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Abstract

We consider the free linear Schrödinger equation on a torus Td, perturbed by a hamil-
tonian nonlinearity, driven by a random force and damped by a linear damping:

ut − i∆u+ iνρ|u|2q∗u = −νf(−∆)u+
√
ν
d

dt

∑
k∈Zd

bkβ
k(t)eik·x .

Here u = u(t, x), x ∈ Td, 0 < ν � 1, q∗ ∈ N, f is a positive continuous function, ρ is a
positive parameter and βk(t) are standard independent complex Wiener processes. We are
interested in limiting, as ν → 0, behaviour of distributions of solutions for this equation
and of its stationary measure. Writing the equation in the slow time τ = νt, we prove that
the limiting behaviour of the both is described by the effective equation

uτ + f(−∆)u = −iF (u) +
d

dτ

∑
bkβ

k(τ)eik·x ,

where the nonlinearity F (u) is made out of the resonant terms of the monomial |u|2q∗u.

Contents

0 Introduction 2
0.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Discrete Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Inviscid limits for damped/driven hamiltonian PDE, effective equations and

interaction representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.5 Weak Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Preliminaries 10
1.1 Apriori estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Resonant averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Resonant averaging in a Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . 13
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0 Introduction

0.1 Equations

The nonlinear Schrödinger equation on the torus with small nonlinearity

ut(t, x)− i∆u(t, x) = −iε2q∗ |u|2q∗u, u = u(t, x), x ∈ TdL = Rd/(2πLZd), (0.1)

where q∗ ∈ N and 0 < ε ≤ 1, is a popular model in various branches of science. The nonlinearity
in (0.3) is hamiltonian and may be written as

−iε2q∗ |u|2q∗u = ε2q∗i∇H(u), H(u) = H2q∗+2(u) = − 1

2q∗ + 2

∫
|u(x)|2q∗+2dx , (0.2)

so the equation describes a conservative system. To describe systems, interacting with the
“environment”, physicists often add at some stage (to this and to other similar equations)
terms, describing pumping the energy to the system and its dissipation (e.g. see [ZLF92],
Section 2.2.3). A way to describe the pumping of energy is by adding to the equation a small
random force, which usually is Gaussian, smooth in x, and often is white in time t, while to
describe the dissipation a suitable function of the Laplacian usually is used. In this way we
arrive at the equation (cf. [ZL75], eq. (5), and [CFG08], Section 1.2, eq. (1.2))

ut − i∆u = −iε2q∗ |u|2q∗u− νf(−∆)u+
√
ν
d

dt

∑
k∈Zd

L

bkβ
k(t)eik·x . x ∈ TdL , (0.3)

Here 0 < ν ≤ 1 and ZdL denotes the set of vectors of the form k = l/L with l ∈ Zd. The damping
−f(−∆) is the selfadjoint linear operator in L2(TdL) which acts on the exponents eik·x, k ∈ ZdL,
according to

f(−∆)eik·x = γke
ik·x, γk = f(λk) where λk = |k|2 . (0.4)

The real-valued smooth function f(t), t ≥ 0, is positive and f ′ > 0. To avoid technicalities,
not relevant for this work, we assume that f(t) ≥ C1|t| + C2 for all t, for suitable positive
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constants C1, C2 (for example, f(−∆)u = −∆u + u). The processes βk,k ∈ ZdL, are standard

independent complex Wiener processes, i.e., βk(t) = βk
+(t) + iβk

−(t), where βk
±(t) are standard

independent real Wiener processes. The real numbers bk are all non-zero and decay fast when
|k| → ∞. The factor in front of the random force is chosen to be

√
ν to guarantee that solutions

of (0.3) stay of order one when t� 1 and 0 < ν � 1.
We assume that eq. (0.3) with sufficiently smooth initial data u(0, x) = u0(x) is well posed.

It is well known that this assumption holds (at least) under some restriction on d, q∗ and the
growth of f(t) at infinity, see in Section 1.1

The parameters ν and ε measure, respectively, the inverse time-scale of the forced oscilla-
tions, and their amplitude. Physicists consider different regimes, where the two parameters are
tied in various ways.1 To do this they assume some relations between ε and ν, explicitly or
implicitly. In our work we choose

ε2q∗ = ρν,

where ρ > 0 is a constant. This assumption is within the usually imposed bounds, see [Naz11].
Passing to the slow time τ = νt, we get the rescaled equation

u̇+ iν−1
(
−∆u

)
= −f(−∆)u− iρ|u|2q∗u+

∑
bkβ̇

k
(τ)eik·x , (0.5)

where u = u(τ, x), x ∈ TdL and the upper dot ˙ stands for d
dτ . If we write u(τ, x) as Fourier

series, u(τ, x) =
∑

k vk(τ)eik·x, then in view of (0.2), eq. (0.5) may be written as the system

v̇k + iν−1λkvk = −γkvk + 2ρ i
∂H(v)

∂v̄k
+ bkβ̇

k(τ), k ∈ ZdL. (0.6)

Here H(v) is the Hamiltonian H, expressed in terms of the Fourier coefficients v = (vk,k ∈ ZdL):

H(v) = − 1

2q∗ + 2

∑
k1,...k2q∗+2∈Zd

L

vk1
. . . vkq∗+1

v̄kq∗+2
. . . v̄k2q∗+2

δ1...q∗+1
q∗+2...2q∗+2 , (0.7)

and we use the standard notation (see [Naz11]):

δ1...q∗+1
q∗+2...2q∗+2 =

{
1 if k1 + . . .+ kq∗+1 − kq∗+2 − . . .− k2q∗+2 = 0
0 otherwise

. (0.8)

As before we are interested in the limit ν → 0.2

We note that the method of our work applies as well to equations (0.6) with the Hamiltonians
H of the form (0.2), where the density of the Hamiltonian is a real-valued polynomial of u and ū
(not necessarily a polynomial of |u|2). For instance, we could work with the cubic Hamiltonians
H3 =

∫
|u|2(u+ ū) dx or H3 =

∫
(u3 + ū3) dx.

0.2 Discrete Turbulence

In physics equations (0.1) and (0.5) with ν, ε� 1 are treated by the theory of weak turbulence
(WT); see the works, quoted above. That theory either deals with equation (0.5), where L =∞

1When forcing and dissipation are not present, a parameter T is introduced, which measures the time scale
on which averaging is performed (see [Naz11]): to heuristically compare with the present case, we put ν = 1/T .

2See [KN13] for a theory of equation (0.5) for the case when f(t) = t+ 1 and ν =∞.
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by formal replacing Fourier series for L-periodic functions with Fourier integrals and makes with
them bold transformations, or considers the limit ν, ε→ 0 simultaneously with the limit L→∞.
That is, considers the iterated limit

L→∞, ε, ν → 0 , (0.9)

and treats it in an equally bold way. Concerning this limit the WT makes a number of remark-
able predictions, based on tools and ideas, developed in the community, which can be traced
back to the work [Pei97]. Relation between the parameters in (0.9) is not quite clear, and it
may be better to talk about the WT limits (rather then about a single case).

In order to understand the double limit above, it is natural to study first the limit ν → 0
(with L fixed). Its deterministic version recently got attention in physical literature as the
“discrete turbulence (DT) limit”, see [Kar10] and [Naz11], Section 10. Similar limits were
considered by mathematicians, interested in related problems (see [GG12]), and were used by
them for intermediate arguments (e.g., see [FGH15]).

Our work is dedicated to rigorous justification of the DT limit for the damped-driven equa-
tion (0.3)ν∼ε2q∗=(0.5). Namely, we show that
when ν → 0, statistical characteristics of actions of solution uν for (0.5) have limits of order
one, described by actions of solutions for a certain effective equation which is a nonlinear
stochastic equation with coefficients of order one and with a hamiltonian nonlinearity, made
out of the resonant terms of the nonlinearity |u|2q∗u.

The effective equation above is a natural stochastic version of similar equations from the
deterministic (physical) DT (see [Kar10, Naz11]). So, in a sense, our results justify the physical
DT in the stochastic setting. But in the stochastic case we do more than that since we also
treat the stationary regime for eq. (0.5) and show that it converges to that for the effective
equation. So solutions of the latter approximate (in distribution) solutions of the former as
t → ∞ and ν → 0. Remarkably, in the stationary regime the effective equation approximates
not only the actions of solutions with ν � 1, but also their angles, see below.

As the title of the paper suggests, our argument is a form of averaging. The latter is a tool
which is used by the WT community on a regular basis, either explicitly (e.g. see [Naz11]), or
implicitly.

0.3 Inviscid limits for damped/driven hamiltonian PDE, effective
equations and interaction representation

Equation (0.3) is the linear HPDE (=linear hamiltonian PDE) (0.1)ε=0, driven by the random
force, damped by the linear damping −νf(−∆u) and perturbed by the hamiltonian nonlinearity
−ε2q∗iρ|u|2q∗u. Damped/driven HPDE and the inviscid limits in these equations when the
random force and the damping go to zero, are very important for physics. In particular,
since the d-dimensional Navier-Stokes equation (NSE) with a random force can be regarded
as a damped/driven Euler equation (which is an HPDE), and the inviscid limit for the NSE
describes the d-dimensional turbulence. The NSE with a random force, especially when d = 2,
was intensively studied last years, but the corresponding inviscid limit turned out to be very
complicated even for d = 2, see [KS12]. The problem of this limit becomes feasible when
the underlying HPDE is integrable or linear. The most famous integrable PDE is the KdV
equation. Its damped/driven perturbations and the corresponding inviscid limits were studied
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in [KP08, Kuk10]. In [Kuk13] the method of those works was applied to the situation when the
unperturbed HPDE is the Schrödinger equation

ut + i(−∆u+ V (x)u) = 0, x ∈ TdL , (0.10)

where the potential V (x) is in general position. Crucial for the just mentioned works is that
there the unperturbed equation is free from strong resonances. For [KP08, Kuk10] it means
that all solutions of KdV are almost-periodic functions of time, such that for a typical solution
the corresponding frequency vector is free from resonances; while for [Kuk13] it means that for
the typical potentials V (x), considered in [Kuk13], the spectrum of the linear operator in (0.10)
is non-resonant.

In contrast, now the linear operator in the unperturbed equation (0.1)ε=0 has the eigenvalues
λk ∈ k−2Z,k ∈ ZdL (see (0.4)), which are highly resonant (accordingly, all solutions for eq.
(0.1)ε=0 are periodic with the same period 2πL−2). This gives rise to an additional difficulty. To
explain it, we rewrite equation (0.5)=(0.6) as a fast-slow system, denoting Ik = 1

2 |vk|
2, ϕk =

Arg vk (these are the action-angles for the linear hamiltonian system (0.1)ε=0). In the new
variables eq. (0.5) reads

İk(τ) = vk · Pk(v) + b2k + bk(vk · β̇
k
), (0.11)

ϕ̇k(τ) = −ν−1λk + I−1
k . . . , (0.12)

where k ∈ ZdL, the dot · indicates the real scalar product in C ' R2, P (v) is the vector field in
the r.h.s. of the v-equation (0.6) and . . . abbreviates a factor of order one (as ν → 0). If the
frequencies {λk} are resonant, then equations for some linear combinations of the phases ϕk

are slow, which make it more difficult to analyze the system. The method of resonant averaging
treats this problem in finite dimension, see [AKN06] and Section 1.2 below. In the situation at
hand, we have additional problem: the ϕ-equations (0.12) have singularities at the locus

a = {I : Ik = 0 for some k} (0.13)

which is dense in the space of sequences (Ik,k ∈ ZdL), and the averaged I-equations

İk(τ) = 〈vk · Pk〉(I) + b2k + bk
√

2Ik β̇
k(τ) , k ∈ ZdL , (0.14)

where 〈·〉 signifies the average in ϕ ∈ T∞, have there weak singularities. A way to overcome
these difficulties is to find for (0.11), (0.12) an effective equation, which is a system of regular
equations

v̇k = Rk(v) + bkβ̇
k
(τ), k ∈ ZdL, (0.15)

such that under the natural projection vk 7→ Ik = 1
2 |vk|

2, k ∈ ZdL, solutions of (0.15) transform
to solutions of (0.14). In [Kuk10] this approach was used to study the perturbed KdV equation,
written as a fast-slow system, similar to (0.11), (0.12). That system has strongly non-linear
behaviour, and in [Kuk10] the effective equation was constructed as a kind of averaging of the
corresponding I-equations. In [Kuk13] an effective equation for the damped/driven nonresonant
equation (0.10) was derived in a similar way. If the introduced damping is linear and the
nonlinearity is hamiltonian, like in eq. (0.3), then the effective equation in [Kuk13] is linear.
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When the unperturbed hamiltonian system is linear, an alternative way to find an effective
equation is to use the interaction representation. I.e., to pass from the complex variables vk(τ)
(which diagonalise the linear system) to the fast rotating variables

ak(τ) = eiν
−1λkτvk(τ), k ∈ ZdL. (0.16)

Since |ak| = |vk|, then the limiting dynamics of the a-variables controls the limiting behaviour
of the actions Ik. So a regular system of equations, describing the limiting a-dynamics, is the
effective equation. N. N. Bogolyubov used this approach for the finite-dimensional deterministic
averaging, calling it averaging in the quasilinear systems (see in [AKN06]). The interaction
representation is systematically used in the WT.

Now consider the fast-slow equations (0.11), (0.12) which come from eq. (0.6), where the
fast motion (0.12) is highly resonant. Repeating the construction of the effective equation from
[Kuk13], but replacing there the usual averaging by the resonant averaging, we find an effective
equation, corresponding to (0.6). It turned out to be another damped/driven hamiltonian
system with a Hamiltonian Hres, obtained by the resonant averaging of H(v), see Section 2.2.
As we said above, an alternative way to derive the effective equation is through the interaction
representation, i.e., by transition from the v-variables to the a-variables (0.16). In view of (0.6),
the a-variables satisfy the system of equations

ȧk =− γkak + eiν
−1λkτ bkβ̇

k(τ)

− ρ i
∑

k1,...k2q∗+1∈Zd
L

ak1
. . . akq∗+1

ākq∗+2
. . . āk2q∗+1

δ1...q∗+1
q∗+2...2q∗+1k

× exp
(
−iν−1τ(λk1

+ · · ·+ λkq∗+1
− λkq∗+2

− · · · − λk2q∗+1
− λk)

)
, k ∈ ZdL.

(0.17)

The terms, constituting the nonlinearity, oscillate fast as ν goes to zero, unless the sum of the
eigenvalues in the exponent in the third line vanishes. The processes {eiν−1λkτ β̇k(τ),k ∈ ZdL},
make another set of standard independent complex white noises. This leads to the right guess
that only the terms for which this sum equals zero (i.e., the resonant terms), contribute to the
limiting dynamics, and that the effective equation is the following damped/driven hamiltonian
system

v̇k = −γkvk + 2ρ i
∂Hres(v)

∂v̄k
+ bkβ̇

k(τ), k ∈ ZdL . (0.18)

Here the Hamiltonian Hres(v) is given by the sum

− 1

2q∗ + 2

∑
k1,...k2q∗+2∈Zd

L

vk1 . . . vkq∗+1 v̄kq∗+2 . . . v̄k2q∗+2 δ
1...q∗+1
q∗+2...2q∗+2 δ(λ

1...q∗+1
q∗+2...2q∗+2) , (0.19)

so that 2ρi∂H
res

∂v̄k
(v) is

−ρi
∑

k1,...k2q∗+2∈Zd
L

vk1
. . . vkq∗+1

v̄kq∗+2
. . . v̄k2q∗+1

δ1...q∗+1
q∗+2...2q∗+1k δ(λ

1...q∗+1
q∗+2...2q∗+1k) , (0.20)

where we use another physical abbreviation:

δ(λ1...q∗+1
q∗+2...2q∗+2) =

{
1 if λk1 + . . .+ λkq∗+1 − λkq∗+2 − . . .− λk2q∗+2 = 0,
0 otherwise.

. (0.21)
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This representation forHres is different from that given by the resonant averaging. Its advantage
is the natural relation with the a-variables, which is convenient to study the limit ν → 0. The
representation for Hres by means of the resonant averaging turned out to be more useful to
study properties of Hres and of the corresponding hamiltonian vector field.

We saw that the effective equation can be obtained from the system (0.6) by a simple
procedure: drop the fast rotations and replace the Hamiltonian H by its resonant average
Hres. In difference with the non-resonant case, this is a nonlinear system. The corresponding
hamiltonian system

v̇k = 2ρ i
∂Hres(v)

∂v̄k
, k ∈ ZdL , (0.22)

has a vector field, locally Lipschitz in sufficiently smooth spaces, so equation (0.18) is well posed
locally in time. In fact, it is globally well posed. We get this result in Section 4.1 as a simple
consequence of our main theorems.

The Hamiltonian Hres has two convex quadratic integrals,

H0(v) =
1

2

∑
|vk|2, H1 =

1

2

∑
λk|vk|2 ,

which are similar to the energy and the enstrophy integrals for the 2d Euler equation on T2

(see (2.32)), and the vector-integral of moments M(u) = 1
2

∑
k|uk|2 ∈ Rd , which can be

compared with the extra integrals of the 2d Euler. Besides, the vector-field (0.20) is non-linear
homogeneous and hamiltonian, as that of the Euler equation. This makes the effective equation
(0.18) similar to the 2d Navier-Stokes system on T2. Fortunately the former is significantly
simpler then the latter.

0.4 Results

Main results of our work are stated and proved in Section 4, based on properties of the effective
equation, established earlier. They imply that the long-time behaviour of solutions for equations
(0.5), when ν → 0, is controlled in distribution by solutions for the effective equation. We start
with the results on the Cauchy problem. So, let vν(τ) be a solution of (0.6) such that vν(0) = v0,
where v0 = (v0k,k ∈ ZdL) corresponds to a sufficiently smooth function u0(x). Let us fix any
T > 0.

Consider the vector of actions I(vν(τ)) = {Ik(vν(τ)),k ∈ ZdL}.
Theorem 1. When ν → 0, we have the weak convergence of measures

D
(
I(vν(τ))

)
⇀ D

(
I(v0(τ))

)
, (0.23)

where v0(τ), 0 ≤ τ ≤ T , is a unique solution of equation (0.18) such that v0(0) = v0.

For any ξ ∈ Z∞0 , where Z∞0 is the set of integer vectors (ξk,k ∈ ZdL) of finite length, we
denote Φξ(vν(τ)) :=

∑
ξkϕk(vν(τ)) ∈ S1 = R/2πZ . Then, in addition to (0.23), for a resonant

vector ξ ∈ Z∞0 3 the distribution of Φξ(vν(τ)), mollified in τ , converges as ν → 0 to that of
Φξ(v0(τ)). On the contrary, if ξ is non-resonant, then the measure D(Φξ(vν(τ)), mollified in τ ,
converges to the Lebesgue measure on S1. All this is proved in Section 4.1, using the interaction
representation (0.17) for equation (0.3).

3i.e. for a vector ξ such that
∑

k ξkλk = 0.
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The limiting behaviour of solutions vν(τ) can be described without evoking the effective
equation. See Proposition 4.5.

Now consider a stationary measure µν for equation (0.5) (it always exist). We have
Theorem 2. Every sequence ν′j → 0 has a subsequence νj → 0 such that

I ◦ µνj ⇀ I ◦m0, Φ(ξ) ◦ µνj ⇀ Φ(ξ) ◦m0

for any resonant vector ξ ∈ Z∞0 , where m0 is a stationary measure for equation (0.18). If a
vector ξ is non-resonant, then the measure Φξ◦µν converges, as ν → 0, to the Lebesgue measure
on S1.

If the effective equation has a unique stationary measure m0, then the limits in Theorem 2
do not depend on the sequence νj → 0, so the convergences hold as ν → 0. Remarkably, in this
case the measure m0 controls not only the slow, but also the fast components of the measures
µν :

Theorem 3. If the effective equation has a unique stationary measure m0, then µν ⇀ m0 as
ν → 0.

In particular, if the effective equation has a unique stationary measure m0 and the equation
(0.3) is mixing,4 then m0 describes asymptotical behaviour of distributions of solutions u(t) for
(0.3) as t→∞ and ν → 0:

lim
ν→0

lim
t→∞

D(u(t)) = m0.

In view of the last theorem, it is important to understand when the effective equation has
a unique stationary measure and is mixing. This is discussed in Section 4.3. In particular, the
mixing holds if q∗ = 1, f(t) = t+ 1 and d ≤ 3.

Other equations. Our approach applies to other equations, usually considered in the WT. In
particular, in [KM15b] we apply it to the 2d quasigeostrophic equation on the β-plane with
random force:

(−∆ +K)ψ − ρJ(ψ,∆ψ)− βψx = 〈random force〉 − κ∆2ψ + ∆ψ . (0.24)

Here ψ is the stream function, ψ = ψ(t, x, y), where x ∈ R/LZ and y ∈ R/Z; ∆ψ is the
Ekman damping, −κ∆2ψ is the kinematic viscosity and the random force is similar to that in
eq. (0.3)=(0.5). The equation has the same structure as (0.5), and our approach applies to
prove that for typical values of the horizontal period L (when the structure of resonances is
relatively simple) the limiting, as β → ∞, behaviour or solutions for (0.24) exists, is uniform
in κ ∈ (0, 1], and is described by an effective equation which is an infinite system of stochastic
equations. This system splits to invariant systems of complex dimension ≤ 3; each of them
is an integrable hamiltonian system, coupled with a Langevin thermostat. Under the iterated
limits limL=ρ→∞ limβ→∞ and limκ→0 limβ→∞ we get similar systems. In particular, none of
the three limiting systems exhibits the energy cascade to high frequencies.

4both these conditions hold, e.g. if q∗ = 1 and f(λ) = c1 + λcd , where cd is sufficiently big in terms of d.
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0.5 Weak Turbulence

The most famous prediction of the WT (see Section 0.2) deals with the distribution of the
energy of solutions for (0.1) and (0.3) between the frequencies. To describe the corresponding
claims, consider the quantity E|vk(τ)|2, average it in time5 τ and in wave-vectors k ∈ ZdL such
that |k| ≈ r > 0; next properly scale this and denote the result Er. The function r → Er
is called the energy spectrum. It is predicted by the WT that, in a certain inertial range
r ∈ [r1, r2], which is contained in the spectral zone where the random force is negligible (i.e.,
where |bk|≪ (E|vk|2)1/2), the energy spectrum has an algebraic behaviour:

Er ∼ r−α for r ∈ [r1, r2], (0.25)

for a suitable α > 0. If the WT is stated in terms of the iterated limits (0.9), then only the
limits which lead to the algebraic energy spectra (0.25) are relevant.

In our sequel work [KM15a] we study the effective equation for (0.5) under the limit L→∞,
evoking the heuristic tools from WT, as presented in [ZLF92], and mimicking the logic of that
book. There we show (heuristically) that a suitable choice of the function ρ(L) leads, in the
limit of L→∞, to a wave kinetic equation for the averaged actions nk(t) = 1

2E|vk(t)|2. That
equation is different from the heuristic kinetic equations, obtained by the WT methods (see
[CFG08], sec. 1.2, and [ZLF92], sec. 2.2.3), but is closely related to them, so that the Zakharov
ansatz applies and allows to obtain stationary solutions of the equation, algebraic in r = |k|
and corresponding to energy spectra of the desired form (0.25).6

The rigorous and heuristic results, obtained in this work and in [KM15a], encourage us to
pursue our program to study the WT in the model, given by eq. (0.3), which brings to the WT
the advantage of a rigorous foundation, based on the recent results of stochastic calculus. We
believe that some predictions of the WT (including the fact that the limiting behaviour of the
averaged actions nk(t) is described by a certain wave kinetic equation which admits stationary
solutions of the algebraical form (0.25)), may be obtained if not under the iterated limit “first
ν → 0, next L→∞”, then under its suitable modification (e.g., “ν → 0 and L→∞ in such a
way that νL→ 0”).

Notation and Agreement. The stochastic terminology we use agrees with [KS91]. All filtered
probability spaces we work with satisfy the usual condition (see [KS91]).7 Sometime we forget
to mention that a certain relation holds a.s.
Spaces of integer vectors. We denote by Z∞0 the set of vectors in Z∞ of finite length, and denote
Z∞+0 = {s ∈ Z∞0 : sk ≥ 0 ∀ k}. Also see (1.15) and (2.9).

5Certainly this is not needed if we consider stationary solutions of the equation.
6The work [CFG08] mainly treats the systems, where the sources and sinks of energy are well separated,

so that there is a large spectral region where the forcing and the dissipation are practically absent and where
the kinetic equation does not depend explicitly on the form of the forcing and dissipation. For this reason, the
stationary spectra, found in [CFG08] for (0.3), are equal to those obtained by the WT methods for the HPDE
(0.1). This explains the difference between the kinetic equation in [CFG08] and that in [KM15a] (which deals
with the case when the dissipation is present on the whole spectral range). Contrary to [CFG08], the method
of the work [ZL75] applies, at least formally, to all kinds of forcing and damping, so the kinetic equation of that
work may depend on the forcing and dissipation.

7I.e., the corresponding filtrations {Ft} are continuous from the right, and each Ft contains all negligible
sets.
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Infinite vectors. For an infinite vector ξ = (ξ1, ξ2, . . . ) (integer, real or complex) and N ∈ N
we denote by ξN the vector (ξ1, . . . , ξN ), or the vector (ξ1, . . . , ξN , 0, . . . ), depending on the
context. For a complex vector ξ and s ∈ Z∞+0 we denote ξs =

∏
j ξ

sj
j .

Norms. We use | · | to denote the Euclidean norm in Rd and in C ' R2, as well as the `1-norm
in Z∞0 . For the norms | · |hm and | · |hm

I
see (1.13) and below that.

Scalar products. The notation “·” stands for the scalar product in Z∞0 , the paring of Z∞0 with
Z∞, the Euclidean scalar product in Rd and in C. The latter means that if u, v ∈ C, then
u · v = Re(ūv). The L2-product is denoted 〈·, ·〉, and we also denote by 〈f, µ〉 = 〈µ, f〉 the
integral of a function f against a measure µ.
Max/Min. We denote a ∨ b = max(a, b), a ∧ b = min(a, b).

Acknowledgments. We wish to thank for discussion and advice Sergey Nazarenko, Anatoli
Neishtadt and Vladimir Zeitlin. This work was supported by l’Agence Nationale de la Recherche
through the grant STOSYMAP (ANR 2011BS0101501).

1 Preliminaries

Since in this work we are not interested in the dependence of the results on L, from now on it
will be kept fixed and equal to 1, apart from Section 3. There we make explicit calculations,
controlling how their results depend on L.

1.1 Apriori estimates.

In this section we discuss preliminary properties of solutions for (0.5). We found it convenient
to parametrise the vectors from the trigonometric basis {eik·x} by natural numbers and to
normalise them. That is, to use the basis {ej(x), j ≥ 1}, where

ej(x) = (2π)−d/2eik·x, k = k(j). (1.1)

The functions ej(x) are eigen–vectors of the Laplacian, −∆ej = λje
j , so ordered that 0 = λ1 <

λ2 ≤ . . .. Accordingly eq. (0.5) reads

u̇+ iν−1
(
−∆u

)
= −f(−∆)u− iρ|u|2q∗u+

d

dτ

∞∑
j=1

bjβ
j(τ)ej(x) , (1.2)

u = u(τ, x), where f(−∆)ej = γje
j with γj = f(λj). The processes βj = βj + iβ−j , j ≥ 1,

are standard independent complex Wiener processes. The real numbers bj are such that for a
suitable sufficiently large even integer r (defined below in (2.13)) we have

Br := 2

∞∑
j=1

λrjb
2
j <∞.

By Hp, p ∈ R, we denote the Sobolev space Hp = Hp(Td,C), regarded as a real Hilbert
space, and denote by 〈·, ·〉 the real L2–scalar product on Td . We provide Hp with the norm
‖ · ‖p,

‖u‖2p =

∞∑
j=1

|uj |2(λj ∨ 1)p for u(x) =

∞∑
j=1

uje
j(x) .
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Let u(t, x) be a solution of (1.2) such that u(0, x) = u0. It satisfies standard a-priori
estimates which we now discuss, following [Kuk13]. Firstly, for a suitable ε0 > 0, uniformly in
ν > 0 one has

Eeε0‖u(τ)‖20 ≤ C(B0, ‖u0‖0) ∀τ ≥ 0 . (1.3)

Assume that

q∗ <∞ if d = 1, 2, q∗ <
2

d− 2
if d ≥ 3 . (1.4)

Then, the following bounds on the Sobolev norms of the solution hold for each 2m ≤ r and
every n:

E

(
sup

0≤τ≤T
‖u(τ)‖2n2m +

∫ T

0

‖u(s)‖22m+1‖u(s)‖2n−2
2m ds

)
≤ ‖u0‖2n2m + C(m,n, T )

(
1 + ‖u0‖

cm,n

0

)
,

(1.5)

E ‖u(τ)‖2n2m ≤ C(m,n) ∀ τ ≥ 0, (1.6)

where C(m,n, T ) and C(m,n) also depend on B2m.

Estimates (1.5), (1.6) are assumed everywhere in our work. As we have explained, they
are fulfilled under the assumption (1.4), but if the function f(t) grows super-linearly, then the
restriction (1.4) may be weakened.

Relations (1.5) in the usual way (cf. [Hai02, KS04, Oda06, Shi06]) imply that eq. (1.2) is
regular in the space Hr in the sense that for any u0 ∈ Hr it has a unique strong solution u(t, x),
equal to u0 at t = 0, and satisfying estimates (1.3), (1.5) for any n. By the Bogolyubov-Krylov
argument, applied to a solution of (1.2), starting from the origin at t = 0, this equation has
a stationary measure µν , supported by the space Hr, and a corresponding stationary solution
uν(τ), Duν(τ) ≡ µν , also satisfies (1.3) and (1.6).

1.2 Resonant averaging

Let W ∈ Zn , n ≥ 1, be a non-zero integer vector such that its components are relatively prime
(so if W = mV , where m ∈ Z and V ∈ Zn, then m = ±1). We call the set

A = A(W ) := {s ∈ Zn : W · s = 0} (1.7)

the set of resonances for W . This is a Z-module. Denote its rank by r. Here and everywhere
below the finite-dimensional vectors are regarded as column-vectors.

Lemma 1.1. The rank r equals n − 1. There exists a system ζ1, . . . , ζn of integer vectors in
Zn such that span Z{ζ1, . . . , ζn−1} = A, and the n × n matrix R = (ζ1ζ2 . . . ζn) is unimodular
(i.e., detR = ±1).

That is, the vectors (ζ1, . . . , ζn−1) make an integer basis of the hyperspace W⊥ ⊂ Rn.

Proof. We restrict ourselves to the case when some component of the vector W equals one since
this is the result we need below. For the general case and for a more general statement see, for
example, [Bou71], Section 7.
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Without loss of generality we assume that Wn = 1. Consider the matrix such that its n-th
column is W and for j < n the j-th column is the vector ej = (ej1, . . . , e

j
n)T , where ejl = δj,l. It

is unimodular and transforms the basis vector en to W . Its inverse is an unimodular matrix B
such that BW = en. Let s be any vector in A. Since

W · s = 0⇔ BW · (BT )−1s = 0⇔ en · (BT )−1s = 0 ,

then (BT )−1s =
∑n−1
j=1 mje

j , where mj ’s are some integers. This proves the lemma if we choose

ζj = BT ej , j = 1, . . . , n. Note that the matrix R equals BT .

Since RTW = BW = en, then the automorphism of the torus Tn → Tn, ϕ → y = RTϕ,
“resolves the resonances” in the differential equation ϕ̇ = W in the sense that it transforms it
to the equation

ẏ = RTW = (0, . . . , 0, 1)T . (1.8)

Let us consider a mapping L = LA : Tn → Tn−1, “dual to the module A”:

L : Tn 3 ϕ→ (ϕ ·Re1, . . . , ϕ ·Ren−1)T ∈ Tn−1 . (1.9)

The basis {ηj = (RT )−1ej , 1 ≤ j ≤ n}, is dual to the basis {ζj = Rej , 1 ≤ j ≤ n}, since

ηj · ζl = (RT )−1ej ·Rel = δj,l.

Therefore if we decompose ϕ ∈ Tn in the η-basis, ϕ =
∑
k ykη

k = (RT )−1y, then Lϕ =
(y1, . . . , yn−1)T . That is,

L ◦ (RT )−1(y1, . . . , yn)T = (y1, . . . , yn−1)T . (1.10)

In particular, the fibers of the mapping L are the circlesR({y}×S1), where y = (y1, . . . , yn−1)T ∈
Tn−1.

For a continuous function f on Tn we define its resonant average with respect to the integer
vector W as the function

〈f〉W (ϕ) :=

∫ 2π

0

f (ϕ+ tW ) d̄t , (1.11)

where we have set d̄t := 1
2πdt.

Lemma 1.2. Let f be a C∞-function on Tn, f(ϕ) =
∑
fse

is·ϕ. Then

〈f〉W (ϕ) =
∑

fsδ0, s·W eis·ϕ =
∑

s∈A(W )

fs e
is·ϕ. (1.12)

Proof. It is immediate that (1.12) holds for trigonometrical polynomial. Since for C∞-functions
the series in (1.12) converges well, then by continuity the result holds for smooth functions f .
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1.3 Resonant averaging in a Hilbert space

Consider the Fourier transform for complex functions on Td which we write as the mapping

F : H 3 u(x) 7→ v = (v1, v2, . . .) ∈ C∞ ,

defined by the relation u(x) =
∑
vke

k(x). In the space of complex sequences we introduce the
norms

|v|2hp =
∑
k≥1

|vk|2(λk ∨ 1)p , p ∈ R , (1.13)

and set hp = {v| |v|hp <∞}. Then

|Fu|hp = ‖u‖p ∀ p.

For k ≥ 1 let us denote Ik = I(vk) = 1
2 |vk|

2 and ϕk = ϕ(vk), where for v ∈ C ϕ(v) =
Arg v ∈ S1 if v 6= 0, and ϕ(0) = 0 ∈ S1. For any r ≥ 0 consider the mappings

ΠI : hr 3 v 7→ I = (I1, I2, . . . ) ∈ hrI+, Πϕ : hr 3 v 7→ ϕ = (ϕ1, ϕ2, . . . ) ∈ T∞. (1.14)

Here hrI+ is the positive octant {I : Ik ≥ 0 ∀k} in the space hrI , where

hrI = {I | |I|hr
I

= 2
∑
k

(λk ∨ 1)r|Ik| <∞}.

Abusing a bit notation we will write ΠI(F(u)) = I(u), Πϕ(F(u)) = ϕ(u). The mapping I :
Hr → hrI is 2-homogeneous continuous, while the mapping ϕ : Hr → T∞ is Borel-measurable
(the torus T∞ is given the Tikhonov topology and the corresponding Borel sigma-algebra).

For infinite integer vectors s = (s1, s2, . . . ) (and only for them) we will write the l1-norm of
s as |s|,

|s| =
∑
j

|sj |.

We denote Z∞0 = {s ∈ Z∞ : |s| <∞}, and for a vector s = (s1, s2, . . . ) ∈ Z∞0 write

Λ · s =
∑
k

λksk, supp s = {k : sk 6= 0}, dse = max{k : sk 6= 0}. (1.15)

Similar for ϕ ∈ T∞ and s ∈ Z∞0 we write ϕ · s = s · ϕ =
∑
k ϕksk ∈ S1.

Let us fix some m ∈ N ∪ ∞ and define the set of resonances of order m for the (integer)
frequency-vector Λ = (λ1, λ2, . . . ) as

A(Λ,m) = {s ∈ Z∞0 : |s| ≤ m,Λ · s = 0} . (1.16)

We will abbreviate A(Λ) = A(Λ,∞) = {s ∈ Z∞0 : Λ · s = 0}.
Let us denote Z∞+0 = {s ∈ Z∞0 : sk ≥ 0 ∀k}, and consider a series on some space hr, r ≥ 0:

F (v) =
∑

p,q,l∈Z∞+0

Cpql(2I)pvq v̄l , (1.17)
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where I = I(v), Cpql = 0 if supp q ∩ supp l 6= ∅ and for v ∈ hr, q ∈ Z∞+0 we write vq =
∏
v
qj
j .

We assume that the series converges normally in hr in the sense that for each R > 0 we have∑
p,q,l∈Z∞+0

|Cpql| sup
|v|hr ,|w|hr≤R

|vpwpvqwl| <∞. (1.18)

Clearly F (v) = F(v, v̄), where F is a (complex) analytic function on hr×hr. Abusing language
and following a physical tradition we will say that F is analytic in v and v̄. In particular, F (v)
is a real-analytic (so continuous) function of v, and the series (1.17) converges absolutely.

The resonant averaging of F can be conveniently defined by introducing, for any θ ∈ T∞,
the rotation operator Ψθ, which is a linear operator in h0:

Ψθ(v) = v′, v′k = eiθkvk.

Clearly this is an unitary isomorphism of every space hr. Note that (I×ϕ)(Ψθv) ≡ (I(v), ϕ(v)+
θ) . Using that Λ is an integer vector and based on definition (1.11), we give the following
Definition. If a function F ∈ C(hr) is given by a normally converging series (1.17), then its
resonant average with respect to Λ is the function

〈F 〉Λ(v) :=

∫ 2π

0

F (ΨtΛ(v))d̄t , d̄t = dt/2π . (1.19)

Defining a function F̃ (I, ϕ) by the relation F (v) = F̃ (I(v), ϕ(v)), we see that 〈F 〉Λ(v) =∫ 2π

0
F̃ (I, ϕ+ tΛ)d̄t. So this definition well agrees with (1.11).

Consider a monomial F = (2I)pvq v̄l. By Lemma 1.2 we have

〈(2I)pvq v̄l〉Λ = (2I)pvq v̄lδ0,(q−l)·Λ .

Now assume that F is given by a normally convergent series (1.17) and has degree ≤ m ≤ ∞
in sense that Cpql = 0 unless |q|+ |l| ≤ m. Then

〈F 〉Λ(v) =
∑

q−l∈A(Λ,m)

Cpql(2I)pvq v̄l =
∑

(q−l)·Λ=0

Cpql(2I)pvq v̄l . (1.20)

If the series (1.17) converges normally, then the series in the r.h.s. above also does. It defines
an analytic in (v, v̄) function. Note that in view of (1.20)

〈F 〉Λ is a function of I1, I2 . . . and the variables {s · ϕ, s ∈ A(Λ,m)}. (1.21)

2 Averaging for equation (1.2).

Everywhere below T is a fixed positive number.

2.1 Equation (1.2) in v-variables, resonant monomials and combina-
tions of phases.

Let us pass in eq. (1.2) with u ∈ Hr, r > d/2, to the v-variables, v = F(u) ∈ hr:

dvk + iν−1λkvkdτ = Pk(v) dτ + bkdβ
k(τ), k ≥ 1; v(0) = F(u0) =: v0. (2.1)
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Here
Pk = P 1

k + P 0
k , (2.2)

where P 1 and P 0 are, correspondingly, the linear and nonlinear hamiltonian parts of the pertur-
bation. So P 1

k is the Fourier-image of −f(−∆), i.e. P 1
k = diag {−γk, k ≥ 1}, while the operator

P 0 is the mapping u 7→ −iρ|u|2q∗u, written in the v-variables. I.e.,

P 0(v) = −iρF(|u|2q∗u) , u = F−1(v).

Every component P 0
k of it is a sum of monomials:

P 0
k (v) =

∑
p,q,l∈Z∞+0

Cpqlk (2I)pvq v̄l =
∑

p,q,l∈Z∞+0

P 0pql
k (v), k ≥ 1, (2.3)

where Cpqlk = 0 unless 2|p| + |q| + |l| = 2q∗ + 1 and |q| = |l| + 1. It is straightforward that
P 0
k (I, ϕ) (see (1.14)) is a function of ϕ = (ϕj , j ≥ 1) of order 2q∗+ 1, and that the mapping P 0

is analytic of polynomial growth:

Lemma 2.1. The nonlinearity P 0 defines a real-analytic transformation of hr if r > d
2 . The

mapping P 0(v) and its differential dP 0(v) both have polynomial growth in |v|hr .

We will refer to equations (2.1) as to the v-equations.
For any s ∈ Z∞0 consider the linear combination of phases

Φs : h0 → S1 , v 7→ s · ϕ(v) .

We fix
m = 2q∗ + 2,

and find the corresponding set A = A(Λ,m) of resonances or order m (see (1.16)). We order
vectors in the set A, that is write it as A = {s(1), s(2), . . .}, in such a way that ds(j1)e ≤ ds(j2)e
if j1 ≤ j2, and for N ≥ 1 denote

J(N) = max{j : ds(j)e ≤ N}. (2.4)

For any s(j) ∈ A consider the corresponding resonant combination of phases ϕ(v), Φj(v) =
Φsj (v), and introduce the Borel-measurable mappings

hr 3 v 7→ Φ = (Φ1,Φ2, . . . ) ∈ S1 × S1 × · · · =: T ∞ ,

hr 3 v 7→ (I × Φ) ∈ hrI+ × T ∞ .

Note that the system Φ of resonant combinations is highly over-determined: there are many
linear relations between its components Φj .

Let us pass in eq. (2.1) from the complex variables vk to the action-angle variables I, ϕ:

dIk(τ) = (vk · Pk)(v) dτ + b2k dτ + bk(vk · dβk) (2.5)

(here · indicates the real scalar product in C ' R2), and

dϕk(τ) =
(
− ν−1λk + |vk|−2

(
ivk · Pk(v)

))
dτ + |vk|−2bk(ivk · dβk) . (2.6)

15



The equations for the actions are slow, while equations for the angles are fast since dϕk ∼ ν−1.
But the resonant combinations Φj of angles satisfy slow equations:

dΦj(τ) =
∑
k≥1

s
(j)
k

(
|vk|−2(ivk · Pk) dτ + |vk|−2bk(ivk · dβk)

)
, j ≥ 1. (2.7)

Repeating for equations (2.1) and (2.5) the argument from Section 7 in [KP08] (also see
Section 6.2 in [Kuk10]), we get low bounds for the norms of the components vk(τ) of v(τ):

Lemma 2.2. Let vν(τ) be a solution of (2.1) and Iν(τ) = I(vν(τ)). Then for any k ≥ 1 the
following convergence holds uniformly in ν > 0:∫ T

0

P{Iνk (τ) ≤ δ} dτ → 0 as δ → 0 (2.8)

(the rate of the convergence depends on k).

Now we define and study corresponding resonant monomials of v. For any s ∈ Z∞0 , vectors
s+, s− ∈ Z∞+0 such that s = s+− s− and supp s = supp s+ ∪ supp s−, supp s+ ∩ supp s− = ∅ are
uniquely defined. Denote by V s the monomial

V s(v) = vs
+

v̄s
−

=
∏
l

v
s+l
l

∏
l

v̄
s−l
l . (2.9)

This is a real-analytic function on every space hl, and ϕ
(
V s(v)

)
= Φs(v). Resonant monomials

are the functions 8

Vj(v) = V s
(j)

(v), j = 1, 2, . . . .

Clearly they satisfy

I(Vj(v)) = (2I)
1
2 |s

(j)| :=
∏
l

(2Il)
1
2 |s

(j)
l | , ϕ(Vj(v)) = Φj(v). (2.10)

Now consider the mapping

V : hl 3 v 7→ (V1, V2, . . . ) ∈ C∞ , (2.11)

where C∞ is given the Tikhonov topology. It is continuous for any l. For N ≥ 1 denote

V (N)(v) =
(
V1, . . . , VJ(v)

)
∈ CJ ,

where J = J(N), see (2.4).
For any s ∈ Z∞0 , applying the Ito formula to the process V s(v(τ)), we get that

d V s = V s
(
− iν−1(Λ · s)dτ+

∑
j∈supp s+

s+
j v
−1
j (Pj(v) dτ + bj dβj)

+
∑

j∈supp s−

s−j v̄
−1
j (P̄j(v) dτ + bj dβ̄j)

)
.

(2.12)

8It may be better to call Vj(v) a minimal resonant monomial since for any l ∈ Z∞+0 the monomial IlVj(v)
also is resonant and corresponds to the same resonance.
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If s = s̃ ∈ Z∞0 is perpendicular to Λ, then the first term in the r.h.s. vanishes. So V s̃(τ) is a
slow process, dV s̃ ∼ 1. In particular, the processes dVj , j ≥ 1, are slow.

Estimates (1.5) and equation (2.12) readily imply

Lemma 2.3. For any j ≥ 1 we have E
∣∣Vj(v(·))

∣∣
C1/3[0,T ]

≤ Cj(T ) <∞, uniformly in 0 < ν ≤
1.

Let us provide the space C([0, T ];C∞) with the Tikhonov topology, identifying it with the
space C([0, T ];C)∞. This topology is metrisable by the Tikhonov distance. From now on we
fix an even integer r,

r ≥ d

2
+ 1 , (2.13)

and abbreviate

hr = h, hrI = hI , C([0, T ], hI+)× C([0, T ],C∞) =: HI,V .

We provide HI,V with Tikhonov’s distance, the corresponding Borel σ-algebra and the natural
filtration of the sigma-algebras {Ft, 0 ≤ t ≤ T}.

Let us consider a solution uν(τ) of eq. (1.2), satisfying u(0) = u0, denote vν(τ) = F(uν(τ))
and abbreviate

I(vν(τ)) = Iν(τ), V (vν(τ)) = V ν(τ) ∈ C∞.

Lemma 2.4. 1) Assume that u0 ∈ Hr. Then the set of laws D(Iν(·), V ν(·)), 0 < ν ≤ 1, is
tight in HI,V .

2) Any limiting measure Q for the set of laws in 1) satisfies

EQ|I|nC([0,T ],hr
I) ≤ Cn ∀n ∈ N, EQ

∫ T

0

|I(τ)|hr+1
I

dτ ≤ C ′,

EQe
ε0|I(τ)|

h0
I ≤ C

′′
∀ τ ∈ [0, T ].

(2.14)

Proof. 1) Due to Lemma 2.3 and the Arzelà Theorem, the laws of processes Vj(v
ν(·)), 0 < ν ≤ 1,

are tight in C([0, T ],C), for any j. Due to estimates (1.5) with n = 1 and since the actions Iνk
satisfy slow equations (2.5), the laws of processes Iν(τ) are tight in C([0, T ], hI+) (e.g. see in
[VF88]). Therefore, for every N , any sequence ν` → 0 contains a subsequence such that the
laws D

(
Iν(·), V (N)(vν(·))

)
converges along it to a limit. Applying the diagonal process we get

another subsequence ν′` such that the convergence holds for each N . The corresponding limit is
a measure mN on the space C([0, T ], hI+)× C([0, T ],C)J(N). Different measures mN agree, so
by Kolmogorov’s theorem they correspond to some measure m on the sigma-algebra, generated
by cylindric subsets of the space C([0, T ], hI+)×C([0, T ],C)∞, which coincides with the Borel
sigma-algebra for that space. It is not hard to check that D(Iν(·), V ν(·)) ⇀ m as ν = ν′` → 0.
This proves the first assertion.

2) Estimates (2.14) follow from (1.3), (1.5), the weak convergence toQ and the Fatou lemma;
cf. Lemma 1.2.17 in [KS12].
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2.2 Averaged equations, effective equation, interaction representation

Fix u0 ∈ Hr and consider any limiting measure Q0 for the laws

D(Iν`(·), V ν`(·)) ⇀ Q0 as ν` → 0, (2.15)

existing by Lemma 2.4. Our goal is to show that the limit Q0 does not depend on the sequence
ν` → 0 and develop tools for its study. We begin with writing down averaged equations for
the slow components I and Φ of the process v(τ), using the rules of the stochastic calculus
(see [Kha68, FW03]), and formally replacing there the usual averaging in ϕ by the resonant
averaging 〈·〉Λ. Let us first consider the I-equations (2.5). The drift in the k-th equation is

b2k + vk · Pk = b2k + vk · P 1
k + vk · P 0

k ,

where vk · P 1
k = −2γkIk and vk · P 0

k (v) =
∑
p,q,l∈Z∞+0

vk · P 0pql
k (v), see (2.3). By Section

3 the sum converges normally, so the resonant averaging of the drift is well defined. The
dispersion matrix for eq. (2.5) with respect to the real Wiener processes (β1, β−1, β2, . . . ) is
diag {bk(Re vk Im vk), k ≥ 1} (it is formed by 1 × 2-blocks). The diffusion matrix equals the
dispersion matrix times its conjugated and equals diag {b2k|vk|2, k ≥ 1}. It is independent from
the angles, so the averaging does not change it. For its square-root we take diag {bk

√
2Ik}, and

accordingly write the Λ-averaged I-equations as

dIk(τ) = 〈vk · Pk〉Λ(I, V ) dτ + b2k dτ + bk
√

2Ik dβ
k(τ), k ≥ 1 (2.16)

(see (1.21)).
Now consider equations (2.7) for resonant combinations Φj of the angles. The corresponding

dispersion matrix D = (Djk) is formed by 1× 2-blocks

Djk = −s(j)
k bk(2Ik)−1(Im vk − Re vk).

Again the diffusion matrix does not depend on the angles and equals M = (Mj1j2), Mj1j2 =∑
k s

(j1)
k s

(j2)
k b2k(2Ik)−1. The matrix Dnew with the entries Dnew

jk = s
(j)
k bk(2Ik)−1/2 satisfies

|Dnew|2 = M , and we write the averaged equations for Φj ’s as

dΦj(τ) =
∑
k≥1

s
(j)
k

( 〈ivk · Pk〉Λ(I, V )

2Ik
dτ +

bk√
2Ik

dβ−k(τ)
)
, j ≥ 1 (2.17)

(we use here Wiener processes, independent from those in eq. (2.16) since the differentials vk·dβk
and ivk · dβk, corresponding to the noises in equations (2.5) and (2.6), are independent).

Equations (2.16), (2.17) is a system of stochastic differential equations for the process
(I, V )(τ) since each Φj is a function of I and Vj . It is over-determined as there are lin-
ear relations between various Φj ’s. Besides, eq. (2.16) has a weak singularity at the locus
a(h) = ∪k{v ∈ h : vk = 0}, while eq. (2.17) has there a strong singularity.

Consider a component 〈vk · P 0
k 〉Λ(v) of the averaged drift in the equation for Ik. It may be

written as

〈vk · P 0
k 〉Λ(v) =

∫ 2π

0

vk ·
(
e−itλkP 0

k (ΨtΛ(v))
)
d̄t = vk ·R0

k(v) , (2.18)
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where we set R0
k(v) =

∫ 2π

0
e−itλkP 0

k (ΨtΛ(v))d̄t . That is,

R0(v) =

∫ 2π

0

Ψ−tΛP
0(ΨtΛv)d̄t . (2.19)

Repeating the derivation of (1.20) and using that |q|+ |l| ≤ m− 1, we see that

R0
k(v) =

∑
p,q,l∈Z∞+0

q−l∈A(Λ,m)+ek

|q|+|l|+1≤m

Cpqlk (2I)pvq v̄l. (2.20)

The relation (2.20) interprets R0(v) as a sum of resonant terms of the mapping P 0(v), very
much in the spirit of the WT, while (2.19) interpret it a result of the resonant averaging of P 0.

The vector field R0 defines locally-Lipschitz operators in the spaces hp, p > d/2:

|R0(v)−R0(w)|hp ≤ Cp
(
|v|hp ∨ |w|hp

)2q∗ |v − w|hp . (2.21)

Indeed, in view of (2.19), for any v, w such that |v|hp , |w|hp ≤ R we have

|(R0(v)−R0(w))|hp ≤
∫ 2π

0

∣∣∣Ψ−tΛ(P 0(ΨtΛv)− P 0(ΨtΛw)
)∣∣∣
hp
d̄t . (2.22)

Since P 0(v) = −iρF(|v̂|2q∗ v̂), where v̂ = F−1v, then denoting ΨtΛv = vt, defining wt similarly
and using that the operators Ψθ define isometries of hp, we bound the r.h.s. of (2.22) by∫ 2π

0

∣∣P 0(vt)− P 0(wt)
∣∣
hp d̄t = ρ

∫ 2π

0

∥∥|v̂t|2q∗ v̂t − |ŵt|2q∗ŵt∥∥pd̄t
≤ ρCpR2q∗

∫ 2π

0

‖v̂t − ŵt‖pd̄t ≤ ρCpR2q∗ |v − w|hp .

Finally we set
R = R0 +R1, where R1

k(v) = P 1
k (v) = −γkvk.

Since 〈vk · P 1
k 〉Λ = 〈−

∑
2γkIk〉Λ = vk · P 1

k = vk ·R1
k, then in view of (2.18) we have

〈vk · Pk〉Λ(v) = vk ·Rk(v). (2.23)

For further usage we note that by the same argument, 〈ivk · P 0
k 〉Λ = ivk ·R0

k and 〈ivk · P 1
k 〉Λ =

0 = ivk ·R1
k. So also

〈ivk · Pk〉Λ(v) = ivk ·Rk(v). (2.24)

Motivated by the averaging theory for equations without resonances in [Kuk10, Kuk13], we
now consider the following effective equation for the slow dynamics in eq. (2.5):

dvk = Rk(v)dτ + bkdβ
k , k ≥ 1 . (2.25)

In difference with the averaged equations (2.16) and (2.17), the effective equation is regular,
i.e. it does not have singularities at the locus a(h). Since R0 : h→ h is locally Lipschitz, then
strong solutions for (2.25) exist locally in time and are unique:
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Lemma 2.5. A strong solution of eq. (2.25) with a specified initial data v(0) = v0 ∈ h is
unique, a.s.

The relevance of the effective equation for the study of the long-time dynamics in equations
(1.2)=(2.1) is clear from the next lemma:

Lemma 2.6. Let a continuous process v(τ) ∈ h be a weak solution of (2.25) such that all
moments of the random variable max0≤τ≤T |v(τ)|h are finite. Then I(v(τ)) is a weak solution
of (2.16). Let stopping times 0 ≤ τ1 < τ2 ≤ T and numbers δ∗ > 0, N ∈ N be such that

Ik(v(τ)) ≥ δ∗ for τ1 ≤ τ ≤ τ2 and k ≤ N . (2.26)

Then the process
(
I(v(τ)),Φj(v(τ)), j ≤ J(N)

)
is a weak solution of the system of averaged

equations 9 (2.16), (2.17)j≤J .

Proof. Let v(τ) satisfies (2.25). Applying Ito’s formula to Ik(v(τ)) and Φj(v(τ)), j ≤ J , we get
that

dIk = vk ·Rk dτ + b2k dτ + bkvk · dβk (2.27)

and

dΦj =
∑

k∈supp s(j)

s
(j)
k

(
ivk ·Rk
|vk|2

dτ +
bk
|vk|2

ivk · dβk
)
.

Using (2.23) and (2.24) we see that (2.27) has the same drift and diffusion as (2.16). So I(v(τ))
is a weak solution of (2.16) (see [Yor74, MR99]). Similar, for τ ∈ [τ1, τ2], in view of (2.24), the
process (I,Φj , j ≤ J), is a weak solution of the system (2.16), (2.17)j≤J .

Now we show that the effective equation describes the limiting (as ν → 0) dynamics for
the equations of motions, written in the a-variables of the interaction representation (0.16).
Indeed, let uν(τ) be a solution of eq. (1.2), satisfying u(0) = u0. Denote vν(τ) = F(uν(τ)) and

consider the vector of a-variables aν(τ) = (aνk(τ) = eiν
−1λkτvνk(τ), k ≥ 1) (cf. (0.16)). Notice

that we obviously have

|vν(τ)|hm ≡ |aν(τ)|hm ∀m, I(vν(τ)) ≡ I(aν(τ)), V (vν(τ)) ≡ V (aν(τ)) (2.28)

(see (2.11)). From (2.1) we obtain the following system of equations for the vector aν(τ):

daνk =
(
Rk(aν) +Rk(aν , ν−1τ)

)
dτ + bke

iν−1λkτdβk(τ), k ≥ 1 ,

where we have denoted

Rk(a, ν−1τ) =
∑

p,q,l∈Z∞+0

q−l−ek 6∈A(Λ,m)
|q|+|l|+1≤m

P 0pql
k (a) exp

(
−iν−1τ

(
Λ · (q − l − ek)

))
. (2.29)

This is the nonresonant, fast oscillating part of the nonlinearity (because |Λ · (q− l− ek)| ≥ 1).

Since {β̄k(τ) :=
∫
eiν
−1λkτdβk(τ), k ≥ 1} is another set of standard independent complex

Wiener processes, then the process aν(τ) is a weak solution of the system of equations

daνk =
(
Rk(aν) +Rk(aν , ν−1τ)

)
dτ + bkdβ

k(τ) , k ≥ 1 . (2.30)

9This system is heavily under-determined.
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We will refer to equations (2.30) as to the a-equations. It is crucial that they are identical to
the effective equation (2.25), apart from terms which oscillate fast as ν → 0.

2.3 Properties of resonant Hamiltonian Hres and effective equation

Lemma 2.7. The vector field R0 is hamiltonian:

R0 = iρ∇Hres(v), ∀ v ∈ hp, p > d/2, (2.31)

where Hres(v) = 〈H〉Λ(v) and H is the Hamiltonian (0.2).

Proof. Indeed, since P 0(v) = iρ∇H(v), then

R0(v) =

∫ 2π

0

Ψ−tΛ

(
iρ∇H(ΨtΛ(v))

)
d̄t = iρ∇v

∫ 2π

0

H(ΨtΛ(v))d̄t = iρ∇vHres(v),

as Ψ∗θ ≡ Ψ−θ, and where we used (2.19).

Clearly Hres(0) = 0. Since H(u) ≤ −C‖u‖2q∗+2
0 by the Hölder inequality and since the

transformations ΨtΛ preserve ‖u‖0, then

Hres(u) ≤ −C‖u‖2q∗+2
0 ∀u .

The resonant Hamiltonian Hres has symmetries, given by some rotations Ψm,m ∈ R∞:

Lemma 2.8. i) Let 1 = (1, 1, . . . ). Then Hres(Ψt1v) = const (i.e., it does not depend on t);
ii) Let Ml the l-th component of the sequence (k(1),k(2), . . . ), l = 1, . . . , d (see (1.1)).

Then Hres(ΨtMl v) = const, for each l.
iii) Hres(ΨtΛv) = const.

Proof. i) By (1.19) we have

Hres(Ψt1v) =

∫ 2π

0

H
(
Ψt′Λ(Ψt1v)

)
d̄t′ =

∫ 2π

0

H
(
Ψt1(Ψt′Λv)

)
d̄t′ .

Let us denote Ψt1(Ψt′Λv) = v(t; t′). Then (d/dt)v(t; t′) = iv. The flow of this hamiltonian
equation commutes with that of the equation with the Hamiltonian H.10 So H(v(t; t′)) is
independent from t for each t′, and i) follows since Hres(Ψt1v) =

∫
H(v(t; t′))d̄t′.

ii) Proof is the same since the transformations ΨtMl , t ∈ R, are the flow of the momentum
Hamiltonian M l(u) = 1

2

∑∞
j=1 kl(j)|uj |2, which commutes with H.

iii) It is a straightforward consequence of the definition (1.19) of the resonant averaging.

Since the transformations Ψt1 form the flow of the Hamiltonian H0(v) = 1
2

∑
|vj |2 = 1

2 |v|
2
h0 ,

the transformations ΨtΛ – the flow of H1(v) = 1
2

∑
λj |vj |2, and the transformations ΨtMl , t ∈ R

– the flow of the momentum Hamiltonian, we may recast the assertions of the last lemma as
follows:

{Hres, H0} = 0, {Hres, H1} = 0, {Hres,Ml} = 0 ∀ l. (2.32)

10This follows from the fact that the functional 1
2
|v|2
h0 is an integral of motion for the Hamiltonian H, which

becomes obvious if we note that in the u-representation H has the form (0.2) and 1
2
|v|2
h0 is 1

2

∫
|u|2(x) dx.
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Here {·, ·} signifies the Poisson bracket. As the transformations Ψm, m ∈ R∞, are symplectic,
then the symmetries in the lemma above preserve the hamiltonian vector field R0 and commute
with it. In particular, since ΨtΛ = e−it∆, then the spectral spaces Eλ of the operator −∆,

Eλ = span {ej : λj = λ} ,

are invariant for the flow-maps of R0.

Since the transformations Ψm,m ∈ R∞, obviously preserve the vector field R1 as well as
the law of the random force in (2.25) (see the proof of the lemma below), then those Ψm which
are symmetries of R0 (equivalently, which are symmetries of the Hamiltonian Hres), preserve
weak solutions of (2.25). So we have:

Lemma 2.9. If v(τ) is a solution of equation (2.25) and m ∈ R∞ be either a vector m =
t1, t ∈ R, or a vector m = tΛ, or m = tMl, l = 1, . . . , d, then Ψmv(τ) also is a weak solution.

Proof. Denote Ψmv(τ) = v′(τ). Applying Ψm to eq. (2.25), using Lemma 2.8 and exploiting
the invariance of the operator R1 with respect to Ψm, we get

dv′k =
(
ΨmR(v(τ))

)
k
dτ + eimkbkdβ

k = (R(v′(τ))k + bk(eimkdβk).

Since {eimkβk(τ), k ≥ 1} is another set of standard independent Wiener processes, then v′(τ)
is a weak solution of (2.25).

Corollary 2.10. If µ is a stationary measure for equation (2.25) and a vector m is as in
Lemma 2.9, then the measure Ψm ◦ µ also is stationary.

The next lemma characterises the increments of R0(v) in the space h0. It will be needed
below to study the ergodic properties of the effective equation:

Lemma 2.11. Let p > d/2. Then for any v, w ∈ hp we have

|R0(v)−R0(w)|h0 ≤ C
(
|v|hp + |w|hp

)2q∗ |v − w|h0 .

Proof. Repeating the proof of the Lipschitz property of R0 in the space h (see (2.21)) and using
the notation of that proof, i.e. denoting ΨtΛv = vt , v̂ = F−1v, and similar for the vector w,
we get that

|R0(v)−R0(w)|h0 ≤
∫ 2π

0

∣∣∣Ψ−tΛ(P 0(ΨtΛv)− P 0(ΨtΛw)
)∣∣∣
h0
d̄t

=

∫ 2π

0

∣∣P 0(vt)− P 0(wt)
∣∣
h0 d̄t =

∫ 2π

0

∥∥|v̂t|2q∗ v̂t − |ŵt|2q∗ŵt∥∥0
d̄t

≤ C
∫ 2π

0

(|v̂t|L∞ + |ŵt|L∞)2q∗‖v̂t − ŵt‖0d̄t ≤ C1(|v|hp + |w|hp)2q∗ |v − w|h0 .
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3 Explicit calculation

We intend here to calculate explicitly the effective equation (2.25), keeping track of the depen-
dence on the size L of the torus. To do that, it is convenient to use the natural parametrisation
of the exponential basis by vectors k ∈ ZdL; that is, decompose functions u(x) to Fourier series,
u(x) =

∑
k∈Zd

L
vke

ik·x . We modify the norms | · |hp accordingly :

‖u‖2p = (2πL)d
∑
k∈Zd

L

(
|k| ∨ 1

L

)2p

|vk|2 =: |v|2hp .

Now, as in the Introduction, the eigenvalues of the minus-Laplacian are λk = |k|2 and the
damping coefficients γk = f(λk).

In the v-coordinates the nonlinearity becomes the mapping v 7→ P 0(v), whose k-th compo-
nent is

P 0
k(v) = −iρ

∑
k1,...k2q∗+1∈Zd

L

vk1
· · · vkq∗+1

v̄kq∗+2
· · · v̄k2q∗+1

δ1...q∗+1
q∗+2...2q∗+1k

(see (0.8)). Accordingly,

vk · P 0
k = ρ

∑
k1,...k2q∗+1∈Zd

L

Im (vk1
· · · vkq∗+1

v̄kq∗+2
· · · v̄k2q∗+1

v̄k)δ1...q∗+1
q∗+2...2q∗+1k . (3.1)

In order to calculate the resonant average, we first notice that vk ·P 0
k can be written as a series

(1.17), where |Cpql| ≤ 1 and |q|+ |p|+ |l| = 2q∗ + 2. In this case the sum in the l.h.s. of (1.18)
is bounded by

C

∑
k∈Zd

L

|vk|

2q∗+2

≤ C1(L)|v|q∗+1
p

∑
k∈Zd

L

|k|−2p

q∗+1

.

So the condition (1.18) is met if 2p > d.
Since the order of the resonance m = 2q∗ + 2, then 〈vk · P 0

k〉Λ(v) equals

ρ
∑

k1,...k2q∗+1∈Zd
L

Im (vk1
· · · vkq∗+1

v̄kq∗+2
· · · v̄k2q∗+1

v̄k)δ1...q∗+1
q∗+2...2q∗+1kδ(λ

1...q∗+1
q∗+2...2q∗+1k) ,

(see (0.21)). This follows from (3.1) and (1.19) if one notes that appearing there restriction
(q− l) ·Λ = 0 is now replaced by the factor δ(λ1...q∗+1

q∗+2...2q∗+1k). In a similar way, we see that the

quantity R0
k , entering equation (2.25), takes the form

R0
k(v) = −iρ

∑
k1,...k2q∗+1∈Zd

L

vk1 · · · vkq∗+1 v̄kq∗+2 · · · v̄k2q∗+1δ
1...q∗+1
q∗+2...2q∗+1kδ(λ

1...q∗+1
q∗+2...2q∗+1k) .

Taking into account that R1
k = −γkvk, we finally arrive at an explicit formula for the effective

equation (2.25):

dvk =
(
−γkvk

− iρ
∑

k1,...k2q∗+1∈Zd
L

vk1
· · · vkq∗+1

v̄kq∗+2
· · · v̄k2q∗+1

δ1...q∗+1
q∗+2...2q∗+1kδ(λ

1...q∗+1
q∗+2...2q∗+1k)

)
dτ

+ bkdβ
k , k ∈ ZdL .

(3.2)
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Due to (2.31),

R0
k(v) = iρ∇vkHres(v) = 2iρ

∂

∂v̄k
Hres(v).

Therefore eq. (3.2) can be written as the damped–driven hamiltonian system (0.18).

Examples. a) If q∗ = 1, then (3.2) reads

dvk =
(
− γkvk − iρ

∑
k,k′,k′′∈Zd

L

vkvk′ v̄k′′δk+k′ ,k′′+r δλk+λk′ , λk′′+λk

)
dτ + bkdβ

k ,

where k ∈ ZdL. If f(t) = t+ 1, then this equation looks similar to the CGL equation

u̇−∆u+ u = i|u|2u+
d

dτ

∑
bkβ

k(τ)eik·x,

written in the Fourier coefficients. The latter equation possesses nice analytical properties; e.g.
its stationary measures is unique for any d, see [KN13].

b) Our results remain true if the Hamiltonian H, corresponding to the nonlinearity in (0.5),
has variable coefficients. In particular, let d = 1 and the nonlinearity in (0.5) is replaced by
−ip(x)|u|2u with a sufficiently smooth function p(x). Then the effective equation is

dvk =
(
− γkvk − i

∑
k1,k2,k3,k4∈ZL

vk1vk2 v̄k3pk4δk1+k2+k4 , k3+k δk21+k22 , k
2
3+k2

)
dτ + bkdβ

k ,

where kL ∈ Zd and pk’s are the Fourier coefficients of p(x).

4 Main results

4.1 Averaging theorem for the initial-value problem.

We recall that r is a fixed even integer such that r ≥ d
2 + 1, and abbreviate

hr = h, C([0, T ], h) = Ha.

We provideHa with the Borel σ-algebra and the natural filtration of the sigma-algebras {Ft, 0 ≤
t ≤ T}.

Let vν(τ) be a solution of (2.1) such that vν(0) = v0 = F(u0) ∈ hr, consider the corre-
sponding process aν(τ). Due to (2.28), the process aν satisfies obvious analogies of the estimates
(1.3), (1.5) and (1.6). Since (R + R)(a) is the nonlinearity P (v), written in the a-variables,
then

|(R+R)(a)(τ)|h = |P (v)(τ)|h ≤ C|v(τ)|q∗+1
h = C|a(τ)|q∗+1

h .

Therefore all moments of |(R+R)(a)|Ha are finite, and we get from eq. (2.30) that E|aν |C1/3([0,T ],h) ≤
C̄, uniformly in ν. Now arguing as when proving Lemma 2.4 we get that the set of laws
D(aν(·)), 0 < ν ≤ 1, is tight in Ha. Consider any limiting measure, corresponding to the laws
D(aν(·)):

D(aν`(·)) ⇀ Q0
a as ν` → 0. (4.1)
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Theorem 4.1. There exists a unique weak solution a(τ) of effective equation (2.25), satisfying
a(0) = v0 a.s. The law of a(·) in the space Ha coincides with Q0

a. The convergence (4.1) holds
as ν → 0.

The proof of the theorem is presented at the end of this section.
Let Q0 be a measure in HI,V as in (2.15). Since (I, V )(vν(·)) = (I, V )(aν(·)) for any ν > 0

then re-denoting a(τ) by v(τ) we derive a corollary from the previous theorem:

Theorem 4.2. There exists a unique weak solution v(τ) of effective equation (2.25), satisfying
v(0) = v0 a.s. The law of (I, V )(v(·)) in the space HI,V coincides with Q0 and the convergence
(2.15) holds as ν → 0. Moreover, for any vectors s̃1, . . . , s̃m ∈ Z∞0 , perpendicular to Λ, we have
the convergence

D(I, V s̃1 , . . . , V s̃m)(vν(·)) ⇀ D(I, V s̃1 , . . . , V s̃m)(v(·)).

By this result the Cauchy problem for the effective equation has a weak solution. Using
Lemma 2.5 and the Yamada-Watanabe argument (see [KS91, Yor74, MR99]) we get that the
equation is well posed:

Corollary 4.3. For any v0 ∈ hr, eq. (2.25) has a unique strong and a unique weak solution
v(τ) such that v(0) = v0. Its law satisfies (2.14).

Now, let s̃ ∈ Z∞0 be any non-zero vector, orthogonal to Λ, and consider ϕ(vν(τ)) · s̃ =
ϕ(V s̃(vν(τ)) ∈ S1. Since ϕ(V s̃) is a discontinuous function of V s̃ ∈ C, then to pass to a limit
as ν → 0 we do the following. We identify S1 with {v ∈ R2 : |v| = 1}, denote ds̃e = N , and
approximate the discontinuous function V N = (V1, . . . , VN ) 7→ ϕ(V s̃) by continuous functions

V N 7→ fδ([I(V N )])ϕ(V s̃) ∈ R2 , [I] = min
1≤k≤N

Ik, 0 < δ � 1.

where fδ is continuous, 0 ≤ fδ ≤ 1, fδ(t) = 0 for t ≤ δ/2 and fδ = 1 for t ≥ δ.
For any measure µτ in a complete metric space, which weakly continuously depends on τ ,

and any τ1 < τ2 we will denote

〈µτ 〉τ2τ1 =
1

τ2 − τ1

∫ τ2

τ1

µτ dτ.

Then the argument above jointly with Lemma 2.2 imply:

Corollary 4.4. Let s̃ ∈ Z∞0 be any non-zero vector, orthogonal to Λ, and let 0 ≤ τ1 < τ2 ≤ T .
Then

〈D(ϕ(vν(τ)) · s̃) 〉τ2τ1 ⇀ 〈D(ϕ(v(τ)) · s̃) 〉τ2τ1 as ν → 0.

On the contrary, if s · Λ 6= 0, then by Proposition 4.10 we get that

〈D(ϕ(vν(τ)) · s) 〉τ2τ1 ⇀d̄ϕ.

More generally, if vectors s̃1, . . . , s̃M from Z∞0 are perpendicular to Λ and a vector s is not,
then 〈

D(I, ϕ · s̃1, . . . , ϕ · s̃M , ϕ · s)(vν(τ))
〉τ2
τ1
⇀
〈
D(I, ϕ · s̃1, . . . , ϕ · s̃M )(v(τ))

〉τ2
τ1
× d̄ϕ.

We do not know an equivalent description of the measure Q0 only in terms of the slow
variables (I, V ) of equation (2.1). But the following result holds true:

25



Proposition 4.5. Consider the natural process on the space HI,V with the measure Q0. If for
some N ∈ N and δ∗ > 0, stopping times 0 ≤ τ1 < τ2 ≤ T satisfy (2.26), then for τ ∈ [τ1, τ2] the
process

(
I,Φ(N)

)(
(I, V )(τ)

)
is a weak solution of the averaged equations (2.16) and (2.17) |j≤J .

Here Φ(N) = (Φ1, . . . ,ΦJ(N)).

Since the averaged quantities 〈vk ·Pk〉Λ and 〈ivk ·Pk〉Λ are functions of I and Φ (see (1.21)),
then equations (2.16) and (2.17) |j≤J form an under-determined system of equations for the
variables (I,Φ).

Proof of Theorem 4.1 The proof follows the Khasminski scheme (see [Kha68, FW03, KP08]).
Its crucial step is given by the following lemma:

Lemma 4.6. For any k ≥ 1 one has

Aνk := E max
0≤τ≤T

∣∣∣∣∫ τ

0

Rk(aν(s), ν−1s)ds

∣∣∣∣→ 0 as ν → 0 . (4.2)

The lemma is proved below in Section 4.4, following the arguments in [KP08, Kuk13]. Now
we derive from it the theorem.

For τ ∈ [0, T ] consider the processes

Nνl
k = aνlk (τ)−

∫ τ

0

Rk(aνl(s))ds , k ≥ 1 .

Due to (2.30) we can write Nνl
k as

Nνl
k (τ) = Ñνl

k (τ) +N
νl
k (τ) ,

where Ñνl
k (τ) = aνl(τ) −

∫ τ
0

(Rk(aνl(s)) +Rk(aνl(s), ν−1
l s))ds is a Q0

a martingale and the dis-

parity N
νl
k is

N
νl
k (τ) =

∫ τ

0

Rk(aνl(s), ν−1
l s)ds .

The convergence D(aνl) ⇀ Q0
a and Lemma 4.6 imply that the processes

Nk(τ) = ak(τ)−
∫ τ

0

Rk(a)ds , k ≥ 1 ,

are Q0
a martingales (see for details [KP08], Proposition 6.3).

Similar to (4.2), we find that

E max
0≤τ≤T

∣∣∣∣∫ τ

0

Rk(aν(s), ν−1s)ds

∣∣∣∣2 → 0 as ν → 0 .

Then, using the same arguments as before, we see that the processes Nk1(τ)Nk2(τ)−
∫ τ

0
Ak1k2ds

are Q0
a martingales, where Ak1k2 denotes the diffusion matrix for the system (2.25). That is,

Q0
a is a solution of the martingale problem with drift Rk and the diffusion A. Hence, Q0

a is a
law of a weak solution of eq. (2.25). Such a solution exists for any v0 ∈ h. So by Lemma 2.5
and the Yamada–Watanabe argument (see [KS91, Yor74, MR99]), weak and strong solutions
for (2.25) both exist and are unique. Hence, the limit in (2.15) does not depend on the sequence
νl → 0, the convergence holds as ν → 0, and the theorem is proved.
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4.2 Averaging theorem for stationary solutions.

Let vν(τ) be a stationary solution of eq. (2.1) as at the end of Section 1.1.11 Solutions vν

inherit the a-priori estimates (1.3), (1.5), (1.6), so still the set of laws D(I(vν(·)), V (vν(·))),
0 < ν ≤ 1, is tight in HI,V (cf. Lemma 2.4). Consider any limit

D
(
I(vν`(·)), V (vν`(·))

)
⇀ Q as ν` → 0. (4.3)

As before, the measure Q satisfies (2.14) (with the constants Cn, C
′, C

′′
, corresponding to

v0 = 0). Moreover, it is stationary in τ .

Theorem 4.7. There exists a stationary solution v(τ) of the effective equation (2.25) such that
Q = D

(
I(v(·)), V (v(·))

)
.

Proof. Denote µν = Dvν(τ). Estimate (1.5) with 2m = r and n = 1 implies that
∫
|v|2hr+1 µν(dv) ≤

C for all ν. So the set of measures µν is tight in Hr. Replacing, if necessary, the sequence {νl}
by a subsequence, we achieve that

µνl ⇀ µ0 as νl → 0. (4.4)

Clearly (I, V ) ◦ µ0 is the marginal distribution for Q as τ = const, which we will denote q (i.e.,
q = Q |τ=const).

Let v0(τ), τ ≥ 0, be a solution for the effective equation (2.25) such that Dv0(0) = µ0

(existing by Corollary 4.3 and the estimates on µ0). Then, for the same reason as in Section 4.1,

D
(
I, V )(v0(τ)) |τ∈[0,T ]= Q,

and D(I, V )(v0(τ)) ≡ q. We do not know if the solution v0 is stationary, but from the
Bogolyubov-Krylov argument we know that for a suitable sequence Tj → ∞ we have the
convergence

1

Tj

∫ Tj

0

D(v0(τ)) dτ ⇀ m0,

where m0 is a stationary measure for (2.25). Still we have that (I, V )◦m0 = q, and the measure
m0 satisfies the same apriori estimates as before. Let v(τ) be a solution for (2.25) such that
Dv(0) = m0. It is stationary and D(I, V )(v(τ)) ≡ q. Modifying a bit the argument above we
get that also D(I, V )(v(·)) = Q.

Writing the convergence (4.3) as D(I, V )
(
vνl(·)

)
⇀ D(I, V )

(
v(·)
)
, we note that, as in Sec-

tion 4.1, we also have that

D(I, V s̃1 , . . . , V s̃m)
(
vνl(τ)

)
⇀ D(I, V s̃1 , . . . , V s̃m)

(
v(τ)

)
= (I, V s̃1 , . . . , V s̃m) ◦m0

as νl → 0, for any m and any vectors s̃1, . . . , s̃m, perpendicular to Λ. Since for stationary
solutions vν(τ) we have 〈D(vν(τ))〉τ2τ1 = D(vν(τ)), then arguing as when proving Corollary 4.4
we also get that

D(I,Φs̃1 , . . . ,Φs̃m)
(
vνl(τ)

)
⇀ (I,Φs̃1 , . . . ,Φs̃m) ◦m0 . (4.5)

11Under certain restrictions on the equation it is known that its law (i.e. the stationary measure of the
equation) is unique, e.g., see [Shi06]. We will not discuss this now.
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Moreover if s ∈ Z∞0 is such that s ·Λ 6= 0, then in view of Proposition 4.10 and the stationarity
of the solutions we have

D(I,Φs̃1 , . . . ,Φs̃m ,Φs)
(
vνl(τ)

)
⇀
(
(I,Φs̃1 , . . . ,Φs̃m) ◦m0

)
× d̄θ . (4.6)

If eq. (2.25) has a unique stationary measure m0, then the convergences above hold as
ν → 0. But in this case a stronger assertion holds:

Theorem 4.8. Let vν be a stationary solution of equation (2.1), D(vν(τ)) ≡ µν , and assume
that the effective equation (2.25) has a unique stationary measure m0. Then

µν ⇀m0 as ν → 0. (4.7)

Proof. i) Consider again the convergence (4.4). We are going to show that the limiting measure
µ0 equals m0. Then the limit in (4.4) does not depend on the sequence {νl → 0}, so it holds as
ν → 0, and (4.7) follows.

ii) Due to Lemma 2.2, µν(a) = 0 = µ0(a), so we may regard µν and µ0 as measures on
hrI × T∞. Let us fix any n ∈ N and consider measures µν n, µ0n and m0n which are images of
the measures µν , µ0 and m0 under the projection

Πn : v 7→ vn = (v1, . . . , vn)

(see Notation and Agreement). We will regard them as measures on Rn+×Tn = {(In, ϕn)}. To
prove that µ0 = m0 it suffices to verify that µ0n = m0n for each n.

Let us denote A(Λn) =: An, and let the vectors ζ1, . . . , ζn ∈ Zn and the unimodular matrix
R be as in Lemma 1.1 with A = An. Let L = LAn : Tn → Tn−1 be the operator in (1.9), i.e.

L : Tn 3 ϕn 7→ (ϕn · ζ1, . . . , ϕn · ζn−1)T ∈ Tn−1 . (4.8)

Writing RT (ϕn) = (y1, . . . , yn)T = (yT , yn)T , where y = (y1, . . . , yn−1)T , we have L(ϕn) = y.
We will denote by π1 the natural projection y 7→ y.

For further purposes we make the following observation. Let µ be a Borel measure on h.
Consider its images under rotations ΨtΛ and projections Πn. In the (I, ϕ)-variables the mapping
ΨtΛ becomes id×(·+ tΛ), so

Πn ◦ (ΨtΛ ◦ µ) =
(
id × (·+ tΛn)

)
◦Πn ◦ µ

(where Πn ◦ µ is written in the (In, ϕn)-variables). By (1.8) the transformation RT of Tn
conjugates the translation by the vector tΛn with the translation by t en. Therefore,

RT ◦Πn ◦ (ΨtΛ ◦ µ) = (id × (·+ t en)) ◦ RT ◦Πn ◦ µ , (4.9)

where RT = id×RT .
iii) Let us apply to the measures µν n, µ0n, m0n the transformation RT :

Nν n = RT ◦ µν n , N0n = RT ◦ µ0n , M0n = RT ◦m0n . (4.10)

Recall that by (4.4), Nνl n ⇀ N0n as νl → 0 . Our first goal is to calculate the limiting measure
N0n. To do this let us disintegrate Nν n and N0n with respect to the mapping

id × π1 : Rn+ × Tn → Rn+ × Tn−1, (In, (yT , yn)T ) 7→ (In,y).
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That is (see [Dud02], Section 10.2), write them as

Nν n = Nν n
In,y(dyn) pν n(dIn dy), N0n = N0n

In,y(dyn) p0n(dIn dy) ,

where pν n = (id × π1) ◦Nν n and p0n = (id × π1) ◦N0n Since y = L(ϕn), then pν n = D(In×
(L ◦ ϕn))(vν n(τ)). As each vector ζj in (4.8) is perpendicular to Λn, then in view of (4.5) we
have

p0n = lim
νl→0

D(In × (L ◦ ϕn))(vνl n(τ)) = (In × (L ◦ ϕn)) ◦m0n. (4.11)

To calculate N0n it remains to find the fiber-measures N0n
In,y. To do this let us take any

bounded continuous function f on Rn+×Tn−1×S1 and consider 〈Nν n, f〉 = Ef(In,y, yn)(vν(τ)).
Since y(v) = L(ϕn) and yn(v) = v · ηn, where the vector ηn is not perpendicular to Λ, then by
(4.6)

〈Nν n, f〉 →
∫
f(In,y, yn)

((
In × (L ◦ ϕn)

)
m0n

)
(dIn dy)d̄yn.

From other hand, by (4.4)

〈Nνl n, f〉 → 〈N0n, f〉 =

∫
f(In,y, yn)N0n

In,y(dyn) p0n(dIn dy) .

Since p0n = (In × (L ◦ ϕn)) ◦ m0n, then we get from the two convergences above that for
p0n-a.a. pairs (In,y) we have N0n

In,y = d̄yn. Accordingly,

N0n = d̄yn × p0n(dIn dy) .

iv) Consider the measure M0n. Due to (4.11) its disintegration with respect to the mapping
id×π1 may be written as

M0n = M0n
In,y(dyn)p0n(dIn dy) (4.12)

with some unknown fiber-measures M0n
In,y. Now consider the rotated measure ΨtΛ ◦m0, t ≥ 0,

and its n-dimensional projection. By (4.9),

RT ◦Πn ◦ΨtΛ ◦m0 = (id × lt) ◦ RT ◦m0n,

where lt(y, yn) = (y, yn + t). Due to (4.10) and (4.12), the measure in the r.h.s. equals

M0n
In,y(dyn + t)p0n(dIn dy) .

But by Corollary 2.10, the measure in the l.h.s. does not depend on t. So M0n
In,y(dyn) ≡

M0n
In,y(dyn + t) is a translation-invariant measure on S1, and it must be equal to d̄yn. Accord-

ingly,
M0n = d̄yn × p0n(dIn dyn) = N0n.

v) We have established that Nνl n ⇀M0n as νl → 0. So ννl n ⇀m0n, which completes the
proof.
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4.3 Mixing in the effective equations

We start with the case when the function f(λ) has a linear growth. For simplicity of notation
we suppose that f(λ) = λ+ 1. We also are forced to assume that q∗ = 1.

The effective equation (2.25)=(0.18) with q∗ = 1 looks similar to the equation (0.6)ν=∞,q∗=1,
studied in [KN13]. It turns out that the two equations indeed are similar, at least for d ≤ 3, and
that the proof of the mixing in Section 4 of [KN13], based on an abstract theorem from [KS12],
applies to (2.25) with minimal changes. Indeed, the crucial step in [KN13] in order to apply
the result from [KS12] is to establish for solutions of the equation the exponential estimate of
the form

P{sup
t≥0

(

∫ t

0

|u(s)|2L∞ds−Kt) ≥ σ} ≤ C
′ exp(c1|u0|2L∞ − c2σ), ∀σ > 0, (4.13)

with suitable constants K,C ′, c1 and c2. This estimate is important to study the mixing since it
allows to control divergence of trajectories u1(t) and u2(t), corresponding to the same realisation
of the random force, through the inequality12

|u1(t)− u2(t)|L2
≤ |u1(0)− u2(0)|L2

exp
(
C

∫ t

0

(|u1(s)|2L∞ + (|u2(s)|2L∞)ds
)
. (4.14)

For eq. (2.25) an analogy of (4.13) follows by applying the Ito formula to [v]21 = H0(v) +
H1(v) (see (2.32)), since due to (2.32) we have that

d[v(τ)]21 + 2

∫ τ

0

[v(s)]22 ds = 4τB + 2

∞∑
j=1

(λj + 1)(vj(τ) · dβj(τ),

where we denote [v]22 =
∑

(λj + 1)2|vj |2 and B =
∑

(λj + 1)b2j . Applying to this relation the
supermartingale inequality in the standard way (e.g., see in [KN13, KS12]), we get that

P{sup
τ≥0

(

∫ τ

0

[v(s)]22 ds− 2Bt) ≥ σ} ≤ C ′ exp(c1|v0|21 − c2σ), ∀σ > 0.

If d ≤ 3, then by Lemma 2.11 the divergence of two solutions for (2.25) with the same ω satisfies

|v1(τ)− v2(τ)|h0 ≤ |v1(0)− v2(0)|h0 exp
(
C

∫ τ

0

([v1(s)]22 + [v2(s)]22) ds
)
.

This last two estimates allow to repeat literally for equation (2.25) the reduction to Theo-
rem 3.1.3 from [KS12], made in [KN13], and prove

Theorem 4.9. Let q∗ = 1, f(λ) = λ + 1 and d ≤ 3. Then the effective equation (2.25)
has a unique stationary measure µ and is mixing. That is, every its solution v(τ) satisfies
D(v(τ)) ⇀ µ as τ →∞.

The presented proof uses that the nonlinearity in the effective equation is at most cubic.
It also applies to the effective equations for eq. (0.6), where the Hamiltonian H is one of the

12To match (4.13) and (4.14) we use crucially that q∗ ≤ 1.
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two functions H3 with cubic densities as at the end of Section 0.1 (in this case the argument
works if d ≤ 6). The proof without changes applies to equation (0.6), where q∗ = 1, d ≤ 3 and
f(λ) grows super-linearly. The argument also may be adjusted to the case when q∗ = 1, d is
any and f(λ) = c1 +λcd , where cd is sufficiently big. Based on the similarity with the equation
(0.6)ν=∞,q∗=1, studied in [KN13] for any space-dimension, we conjecture that for q∗ = 1 and
f(λ) = λ+ 1 the effective equation is well-posed and mixing for any d. But it is unknown how
to prove the mixing for equations with q∗ ≥ 2 (in any space-dimension).

4.4 Proof of Lemma 4.6

For this proof we adopt a notation from [KP08]. Namely, we denote by κ(t) various functions
of t such that κ → 0 as t → ∞, and denote by κ∞(t) functions, satisfying κ(t) = o(t−N ) for
each N . We write κ(t,M) to indicate that κ(t) depends on a parameter M . Besides for events
Q and O and a random variable f we write PO(Q) = P(O ∩Q) and EO(f) = E(χO f). Below
M stands for a suitable function of ν such that M(ν)→∞ as ν → 0, but

νMn → 0 as ν → 0 , ∀n .

Denote by ΩM = ΩνM the event ΩM =
{

sup0≤τ≤T |aν(τ)|hr ≤M
}
. Then, by (1.6),

P(ΩcM ) ≤ κ∞(M) uniformly in ν, so that one has Aνk ≤ κ∞(M) + Aνk,M , where we have
defined

Aνk,M := EΩM
max

0≤τ≤T

∣∣∣∣∫ τ

0

Rk(aν(s), ν−1s)ds

∣∣∣∣ . (4.15)

So it remains to estimate Aνk,M .
Consider a partition of [0, T ] by the points

τn = nL, 0 ≤ n ≤ K ∼ T/L.

where τK is the last point τn in [0, T ). The diameter L of the partition is L =
√
ν. Denoting

ηl =

∫ τl+1

τl

Rk(aν(s), ν−1s)ds , 0 ≤ l ≤ K − 1 , (4.16)

we see that

Aνk,M ≤ LC(M) + EΩM

K−1∑
l=0

|ηl| , (4.17)

since for ω ∈ ΩM the integrand in (4.16) is smaller than a suitable C(M) (see Lemma 2.1 and
(2.21)). For any l let us consider the event

Fl = { sup
τl≤τ≤τl+1

|aν(τ)− aν(τl)|h ≥ P1(M)L1/3} ,

where P1(M) is a suitable polynomial. It is not hard to verify using the Doob inequality that
for a suitable choice of P1 the probability of P(Fl) is less than κ∞(L−1;M) (cf. [KP08]). One
gets

K−1∑
l=0

∣∣EΩM
|ηl| −EΩM\Fl

|ηl|
∣∣ ≤ C(M)L

K−1∑
l=0

P(Fl) ≤ C(M)κ∞(L−1;M) , (4.18)

31



so that it remains to estimate
∑

EΩM\Fl
|ηl|.

We have

|ηl| ≤
∣∣∣∣∫ τl+1

τl

(
Rk(aν(s), ν−1s)−Rk(aν(τl), ν

−1s)
)
ds

∣∣∣∣
+

∣∣∣∣∫ τl+1

τl

(
Rk(aν(τl), ν

−1s)
)
ds

∣∣∣∣ =: Υ1
l + Υ2

l .

By the regularity of the integrand and the definition of Fl∑
l

EΩM\Fl
Υ1
l ≤ κ(L−1/3;M) = κ(ν−1/6;M) . (4.19)

So it remains to estimate the expectation of
∑

Υ2
l . Denoting t = ντ and making use of (2.29)

we write Υ2
l as

Υ2
l = L

∣∣∣∣∣ νL
∫ ν−1L

0

∑
p,q,l∈Z∞+0

q−l−ek 6∈A(Λ,m)
|q|+|l|+1≤m

P 0pql
k (a) exp

(
−it

(
Λ · (q − l − ek)

))
dt

∣∣∣∣∣
≤ LC(M)

ν

L
sup

p,q,l∈Z∞+0

q−l−ek 6∈A(Λ,m)
|q|+|l|+1≤m

1

Λ · (q − l − ek)
≤ Lκ(ν−1L;M) ,

because the supremum in the second line is bounded by one, since both Λ and q − l − ek are
integer vectors. Therefore ∑

l

EΩM\Fl
Υ2
l ≤ κ(ν−1/2;M). (4.20)

Now (4.15), (4.17), (4.18), (4.19) and (4.20) imply that

Aνk ≤ κ∞(M) + κ(ν−1/2;M) + κ∞(ν−1;M) + κ(ν−1/6;M) + κ(ν−1/2;M) .

Choosing first M large and then ν small, we make the r.h.s. above arbitrarily small. This
proves the lemma.

An argument similar to the previous one (see Appendix A) implies the following assertion:

Proposition 4.10. Let s ∈ Z∞0 be such that s · Λ 6= 0 and G : RM+ × TJ(M) × S1 → R be a
bounded Lipschitz-continuous function, for some M ≥ 1. Then

Bν := E max
0≤τ≤T

∣∣∣ ∫ τ

0

(
G(IνM (l),Φν(M)(l), s · ϕν(l))−∫

S1

G(IνM (l),Φν(M)(l), θ)d̄θ
)
dl
∣∣∣→ 0 as ν → 0.

In particular, taking for G Lipschitz functions on S1 we get that 〈D(s ·ϕν(l))〉t0 ⇀ dθ as ν → 0,
for any t > 0.
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A Proof of Proposition 4.10

For this proof, as in Section 4.4, we denote by κ(t) various functions of t such that κ → 0 as
t→∞, and denote by κ∞(t) functions, satisfying κ(t) = o(t−N ) for each N . For events Q and
O and a random variable f we write PO(Q) = P(O ∩Q) and EO(f) = E(χO f). Without lost
of generality we assume that |G| ≤ 1 and LipG ≤ 1.

Let us denote by R a suitable function of ν such that R(ν)→∞ as ν → 0, but

νRn → 0 as ν → 0 , ∀n .

Denote, moreover, by ΩR = ΩνR the event ΩR =
{

sup0≤τ≤T |vν(τ)|r ≤ R
}
. Then, by (1.6),

P(ΩcR) ≤ κ∞(R) uniformly in ν.
Taking into account the boundedness of G, we get that

Bν ≤ κ∞(R) + EΩR
max

0≤τ≤T

∣∣∣ ∫ τ

0

(
G
(
IνM (l),Φν(M)(l), s · ϕν(l)

)
−
∫
S1

G(IνM (l),Φν(M)(l), θ)d̄θ
)
dl
∣∣∣ .

As in the proof of Lemma 4.6, consider a partition of [0, T ] by the points

τn = τ0 + nL, 0 ≤ n ≤ K ∼ T/L. (A.1)

where τK is the last point τn in [0, T ). The diameter L of the partition is L =
√
ν, and the

non-random phase τ0 ∈ [0, L) will be chosen later. Denoting

ηn =

∫ τn+1

τn

(
G(IνM ,Φν(M), s · ϕν)−

∫
S1

G(IνM ,Φν(M), θ)d̄θ
)
dl, 0 ≤ n ≤ K − 1, (A.2)

we see that

Bν ≤ κ∞(R) + CL+ EΩR

K−1∑
n=0

|ηn|, (A.3)

so it remains to estimate
∑

EΩR
|ηn|. We abbreviate

Ĝ(ψ; l) = G(IνM (l),Φν(M)(l), ψ) , ψ ∈ S1 ,

so that we have

|ηn| ≤
∣∣∣∣∫ τn+1

τn

(
Ĝ(s · ϕν(l); l))− Ĝ

(
s · ϕν(τn) + ν−1(s · Λ)(l − τn); τn

))
dl

∣∣∣∣
+

∣∣∣∣∫ τn+1

τn

(
Ĝ
(
s · ϕν(τn) + ν−1(s · Λ)(l − τn); τn

)
−
∫
S1

Ĝ(θ; τn)d̄θ

)
dl

∣∣∣∣
+

∣∣∣∣∫ τl+1

τl

(∫
S1

Ĝ(θ; τn)d̄θ −
∫
S1

Ĝ(θ; l)d̄θ
)
dl

∣∣∣∣ =: Υ1
n + Υ2

n + Υ3
n .

To estimate the quantities Υ1,2,3
n we first optimise the choice of the phase τ0. A crucial point

here is that, if we set N := M ∨ dse, the function G depends only on vN . So we consider the
events En, 1 ≤ n ≤ K,

En = {Iνk (τn) ≤ ε for some k ≤ N}, where ε ≥ νa, a = 1/10 . (A.4)
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Since for each k ≤M by Lemma 2.2 we have∫ L

0

K∑
n=0

P(Iνk (τ̄n) ≤ ε) dτ̄0 =

∫ T

0

P(Iνk (τ) ≤ ε) dτ = κ(ε−1;R,N)

(here each τ̄n is regarded as a function of τ0 = τ̄0, given by (A.1)), then we can choose τ0 ∈ [0, L)
in such a way that

K−1
K−1∑
n=0

P(En) = κ(ε−1;R,N).

For any n consider the event

Qn =

{
sup

τn≤τ≤τn+1

|Iν(τ)− Iν(τn)|hI
≥ P1(R)L1/3

}
,

where P1(R) is a suitable polynomial. It is not hard to verify using the Doob inequality that its
probability satisfies P(Qn) ≤ κ∞(L−1) (cf. [KP08]). Setting Fn = En ∪Qn, n = 0, . . . ,K − 1,
we have that

1

K

K−1∑
n=0

P(Fn) ≤ κ(ε−1;R,N) + κ∞(ν−1/2;N) =: κ̃ .

Accordingly,

K−1∑
n=0

∣∣(EFn∩ΩR
)Υj

n

∣∣ ≤ CLK−1∑
n=0

P(Fn) ≤ Cκ̃ := κ̃1 , j = 1, 2, 3. (A.5)

If ω ∈ ΩR\Fn, then for τ ∈ [τn, τn+1] we have that Iνk (τ) ≥ ε − P1(R)L1/3 ≥ 1
2ε. On the

other hand, by Lemma 2.1, for any positive δ we have the estimate∣∣∣|vk|−2
(ivk · Pk(v))χ{|vk|>δ}

∣∣∣ ≤ δ−1Qk(|v|hr ) ,

where Qk is a polynomial. These relations and (2.6) imply that

PΩR\Fn
{|ϕνN (l)− (ϕνM (τn) + ν−1ΛN (l − τn))| ≥ νa for some l ∈ [τn, τn+1]}

≤ κ∞(ν−1;R,N)

(cf. the estimate of P(Qn)). Therefore

PΩR\Fn

{
|s · ϕνN (l)− (s · ϕνN (τn) + ν−1(s · Λ)(l − τn))| ≥ νa

for some l ∈ [τn, τn+1]
}
≤ κ∞(ν−1;R,N, s,Λ) .

and

PΩR\Fn
{|Φν(M)(l)− Φν(M)(τn)| ≥ νa for some l ∈ [τn, τn+1]} ≤ κ∞(ν−1;R,N) .

From here and the definition of the events Qn we find that∑
l

EΩR\Fn
Υ1
n ≤ C(R)ν1/6 + C(R)νa + κ∞(ν−1;R,N, s · Λ). (A.6)
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For the same reason also∑
l

EΩR\Fn
Υ3
n ≤ C(R)ν1/6 + C(R)νa + κ∞(ν−1;R,N, s · Λ) . (A.7)

So it remains to estimate the expectation of
∑

Υ2
n. Denoting t = ν(l − τn) we write Υ2

n as

Υ2
n =

∣∣∣∣∫ τn+1

τn

Ĝ(s · ϕν(τn) + ν−1(s · Λ)(l − τn); τn) dl − L
∫
S1

Ĝ(θ; τn)d̄θ

∣∣∣∣
= L

∣∣∣∣∣ νL
∫ ν−1L

0

Ĝ(s · ϕν(τn) + s · Λt; τn) dt−
∫
S1

Ĝ(θ; τn)d̄θ

∣∣∣∣∣ .
Let us expand Ĝ(ψ; τn) as a Fourier series Ĝ(ψ) =

∑
gke

ikψ, where each gk is a random
variable and g0 =

∫
S1 Ĝ(θ; τn)d̄θ (we discard the dependence on τn, which is fixed thought the

argument). Then ∣∣∣∣∣ 1

T

∫ T

0

Ĝ(ψ0 + t(s · Λ)) dt− g0

∣∣∣∣∣ ≤ ε ∀T ≥ Tε ,

for a suitable non-random Tε. Indeed, for each nonzero k, one has∣∣∣∣∣ 1

T

∫ T

0

eik(ψ0+t(s·Λ)) dt

∣∣∣∣∣ ≤ 2

T |s · Λ|
,

so that13 ∣∣∣∣∣ 1

T

∫ T

0

Ĝ(ψ0 + t(s · Λ)) dt− g0

∣∣∣∣∣ ≤ 2

T |s · Λ|
∑
|gk| ≤

2C

T |s · Λ|
.

We have thus proved that Υ2
n ≤ Lκ(ν−1L;R,N, ε, s · Λ) . Therefore∑
l

EΩR\Fc
l
Υ2
n ≤ κ(ν−1/2;R,N, ε, s · Λ). (A.8)

Now (A.3), (A.5) and (A.6)-(A.8) imply that Bν is bounded by

κ∞(R) + κ(ν−a;R,N) + κ(ε−1;R,N) + C(R)νa + C(R)ν1/6 + κ(ν−1/2;R,N, ε, s · Λ).

Choosing first R large and next ε small and ν small in such a way that (A.4) holds, we make
the quantity above arbitrarily small. This proves the required convergence.

The second assertion of the proposition follows from the first one, since to check the weak
convergence of measures on a complete metric space it suffices to take for test-functions the
Lipschitz functions.

13By the Bernstein theorem,
∑∞
k=1 |gk| ≤ C, where the constant C = C(Ĝ) is finite if the function Ĝ(ψ) is

Lipschitz-continuous. The proof of the theorem (e.g., see [Zyg59], Section VI.3) easily implies that C depends

only on the Lipschitz constant of Ĝ, which equals 1 in our case.
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