

928

A less significant signal p-value of 6.8e-05 was also detected on chromosome 7, at
SNP_IGA_707848. As deduced by QQ-plot inspection, the p-values distribution suggests a
reduced background inflation and low number of false positive associations (Figure 14).

933 Figure 15 QQ-plot for the SNPs association to the SS trait

SNP_IGA_881722 is located at 19,889,620 bp in a distal region of chromosome 8 and with a MAF
(minor allele frequency) of 0.21. Linkage disequilibrium (LD) analysis of the regions surrounding
the SNP_IGA_881722 estimated an extended LD block, which encompasses a region of about 2.3
Mb in physical size, roughly comprised between SNP_IGA_881120 (19,710,170 bp) and
SNP_IGA_885740 (21,948,219 bp).

939 4.4.3 QTL-mapping of SS trait

940 In order to verify the significance of the locus detected by GWA, a QTL-mapping approach 941 942 was performed in an F1 MxR028 progeny, 943 using mechanical properties. A genetic map of 944 the MxR028 progeny was built from IPSC 9k 945 SNP array data. A total of 479 markers were arranged in 12 linkage groups which were 946 947 anchored to the 8 chromosomes of the peach 948 genome sequence: chromosomes 1, 2 and 6 949 were subdivided in 3, 2 and 2 linkage groups, 950 respectively (Figure 19). A total distance of 951 172.6Mb (165.4Mb without counting the gap 952 >20cM) of the peach genome is covered by the 953 map with a mean physical/genetic distance 954 ratio of 216Kb/cM, (maximum ratio of 459 955 Kb/cM in MxR_1b and a minimum of 71 956 Kb/cM MxR_2b). As a first validation of the 957 obtained genetic map for genetic dissection of 958 fruit quality traits, a QTL analysis for fruit 959 acidity was performed: a major QTL was 960 identified in agreement with the already known

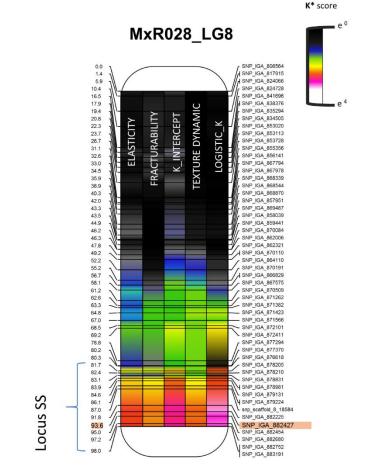


Figure 16 The genetic map of the chromosome 8 showing in color the K score of the Kruskal-Wallis analysis made using MapQTL software and colored by the Harry Plotter software [41]

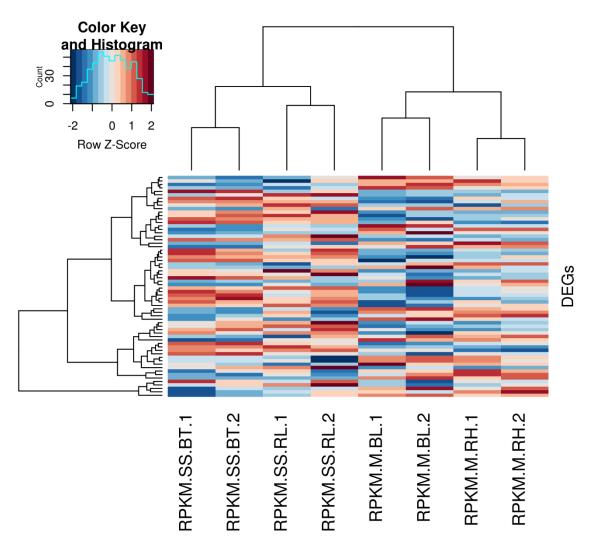
961D locus on chromosome 5 (Figure 19). Mechanical properties obtained from rheological analyses962were then used for QTL analysis. All the parameters coming from TD equation including the963logistic K-intercept parameters showed a single and significant (p<0.005) association on</td>964chromosome 8 with K* of Kruskal-Wallis non-parametric test>19 (significance < 0.0001), and a</td>965maximum association of the logistic K-intercept of 47.9 K* (Figure 16).

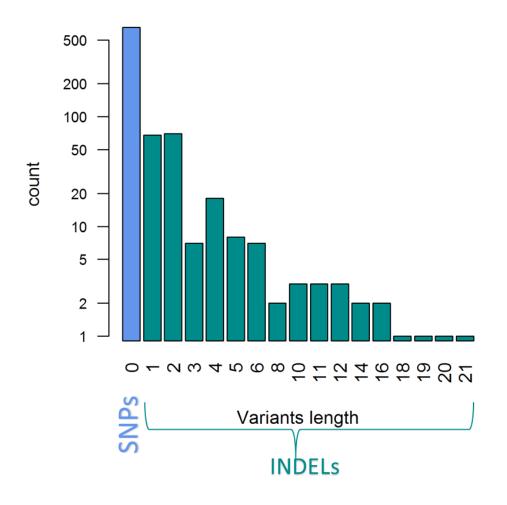
- 966 The mapped interval spans a region of about 1.63Mb on chromosome 8, roughly comprised
- 967 between SNP_IGA_878205 (18.675.130 bp) and SNP_IGA_882809 (20.308.888 bp), being

SNP_IGA_882427 the most associated (20.146.776 bp). The interval is composed by hkxhk 968 969 marker type (heterozygous in both parents), which do not allow the tracing of SS allele in the 970 donor parent Rebus028, although individuals bearing kk markers were all characterized by M 971 texture. Although the SS texture has been reported as dominant over M, QTL analysis do not allow 972 to exclude the hypothesis of a recessive inheritance i.e. Rebus028 parent is homozygous recessive 973 and Max10 heterozygous for the SS allele. Using an interval mapping (IM) approach to map the 974 logistic K-intercept, the identified interval spans 1.64Mb, comprised between SNP_IGA_877294 975 (18.438.875 bp and LOD 5.61) and SNP_IGA_883291 (20.478.408 bp and LOD of 14.91), and a 976 maximum peak corresponding to SNP_IGA_882225 (20.084.243 and LOD of 100).

978 **4.4.4 Gene mining and transcriptome analysis**

The large size of mapped intervals, respectively of 2.3 Mb and 1.6Mb using GWA and QTLmapping, hampers the identification of candidate genes or variants potentially associated to the SS trait. Despite this, a preliminary investigation was performed, by exploring the annotated gene inventory, transcriptome data of two SS and two M accessions and whole-genome re-sequencing data of 'Max10' and 'Rebus 028' parents.




Figure 17 The Z-normalization of RPKM of 64 genes differentially expressed in the non-parametrical contrast gene by gene performed using the npar.t.test of the nparcomp::r package. The heatmap was obtained using the heatmap.2 function of the gplot::r package, Top, hierarchical clustering of the cultivar.Left, gene clustering according to the expression in RPKM. On the bottom the texture type the cultivar (BT 'Big Top' SS, RL 'Rich Lady' SS, BL 'Bolero' M, RH 'Red Haven' M) and the replica (1 first replica, 2 the second). In small on the top left the color key and the class frequency.

989

A total of 806 transcripts were annotated in the interval between the SNP_IGA_878205 (18 Mb)
and the distal part of chromosome 8 (22.5Mb). The region from 20.1 to 22.5Mb was not covered

by any markers but is in linkage with the identified regions, as deduced by LD measure in the

993 accession panel (data not shown). Based on the assumption that the gene(s) controlling the SS trait 994 is expressed in ripening fruit tissues, analysis of transcriptome data allowed to reduce the number 995 of candidates to 517 genes. In order to evaluate the potential association between differential 996 expression of any of these genes and the SS trait, their expression pattern was compared by a non-997 parametric contrast, identifying a total of 64 genes with a significant differential expression 998 between SS and M fruits at SIV ripening stage (Figure 17). Based on peach reference transcripts 999 annotation v2.1a, these transcripts were mainly involved in auxin response, fatty acid biosynthesis, 1000 cell-wall metabolism, regulation of transcription and RNA metabolism, while 16 were 1001 uncharacterized or unknown.

1002

1003 *Figure 18 The count of the SNPs (length 0) and INDELs (length between 1-21) in the SS locus in according these in agree with the observed pattern of segregation.*

1005

1006 Differentially expressed genes (DEGs) were further investigated by the analysis of re-sequencing

1007 data of 'Max10' and 'Rebus028'. Within the identified interval, a total of 10680 variants were

found in 'Max10' and 'Rebus 028': of these,853 were in agreement with the observed pattern of trait segregation. Most of them (656) are SNPs, while 197 are INDELs ranging from 1 to 22 bp (Figure 17). Furthermore, 7 variants were identified in coding regions of DEGs, Prupe.8G257900 (coding for tetratricopeptide repeat (TPR)-containing protein), Prupe.8G224000 (coding for Protein of unknown function, DUF647) and Prupe.8G206600 (coding for UDP-Glycosyltransferase superfamily protein) (1, 2 and 4 variants, respectively), while 33 were identified in regulatory regions of 16 DEGs (Table 5).

1015 4.5 Discussion

1016 Maintenance of an elevated consistency is necessary for the storage and the handling of 1017 ripe fruits [39]. Due to the commercial success of 'Big Top' nectarine[73], the SS texture has been 1018 increasingly studied in the last 20 years[81,82,121–123]. The penetrometer itself, as reported in 1019 paragraph 3, does not support the ability to discriminate among the different texture types, as 1020 already reported in other works [63,66,122]. In addition, this method appears affected by the fruit 1021 ripening season, since the early-ripening accessions tend to show a faster loss of firmness, while 1022 the late-ripening a more slower firmness loss. Using the firmness loss method, Serra et al. [121] 1023 found major QTLs overlapping with the major QTLs for maturity date.

1024 Nevertheless, the lack of an easy and cheap tool to phenotype this melting texture variant hampered 1025 its full exploitation in breeding activities [73]. The most widely used method to score the SS trait 1026 is based on sensorial evaluation, based on mouthfeel and tactile sensation assessed by expert 1027 breeders. However, this approach is limited by its low throughput, requiring several years of 1028 observation for a reliable assessment. Clearly, sensorial evaluation suffers from a certain degree 1029 of subjectivity, which makes observation not generalizable to all experimental conditions. In the 1030 previous chapter, novel indices have been developed, the TD and K-intercept, which allows a more 1031 objective evaluation of fruit textural properties. These methods rely on the measurement of the 1032 mechanical properties of the flesh, which are able to distinguish between SS and M textures. In 1033 the present work, a panel of accessions and a biparental population were phenotyped by sensorial 1034 evaluation and instrumental measures of mechanical parameters, and used in association and 1035 linkage mapping experiment. A major locus was identified in the distal part of chromosome 8, 1036 between 18.4Mb and 20.5 Mb. The distance between the most associated signals in GWAS and 1037 QTL-mapping is 257.156 bp, suggesting the same locus segregates in both populations. 1038 Association and linkage mapping results support the hypothesis of a Mendelian inheritance of the 1039 trait, although this hypothesis should be further verified in other genetic backgrounds. Our results 1040 are consistent with a dominant effect of the allele conferring the SS trait, as early reported [73]. In

1041 the MxR028 progeny, most associated SNPs in the identified interval are heterozygous in both 1042 parents, thus not useful for an application in marker assisted selection. The mapped interval spans 1043 a region of about 2 Mb, too large to confidently identify causal variants. In order to increase genetic 1044 resolution of the target locus and restrict the list of candidate genes, a higher number of segregating 1045 progenies should be analyzed, taking advantage of the high degree of molecular polymorphism of 1046 the identified genomic region. Despite the low resolution of the current chromosomal position, the 1047 locus was further explored by using RNA-seq and whole-genome re-sequencing data as a 1048 preliminary step to evaluate possible associations with candidate genes. A total of 64 DEG 1049 transcripts were identified by the comparison of fruit flesh at SIV ripening stage transcriptome of 1050 two SS and two M cultivars: genes related to auxin metabolism and response were detected. As 1051 recently found in peach, auxin homeostasis is crucial for fruit ripening, stimulating ethylene 1052 biosynthesis[69]. Moreover, an auxin biosynthesis gene, YUC11-like, has been recently proposed as a candidate gene for the stony hard texture trait in peach. Thus, auxin metabolism and/or 1053 1054 response may a play a role in SS trait as well [80].

1055 **4.6 Conclusions**

1056 In this work a novel approach based on processed mechanical parameters (see paragraph 1057 3), the texture dynamics index (TD), was applied to phenotype fruit texture types in a segregating 1058 progeny (MxR028). The K-intercept of TD model was able to distinguish melting and slow-1059 softening individuals, allowing the identification of a major locus on the distal part of chromosome 1060 8. QTL-mapping was coupled with GWA analysis in a wide peach collection characterized by 1061 sensorial evaluation of fruit texture. Most associated SNPs detected by association mapping 1062 confirmed the presence of a single locus in the same region of chromosome 8, albeit with a broader 1063 genetic interval compared to QTL analysis. Nevertheless, the size of the associated interval is still 1064 too extended for a preliminary screening of candidate gene variants.

1065 This study is the first reporting a major locus associated to the SS trait in peach, supporting 1066 early observations of a simple inheritance of the trait. Furthermore, results demonstrated the 1067 suitability of the TD index for a quick and reliable phenotyping of peach texture in segregating 1068 progenies, even of relative small size. Considering the complexity of sensorial assessment, this aspect is of fundamental importance for fine-mapping experiments, which will require a wider 1069 1070 progeny or wide germplasm collections. A more precise mapping would allow the identification 1071 of the gene(s) involved in peach texture and the development of efficient markers for assisted 1072 selection of new cultivars with optimum textural performance, a crucial aspects for increasing 1073 peach fruit competitiveness in the fresh market.

0.0 SNP_IGA_9695 0.1 SNP_IGA_164 3.1 SNP_IGA_16520 7.5 SNP_IGA_16520 7.5 SNP_IGA_16520 7.5 SNP_IGA_16520 7.5 SNP_IGA_16520 7.5 SNP_IGA_16520 7.5 SNP_IGA_16420 12.9 SNP_IGA_18074 12.9 SNP_IGA_2251 12.0 SNP_IGA_22551 12.1 SNP_IGA_25630 33.0.1 SNP_IGA_28063 33.0.1 SNP_IGA_28064 33.0.1 SNP_IGA_28064 33.0.1 SNP_IGA_280653 33.0.1 SNP_IGA_280653 33.0.1 SNP_IGA_28066 41.4 SNP_IGA_280653 33.0.1 SNP_IGA_28064 41.9 SNP_IGA_280653	MxR_1 [1]
65.4 SNP_IGA_38748 66.9 SNP_IGA_39717 67.6 SNP_IGA_40295 69.1 SNP_IGA_40295 70.5 SNP_IGA_46394 72.7 SNP_IGA_4594 72.7 SNP_IGA_57051 774.9 SNP_IGA_57051 774.9 SNP_IGA_57241 83.1 SNP_IGA_57241 83.1 SNP_IGA_63603 85.3 SNP_IGA_63746 SNP_IGA_65286	MxR_1 [2]
0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	MxR_1b
0.0 SNP_IGA_112924 1.4 SNP_IGA_113582 14.4 SNP_IGA_119215 25.6 SNP_IGA_120026 27.0 SNP_IGA_122047 28.5 SNP_IGA_122047 28.5 SNP_IGA_128625 36.0 SNP_IGA_128625 36.0 SNP_IGA_128625 36.0 SNP_IGA_128625 36.0 SNP_IGA_1286857 43.3 SNP_IGA_125029 SNP_IGA_124466	MxR_1c

64.4 SNP_IGA_202007		45.5	38.1 SNP_IGA_182561 41.0 SNP_IGA_189099	33.7	23.3		12.1	0.0 SNP_IGA_161939 2.9 SNP_IGA_163222 4.4 SNP_IGA_163237	MxR_2 [1]
	121.6	110.7	106.2	95.8		79.3			MxR_2 [2]
					22.1		8.9	0.0	MxR_2b
	50.5	1((38.8 SNP IGA 320761 39.9 SNP IGA 320761 40.2 SNP IGA 320200 41.7 SNP IGA 320200			14.8	7.4	0.0	MxR_3 [1]
126.7	114.8	108.9 110.4					74.2	66.7SNP_IGA_894039 68.2SNP_IGA_887061	MxR_3 [2]

Map

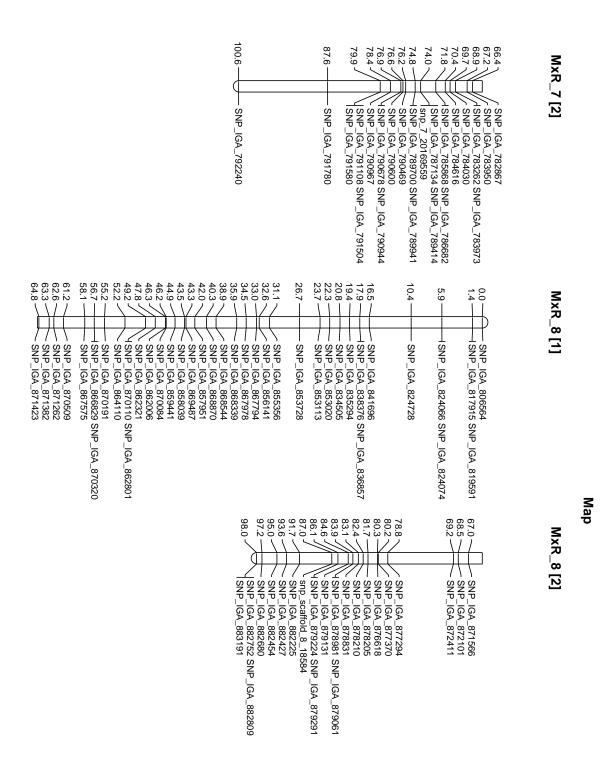
29.9 PP17Cl 33.1 SNP_IGA_39897 37.7 SNP_IGA_402724 40.9 ISNP_IGA_402793 SNP_IGA_402828 47.6 SNP_IGA_407370 47.2 SNP_IGA_408505 47.9 SNP_IGA_408505 55.4 SNP_IGA_408655 56.1 SNP_IGA_408981 57.6 SNP_IGA_410134 56.3 SNP_IGA_410266 SNP_IGA_410336 56.1 SNP_IGA_410265 58.3 SNP_IGA_410478 59.3 SNP_IGA_411166 SNP_IGA_412338 59.3 SNP_IGA_41387 54.7 SNP_IGA_437516	
SNP-IGA_5009172 SNP-IGA_501471 SNP-IGA_501471 SNP-IGA_501744 SNP-IGA_5012744 SNP-IGA_513253 SNP-IGA_514223 SNP-IGA_514243 SNP-IGA_514263 SNP-IGA_516898 SNP-IGA_516898 SNP-IGA_516898 SNP-IGA_516898 SNP-IGA_518080 SNP-IGA_525001 SNP-IGA_525620 SNP-IGA_525683	65.8 SNP_IGA_440116 68.9 SNP_IGA_445689 70.4 SNP_IGA_445821 71.8 SNP_IGA_445825 76.2 SNP_IGA_445826 73.5 SNP_IGA_445827 79.9 ISNP_IGA_445871 79.2 SNP_IGA_445871 79.2 SNP_IGA_445870 80.6 SNP_IGA_4458202 82.1 SNP_IGA_45202 82.1 SNP_IGA_45202 84.4 SNP_IGA_455216 85.0 SNP_IGA_473555 SNP_IGA_476569 91.5 SNP_IGA_476569 91.5 SNP_IGA_479780 SNP_IGA_479790 SNP_IGA_499790 SNP_IGA_500525
31.5 SNP_IGA_577548 34.5 SNP_IGA_572582 45.6 SNP_IGA_585182 SNP_IGA_585560 46.3 SNP_IGA_585810 SNP_IGA_586523 51.4 SNP_IGA_586210 SNP_IGA_586523 51.8 SNP_IGA_586225 51.8 SNP_IGA_587238 54.5 SNP_IGA_587238 55.9 SNP_IGA_58760 SNP_IGA_587455 58.8 SNP_IGA_58760 58.8 SNP_IGA_587708 58.9 SNP_IGA_593874 63.4 SNP_IGA_593874 59.9 SNP	0.0 SNP_IGA_543179 1.4 SNP_IGA_543247 7.5 SNP_IGA_547022 15.2 SNP_IGA_550504 16.7 SNP_IGA_551853 18.1 SNP_IGA_552836 19.6 SNP_IGA_556288 22.5 SNP_IGA_557558 25.5 SNP_IGA_557558
	75.9 SNP_IGA_596063 78.9 SNP_IGA_596332

Map

MxR_5 [1]

MxR_5 [2]

MxR_4 [1]


MxR_4 [2]

36.1 SNP_IGA_675077 39.0 SNP_IGA_676161 snp_6_21067422 40.5 SNP_IGA_680612 41.2 SNP_IGA_680112 42.5 SNP_IGA_680112 43.1 SNP_IGA_680112 49.1 SNP_IGA_682343 50.6 SNP_IGA_682133 53.6 SNP_IGA_682133 53.6 SNP_IGA_682103 53.8 SNP_IGA_682103 53.8 SNP_IGA_6890771 54.3 SNP_IGA_6890792 55.8 SNP_IGA_693032 59.1 SNP_IGA_693032 SNP_IGA_693032 SNP_IGA_693032 56.1.2 SNP_IGA_6933205 61.2 SNP_IGA_693330 SNP_IGA_6933205 SNP_IGA_693323 62.3 SNP_IGA_693435 63.0 SNP_IGA_693435 64.5 SNP_IGA_693435	25.8	0.0	MxR_6 [1]
		67.4 SNP_IGA_693592 71.0 SNP_IGA_696629 71.9 SNP_IGA_696574 SNP_IGA_696241 74.8 SNP_IGA_69844 76.3 SNP_IGA_700552 SNP_IGA_700814	MxR_6 [2]
		0.0 SNP_IGA_611891 2.9 SNP_IGA_609984 5.9 SNP_IGA_605290 8.8 snp_6_5294415 8.8 SNP_IGA_640430	MxR_6b
38.7 SNP_IGA_769471 39.9 SNP_IGA_769572 42.4 SNP_IGA_769675 46.2 SNP_IGA_770978 50.1 SNP_IGA_776826 52.6 SNP_IGA_776894 58.9 SNP_IGA_776894 58.9 SNP_IGA_776894 58.9 SNP_IGA_776894 58.9 SNP_IGA_778002 60.2 SNP_IGA_7780317 63.9 SNP_IGA_781347 SNP_IGA_781345 SNP_IGA_781345	26.2 SNP_IGA_745712 SNP_IGA_746204 26.9 SNP_IGA_746147 SNP_IGA_746204 28.1 SNP_IGA_748637 29.4 SNP_IGA_750721 29.4 SNP_IGA_750721 30.6 SNP_IGA_758767		MxR_7 [1]

Map

1079 Figure 19 Genetic map of MxR028 population, 12 linkage groups (anchored to the 8 chromosomes) represented with integrated map, plotted using JoinMap 4.1.

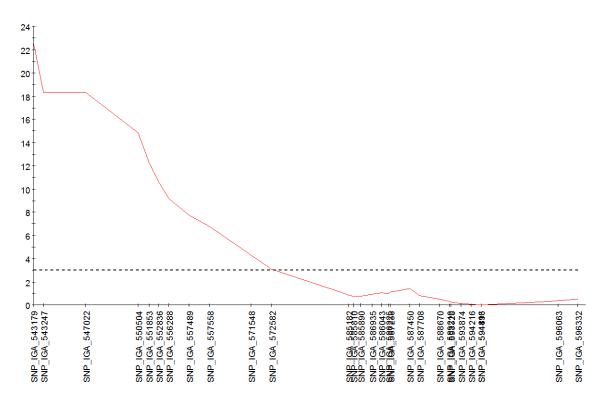


Figure 20 QTL mapping of acidity, recovering the Locus D. In red the LOD value, the dashed line represents the threshold obtained by permutation test (3.1 LOD).

1086 Table 3 phenotypes collected in MxR28 seedlings

			-									_
individualnames_ MxR28-003	K.Intercept TD			racturabi Logistic_K	MD 2	I_DA 252		ght Blush 147	RSR	TDy:		
MxR28-003	2,12	0,38	1,82	4,85	2 2 NA	252	0,8	147	75 85	12,8	0,22	1
MxR28-004	3,11	0,64	1,84	2,86	2 NA	223	0,3	120	76	14,2 11,2	0,22	1
MxR28-000 MxR28-007	0,38	0,51 0,38	2,59 2,15	5,1 5,73	1	223	0,3 0,2	115	45	8,6 NA	0,24	0
MxR28-007	1,45	0,38	1,81	6,81	1	216	0,2	110	73	11	0,25	1
MxR28-014	2,52	0,27	1,81	8,24	2	210	0,3	128	90	8,8 NA	0,25	0
MxR28-018	2,52	0,22	1,82	8,38	2	220	0,3	134	75	11 NA		1
MxR28-023	0,38	1,49	2,99	2	1	232	0,3	119	91	13 NA		0
MxR28-034	2,45	0,21	1.44	6,93	2	250	0,5	154	79	14	0,22	0
MxR28-042	2,55	1,02	2,48	2,42	2	241	0,6	131	65	12,2	0,23	0
MxR28-045	0,87	0,55	2,45	4,49	1 NA	NA	NA	NA	NA	NA	NA	-
MxR28-049	3,21	0,17	1,69	9,66	2	210 NA	NA	NA	NA	NA	NA	
MxR28-051	0,9	0,86	2,36	2,75	1 NA	-	0,8	129	98	13,7	0,25	1
MxR28-052	0,18	1,77	3,65	2,06	1 NA		0,5	126	79	12,4	0,23	1
MxR28-055	2,61	0,5	1,5	3,01	2	243	0,7	129	63	11	0,21	0
MxR28-057	0,31	0,49	2,86	5,89	1 NA		0,8	166	74	13,4	0,22	1
MxR28-061	0,84	0,67	2,5	3,73	1	243	0,7	116	65	13 NA		1
MxR28-064	0,24	0,46	3,73	8,15	1	238	0,6	124	93	11,4	0,24	0
MxR28-066	2,88	0,19	1,76	9,01	2	210 NA	NA	NA	NA	NA	NA	
MxR28-069	2,81	0,2	1,77	8,87	2 NA	NA	NA	NA	NA	NA	NA	
MxR28-077	0,21	1,3	3,37	2,6	1	234	0,5	113	69	11,7	0,27	0
MxR28-080	0,38	1,49	2,99	2	1	234	0,4	96	95	13,4 NA		0
MxR28-081	0,64	-4,62	2,91	-0,63	1	238	0,4	109	60	10,6	0,23	1
MxR28-089	0,28	2,03	3,17	1,56	1 NA		0,7	132	64	12,2 NA		0
MxR28-097	2,38	0,24	1,87	7,94	2	241	0,6	132	64	12,6 NA		0
MxR28-103	1,92	0,29	2	6,85	2	216	0,3	150	81	9 NA		0
MxR28-106	0,41	1,37	2,94	2,14	1	220	0,2	154	78	8,8 NA		0
MxR28-107	0,41	1,37	2,94	2,14	1	218	0,3	149	88	10,2 NA		1
MxR28-108	3,21	0,3	1,32	4,46	2 NA		0,3	137	61	12	0,22	1
MxR28-109	0,44	1,27	2,89	2,27	1 NA	NA	NA	NA	NA	NA	NA	
MxR28-117	0,11	5,01	3,72	0,74	1 NA		0,3	128	75	12 NA		1
MxR28-118	0,28	0,08	1,67	20,6	1	210 NA	NA	NA	NA	44.4.814	0,42 NA	
MxR28-120	0,97	0,58	2,42	4,17	1	210	0,3	123	61	11,4 NA	0.07	0
MxR28-123	0,28	1	2,72	2,72	1	245	0,6	96	63	11,1	0,27	0
MxR28-126	1,96	0,4	1,63	4,05	2	234	0,7	138	81 79	12,8 13,6 NA	0,2	1
MxR28-128 MxR28-132	2,28	0,56 2,57	2,39 2,61	4,27	2	238 241	0,4 0,8	126 153	48	13,6 NA 14	0,21	1
MxR28-132	0,87	0,65	2,01	3,84	2 1 NA	241	0,8	133	48 80	14 10,4 NA	0,21	0
MxR28-135	0,28	2,03	3,17	1,56	1	210 NA	NA	NA	NA	NA	NA	0
MxR28-138	0,41	1,37	2,94	2,14	1 NA	210 114	0,6	148	71	12,4 NA		1
MxR28-139	1,03	0,54	2,38	4,38	1 NA		0,5	159	64	12,4 NA		0
MxR28-141	0,64	0,46	2,33	4,73	1	210	0,2 NA	NA	NA		0,28 NA	
MxR28-147	2,71	0,21	1,79	8,66	2	216	0,2	136	66	8,6 NA	0,20	0
MxR28-148	1,99	0,23	1,71	7,3	2	234	0,8	94	89	13,8	0,22	1
MxR28-149	2,35	0,24	1,88	7,87	2 NA	NA	NA	NA	NA	NA	NA	
MxR28-152	-0,09	0,09	2,3	25,27	1	250	0,5	159	72	13	0,26	0
MxR28-159	2,02	0,28	1,97	7,1	2	216	0,2	79	79	9 NA		0
MxR28-160	2,94	0,32	1,22	3,8	2	234	0,4	130	80	13,5	0,23	1
MxR28-163	2,65	0,21	1,81	8,52	2	220	0,2	104	85	10,4 NA		1
MxR28-164	2,22	0,25	1,91	7,57	2 NA	NA	NA	NA	NA	NA	NA	
MxR28-165	1,46	0,38	2,17	5,64	1 NA		0,4 NA	NA	NA	NA	NA	
MxR28-171	0,28	2,03	3,17	1,56	1	210 NA	NA	NA	NA	NA	NA	
MxR28-173	1,43	-1,29	2,32	-1,81	1	216 NA	NA	NA	NA		0,37 NA	
MxR28-176	1,99	0,28	1,98	7,02	2	216 NA	NA	NA	NA	NA	NA	
MxR28-178	2,48	0,23	1,85	8,17	2 NA		0,7	123	86	12,9 NA	0.0	0
MxR28-179	1,66	0,6	2,35	3,95	2 NA		0,7	128	87	15	0,2	1
MxR28-191	0,05	12,16	4,26	0,35	1	216	0,3	99	67	9 NA		0
MxR28-192	2,32	0,24	1,89	7,8	2	216	0,3	105	71	8 NA		0
MxR28-204	0,77	0,79	2,4	3,03	1	218 NA	NA	NA 1CE	NA	11.0 11	0,24 NA	
MxR28-206	2,48	0,23	1,85	8,17	2	245	0,6	165	71	11,9 NA	0.20 N.4	0
MxR28-208	0,77	0,44	2,36	5,35	1	218 NA	NA	NA	NA	12.0	0,29 NA	_
MxR28-210	1,66	0,17	1,63	9,75	2	247	0,8	190	75	12,6	0,23	1
MxR28-213	1,13	0,97	3,53	3,65	1	232	0,5	119	87	12,6	0,23	0
MxR28-218	2,28	0,27	1,62	5,96	2	245	0,8	119	50	10,4	0,21	1
MxR28-221	3,11	0,18	1,71	9,47	2	216	0,3	132	75	9 NA	0.25	0
MxR28-227	0,87	3,95	3,65	0,92	1	234	0,6	120	90	12,4	0,25	1 0
MxR28-228	0,51	1,11 0,93	2,81	2,54	1 NA 1	216	0,2 0,3	158	84 62	9,6 NA 10 NA		1
MxR28-229 MxR28-231	0,61	0,93	2,7	2,91 7,64	1	216 243	0,3	127 100	73	10 NA 11,5	0,21	0
MxR28-231 MxR28-242	0,54	1,04	2,13 2,77		1	243 218	0,5 0,2 NA	NA	73 NA	11,5 NA	0,21 NA	0
111/20-242	0,54	1,04	2,11	2,66	T	C10	0,2 NA	INA	INA	INA	INA	

1088 Table 4DEGs in SS locus between the M and SS accessions.

Gene	Position	foldchange	CDS variants	Variants Flanking (2k) Annotation
Prupe.8G192500.v2.1		2,71	0	
Prupe.8G192700.v2.1		1,58	0	
Prupe.8G196600.v2.1		-1,49	0	
Prupe.8G196900.v2.1		2,82	0	
Prupe.8G200200.v2.1		-1,28	0	
Prupe.8G202800.v2.1		-1,82	0	
Prupe.8G202900.v2.1		-1,49	0	
Prupe.8G203200.v2.1		-1,45	0	
			0	
Prupe.8G203400.v2.1		-3,7	0	
Prupe.8G204600.v2.1		-1,22	0	
Prupe.8G205200.v2.1		4,29		
Prupe.8G206400.v2.1		1,24	0	
Prupe.8G210900.v2.1		-1,39	0	
Prupe.8G211800.v2.1		3,67	0	
Prupe.8G215400.v2.1		2,03	0	
Prupe.8G216200.v2.1		-1,59	0	- P
Prupe.8G216400.v2.1	19826510-19828518	1,79	0	
Prupe.8G219000.v2.1	19953927-19959169	1,21	0	0 no pollen germination related 2
Prupe.8G220500.v2.1	20027790-20030920	-1,23	0	
Prupe.8G220800.v2.1	20041459-20047260	-1,75	0	0 Ypt/Rab-GAP domain of gyp1p superfamily protein
Prupe.8G221000.v2.1	20062678-20065027	-1,37	0	0
Prupe.8G222400.v2.1	20145270-20150752	1,2	0	1 ARM repeat superfamily protein
Prupe.8G222700.v2.1	20160344-20164335	-1,33	0	0 Peptidase S24/S26A/S26B/S26C family protein
Prupe.8G223500.v2.1	20189766-20190797	1,92	0	0
Prupe.8G223600.v2.1	20191345-20195989	-1,2	0	1 translocase inner membrane subunit 44-2
Prupe.8G224100.v2.1	20213330-20216347	-1,22	0	2
Prupe.8G225000.v2.1		1,39	0	1
Prupe.8G229700.v2.1		-1,61	0	0 IND1(iron-sulfur protein required for NADH dehydrogenase)-like
Prupe.8G230700.v2.1		1,26	0	
Prupe.8G232400.v2.1		1,59	0	
Prupe.8G232500.v2.1		-1,67	0	
Prupe.8G233400.v2.1		2,47	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Prupe.8G233500.v2.1		1,68	0	
Prupe.8G236700.v2.1		-1,32	0	
Prupe.8G237300.v2.1		1,52	0	
Prupe.8G238200.v2.1		-1,43	0	
Prupe.8G238300.v2.1		-1,43	0	
· ·		-1,39	0	
Prupe.8G238900.v2.1 Prupe.8G239300.v2.1		1,92	0	
· ·			0	
Prupe.8G240900.v2.1		-1,37		
Prupe.8G241400.v2.1		1,86	0	
Prupe.8G242600.v2.1		-1,54	0	
Prupe.8G245000.v2.1		1,22	0	
Prupe.8G247100.v2.1		-1,89	0	
Prupe.8G247600.v2.1		-1,41	0	
Prupe.8G248600.v2.1		-1,41	0	
Prupe.8G253000.v2.1		1,21	0	, ,
Prupe.8G254700.v2.1		-1,69	0	
Prupe.8G257400.v2.1		1,29	0	
Prupe.8G259800.v2.1		1,66	0	
Prupe.8G261000.v2.1		1,28	0	
Prupe.8G261100.v2.1	22057662-22058465	-1,3	0	0 complex 1 family protein / LVR family protein
Prupe.8G263800.v2.1	22155178-22158557	3,19	0	0 AtL5
Prupe.8G265300.v2.1	22219511-22224016	-1,45	0	0 fumarase 1
Brune 86266200 v2 1	22269906-22276951	-1,2	0	0 SET domain-containing protein
F1upe.80200200.02.1	22313937-22317753	-1,54	0	0
Prupe.8G267300.v2.1			0	0 NAD+ transporter 1
		1,11	0	
Prupe.8G267300.v2.1	22319209-22322641	1,11 1,38	0	0 nodulin MtN21/EamA-like transporter family protein
Prupe.8G267300.v2.1 Prupe.8G267400.v2.1	22319209-22322641 22334771-22338301			
Prupe.8G267300.v2.1 Prupe.8G267400.v2.1 Prupe.8G267800.v2.1	22319209-22322641 22334771-22338301 22426303-22428517	1,38	0	0 ADP-ribosylation factor family protein
Prupe.8G267300.v2.1 Prupe.8G267400.v2.1 Prupe.8G267800.v2.1 Prupe.8G270100.v2.1	22319209-22322641 22334771-22338301 22426303-22428517 22429206-22433386	1,38 -1,28	0 0	0 ADP-ribosylation factor family protein 0 DNAJ heat shock family protein
Prupe.8G267300.v2.1 Prupe.8G267400.v2.1 Prupe.8G267800.v2.1 Prupe.8G270100.v2.1 Prupe.8G270200.v2.1	22319209-22322641 22334771-22338301 22426303-22428517 22429206-22433386 22454004-22457476	1,38 -1,28 -1,33	0 0 0	0 ADP-ribosylation factor family protein 0 DNAJ heat shock family protein 0 Heat shock protein DnaJ with tetratricopeptide repeat
Prupe.8G267300.v2.1 Prupe.8G267400.v2.1 Prupe.8G267800.v2.1 Prupe.8G270100.v2.1 Prupe.8G270200.v2.1 Prupe.8G270600.v2.1	22319209-22322641 22334771-22338301 22426303-22428517 22429206-22433386 22454004-22457476 21932617-21936030	1,38 -1,28 -1,33 1,7	0 0 0 0	0 ADP-ribosylation factor family protein 0 DNAJ heat shock family protein 0 Heat shock protein DnaJ with tetratricopeptide repeat 0 tetratricopeptide repeat (TPR)-containing protein

1091 Table 5 germplasm phenotypes for texture (melting/slow softening), skin pubescence (Locus G), and flesh acidity (Locus D)

Accession	Texture	Locus G	Locus D	Accession	Texture	Locus G	Locus D
391C12XXXIV86	melting	nectarine	subacid	MAILLARA	slow-softening	nectarine	subacid
AFRA T	melting	peach	acid	MARLI	melting	peach	subacid
AKATSUKI	melting	peach	subacid	MAURA	slow-softening	•	acid
ALBATROS	melting	peach	acid	MAX10	slow-softening		
ALEXA	melting	nectarine		MAYCREST	melting	peach	acid
ALIBLANCA	melting	peach	acid	MAYFIRE	melting	peach	acid
ALIPERSIE	melting	peach	acid	NADIA	melting	peach	acid
ALITOP	slow-softening	•		NECTAGRAND	melting	nectarine	
ALMA		nectarine		NJ WEEPING	melting	peach	acid
AMBRA	melting	nectarine		OKUBO			subacio
	melting				melting	peach	
ANTONY	melting	nectarine		OURO IAPAR	melting	peach	subacio
AUTUMN GRAND		nectarine		PIERI81	melting	peach	acid
AZURITE	slow-softening	•	acid	PZ1	melting	peach	acid
BEICME BIN	melting	peach	acid	REBUS38	slow-softening		
BEIJING	melting	peach	subacid	REBUS195	slow-softening	nectarine	subacio
BELLA DI CESENA	melting	peach	acid	REBUS28	slow-softening	nectarine	subacio
BIG TOP	slow-softening	nectarine	subacid	REDHAVEN	melting	peach	acid
BLUSHING STAR	melting	peach	acid	REGINA D OTTOBRE	melting	peach	acid
BO96025035	melting	peach	acid	RICH LADY	slow-softening	peach	acid
BOLIVIA	melting	peach	acid	RITA STAR	melting	nectarine	acid
BORDO	slow-softening	•	acid	ROMAGNA BRIGHT	slow-softening	nectarine	subacio
вотто	melting	peach	acid	ROMAGNA GIANT	slow-softening		
BOUNTY	melting	peach	acid	ROMAGNA GOLD	slow-softening		
	melting	peach	acid	ROMAGNA STAR	slow-softening		
CAPUCCI18	melting	peach	acid	ROMAGNA TOP	slow-softening		
CHIMARRITA	melting	peach	subacid	ROSA DARDI	melting	peach	acid
CINZIA	-	•	acid	ROSELLA			acid
	melting	peach			melting	peach	
CLAUDIA	melting	nectarine		ROYAL GLORY	slow-softening		subacio
CONTENDER	melting	peach	acid	ROYAL JIM	slow-softening	-	acid
CORINDON	melting	peach	acid	ROYAL LEE	slow-softening	•	subacio
DA TIAN TAO	melting	peach	subacid	ROYAL MAJESTIC	slow-softening		acid
DIAMOND BRIGHT	melting	nectarine	acid	ROYAL TIME	slow-softening		acid
DIXIRED	melting	peach	acid	RUBY RICH	slow-softening		acid
DOLORES	melting	peach	acid	S5898	melting	nectarine	acid
EARLY O HENRY	melting	peach	acid	S6699	melting	nectarine	acid
EARLY TOP	melting	nectarine	acid	SOUTHERN PEARL	melting	peach	acid
EARLY ZEE	melting	nectarine	acid	SPLENDOR	melting	nectarine	acid
ELBERTITA	melting	peach	acid	STARK RED GOLD	slow-softening	nectarine	acid
ELEGANT LADY	melting	peach	acid	SUMMER RICH	slow-softening	peach	acid
FFF7910001	melting	peach	acid	SUPEACH FOUR	melting	peach	acid
FORLI1	melting	peach	acid	SUPEACH SIX	melting	peach	acid
GARCICA	slow-softening			SWEETFIRE	slow-softening	•	subacio
GLOHAVEN	melting	peach	acid	TARDIGOLD	melting	nectarine	
GRENAT	slow-softening	•	subacid	TARDIGOLD	melting	peach	acid
	-	peach			slow-softening		
	melting		subacid				
HONEY BLAZE	slow-softening			VENUS	melting	nectarine	
HONEY GLO	slow-softening			VISTARICH	slow-softening	•	acid
HONEY KIST	slow-softening			VITTORIO EMANUELE		peach	acid
HONEY ROYAL	slow-softening			WHITE LADY	melting	peach	subacio
IP1	melting	peach	acid	XIA HUI	melting	peach	subacio
ISKRA	melting	peach	acid	YANG HUANG	melting	peach	acid
JIN CHUNG	melting	peach	subacid	ZAO XIA LU	melting	peach	acid
KAMARAT	melting	peach	acid	ZEE DIAMOND	melting	peach	acid
KAWEAH	melting	peach	acid	ZEE LADY	melting	peach	acid
KV930455	melting	peach	acid	ZEPHIR	slow-softening	nectarine	subaci
LAURA	melting	nectarine		ORION	melting	nectarine	
LIMONET	melting	peach	acid	SENTRY	melting	peach	acid
LUCREZIA	melting	peach	acid	J.H.HALE	melting	peach	acid
MAGIQUE	slow-softening	•		SPRINGCREST	melting	peach	acid
	store sortening	nectarine		C. MITOCILOI		Peace	4010

1093 **5 General conclusions**

1094 The aim of this research was to deepen the knowledge about the slow softening texture in 1095 peach.

1096 Two major goals achieved are the setup of the texture dynamics models (TD) as a reliable 1097 tool to score difference in texture and the detection of SS major locus and his dominant mendelian 1098 inheritance.

1099 Results from RNA-seq and NGS approaches as speculative data, because: a) not supported 1100 by measure of fruit hormones content; b) the so wide locus found did not allow to indicate a 1101 putative variant.

1102 TD model could be applied to deep the knowledge about texture in peach, with the possibility to

1103 find new textures or to dissect the already known textures to find modulatory genes.

Findings the locus and the mendelian inheritance of the SS trait will help to design future experiments and would allow a more precise mapping and identification of the gene(s) involved in peach texture. Additionally, the new tool (TD) will help the development of efficient markers for assisted selection in breeding for optimum textural performance, a crucial aspect for increasing peach fruit competitiveness in the fresh market.

1110 **6 References**

- Szczesniak AS. Texture is a sensory property. Food Qual Prefer. 2002;13: 215–225.
 doi:10.1016/S0950-3293(01)00039-8
- 1113 2. Lawless HT, Heimann H. Sensory Evaluation of Food 2nd Ed. Science. 2010.
 1114 doi:10.1007/978-1-4419-6488-5
- Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object
 manipulation tasks. Nat Rev Neurosci. 2009;10: 345–359. doi:10.1038/nrn2621
- 4. Waldron KW, Smith AC, Parr AJ, Ng A, Parker ML. New approaches to understanding and
 controlling cell separation in relation to fruit and vegetable texture. Trends Food Sci
 Technol. 1997;8: 213–221. doi:10.1016/S0924-2244(97)01052-2
- Boland AB, Delahunty CM, Van Ruth SM. Influence of the texture of gelatin gels and pectin
 gels on strawberry flavour release and perception. Food Chem. 2006;96: 452–460.
 doi:10.1016/j.foodchem.2005.02.027
- 11236.Rosenthal AJ. Texture Profile Analysis How Important Are the Parameters? J Texture1124Stud. 2010;41: 672–684. doi:10.1111/j.1745-4603.2010.00248.x
- 11257.Tournier C, Sulmont-Rosse C, Guichard E. Flavour perception: aroma, taste and texture1126interactions.Food.2007;1:246–257.Available:1127http://www.globalsciencebooks.info/Journals/images/GSB_EditorBoards.pdf
- 11288.Foster KD, Woda a, Peyron M a. Effect of texture of plastic and elastic model foods on the1129parameters of mastication. J Neurophysiol. 2006;95: 3469–79. doi:10.1152/jn.01003.2005
- 1130 9. Rao MA. Rheology of Fluid, Semisolid, and Solid Foods [Internet]. Boston, MA: Springer
 1131 US; 2014. doi:10.1007/978-1-4614-9230-6
- 1132 10. Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA. Pectin, a versatile polysaccharide
 present in plant cell walls. Struct Chem. 2009;20: 263–275. doi:10.1007/s11224-009-9442z
- 1135 11. Kim Y, Yoo YH, Kim KO, Park JB, Yoo SH. Textural properties of gelling system of lowmethoxy pectins produced by demethoxylating reaction of pectin methyl esterase. J Food
 Sci. 2008;73: 367–372. doi:10.1111/j.1750-3841.2008.00771.x
- Paniagua C, Posé S, Morris VJ, Kirby AR, Quesada M a, Mercado J a. Fruit softening and
 pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic
 force microscopy. Ann Bot. 2014;114: 1375–83. doi:10.1093/aob/mcu149
- 1141 13. Prasanna V, Prabha TN, Tharanathan RN. Fruit Ripening Phenomena–An Overview. Crit
 1142 Rev Food Sci Nutr. 2007;47: 1–19. doi:10.1080/10408390600976841
- 1143 14. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on

- genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45: D353–D361.
 doi:10.1093/nar/gkw1092
- 1146 15. Hayama H, Ito A, Moriguchi T, Kashimura Y. Identification of a new expansin gene closely
 associated with peach fruit softening. Postharvest Biol Technol. 2003;29: 1–10.
 doi:10.1016/S0925-5214(02)00216-8
- Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its
 manipulation in transgenic plants. Plant Mol Biol. 2001;47: 311–340.
 doi:10.1023/A:1010656104304
- 1152 17. Hayama H, Shimada T, Fujii H, Ito A, Kashimura Y. Ethylene-regulation of fruit softening
 1153 and softening-related genes in peach. J Exp Bot. 2006;57: 4071–4077.
 1154 doi:10.1093/jxb/erl178
- 1155 18. Brownleader MD, Jackson P, Mobasheri A, Pantelides a T, Sumar S, Trevan M, et al.
 1156 Molecular aspects of cell wall modifications during fruit ripening. Crit Rev Food Sci Nutr.
 1157 1999;39: 149–164. doi:10.1080/10408399908500494
- 1158 19. Wilkinson C, Dijksterhuis GB, Minekus M. From food structure to texture. 2001;11: 442–
 1159 450.
- Varela P, Ares G. Sensory profiling, the blurred line between sensory and consumer science.
 A review of novel methods for product characterization. Food Res Int. Elsevier Ltd;
 2012;48: 893–908. doi:10.1016/j.foodres.2012.06.037
- 116321.Essex E. Objective measurements for texture in foods. J Texture Stud. 1969;1: 19–37.1164Available:http://onlinelibrary.wiley.com/doi/10.1111/j.1745-
- 1165 4603.1969.tb00953.x/abstract
- 1166 22. Harker FR, Redgwell RJ, Hallett IC, Murray SH, Carter G. Texture of Fresh Fruit.
 1167 Horticultural Reviews. Oxford, UK: John Wiley & Sons, Inc.; 2010. pp. 121–224.
 1168 doi:10.1002/9780470650646.ch2
- 1169 23. Otegbayo B, Aina J, Abbey L, Sakyi-Dawson E, Bokanga M, Asiedu R. Texture Profile
 1170 Analysis Applied To Pounded Yam. J Texture Stud. 2007;38: 355–372. doi:10.1111/j.17451171 4603.2007.00101.x
- 1172 24. Tabilo-Munizaga G, Barbosa-Cánovas G V. Rheology for the food industry. J Food Eng.
 1173 2005;67: 147–156. doi:10.1016/j.jfoodeng.2004.05.062
- 1174 25. Rao MA. Rheology of Fluid, Semisolid, and Solid Foods. 2014; doi:10.1007/978-1-46141175 9230-6
- 1176 26. Barbosa-Cánovas G V., Kokini JL, Ma L, Ibarz A. The Rheology of Semiliquid Foods. Adv
 1177 Food Nutr Res. 1996;39: 1–69. doi:10.1016/S1043-4526(08)60073-X

- Prakash S, Tan DDY, Chen J. Applications of tribology in studying food oral processing
 and texture perception. Food Res Int. Elsevier Ltd; 2013;54: 1627–1635.
 doi:10.1016/j.foodres.2013.10.010
- 1181 28. Kilcast D. Texture in Food. Texture in Food: Solid Foods v. 2. 2004.
 1182 doi:10.1533/9781855737082.1.3
- 1183 29. Costa F, Cappellin L, Longhi S, Guerra W, Magnago P, Porro D, et al. Assessment of apple 1184 (Malus×domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling 1185 strategy. Postharvest Biol Technol. Elsevier B.V.; 2011;61: 21 - 28. 1186 doi:10.1016/j.postharvbio.2011.02.006
- 1187 30. Varela P, Salvador A, Fiszman S. Changes in apple tissue with storage time: Rheological,
 1188 textural and microstructural analyses. J Food Eng. 2007;78: 622–629.
 1189 doi:10.1016/j.jfoodeng.2005.10.034
- 1190 31. Kj??lstad L, Isaksson T, Rosenfeld HJ. Prediction of sensory quality by near infrared
 1191 reflectance analysis of frozen and freeze dried green peas (Pisum sativum). J Sci Food
 1192 Agric. 1990;51: 247–260. doi:10.1002/jsfa.2740510212
- Martens M, Martens H. NEAR-INFRARED REFLECTANCE DETERMINATION OF
 SENSORY QUALITY OF PEAS. Appl Spectrosc. 1986;40: 303–310.
 doi:10.1366/0003702864509114
- 1196 33. Roylance D. Stress-Strain Curves. Test. 2001; 1–14. doi:10.1361/aac
- 1197 34. Harker FR, Redgwell RJ, Hallett IC, Murray SH, Carter G. Texture of Fresh Fruit. In: Janick
- J, editor. Horticultural Reviews. Oxford, UK: John Wiley & Sons, Inc.; 2010. pp. 121–224.
 doi:10.1002/9780470650646.ch2
- 1200 35. Bourne MCC. Food texture and viscosity: concepts and measurements. 2002.
- 36. Ziosi V, Noferini M, Fiori G, Tadiello a., Trainotti L, Casadoro G, et al. A new index based
 on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest
 Biol Technol. 2008;49: 319–329. doi:10.1016/j.postharvbio.2008.01.017
- 1204 37. Finney EE, Abbott JA. METHODS FOR TESTING THE DYNAMIC MECHANICAL.
 1205 1978;2: 55–74.
- 1206 38. Contador L, Díaz M, Hernández E, Shinya P, Infante R. The relationship between
 1207 instrumental tests and sensory determinations of peach and nectarine texture. Eur J Hortic
 1208 Sci. 2016;81: 189–196. doi:10.17660/eJHS.2016/81.4.1
- 1209 39. Byrne DH. Trends in stone fruit cultivar development. Horttechnology. 2005;15: 494–500.
- 1210 40. Thompson AK. Fruit and Vegetable Storage: Hypobaric, Hyberbaric and Controlled1211 Atmosphere. 2016.

- 1212 41. Thompson AK. Fruit and Vegetables [Internet]. Chichester, UK: John Wiley & Sons, Ltd;
 1213 2014. doi:10.1002/9781118653975
- Layne D, Bassi D. The peach: botany, production and uses [Internet]. Layne D, Bassi D,
 editors. The peach: botany, production and uses. Wallingford: CABI; 2008.
 doi:10.1079/9781845933869.0000
- Baird WV, Estager AS, Wells JK. Estimating Nuclear DNA Content in Peach and Related
 Diploid Species Using Laser Flow Cytometry and DNA Hybridization. J Am Soc Hortic
 Sci. 1994;119: 1312–1316.
- 44. Shi S, Li J, Sun J, Yu J, Zhou S. Phylogeny and Classification of Prunus sensu lato
 (Rosaceae). J Integr Plant Biol. 2013;55: 1069–1079. doi:10.1111/jipb.12095
- 1222 45. Alphonse De Candolle. Origine des plantes cultivées. Germer-Baillière. 1886; 1689–1699.
- 46. Zheng Y, Crawford GW, Chen X. Archaeological evidence for peach (Prunus persica)
 cultivation and domestication in China. PLoS One. 2014;9.
 doi:10.1371/journal.pone.0106595
- 1226 47. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, et al.
 1227 Development of a second-generation genetic linkage map for peach [Prunus persica (L.)
 1228 Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet
 1229 Genomes. 2006;3: 1–13. doi:10.1007/s11295-006-0053-1
- 1230 48. FAOSTAT. FAOSTAT. Food and Agricultural Organization of the United Nations. 2014.
- 49. FAOSTAT. FAOSTAT Database on Agriculture. In: FAO Food and AgricultureOrganization of the United Nations. 2015.
- 1233 50. Giovannini D, Liverani A, Sartori A, Cipriani G. Botanical and Pomological Aspects of
 1234 Stone Fruits Physiology, Agronomy and Orchard Management. Agric Food Biotechnol
 1235 Olea Eur Stone Fruit. 2015; 161–242. doi:10.2174/97816080599351150101
- 1236 51. Micheletti D, Dettori MT, Micali S, Aramini V, Pacheco I, Da Silva Linge C, et al. Whole1237 genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS
 1238 One. 2015;10: 1–19. doi:10.1371/journal.pone.0136803
- 1239 52. Anderson J V. Advances in Plant Dormancy. Sunflower and Plant Biology Research. 2015.
 1240 doi:10.1017/CBO9781107415324.004
- 1241 53. Reinoso H, Luna V, Pharis RP, Bottini R. Dormancy in peach (Prunus persica) flower buds.
- V. Anatomy of bud development in relation to phenological stage Article. Can J Bot.
 2002;80: 656–663. doi:10.1139/b02-052
- 124454.Citadin I, Raseira MCB, Herter FG, Baptista Da Silva J. Heat requirement for blooming and1245leafing in peach. HortScience. 2001;36: 305–307. doi:10.1590/S0100-29452003000100034

- 1246 55. Szalay L, Timon B, Szabo Z, Papp J. Microsporogenesis of peach (Prunus persica L.
 1247 Batsch) varieties. Int J Hortic Sci. 2002;8: 7–10.
- 1248 56. Mounzer OH, Conejero W, Nicolás E, Abrisqueta I, García-Orellana Y V., Tapia LM, et al.
 1249 Growth pattern and phenological stages of early-maturing peach trees under a
 1250 Mediterranean climate. HortScience. 2008;43: 1813–1818.
- 1251 57. Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, et al. Fine mapping
 1252 and identification of a candidate gene for a major locus controlling maturity date in peach.
 1253 BMC Plant Biol. BMC Plant Biology; 2013;13: 166. doi:10.1186/1471-2229-13-166
- 1254 58. López-Girona E, Zhang Y, Eduardo I, Mora JRH, Alexiou KG, Arús P, et al. A deletion
 1255 affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach. Sci Rep.
 1256 2017;7: 6714. doi:10.1038/s41598-017-07022-0
- 1257 59. Li X, Meng X, Jia H, Yu M, Ma R, Wang L, et al. Peach genetic resources: diversity,
 1258 population structure and linkage disequilibrium. BMC Genet. 2013;14: 84.
 1259 doi:10.1186/1471-2156-14-84
- Yoon J, Liu D, Song W, Liu W, Zhang A, Li S. Genetic diversity and ecogeographical
 phylogenetic relationships among peach and nectarine cultivars based on simple sequence
 repeat (SSR) markers. J Amer Soc Hort Sci. 2006;131: 513–521. Available:
 http://journal.ashspublications.org/content/131/4/513.abstract?related-

1264 urls=yes&legid=jashs;131/4/513

- 1265 61. Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, Gazza L, et al. A unique mutation
 in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One. 2014;9.
 1267 doi:10.1371/journal.pone.0090574
- 1268 62. Pech JC, Purgatto E, Bouzayen M, Latché A. Ethylene and Fruit Ripening. Plant Horm
 1269 Ethyl. 2012;44: 275–304. doi:10.1002/9781118223086.ch11
- Ghiani a., Onelli E, Aina R, Cocucci M, Citterio S. A comparative study of melting and
 non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase
 (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction. J Exp
 Bot. 2011;62: 4043–4054. doi:10.1093/jxb/err109
- Haji T. Inheritance of flesh texture in peach and effects of ethylene treatment on softening
 of the stony hard peach. Japan Agric Res Q. 2014;48: 57–61. doi:10.6090/jarq.48.57
- 1276 65. Gradziel TM, Martinez-Gomez P. Shell seal breakdown in almonds is associated with the
 1277 site of secondary ovule abortion. J Amer Soc Hort Sci. 2002;127: 69–74.
- Reig G, Alegre S, Cantín CM, Gatius F, Puy J, Iglesias I. Tree ripening and postharvest
 firmness loss of eleven commercial nectarine cultivars under Mediterranean conditions. Sci

- 1280 Hortic (Amsterdam). Elsevier B.V.; 2017;219: 335–343. doi:10.1016/j.scienta.2017.03.001
- 1281 67. Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi KI, et al. Increased levels
 1282 of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus
 1283 persica L. Batsch). J Exp Bot. 2013;64: 1049–1059. doi:10.1093/jxb/ers381
- 1284 68. Nicotra A, Conte L, Moser L, Fantechi P. New types of high quality peaches: Flat peaches
 1285 (P. Persica var. Platicarpa) and ghiaccio peach series with long on tree fruit life. Acta
 1286 Horticulturae. 2002. pp. 131–135.
- Fang W, Cai Z, Li G, Wang Z. PpYUC11, a strong candidate gene for the stony hard
 phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during
 fruit ripening Lei Pan, Wenfang Zeng, Liang Niu, Zhenhua Lu, Hui Liu, Guochao Cui,
 Yunqin Zhu, Jinfang Ch.
- 1291 70. Sandefur P, Clark JR, Peace C. Peach Texture. Horticultural Reviews. 2013. pp. 241–302.
 1292 doi:10.1002/9781118707418.ch06
- 1293 71. Brecht JK, Kader AA, Ramming DW, Brecht, Jeffrey K. and Kader AA. Description and
 1294 postharvest physiology of some slow-ripening nectarine genotypes. Journal of the American
 1295 Society for Horticultural Science. 1984. pp. 596–600.
- Mignani I, Ortugno C, Bassi D. Biochemical parameters for the evaluation of different
 peach flesh types. Acta Horticulturae. International Society for Horticultural Science
 (ISHS), Leuven, Belgium; 2006. pp. 441–448. doi:10.17660/ActaHortic.2006.713.65
- 1299 73. Vaio C Di, Damiano C, Fideghelli C, Vaio C Di, Damiano C. VI CONVEGNO N
 1300 AZIONALE SULLA P ESCHICOLTURA M ERIDIONALE SULLA P ESCHICOLTURA
 1301 M ERIDIONALE A cura di : 2008.
- Attanasio (Department of Agricultural and Environmental Sciences Production, Landscape
 A (DISAA). Graduate School in Molecular Sciences and Plant , Food and Environmental
 Biotechnology Department of Agricultural and Environmental Sciences Production ,
 Landscape , Agroenergy (DISAA) Plant Biology and Production XXV cycle Assessment
 of flesh texture in. 2012.
- 1307 75. Lurie S, Crisosto CH. Chilling injury in peach and nectarine. Postharvest Biol Technol.
 1308 2005;37: 195–208. doi:10.1016/j.postharvbio.2005.04.012
- Peace CP, Crisosto CH, Gradziel TM. Endopolygalacturonase: A candidate gene for
 Freestone and Melting Flesh in peach. Mol Breed. 2005;16: 21–31. doi:10.1007/s11032005-0828-3
- 1312 77. Pressey R, Avants JK. Difference in polygalacturonase composition of clingstone and
 1313 freestone peaches. J Food Sci. Blackwell Publishing Ltd; 1978;43: 1415–1417.

- 1314 doi:10.1111/j.1365-2621.1978.tb02507.x
- 1315 78. Begheldo M, Manganaris GA, Bonghi C, Tonutti P. Different postharvest conditions
 1316 modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony
 1317 Hard peaches. Postharvest Biol Technol. 2008;48: 84–91.
 1318 doi:10.1016/j.postharvbio.2007.09.023
- 1319 79. Hayama H, Tatsuki M, Ito A, Kashimura Y. Ethylene and fruit softening in the stony hard
 1320 mutation in peach. Postharvest Biol Technol. 2006;41: 16–21.
 1321 doi:10.1016/j.postharvbio.2006.03.006
- 1322 80. Pan L, Zeng W, Niu L, Lu Z, Liu H, Cui G, et al. PpYUC11, a strong candidate gene for
 1323 the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA
 1324 biosynthesis during fruit ripening. J Exp Bot. 2015;66: 7031–7044. doi:10.1093/jxb/erv400
- Biani A, Negrini N, Morgutti S, Baldin F, Nocito FF, Spinardi A, et al. Melting of "Big
 Top" nectarine fruit: Some physiological, biochemical, and molecular aspects. J Am Soc
 Hortic Sci. 2011;136: 61–68. Available: http://www.scopus.com/inward/record.url?eid=2s2.0-78651519484&partnerID=tZOtx3y1
- 1329 82. Contador L, Díaz M, Millanao M, Hernández E, Shinya P, Sáenz C, et al. A proposal for
 1330 determining the flesh softening of peach and nectarine in postharvest through simplified
 1331 targeted modeling. Sci Hortic (Amsterdam). Elsevier B.V.; 2016;209: 47–52.
 1332 doi:10.1016/j.scienta.2016.06.015
- 1333 83. Yoshida M. Genetical studies on the fruit quality of peach varieties, 3: Texture and keeping
 1334 quality. Bull Fruit Tree Res Station Ser A Hiratsuka. 1976; Available:
 1335 http://agris.fao.org/agris-search/search.do?recordID=JP19760099806#.WV-
- 1336 YBeKCPK4.mendeley
- Haji T, Yaegaki H, Yamaguchi M. Inheritance and expression of fruit texture melting, nonmelting and stony hard in peach. Sci Hortic (Amsterdam). 2005;105: 241–248.
 doi:10.1016/j.scienta.2005.01.017
- Rizzolo A, Vanoli M, Eccher Zerbini P, Jacob S, Torricelli A, Spinelli L, et al. Prediction
 ability of firmness decay models of nectarines based on the biological shift factor measured
 by time-resolved reflectance spectroscopy. Postharvest Biol Technol. 2009;54: 131–140.
 doi:10.1016/j.postharvbio.2009.05.010
- 134486.Giné-Bordonaba J, Cantín CM, Echeverría G, Ubach D, Larrigaudiére C. The effect of1345chilling injury-inducing storage conditions on quality and consumer acceptance of different1346Prunus persica cultivars. Postharvest Biol Technol. Elsevier B.V.; 2016;115: 38–47.
- 1347 doi:10.1016/j.postharvbio.2015.12.006

- 1348 87. Infante R. Harvest maturity indicators in the stone fruit industry. Stewart Postharvest Rev.
 1349 2012; doi:10.2212/spr.2012.1.4
- 1350 88. Zhang L, Chen F, Yang H, Sun X, Liu H, Gong X, et al. Changes in firmness, pectin content
 1351 and nanostructure of two crisp peach cultivars after storage. LWT Food Sci Technol.
 1352 Elsevier Ltd; 2010;43: 26–32. doi:10.1016/j.lwt.2009.06.015
- 1353 89. Goffreda JC. Stony hard gene of peach alters ethylene Biosynthesis. Respiration, and other
 1354 ripening-related characteristics. HortScience. 1992: 27:610 (Abstr.).
- 1355 90. Iglesias I, Echeverría G. Differential effect of cultivar and harvest date on nectarine colour,
 1356 quality and consumer acceptance. Sci Hortic (Amsterdam). 2009;120: 41–50.
 1357 doi:10.1016/j.scienta.2008.09.011
- Bonora E, Noferini M, Costa G, Vidoni S. Modeling fruit ripening for improving peach
 homogeneity in planta. Sci Hortic (Amsterdam). Elsevier B.V.; 2013;159: 166–171.
 doi:10.1016/j.scienta.2013.05.011
- Matthews MA, Thomas TR, Shackel KA. Fruit ripening in Vitis vinifera L.: Possible
 relation of veraison to turgor and berry softening. Aust J Grape Wine Res. 2009;15: 278–
 283. doi:10.1111/j.1755-0238.2009.00060.x
- 1364 93. King GA, Henderson KG, Lill RE. Ultrastructural changes in the nectarine cell wall
 1365 accompanying ripening and storage in a chilling-resistant and chilling-sensitive cultivar.
 1366 New Zeal J Crop Hortic Sci. 1989;17: 337–344. doi:10.1080/01140671.1989.10428054
- Giovannoni JJ, DellaPenna D, Bennett a B, Fischer RL. Expression of a chimeric
 polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in
 polyuronide degradation but not fruit softening. Plant Cell. 1989;1: 53–63.
 doi:10.1105/tpc.1.1.53
- 1371 95. Lester D, Sherman WB, Atwell BJ. Endopolygalacturonase and the Melting Flesh (M)
 1372 Locus in Peach. J Amer Soc Hort Sci. 1996;121: 231–235.
- 1373 96. Callahan AM, Scorza R, Bassett C, Nickerson M, Abeles FB. Deletions in an
 1374 endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Funct
 1375 Plant Biol. 2004;31: 159–168. doi:10.1071/FP03131
- 1376 97. Gu C, Wang L, Wang W, Zhou H, Ma B, Zheng H, et al. Copy number variation of a gene
 1377 cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach.
 1378 J Exp Bot. 2016;67: 1993–2005. doi:10.1093/jxb/erw021
- 1379 98. Tatsuki M, Haji T, Yamaguchi M. The involvement of 1-aminocyclopropane-1-carboxylic
 1380 acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot. 2006;57: 1281–1289.
 1381 doi:10.1093/jxb/erj097

- 1382 Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, et al. Development and 99. 1383 evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and 1384 validation breeding germplasm. **PLoS** One. e35668. in 2012;7: 1385 doi:10.1371/journal.pone.0035668
- 100. Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, et al. The Peach v2.0
 release: high-resolution linkage mapping and deep resequencing improve chromosomescale assembly and contiguity. BMC Genomics. 2017;18. doi:10.1186/s12864-017-3606-9
- 1389 101. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual
 1390 ancestry estimation. BMC Bioinformatics. 2011;12: 246. doi:10.1186/1471-2105-12-246
- 1391 102. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated
 1392 individuals. Genome Res. 2009;19: 1655–1664. doi:10.1101/gr.094052.109
- 1393 103. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: Genome association
 1394 and prediction integrated tool. Bioinformatics. 2012;28: 2397–2399.
 1395 doi:10.1093/bioinformatics/bts444
- 1396 104. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance
 1397 component model to account for sample structure in genome-wide association studies. Nat
 1398 Genet. 2010;42: 348–354. doi:10.1038/ng.548
- 1399 105. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. FarmCPU manual. PLOS Genet. 2016;12:
 e1005767. doi:10.1371/journal.pgen.1005767
- 1401 106. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and
 1402 haplotype maps. Bioinformatics. 2005;21: 263–265. doi:10.1093/bioinformatics/bth457
- 1403 107. Van Ooijen JW. JoinMap ® 4, Software for the calculation of genetic linkage maps in
 1404 experimental populations. 2006;Kyazma B.V: Wageningen, Netherlands.

1405 108. Van Ooijen JW. MapQTL 6, Software for the mapping of quantitative trait loci in 1406 experimental populations of dipoid species. Kyazma BV, Wageningen, Netherlands. 2009;

1407 109. Dal Cin V, Danesin M, Rizzini FM, Ramina A. RNA extraction from plant tissues: the use
1408 of calcium to precipitate contaminating pectic sugars. Mol Biotechnol. 2005;31: 113–9.
1409 doi:10.1385/MB:31:2:113

- 1410110.Andrews S. FastQC: A quality control tool for high throughput sequence data. In:1411Http://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/.2010p.
- 1412 http://www.bioinformatics.babraham.ac.uk/projects/. doi:citeulike-article-id:11583827
- 1413 111. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate
 1414 alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
 1415 Genome Biol. 2013;14: R36. doi:10.1186/gb-2013-14-4-r36

- 1416 112. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
 1417 2012;9: 357–9. doi:10.1038/nmeth.1923
- 1418 113. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput
 1419 sequencing data. Bioinformatics. 2015;31: 166–169. doi:10.1093/bioinformatics/btu638
- 1420 114. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying
 1421 mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5: 621–628.
 1422 doi:10.1038/nmeth.1226
- 1423 115. Warnes G. gplots: Various R programming tools for plotting data. R package version
 1424 2.11.0.1. 2013. doi:citeulike-article-id:5194889
- 1425 116. Li H, Durbin R. Fast and accurate short read alignment with Burrows Wheeler transform.
 1426 Bioinformatics. 2009;25: 1754–1760. doi:10.1093/bioinformatics/btp324
- 1427 117. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: A
 1428 comparative platform for green plant genomics. Nucleic Acids Res. 2012;40.
 1429 doi:10.1093/nar/gkr944
- 1430 118. Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F. SNPeffect v2.0: A new step in
 1431 investigating the molecular phenotypic effects of human non-synonymous SNPs.
 1432 Bioinformatics. 2006;22: 2183–2185. doi:10.1093/bioinformatics/btl348
- 1433 119. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, et al. QTL analysis of
 1434 fruit quality traits in two peach intraspecific populations and importance of maturity date
 1435 pleiotropic effect. Tree Genet Genomes. 2010;7: 323–335. doi:10.1007/s11295-010-03341436 6
- 1437 120. Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E. Phenotypic
 1438 and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC
 1439 Plant Biol. 2009;9: 59. doi:10.1186/1471-2229-9-59
- 1440 121. Serra O, Giné-Bordonaba J, Eduardo I, Bonany J, Echeverria G, Larrigaudière C, et al.
 1441 Genetic analysis of the slow-melting flesh character in peach. Tree Genet Genomes. Tree
 1442 Genetics & Genomes; 2017;13. doi:10.1007/s11295-017-1160-x
- 1443 122. Lurie S, Friedman H, Weksler A, Dagar A, Eccher Zerbini P. Maturity assessment at harvest
 1444 and prediction of softening in an early and late season melting peach. Postharvest Biol
 1445 Technol. Elsevier B.V.; 2013;76: 10–16. doi:10.1016/j.postharvbio.2012.08.007
- 1446 123. Li X wei, Jiang J, Zhang L ping, Yu Y, Ye Z wen, Wang X min, et al. Identification of
 volatile and softening-related genes using digital gene expression profiles in melting peach.
 1448 Tree Genet Genomes. 2015;11. doi:10.1007/s11295-015-0891-9
- 1449