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ABSTRACT
Azo dyes have several industrial uses. However, these azo dyes
and their degradation products showed mutagenicity, inducing
damage in environmental and human systems. Computational
methods are proposed as cheap and rapid alternatives to predict
the toxicity of azo dyes. A benchmark dataset of Ames data for
354 azo dyes was employed to develop three classification strate-
gies using knowledge-based methods and docking simulations.
Results were compared and integrated with three models from
the literature, developing a series of consensus strategies. The
good results confirm the usefulness of in silicomethods as a sup-
port for experimentalmethods to predict themutagenicity of azo
compounds.

1. Introduction

Azo dyes, the largest class of synthetic organic colorants, are widely used in the
textile, plastics, paper, leather, cosmetics, pharmaceutical and food industries.1

However, many azo dyes and their bacteria-degradation products (i.e., aromatic
amines) showed mutagenicity effects, raising serious issues in environmental and
human systems.2,3 Most dyes are released into the environment as effluent in
industrial wastewater,4 and the mutagenic activity of surface waters and sediments
was attributed to the presence of these compounds5,6. Moreover, mutagenic azo
dyes have been found in house dust7 and occupational exposure to azo compounds
have been linked causally to several types of cancers in humans.8

Aromatic azo dyes have one or more azo groups in their structure. Azo bond
breakage produces colorless aromatic amines, decolorizing the dye. This may occur
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2 D. GADALETA ET AL.

through different mechanisms, such as chemical, photochemical, or enzymatic
reactions in prokaryotic and eukaryotic organisms.9 Many bacteria, algae and fungi
are able to degrade a wide range of azo compounds through reductive and oxidative
enzymes. Some bacteria have the ability to degrade azo dyes both aerobically and
anaerobically. In a subsequent step, aromatic amines are metabolically oxidized
to reactive electrophilic species that covalently bind to DNA10 and are further
metabolized (through an SN1 mechanism) to genotoxic compounds by mammalian
microsomal enzymes into the DNA reactive nitrenium ion.11,12 The degree of
reduction of the azo group depends on the electron density around the –N =
N– bond. Therefore, the toxicity of aromatic azo compounds depends on their
structural complexity, reactivity and aromatic substitution.13 For example, nitro
groups in the benzene ring increase the mutagenicity of azo dyes.14,15

In general, most researchers have focused on the toxicity of aromatic azo dyes,
which have attracted much interest in the recent decades.16 The standard in vitro
test, i.e., the Ames test17, that is required to assess the mutagenicity of such chemi-
cals, although effective for evaluating the toxicity of a few compounds, is not suitable
for testing large amounts of chemicals (e.g., for prioritization), because of time and
cost.

Recently, computational methods have been used to predict the mutagenic
potential of azo dyes. Predictive models can be developed to predict the toxicity
of azo compounds before their synthesis, based only on their chemical structure.
(Quantitative) structure-activity relationship ((Q)SAR) methods are the most usual
alternative for this purpose. To date, several in silico models have been developed
to predict the mutagenicity of highly populated datasets of chemicals, with good
predictive performances18–20.

The present study explored a range of strategies to model a family of chemical
compounds that cannot be satisfactorily predicted with other general mod-
els.21,22 Two new classification models addressing the mutagenic potential of
azo compounds were presented: i) a fragment-based model (FBM) that simply
considers structural matching of rule sets addressing toxicity; ii) a joined mech-
anistic model (JMM), i.e. an expert system that takes account of a broad range
of factors (i.e., redictions of other models, molecular descriptors and structural
fragments).

Molecular docking simulations on the azoreductase were also used for classifica-
tion purposes. Azoreductase (EC 1.7.1.6) is a class of polymeric flavin-dependent
NADH and polymeric flavin-dependent NADPH enzymes responsible for azo
reduction by bacteria in the gut.23 The first step in the biodegradation of azo dyes is
the conversion to aromatic amines by azoreductase-catalyzed cleavage, with NADH
and/or NADPH as electron donor. Azoreductases reduce azo compounds through
a ‘ping pong’ mechanism.24 As azoreductase is the main enzyme involved in azo
bond reduction, its activity can be examined to understand the mutagenic process
better.

Also provided is a comparison with three other existing models recently pub-
lished by our group.21,25 Finally, an overall consensus approach was developed that
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proved useful for regulatory and scientific purposes and more suitable than single
models to predict the mutagenic potential of aromatic azo compounds.

2. Material andmethods

2.1. Dataset

The training set (TS) comprising 354 aromatic azo compounds described by Man-
ganelli et al.25 with related Ames mutagenicity data was employed to derive new
mutagenicity models and for comparison. Recently new Ames mutagenicity data
were made available by Japan’s Health Ministry, within the Ames (Q)SAR project
organized by the National Institute of Health Sciences Japan (http://www.nihs.
go.jp/dgm/amesqsar.html). The Ames assays were conducted under GLP accord-
ing to Industrial Safety and Health Act in Japan. We selected 33 azo compounds
that were not included in the TS. These chemicals were used as validation set (VS)
for evaluating the external predictivity of the models. The criteria already described
by Manganelli et al.25 were used for data curation and selection.

Both the TS and the VS were well-balanced in terms of the percentage of
mutagenic (respectively 54.0% and 45.5% of the total for the TS and the VS)
and non-mutagenic compounds. Istant JChem software (Istant JChem 15.11.16.0
ChemAxon, http://www.chemaxon.com) was used to handle chemical structures.

2.2. Model description

... Fragment BasedModel (FBM)
The firstmodel was a FBMconsisting of a collection of hierarchical sets of fragments
and sub-structures addressing mutagenicity and non-mutagenicity for azo com-
pounds. TheTS including 354 aromatic azo compounds encoded into SMILES nota-
tions (http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html) was split
into a sub-training set (sTS) of 280 compounds used for model derivation and a
sub-validation set (sVS) of 74 compounds for model validation. For the split, TS
chemicals were grouped in clusters by means of an in-house developed software.
In a first step, clusters were defined in an iterative procedure to minimize the simi-
larity values between molecules inside a cluster and maximize the similarity values
between molecules of different clusters.26 Second, the clusters were grouped into
super-clusters, containing all clusters with an average similarity between their cor-
respondingmolecules higher than a given threshold. Then, 20%of compounds from
each cluster were randomly assigned to the sVS while the remainder were assigned
to the sTS, in order to obtain two structurally analogous datasets.

SARpy software27 was used to sequentially extract from the sTS a series of col-
lections of structural fragments addressing toxicity or lack of toxicicty.28 The soft-
ware applies a fragmentation process to the input structure, searching for relation-
ships between the fragments and the observed activity of the input molecules. Each
fragment is encoded into SMARTS notations (www.daylight.com/dayhtml/doc/
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4 D. GADALETA ET AL.

theory/theory.smarts.html) and associated to an activity label (positive or negative)
and a likelihood ratio, estimating the statistical relevance of the fragment. In the
end, chemicals matching any of the extracted rules were classified according to the
activity label.

Rules from a first SARpy runwere not enough to predict all the compounds of the
sTS. This dataset was therefore iteratively analysed by extracting new sets of rules
from the chemicals that remained unpredicted from the previous steps, until a rea-
sonably small percentage of the initial dataset remained unpredicted. This led to the
extraction of three different rule-sets, two containing both fragments formutagenic-
ity and for non-mutagenicity (Rulesets I and III), and one including only fragments
for mutagenicity (Ruleset II). These rules were hierarchically applied to give pre-
dictions. A fourth ruleset was manually compiled using unpredicted compounds
from the first three rulesets. These rules were defined by human expert evaluation
and are supported by the literature. They can be grouped as: 1) nitro aromatic; 2)
p-azo-aniline; 3) charged azo heterocycles; 4) biphenyl groups.

Since some chemicals contained fragments with different activities (both muta-
genic and non-mutagenic) from Rulesets I and III, a mutagenicity score (MS) was
established to assess these compounds. This scorewas associatedwith each fragment
of these two rulesets and was calculated as follows:

MS = class x weight factor (1)

where class refers to the activity label (+1 for mutagenic, −1 for non-mutagenic),
and the weight factor is a number equal to 1 or 2 depending on the likelihood ratio
for each fragment (see Supporting Information for further details). Each compound
was classified on the basis of the sum of the MSs for all the fragments matched;
an overall positive MS implies mutagenic predictions, while an overall negative MS
implies non-mutagenic predictions. Compounds with a score of zero were labeled
as unpredicted and processed by the following ruleset.

The list of fragments in the four rulesets along with the MS and the settings
applied to compute them is included in the Supplementary Materials, Tables S1-S4.
Figure 1 shows the entire prediction workflow.

... JoinedMechanistic Model (JMM)
The second model is an expert system for classifying aromatic azo compounds on
the basis of their mutagenic potential. The model is built as a hierarchical system
(Figure 2) consisting of three filters, each running a test on chemicals based on a
series of selected structural features and properties. From the outcome of this test,
the algorithm moves to the next filter, where a new test is done, or to a final muta-
genicity class (mutagenic, non-mutagenic) to which the query is assigned.

In the first part, the algorithm evaluates a series of molecular descriptors in order
to identify compounds that were less likely to be mutagenic due to their unfavor-
able pharmacokinetic properties. Chemicals exceeding thresholds associatedwith at
least two of those descriptors were classified as non-mutagenic, otherwise they were
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JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH, PART C 5

Figure . Fragment-based model (FBM) for the classification of mutagenic and non-mutagenic aro-
matic azo compounds. M = mutagenic; nM = non-mutagenic; MS = mutagenicity score; WF =
weight factor.

processed in the next filtering step. Selected descriptors and their respective thresh-
olds were: 1) Molecular weight (MW), maximum 750 Da; 2) number of rotatable
bonds (RBN), maximum 15; 3) Moriguchi’s logP (MLOGP), maximum 5. Molecu-
lar descriptors were calculated with Dragon 7.29

In the second part, the algorithm matches query chemicals with a series of
structural fragments addressing mutagenicity. Fragments were collected among
those already included in two mutagenicity predicting models implemented within
the VEGA platform (http://www.vega-qsar.eu/), i.e. the CAESAR model18 and the
ISS model that used Benigni and Bossa rules for mutagenicity.30,31 SA29 flagging
for aromatic azo compounds was not considered in the prediction process. Three
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6 D. GADALETA ET AL.

Figure . Joint mechanistic model (JMM) for the classification of mutagenic and non-mutagenic aro-
matic azo compounds.M=mutagenic; nM= non-mutagenic; MW=molecular weight; RBN= num-
ber of rotable bonds; MLOGP=Moriguchi LogP.

fragments flagging for mutagenicity were also manually compiled and included
with those described above (Table S5 of Supporting Information).

Chemicals matching at least one of the mutagenicity-flagging fragments were
classified as mutagenic, otherwise they are elaborated by the last filtering step, that
checks the occurrence of a series of structural rules flagging for lack ofmutagenicity.
These fragmentsweremanually defined on the basis of the literature and theirmech-
anistic rationale and are grouped into three classes: 1) reactive dyes, 2) sulfonated
scaffolds, and 3) hindering groups (Table S5 of Supporting Information).

... Docking-based classification
For molecular docking simulations, SMILES strings related to compounds of the
TS were converted to 3D coordinates using LigPrep 3.432 available in Schrödinger
Suite 2015. Hydrogen atoms were added, stereoisomers and ionization states were
generated (at pH 7.4) and the molecules were geometrically refined. All the lig-
ands were further minimized by the MacroModel 10.831 software available in
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JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH, PART C 7

Schrödinger Suite 2015. A standardmolecularmechanics energy function force field
(OPLS_2005)34 and the Polak-Ribiere conjugated gradient method (500 iterations
with gradient 0.01 kcal mol−1 · Å−1) were used. Water was used as solvent.

The crystal structure of a bacterial azoreductase (AzrC) in complex with the
azo dye Acid Red 88 (RE88) was retrieved from the Protein Data Bank (PDB code:
3W7A). This homodimeric protein of about 48 kDa and 211 residues was isolated
from the mesophilic gram-positive bacillus sp. B29.35 Each monomer forms a
flavodoxin-like α/β-fold structure and binds a molecule of FMN at the active site
between the monomers of a dimer. To date this is the X-ray azoreductase structure
co-crystalized with an azo compound with the highest resolution available (2.10 Å)
and therefore it was chosen for docking experiments. The structure was prepared
using the Protein PreparationWizard implementation in Schrödinger Suite 2015.36

Bond orders and disulfide bonds were assigned and hydrogen atoms were added.
All the water molecules, the ions and the C, D chains were deleted and RE88 was
kept with FMN, as default ligands. The Epik 2.4 implementation was used to predict
ionization and tautomeric states of the ligands.37 The hydrogen-bonding network
was optimized by reorienting Asn and Gln residues, and selecting appropriate states
and orientations of His residues. Finally, the protein-ligand complex was refined
through a series of restrained minimizations, using the OPLS_2005 force field and
the default threshold of 0.3 Å for root mean square deviation (RMSD).

The GLIDE program implemented in Schrödinger was used for the molecular
docking procedure.38 The binding region was defined by a 10 Å × 10 Å × 10 Å
box centered in the centroid of the ligand co-crystallized into the active site of
the enzyme, and the option “dock ligands with length � 20 Å” was chosen. All
other parameters were kept as default. The standard precision (SP) mode and the
GlideScore scoring function were used for the flexible ligand-docking and scoring,
respectively. Only the first ranked pose was retained for each compound. Consider-
ing the distribution of scores, ranging from highly negative (e.g., −12.4 kcal/mol)
to zeros or near-to-zero values, we applied a cutoff of −5 kcal/mol to separate puta-
tive azoreductase binders from non-binders. Therefore, we derived a classification
model taking account of the scores from the docking simulations. Predictions were
made assuming that if an azo compound could bind the azoreductase enzyme, it is
potentially mutagenic.

2.3. Mutagenicitymodels for azo compounds from the literature

Three mutagenicity models specifically tailored for azo compounds were recently
published by our group.21,25 Here they are briefly summarized. These three models,
as well as those here presented and described, were validated on a new VS of 33 azo
compounds and integrated into a series of consensus strategies (Table 1).

The CORALmodel25 is a (Q)SAR built using the standalone application software
CORAL (CORrelations And Logic, http://www.insilico.eu/coral). It uses SMILES-
based descriptors, calculated from structural attributes, which can be local (e.g.,
pairs of connected atoms, etc.) or global (e.g., co-occurrence of two elements, etc.).
The correlation weights (i.e., contributions) for these attributes are computed with
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8 D. GADALETA ET AL.

the Monte Carlo optimization method, to define which ones are optimal for pre-
dicting the target property/endpoint (with the splits of the initial TS into training,
calibration and validation set).

The k-NN model25 is based on the k-nearest neighbors algorithm. The predic-
tion for a query molecule is a weighted consensus of the experimental values of
its four most similar molecules from the TS. The model uses the similarity index
as implemented within the VEGA platform.21 Molecules with a similarity index
lower than 0.75 are excluded. If only one similar molecule is found, it was used
for prediction only if the similarity was 0.85 or higher, otherwise no prediction is
provided.

The Knowledge-Based Expert System (KBES)21 was developed for the classifica-
tion of aromatic amines on the basis of theirmutagenic (Ames) potential. It has been
also proved to be suitable for other compounds whose mutagenicity is related to the
release of aromatic amines, such as aromatic azo compounds, assuming that all the
azo bonds are cleaved. The system is a decision algorithm, developed as a KNIME
workflow, implementing filters evaluating a series ofmolecular descriptors, scaffolds
and structural rules (e.g., amine-generating groups etc.). In a conservative approach,
if at least one of the amines produced is predicted as mutagenic, then also the parent
compound too is flagged as mutagenic.

2.4. Integratingmutagenicitymodels for azo compounds

A series of three integration strategies were evaluated by combining the six mod-
els described above (Table 1) for predicting the mutagenicity of aromatic azo
compounds.

1) All six models are considered, including the docking-based approach. In this
case, models are applied in parallel, integrating the independent predictions
of each one. A final prediction for a chemical is produced only when four, five
or all six of the models returned concordant predictions, resulting in three
integration schemes. Chemicals with ambiguous predictions are considered
unpredictable.

2) The final prediction for a given chemical is obtained excluding the docking
based model and based on the other five ones. Three integration schemes are
applied, as above, returning predictions only for chemicals with at least three,
four or all five concordant predictions.

Table . Mutagenicity models for aromatic azo compounds in the present study.

Name of the model Abbreviation Training set (number of compounds) Reference

Fragment-Based Model FBM sTS () This paper
Joined Mechanistic Model JMM TS () This paper
Docking-based classification TS () This paper
CORAL CORAL TS () ()
k-NN k-NN TS () ()
Knowledge-based Expert System KBES Amine dataset ()
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3) The docking-based strategy is used as a preliminary filter. If the chemical
is classified as non-binder by the docking procedure, it is labelled as not
mutagenic, otherwise the consensus of the other models is used.

2.5. Evaluation of classification performance

The performance of the classification models was evaluated using Cooper’s
parameters39 which are accuracy, sensitivity and specificity. These account for the
number of correctly classified mutagenic (true positives, TPs) and non-mutagenic
compounds (true negatives, TNs) and the number of misclassified mutagenic (false
positives, FPs) and non-mutagenic ones (false negatives, FNs). Accuracy provides a
measure of the total errors (Equation 2). Models with high sensitivity (Equation 3)
have fewer FNs while those with high specificity (Equation 4) have fewer FPs.

Accuracy = TP + TN
Total number of compounds

(2)

Specificity = TN
TN + FP

(3)

Sensitivity = TP
TP + FN

(4)

The Matthews Correlation Coefficient (MCC) was also used. MCC indicates the
quality of a binary classification and is generally regarded as a balanced measure,
which can be used even for classes of very different sizes. MCC ranges between −1
and +1. A value of +1 means a perfect classification, 0 no better than random and
−1 indicates complete misclassification40 (Equation 5).

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(5)

3. Results

Tables 2 and 3 compare the performance of the three strategies presented (FBM and
JMM, docking-based) and of the three literaturemodels (CORAL, k-NN andKBES)
in predicting the mutagenic potential of the TS and VS chemicals. As for the FBM,

Table . Classification performance of the six mutagenicity predicting models for the TS (
compounds).

FBM JMM Docking CORAL k-NN KBES

TP      
FN      
FP      
TN      
Compounds predicted      
Accuracy . . . . . .
Specificity . . . . . .
Sensitivity . . . . . .
MCC . . . . . .
Coverage . . . . . .
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10 D. GADALETA ET AL.

Table . Classification performance of the six mutagenicity predicting models for the VS (
compounds).

FBM JMM Docking CORAL k-NN KBES

TP      
FN      
FP      
TN      
Compounds predicted      
Accuracy . . . . . .
Specificity . . . . . .
Sensitivity . . . . . .
MCC . . . . . .
Coverage . . . . . .

data used for model derivation were a subset of the entire TS (280 out of 354 com-
pounds) (see section 2.2.1) and therefore the statistics reported in Table 2 also refer
to external data used for model validation (i.e., sVS). The statistical performance of
these subsets is given in Supplementary material, Table S6.

The prediction performance of the six models was solid, reaching in most cases
accuracy of about 0.80 on TS and about 0.70 on the new VS, confirming their suit-
ability for real-life purposes. The strategy giving the worst results was the docking-
based method, but this was not unexpected. Indeed, the aim of this approach was
not to provide an independent predictingmethod, but a preliminary filtering step to
be applied as support for other predicting models. Azo compounds rejected by the
docking procedure (i.e., non-binders) were labelled as non-mutagenic, because they
cannot be converted to potentially dangerous aromatic amine metabolites. On the
other hand, the successful interaction between an azo compound and the enzyme
was considered a potential warning that would require further analysis of suspicious
molecules using different models.

With this assumption, we integrated the results of the different models. Table 4
and Table 5 show the results with the three different integration strategies on TS and

Table . Classification performance of the three integration strategies for the TS ( compounds).
Statistics refer to three separate integration schemes and to a different number of concordant pre-
dictions amongmodels needed to return consensus predictions. Chemicals not having the required
number of concordant predictions were labelled as unpredicted.

(a) (b) (c)

/ / / / / / / / /
TP         
FN         
FP         
TN         
Compounds predicted         
Accuracy . . . . . . . . .
Specificity . . . . . . . . .
Sensitivity . . . . . . . . .
MCC . . . . . . . . .
Coverage . . . . . . . . .

(a) All six models were integrated in parallel
(b) The docking-based method was not considered and the other five models were integrated
(c) The docking strategy was applied as preliminary filter, then scheme (b) was used for chemicals classified as positive
by docking
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Table . Classification performance of the three integration strategies for the VS ( compounds).
Statistics refers to three separate integration schemes and to a different number of concordant pre-
dictions amongmodels needed to return consensus predictions. Chemicals not having the required
number of concordant predictions were labelled as unpredicted.

(a) (b) (c)

/ / / / / / / / /
TP         
FN         
FP         
TN         
Compounds predicted         
Accuracy . . . . . . . . .
Specificity . . . . . . . . .
Sensitivity . . . . . . . . .
MCC . . . . . . . . .
Coverage . . . . . . . . .

(a) All six models were integrated in parallel
(b) The docking-based method was not considered and the other five models were integrated
(c) The docking strategy was applied as preliminary filter, then scheme (b) was used for chemicals classified as positive
by docking

VS. The integration schemes, described in paragraph 2.4, are: 1) the combination of
the six models; 2) the combination of five models excluding the docking-based one;
3) the application of the docking-based method as filter, followed by integration of
the five remaining models.

In general, statistics on both TS and VS confirm the effectiveness of integrating
different models for mutagenicity prediction. Indeed, the MCC of some of the inte-
gration schemes improved those referred to the best single models (i.e., best values
of respectively 0.70 and 0.66 for CORAL model on TS and VS), keeping acceptable
coverage (i.e., the percentage of predicted compounds).

Unexpectedly, application of the docking-based method as filter never gave any
improvement in performance on the TS compared to simply integrating of the
remaining five models. This was more evident on the VS, where MCC reached best
values greater than 0.80 in the case of the latter strategy, but never exceeded 0.75
with the former strategy. In the same way, using docking as a stand-alone method
together with other models did not improve the performance given by completely
excluding the docking-based method.

4. Discussion

We present here three new methods for predicting mutagenicity of azo dyes. This
study aimed to explore a range of strategies to handle a family of chemicals that
cannot be satisfactorily predicted with global models (i.e., models not tailored for
a specific chemical class).21,22 The three models here presented (FBM, JMM and
the docking-based method) and the others previously developed by our group
(CORAL, k-NN, KBES) implemented orthogonal modelling methods, each having
different advantages and issues. The models were compared in order to identify the
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best single approaches and, more importantly, they were integrated following differ-
ent consensus methods aimed at overcoming problems related to the single models.
The newly derived methods are discussed more in-depth below, with particular
attention to the results of their integration with existing mutagenicity models.

4.1. FBM

FBM was derived by SARpy software, which is a data mining tool for extracting
rules. SARpy has already been used to derive sets of rules to predict mutagenicity
and other endpoints.27 The model we present is the first attempt to apply this tool
to a dataset focused on a single class of chemicals. SARpy was used for extracting
three of the four rulesets used for mutagenicity predictions. However, because
SARpy proved not suitable for extracting rules from small sets of chemicals, ruleset
IV was manually extracted from the last 25 unpredicted compounds within the sTS
(see section 2.2.1 and Table S4 of Supporting Information). These rules, addressing
the mutagenicity of chemicals, were supported by literature findings and human
expert judgement, and can be grouped in four categories. 1) Nitro aromatic and
hydroxy-amino groups: these led to the release of nitrogen species highly reactive
towards DNA after metabolic activation.21,41 2) p-amino aromatic azo compounds:
the p-aniline species released after azo bond cleavage can undergo an amino-imino
tautomeric shift giving an imino-quinone species that can form adducts with DNA
and proteins.42 3) Positively charged azo heterocycles (e.g., imidazoles and thia-
zoles): this species can stabilize the charge by electronic delocalization within the
aromatic system and act as electron-withdrawing groups, facilitating the cleavage of
the azo group and the generation of potential aromatic amines. 4) Biphenyl groups:
aromatic amines generated by azo compounds with more than one ring forming
conjugated systems showed greater mutagenic activity than single-ring species.43,44

FBM showed the highest MCC on the TS (0.71), and one of the highest (0.64)
on the VS, after the CORAL model. FBM also had the highest specificity, both on
the TS (0.91) and the VS (0.78). This means that gave a relatively small number
of FP predictions, compared with the other models. This can be explained by the
fact that the majority of rules implemented in FBM were extracted by an automatic
tool, to identify fragments related to mutagenicity and non-mutagenicity. On the
other hand, some of the other models (e.g., JMM and KBES) were based on rules
defined by human expert evaluation that can sometimes be “biased” towards the
identification of rules for toxicity.

4.2. JMM

JMM implemented in a hierarchical structure a series of pharmacokinetic related
rules, and fragments addressing mutagenicity (retrieved from other models)
and lack of mutagenicity (supported by human expert knowledge and literature
findings). The pharmacokinetic filter is conceptually similar to other well-known
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examples reported in literature45,46 and aims to identifying compounds likely to
be non-mutagenic due to their unfavorable toxicokinetic properties, which prevent
them reaching the site(s) of action (e.g., DNA inside the nucleus).

Fragments addressing lack of toxicity were manually compiled and can be
grouped in four different classes. 1) Reactive dyes are azo compounds characterized
by particular moieties (e.g., chlorinated triazines and vinylsulfones) that can react
with fibres or proteins, forming covalent bonds. This property has been exploited in
several fields, from textile and paper cellulose fibres dyeing to cell staining (reac-
tion with cell proteins).47 These moieties may also hypothetically react with the
medium of the Ames test or with cell membrane proteins, resulting in possible neg-
ative experimental outcomes. 2) Bulky groups, (e.g., naphthalene-azo-naphthalene)
can hypothetically reduce the passage through the cell membrane and/or hamper
the interaction with the enzymatic environment due to steric hindrance. Conse-
quently, it can hamper the azo bond cleavage, leading to non-toxicity. 3) The pres-
ence of polar/chelating groups in ortho- position to the azo bonds may shield the
bond from reduction by directly interacting with it, or by forming complexes after
incorporation of metal ions.48,49

4.3. Docking-based classification

GLIDE has shown good reproducibility of the co-crystal ligand conformation,
which has also been recommended in the literature for its accuracy in molecular
docking and scoring, considering disparate target proteins.50

The crystal structure of the azoreductase consists of two homodimeric proteins
(A, B, C and D chains) with a molecular weight of about 96 kDa. For docking
simulations, only one homodimer was used. The active site, and therefore the
binding pocket of the azoreductase contained a non-covalently bound FMN and
a co-crystallized ligand in each subunit, and was characterized by a hydrophobic
environment with a depth of 3.3 Å.35 Figure 3a shows the binding mode of co-
crystallized ligand, RE88, which established pi-pi (π) stacking interactions with
the FMN. Single and double rings of the compounds mimicked the nicotinamide
adenine of NAD(P)H, in order to be docked in the pocket.

Docking calculations were made on the aromatic azo compounds in the active
site of azoreductase and their docking results, expressed as GlideScore, ranged from
−12.433 kcal/mol to very low negative values. The lower of the docking score, the
larger the expected interaction with the azoreductase. As was expected, the bulkier
compounds of the data set (MW >1000) were docked into the enzyme with a low
ratio; 71 compounds were not docked, and four of the docked compounds gave
too low scores (according to an arbitrary cut-off of −5.000 kcal/mol). These com-
pounds were considered non-mutagens. Themost frequent interactions observed in
the ligand-protein complexes with highest scores were the pi-pi (π) stacking with
FMN, hydrophobic interactions and hydrogen bonds with nearest residues of chains
A and B (mainly with Asn104 (A)) (Figure 3b). The ligands attempted to mimic the
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14 D. GADALETA ET AL.

Figure . Binding mode of (A) the co-crystallized ligand RE and (B) an example of a docked muta-
genic TS compound (SlideScore: -.) in the azoreductase active site (PDB code: WA). Relevant
amino acid residues and NAD(P)H cofactor are represented as balls-and-sticks and azo compounds as
sticks, coloured according to the atom code (C atoms in pink, white and yellow for inhibitors, amino
acid residues and cofactor, respectively).

binding mode of a co-crystal structure, while the very large compounds adopted a
more closed conformation in order to fit into the binding pocket.

The docking-based strategy was applied to simulate the behaviour of the azore-
ductase enzyme. Chemicals not able to dock onto the enzyme might be considered
safe, because they cannot be converted to potentially dangerous aromatic amine
metabolites. On the other hand, the successful interaction between an azo com-
pound and the enzyme, leading to the production of aromatic amine metabolites,
was not sufficient to flag the parental compound as toxic, because its metabolites
may or not be mutagens on the basis of their structure and chemical environment.
These considerations justified the large number of FPs produced by the method, as
documented by the low specificity for both TS (0.31) and VS (0.33). The correct
assumption would be to use the docking-based method to identify those chemicals
that can potentially generate toxic aromatic amine metabolites, then for suspicious
compounds, to apply other models specifically tailored to predict the mutagenicity
of aromatic azo compounds. This is what we tested in (c) (Tables 4 and 5). There
may be other causes of mutagenicity within the molecule not related to cleavage of
the azo bond and in fact this approach generated some FNs (Tables 2 and 3), but
only few.

The results of the CORAL, k-NN and KBES models have been discussed in pre-
vious papers, and will be not addressed here. As already explained, CORAL proved
to be the best model in terms of MCC, while the KBES gave a number of FPs, since
it is based on the assumption that the azo bonds are always cleaved and all possible
aromatic amines are generated.
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4.4. Integration of the results of the sixmodels

One of the main conclusions on this study is that the use of single models may often
fails in reaching high predictivity. However, combining more predictions from dif-
ferent tools for a given chemical in a weight-of-evidence approach enabled in many
cases to positively revaluing the role of in silico methods and increasing their rele-
vance for real-life applications.

Various strategies are proposed for integrating the results of (Q)SAR models.51

Here we explored a series of straightforward majority vote approaches, as described
in paragraph 2.4. As shown in Tables 4 and 5, the classification performancewas best
when excluding the docking-based strategy, with MCC of 0.82 on the TS and 0.91
on the VS. These were higher than the results from any single model. This demon-
strated once more that the consensus strategy in many cases improves the results
from single models, particularly when models based on different strategies are inte-
grated.52–53 These values referred to complete agreement between all five (Q)SAR
models. In this regard, it was to be expected that a lower, but still acceptable per-
centage of compounds was predicted, ranging from 0.64 for the VS to 0.73 for the
TS. The application of a majority vote scheme accepting predictions that were con-
cordant for at least four out of five models increased the coverage to 0.93 for the TS
and 0.85 for the VS. In this case, the MCC (0.74 for TS and 0.81 for VS) were still
better than those for the best single models (Tables 2 and 3).

When predictions concordant for at least three out of five models were consid-
ered, the MCC were still good, from 0.68 for the TS to 0.63 for the VS, in both cases
with full coverage. However, this last strategy did not give any improvement in per-
formance over the best single models.

The inclusion of the docking-based strategy did not improve the results in terms
of coverage and predictive performance, compared to complete exclusion of the
docking model. The same was true for the sequential strategy (Tables 4 and 5).

Observing the results of the different strategies, we can conclude that integration
of the five (Q)SAR models (FBM, JMM, CORAL, k-NN and KBES) with the exclu-
sion of the docking-based strategy proved adequate for predicting the mutagenicity
of aromatic azo compounds. The five models, when integrated, were already able to
cover the mechanistic information provided by the docking, i.e. the first reduction
step involved in the overall mutagenicity process of azo compounds (also coping
with the issues of structural moieties hindering the azo-bond cleavage). It can also
be concluded that, for this specific case, 3-D techniques do not improve the results
given by simpler, straightforward 2-D methods.55

Conclusions

We used a dataset of 354 azo compounds to develop three new computational tools
(FBM, JMM and docking-based) to predict the mutagenicity of azo dyes. The three
methods were compared and integrated with three other models (CORAL, k-NN
and KBES) described in the literature, to provide more reliable predicting tools.
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16 D. GADALETA ET AL.

Statistics were good in terms of both Cooper parameters and MCC, the latter in
the range of 0.53 – 0.69, depending on the integration strategy. This confirm that
the integration of these models offers a more robust method for assessing the muta-
genicity of this class of chemicals than single models. This study also confirmed
that the integration of multiple strategies and a weigh-of-evidence approach might
overcome limitations inherent in single models.22,56,57 The models presented and
the integrated approaches described will be implement in the freely available VEGA
platform (http://www.vega-qsar.eu/).
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