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ABSTRACT 10 

This study had the objective of preparing a hempseed protein hydrolysate and investigating its 11 

hypocholesterolemic properties. The hydrolysate was prepared treating a total protein extract with 12 

pepsin. Nano HPLC-ESI-MS/MS analysis permitted identifying in total 90 peptides belonging to 33 13 

proteins. In the range 0.1-1.0 mg/mL, it inhibited the catalytic activity of 3-hydroxy-3-methylglutaryl 14 

coenzyme A reductase (HMGCoAR) in a dose-dependent manner. HepG2 cells were treated with 15 

0.25, 0.5, and 1.0 mg/mL of the hydrolysate. Immunoblotting detection showed increments in the 16 

protein levels of regulatory element binding proteins 2 (SREBP2), low-density lipoprotein receptor 17 

(LDLR), and HMGCoAR. However, the parallel activation of the phospho-5'-adenosine 18 

monophosphate-activated protein kinase (AMPK) pathway, produced an inactivation of HMGCoAR 19 

by phosphorylation. The functional ability of HepG2 cells to uptake extracellular LDL was raised by 20 

50.5± 2.7%, 221.5 ± 1.6%, and 109 ± 3.5%, respectively, versus the control at 0.25, 0.5, and 1.0 21 

mg/mL concentrations. Finally, also a raise of the protein level of proprotein convertase 22 

subtilisin/kexintype 9 was observed. All these data suggest that the mechanism of action has some 23 

similarity with that of statins. 24 

 25 

 26 

INTRODUCTION 27 

Hypercholesterolemia is one of the main risk factors for the development of cardiovascular disease 28 

(CVD). In the presence of a moderate deviation from normal values, diet changes may represent a 29 

first tool for cholesterol control in order to delay the use of statins 1-3. A possible solution is the shift 30 

from a diet based on animal foods to a plant-based diet, in which protein-rich seeds are valuable 31 

sources of nutrients and bioactive phytochemicals. In this scenario, hempseed is certainly an 32 

underexploited non-legume seed that would deserve a greater attention.   33 
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The cultivation of industrial hemp is currently legalized worldwide, since most countries accept the 34 

distinction between industrial hemp, i.e. the Cannabis sativa varieties that have a very low content of 35 

∆9-tetrahydrocannabinol (THC), and marijuana or hashish, i.e. the psychoactive varieties with THC 36 

contents falling in the range between 1-20%. In spite of this fact, the research of the potential health 37 

benefits provided by hempseed is still penalized by the negative reputation of marijuana, which daunts 38 

interests and investments.  39 

This is a pity considering that hempseed contains 35.5% oil, 24.8% protein, 27.6% carbohydrates, 40 

27.6% total fiber (5.4% digestible and 22.2% non-digestible fiber), and 5.6% ash 4, and in addition 41 

the content of major antinutritional factors, such as phytic acid, condensed tannins, and trypsin 42 

inhibitors, is inferior than in other seeds 5.  Hempseed protein mainly consists of a storage protein, 43 

edestin, which accounts for 60-80% of the total protein content, with albumin accounting for the rest 44 

6. Interestingly, the protein digestibility-corrected amino acid scores (PDCAAS) of dehulled 45 

hempseed protein is equal to 61%, i.e. superior than lentil (52%), whole wheat (40%), or almond 46 

(23%), although inferior than soy protein (71%) 7. 47 

Recently, we have conducted an improved proteomic characterization of this seed using advanced 48 

analytical techniques (Aiello et al., 2016), as a first step of a research aimed to valorize the potential 49 

health benefits provided by hempseed. In fact, available literature indicates that peptides, obtained 50 

through hydrolysis of hempseed protein with different enzymes, may function as hypotensive agents 51 

8, 9 and antioxidants 8, 10, 11. On the contrary, literature reports only a few evidences on the ability of 52 

hempseed to modulate the lipid profile 12-14. 53 

The inhibition of cholesterol biosynthesis is the most efficient way to reduce serum cholesterol levels. 54 

Since intracellular cholesterol production is a multistep pathway in which 3-hydroxy-3-55 

methylglutaryl coenzyme A reductase (HMGCoAR) mediates the rate-limiting step, this enzyme is 56 

an important drug target. In fact, statins are able to reduce the de novo cholesterol production by 57 

inhibiting HMGCoAR in the liver and increasing the low-density lipoprotein receptor (LDLR) ability 58 

to uptake extracellular low-density lipoprotein (LDL).  59 

A transcription factor known as sterol-responsive element binding protein 2 (SREBP2) plays a crucial 60 

role in HMGCoAR mRNA expression 15, 16. Among SREBP2 gene targets, the LDLR is particularly 61 

important. In fact, the majority of plasma cholesterol is transported by the LDL fraction and the 62 

cellular uptake of LDL is mediated by the LDLR. The circulating level of LDL is determined in large 63 

part by its uptake rate through the hepatic LDLR pathway 17, 18. In general, the LDLR expression is 64 

finely tuned by changes in intracellular cholesterol 19.  65 

Stimulated by the increasing use of hempseed in human nutrition, the final goal of our research is 66 

improving the knowledge of the health benefits potentially provided by this seed. Starting from the 67 
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hypothesis that the activity should depend on specific peptides encrypted in the protein sequences, as 68 

a first approach, we decided to work on a protein hydrolysate obtained by treating with pepsin a total 69 

protein extract from hempseed and to investigate their hypocholesterolaemic properties using human 70 

hepatic HepG2 cells as model system. More specifically, the present work had three main goals: a) 71 

the preparation of a peptic hydrolysate from hempseed protein; b) a detailed characterization of its 72 

composition by nano HPLC-MS/MS; and c) the elucidation of the mechanism through which these 73 

peptides mediate a cholesterol-lowering effect at HepG2 cells, by molecular and functional 74 

investigations on the LDLR-SREBP2 pathway. 75 

 76 

MATERIALS AND METHODS 77 

 78 

Chemicals. Dulbecco's modified Eagle's medium (DMEM), L-glutamine, fetal bovine serum (FBS), 79 

phosphate buffered saline (PBS), penicillin/streptomycin, chemiluminescent reagent, and 96-well 80 

plates were purchased from Euroclone (Milan, Italy). Bovine serum albumin (BSA), RIPA buffer, 81 

and the antibody against β-actin and pepsin from porcine gastric mucosa (P7012, lyophilized powder, 82 

≥ 2,500 units/mg protein) were bought from Sigma-Aldrich (St. Louis, MO, USA). The antibody 83 

against HMGCoAR was bought from Abcam (Cambridge, UK). The antibody against phospho-84 

HMGCoAR (Ser872) was purchased from Bioss Antibodies (Woburn, MA, USA). The antibody 85 

against proprotein convertase subtilisin/kexin type 9 (PCSK9) were bought from Cayman Chemical 86 

(Ann Arbour, MI, USA). Phenylmethanesulfonyl fluoride (PMSF), Na-orthovanadate inhibitors, and 87 

the antibodies against rabbit Ig-horseradish peroxidase (HRP), mouse Ig-HRP, and SREBP-2 were 88 

purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). The antibody against the 89 

LDLR was bought from Pierce (Rockford, IL, USA).  The antibody against phospho-5'-adenosine 90 

monophosphate-activated protein kinase (AMPK) (Thr172) was bought from Assay Biotech 91 

(Sunnyvale, CA, USA) and the inhibitor cocktail Complete Midi from Roche (Basel, Swiss). Mini 92 

protean TGX pre-cast gel 7.5% and Mini nitrocellulose Transfer Packs were purchased from Bio-93 

Rad (Hercules, CA, USA).   94 

 95 

Preparation and analysis of the peptic peptides from hempseed protein. Hempseeds (C. sativa 96 

cultivar Futura) were provided by the Institute of Agricultural Biology and Biotechnology, CNR 97 

(Milan, Italy). The isolation of hempseed protein was carried out applying a method previously 98 

applied to other seeds with some modifications 20. Briefly, 2 g of defatted hempseed flour were 99 

homogenized with 15 mL of 100 mM Tris-HCl/0.5 M NaCl buffer, pH 8.0. The extraction was 100 

performed in batch at 4 °C overnight. The solid residue was eliminated by centrifugation at 6800 g 101 
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for 30 min at 4 °C and the supernatant was dialysed against 100 mM Tris-HCl buffer, pH 8.0 for 36 102 

h at 4 °C. The protein content was assessed according to the method of Bradford, using BSA as 103 

standard. The hydrolysis was performed on the total protein extract, changing the pH from 8 to 2 by 104 

adding 1 M HCl. The enzyme solution (4 mg/mL in NaCl 30 mM) was added in a ratio 1:50 105 

enzyme/hempseed protein (w/w). The mixture was incubated for 16 h and then the enzyme inactivated 106 

changing the pH to 7.8 by adding 1 M NaOH. Samples were purified by ultrafiltration, using 107 

membranes with a 3-kDa molecular weight cut-off (MWCO) (Millipore, USA). Filtered peptide 108 

mixtures were acidified with 0.1 % of formic acid, and then analyzed on a SL IT mass spectrometer 109 

interfaced with a HPLC Chip Cube source (Agilent Technologies, Palo Alto, CA, USA). Separation 110 

was carried out in gradient mode at a 300 nL/min flow. The LC solvent A was 95% water, 5% ACN, 111 

0.1% formic acid; solvent B was 5% water, 95% ACN, 0.1% formic acid. The nano pump gradient 112 

program was as follows: 5% solvent B (0 min), 80% solvent B (0–40 min), 95% solvent B (40–45 113 

min), and back to 5% in 5 min. The drying gas temperature was 300 °C, flow rate 3 L/min (nitrogen). 114 

Data acquisition occurred in positive ionization mode. Capillary voltage was −1950 V, with endplate 115 

offset −500V. Full scan mass spectra were acquired in the mass range from m/z 300 to 2000 Da. LC-116 

MS/MS analysis was performed in data dependent acquisition AutoMS(n) mode. The MS/MS data 117 

were analyzed by Spectrum Mill Proteomics Workbench (Rev B.04.00, Agilent Technologies, Palo 118 

Alto, CA, USA) consulting NCBI_ Cannabis sativa (531 sequences) protein sequences database. 119 

Two missed cleavages were allowed to pepsin; peptide mass tolerance was set to 1.2 Da and fragment 120 

mass tolerance to 0.9 Da. Threshold used for peptide identification score ≥ 6; Scored Peak Intensity 121 

SPI% ≥ 70%; Autovalidation strategy either in peptide mode and in protein polishing was performed 122 

using FDR cut-off ≤  1.2%. 123 

 124 

Cell culture conditions. The HepG2 cell line was bought from ATCC (HB-8065, ATCC from LGC 125 

Standards, Milan, Italy). The HepG2 cell line was cultured in DMEM high glucose with stable L-126 

glutamine supplemented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin (complete 127 

growth medium) and incubated at 37 °C under 5% CO2 atmosphere. HepG2 cells were used for no 128 

more than 20 passages after thawing, because the increase of the number of passages may change the 129 

cell characteristics and impair assay results. 130 

 131 

MTT assay. A total of 3 x 104 HepG2 cells/well were seeded in 96-well plates and treated with 0.1, 132 

0.25, 0.35, 0.5, 1.0, and 2.0 mg/mL of peptic peptides, respectively, or vehicle (H2O) in complete 133 

growth media for 48 h. Subsequently, the treatment solvent was aspirated and 100 µL/well of 3-(4,5-134 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) filtered solution added. After 48 h of 135 
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incubation, 0.5 mg/mL solution was aspirated and 100 µL/well of MTT lysis buffer (8 mM HCl + 136 

0.5% NP-40 in DMSO) added. After 5 min of slow shaking, the absorbance at 575 nm was read on 137 

the Synergy H1 fluorescence plate reader (Biotek, Bad Friedrichshall, Germany).  138 

 139 

HMGCoAR activity assay. The assay buffer, NADPH, substrate solution and HMGCoAR were 140 

provided in the HMGCoAR Assay Kit (Sigma-Aldrich, St. Louis, MO, USA). The experiments were 141 

carried out following the manufacturer’s instructions at 37 °C. In particular, each reaction (200 µL) 142 

was prepared adding the reagents in the following order: 1 X assay buffer, 0.1, 0.25, 0.35, 0.5, and 143 

1.0 mg/mL of peptic peptides or vehicle (C), NADPH (4 µL), substrate solution (12 µL) and finally 144 

HMGCoAR (catalytic domain) (2 µL). Subsequently, the samples were mixed and the absorbance at 145 

340 nm read by a microplate reader Synergy H1 fluorescence plate reader (Biotek) at time 0 and 10 146 

min. The HMGCoA-dependent oxidation of NADPH and the inhibition properties of lupin peptides 147 

were measured by the absorbance reduction, which is directly proportional to the enzyme activity. 148 

 149 

Western blot analysis. A total of 1.5 x 105 HepG2 cells/well (24-well plate) were treated with 0.25, 150 

0.5, and 1.0 mg/mL of peptic peptides for 24 h. After each treatment, cells were scraped in 40 µL ice-151 

cold lysis buffer [RIPA buffer + inhibitor cocktail + 1:100 PMSF + 1:100 Na-orthovanadate] and 152 

transferred in an ice-cold microcentrifuge tube. After centrifugation at 16,060 g for 15 min at 4 °C, 153 

the supernatant was recovered and transferred into a new ice-cold tube. Total proteins were quantified 154 

by Bradford method and 50 μg of total proteins loaded on a pre-cast 7.5% Sodium Dodecyl Sulphate 155 

- Polyacrylamide (SDS-PAGE) gel at 130 V for 45 min. Subsequently, the gel was pre-equilibrated 156 

with 0.04% SDS in H2O for 15 min at room temperature (RT) and transferred to a nitrocellulose 157 

membrane (Mini nitrocellulose Transfer Packs) using a Trans-blot Turbo at 1.3 A, 25 V for 7 min. 158 

Target proteins, on milk blocked membrane, were detected by primary antibodies as follows: rabbit 159 

anti-SREBP2, rabbit anti-LDLR, anti-HMGCoAR, anti-phospho-AMPK (Thr172), anti-phospho-160 

HMGCoAR (Ser872), anti-PCSK9, and anti-β-actin. Secondary antibodies conjugated with HRP and 161 

a chemiluminescent reagent were used to visualize target proteins and their signal was quantified 162 

using the Image Lab Software (Bio-Rad). The internal control β-actin was used to normalize loading 163 

variations.  164 

 165 

Fluorescent LDL uptake cell based assay. A total of 3 x 104 HepG2 cells/well were seeded in 96-166 

well plates and kept in complete growth medium for 2 d before treatment. On the third day, cells were 167 

treated with 0.25 mg/mL peptic peptides or vehicle (100 mM Tris) for 24 h. At the end of the treatment 168 

periods, the culture medium was replaced with 50 μL/well LDL-DyLight™ 550 working solution. 169 
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The cells were additionally incubated for 2 h at 37 °C, then the culture medium was aspirated and 170 

replaced with PBS 100 μL/well. The degree of LDL uptake was measured using the Synergy H1 171 

fluorescent plate reader from Biotek (excitation and emission wavelengths 540 and 570 nm, 172 

respectively).  173 

 174 

Statistically Analysis. Statistical analyses were carried out by One-way ANOVA (Graphpad Prism 175 

6) followed by Dunnett’s test. Values were expressed as means ± sem; P-values < 0.05 were 176 

considered to be significant.  177 

 178 

RESULTS 179 

 180 

Preparation and analysis of peptic peptides from hempseed protein. Hempseeds were extracted 181 

to produce a total protein extract, which was hydrolyzed with pepsin. The complex peptide mixture 182 

obtained was analyzed by nano LC-MS/MS. Figure 1 shows the total ion current (TIC) of MS and 183 

MSn, respectively, of these peptic peptides. The identification was carried out through MS/MS ion 184 

search using the SpectrumMill search engine. Despite the number of acquired spectra was very high, 185 

the use of a non-exhaustive database permitted the identification of 90 peptides belonging in total to 186 

33 C. sativa proteins as reported in Table 1. The highest number of detected peptides belongs to the 187 

main storage proteins in hempseed: 6 peptides were shared by all isoforms of Edestin 2 (ede2A; 2B; 188 

2C), 6 peptides were shared by the isoforms of Edestin 1 (ede1A,B; 1B) and only 1 by the isoforms 189 

of Edestin 1 (ede1A,B; 1D).  Numerous peptides belonged to the most heterogeneous protein family 190 

identified here, i.e. the acyl-activating enzyme superfamily: 5 unique peptides belonged to DNA-191 

directed RNA polymerase subunit beta, Photosystem I P700 chlorophyll, apoprotein A2, and Protein 192 

Ycf2, whereas 4 peptides to (+)-alpha-pinene synthase. This protein is involved in the terpene 193 

metabolism and naringenin-chalcone synthase and is better known as flavanone synthase. In total 3 194 

peptides belonged to Putative LysM domain containing receptor kinase and THCA synthase, whereas 195 

2 unique peptides belonged to ATP synthase (alpha and beta subunit), cannabidiolic acid synthase-196 

like 1, Delta 12 desaturase, Hypothetical chloroplast RF1, (-)-limonene synthase, MatR, NADH-197 

plastoquinone oxidoreductase (4 and 5 subunit), 4-coumarate:CoA ligase, and Polyketide synthase 198 

family, respectively. 199 

 200 

HepG2 cell viability. MTT experiments were performed in order to exclude the treatment doses with 201 

potential toxic effects on the HepG2 cell line. No significant cell mortality was observed in the peptide 202 

concentrations ranging from 0.1 to 1.0 mg/mL after a 48 h treatment versus vehicle (C, H2O), 203 
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suggesting that hempseed peptides do not induce cell mortality in this dose range (Figure 2). For this 204 

reason, all the following experiments, aimed at investigating the molecular and functional effects of 205 

these peptides, were carried out using this range of doses. 206 

 207 

Hempseed peptides inhibit the catalytic activity of HMGCoAR. In order to evaluate the ability of 208 

these peptides to inhibit the catalytic activity of HMGCoAR, an in vitro assay was performed using 209 

the purified catalytic domain of this enzyme. Peptide concentrations ranging from 0.1 to 1.0 mg/mL 210 

were tested. The catalytic activity of HMGCoAR was inhibited in a dose-dependent manner (Figure 211 

3). In particular, after incubation with 0.1, 0.25, 0.35, 0.5, and 1.0 mg/mL the activity of HMGCoAR 212 

activity was inhibited by 13.1 ± 5.1% (p<0.05), 24.5 ± 1.7% (p<0.001), 45.5 ± 1.7% (p<0.001), 61.1 213 

± 0.7% (p<0.001), and 80.0 ± 4.0% (p<0.001), respectively, versus the control. 214 

 215 

Effects of hempseed peptides on the LDLR pathway modulation. HepG2 cells were treated with 216 

0.25, 0.5, and 1.0 mg/mL of hempseed peptides and each sample was investigated with 217 

immunoblotting experiments. The treatment with hemp peptides induced an up-regulation of the 218 

protein level of the N-terminal fragment of SREBP2 (mature form with a molecular weight of 68 219 

kDa) by 34.8 ± 19% (p < 0.001), 29.1 ± 7.7% (p < 0.001), and 33.5 ± 6% (p < 0.001) at 0.25, 0.5, 220 

and 1 mg/mL, respectively, versus the control (Figure 4A-C). As a consequence, up-regulations of 221 

the LDLR and HMGCoAR protein levels were also observed. In particular, as shown in Figure 4A-222 

C, after the treatment with peptic hemp peptides at 0.25, 0.5, and 1.0 mg/mL, the LDLR protein level 223 

was increased by 35.6 ± 10.4% (p <0.01), 54.7 ± 41.4% (p< 0.0001), and 63.0 ± 41.3% (p< 0.0001), 224 

respectively, versus the control, whereas the HMGCoAR protein level was augmented by 32.2 ± 225 

15.6% (p <0.05), 54.1 ± 10.4% (p <0.01), and 67.7 ± 38.9% (p< 0.0001), respectively, versus the 226 

control (Figure 4B-C).  227 

 228 

Effects of hempseed peptides on AMPK pathway activation. Suitable immunoblotting 229 

experiments were performed in order to evaluate the effect of the treatment with hempseed peptides 230 

on AMPK activation and HMGCoAR inactivation (AMPK substrate). The lysates from treated and 231 

untreated HepG2 cells were therefore analyzed using specific antibodies for AMPK phosphorylated 232 

at threonine 172 (Figure 4D) and for HMGCoAR phosphorylated at serine 872 (AMPK 233 

phosphorylation site) (Figure 4E). Figure 4F shows that treatment with hempseed peptides 234 

significantly increased AMPK phosphorylation by 95.2 ± 38.7% (0.50 mg/mL, p <0.0001) and by 235 

120.3 ± 18.4% (1 mg/mL, p <0.0001) versus the control. As a consequence of the AMPK activation, 236 
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the phosphorylation levels of HMGCoAR were also increased by 67.0 ± 15.8% at 0.5 mg/mL (p 237 

<0.0001) and 56.0 ± 37.3% at 1 mg/mL (p<0.0001), versus the control (Figure 4 F). 238 

 239 

Modulation of the LDL-uptake in HepG2 cells. The functional ability of HepG2 cells to uptake 240 

extracellular LDL after the treatments with the same peptides was investigated by performing 241 

fluorescent LDL uptake experiments. As shown in Figure 5, hempseed peptides increased the LDL-242 

uptake in a statistically significant way versus the control. In fact, after treatments with 0.25, 0.5, and 243 

1.0 mg/mL, the LDL-uptake was increased by 50.5± 2.7% (p < 0.001), 221.5 ± 1.6% (p < 0.001), 244 

and 109 ± 3.5% (p < 0.001), respectively (Figure 5). 245 

 246 

Modulation of the PCSK9 protein level. Immunoblotting experiments were carried out in order to 247 

evaluate the effects of the treatments on the modulation of PCSK9 in HepG2 cells. Figure 6 A-B 248 

shows that the treatment with hempseed peptides induced a 56.0 ± 40.5% (p < 0.01) increase of 249 

PCSK9-M protein level at a 0.5 mg/mL concentration and a 201.2 ± 13.5% (p < 0.001) augmentation 250 

at 1.0 mg/mL versus the control (Figure 6 B).  251 

 252 

DISCUSSIONS 253 

Preparation and characterization of a peptic hydrolysate of hempseed protein. As indicated in 254 

the introduction, the first objectives of the work were the preparation and the characterization of the 255 

peptic hydrolysate from hempseed protein. In total, it was possible to identify 90 peptides belonging 256 

to various protein families of C. sativa (Table 1). All identified peptides were very heterogeneous, 257 

being constituted by 7 - 28 amino acid residues and falling within an 859-3210 Da mass range. The 258 

most abundant (41%) contained predominantly basic residues, whereas 32% were acidic and 27% 259 

were neutral, respectively, with a net charge of the total peptide mixture of 0.22. Moreover, among 260 

all identified peptides, 42 had a calculated pI < pH 7 and 48 had a calculated pI > 7 (Table 1). Based 261 

on the hydrophobicity of each residue, the hydrophobicity of the total peptic hempseed peptide 262 

mixture was 44%, suggesting that about one half of the peptides are hydrophilic and one half 263 

hydrophobic.  264 

 265 

Molecular and cellular investigation of the hypocholesterolemic properties of the hempseed 266 

hydrolysate. Another objective was the characterization of the bioactivities of these peptides 267 

focusing the attention on cholesterol metabolism. For the first time, this paper provides evidence of 268 

the hypocholesterolaemic effects mediated by hemp peptides suggesting also a mechanistic 269 

explanation. HMGCoAR is the rate-controlling enzyme of cellular cholesterol biosynthesis pathway 270 
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and therefore it constitutes the target of numerous investigations aimed at lowering the rate of 271 

cholesterol biosynthesis 21-23. Initially, in vitro experiments, performed using the purified catalytic 272 

domain of the enzyme, showed that peptic hempseed peptides were able to function as direct 273 

inhibitors of the activity of HMGCoAR (Figure 3).  274 

The LDLR expression and the receptor protein localization at cellular membranes are strictly 275 

correlated to the intracellular cholesterol biosynthesis pathway. In facts, the transcription of the LDLR 276 

and the genes required for cholesterol and fatty acid synthesis are controlled by membrane-bound 277 

transcription factors called SREBPs 24, and intracellular cholesterol acts with a negative feedback 278 

inhibition mechanism 25. The SREBP2 isoform is responsible for the LDLR and HMGCoAR 279 

transcription and the SREBP2 maturation is regulated by the intracellular cholesterol homeostasis. 280 

Thus, the up-regulation of LDLR represents a useful strategy to control plasma LDL cholesterol 281 

levels. Our findings demonstrate that hempseed peptides are able to up-regulate the LDLR protein 282 

levels through an increase of SREBP2 protein.  283 

In addition, a detailed investigation of the LDLR pathway revealed that these peptides increase the 284 

HMGCoAR protein levels in a significant way versus the control (Figure 4A-C). However, this does 285 

not mean an increase of cholesterol synthesis, since they are also able to inactivate HMGCoAR, 286 

increasing its phosphorylation mediated by the activation of the AMPK pathway (Figure 4D-F). 287 

Finally, in agreement with immunoblotting results, the increase of LDLR protein levels leads to an 288 

increase of LDL uptake (Figure 5). The induction of the LDL clearance is strictly correlated to an 289 

increase of LDLR protein level.  290 

The cholesterol-lowering effects of hempseed peptides in human hepatic HepG2 cells have some 291 

similarities with the behavior of lupin peptides 26. In facts, also the peptides obtained by the hydrolysis 292 

of a total lupin protein extract with pepsin, are able to mediate hypocholesterolemic effects in the 293 

same cells through the activation of the LDLR pathway. Other hypocholesterolemic peptides with a 294 

statin-like mechanism may be found in soy 27. 295 

Another innovative result of this investigation is the demonstration that hempseed peptides modulate 296 

the PCSK9 levels, increasing them (Figure 6). In light of this observation, these findings clearly 297 

support the hypothesis that the cholesterol-lowering effect of hempseed peptides occurs through a 298 

mechanism of action similar to that of statins. In fact, statins increase the transcription of both LDLR 299 

and PCSK9 28, since both gene expressions are co-regulated by SREBP-2 activation. Similarly, 300 

hempseed peptides are able to increase the PCSK9 protein levels through an up-regulation of the 301 

SREBP-2 pathway. According to our knowledge, this is the first demonstration that hempseed 302 

peptides mediate a hypocholesterolemic effect with a statin-like mechanism.  303 
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Previous investigations have shown that hempseed protein and/or peptides bestow numerous useful 304 

biological activities, such as ACE-inhibitory activity 9, 29, antioxidant activity 30, and 305 

neurodegenerative activity 31 and cardiovascular disease modulation 32. In this context, the present 306 

work offers new insight on the bioactivity of these underexploited food ingredients. 307 

 308 
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Captions of Figures 432 

 433 

Figure 1. A) TIC of nano-LC MS; B) TIC of nano-LC MS/MS of hempseed protein hydrolysate. 434 

 435 

Figure 2. HepG2 cell viability after hempseed protein hydrolysate treatments. Bar graphs indicate 436 

the results of MTT cell viability assay of HepG2 cells after hempseed peptide treatments for 24 h. 437 

The data points represent the averages ± SEM of three independent experiments in triplicate. C: 438 

control. 439 

 440 

Figure 3. Inhibitory effect of hempseed peptides on HMGCoAR activity. The HMGCoAR, 441 

physiologically, catalyzes the four-electron reduction of HMGCoA to coenzyme A (CoA) and 442 

mevalonate (HMGCoA + 2NADPH + 2H+ > mevalonate + 2NADP+ + CoA-SH). In this assay, the 443 

decrease in absorbance at 340 nm, which represents the oxidation of NADPH by the catalytic subunit 444 

of HMGCoAR in the presence of the substrate HMGCoA, was measured spectrophotometrically for 445 

each dose tested. Each point represents the average ± SEM of three experiments in duplicate. (∗) p 446 

<0.05 and (∗∗∗) p < 0.0001 versus control (C).  447 

 448 

Figure 4. Effects of hempseed peptides on SREBP2-LDLR pathway. HepG2 cells (1.5 × 105) were 449 

treated with peptic hempseed peptides (0.25, 0.5, 1.0 mg/mL) for 24 h. SREBP2, LDLR, HMGCoAR, 450 

phospho-AMPK (Thr172), phospho-HMGCoAR (Ser872), and β-actin immunoblotting signals were 451 

detected using specific anti-SREBP2, anti-LDLR, anti-HMGCoAR, anti-phospho-AMPK (Thr172), 452 

anti-phospho-HMGCoAR (Ser872), and anti-β-actin primary antibodies, respectively (A-B-D-E). 453 

Each protein signal was quantified by ImageLab software (Bio-Rad) and normalized with β-actin 454 

signals (C-F). Bars represent averages ± SEM of six independent experiments (two duplicates per 455 

sample). (∗) p < 0.05, (∗∗) p < 0.001, and (∗∗∗) p < 0.0001 versus control (C). 456 

 457 

Figure 5. Fluorescent LDL-uptake assay after treatment of HepG2 with hempseed peptides. 458 

Cells (3 × 104) were treated with hempseed peptides (0.25, 0.5, 1.0 mg/mL) for 24 h. LDL-Dylight 459 

550 (10 μg/mL) was incubated for an additional 2 h. Excess LDL-Dylight 550 was removed and cells 460 

were washed two times with PBS. Specific fluorescent LDL-uptake signal was analyzed by Synergy 461 

H1 (Biotek). Data points represent averages ± SEM of three independent experiments in triplicate. 462 

(∗∗∗) p < 0.0001 versus control (C). 463 

 464 
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Figure 6. Effects of hempseed peptides on PCSK9 protein levels. HepG2 cells (1.5 × 105) were 465 

treated with hempseed peptides (0.5, 1.0 mg/mL) for 24 h. PCSK9 and β-actin immunoblotting 466 

signals were detected using specific anti-PCSK9 and anti-β-actin primary antibodies, respectively 467 

(A). PCSK9-M represents the cleaved mature form of PCSK9 and its signals were quantified by 468 

ImageLab software (Bio-Rad) and normalized with β-actin signals. Bars represent averages ± SEM 469 

of six independent experiments (two duplicates per sample). (∗∗) p < 0.001 and (∗∗∗) p < 0.0001 470 

versus control (C). 471 

 472 
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Table 1. LC-ESI-MS/MS based identification of peptic hydrolysate of hempseed proteins.  

Accession n. a Protein Name Start-end Sequence pIb Net 

Charge b 

Hydrophobicity % c m/z (Da) 

(charge) 

[M+H]+  

(Da) 
A0A090CXP8 Edestin 2  176-187 (D)WVYNNGDSPLVL(I) 0.7 -1 50 688.60 (2) 1376.69 

  361-370 (V)LYKNGMMAPH(F) 9.7 1.1 50 581.74 (2) 1161.56 

  380-403 (I)YVTRGSARLQVVDDNGRNVFDGEL(R) 4.3 -1 33.3 894.16 (3) 2680.34 

  435-447 (N)DNAMRNPLAGKVS(A) 10.2 1 46.2 458.55 (3) 1372.70 

  235-247 (R)RESGEQTPNGNIF(S) 4.2 -1 23.1 724.68 (2) 1448.67 

A0A090CXP7 Edestin 1 450-460 (A)WVSPLAGRTSV(I) 10.7 1 54.6 586.80 (2) 1172.64 

  178-187 (L)LDTSNVNNQL(D) 0.7 -1 30 559.84 (2) 1117.55 

  279-288 (D)LVSPLRSSQE(H) 6.9 0 40 558.08 (2) 1115.61 

  63-73 (L)IESWNPNHNQF(Q) 5.1 -0.9 36.4 693.73 (2) 1385.62 

  461-469 (V)IRALPEAVL(A) 6.9 0 77.8 491.16 (2) 981.61 

A0A090DLH8 Edestin 1 392-409 (M)YVLRGRARVQVVNHMGQKC(F) 11.2 4 36.8 738.37 (3) 2214.19 

H9A1V3 Acyl-activating enzyme 1 625-639 (I)ERVCNEVDDRVFETT(A) 3.8 -3.1 26.7 623.95 (3) 1868.84 

  170-190 (G)GYLNSAKNCLNVNSNKKLNDT(M) 9.6 1.9 23.8 789.33 (3) 2367.17 

H9A1V4 Acyl-activating enzyme 2 280-298 (H)IFDRVIEELFILHGASIGF(W) 4.3 -1.9 57.9 725.95 (3) 2176.18 

  28-44 (Y)RSMYAKDGFPPPIDGLD(C) 4.0 -1 47.1 627.21 (3) 1878.91 

  442-453 (G)PPVPNVDVCLES(V) 0.7 -2.1 58.3 442.71 (3) 1325.64 

H9A1V5 Acyl-activating enzyme 3 293-312 (L)ALSKNSMVKKFNLSSIKYIG(S) 10.8 4 40 743.33 (3) 2228.25 

  360-382 (N)SGSAGMLASGVEAQIVSVDTLKP(L) 3.9 -1 47.8 739.89 (3) 2217.14 

H9A1V7 Acyl-activating enzyme 5 253-266 (G)YTWGTAAVGATNVC(L) 3.1 -0.1 42.9 491.20 (3) 1470.67 

  497-512 (F)VTLKKGAVRVTVTEKE(I) 10.4 2 37.5 586.93 (3) 1758.05 

  54-62 (T)RCLRVASCI(E) 8.8 1.9 44.4 511.27 (2) 1020.55 

H9A1W0 Acyl-activating enzyme 8 352-373 (D)QNGSAQLAGVSGEVCIRGPNVT(K) 6.1 -0.1 36.4 738.96 (3) 2214.09 
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  166-189 (D)VALFLHTSGTTSRPKGVPLTQLNL(A) 11.4 2.1 45.8 850.97 (3) 2550.44 

H9A1W2 Acyl-activating enzyme 10 138-154 (Q)NIAAKTSAQFSLIPSVP(S) 9.7 1 58.8 582.30 (3) 1743.96 

H9A1W3 Acyl-activating enzyme 11  260-268 (F)EMKKMVELI(E) 7.0 0 55.6 560.8 (2) 1120.61 

  8-14 (F)IFRSKLP(D) 11.4 2 57.1 430.58 (2) 860.54 

H9A8L2 Acyl-activating enzyme 13 160-180 (P)GAVLNIAECCLLPTSYPRKDD(D) 4.2 -1.1 42.9 760.06 (3) 2278.12 

  289-309 (P)LYSRVVEAAPDRVIVLPATGS(N) 6.9 0 57.1 738.54 (3) 2213.23 

  535-547 (Y)PDDQACTGEVGLI(P) 0.5 -3.1 38.5 459.05 (3) 1374.62 

H9A8L3 Acyl-activating enzyme 14 374-392 (A)IPWTQLSPIRCAAESWAHM(D) 7.1 0 57.9 752.00 (3) 2254.09 

  598-615 (I)KRTVGGYFIVQGRADDTM(N) 9.5 1 33.3 672.24 (3) 2014.02 

  631-652 (V)CDRADESIVETAAVSVSPVDGG(P) 3.3 -4.1 40.9 744.98 (3) 2234.02 

A7IZZ2 (+)-alpha-pinene synthase, 

chloroplastic 

270-283 (I)RAEAKWFIEEYEKT(Q) 4.6 -1 35.7 600.89 (3) 1799.90 

  592-606 (G)DGHASQDSHSRKRIS(D) 10.1 1.2 13.3 560.90 (3) 1680.82 

  319-336 (H)SELGKNKMVYARDRLVEA(F) 9.4 1 38.9 693.56 (3) 2079.10 

  185-201 (I)FNDFKDETGKFKASIKN(D) 9.5 1 29.4 663.93 (3) 1989.01 

A0A0C5ARX6 ATP synthase subunit alpha 123-131 (I)STSESRLIE(S) 4.2 -1 22.2 511.23 (2) 1021.52 

  134-154 (P)APGIISRRSVYEPLQTGLIAI(D) 9.9 1 52.4 751.82 (3) 2254.29 

A0A0C5ARS5 ATP synthase subunit beta 382-405 (G)EEHYETAQRVKQTLQRYKELQDII(A) 5.5 -0.9 25 1007.12 (3) 3018.56 

  144-158 (D)TKLSIFETGIKVVDL(L) 6.6 0 46.7 554.85 (3) 1662.97 

E5DK51 ATP synthase subunit alpha 151-166 (E)TLYCVYVAIGQKRSTV(A) 9.4 1.9 37.5 620.24 (3) 1857.99 

  287-309 (D)VSAYIPTNVISITDGQICLETEL(F) 0.6 -3.1 43.5 846.10 (3) 2536.29 

A6P6W0 Cannabidiolic acid 

synthase-like 1 

504-522 (A)RIWGEKYFGKNFNRLVKVK(T) 11.1 5 36.8 794.75 (3) 2382.36 

  91-104 (V)SHIQGTILCSKKVG(L) 9.7 2 28.6 491.22 (3) 1470.81 

A0A088MFF4 Delta 12 desaturase 179-196 (P)PGRVLSLFVTLTLGWPLY(L) 10.3 1 61.1 677.78 (3) 2032.16 

  331-345 (Y)NAMEATKAVKPILGE(Y) 6.6 0 53.3 524.23 (3) 1571.85 
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A0A0C5ARQ8 RNA polymerase subunit 

beta 

1047-1063 (L)RSLALELNHFLVSEKNF(Q) 7.5 0.1 47.1 672.75 (3) 2017.09 

  549-568 (M)QRQAVPLSRSEKCIVGTGLE(S) 8.6 0.9 35 743.36 (3) 2228.18 

  743-752 (L)TPQMAKESSY(A) 6.5 0 30 380.81 (3) 1141.52 

  358-377 (T)STTLTTTFESFFGLHPLSQV(L) 5.1 -0.9 40 738.8 (3) 2213.11 

  17-26 (N)QIQFEGFCRF(I) 6.1 -0.1 40 666.86 (2) 1331.62 

A0A0C5AS14 Hypothetical chloroplast 

RF1 

341-355 (Q)ENSKLEILNEKKGVN(Y) 7.1 0 26.7 572.56 (3) 1714.93 

  259-279 (T)DVEIETTSETKGTKQEQGGST(E) 3.9 -3 9.5 742.45 (3) 2225.04 

A7IZZ1 (-)-limonene synthase, 

chloroplastic 

180-200 (L)RQYGFEVPQEIFNNFKNHKTG(E) 9.4 1.1 28.6 851.36 (3) 2553.26 

  349-360 (G)VRFEPQFSYFRI(M) 9.8 1 50 794.79 (2) 1588.83 

E5DKP2 MatR 382-400 (G)VQLAETLGTAGVRGPQVSV(L) 6.8 0 47.4 627.62 (3) 1882.04 

  242-250 (R)KLAAPLKTH(Y) 10.7 2.1 55.6 489.57 (2) 978.61 

A0A0C5AUJ6 NADH-plastoquinone 

oxidoreductase subunit 5 

603-622 (M)DWNWYEFLTNATFSVSIASL(G) 0.6 -2 50 788.88 (3) 2364.12 

  256-269 (E)GPTPISALIHAATM(V) 7.8 0.10 64.3 690.19 (2) 1379.74 

A0A0C5APZ1 NAD(P)H-quinone 

oxidoreductase chain 4 

234-257 (W)LPDTHGEAHYSTCMLLAGILLKMG(A) 6.1 -0.9 45.8 876.6 (3) 2628.30 

  230-238 (P)LHTWLPDTH(G) 6.0 -0.8 44.4 373.88 (3) 1119.56 

Q8RVK9 Naringenin-chalcone 

synthase 

353-368 (K)CVEDGLNTTGEGLEWG(V) 0.5 -4.1 25 560.86 (3) 1679.72 

  301-324 (W)IAHPGGPAILDQVESKLALKTEKL(R) 7.8 0.1 50 843.79 (3) 2528.45 

  236-250 (P)IFELVSAAQTILPDS(D) 0.7 -2 60 535.27 (3) 1603.86 

  183-201 (K)GARVLVVCSEITAVTFRGP(N) 8.9 0.9 52.6 678.37 (3) 2032.10 

V5KXG5 4-coumarate:CoA ligase 262-281 (G)ATILIMPKFEIGSLLGLIER(Y) 7.1 0 60 738.78 (3) 2214.29 

  17-23 (I)IFRSKLP(D) 11.4 2 57.1 430.58 (2) 860.54 

F1LKH7 Polyketide synthase 2 371-385 (G)LTVERVVLRSVPINY(-) 9.8 1 53.3 586.93 (3) 1758.03 
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  303-310 (A)ILDKVEEK(L) 4.3 -1 37.5 487.31 (2) 973.56 

F1LKH8 Polyketide synthase 4 2-16 (M)NHLRAEGPASVLAIG(T) 7.4 0.1 53.3 502.22 (3) 1504.82 

  256-266 (A)GLIFDLHKDVP(M) 5.0 -0.9 54.6 627.28 (2) 1253.69 

A0A0C5APZ4 Protein Ycf2 1630-1650 (P)FSLRLALSLSRGILVIGSIGT(G) 12.1 2 52.4 725.26 (3) 2173.31 

  1902-1921 (Q)DHGILFYQIGRAVAQNVLLS(N) 7.8 0.1 50 738.97 (3) 2214.20 

  1092-1102 (T)ISPIELQVSNI(F) 0.9 -1 54.6 404.94 (3) 1212.68 

  536-547 (S)ENKEIVNIFKII(T) 7.0 0 50 487.41 (3) 1459.85 

  143-152 (L)YLPKGKKISE(S) 10.1 2 30 581.39 (2) 1162.68 

A0A0C5ARZ4 Photosystem I P700 

chlorophyll a apoprotein A1 

436-454 (I)SHLNWVCIFLGFHSFGLYI(H) 7.2 0.1 52.6 751.46 (3) 2253.13 

  102-122 (W)LSDPTHIGPSAQVVWPIVGQE(I) 3.9 -1.9 52.4 744.39 (3) 2230.15 

  561-572 (L)IPDKANLGFRFP(C) 10.1 1 58.3 458.58 (3) 1374.75 

A0A0C5APY0 Photosystem I P700 

chlorophyll a apoprotein A2 

188-207 (S)LAWTGHLVHVAIPGSRGESV(R) 8.0 0.2 50 695.75 (3) 2086.12 

  247-257 (T)SQGAGTSILTL(L) 3.4 0 36.4 524.2 (2) 1047.57 

  241-258 (S)SHLFGTSQGAGTSILTLL(G) 7.5 0.1 38.9 601.63 (3) 1802.97 

  352-369 (H)MYSLPAYAFIAQDFTTQA(A) 0.7 -1 55.6 680.29 (3) 2037.96 

  695-708 (R)DKPVALSIVQARLV(G) 10.2 1 64.3 503.33 (3) 1508.92 

U6EFF4 Putative LysM domain 

containing receptor kinase 

398-417 (H)LRGSGRDPLTWSSRVQIALD(S) 10.5 1 40 743.19 (3) 2227.20 

  125-144 (V)HRVNMFKPTRIPAGSPINVT(V) 12.1 3.1 50 745.35 (3) 2235.22 

  115-142 (A)FANLTTEDWVHRVNMFKPTRIPAGSPIN(V) 9.9 1.1 50 1071.23 (3) 3211.65 

A0A0E3TIL1 THCA synthase 87-102 (T)PSNNSHIQATILCSKK(V) 10.3 2 31.3 580.67 (3) 1740.91 

  29-47 (A)NPRENFLKCFSKHIPNNVA(N) 9.6 2 42.1 743.33 (3) 2228.14 

  504-522 (A)RIWGEKYFGKNFNRLVKVK(T) 11.1 5 36.8 794.75 (3) 2382.36 

a) According to “UniProtKB” (http://www.uniprot.org/). 

http://www.uniprot.org/
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b) According to “Protein Peptide Calculator” (http://pepcalc.com/) 

c) According to “Peptide2.0” (http://peptide2.com/) 

http://pepcalc.com/
http://peptide2.com/
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