
A Distributed Game Engine for Mobile Games
on the Android Platform

Davide Gadia1, Dario Maggiorini1, Davide Puopolo2, Laura Anna Ripamonti1 and Luca Ziliani2

Department of Computer Science, University of Milan, via Comelico 39, I-20135 Milano, Italy
1{firstname.lastname}@unimi.it, 2{firstname.lastname}@studenti.unimi.it

Keywords: Game Engines, Game Development, Mobile Platforms, Distributed Systems.

Abstract: In the last few years we have witnessed a tremendous change in the way game developers are required to
deal with software production. We moved from small groups building the application ground-up to large
coordinated teams with hierarchical organisation. To support this transformation, game developers are now
using integrated development and execution environments called game engines. Among all possible gaming
platforms, mobile ones are proving to be a challenging ground due to their intrinsic requirement for game
engines to deploy the final application on a distributed system. In this paper we discuss about requirements
for next-generation game engines for mobile devices. In particular, we propose a variation of the standard
approach for game engines architecture pushing from a monolithic architecture toward a distributed one. In
our solution, the mobile game engine becomes modular and lower the distinction between client and server
side.

1 INTRODUCTION

In these last years, the way developers implement
video games is undergoing a tremendous change. If
we look to historical blockbusters for home entertain-
ment such as Pitfall!, Tetris, and Prince of Persia we
can see the name of a single developer. As a matter
of fact, in the ’80s, all aspects of video game develop-
ment were usually managed by a single person or, at
best, a very small group. Today, with the evolution of
the entertainment market and the rise of projects with
seven (or eight) figures budget, this situation calls for
a drastically different approach. Video game develop-
ment is now a distributed collaborative effort involv-
ing tens to hundreds of programmers. This increasing
complexity of teams organisation and the tremendous
growth of projects size force development teams to or-
ganise themselves in a hierarchical way and to adopt
software engineering practices enforcing string code
reusability. As a result, modern video games are im-
plemented by means of software environments called
game engines.

A game engine, as largely discussed in literature,
is a complex framework made of two main building
blocks: a tool suite and a runtime component. In par-
ticular, the runtime component assembles together all
the internal libraries required for hardware abstrac-
tion and provides services for game-specific function-

alities. A variable portion of the runtime is usually
linked inside the game and distributed along with the
binary executable. As a matter of fact, deployment
for different platforms requires to embed specific run-
times wrapping the same game content. The game
content is made up of rules and assets created by de-
velopers and artists, which get managed via the tool
suite component. When developing a game for a mo-
bile device, the aforementioned architecture may re-
ally become an hindrance since we have a distributed
platform as target environment.

Mobile applications in general, and games in par-
ticular, have an intrinsic requirement to be deployed
on a distributed system due to the always-online na-
ture of mobile devices and a strong prerequisite to
play (or, at least, interact) online with other players.
Developing any kind of application for a distributed
environment involves managing data transmission be-
tween heterogeneous platforms and monitoring real-
time operations to prevent failures due to undelivered
or delayed packets. In particular, as also discussed
in (Festa et al., 2017), distributed debugging is a com-
plex problem due to the synchronisation required be-
tween network nodes to correctly reconstruct the se-
quence of events leading to a malfunctioning feature.

With the increasing presence of distributed appli-
cations and frameworks in online services (i.e., cloud
computing), the constraints introduced by mobile de-

142
Gadia, D., Maggiorini, D., Puopolo, D., Ripamonti, L. and Ziliani, L.
A Distributed Game Engine for Mobile Games on the Android Platform.
In Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA 2017), pages 142-149
ISBN: 978-989-758-267-7
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



vices are now spreading to all other platforms. Un-
der these lenses, current research faces an important
task: to understand if classical client-server architec-
tures for games are up to the challenge or something
more modular and flexible is required. We strongly
believe that the classical approach will not be enough
for the next generation of game developers, for two
reasons. The first reason is poor scalability. As a mat-
ter of fact, modern games are pushing to involve thou-
sands to millions of players in Massively Multiplayer
Online Games (MMOGs). The resources used by an
MMOG must be shared among users and scale in a
seamless way with the offered workload. If a stan-
dard client-server approach is adopted, the server is
in charge for data exchange between all clients. Such
server will also become a single – global – point of
failure and a serious bottleneck. Load shedding be-
tween servers may not be an option when dynamic in-
formation must be shared to a worldwide player pop-
ulation. The second reason is the client-server strict
dependency from a well known, and always available,
service provider. Next generation games should be
able to exploit the network whenever available, while
allowing single player mode when offline, with mini-
mal experience degradation for the user.

As a result, we envision that there will be a strong
demand for game engines with a flexible and modular
architecture (such as the ones envisioned in (Maggior-
ini et al., 2015) and (Maggiorini et al., 2016)) which
will deploy seamlessly on multiple platforms and al-
low component distributions over a network without
asking for additional effort from the developer. A pos-
sible first step to understand how distributed game en-
gine can be shaped in the future is to apply their model
to the current mobile ecosystem (Gerla et al., 2013).
For this reason, we propose here a modular architec-
ture for game engines targeting the Android operating
system.

To deploy our architecture on a distributed system,
we lower the distinction between client and server ar-
chitecture and make it evolve in a similar direction
as a peer-to-peer network. Where required, a func-
tionality can be provided both locally and remotely
with the same API. Scalability will benefit from this
approach thanks to transparent service-points reloca-
tion. A service may be provided from an arbitrary
point of the peers mesh based on resources availabil-
ity and response time. Service point relocation can
be achieved using local policies leveraging on neigh-
bours node discovery. As a result, from a game devel-
oper’s point of view, no network management will be
required and platform-dependent code can be limited
to a minimum.

2 RELATED WORK

In the past, a fair number of scientific contributions
has been devoted to improve the architecture of game
engines. Nevertheless, at the time of this writing and
to the best of our knowledge, only a very limited num-
ber of papers are specifically addressing issues related
to scalability and cross-platform portability.

A significant share of existing literature seems to
be focused on optimising specific aspects or services,
such as 3D graphics (e.g., (Cheah and Ng, 2005)) or
physics (e.g., (Mulley, 2013; Coumans, 2006; Mag-
giorini et al., 2014)).

Issues related to portability on different platforms
have been addressed, among the others, by (Darken
et al., 2005), (Guana et al., 2015), (Munro et al.,
2009), and (Carter et al., 2010). Authors of (Darken
et al., 2005) propose to improve portability by pro-
viding a unifying layer on top of other existing en-
gines. In fact, they extend each architecture with an
additional platform-independent layer and assume a
share set of functionalities to be available on all plat-
form. This approach is feasible for multi-platform de-
ployment but may reduces performances and set all
platforms to use a shared set of basic features. Au-
thors of (Guana et al., 2015) focus on development
complexity and propose a solution based on mod-
ern model-driven engineering while in (Munro et al.,
2009) an analysis of the open source version of the
Quake engine is performed with the purpose to help
independent developers contribute to the project. In
the first case, developers may not be able to imple-
ment any possible game mechanics while, in the sec-
ond case, results are limited to a specific game and
they stay on the same platform. A different approach
has been followed by (Carter et al., 2010) where au-
thors envision convergence to a web-based platform.
In this case, we have to outline mobile devices are still
lacking web-based 3D support and, also, many mobile
features (e.g., bluetooth peer-to-peer connection) may
not be accessible as part of the gaming experience.

If we focus strictly on the adoption of distributed
systems as viable platforms for games, research is
currently pushing toward two directions: improving
network performances and providing distributed ser-
vices.

Improvement of network performances is mostly
related to reduce transmission latency by optimisa-
tion (Chen et al., 2016b) or offloading (Chen et al.,
2016a; Zucchi et al., 2013) in order to achieve the
same result as in a local system (Chen et al., 2014).
Unfortunately, it has been proved long ago that In-
ternet is not following a WFQ service model and a
reliable estimation strategy for available resources is

A Distributed Game Engine for Mobile Games on the Android Platform

143



still to come. For this reason, many papers are fo-
cusing on how existing game engines are adapting
to the cloud (Messaoudi et al., 2015; Kim, 2013) or
a distributed system in general (Deen et al., 2006)
and evaluating player experience in these environ-
ments (Sabet et al., 2016; Suznjevic et al., 2016; Wen
and Hsiao, 2014).

When providing distributed services, the main
idea is to make available a game-related feature us-
ing the cloud (Aly et al., 2016). Many research
efforts have been devoted to create distributed im-
plementations of existing engines. Unfortunately,
many of them apply a distributed system approach
only to a specific internal service (such as simu-
lation pipeline or shared memory (Gajinov et al.,
2014; Lu et al., 2012)) while others offload non
time-critical but computational-intensive tasks to the
cloud (e.g., avatar animation (Li et al., 2015)). While
these approaches are greatly increasing data process-
ing power, they do not provide a solution to the prob-
lem of creating a completely distributed game engine.

3 BACKGROUND ON GAME
ENGINES

Although game engines have been studied and per-
fected since mid-’80s, a formal and globally accepted
definition is yet to be found for them. Despite this
lack of definition, the function of a game engine
is fairly clear: it exists to abstract the (platform-
dependent) details of doing common game-related
tasks, like rendering, physics, and input; so that de-
velopers can focus on implementing game-specific as-
pects.

In particular, inside a game engine we can find
a runtime component. The runtime component is a
collection of software libraries required for hardware
abstraction. Since a variable portion of the runtime
is usually linked inside the game or get distributed
along with the executable, mobile devices pose seri-
ous problems. These problems may be coming from
very specialised hardware drivers, different technical
specifications such as screen size and aspect ratio, or
limitations imposed by online market owners. There
might be huge differences in term of capabilities for
runtimes used in phones with different brands. Some-
times, even within different models under the same
brand.

The drawback on the developer is that many times
the game code must be platform aware and perform
operations based on the underlying device due to fea-
ture missing or not working in the local runtime.

3.1 A Brief History of Game Engines

The first example of game engine dates back to 1984
with the game Doom (ID Software, 1993) Despite
the fact Doom was not designed around the concept
of game engine, it paved the way to a number of
best practises for their definition. In the Doom ar-
chitecture, we could observe a strict separation be-
tween software modules. To each module, a pre-
cise function and location in the architecture was as-
signed. In particular, there was clear distinction be-
tween code and data assets. This approach enforced
code reusability and made for an easy portability on
different platforms. The rules we just described are
nowadays standard best practices for software engi-
neering; however, it was not uncommon in the ’80s
for one-man projects to have hardware-specific self-
modifying code. To actually see the first example of
game engine we had to wait until mid-’90s with the
release of Quake Engine (ID Software, 1996) and Un-
real Engine (Epic Games, 1998). Quake and Unreal
have not been designed as environments to hold a spe-
cific game rather than as collections of software com-
ponents useful to create First Person Shooter (FPS)
games. As a matter of fact, the business model of
ID and Epic was not just about selling games to end
users rather than selling an engine to other develop-
ers. Starting from this point, games opened up to
user customisation and, most important of all, their
engines have been regarded by software companies
as an asset. As of today, we have companies mak-
ing games and selling their internal technology along
with companies (such as Unity Technologies (Unity
Technologies, 2005)) focused only on distributing and
supporting a game engine platform. Of course, game
engines have not been immune to the open source
movement. Many open source projects exist pro-
viding specialised gaming functionalities to be used
in third parties projects (e.g., Ogre3D (Torus Knot
Software, 2013) for graphics and Bullet (Coumans,
2006) for physics) or a complete application stack
(e.g., Cocos2D (Chukong Technologies, 2010) and
Torque (Garage Games, 2012)). Today, we can ob-
serve on the market a growing number of game en-
gines with specific goals and adopting different ap-
proaches. In particular, for mobile devices, many of
them focus on the optimisation of hardware perfor-
mances and cross-platform deployment (such as the
Marmalade game engine (Marmalade Technologies,
1998)) or try to achieve a distributed platform lever-
aging on the we infrastructure by means of javascript
(see e.g., the Turbulenz game engine (Turbulenz l.t.d.,
2009)).

CHIRA 2017 - International Conference on Computer-Human Interaction Research and Applications

144



4 A DISTRIBUTED ANDROID
GAME ENGINE

As already mentioned in the previous sections, the rel-
evant diffusion and success of mobile games is push-
ing the need for advanced, robust, and flexible game
engines, which able to address the peculiar character-
istics of the multiple available platforms and of the
intrinsic difficulties of a distributed system. In this
section, we present our proposal for an engine archi-
tecture for mobile games. Our aim is to address in a
simple but effective way the different possible gam-
ing configurations (online and offline) as well as roles
(client and server) while feeing the developer from
explicit network management.

The architecture described in the following sub-
section has been implemented in java using the An-
droid Development Toolkit (ADK). By using ADK,
our prototype is leveraging on the android hardware
abstraction to provide a single-layer class library and
to offer basic functionalities to create games. A game
can just import our class library and provide its own
asset management and game logic. The asset man-
agement part may be an ad-hoc implementation for
the game or exploit a third party library; the android
execution environment will take care of the integra-
tion.

To prove the feasibility of our approach, we used
our class library to implement True Believers Mobile:
an online distributed mobile game. As a matter of
fact, the engine prototype can be used as a foundation
for any kind of player vs player strategy game.

4.1 General Architecture

Our proposed architecture tries to disengage from
the classical client-server approach: all functionali-
ties should be present in every node and used seam-
lessly by the runtime component of the game engine.
This way, we lower the boundaries between client and
server components and create generic software nodes
to build a distributed system. Each node is hosting
both a server- and client-side component to be used
depending on the situation. The client component can
connect to a remote server (online mode) or locally
(offline mode) to request gaming service. The soft-
ware implementing the game client is not actually re-
quired to know – or manage – the actual service mode.
The server component will accept one or more incom-
ing connections to provide a gaming service. The
software implementing the server is not required to
know if a contacting client is local or remote. The
server side must manage multiple connections in the
most effective way, set up games between clients, col-

lect and validate each action or request sent by clients,
and then update the overall state of the game. In any
case, more than one match may take place in a server
at a given time. Each match will hold its own game
state. The equivalent of a classic server is simply a
software node where the client component is inactive.

Of course, one of the key element of any dis-
tributed architecture is the transmission reliability for
game data. Since foundation classes are implemented
directly in ADK, we can use both TCP or UDP trans-
port protocols for data exchange. TCP offers a re-
liable transmission over packet switched networks
by means of packets retransmission after a timeout.
Despite the additional delay, game interactions time
proved to be bounded to an acceptable level for strat-
egy games. When dealing with strict real-time games,
UDP may be preferred over TCP depending on game
mechanic time constraints. Real-time gaming on a
wide area network is usually addressed with specific
game mechanics and prediction mechanisms. Both of
these solutions are implemented in the higher levels
of the application stack.

One important topic when dealing with distributed
games is cheat prevention. We are not going to ad-
dress this problem here since it is usually solved
through code signing and peer authentication mech-
anisms in the network layer. Our prototype is, in fact,
assuming a trusted network platform. Nevertheless,
we acknowledge the importance of this problem and
plan to address it in a future work.

4.1.1 Server Functionalities

In Fig. 1 we show a scheme representing the modules
of the server component and their interconnections.
Basically, the Connection Manager and Match Man-
ager modules are instantiated at game server startup,
while the other submodules are instantiated on re-
quest.

Game 
Engine

Connection 
Manager

Match 
Manager

Client 
Request 
Manager

Sender

Receiver

Match 
Loader

Game Loop

Game State 
Manager

Action 
Validator

Game Server
Backend

Client Management

Match Management

Figure 1: Dependencies of Game Server modules.

A Distributed Game Engine for Mobile Games on the Android Platform

145



The role of the Connection Manager is to man-
age all the connection requests and, in case of accep-
tance (usually through an authentication process), to
instantiate all the resources needed by each connec-
tion. After a connection is established, all messages
exchanged between client and server are managed by
a dedicated instance of the Client Request Manager.
A Client Requests Manager manages the messages
from and to a single client through a Sender and a
Receiver modules. Once a request is received (e.g.,
to begin a new game, or to perform a particular ac-
tion during a game), the message is forwarded to the
Connection Manager, which, in turn, will contact the
Match Manager module. The Match Manager mod-
ule, and its submodules are the core of the server side
of our architecture.

Similarly to the Connection Manager, the Match
Manager is a management module and takes care of
the instantiation and management of Match Loader
modules; one for each active match. When the Match
Manager receives a request to begin a new game, it
checks if other players are available (using a match-
making algorithm on the connected clients), and cre-
ates a new game by instantiating a Match Loader
module. The Match Loader module is in charge of
the actual creation and management of the resources
for the specific match between the clients involved in
the game. The actual management of a specific game
is actually performed by the Game Loop, Action Val-
idator, and Game State Manager submodules.

The Game loop module is the main component
for the actual game. It manages the synchronization,
and performs the simulations aimed at determining
the new states for game and players. On the basis
of the nature and complexity of the game, it can be
structured in several dedicated submodules (e.g., for
artificial intelligence, or for the automatic generation
and validation of new levels), to be executed in dif-
ferent threads. Every time a client performs an action
during a match, the Action Validator module checks
for its validity. This module stores all the controls and
procedures (i.e., the game rules). If the action is valid,
the Action Validator module communicates the result
to the Game State Manager. If the action is refused,
the failure is notified through the Sender module, or
some other feedback can also be considered (e.g., if
cheating or hacking attempts are detected). The Ac-
tion Validator must also validate actions and events
generated by the Artificial Intelligence submodule of
Game Loop module. Finally, the Game State Man-
ager updates the overall game state, on the basis of
the actions validated from the Action Validator, and
uses the Sender module to synchronise game states
on the client side.

4.1.2 Client Functionalities

In Fig. 2 a scheme presenting the modules hierarchy
of the Client component is reported. As we can see,

Game 
Engine

Rendering 
Engine

Session 
Manager

O
ffline

m
odeInput 

Manager

Match 
Loader

Local Action 
Validator

Game State 
Manager

Game
Loop

Receiver

Sender O
nline

m
ode

Figure 2: Dependencies of Game Client modules.

the same modular approach as in the server compo-
nent is adopted. Moreover, a subset of modules is
also shared between client and server sides. Remote
or local instantiation and execution of these modules
at runtime is based on the actual game mode (e.g.,
online multiplayer or offline single player). This ap-
proach allows for a great flexibility in the application
of the engine to different games, and a more efficient
implementation for the programmers, who have ac-
cess to those functionalities through a common and
unified API, with less efforts required in the explicit
management of the network features.

The Input Manager and Rendering Engine mod-
ules are specific to the Game Client implementation.
The Input Manager manages the input from the player
(through keyboard, mouse, or other input devices),
and on the basis of the type of the input and of the
current state of the game, it communicates to the Ses-
sion Manager module the message to be sent to the
Game Server. The Rendering Engine manages all the
aspects related to the graphics of the application: ren-
dering loop, GUI updates, camera movements, anima-
tions, etc. With respect to the game complexity and
need, it is usually subdivided in several specific sub-
modules, each dedicated to a specific aspect. The final
result generated by the Rendering Engine depicts the
updated state of the game, once all the actions have
been validated, and the corresponding results simu-
lated and calculated.

Regarding the network modules, the execution
context of the Game Client is very different than the
one of the Game Server. In case of an online game,
there is only one connection (to the Game Server) to
manage. The Session Manager module has the same
role and functionalities than the Client Requests Man-

CHIRA 2017 - International Conference on Computer-Human Interaction Research and Applications

146



ager module described before (including its Sender
and Receiver submodules). Actually, from a devel-
opment point of view, they can also provide the same
APIs. When online, the Session Manager module re-
ceives information from the Input Manager and sends
requests to a remote server via the Sender module.
Answers, received through the Receiver module, are
then sent to the Game State Manager module in order
to update the local game state.

As it can be noticed from Fig. 2, the Game Client
presents the same Match Loader module than the
Game Server, with the same duties (i.e., the alloca-
tion and management of the local resources needed
by the game from a client-side perspective). Same
observation holds for the Game Loop and Game State
Manager submodules.

In an online gaming session, the Game State Man-
ager receives update from the Receiver module (af-
ter validation from the Action Validator on the server
side) and updates the local game state. If the game
is used offline, a Local Action Validator module is
instantiated. This module shares the same code and
most of the functionalities of the Action Validator
module on the server side (even if some specific con-
trol or procedure may be different due to the differ-
ent networking context), but, in this case, it commu-
nicates directly to the Game State Manager module.
Moreover, on the basis of the nature of the game,
some of the functionalities of the Game Loop (i.e.,
advanced artificial intelligence) may also need to be
instantiated locally.

To better explain the characteristics and modular-
ity of the presented approach, we present in Fig. 3 a
diagram of the data flow between client and server. In
the figure, the client side is depicted on the left while
the server side (when playing online) is reported in the
right side. If the client is operating offline, messages
are routed through the Local Action Validator module
while if the game is online Sender and receiver mod-
ules are involved and talking with the remote counter-
part (large shaded rectangle in the center). About the
big picture, there are two important things to point
out. First, once the engine infrastructure is set up
all the game code is just sitting in the Game Loop
module. From a server-side perspective, the Game
Loop will generate actions (to be validated) for the
evolution of environment and Non-Playing Charac-
ters (NPCs) while, on a client-side perspective, it will
react to player’s input. The game loop will be the
same on both side; actually, there will be only one
Game Loop module since we are not implementing
strictly client or server nodes. Second, for sake of
clarity, Fig. 3 is not drawn in full. As a matter of fact,
all modules are presents on both sides of the commu-

nication and it is possible to also have a player on the
network node acting as server (hosting the game). In
such case, the Input Manager module will be active
also on the server side and the Game Loop will react
to user input as well as generate NPCs actions.

4.2 True Believers Mobile

To test the feasibility of the proposed architecture,
we have implemented an online Real-Time Strategy
game called True Believers Mobile. True Believers
Mobile uses the class library described in the previ-
ous section in order to deliver online functionalities
to the user. Each game level is a maze populated by
enemies, traps, and power-up items where the goal is
to to reach a given position or to acquire an object
within a given time limit. To do this, the player places
her own characters in the maze in a strategical way.
The game can be played by a single (offline) player,
or against another online player. With respect to the
proposed architecture, character availability for each
level is managed by the Match Loader module. The
Game Loop module implements a dedicated Artificial
Intelligence submodule to manage NPCs behaviour
and movement.

The maze description is managed by a specific
submodule of the Match Loader called Maze Man-
ager. This module is responsible to parse a configura-
tion file and load all the needed resources. Moreover,
it generates a new set of rules specific for the loaded
maze and sends them to the Action Validator module.
As already said, these procedures can be executed lo-
cally on the client, or remotely on the Game Server,
without an explicit management from the developer.

Finally, a stand-alone Level Editor tool has been
implemented in order to allow the players to design
and generate their custom mazes to be used during
game sessions with other players. The user is shown
a schematic view of the maze with the possibility to
define the characteristics of each position. Once com-
pleted, the level description is saved in a local store.
In an online configuration, the new level is sent to the
Game Server when starting a game with another on-
line player. The Level Editor shares with the game en-
gine a subset of modules needed for its execution; in
particular, the Match Loader functionalities are used
to load the graphical resources of the tool, and the In-
put Manager and Render Engine are needed to man-
age the user interaction and the editor interface. In
Fig. 4(a) we show the Level Editor tool, while in
Fig. 4(b) we show a screenshot of a True Believers
Mobile game session based on the level generated by
the Level Editor tool.

A Distributed Game Engine for Mobile Games on the Android Platform

147



Receiver

Sender Receiver

Sender

O
ffline m

ode

Online mode

Update
state

Send
action

Network

Client Side Server Side

Rendering 
Engine

Input 
Manager

Local 
Action 

Validator

Game 
State 

Manager

Game
Loop

Validate
action

Update
state

Collect
input

Generate
action

Update
interface

Session 
Manager

Connection 
Manager

Match 
Manager

Match 
Loader

Game
Loop

Game 
State 

Manager

Action 
Validator

Connection
request

Connection
accepted

(instantiate)

Match
request

Create
match

Find
players

Start
match

Generate
action

Action
received

Action
is valid

Update
remote

Client 
Request 
Manager

Figure 3: Client-Server data-flow diagram.

(a)

(b)

Figure 4: True Believers Mobile: level editor tool (a), and a
screenshot of a game (b).

5 CONCLUSION AND FUTURE
WORK

In this paper we discussed about the requirements
needed by a next-generation game engine to support
mobile devices and a distributed solution feasible for
the Android platform has been proposed. In our solu-
tion, server and client functionalities are hosted in ev-

ery node, and they are allocated and used by the run-
time component of the game engine depending on the
current game configuration (online or offline). The
overall approach we suggest allows to blur the dis-
tinction between client and server roles and to evolve
the system toward an architecture similar to a peer-
to-peer network. This evolution does not require any
longer the developer to manage the network by imple-
menting a distributed system. In the manuscript, we
also present a Real-Time Strategy game implemented
using our architecture to demonstrate its feasibility.

The next step of our research aims to under-
stand the relation between network performances and
player experience as well as to understand how our
architecture can dynamically adapt to different net-
work technologies e.g., roaming from WiFi to LTE
and back. Moreover, we are also planning to im-
plement other kind of games on top of our proposed
architecture in order to evaluate by comparison how
various genres are going to benefit from a distributed
game engine approach. Last but not least, cheating
prevention mechanisms should also be integrated in
our game engine architecture.

REFERENCES

Aly, M., Franke, M., Kretz, M., Schamel, F., and Simoens,
P. (2016). Service oriented interactive media (soim)
engines enabled by optimized resource sharing. In
2016 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pages 231–237.

Carter, C., Rhalibi, A. E., and Merabti, M. (2010). Develop-
ment and deployment of cross-platform 3d web-based
games. In 2010 Developments in E-systems Engineer-
ing, pages 149–154.

Cheah, T. C. S. and Ng, K. W. (2005). A practical imple-

CHIRA 2017 - International Conference on Computer-Human Interaction Research and Applications

148



mentation of a 3D game engine. In Computer Graph-
ics, Imaging and Vision: New Trends, 2005. Interna-
tional Conference on, pages 351–358.

Chen, K. T., Chang, Y. C., Hsu, H. J., Chen, D. Y., Huang,
C. Y., and Hsu, C. H. (2014). On the quality of ser-
vice of cloud gaming systems. IEEE Transactions on
Multimedia, 16(2):480–495.

Chen, M. H., Dong, M., and Liang, B. (2016a). Multi-user
mobile cloud offloading game with computing access
point. In 2016 5th IEEE International Conference on
Cloud Networking (Cloudnet), pages 64–69.

Chen, Y., Liu, J., and Cui, Y. (2016b). Inter-player delay
optimization in multiplayer cloud gaming. In 2016
IEEE 9th International Conference on Cloud Comput-
ing (CLOUD), pages 702–709.

Chukong Technologies (2010). Cocos2D-x. http://
cocos2d-x.org/.

Coumans, E. (2006). Bullet physic library. http://
www.bulletphysics.org/.

Darken, R., McDowell, P., and Johnson, E. (2005). Projects
in VR: the Delta3D open source game engine. IEEE
Computer Graphics and Applications, 25(3):10–12.

Deen, G., Hammer, M., Bethencourt, J., Eiron, I., Thomas,
J., and Kaufman, J. H. (2006). Running quake ii on a
grid. IBM Systems Journal, 45(1):21–44.

Epic Games (1998). Unreal Engine. http://en.
wikipedia.org/wiki/Unreal Engine.

Festa, D., Maggiorini, D., Ripamonti, L., and Bujari, A.
(2017). Supporting distributed real-time debugging in
online games. In 2017 IEEE Consumer Communica-
tions and Networking Conference (CCNC).

Gajinov, V., Eric, I., Stojanovic, S., Milutinovic, V., Un-
sal, O., Ayguad, E., and Cristal, A. (2014). A Case
Study of Hybrid Dataflow and Shared-Memory Pro-
gramming Models: Dependency-Based Parallel Game
Engine. In Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), 2014 IEEE 26th In-
ternational Symposium on, pages 1–8.

Garage Games (2012). Torque-3D. http://
www.garagegames.com/products/torque-3d.

Gerla, M., Maggiorini, D., Palazzi, C., and Bujari, A.
(2013). A survey on interactive games over mo-
bile networks. Wireless Communications and Mobile
Computing, 13(3):212–229.

Guana, V., Stroulia, E., and Nguyen, V. (2015). Build-
ing a Game Engine: A Tale of Modern Model-Driven
Engineering. In Games and Software Engineering
(GAS), 2015. IEEE/ACM 4th International Workshop
on, pages 15–21.

ID Software (1993). DOOM. http://en.wikipedia.org/wiki/
Doom (1993 video game).

ID Software (1996). Quake Engine. http://en.wikipedia.org/
wiki/Quake engine.

Kim, H. Y. (2013). Mobile games with an efficient scal-
ing scheme in the cloud. In 2013 International
Conference on Information Science and Applications
(ICISA), pages 1–3.

Li, M., Cai, W., Wang, K., Hong, J., and Leung, V. C. M.
(2015). Prototyping decomposed cloud software: A
case study on 3d skeletal game engine. In 2015 IEEE

7th International Conference on Cloud Computing
Technology and Science (CloudCom), pages 192–195.

Lu, H., Yijin, W., and Hu, Y. (2012). Design and implemen-
tation of three-dimensional game engine. In World Au-
tomation Congress (WAC), 2012, pages 1–4.

Maggiorini, D., Ripamonti, L. A., and Cappellini, G.
(2015). About Game Engines and Their Future.
In Proceedings of EAI International Conference on
Smart Objects and Technologies for Social Good
(GOODTECHS 2015), pages 1–6.

Maggiorini, D., Ripamonti, L. A., and Sauro, F. (2014).
Unifying Rigid and Soft Bodies Representation: The
Sulfur Physics Engine. International Journal of Com-
puter Games Technology, pages 1–12.

Maggiorini, D., Ripamonti, L. A., Zanon, E., Bujari, A., and
Palazzi, C. E. (2016). SMASH: A distributed game
engine architecture. In 2016 IEEE Symposium on
Computers and Communication (ISCC), pages 196–
201.

Marmalade Technologies (1998). Marmalade game engine.
https://marmalade.shop/en/.

Messaoudi, F., Simon, G., and Ksentini, A. (2015). Dis-
secting games engines: The case of unity3d. In 2015
International Workshop on Network and Systems Sup-
port for Games (NetGames), pages 1–6.

Mulley, G. (2013). The Construction of a Predictive Colli-
sion 2D Game Engine. In Modelling and Simulation
(EUROSIM), 2013 8th EUROSIM Congress on, pages
68–72.

Munro, J., Boldyreff, C., and Capiluppi, A. (2009). Ar-
chitectural studies of games engines: The quake se-
ries. In Games Innovations Conference, 2009. ICE-
GIC 2009. International IEEE Consumer Electronics
Society’s, pages 246–255.

Sabet, S. S., Hashemi, M. R., and Ghanbari, M. (2016). A
testing apparatus for faster and more accurate subjec-
tive assessment of quality of experience in cloud gam-
ing. In 2016 IEEE International Symposium on Mul-
timedia (ISM), pages 463–466.

Suznjevic, M., Slivar, I., and Skorin-Kapov, L. (2016).
Analysis and qoe evaluation of cloud gaming service
adaptation under different network conditions: The
case of nvidia geforce now. In 2016 Eighth Interna-
tional Conference on Quality of Multimedia Experi-
ence (QoMEX), pages 1–6.

Torus Knot Software (2013). Ogre. http://www.ogre3d.org/.
Turbulenz l.t.d. (2009). Turbulenz game engine.

http://biz.turbulenz.com/.
Unity Technologies (2005). Unity3D. http://unity3d.com/.
Wen, Z. Y. and Hsiao, H. F. (2014). Qoe-driven perfor-

mance analysis of cloud gaming services. In 2014
IEEE 16th International Workshop on Multimedia
Signal Processing (MMSP), pages 1–6.

Zucchi, A. C., Gonzalez, N. M., d. Andrade, M. R.,
d. F. Pereira, R., Goya, W. A., Langona, K., d. B. Car-
valho, T. C. M., and Mngs, J. E. (2013). How ad-
vanced cloud services can improve gaming perfor-
mance. In 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, volume 2,
pages 289–292.

A Distributed Game Engine for Mobile Games on the Android Platform

149


